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Chapter 7
DNA Damage, Response, and Repair in Plants 
Under Genotoxic Stress

Uzma Fatima, Mohd Farhan Khan, Jamal e Fatima, Uzma Shahab, 
Saheem Ahmad, and Mohd. Aslam Yusuf

Abstract  Several environmental and endogenous factors create a variety of lesions 
in the genome of an organism. These lesions could potentially be genotoxic and 
might lead to mutations, which could be lethal. All organisms exhibit a prompt 
response against DNA damage, which is referred to as the DNA damage response. 
The existence of elaborate, evolutionarily conserved systems to repair the damage, 
mostly at the expense of huge amount of energy, points to the importance of safe-
guarding the integrity of DNA. Most of the current understanding about DNA dam-
age response and repair pathways has been distilled through decades of research on 
prokaryotes, yeast, and mammalian systems. The response to genotoxic stresses and 
the repair mechanisms involved in plants has only recently begun to be investigated. 
Herein, we present a comprehensive account of the types of DNA damage, the DNA 
damage response, and the repair pathways with reference to the recent insights 
gained from the plants. Although, the underlying common theme runs through to 
the plants, the mechanisms in plants demonstrate some unique features. Also, there 
are several missing links that need to be unravelled for inferring a complete picture. 
A thorough understanding of the mechanisms involved would aid in devising strate-
gies to help plants avoid irreparable damages to their genome upon exposure to 
genotoxic agents.
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�Introduction

The genome contains the blueprint of life. Protecting the sanctity of the informa-
tion in DNA is a cellular imperative for maintaining and perpetuating life. Though 
intrinsically more stable than other macromolecules, DNA is nonetheless prone to 
damages that can compromise its function and the eventual fate of an organism. A 
variety of processes, some endogenous and other catalyzed by environmental 
agents, can undermine the integrity of DNA. The endogenous sources of damage 
include metabolic by-products and stalled replication forks while environmental 
agents like ultraviolet (UV) and ionizing (IR) radiation and chemical mutagens 
are the exogenous ones. To combat the DNA damage, organisms contain elaborate 
cellular networks termed the DNA damage response (DDR) that are critical to 
maintain the integrity of the genome (Ciccia and Elledge 2010). The components 
of this response include processes to detect the damage, to relay the signal to spe-
cific regulators in the cell, and to elicit the production of effector molecules 
(Vespa et  al. 2005; Culligan et  al. 2006). The orchestration of these processes 
ultimately leads to the repair of DNA lesions or the induction of cellular death, if 
the damages are beyond repair. The DDR pathways are fundamental to life and 
most of them have been conserved through the evolution. Much of the current 
understanding of these mechanisms derives from the research done in prokary-
otic, yeast, and mammalian systems. The delineation of DDR in plants has only 
been attempted lately.

Plants are continuously exposed to environmental, edaphic, and other anthro-
pogenic stresses. These include extremes of temperature, drought, UV-B, IR, as 
well as air and soil pollutants. In addition to severely impacting the structural, 
enzymatic, and nonenzymatic components of plants, these stresses potentially 
threaten the plant genomes (Wasi et al. 2013). Unrepaired DNA damages can lead 
to mutations, which can impact the stability of a plant’s genomes, its growth and 
productivity, and might threaten the survival of the plant (Singh et  al. 2010; 
Biedermann et  al. 2011). Being sessile, plants cannot evade these stresses and 
combat is the only alternative for their survival and growth. It is, thus, imperative 
that an efficient and specific DDR system be in place in plants to cope with DNA 
damage (Yoshiyama et  al. 2013). The sequencing of several plant genomes has 
given huge impetus to the study of DDR in plants, with many components of the 
system having been discovered in plant genomes (Mannuss et al. 2012). Although 
the basic mechanism remains conserved in eukaryotes, several plant-specific regu-
lators have been reported, alluding to the existence of some unique DDR systems 
in plants.

In this chapter, we have endeavored to summarize the current understanding of 
DDR in plants. The following sections in the chapter provide details on the DNA 
damaging agents, types of DNA damage, mechanism of genotoxic stress percep-
tion, transduction of the signal, and repair of the damage.
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�DNA Damaging Agents

Different intrinsic and extrinsic factors, classified either as physical or chemical, are 
capable of damaging the genetic material.

�Physical Agents

Ultraviolet and ionizing radiation are the most common physical factors contributing 
to DNA damage. The innocuous sunlight, essential for photosynthesis in plants, also 
contains radiations that are potentially genotoxic. These energy-rich radiations 
include UV-C (100–280 nm), UV-B (290–320 nm), and UV-A (320–400 nm). UV-C 
is filtered out by absorption in the upper stratospheric and ozone layers but UV-B and 
UV-A enter the atmosphere, their amount reaching the earth’s surface dependent on 
latitude and elevation, as well as the cloud cover and canopy density. UV-B, on 
account of its higher energy, is potentially more deleterious to living organisms. 
Besides damaging proteins and biomembranes, UV-B is strongly mutagenic (Pang 
and Hays 1991; Britt 1999). It is absorbed by the DNA and may lead to the genera-
tion of cyclobutane pyrimidine dimers (CPDs) and to a lesser extent pyrimidine (6-4) 
pyrimidone dimers (6-4 PPs; Friedberg et al. 2006). These lesions affect the tran-
scription and also result in error-prone replication. Besides, UV light is strongly 
absorbed by many environmental organic contaminants, thereby, increasing their 
toxicity (Huang et  al. 1993). The UV-A and visible spectrum of light cannot be 
absorbed by the native DNA. However, they can still damage DNA through reactive 
oxygen species (ROS) generation via photosensitizing reactions (Alscher et al. 1997; 
Iovine et al. 2009). ROS can induce a variety of DNA damages like base and nucleo-
tide modifications, especially in guanine-rich sequences and may even cause strand 
breaks (Wiseman and Halliwell 1996; Tuteja et al. 2001; Tuteja and Tuteja 2001).

IR is another major mutagen that damages DNA, either directly or indirectly 
through the production of free radicals (Ward 1975). Chromosomal breaks, inver-
sions, duplications, and translocations can result from double-strand (DSBs) and 
single-strand breaks (SSBs) caused by the absorption of IR by the sugar–phosphate 
backbone in the DNA. The indirect effect of IR is mediated through the radiolysis 
of water which generates OH radicals, the most damaging of all the ROS that attack 
the DNA along with proteins, lipids, and other cellular constituents.

�Chemical Agents

Chemically, genotoxic agents could either be inorganic or organic. Heavy metals 
like Cd2+, Cu2+, Ni2+, and Pb2+ are the main inorganic genotoxic compounds which 
cause the generation of free radicals that damage the DNA (Imlay and Linn 1988). 
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Metal ions can also influence the efficiency and fidelity of DNA replication. Ions 
like Ni2+ and As3+ change the stability of DNA by altering their methylation pattern 
(Davis et al. 2000).

Genotoxic organic compounds can affect the DNA in different ways. Alkylating 
agents like ethylmethane sulfonate (EMS) and methylmethane sulfonate (MMS) 
cause DSBs while aromatic compounds such as polycyclic aromatic hydrocarbons 
(PAHs) and polychlorinated biphenyls (PCBs) are mutagenic because they interca-
late between the DNA strands.

�Types of DNA Damage

DNA damage caused by physical or chemical agents can be broadly classified into 
three types of lesions: mismatched bases, double-strand breaks, and chemically 
modified bases. The damages induced by the different agents are discussed below.

�UV-Induced DNA Damage

A major type of DNA damage induced by UV-B is the formation of dimers between 
adjacent pyrimidines—the CPDs and 6-4 PPs (Mitchell and Nairn 1989; McGregor 
1999; Fig. 7.1). CPDs can occur in any of the diastereoisomeric forms, i.e., cis/trans 
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(with respect to the relative position of pyrimidine rings) and syn/anti (with refer-
ence to relative orientation of C5–C6 bonds). Whereas cis-syn is the predominant 
CPD form in DNA, the trans-syn occurs exclusively in single-stranded DNA. The 
6-4 PPs are formed between adjacent TT, TC, and CC nucleotides depending upon 
the UV wavelength and adjacent sequence (Mouret et al. 2006). CPDs and 6-4 PPs 
make up approximately 70–80 % and 20–30 %, respectively, of the total UV photo-
products (Mitchell and Nairn 1989). The pyrimidine dimers inhibit DNA replication 
and transcription by inducing structural distortions within the DNA, produced as a 
consequence of bending and unwinding of the DNA helix (Demple and Harrison 
1994).

UV-induced ROS can damage DNA mostly by the formation of 
8-hydroxydeoxyguanosine (8-OHdG) at the 5′-site of –GG– sequence in the double-
stranded DNA. This modified guanine pairs with adenine at 50 % probability caus-
ing G:C to T:A transversions (Ito et al. 1993).

�IR-Induced DNA Damage

Like UV, IR, too, can induce DNA damage both by being directly absorbed and by 
production of ROS as a consequence of radiolysis of water. The most common DNA 
lesions generated by IR include sugar and base damage, single- and double-strand 
breaks, and DNA–DNA and DNA–protein cross-links (Belli et  al. 2002). Direct 
absorption of IR by the sugar–phosphate backbone of DNA generates nicks and 
DSBs. IR-induced SSBs are characterized by the presence of a one nucleotide gap 
containing a 5′-phosphate and either a 3′-phosphoglycolate or a 3′-phosphate 
(Henner et al. 1983).

�Hydrolysis-Induced DNA Damage

Hydrolysis of glycosidic bonds between bases and sugar–phosphate backbone in 
DNA results in the formation of apurinic/apyrimidinic (AP) sites. These sites pre-
vent normal DNA replication and transcription and are the most common locations 
for the creation of DSBs because of the collision of replication forks. These lesions 
are generally recognized and repaired under normal conditions, but their occasional 
bypass during replication can be mutagenic (Gentil et al. 1984).

Cytosine and methyl-cytosine can undergo hydrolytic deamination to uracil and 
thymine, respectively. During replication, this can lead to C:G to T:A transition 
because of mispairing with adenine. Though, the unusual presence of uracil in the 
DNA is promptly recognized and the lesion is repaired, the transition to thymine is 
difficult to detect and frequently leads to point mutation.
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�Alkylation-Induced DNA Damage

7-Methylguanine, 3-methyladenine, and O6-methylguanine are the most common 
lesions produced by alkylating agents like methyl methane sulfonate (MMS) and 
ethyl methane sulfonate. While 7-methylguanine is a neutral mutation, 3-methyladenine 
blocks DNA synthesis creating DSBs and O6-methylguanine pairs with thymine to 
produce G:C to A:T transition.

�Oxidation-Induced DNA Damage

Increased ROS production is a common manifestation of many abiotic stresses in 
plants with chloroplasts and mitochondria being the major sites of production. 
ROS-induced oxidative damage to DNA includes modified bases and sugar, abasic 
sites, strand breaks, DNA–protein cross-links. The most common oxidation product 
of purines is 7,8-dihydro-8-oxoguanine, also known as 8-oxoguanine, which can 
base pair equally well with adenine and cytosine (Maki and Sekiguchi 1992). 
Thymine glycol is the main oxidatively modified form of pyrimidines and can block 
DNA replication. Furthermore, ROS can react with sugar of the sugar–phosphate 
backbone leading to SSBs and DSBs.

�DDR Pathway: Perspectives from Animals and Plants

The DDR pathway has mostly been investigated in animals and yeast. At the molec-
ular level, it consists of a number of components including DNA damage sensors, 
signal transducers, mediators, and effectors. In mammals, ataxia telangiectasia 
mutated (ATM), ATM, and Rad3-related (ATR), and DNA-dependent protein kinase 
subunit (DNA-PKcs) are the major regulators of DDR and are rapidly activated in 
response to DNA damage (Sirbu and Cortez 2013). DSBs are mostly sensed by 
ATM which initiates a cascade of steps that comprise the ATM pathway. ATR, on 
the other hand, can respond to a variety of DNA lesions, especially those associated 
with DNA replication to commence the ATR pathway (Cimprich and Cortez 2008).

�Sensing the Damage

The different types of DNA damages are sensed by either the ATM or ATR pathway 
and culminate into a suitable response depending upon the severity of the damage. In 
mammals, the DSBs are recognized in the ATM pathway by a ternary MRN complex 
that comprises the proteins MRE11, RAD50, and NBS1 (Rupnik et al. 2010). This 
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complex assembles at the site of DSBs and recruits ATM whereby the interaction 
with NBS1 activates the kinase activity of ATM resulting in the phosphorylation of 
target proteins, especially the histone variant H2AX. γH2AX, the phosphorylated 
form of H2AX, further recruits other DDR proteins (Dickey et al. 2009). Homologs 
of MRE11, RAD50, and NBS1 have been reported in Arabidopsis thaliana (Hartung 
1999; Gallego and White 2001; Akutsu et al. 2007). Phosphorylation of H2AX by 
AtATM and AtATR, the A. thaliana homologs of ATM and ATR, has also been 
reported in response to DSBs (Friesner et al. 2005). That the induction of γH2AX 
was observed to be impaired in the rad50 and mre11 mutant plants suggested the 
involvement of the MRN complex in the phosphorylation of H2AX via the ATM and 
ATR homologs in plants (Amiard et al. 2010).

In mammals, replication protein A (RPA), a single-strand DNA (ssDNA)-bind-
ing protein acts as a sensor in the ATR pathway. The RPA-ssDNA complex formed 
at the site of stalled replication fork (near a DNA lesion) is bound by an ATR-
interacting protein (ATRIP) which recruits ATR, eventually activating the check 
point kinase 1 (CHK1; Zou and Elledge 2003). Alternatively, the ATR pathway can 
be initiated by recognition of the damage by the RAD9/RAD1/HUS1 (9-1-1) com-
plex. This complex is a ring-like clamp that is loaded onto ssDNA at the damage site 
with the help of a clamp loader, RAD17 (Bermudez et al. 2003). The homologs of 
RPA, 9-1-1 complex, and RAD17 have been identified in the A. thaliana genome 
(Takashi et al. 2009; Heitzeberg et al. 2004). Functional characterization of mutants 
of these homologs suggests that the DNA sensing mechanisms via the ATM and 
ATR pathway are conserved between animals and plants.

�Transducing the Signal

For proper response, information about the damage detected by the sensors is ampli-
fied and transduced to the effector proteins by the mediation of transducers. These 
transducers are mostly serine/threonine kinases which initiate a sequence of phos-
phorylation steps. ATM/ATR and CHK1/CHK2 are the main transducers in ani-
mals. Activation of ATM involves its autophosphorylation and subsequent 
monomerization of the ATM dimer (Bakkenist and Kastan 2003), whereas ATR is 
brought into action by its recruitment to RPA-ssDNA complex by ATRIP (Ball and 
Cortez 2005; Warmerdam et al. 2010). The downstream substrates for phosphoryla-
tion by ATM and ATR include CHK1, CHK2, p53, NBS1, and BRCA1 (Matsuoka 
et al. 2000; Gatei et al. 2003; Zhao and Piwnica-Worms 2001). Of these, CHK1 and 
CHK2 are the main transducers which have common phosphorylation substrates 
like p53, BRCA1, E2F1, and CDC25A (Kim et al. 2007).

AtATM and AtATR, the Arabidopsis homologs of mammalian ATM and ATR 
have been identified. Analysis of the atm and atr mutants revealed their sensitivity 
to DNA damage inducing agents signifying the conservation of the role of these 
proteins as signal transducers in both animals and plants (Garcia et  al. 2003; 
Culligan et al. 2004). Orthologs of ATRIP have also been reported in A. thaliana 

7  DNA Damage, Response, and Repair in Plants Under Genotoxic Stress



158

(Sweeney et al. 2009; Sakamoto et al. 2009). Although the orthologs of CHK1 and 
CHK2 have not been identified in plants the presence of other kinases having func-
tions similar to these two proteins has been alluded to, in view of the presence of 
mediator proteins like BRCA1 and E2F in plants (Lafarge 2003; Inze and de 
Veylder 2006).

�Between the Signal and Response: The Mediators

Different mediator proteins that regulate DDR have been identified and their roles 
have been described. The two most common mediators involved in the ATM path-
way are BRCA1, mediator of DNA-damage checkpoint protein 1 (MDC1), and 
p53-binding protein (53BP1; Stewart et al. 2003; Stucki and Jackson 2004). DNA 
topoisomerase-2-binding protein 1(TOPBP1) and CLASPIN have been demon-
strated to regulate the ATR pathway (Garcia et al. 2005; Kumagai et al. 2004). Many 
of these proteins interact with other phosphorylated proteins through a conserved 
BRCA1 associated C-terminal (BRCT) domain (Manke et al. 2003). These media-
tor proteins function as scaffolds for many DNA damage repair proteins. AtBRCA1, 
a homolog of BRCA1 with two BRCT domains, which is strongly induced by IR, 
has been reported in A. thaliana (Culligan et  al. 2006; Lafarge 2003). Also, an 
Arabidopsis MEIOSIS DEFECTIVE 1 (ME1) protein with five BRCT domains 
having 40 % similarity to the human TOPBP1 has been reported although its role as 
a mediator in DRR remains to be confirmed (Mathilde et al. 2003). Other mediators 
are yet to be identified in plants.

�Responding to the Damage: The Effectors

Cellular response to DNA damage depends on the severity of the damage. A cell 
tries to repair the damage by halting its progress in the cell cycle and stopping DNA 
replication followed by the activation of DNA repair pathways. If the damage is 
extensive and beyond repair, the cell prefers to initiate apoptosis. The ultimate result 
of DNA damage is decided by the action of effector proteins. In animals, the tumor 
suppressor protein p53 is the most important effector (Helton and Chen 2007). The 
amount and activity of this transcription factor is regulated very precisely by post-
translational modifications, of which phosphorylation is the most crucial (Taira and 
Yoshida 2012). Under normal conditions, p53 levels are maintained at low levels by 
MDM2-mediated ubiquitination and proteasomal degradation (Xirodimas et  al. 
2004). DNA damage leads to phosphorylation of p53 by ATM, ATR, CHK1, and 
CHK2; phosphorylation inhibits the interaction of p53 with MDM2, thereby, result-
ing in its stabilization and activation (Shieh et  al. 1997; Appella and Anderson 
2001). Despite the conservation of many DRR proteins between animals and plants, 
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a plant p53 homolog has long eluded plant scientists. Presence of factors with func-
tions similar to that of p53 has been envisaged; SOG1 has been described as one 
such factor.

An essential prerequisite for initiating DNA repair is the halt or arrest of cell 
cycle to prevent the replication of damaged DNA or allow the division of cells car-
rying such DNA. Cyclin-dependent kinase (CDK) inhibitors, p21 and WEE1 kinase, 
are the major effectors that halt the cell cycle in response to DNA damage in ani-
mals (Abbas and Dutta 2009; Sorensen and Syljuasen 2012). While p21 arrests the 
cells at G1 in a p53-mediated manner (Reinhardt and Schumacher 2012), WEE1 
prevents mitotic entry (McGowan and Russell 1995). In addition, several CDC25 
phosphatases are also cell-cycle effectors. These phosphatases remove the inhibi-
tory phosphate groups on CDKs to control the progression of cell cycle. Upon DNA 
damage, CDC25 is itself inactivated by phosphorylation mediated by CHK1 and 
CHK2 leading to the cell-cycle arrest (Karlsson-Rosenthal and Millar 2006). 
Although, homologs of p21, like its immediate regulator p53, have not been identi-
fied in plants several other CDK inhibitors (CDKIs) have been reported from A. 
thaliana. These CDKIs belong to two families, namely Kip-related protein (KRP) 
family and SIAMESE/SIAMESE-RELATED (SIM/SMR) family. DSBs strongly 
induce the expression of SMR4 and SMR5, indicating their involvement in cell-
cycle arrest (Yoshiyama et al. 2009). AtWEE1 is the WEE1 homolog in A. thaliana 
that is activated by DNA damage or DNA replication arrest in an AtATM- or 
AtATR-dependent manner, respectively (de Schutter et al. 2007). It has been dem-
onstrated to control cell-cycle arrest in the DDR pathway. Although a CDC25-like 
protein has been identified in A. thaliana, its role in cell-cycle regulation is not 
confirmed (Spadafora et al. 2011).

By applying brakes on the cell cycle, cell buys time to make amends to the dam-
aged DNA. A number of conserved DNA repair pathways viz., nucleotide excision 
repair (NER), base excision repair (BER), homologous recombination (HR), non-
homologous end-joining (NHEJ), and direct repair (DR) have been identified in 
yeast, animals, and plants. If the damage is beyond repair, animal cells activate 
apoptosis, the exquisitely regulated pathway to kill cells with compromised 
genomes. The diversion of cells from DNA repair pathways to apoptosis is medi-
ated by the transcriptional activation of genes such as BAX, PUMA, and NOXA by 
p53 (Vousden and Lu 2002). Plants, too, have programmed cell death (PCD), but it 
is distinct from the apoptotic cell death in animals because plants lack the core 
apoptotic machinery. PCD involving AtATM and AtATR has been observed in 
shoot and root apical meristem in plants in response to DNA damage (Fulcher and 
Sablowski 2009). Metacaspases (MCs) that are structurally similar to animal cas-
pases, the initiator proteins for apoptosis have also been reported in plants (Uren 
et al. 2000; Lam and Zhang 2012). Overexpression of some of these MCs increased 
the cell death upon treatment with ROS-inducing agents while their loss resulted in 
delay or decrease of cell death (Lam and Zhang 2012). It has been suggested that 
some of these pathways might be regulated by SOG1 in plants.
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�DNA Repair Pathways in Plants

Maintenance of genomic integrity is crucial to life. This comes at a huge premium 
in terms of energy expenditure and elaborate repair framework that organisms need 
to maintain. Although damages that do not interfere with the replication or tran-
scription can sometimes be innocuous, those that hinder the activity of DNA and 
RNA polymerases are very harmful for the organism and need to be compulsorily 
repaired. Most of the repair mechanisms have been conserved through evolution 
and homologs of different elements have been identified across kingdoms. The 
whole genome sequence of A. thaliana and rice has revealed the presence of many 
repair proteins that are similar to those in humans. Characterization of mutants and 
overexpressing lines has provided functional validation for these proteins. A com-
prehensive list of DNA repair genes in the rice genome was provided by Kimura and 
Sakaguchi (2006). Like animals, plants are also equipped with a variety of repair 
pathways catering to the different types of DNA damages. These damages can be 
rectified through a number of pathways. Herein, we have described the main path-
ways, namely photoreactivation/photorepair (PR), base excision repair (BER), and 
nucleotide excision repair (NER).

�Photoreactivation/Photorepair (PR) Pathway

As inherent in the name, photoreactivation is a light-dependent pathway majorly 
responsible for the repair of UV-B-induced DNA damage, especially CPDs. This 
pathway utilizes light-mediated reversion of the damage by photolyases (Yasui and 
Eker 1998). Photolyases generally contain two chromophoric co-factors, one of 
which is always the two electron reduced form of FAD (FADH−; Sancar 2003). 
FADH− acts as a transient electron donor to reverse the cross-link between the bases. 
The second chromophore acts as an antenna pigment to excite the electron donor. 
The reaction mechanism proceeds via a free radical mechanism. Photolyases bind 
specifically to DNA lesions absorbing blue/UV-A (320–400 nm) light and reducing 
pyrimidine dimers to monomers (Kimura et al. 2004; Fig. 7.2). A number of factors 
including quality, timing, and quantity of photoreactivating light as well as the 
severity of the damage affect this repair (Sutherland et  al. 1996; Takeuchi et  al. 
1996; Stapleton et al. 1997). Although, PR is present in prokaryotes and eukaryotes 
including some species of plants and animals, it is not universal, with many species, 
including humans, lacking it (Todo 1999). The genes for photolyases have been 
cloned from higher plants such as A. thaliana, Cucumis sativus, Oryza sativa, and 
Spinacia oleracea. Six genes with photolyase activity have been identified in the 
Arabidopsis genome. The common UV-induced lesions, CPD and 6-4 PP, are spe-
cifically recognized by photolyases PHR1/UVR2 and UVR3, respectively. 
Arabidopsis mutants for these photolyases were defective in PR (Jiang et al. 1997). 
Similarly, rice cultivars with deficient PR of CPDs were reported to carry a mutation 
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in the CPD photolyase (Hidemal et  al. 2000; Teranishi et  al. 2004). In contrast, 
transgenic rice overexpressing CPD photolyase were demonstrated to be tolerant to 
growth inhibition caused by UV-B-induced damage and accumulated lower CPD 
lesions in leaves during growth under UV-B irradiation (Hidemal et  al. 2007). 
Further, diurnal changes in CPD photolyase expression have been observed in 
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cucumber, suggesting regulation of the gene to prevent growth suppression by UV 
(Takahashi et  al. 2002). In Arabidopsis, the overexpression of CPD photolyase 
resulted in a modest increase in biomass under UV-irradiated conditions (Kaiser 
et al. 2009). In addition, different ecotypes of A. thaliana have been demonstrated 
to possess variable UV-B response (Kalbina and Strid 2006).

�Base Excision Repair

Only a minority of damaged bases in DNA are repaired by direct damage reversal; 
most of these are removed by excision repair (Lindahl and Wood 1999). Damaged 
bases that do not distort the helical structure of DNA are repaired by BER. Such 
damaged bases could be the result of spontaneous deamination or base loss or could 
be induced by IR, oxidative or methylating agents. In this multi-step repair pathway, 
specific DNA glycosylases excise the damaged base thereby creating an abasic (AP) 
site that is subsequently filled in by the correct DNA sequence (Lindahl and Wood 
1999; Mol et al. 1995; Tuteja and Tuteja 2001). The repair mechanism has been 
classified into two sub-pathways: short-patch BER and long-patch BER. In short-
patch BER, a glycosylase with specificity for a particular base-adduct slides along 
the minor grove of DNA helix and localizes to the site of the lesion where it removes 
the damaged base creating an AP site (Fromme et al. 2004). The abasic site is then 
recognized by an AP-endonuclease that nicks the DNA backbone on 5′-end of the 
AP site. Thereafter, the 5′-terminal deoxyribose-phosphate residue is excised by 
DNA polymerase β using its AP lyase activity (Matsumoto and Kim 1995). The 
missing base is then put in place by DNA polymerase β, and the nick is sealed by 
DNA ligase I or III with the help of XRCC1 (Fig. 7.3). In the case of long-patch 
BER, instead of the replacement of a single damaged base, a longer patch (2–10 
nucleotides) is resynthesized by nick translation in conjunction with strand dis-
placement in the 5′–3′ direction, generating a flap-like structure. The flap is removed 
by a flap endonuclease, FEN-1, with the aid of PCNA (Wu et al 1996; Klungland 
and Lindahl 1997; Fig. 7.3). The nick translation is catalyzed by DNA polymerase 
β or δ and the backbone is sealed by DNA ligase 1 (Fortini et al. 1998).

The study of BER in plants has revealed the presence of several homologs of 
different component proteins in A. thaliana and O. sativa (Kimura and Sakaguchi 
2006). For example, glycosylases with specificity for particular modified bases have 
been reported (Santerre and Britt 1994; Garcia-Ortiz et al. 2001; Dany and Tissier 
2001; Murphy and Gao 2001). Similarly, Arabidopsis XRCC1-like protein and rice 
FEN1 and DNA polymerase δ have been isolated (Martínez-Macías et  al. 2013; 
Kimura et al. 2003; Uchiyama et al. 2002). However, plant homologs of DNA poly-
merase β and DNA ligase III have not yet been reported.
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Fig. 7.3  Schematic representation of base excision repair pathway. Please refer to the text for 
explanation of the steps in the pathway

7  DNA Damage, Response, and Repair in Plants Under Genotoxic Stress



164

�Nucleotide Excision Repair

Lesions that cause large distortions in the helical structure of DNA are generally 
restored by nucleotide excision repair. The steps involved in this mechanism include 
recognition of the damaged site, opening of the double helix by the action of heli-
cases and endonucleases, excision of a DNA segment carrying the lesion, and 
replacement of the segment using the template provided by the intact complemen-
tary strand followed by ligation of the nick (Costa et al. 2003; Fig. 7.4). The proteins 
involved in NER are sequentially assembled at the site of the lesion (Volker et al 
2001). NER is classified into two distinct sub-pathways that differ in the DNA dam-
age recognition: transcription coupled repair (TCR) and global genome repair 
(GGR). RNA polymerase II detects the lesion in TCR with the help of CSB and 
CSA.  CSB has been demonstrated to alter DNA conformation and remodel 

5 3 5 3

Damaged DNA

Global Excision RepairTranscription-coupled Repair

XPE/DDB2

XPC/hHR23B

XPG

CSB

TFIIH

RPA

XPA

XPF/ERCC1

DNA pol

RNA

Recognition of damage

Binding of XPA, RPA, XPG, and TFIIH

TFIIH unwinds DNA helix

XPG and XPF/ERCC1 cut 
(Excision of lesion)

DNA pol fills the gap
Ligase seals the nick

Repaired DNA

Fig. 7.4  Schematic representation of nucleotide excision repair. Please refer to the text for expla-
nation of the steps in the pathway. (Adapted from Fuss and Cooper 2006)
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chromatin in an ATP dependent manner (Citterio et  al. 2000). In GGR), XPC-
hHR23B is the first factor to be involved in the lesion detection (Volker et al. 2001). 
In general, XPC-hHR23B complex is stabilized by hCEN2. Some other factors like 
XPE may aid in this recognition (Kusumoto et al. 2001). Subsequent to damage 
recognition other NER factors are recruited, which include TFIIH, XPD, XPA, 
XPB, RPA, XPF, and XPG (Evans et  al. 1997). TFIIH is the basal transcription 
initiation factor that comprises nine different proteins (Winkler et al. 1998; Coin 
et  al. 1999). XPD and XPB are ATP-dependent helicases that unwind the DNA 
helix in 5′–3′ and 3′–5′ direction, respectively (Schaeffer et  al. 1994; Roy et  al. 
1994). The replication protein A (RPA) binds to DNA to provide complete opening 
of the helix around the lesion (Christians and Hanawalt 1993). XPA homodimer 
binds to RPA to form XPA2-RPA complex that provides proper three-dimensional 
orientation of the NER components required by excision of damage carrying DNA 
segment (Missura et al. 2001; Yang et al. 2002). With the DNA lesion recognized 
and helix around it unwound, XPG carries out structure-specific 3′-endonucleolytic 
activity (2–8 nucleotide away from the lesion) in conjunction with the 5′-endonu-
cleolytic activity (15–24 nucleotide away from the lesion) of an XPF-ERCC1 com-
plex. Thus, the lesion carrying segment of DNA is excised and is dissociated. 
Thereafter, the resultant gap is filled by DNA polymerase ε and δ using the 3′-end 
left by the XPF-ERCC1 incision as the primer (Hunting et al. 1991; Coverley et al. 
1992). These polymerases require the presence of PCNA and RFC (Wood and 
Shivij 1997). Finally, the 5′-end of the newly synthesized DNA segment is sealed 
with the parent strand by DNA ligase I (Tomkinson and Levin 1997).

Most of the genes of NER pathway have been reported from A. thaliana (The 
Arabidopsis Genome Initiative 2000). Many genes with sequence similar to those of 
yeast and mammals have been cloned (Schultz and Quatrano 1997; Sturm and 
Lienhard 1998; Taylor et al. 1998; Costa et al. 2001; Liu et al. 2003; Dubest et al. 
2004; Kimura et al. 2004). In addition, NER-related genes like PCNA, DNA poly-
merase δ, RPA, and CSB have been cloned from rice (Kimura and Sakaguchi 2006). 
The functional analysis of these genes and characterization of many mutants defec-
tive in some of them confirms the importance of NER in DNA damage repair in 
plants and the conservation of this pathway across the living kingdoms.

�Conclusions

DNA damage response and repair pathways play a crucial role in maintenance of 
the integrity of genome and have been conserved to a great extent in various organ-
isms. Many of these pathways have been thoroughly examined in mammals and 
yeast. Studies on plants have lagged behind in this regard. However, with the 
increasing genomic data available as a consequence of high-throughput sequencing 
efforts, homologs of different proteins involved in these pathways have been identi-
fied and functionally evaluated. Although most of the components are present, some 
crucial factors like p53, XRCC, DNA polymerase γ, DNA ligase III, etc. have been 
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conspicuously absent. Furthermore, some genes like CSB, RPA, PCNA, and FEN1 
are present in multiple copies in plants. Some repair defects, for example, RAD50 
knockout, which are lethal in animals, have been reported to have no physiological 
abnormalities in plants. Existence of novel plant-specific DDR components in 
plants has been alluded to in plants. The ongoing genetic, proteomic, and knock-out 
based strategies are expected to unveil novel DNA damage sensing and repair com-
ponents in plants.
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