
Chapter 13

Special Functions and
Transforms

In this short chapter we present some exercises on elliptic functions and on the
Mellin transform. We also briefly discuss some aspects of the Fourier transform
pertaining to the Bargmann transform.

13.1 Elliptic functions

The first exercise is taken from the book of Choquet on topology [46, p. 315],
[47, p. 299]. The purpose of the exercise is to build a meromorphic bi-periodic
function on C (thus it has a lattice of periods). Such functions are called elliptic.
For more on elliptic functions expressed as infinite products, see for instance [167,
pp. 286–290]. See also Exercise 7.2.15.

Exercise 13.1.1. Let k ∈ C with |k| > 1.

(a) Show that the infinite product

P (z) =

∞∏
�=1

(
1 +

z

k�

)
converges for all z 
= −k�, � = 1, 2, . . ..

(b) Show that

P (kz) = (1 + z)P (z).

(c) Set S(z) = P (z)P (1/z)(1 + z). Show that S(kz) = kzS(z).
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492 Chapter 13. Special Functions and Transforms

(d) Let a1, . . . , an, b1, . . . , bn be distinct points in C such that

a1 · · · an = b1 · · · bn, (13.1.1)

and let M(z) =
S(a1z) · · ·S(anz)
S(b1z) · · ·S(bnz)

. Show that M(kz) = M(z).

(e) Set G(z) = M(ez). What can be said about G?

Remark 13.1.2. An additive analog of (13.1.1) comes into play in Exercise 13.3.3.
See equation (13.3.2) there.

Exercise 13.1.3. Using Exercise 3.6.2, show that the function

℘(z) =
1

z2
+

∑
p,q∈Z

(p,q) 
=(0,0)

1

(z − (p+ iq))2
− 1

(p+ iq)2

is analytic in C \ Z+ iZ.

The function ℘ is called the Weierstrass function (associated to the lattice
C \ Z+ iZ). It has only poles and satisfies

℘(z + 1) = ℘(z + i) = ℘(z),

and hence is an elliptic function. It follows as a consequence of Exercise 7.2.15
that the function ℘ satisfies a differential equation of the form

(℘′)2 = g0℘
3 + g1℘

2 + g2℘+ g3

for complex numbers g0, g1, g2 and g3 such that g0 
= 0.

The function ℘ is closely related to the function ϑ appearing in Exercise
13.2.1. See [162, p. 25].

Question 13.1.4.

(1) Find the decomposition (12.1.4) for f(z) = ℘′′(z).
(2) Compare the decompositions (12.1.4) for a general elliptic function and its

derivative.

In contrast with the case of rational functions we have:

Question 13.1.5. Show that the composition of two (non-trivial) elliptic functions
is not elliptic.

13.2 The ϑ function

Exercise 13.2.1. Let τ ∈ C be such that Im τ > 0. Show that the function

ϑ(z, τ) =
∑
n∈Z

eiπn
2τ+2πinz
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is entire (as a function of z), and that it satisfies

ϑ(z + 1, τ) = ϑ(z, τ), (13.2.1)

ϑ(z + τ, τ) = e−iπτ−2πizϑ(z, τ). (13.2.2)

Show that

ϑ

(
1 + τ

2
, τ

)
= 0. (13.2.3)

The function ϑ is called the theta function with characteristic τ . See [162]
for a thorough study of these functions and of their applications.

In Exercise 13.2.2 we now show that 1+τ
2 is the only zero of ϑ modulo Z+τZ.

Exercise 13.2.2. Show that the zeros of the function

ϑ(z, τ) =
∑
n∈Z

ein
2τ+2πinz

are
1 + τ

2
+m+ τn, n,m ∈ Z.

13.3 An application to periodic entire functions

Exercise 13.3.1. Let f be an entire function and assume that

f(z + 1) = f(z).

Show that there is a function g analytic in C \ {0} such that

f(z) = g(e2πiz).

Show that there exist complex numbers cn, n ∈ Z such that

f(z) =
∑
n∈Z

cne
2πinz ,

where the convergence is uniform on every closed strip inside every closed hori-
zontal strip.

Exercise 13.3.2. Let τ ∈ C be such that Im τ > 0. Apply the previous result to find
all entire functions f such that, for some pre-assigned complex numbers a and b,

f(z + 1) = f(z),

f(z + τ) = eaz+bf(z).
(13.3.1)

See [162, pp. 2–3].
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Exercise 13.3.3. Let f be a non-identically vanishing entire function satisfying the
conditions (13.3.1), and let a1, . . . , aN , b1, . . . , bN be complex numbers such that

N∑
n=1

an =

N∑
n=1

bn. (13.3.2)

Show that the function

q(z) =

N∏
n=1

f(z − an)

f(z − bn)

is elliptic.

13.4 The Γ function and the Mellin transform

The Mellin transform is defined by the formula

(M(f))(z) =

∫ ∞

0

tz−1f(t)dt (13.4.1)

for appropriate functions f defined on (0,∞), and where for t > 0 and z ∈ C

we set
tz = ez ln t.

We refer to [50, Chapitre II] for more information. The case f(t) = e−t leads to
the important Gamma function (see (3.1.11)

Γ(z) =

∫ ∞

0

tz−1e−tdt.

In the following exercise, the convergence of the integral (3.1.11) is stud-
ied. In Exercise 13.4.2 we will see that the function Γ defined in the following
exercise is in fact analytic in Re z > 0 (and in fact by analytic continuation, in
C \ {0,−1,−2, . . .}.
Exercise 13.4.1. Show that the integral (3.1.11) converges for every z such that
Re z > 0. Show that, for real x > 0, it holds that

Γ(x+ 1) = xΓ(x). (13.4.2)

We now turn to a proof of the analyticity of the Gamma function (see (3.1.11)
and the previous exercise).

Exercise 13.4.2. Show that the Γ function

Γ(z) =

∫ ∞

0

tz−1e−tdt

is analytic in Re z > 0.
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Hint. Consider compact sets of the form

K = {(x, y) ; m ≤ x ≤ M and −R ≤ y ≤ R} ,

with m > 0 and R > 0. Show that the series of functions

Γn(z) =

∫ n

1/n

tz−1e−tdt, n = 1, 2, . . . ,

converges uniformly on K to Γ.

Exercise 13.4.3. Let Γ denote the Gamma function defined by (3.1.11). Show that

Γ(z) = lim
n→∞

n!nz

z(z + 1) · · · (z + n)
, Re z > 0. (13.4.3)

Hint (See for instance [23, Exercise 2.6.2, p. 119].). Apply the dominated conver-
gence theorem (see Theorem 17.5.2) to the series of functions

fn(t) = 1[0,n](t)

(
1− t

n

)n

tz−1,

where we have denoted by 1[0,n](t) the indicator function of the interval [0, n]:

1[0,n](t) =

{
1, if t ∈ [0, n],

0, otherwise.

Exercise 13.4.4 (see [50, pp. 49–50]).

(a) Show that the Mellin transform of e−t2 is equal to 1
2Γ(z/2).

(b) Show that the Mellin transforms of cos t and sin t are respectively

Γ(z) cos
πz

2
and Γ(z) sin

πz

2
, with Re z ∈ (0, 1).

In the following exercise implicit is the hypothesis that there exist real num-
bers c1 and c2 such that

∫∞
0 ucj−1|fj(u)|du < ∞ for j = 1, 2.

Exercise 13.4.5. Let f1 and f2 be functions with Mellin transforms F1 and F2

respectively.

(1) Show that the Mellin transform of the function∫ ∞

0

f1(u)f2(t/u)
du

u
(13.4.4)

is F1F2.

(2) compute (13.4.4) when f1(u) = f2(u) = e−u.
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13.5 The Fourier transform

The Fourier transform is defined by

f̂(λ) =

∫
R

e−iλxf(x)dx, (13.5.1)

first for functions in L1(R, dx). In general f̂ will not belong to L2(R, dx). The
Fourier transform maps the Schwartz space of rapidly vanishing smooth functions
onto itself in an isometric way up to a multiplicative constant, and extends, up to
a multiplicative constant, to an isometry from L2(R, dx) onto itself:

‖f‖L2(R,dx) =
1√
2π

‖f̂‖L2(R,dx). (13.5.2)

Note that f̂ is not, in general, a function but rather an equivalence class of func-
tions. Furthermore, the Fourier transform of an arbitrary element f ∈ L2(R, dx)
is not given directly by formula (13.5.1) (which will not make sense in general),
but is defined in terms of limits. Its inverse is given by the formula

f̌(x) =
1

2π

∫
R

eiλxf(λ)dλ, (13.5.3)

and we have

‖f‖L2(R,dx) =
1√
2π

‖f̌‖L2(R,dx). (13.5.4)

As an illustration of the preceding inversion formula, consider the function
g(x) = 1

x2+1 . Its Fourier transform was computed to be h(λ) = πe−|λ|. See (8.6.10).
Thus, from (13.5.3),

ȟ(x) =
1

2π

∫
R

eiλxh(λ)dλ

=
1

2

{∫ ∞

0

e−λeiλxdλ+

∫ 0

−∞
eλeiλxdλ

}
=

1

2

{
−1

ix− 1
+

1

ix+ 1

}
= g(x).

We follow [206, pp. 42–43] for the next exercise.

Exercise 13.5.1. For R > 0, consider the closed contour

γR = γ1,R + γ2,R + γ3,R + γ4,R,

defined as follows:
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(i) γ1,R is the interval [−R,R].

(ii) γ2,R is the interval [R,R+ iy].

(iii) γ3,R is the interval [R+ iy,−R+ iy].

(iv) γ4,R is the interval [−R+ iy,−R].

(1) By computing the integral of the function e−z2

along this rectangle and using
the value of the Gaussian integral (5.2.6), show that, for y ∈ R,∫

R

e−t2e−2itydt =
√
πe−y2

. (13.5.5)

(2) Using (13.5.5) compute the even moments (5.2.7).

We now discuss some aspects of the theory of Hermite functions. More ex-
ercises and details can be found in [CAPB2]. By making the change of variables
z �→

√
2z and t �→

√
2t, and a normalization we first rewrite (5.6.4) as

e2tz−t2 =
∞∑
n=0

Hn(z)

n!
tn. (13.5.6)

We have

Hn(z) = (−1)nez
2
(
e−z2

)(n)

, (13.5.7)

as is seen by writing e2tz−t2 = ez
2

e−(t−z)2 and considering the Taylor expansion
centered at t = 0 of the function t �→ e−(t−z)2 .

Question 13.5.2. Prove that∫
R

e−u2

Hn(u)Hm(u)du =
√
π2nn!δn,m. (13.5.8)

Hint. Denoting by αnm the left side of (13.5.8) compute, using (13.5.6), the gen-
erating function

∞∑
n,m=0

αnmznwn.

The functions η0, η1, . . . with

ηn(z) =
e

z2

2

4
√
π2n/2

√
n!
, n = 0, 1, . . . (13.5.9)

are called the Hermite functions. They belong to the Schwartz space, and form an
orthonormal basis of L2(R, dx).

The map which to ηn associates the function zn√
n!

extends to a unitary oper-

ator from L2(R, dx) onto the Fock space. It is called the Bargmann transform.
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Question 13.5.3. The Bargmann transform can be written as

F (z) =
1
4
√
π

∫
R

e{− 1
2 (z

2+u2)+
√
2zu}f(u)du.

We conclude by mentioning that

η̂n = (−i)nηn, n = 0, 1, . . . .

13.6 Solutions

Solution of Exercise 13.1.1. Since |k| > 1 the series with general term z/kn is
absolutely convergent for any z ∈ C. Thus, by Theorem 3.7.1, the infinite prod-
uct converges for every z not equal to −kn, n = 1, 2, . . . (and the corresponding
function, extended to be 0 at these points, is entire).

To prove (b) we write

P (kz) =

∞∏
n=1

(
1 +

kz

kn

)
=

∞∏
n=1

(
1 +

z

kn−1

)
=

∞∏
n=0

(
1 +

z

kn

)
= (1 + z)P (z).

We now turn to (c). From (b) we have P (k/z) = (1 + 1/z)P (1/z), and
replacing z by kz in the above expression,

P (1/z) =

(
1 +

1

kz

)
P (1/kz) and hence P (1/kz) =

kz

1 + kz
P (1/z).

Thus

S(kz) = P (kz)P (1/kz)(1 + kz)

= (1 + z)P (z)P (1/z)
kz

1+ kz
(1 + kz)

= (1 + z)P (z)P (1/z)kz

= kzS(z).

(d) Using (c) we have

M(kz) =
S(a1kz) · · ·S(ankz)
S(b1kz) · · ·S(bnkz)

=
ka1zS(a1z) · · · kanzS(anz)
kb1zS(b1z) · · · kbnzS(bnz)

= M(z)
a1 · · · an
b1 · · · bn

= M(z)

since we assumed a1 · · · an = b1 · · · bn.



13.6. Solutions 499

(e) Let ω ∈ C be such that k = expω. Since |k| > 1 the numbers ω and 2πi are
linearly independent over Z. We cannot find m and n such that mω + 2πin = 0.
Indeed, if there are such m and n, then emω = e−2πin = 1 and so km = 1
contradicting the assumption |k| > 1. Moreover, we have

G(z +mω + n2πi) = M(ez+mω+n2πi) = M(ez+mω) = M(kmez) = M(ez) = G(z)

where we used (d) with ez in place of z. Thus, G(z) is bi-periodic since ω and 2π
are linearly independent over Z. �

Solution of Exercise 13.1.3. It follows from the proof of Exercise 3.6.2 that the
convergence of the family of functions is uniform on compact sets, and therefore
the limit is analytic. �

Solution of Exercise 13.2.1. Let L > 0. We have, with z = x+ iy,

|eiπn2τ+2πinz | = e−πn2 Im τ · e−2πny ≤ e−πn2 Im τ · e2π|n|L

for |y| ≤ L. We now show that the series converge uniformly in every band of the
form | Im z| ≤ L, L > 0. For L fixed, there exists n0 ∈ N such that

|n| ≥ n0 −→ |2πL
n

| ≤ π Im τ

2
.

Thus for |n| ≥ n0 we have

|eiπn2τ+2πinz| = e−πn2 Im τ · e−2πny ≤ e−
n2π Im τ

2 .

Therefore the series converge uniformly on each band of the asserted form, and ϑ
is an entire function of z.

(13.2.1) follows from the periodicity of the exponentials e2πinz . Equality
(13.2.2) is proved as follows:

ϑ(z + τ, τ) =
∑
n∈Z

eiπn
2τ+2iπn(z+τ)

=
∑
n∈Z

eiπτ(n
2+2n)+2πinz , and, completing the square,

=
∑
n∈Z

eiπτ(n+1)2+2πinz−iπτ

= e−iπτ−2πiz ·
∑
n∈Z

eiπτ(n+1)2+2πi(n+1)z

= e−iπτ−2πizϑ(z, τ).
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We now prove (13.2.3). Using (13.2.2) with z = 1−τ
2 we obtain

ϑ

(
1 + τ

2
, τ

)
= ϑ

(
1− τ

2
+ τ, τ

)
= e−iπτ−2πi 1−τ

2 ϑ

(
1− τ

2
, τ

)
= e−iπϑ

(
1− τ

2
, τ

)
, and, using (13.2.1),

= −ϑ

(
1− τ

2
− 1, τ

)
= −ϑ

(
1 + τ

2
, τ

)
,

and hence the result since ϑ is an even function of z. �

Solution of Exercise 13.2.2. We already know from Exercise 13.2.1 that ϑ vanishes
at the point 1+τ

2 , and hence, because of (13.2.1) and (13.2.2) at all the points

1 + τ

2
+m+ τn, m, n ∈ Z.

The entire function ϑ(z, τ) may vanish a priori for some points on the paral-
lelogram with nodes 0, 1, τ and 1+ τ . By making a small translation by a complex
number a, we obtain a parallelogram Pa, with nodes a, 1+a, τ+a, 1+τ+a, which
still contains 1+τ

2 , but on which ϑ does not vanish. We have∫
Pa

ϑ′(z, τ)
ϑ(z, τ)

dz =

∫
[a,1+a]

ϑ′(z, τ)
ϑ(z, τ)

dz +

∫
[1+a,1+τ+a]

ϑ′(z, τ)
ϑ(z, τ)

dz

+

∫
[1+a+τ,a+τ ]

ϑ′(z, τ)
ϑ(z, τ)

dz +

∫
[a+τ,a]

ϑ′(z, τ)
ϑ(z, τ)

dz

(13.6.1)

since ϑ has period 1 with respect to z (see (13.2.1)), the function ϑ′
ϑ is also periodic

with period 1 with respect to z and we have∫
[a+τ,a]

ϑ′(z, τ)
ϑ(z, τ)

dz =

∫
[1+a,1+τ+a]

ϑ′(z, τ)
ϑ(z, τ)

dz = −
∫
[1+a+τ,1+a]

ϑ′(z, τ)
ϑ(z, τ)

dz.

Thus the second and fourth integrals on the right side of (13.6.1) cancel each other.
We now compare the first and the third integral, taking into account (13.2.2). Using
for instance the property (4.2.3) of the logarithmic derivative, (13.2.2) leads to

ϑ′(z + τ, τ)

ϑ(z + τ, τ)
=

ϑ′(z, τ)
ϑ(z, τ)

− 2πi.
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It follows that∫
[1+a+τ,a+τ ]

ϑ′(z, τ)
ϑ(z, τ)

dz =

∫
[1+a,a]

ϑ′(z + τ, τ)

ϑ(z + τ, τ)
dz

=

∫
[1+a,a]

(
ϑ′(z, τ)
ϑ(z, τ)

− 2πi

)
dz

= −
∫
[a,1+a]

ϑ′(z, τ)
ϑ(z, τ)

dz + 2πi.

Thus the first and the third integral in (13.6.1) sum up to 2πi, and so

1

2πi

∫
Pa

ϑ′(z, τ)
ϑ(z, τ)

dz = 1.

Since ϑ is entire, it follows from (7.3.5) that 1+τ
2 is the only zero of ϑ in Pa, and

hence the result. �

Solution of Exercise 13.3.1. We define a function g in C \ (−∞, 0] by

g(ζ) = f

(
ln ρ+ iθ

2πi

)
, with ζ = ρeiθ, θ ∈ (−π, π).

For ζ = e2πiz and z in the strip |x| < 1/2 we have

g(e2πiz) = f(z).

The function g is analytic in C\ (−∞, 0]. Take x < 0 to be a point on the negative
axis. We have

lim
ζ→x

Im ζ>0

g(ζ) = f

(
lnx+ iπ

2πi

)
,

and

lim
ζ→x

Im ζ<0

g(ζ) = f

(
lnx− iπ

2πi

)
.

The fact that f is periodic with period 1 leads to the continuity of g on (−∞, 0).
Using Morera’s theorem we conclude that g is analytic in C \ {0}, and therefore
has a Laurent expansion, which converges uniformly in every ring of the form
r < |ζ| < R (r and R are strictly positive numbers such that r < R):

g(ζ) =
∑
n∈Z

cnζ
n.

Thus,

f(z) = g(e2πiz) =
∑
n∈Z

cne
2πinz ,

where by analytic continuation, z is arbitrary in C, and where the convergence is
uniform in every closed horizontal strip. �
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For more on the subject, see for instance [42, Exercise 11.10, p. 365], [75, Ex-
ercice 34.10, p. 307], [193, pp. 106–107]. As an application of the previous exercise,
prove the following result (see [193, (2.23-12) and (2.23-13), p. 108]):

1

tanπz
=

{
−i(1 + 2

∑∞
n=1 e

2πinz), Im z > 0,

i(1 + 2
∑∞

n=1 e
−2πinz), Im z < 0.

Solution of Exercise 13.3.2. We follow [162, pp. 3-4]. In view of Exercise 13.3.1 we
look for f , not identically vanishing, and of the form

f(z) =
∑
n∈Z

cn(τ)e
2πinz . (13.6.2)

The condition
f(z + τ) = eaz+bf(z)

leads to ∑
n∈Z

cn(τ)e
2πin(z+τ) = eaz+b

∑
n∈Z

cn(τ)e
2πinz .

Replacing z by z + 1 in this expression we obtain (since we assume f 
≡ 0)

ea = 1,

that is, a = 2πik0 for some k0 ∈ Z. Comparing the coefficient of e2πinz we have

cn(τ) = cn−k0(τ)e
−2πinτ eb = cn−k0(τ)e

b+2πn Im τe−2πinRe τ .

When k0 > 0, the coefficients cn(τ) go exponentially fast in modulus to infinity,
and the series (13.6.2) diverges. We leave it to the student to consider the cases
k0 = 0 and k0 < 0. �

Solution of Exercise 13.3.3. The function q is meromorphic in the plane since it
is the quotient of two entire functions. Since f has period 1, all the functions
f(z − an) and f(z − bn) have also period 1, and so has the function q. We now
show, using the second equality in (13.3.1), that q has also period τ . We have

q(z + τ) =
N∏

n=1

f(z + τ − an)

f(z + τ − bn)

=

N∏
n=1

ea(z−an)+bf(z − an)

ea(z−bn)+bf(z − bn)

=
eaNz−a(

∑N
n=1 an)+Nb

eaNz−a(
∑N

n=1 bn)+Nb
q(z)

= q(z),

in view of (13.3.2). �
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The student will recognize in (13.3.2) a condition similar to (13.1.1) in Ex-
ercise 13.1.1.

Solution of Exercise 13.4.1. Let z = x+ iy. We have

|tz−1| = |e{(z−1) ln t}| = e(x−1) ln t = tx−1.

The integral
∫ 1

0
tx−1dt converges for x > 0, and so the integral

∫ 1

0
tz−1e−tdt con-

verges absolutely for Re z > 0. As for the convergence at infinity of the integral
(3.1.11) ∫ ∞

0

tx−1e−tdt,

we proceed as follows (the same argument will be used later in the solution of
Exercise 13.4.2): Write

tx−1e−t = e{((x−1) ln t
t −1)t}.

For a given x > 0, there exists M > 0 such that

t ≥ M =⇒
∣∣∣∣(x− 1)

ln t

t

∣∣∣∣ ≤ 1

2
.

Then,

(x − 1)
ln t

t
− 1 ≤

∣∣∣∣(x− 1)
ln t

t

∣∣∣∣− 1 ≤ −1

2
,

and we have ∫ ∞

M

tx−1e−tdt ≤
∫ ∞

M

e−
t
2 dt < ∞.

Finally, equation (13.4.2) is proved by integration by parts. �

Solution of Exercise 13.4.2. We follow the method given in the hint after the ex-
ercise. By Theorem 6.2.3 each of the functions Γn is analytic in Re z > 1. Further-
more, for z ∈ K we have∣∣∣∣∫ ∞

n

tz−1e−tdt

∣∣∣∣ ≤ ∫ ∞

n

e(M−1) ln t−tdt =

∫ ∞

n

e(
(M−1) ln t

t −1)tdt.

For a given M there exists n0 such that

t ≥ n0 =⇒ 0 <
(M − 1) ln t

t
<

1

2
,

and therefore, for n ≥ n0,∣∣∣∣∫ ∞

n

tz−1e−tdt

∣∣∣∣ ≤ ∫ ∞

n

e−
t
2 dt → 0, as n → ∞.
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Similarly, still for z = x+ iy ∈ K, we have∣∣∣∣∣
∫ 1/n

0

tz−1e−tdt

∣∣∣∣∣ ≤
∫ 1/n

0

e(x−1) ln tdt

=

∫ 1/n

0

tx−1dt

=
1

xnx
≤ 1

m · nm
.

It follows that, for n ≥ n0,

|Γ(z)− Γn(z)| ≤
∫ ∞

n

e−
t
2 dt+

1

m · nm

uniformly in K (and in fact uniformly in the band m ≤ x ≤ M), and so Γ is
analytic as the uniform limit on compact sets of analytic functions. �

Solution of Exercise 13.4.3. We follow [23, p. 119]. In view of (1.2.6), we have
that, for every t ∈ [0,∞),

lim
n→∞ fn(t) = e−ttz−1.

Moreover, in view of item (a) in Exercise 3.2.6,

|fn(t)| ≤
(
1− t

n

)n

tx−1 ≤ e−ttx−1.

The dominated convergence theorem (see Theorem 17.5.2) leads to

lim
n→∞

∫ ∞

0

fn(t)dt =

∫ ∞

0

( lim
n→∞ fn(t))dt

=

∫ ∞

0

e−ttz−1dt

= Γ(z).

It remains to show that∫ n

0

(
1− t

n

)n

tz−1dt =
n!nz

z(z + 1) · · · (z + n)
.
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As suggested in [23] this is done by repeated integration by parts. Indeed, we have∫ n

0

(
1− t

n

)n

tz−1dt =
n

n

∫ n

0

(
1− t

n

)n−1
tz

z
dt

=
n(n− 1)

n2

∫ n

0

(
1− t

n

)n−2
tz+1

z(z + 1)
dt

...

=
n(n− 1) · · · 2

nn−1

∫ n

0

tz+(n−1)

z(z + 1) · · · (z + n− 1)
dt

=
n!

nn

nz+n

z(z + 1) · · · (z + n− 1)(z + n)

=
n!nz

z(z + 1) · · · (z + n)
. �

Solution of Exercise 13.4.4. (a) The first equality follows directly from the change
of variable t =

√
u. Indeed,∫ ∞

0

e−t2tz−1dt =

∫ ∞

0

e−uu
z−1
2

du

2
√
u
=

Γ( z2 )

2
.

(b) The other two integrals are computed using Cauchy’s theorem as follows.
Consider the function of the complex variable s defined by

f(s) = eis+(z−1) ln s,

where ln s is the principal branch of the logarithm in C \ (−∞, 0], that is

ln s = ln ρ+ iθ,

where s = ρeiθ with θ ∈ (−π, π). We consider the closed path consisting of the
following four parts:

(i) The interval [r, R], with 0 < r < R < ∞.

(ii) The arc of circle CR parametrized by

γR(u) = Reiu, u ∈
[
0,

π

2

]
.

(iii) The interval [iR, ir].

(iv) The arc of circle cr parametrized by

γr(u) = reiu, u ∈
[π
2
, 0
]
.
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By Cauchy’s theorem, the integral of f on this closed path is equal to 0. On the
other hand, ∫

[r,R]

f(s)ds =

∫ R

r

eittz−1dt →
∫ ∞

0

eittz−1dt,

as r → 0 and R → ∞, and, with the parametrization γ(t) = it, with t ∈ [R, r],∫
[iR,ir]

f(s)ds =

∫ r

R

e−t+(z−1)(ln t+i π
2 )idt

= −ei(z−1)π
2

∫ R

r

e−ttz−1idt

= −e−iπ2 eiz
π
2

∫ R

r

e−ttz−1idt

→ −eiz
π
2 Γ(z)

as r → 0 and R → ∞. We now show that

lim
r→0

∫
cr

f(s)ds = 0 and lim
R→∞

∫
CR

f(s)ds = 0. (13.6.3)

The first of these limits is computed as follows:∣∣∣∣∫
cr

f(s)ds

∣∣∣∣ =
∣∣∣∣∣−

∫ π/2

0

eire
iu+(z−1)(ln r+iu)rieiudu

∣∣∣∣∣
≤ e| Im z|π2

∫ π/2

0

e−r sinurxdu

≤ π

2
rxe| Im z|π2

→ 0,

(13.6.4)

as r → 0. In the computation we have used that, with z = x+ iy,

|e(z−1)(ln r+iu)| · r = e(x−1) ln r−yu · r ≤ rxe| Im z|π2 ,

since e−yu ≤ e|y|u ≤ e| Im z|π2 . In computing the limit (13.6.4) we have used that
x > 0. To show that the second limit goes to 0 we make use of the fact that x < 1.
Making use of (5.9.5) and of (13.6.4) with R instead of r we have∣∣∣∣∫

cR

f(s)ds

∣∣∣∣ ≤ e| Im z|π2 ·Rx · π
R

−→ 0,

as R → ∞ since x < 1. Therefore we have∫ ∞

0

eittz−1dt = eiz
π
2 Γ(z).
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Take first z = x real. Comparing the real and imaginary parts of this equality we
obtain the asserted formulas for x > 0. They extend to complex z with x ∈ (0, 1)
by analytic extension. �

Solution of Exercise 13.4.5.

(1) To compute the integral∫ ∞

0

tz−1

(∫ ∞

0

f1(u)f2(t/u)
du

u

)
dt

we make the change of variable (u, t) �→ (u, uv). The Jacobian matrix (see (4.2.7))
is equal to

J(u, v) =

(
1 0
v u

)
.

and detJ(u, v) = u. Thus, by the theorem on change of variables for double
integrals, we can write:∫ ∞

0

tz−1

(∫ ∞

0

f1(u)f2(t/u)
du

u

)
dt =

∫ ∞

0

∫ ∞

0

uz−1vz−1u
dudv

u

=

(∫ ∞

0

uz−1f1(u)du

)(∫ ∞

0

vz−1f2(v)dv

)
,

where the various interchanges of integrals are done using the dominated conver-
gence theorem.

(2) In the case f1(u) = f2(u) = e−u we have:∫ ∞

0

f1(u)f2(t/u)
du

u
=

∫ ∞

0

e−u− t
u
du

u

=

∫ ∞

0

e−
√
t(v+ 1

v )
dv

v
(with the change of variable u =

√
tv)

=

∫ ∞

−∞
e−2

√
t cosh ada (with the change of variable v = ea)

= 2K0(2
√
t),

with

K0(x) =

∫ ∞

0

e−x cosh ada. (13.6.5)

�
Remark 13.6.1. The function K0 defined in (13.6.5) is the K Bessel function of
order 0. See, e.g., [50, p. 7 and p. 50]. We have∫ ∞

0

tz−12K0(2
√
t)dt = (Γ(z))2. (13.6.6)
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Setting z = n+ 1 in the previous expression gives∫ ∞

0

tn2K0(2
√
t)dt = (n!)2. (13.6.7)

This fact is used in [13, 16] to study (and in particular give a geometric character-
ization of the elements of) the reproducing kernel Hilbert space with reproducing
kernel ∞∑

n=0

znwn

(n!)2
.

Solution of Exercise 13.5.1.

(1) For y = 0, (13.5.5) is the value of the Gaussian integral, which we assume
known. See the discussion after (5.2.6). The integral under consideration is an
even function of y, and we take y > 0. We give to ΓR the positive orientation.
We then have the following parametrizations for the components of ΓR (we do not
stress the dependence on y in the notation):

γ1,R(t) = t, t ∈ [−R,R],

γ2,R(t) = R+ it, t ∈ [0, y],

γ3,R(t) = −t+ iy, t ∈ [−R,R],

γ4,R(t) = −R+ i(y − t), t ∈ [0, y].

Since e−z2

is defined by a power series centered at the origin, and converging in
all of C, it has a primitive in C and we can write∫

ΓR

e−z2

dz = 0, ∀R > 0,

that is,∫
γ1,R

e−z2

dz+

∫
γ2,R

e−z2

dz+

∫
γ3,R

e−z2

dz+

∫
γ4,R

e−z2

dz = 0, ∀R > 0. (13.6.8)

We have ∣∣∣∣∣
∫
γ2,R

e−z2

dz

∣∣∣∣∣ =
∣∣∣∣∫ y

0

e−(R2+2Rti−t2)idt

∣∣∣∣
≤

∫ y

0

e−R2+t2dt

= e−R2

∫ y

0

et
2

dt −→ 0 as R −→ ∞.

Similarly,

lim
R→∞

∫
γ4,R

e−z2

dz = 0.
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Therefore letting R → ∞ in (13.6.8) and using the value of the Gaussian integral
we obtain

e−y2

∫
R

e−t2dt = e−y2√
π =

∫
R

e−t2e−2itydt. (13.6.9)

See for instance [206, p. 43].

(2) Using the dominated convergence theorem and the power series expansion
of e−2ity we rewrite (13.6.9) as

√
π

( ∞∑
u=0

(−1)u
y2u

u!

)
=

∞∑
n=0

(−2iy)n

n!

(∫
R

e−t2tndt

)
.

The odd moments vanish. Setting n = 2u in the equality above and comparing
the coefficient of y2u we obtain the even moments:

√
π
(−1)u

u!
=

(−1)u(−2)2u

(2u)!

(∫
R

e−t2t2udt

)
, u = 0, 1, . . .

and hence ∫
R

e−t2t2udt =
√
π
(2u)!

u!22u
. (13.6.10)

�
Remark 13.6.2. The right side of (13.6.10) can be rewritten as

√
π
(2u− 1)!!

2u

where n!! = n(n− 2)(n− 3) · · · .
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