
Chapter 10

Conformal Mappings

Riemann’s mapping theorem asserts that a simply-connected domain different
from C is conformally equivalent to the open unit disk: There exists an analytic
bijection from Ω onto D (that the inverse is itself analytic is automatic; see Exercise
10.2.4). In this chapter we closely follow Chapters 5 and 6 of [45] and present some
related exercises. The chapter is smaller than the previous ones, but is certainly of
key importance in the theory of analytic functions. To quote [195, p. 1], Riemann’s
theorem is one of those results one would like to present in a one-semester intro-
ductory course in complex variables, but often does not for lack of sufficient time.
The proof requires also some topology, which is not always known by students of
a first complex variable course.

10.1 Uniform convergence on compact sets

The proof of Riemann’s theorem is not constructive, and uses deep properties of
the topology of the space of functions analytic in an open set. We review here
some of these properties. The solutions of the following two questions will not be
given here.

Question 10.1.1. Let Ω be an open connected subset of C. Show that there exists an
increasing sequence (Kn)n∈N of compact subsets of Ω with the following property:
Given any compact subset K of Ω, there exists N ∈ N such that

K ⊂
N⋃

n=1

Kn.

Question 10.1.2. Let Ω and (Kn)n∈N be as in the previous exercise. Show that (see
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[45, (3.3), p. 149])

d(f, g) =

∞∑
n=1

1

2n
min(1, max

z∈Kn

|f(z)− g(z)|) (10.1.1)

defines a metric on the space A(Ω) of functions analytic in Ω.

Convergence of a sequence in the metric (10.1.1) is equivalent to uniform
convergence on every compact subspace of Ω. The space A(Ω) endowed with this
metric has a key property: A subset of A(Ω) is compact if and only if it is both
closed and bounded. Locally convex Hausdorff barreled topological vector spaces
for which this property holds are called Montel spaces. See, e.g., [214, Definition
34.2, p. 356]. We also refer to [CAPB2], where some of these definitions and con-
cepts are reviewed. Bounded here does not mean boundedness with respect to the
metric, but boundedness in a topological vector space. Recall:

Definition 10.1.3. Let V denote a topological vector space on the complex numbers
or on the real numbers. The set U ⊂ V is called bounded if for every neighborhood
W of the origin there exists λ > 0 such that

U ⊂ λW.

The above characterization of compact sets is the key in the proof of Rie-
mann’s theorem. We refer to [109] for a thorough study of the metric spaces where
(sequential) compactness is equivalent to being closed and bounded.

10.2 One-to-oneness

It is an important fact that an analytic function is one-to-one in a neighborhood
of a point where its derivative does not vanish. For the following exercise, see [148,
p. 372].

Exercise 10.2.1. Let f be analytic in a convex open set Ω and assume that Re f ′(z)
> 0 in Ω. Show that f is one-to-one in Ω.

Note that an analytic function which is one-to-one on an open set Ω is said
to be univalent in that set. As a corollary of this exercise we get the following very
important result. For the converse statement, namely that when f ′(z0) = 0 there
is no neighborhood of z0 in which the function is one-to-one, see Exercise 7.3.8.

Theorem 10.2.2. An analytic function is univalent in a neighborhood of any point
where its derivative does not vanish.

Indeed, if f ′(z0) 
= 0, then at least one of the numbers Re f ′(z0) and Im f ′(z0)
is not zero. Without loss of generality we may assume that Re f ′(z0) > 0 (otherwise
replace f by −f or ±if depending on the case). By continuity, Re f ′(z) > 0 in
an open disk around z0. We can then apply the precedent result since a disk is in
particular convex.
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Exercise 10.2.3. Give a solution of Exercise 5.2.9 using Exercise 10.2.1.

We note the following:

f ′(z) = 1 +

∞∑
n=2

nanz
n−1,

and in particular

|f ′(z)| ≥ 1−
∣∣∣∣∣
∞∑

n=2

nanz
n−1

∣∣∣∣∣
≥ 1−

∞∑
n=2

n|an||z|n−1

≥ 1−
∞∑

n=2

n|an| > 0, ∀z ∈ D.

Thus, by Theorem 10.2.2, f is one-to-one in a neighborhood of every point in D.
This is a local result. We want a direct solution of a global result: f is one-to-one
in D.

Exercise 10.2.4. Assume that the analytic function f is one-to-one in Ω. Show
that the formula (see, e.g., [42, p. 180])

g(z) =
1

2πi

∫
γ

sf ′(s)
f(s)− z

ds, (10.2.1)

where γ is a closed simple contour, defines the inverse of f inside γ.

Formula (10.2.1) shows in particular that f−1 is analytic.

We now consider the case where the derivative vanishes at a given point. It is
no loss of generality to assume that the function itself also vanishes at that point.

Exercise 10.2.5. Let f be analytic in the open subset Ω and assume that z0 ∈ Ω
is a zero of order N of f . Show that there is a function g which is analytic and
one-to-one in some open neighborhood U ⊂ Ω of z0 and such that

f(z) = g(z)N , z ∈ U. (10.2.2)

With the preceding exercises at hand we can state the following key result,
called the open mapping theorem (see also Exercise 7.4.9).

Theorem 10.2.6. Let Ω be an open subset of C and let f be analytic in Ω. Then,
f(Ω) is an open subset of C.
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Proof. Take first a point ω ∈ Ω where f ′(ω) 
= 0. By Exercise 10.2.4 the function
f is one-to-one in an open neighborhood U of ω, with analytic inverse. The inverse
h of f ,

h : f(U) −→ U,

is in particular continuous, and therefore

f(U) = h−1(U) ⊂ f(Ω)

is an open neighborhood of f(ω) which lies inside f(Ω). If f ′(ω) = 0, we first
remark that for any N ∈ N the map z �→ zN maps open balls into open balls, and
therefore open sets into open sets. Write f in the form (10.2.2). There is an open
neighborhood U of ω where g(z) is one-to-one. By the above argument, g(U) is
open, and so is f(U) = g(U)N . �

Exercise 10.2.7. In the notation and hypothesis of Exercise 6.1.9, show that the
set Ω0 contains uncountably many points.

We conclude this section with an important fact on univalent functions, which
comes into play in the proof of Riemann’s mapping theorem. See [45, Proposition
2.2, p. 147, p. 191].

Exercise 10.2.8. Let Ω be open and connected, and let (sn)n∈N be a sequence of
functions univalent in Ω, which converge uniformly on compact subsets of Ω. The
limit is then either a constant or univalent.

10.3 Conformal mappings

Simply-connected sets have already been characterized in a number of ways. Geo-
metrically, Riemann’s mapping theorem expresses the following characterization:

Definition 10.3.1. A connected open subset Ω of C which is different from C is
simply-connected if it is conformally equivalent to the open unit disk.

Question 10.3.2. Show that any open disk is conformally equivalent to any open
half-plane.

We recall that the Blaschke factors (1.1.44), possibly multiplied by a constant
of modulus 1,

ϕ(z) = c
z − a

1− az

are the only conformal mappings from the open unit disk onto itself. Taking into
account this fact allows to solve the following exercise.



10.3. Conformal mappings 447

Exercise 10.3.3.

(1) Show that the conformal maps from the open upper half-plane C+ onto itself
are exactly the Moebius maps which can be written in the form

ϕ(z) =
az + b

cz + d
,

where a, b, c, d are real and such that ad− bc = 1.

(2) Show that any two points in C+ can be related by such a conformal map.

The proof of Riemann’s mapping theorem (see for instance H. Cartan’s [45])
uses the fact that a connected open subset Ω of the complex plane is simply con-
nected if and only if every non-vanishing function analytic in Ω admits an analytic
logarithm. The proof can be divided into three steps (and here, we follow [45]):

(a) Reduce to the case where Ω ⊂ D and 0 ∈ Ω.

(b) Show that the existence of a conformal map is equivalent to the solution of
a maximum problem.

(c) Show that the maximum problem has a solution.

Steps (a) and (b) use, each once only once, the assumed existence of an
analytic logarithm. Step (c) uses topology tools which are somewhat beyond the
scope of the present book. The content of the following question is Step (b).

Question 10.3.4. Let Ω be an open subset of D, containing the origin, and with the
property that every non vanishing function analytic in Ω has an analytic logarithm.
Let M denote the set of univalent functions from Ω into D such that f(0) = 0.
Show that the range of f is D if and only if

|f ′(0)| = max
g∈M

|g′(0)|.

Hints: One direction is relatively easy, and uses the Schwarz lemma. For the other
direction, proceed by contradiction, and use Theorem 5.7.6 (see [45]).

Question 10.3.5. Show that tan z is a conformal map from the strip

L1 = {(x, y) ;x ∈ (−π/4, π/4) and y ∈ R}

onto the open unit disk.

Exercise 10.3.6. Find a conformal map between the open right half-plane and the
quarter-plane

{(x, y) ; 0 < x < |y|} .
Exercise 10.3.7. Let D denote the open unit disk and C+ denote the open upper
half-plane. Show that the map

ϕ(z) =
z − i(z2 + 1)

z + i(z2 + 1)

is a conformal mapping from D+ = D∩C+ onto D. What happens on the boundary?
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Exercise 10.3.8 (see [75, Exercice 35.33, p. 329]). Let α ∈ (0, π/2) and define

Dα =

{
z ∈ C ; |z ± i cotα| < 1

sinα

}
.

Show that the map

c(z) =

(
1+z
1−z

) π
2α − 1(

1+z
1−z

) π
2α

+ 1

is conformal from Dα onto D, and that its inverse is given by

c−1(z) =

(
1+z
1−z

) 2α
π − 1(

1+z
1−z

) 2α
π

+ 1

.

The following exercise can be found for instance in [53, p. 203], [168, Exercise
2, p. 196], and [18, § 10.4.4, pp. 308–311]. We follow the solution of that latter
reference. In the statement the function

√
1− s4 is defined via (4.4.9).

Exercise 10.3.9. Show that the map

z �→ c(z) =

∫
[0,z]

ds√
1− s4

(10.3.1)

is conformal from D onto a square.

Hint. Following [18, § 10.4.4, pp. 308–311] we suggest to solve the exercise along
the steps below:

Step 1: Show that the map c extends continuously to the closed unit disk,
and that (see [18, p. 310])

c(eiθ) = M + ei
3π
4

∫ θ

0

du√
2 sin(2u)

, θ ∈
[
0,

π

4

]
. (10.3.2)

for some constant M > 0.

Step 2: Show that the image of the unit circle is the boundary of a square.
Exercise 3.5.7 plays an important role in this step. It is also useful to note that

c(iz) = ic(z), z ∈ D. (10.3.3)

Step 3: Compute 1
2πi

∫
|z|=1

c′(z)
c(z) dz.
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10.4 Solutions

Solution of Exercise 10.2.1. Let z1 and z2 be in Ω. Since Ω is convex, the closed
interval

[z1, z2] = {z1 + t(z2 − z1) ; t ∈ [0, 1]} ⊂ Ω.

By the fundamental theorem of calculus for analytic functions,

f(z2)− f(z1) =

∫
[z1,z2]

f ′(z)dz

= (z2 − z1)

∫ 1

0

f ′(z1 + t(z2 − z1))dt

= (z2 − z1)

{
Re

(∫ 1

0

f ′(z1 + t(z2 − z1))dt

)
+i Im

(∫ 1

0

f ′(z1 + t(z2 − z1))dt

)}
.

(10.4.1)

Since Re f ′(z) > 0 in Ω we have

Re

(∫ 1

0

f ′(z1 + t(z2 − z1))dt

)
> 0. (10.4.2)

It follows from (10.4.2) that

f(z2)− f(z1) = (z2 − z1)

{
Re

(∫ 1

0

f ′(z1 + t(z2 − z1))dt

)
+ i Im

(∫ 1

0

f ′(z1 + t(z2 − z1))dt

)}
that f(z1) 
= f(z2) if z1 
= z2. �

Solution of Exercise 10.2.3. We have, for z ∈ D,

Re f ′(z) = 1− Re

∞∑
n=2

nanz
n−1 ≥ 1−

∣∣∣∣∣
∞∑

n=2

nanz
n−1

∣∣∣∣∣ ≥ 1−
∞∑
n=2

n|an| > 0.

It suffices then to apply the previous exercise. �

Solution of Exercise 10.2.4. We have, for z0 inside γ,

g(f(z0)) =
1

2πi

∫
γ

sf ′(s)
f(s)− f(z0)

s− z0

1

s− z0
ds

=

⎛⎜⎜⎝ sf ′(s)
f(s)− f(z0)

s− z0

⎞⎟⎟⎠
s=z0

= z0. �
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Solution of Exercise 10.2.5. By definition of a zero of order N we can write in
some neighborhood W ⊂ Ω of z0,

f(z) = (z − z0)
Nh(z),

where h is analytic in W and does not vanish there. We can always assume W to
be convex (for instance, W may be chosen to be an open disk with center z0 and
small enough radius). Then, the function h has an analytic logarithm in W , and
therefore also an analytic root of order N : There is a function h0 analytic in W
and such that

h(z) = h0(z)
N , z ∈ W.

We therefore have f(z) = ((z − z0)h0(z))
N , z ∈ W . The function g(z) = (z −

z0)h0(z) is analytic in W . It is one-to-one in a neighborhood U ⊂ W of z0 since

g′(z)|z=z0 = ((z − z0)h
′
0(z) + h0(z)) |z=z0 = h0(z0) 
= 0. �

The following solution is taken from [10, pp. 4–5].

Solution of Exercise 10.2.7. We use the notation of Exercises 4.1.13 and 6.1.9. We
know from Exercise 6.1.9 that there is a point μ ∈ Ω such that

|a(μ)| = |b(μ)| 
= 0.

The map

σ(z) =
b(z)

a(z)

is analytic in the open set Ω \ Z(a). The image σ(Ω \ Z(a)) is an open set, and
therefore there exists an r > 0 such that

B(σ(μ), r) ⊂ σ(Ω \ Z(a)).

The image σ(Ω \ Z(a)) contains in particular an arc of a circle, and the claim
follows. �

Solution of Exercise 10.2.8. We first remark that the limit function s is indeed
analytic, since the convergence is uniform on compact subsets of Ω. Assume that
s is not a constant, but that there are two points a1 and a2 in Ω such that

s(a1) = s(a2)
def.
= c.

The function s(z)− c has isolated zeroes (since it is not a constant), and therefore
we can find two closed neighborhoods

Bc(a1, ρ1) = {z ∈ Ω ; |z − a1| ≤ ρ1}

and
Bc(a2, ρ2) = {z ∈ Ω ; |z − a2| ≤ ρ1} ,
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with ρ1 and ρ2 strictly positive, such that

Bc(a1, ρ1) ∩Bc(a2, ρ2) = ∅,

and such that
s(z)− c 
= 0,

both in Bc(a1, ρ1) \ {a1} and in Bc(a2, ρ2) \ {a2}. Set

m� = min
|a�−z|=ρ�

|s(z)− c|, � = 1, 2.

We have that m1 > 0 and m2 > 0. Furthermore, since the neighborhoods
Bc(a1, ρ1) and Bc(a2, ρ2) are compact, there exists N ∈ N such that

n ≥ N =⇒ ∀z ∈ Bc(a1, ρ1) ∪Bc(a2, ρ2), |sn(z)− s(z)| < m�, � = 1, 2.

Thus, for all z ∈ Bc(a�, ρ�), � = 1, 2, we have

|sn(z)− s(z)| < m� ≤ |s(z)− c|.

From Rouché’s theorem (see Exercise 7.4.1), we have that sn(z) − c vanishes
in Bc(a�, ρ�) for � = 1, 2, contradicting the fact that the sn are univalent since
Bc(a1, ρ1) ∩Bc(a2, ρ2) = ∅. �

Solution of Exercise 10.3.3.

(1) The map ϕ(z) = 1+iz
1−iz sends conformally C+ onto D. It follows that the con-

formal maps of C+ onto itself are, in terms of matrices, of the form(
i 1
−i 1

)−1(
k ku
u 1

)(
i 1
−i 1

)
=

1

2i

(
i(k(1− u) + (1− u)) k(1 + u)− (1 + u)
−k(1− u) + (1− u) i(k(1 + u) + (1 + u)).

)
with k ∈ T and u ∈ D. Let k = eiθ with θ ∈ R. Dividing the entries of the above
matrix by ei

θ
2

√
1− |u|2 we obtain the matrix

1√
1− |u|2

(
Re ei

θ
2 (1 − u)) Im(ei

θ
2 (1 + u))

− Im(ei
θ
2 (1 − u)) Re(ei

θ
2 (1 + u))

)
, (10.4.3)

which is of the required form. Conversely for any ϕ(z) = az+b
cz+d where a, b, c, d are

real and such that ad− bc = 1 we have

Imϕ(z) =
Im z

|cz + d|2

and so ϕ sends C+ onto itself.

(2) The result is a direct consequence of Exercise 2.3.5. �
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Remark 10.4.1. When u = 0 the matrix (10.4.3) becomes(
cos( θ2 ) sin( θ2 )
− sin( θ2 ) cos( θ2 )

)
.

Solution of Exercise 10.3.6. The open right half-plane Cr consists of the complex
numbers z = reit with r > 0 and t ∈ (−π

2 ,
π
2 ). The map

√
z =

√
rei

t
2 is a conformal

map from Cr onto the quarter-plane, with inverse map z2. �

Solution of Exercise 10.3.7. The map G(z) =
1− z

1 + z
is conformal from the open

right half-plane Cr = {z = x+ iy ∈ C ; x > 0} onto D. It is therefore enough to
check that G−1 ◦ϕ is conformal from D+ onto the right half-plane. But G−1(z) =
1− z

1 + z
and so

G−1 ◦ ϕ(z) = i
z2 + 1

z
.

Let us write

ψ(z) = i
z2 + 1

z
= i

(
z +

1

z

)
. (10.4.4)

We now proceed in a number of steps.

Step 1: ψ is one-to-one from D+ onto its range.

Indeed, assume that ψ(z1) = ψ(z2). Then, in view of (10.4.4),

z1 − z2 +
1

z1
− 1

z2
= 0,

that is

(z1 − z2)(1−
1

z1z2
) = 0.

Thus z1 = z2 or z1 =
1

z2
. Since we assume that both z1 and z2 belong to D+ we

have z1 = z2.

Step 2: The range of ψ is inside Cr.

Indeed, with z = x+ iy,

ψ(z) = i

(
(x+ iy) +

x− iy

x2 + y2

)
= y

(
1

x2 + y2
− 1

)
+ i

(
x

x2 + y2
+ x

)
.

But for z ∈ D+ we have

y > 0 and
1

x2 + y2
> 1,



10.4. Solutions 453

and so

y

(
1

x2 + y2
− 1

)
> 0,

that is Reψ(z) > 0.

Step 3: ψ is onto Cr.

Indeed, for w such that Rew > 0 consider the equation ψ(z) = w. We have

z2 + izw + 1 = 0,

and thus the product of the two roots of this second degree equation is equal to 1.
Since, in view of the previous step,

0 < Rew = y

(
1

x2 + y2
− 1

)
,

we see that one of them is in D+. �

Solution of Exercise 10.3.8. We proceed in a number of steps:

(1) The map

z �→ ψ(z) =
1 + z

1− z

is conformal from D onto the open right half-plane, with inverse ψ−1(z) =
z−1
z+1 .

This follows from
1 + z

1− z
+

1 + z

1− z
= 2

1− |z|2
|1− z|2 .

(2) Let z = reit with r > 0 and t ∈ (−π, π). The map

z �→ pα(z) = z
π
2α = r

π
2α ei

π
2α t (10.4.5)

is conformal from the domain

Cr,α = {z ∈ C ; 0 < x < (tanα)|y|}

onto the open right half-plane.

This is because z ∈ Cr,α if and only if it is of the form z = reiθ , where θ ∈ (−α, α).
Under the map (10.4.5) the angle has now range (−π

2 ,
π
2 ).

(3) The map ψ−1(z) = z−1
z+1 is conformal from Cr,α onto Dα.

We note that the boundary of Cr,α consists of the two rays re±iα, with r ∈ [0,∞).
We first check that this boundary is sent onto the boundary of Dα. We consider
the ray reiα. The other one is treated in the same way. Let therefore

x+ iy =
reiα − 1

reiα + 1
=

r2 − 1

r2 + 1 + 2r cosα
+ i

2r sinα

r2 + 1 + 2r cosα
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be in the image of this ray under ψ−1. We have

y + cotα =
1

sinα

2r + (1 + r2) cosα

r2 + 1 + 2r cosα
.

Thus

|x+ iy + i cotα|2 =

(
r2 − 1

r2 + 1 + 2r cosα

)2

+
1

sin2 α

(
2r + (1 + r2) cosα

r2 + 1 + 2r cosα

)2

=
(r2 − 1)2 sin2 α+ (r2 + 1)2 cos2 α+ 4r2 + 4r(r2 + 1) cosα

(sin2 α)(r2 + 1 + 2r cosα)2

=
1

sin2 α
,

and similarly when α is replaced by −α. Since the image of z = 1 under ψ−1 is
z = 0 we conclude that ψ−1 is conformal from Cr,α onto Dα. The claim on the
inverse of c follows from the fact that c = ψ−1 ◦ pα ◦ ψ (where pα is defined by
(10.4.5)). �

Solution of Exercise 10.3.9.

Step 1: Let α0, α1, α2, . . . be defined by

1√
1− z

=

∞∑
n=0

αnz
n, z ∈ D.

For z ∈ D we have

c(z) =

∫
[0,z]

ds√
1− s4

=

∫ 1

0

z√
1− z4t4

dt

=

∞∑
n=0

αnz
4n+1

∫ 1

0

t4ndt

(where one can use, for instance, the dominated convergence theorem to inter-
change the sum and the integral)

=

∞∑
n=0

αnz
4n+1

n+ 1
, z ∈ D.

The coefficients α0, α1, . . . satisfy (3.5.9), and so this last expression defines a
function analytic in D (namely, c(z)) and continuous in the closed unit disk D. By
Exercise 3.5.7, we have for θ ∈ [0, 2π]

c(eiθ) = M + i

∫ θ

0

( ∞∑
n=0

αne
i(4n+1)u

)
du, where M =

∞∑
n=0

αn

n+ 1
.
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To conclude the first step we show that

i

∞∑
n=0

αne
i(4n+1)u =

ei
3π
4√

2 sin(2u)
, u ∈

(
0,

π

4

)
. (10.4.6)

To that purpose, let t ∈ (0, 1). By Theorem 3.5.1 the sum
∑∞

n=0 αnt
ne4inu con-

verges for u ∈ (0, π
4 ). By Theorem 3.5.4, and for such u, we have:

ieiu lim
t→1

t∈(0,1)

∞∑
n=0

αnt
ne4inu = ieiu

∞∑
n=0

αne
4inu.

On the other hand,

i

∞∑
n=0

αnt
nei(4n+1)u =

ieiu√
1− t4e4iu

.

Consider the polar decomposition

ieiu√
1− t4e4iu

= ρt(u)e
iθt(u),

with θt(u) ∈ (0, π
4 ). We have

ρt(u) =
1

|
√
1− t4e4iu|

=
1

4
√
1 + t8 − 2t4 cos(4u)

−→ 1
4
√
2− 2 cos(4u)

=
1√

2 sin(2u)
.

as t → 1. Moreover,

ρt(u)
2e2iθt(u) =

−e2iu

1− t4e4iu
→ −i

2 sin(2u)
,

as t → 1, and so limt→1 2θt(u) =
3π
2 .

Step 2: It follows from (10.3.2) that c maps [0, π4 ] into a closed interval. On
the other hand, the formula (10.3.3)

c(iz) =

∫
[0,iz]

ds√
1− s4

=

∫ 1

0

izdt√
1− (iz)4

= ic(z), z ∈ D,

still holds on the boundary using radial limits since lim r→1
r∈(0,1)

c(reiθ) exists for

θ ∈ [0, 2π] \
{
0, π2 ,

3π
2 , 2π

}
, and shows that the image of [π4 ,

π
2 ] is an interval of the
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same length, rotated by π/2 in the trigonometric sense. The same holds for the
other two quadrants, and the image of the unit circle is a square.

Step 3: Let w ∈ D and let r ∈ (|w|, 1). By Exercise 7.3.5

1

2πi

∫
|z|=r

c′(z)
c(z)− w

dz

is equal to the number of solutions of the equation c(z) = w inB(0, r). The function

w �→ 1
2πi

∫
|z|=r

c′(z)
c(z)−wdz takes integer values and is continuous. It is constant on

open connected sets, and so equal to its value at w = 0. On the other hand, by
the dominated convergence theorem

lim
r→1

∫
|z|=r

c′(z)
c(z)

dz =

∫
|z|=1

c′(z)
c(z)

dz.

To conclude, note that, by definition of the winding number,

1

2πi

∫
|z|=1

c′(z)
c(z)

dz = 1. �

Remark 10.4.2. A variation of the preceding arguments will show that the appli-
cation

c(z) =

∫
[0,z]

ds

(1− sn)
2
n

maps conformally the open unit disk onto the interior of a regular polygon with
n sides, the length of the side being equal to

2π

n

Γ
(
1− 2

n

)(
Γ
(
1− 1

n

))2 =
1

n
21−

4
n

(
Γ
(
1
2 − 1

n

))2
Γ
(
1− 2

n

) . (10.4.7)

See [168, Exercise 4, p. 196], [195, Example 5.1, p. 48].

Using Legendre’s duplication formula (see, e.g., [53, p. 212], [146, (1.2.3) p. 3])

√
πΓ(2z) = 22z−1Γ(z)Γ

(
z +

1

2

)
(10.4.8)

it is readily seen that both expressions in (10.4.7) coincide. Indeed, it is equivalent
to prove that

√
πΓ

(
1− 2

n

)
= 2−

2
nΓ

(
1

2
− 1

n

)
Γ

(
1− 1

n

)
, (10.4.9)

which is (10.4.8) with z = 1
2 − 1

n .

Remark 10.4.3. We will not discuss here the Schwarz–Christoffel formula (see,
e.g., [168, Chapter 5, § 6, p. 189], [195, p. 42]), which allows to build conformal
maps onto certain polygons.
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