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7.4 Rouché’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

7.5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

8 Computations of Definite Integrals Using the Residue Theorem

8.1 Integrals on the real line of rational functions . . . . . . . . . . . . 381

8.2 Rational multiplied by trigonometric . . . . . . . . . . . . . . . . . 384



Contents ix

8.3 Integrals of rational functions on a half-line . . . . . . . . . . . . . 386

8.4 Integrals of rational expressions of the trigonometric functions . . 389

8.5 Other examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

8.6 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

Part III Applications and More Advanced Topics

9 Harmonic Functions

9.1 Harmonic functions . . . . . . . . . . . . . . . . . . . . . . . . . . 417

9.2 Harmonic conjugate . . . . . . . . . . . . . . . . . . . . . . . . . . 419

9.3 Various . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

9.4 The Dirichlet problem . . . . . . . . . . . . . . . . . . . . . . . . . 424

9.5 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

10 Conformal Mappings

10.1 Uniform convergence on compact sets . . . . . . . . . . . . . . . . 443

10.2 One-to-oneness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

10.3 Conformal mappings . . . . . . . . . . . . . . . . . . . . . . . . . . 446

10.4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

11 A Taste of Linear System Theory and Signal Processing

11.1 Continuous signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

11.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

11.3 Time-invariant causal linear systems . . . . . . . . . . . . . . . . . 460

11.4 Discrete signals and systems . . . . . . . . . . . . . . . . . . . . . 462

11.5 The Schur algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 463

11.6 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

12 Rational Functions

12.1 First properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

12.2 Realizations of rational functions . . . . . . . . . . . . . . . . . . . 476

12.3 Multipoint interpolation . . . . . . . . . . . . . . . . . . . . . . . . 479

12.4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

13 Special Functions and Transforms

13.1 Elliptic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

13.2 The ϑ function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

13.3 An application to periodic entire functions . . . . . . . . . . . . . 493

13.4 The Γ function and the Mellin transform . . . . . . . . . . . . . . 494

13.5 The Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . 496

13.6 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498



x Contents

Part IV Appendix

14 Some Useful Theorems

14.1 Differentiable functions of two real variables . . . . . . . . . . . . . 513

14.2 Cauchy’s multiplication theorem . . . . . . . . . . . . . . . . . . . 515

14.3 Summable families . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

14.4 Weierstrass’ theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 522

14.5 Weak forms of Fubini’s theorem . . . . . . . . . . . . . . . . . . . 523

14.6 Interchanging integration and derivation . . . . . . . . . . . . . . . 524

14.7 Interchanging sum or products and limit . . . . . . . . . . . . . . 525

15 Some Topology

15.1 Point topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

15.2 Compact spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532

15.3 Compactification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532

15.4 Plane topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

15.5 Some points of algebraic topology . . . . . . . . . . . . . . . . . . 535

15.6 A proof of the fundamental theorem of algebra . . . . . . . . . . . 536

15.7 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

16 Some Functional Analysis Essentials

16.1 Hilbert and Banach spaces . . . . . . . . . . . . . . . . . . . . . . 545

16.2 Countably normed spaces . . . . . . . . . . . . . . . . . . . . . . . 550

16.3 Reproducing kernel Hilbert spaces . . . . . . . . . . . . . . . . . . 550

16.4 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

17 A Brief Survey of Integration

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

17.2 σ-algebras and measures . . . . . . . . . . . . . . . . . . . . . . . . 565

17.3 Positive measures and integrals . . . . . . . . . . . . . . . . . . . . 567

17.4 Functions with values in [−∞,∞] . . . . . . . . . . . . . . . . . . 569

17.5 The main theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 569
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Prologue

Ayons cependant le courage de ressasser des faits
connus; ils le sont souvent moins qu’on ne croit.

Marguerite Yourcenar, Sous bénéfice d’inventaire,

[225, p. 61].

Prologue

The topic of this book is the theory of complex-valued functions of a complex
variable, defined on an open subset Ω of the complex plane C and which admit a
derivative, or equivalently are C-differentiable, at every point z0 ∈ Ω:

∀z0 ∈ Ω, ∃ lim
z→z0

f(z)− f(z0)

z − z0
.

Such functions bear various names: They are said to be holomorphic in Ω, or
analytic in Ω; the terms C-differentiable, differentiable and regular are also used.
A key result in the theory is the equivalence between holomorphicity in an open
set Ω and analyticity of the function there, that is, the existence of a power series
expansion

f(z) =

∞∑
n=0

fn(z − z0)
n (0.0.1)

in a neighborhood of every point z0 ∈ Ω. In the first chapters we will make a
distinction between the terms holomorphic and analytic. After the discussion of
Cauchy’s theorem we will use these terms interchangeably, and mostly use the
term analytic. We also use mainly the term analytic in the discussion below.

The audience we have in mind consists of undergraduate students from math-
ematics and electrical engineering, with an eye on advanced students from both
tracks. Analytic functions are the bread and butter of mathematicians. For engi-
neers, analytic functions appear everywhere, in particular in the theory of linear
systems, signal processing, circuit theory, sampling theorems, optimal control, to
name a few. For instance, a motivation for an engineering student would be to

1



2 Prologue

know that transfer functions of discrete-time shift-invariant dissipative linear sys-
tems are functions analytic in the open unit disk,1and bounded by one in modulus
there (the celebrated Schur functions); see for instance the book [6]. Unfortunately,
most, if not all, electrical engineering students do not know what a transfer func-
tion is when they begin studying the theory of analytic functions. For the conve-
nience of engineering students we give, in the second part of this prologue, a short
discussion of time-invariant linear bounded systems, and their connections to the
theory of analytic functions.

The book consists of four parts. The first two parts, respectively entitled
Complex numbers and Functions of a complex variable, form the bulk of the book.
Most of the exercises presented in these two parts have been given in the past years
by the author in classes on Introduction to the theory of functions of a complex
variable for second year electrical engineering students, and Theory of functions of
a complex variable for mathematics students, at the department of mathematics
at Ben-Gurion University. The exercises rely only on classical real analysis, but
sometimes we use measure theory (mainly via the dominated convergence theo-
rem) to avoid lengthy arguments. Study of some special Hilbert spaces of analytic
functions is also scattered in the text, and requires some elementary functional
analysis (these spaces are the main topic of the sequel [7] to the present book).
When studying a function analytic in a domain (for instance in the open unit disk),
we will usually (but not always) assume that it is analytic in a neighborhood of
the closure of the domain, to avoid problems with boundary values (for instance,
in the case of the open unit disk, we will assume analyticity in |z| < 1 + ε for
some ε > 0). The student will in particular meet in the second part of the book,
in simplified forms, Bohr’s inequality and the Herglotz integral representation of
a function analytic in the open unit disk, and with a real positive part there. See
Exercises 5.5.13, 5.5.8 and 5.5.10.

The third part, entitled Applications and more advanced topics, contains
more advanced material, which was taught by the author to graduate students
and also to undergraduate students from the double major program mathemat-
ics and electrical engineering at Ben-Gurion University. Topics include harmonic
functions, conformal mappings, a brief introduction to the theory of linear sys-
tems, the related topic of rational functions, and a chapter on special functions
and transforms.

In a book in preparation, which can be seen as a sequel to both the present
book and to [7], we hope to come back to these topics, and also discuss, via exer-
cises, various aspects function theory in the settings of several complex variables,
Riemann surfaces and quaternionic analysis.

The fourth part, entitled Advanced prerequisites, contains material from real
analysis, topology, functional analysis and measure theory, which are needed to
solve the exercises (and, in fact, to fully understand a first course on complex
variables). Since we mention in the text a number of Hilbert spaces of analytic

1or in a half-plane, for continuous-time systems



Prologue 3

functions, we also have taken the liberty of mentioning the definition of a repro-
ducing kernel Hilbert space.

For the convenience of the reader, we give in the first three parts of the book a
number of reminders of known facts from complex analysis, mostly without proofs,
in the text. The solutions of most of the exercises are presented at the end of the
chapter where they are given.

In the first weeks of a first course on complex analysis, motivations and
applications of the theory are not apparent. Moreover, some results look like real
variable calculus. One of the difficulties for students who take a complex variable
course is that the complex derivative obeys the same rule as the familiar derivative
from real analysis. Moreover, the familiar power series of sinx, cos x, . . . pop up,
and it is not clear what the novelty is. After a number of weeks into the course, the
student finally sees the proof that a function which is C-differentiable in an open
subset of the complex plane admits derivatives of all order, and in fact, admits a
power series expansion around every point: The function is analytic in the given
open set. The student needs to be somewhat patient, to understand slowly the
differences between real and complex analysis.

To help the student cope with the difficulties mentioned in the previous
paragraph, one approach, sometimes taken by the author, is to skip most of the
preliminary material on complex numbers, discuss quickly the notions of continuity
and rush to the Cauchy–Riemann equations. One can then already define the
exponential function as

ez = ex(cos y + i sin y), z = x+ iy ∈ C,

and proceed.

In the present book, we have chosen a slower, and maybe non-standard path
for our exposition. We devote the three first chapters of the book to exercises
on complex numbers, or complex functions, but without mentioning analyticity.
There, the students already meet a variety of functions, such as Blaschke prod-
ucts, the Weierstrass sigma function, and the representation of sin z as an infinite
product. The definition and construction of these functions can be realized with-
out using analyticity. Later in the book, the student will see that these are key
examples of analytic functions. Of course, such an approach delays the exercises
on analytic functions per se, but we think this gives time to the students to absorb
at their own pace these difficult examples.

Trying to prove the following formulas using real analysis might provide a
student motivation to study complex analysis:

∞∑
n=1

rn sin(nθ) =
r sin θ

1 + r2 − 2r cos θ
, r ∈ [0, 1), θ ∈ R,

z2n + 1 =

n−1∏
k=0

(
z2 − 2z cos

(
2k + 1

2n
π

)
+ 1

)
,
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m∑
k=1

cot2
(

kπ

2m+ 1

)
=

m(2m− 1)

3
, m = 1, 2, . . . ,

∫
R

cos(t2)dt =

√
π

2
,

∞∑
n=0

(
2n
n

)
7n

=

√
7

3
.

These formulas are readily proved using complex analysis methods: The first iden-
tity is easily proved by a purely real analysis method: Multiply both sides by the
denominator 1 + r2 − 2r cos θ, and use the trigonometric identity

sin(nθ) cos θ =
sin(n+ 1)θ + sin(n− 1)θ

2
.

The second identity could also, in principle, be directly proved without resorting
to complex numbers. See the discussion after the proof of Exercise 1.5.7, where
one hints at such a proof using the completing the square argument. On the other
hand, these two identities have very easy proofs using complex numbers. The
third equality (see Exercise 1.3.7) can be obtained using de Moivre’s formula and
Newton’s binomial formula. The proofs of the last two identities use the theory of
analytic functions. The computation of the integral uses Cauchy’s theorem (in its
weak form) or, as in [192, p. 103], the theory of power series and the fundamental
theorem of calculus for holomorphic functions (see Theorem 5.2.1). The proof of
the formula for the sum uses the residue theorem (or, in fact, Cauchy’s formula).
The fourth formula, called Fresnel’s integral, can also be computed by real analysis
methods. We recall the references at the appropriate place in the text. Still, using
complex analysis to compute this integral is, in our opinion, a striking example of
the power of the methods involved.

For more information, see respectively Exercises 3.4.10, 1.5.7, 1.3.7, 5.2.7 and
7.3.13 and their solutions.

Linear time-invariant systems

This very short discussion is intended in particular for electrical engineering stu-
dents, but should be of interest to mathematicians as well. We freely use notions
such as measures, positive definite functions, and stochastic processes in the dis-
cussion. Some of these notions are recalled later in the book, and we send the
reader to the index, to find the exact places where the definitions are given.

A discrete time system in engineering is often (but not always!) modeled by
an input-output relation

(un)n∈N0 �→ (yn)n∈N0 ,



Prologue 5

where u = (un)n∈N0 is the input sequence and y = (yn)n∈N0 is the output sequence.
One writes this as

Tu = y,

where T is a possibly non-linear operator between spaces of sequences to be fixed
depending on the context. We take in this prologue the spaces of input sequences
and output sequences to be both equal to the space �2 of square summable se-
quences. Thus

∞∑
n=0

|un|2 < ∞ and

∞∑
n=0

|yn|2 < ∞.

These sums can be interpreted as the (square of the) energy of the signals, and
the above inequalities mean that u and y have finite energy.

We assume that the system is:

(1) Linear (that is the operator T is linear from �2 into itself).

(2) Bounded (that is, T is a bounded, or equivalently, continuous operator).

(3) Time-invariant (we also say shift-invariant): If

(un)n∈N0 �→ (yn)n∈N0 ,

then
(un−1)n∈N0 �→ (yn−1)n∈N0 ,

where we set u−1 = y−1 = 0. In other words, if

(u0, u1, u2, . . .) �→ (y0, y1, y2, . . .),

then
(0, u0, u1, u2, . . .) �→ (0, y0, y1, y2, . . .).

It is proved, using functional analysis tools, that such a system is defined by a
convolution operator: There is a sequence of complex numbers h0, h1, h2, . . . such
that

yn =

n∑
j=0

hn−juj , n = 0, 1, . . . . (0.0.2)

The z-transform of the sequence (un)n∈N0 is by definition

u(z) =

∞∑
n=0

unz
n,

and is convergent in the open unit disk since
∑∞

n=0 |un|2 < ∞. The sequence
(hn)n∈N0 is called the impulse response of the system, and its z-transform h(z) =∑∞

n=0 hnz
n is called its transfer function. Taking the z-transform of (0.0.2), we

obtain
y(z) = h(z)u(z).
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The fact that the system is bounded (in the sense above) translates into the fact
that

sup
|z|<1

|h(z)| < ∞.

The transfer function is a function analytic and bounded in modulus in the open
unit disk.

This is a first example where analytic functions, blended with appropriate
tools from functional analysis not detailed here, appear in electrical engineering.
The theory of complex variables allows us to study various problems related to
the transfer function (interpolation and approximation for instance), which in
counterpart allow us to approximate, or synthesize the system.

The second example we present is related to the theory of continuous time
second-order wide sense stationary processes. Such a process (x(t))t∈R has a co-
variance function

E(x(t)x(s)) = r(t− s)

which depends only on the difference t − s, where we have denoted by E(·) the
expectation. Furthermore, the function r(t − s) is positive definite. Since, by the
Cauchy–Schwarz inequality,

|r(t)| ≤ r(0), (0.0.3)

the function

ϕ(λ) =

∫ ∞

0

eiλtr(t)dt (0.0.4)

is well defined in the open upper half-plane C+. It is analytic and has a positive
real part there, as follows from the identity (see Exercise 3.1.15 for a proof of
(0.0.5))

ϕ(λ) + ϕ(w)

−i(λ− w)
=

∫∫
[0,∞)×[0,∞)

eiλte−iswr(t− s)dtds, λ, w ∈ C+. (0.0.5)

The fact that the function ϕ has a positive real part in C+ has a number
of key consequences. In particular, various interpolation problems, which have
applications to the prediction problem for the process, can be solved in an explicit
way. Furthermore, the Herglotz representation theorem asserts that one can write

ϕ(λ) =
1

i

∫
R

dμ(t)

t− λ
,

where dμ is a positive Borel measure (a more general form of this formula appears
later in the book). When dμ is absolutely continuous with respect to the Lebesgue
measure, its derivative is the spectral density of the process2. We note that discrete

2One can, equivalently, also apply Bochner’s theorem directly to r to obtain these last results.
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counterparts of formulas (0.0.4) and (0.0.5) are given in the sequel. See (4.4.21)
and (4.4.22).

The third example we present here also pertains to the continuous time case:
A continuous signal (for instance, the voice) may be modeled by an expression of
the form

f(t) =
1

2F

∫
[−F,F ]

e−itum(u)du, (0.0.6)

where the function m, say continuous in this prologue, denotes the spectrum. The
representation (0.0.6) expresses that the signal f is built from frequencies in a
limited band. The function f is analytic in the complex plane. Its special form
(0.0.6) allows us to prove the sampling theorem

f(t) =
∑
n∈Z

f
(πn
F

) sin(Ft− nπ)

Ft− nπ
,

where the limit is pointwise (and in a Hilbert space norm too, as explained later in
the book). This formula should be a surprise to the students: How can one recover
a function of a continuous argument from a discrete number of its values? This
is possible because of the special properties of f as an analytic function (more
precisely, as an entire function of bounded exponential type).

These three examples should at least suggest to the student that the theory
of analytic functions has fruitful applications in electrical engineering and signal
processing.

Last remarks

The theory of functions of a complex variable is the topic of numerous excellent
books, of which we mention [5], [18], [42], [45], [144], [164], to name a few. Classics
such as [192] are worth being studied in detail. Interesting sources for exercises
are the book of Polya–Szegö [182], the Berkeley entrance exams book [62], and
the books of exercises [75] and [176]. Giving precise references to all exercises is a
Sisyphean task, and we apologize in advance for any omission.

Finally we conclude with some notation: We use N = {1, 2, . . . , } for the
positive integers, and N0 = N∪{0}. The integers are denoted by Z, and D denotes
the open unit disk. The unit circle is denoted by T, and Cr stands for the open
right half-plane. The open upper half-plane is denoted by C+.

Acknowledgment. It is a pleasure to thank Haim Attia for a very careful reading of
various versions of this book. Comments of Sylvain Chevillard, Izchak Lewkowicz
and Mamadou Mboup are also gratefully acknowledged. Finally, it is a pleasure to
thank Natanael Alpay for discussions pertaining to Exercise 1.3.7 and Question
1.5.1.
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Main changes in the second edition: We have added a number of exercises and
comments in the text. In particular:

• We begin the section on polynomials with a discussion of C. Fefferman’s very
short proof of the fundamental theorem of algebra (see [79]).

• Morera’s theorem has been put in a new and separate section (Section 6.2),
where the former Theorem 12.5.3 has been moved.

• Section 7.5 on rational function has been moved and incorporated to a new
chapter on rational functions.

• We have expanded the results on the computations of the residue. In partic-
ular we gave a formula for the residue of a function of the form f

g where g
has a zero of order N > 1.

• Former Sections 12.5 and 12.6 (now, Sections 14.5 and 14.6) have been
slightly expanded.

• We expanded the part on conformal mapping and one-to-oneness (see, e.g.,
Exercise 7.3.8) and discussed Riemann’s mapping theorem in greater details.
In particular we wrote in details the proof that the map z �→

∫
[0,z]

ds√
1−s4

is

conformal from the open unit disk onto a square.

Finally, we call Question an exercise for which no solution is provided.

Reference to the book [7] is given as [CAPB2].



Part I

Complex Numbers



Chapter 1

Complex Numbers: Algebra

This first chapter has essentially an algebraic flavor. The exercises use elementary
properties of the complex numbers. A first definition of the exponential function is
given, and we also meet Blaschke factors. These will appear in a number of other
places in the book, and are key players in more advanced courses on complex
analysis. Almost no methods from real or complex analysis are involved in the
present chapter. Still, in Exercise 1.1.9 we already get a hint on difficulties which
arise with respect to continuity. The argument of a complex number z is defined
(modulo 2π) for z ∈ C \ {0}, but not for z = 0, and cannot be defined in a
continuous way in C \ {0}.

1.1 First properties of the complex numbers

There are various ways to build the field of complex numbers. For the present
purpose, the most appropriate seems to be the following:

Proposition 1.1.1. The set of matrices{
z =

(
x −y
y x

)
; x, y ∈ R

}
endowed with the usual laws of addition and multiplication, is a field, which con-
tains an isomorphic copy of the field of real numbers R, and in which the equation
z2 + 1 = 0 is solvable.

The isomorphism alluded to in the proposition is the map

x �→ τ(x) =

(
x 0
0 x

)
.

Setting

i =

(
0 −1
1 0

)

D. Alpay, A Complex Analysis Problem Book, 
DOI 10.1007/978-3-319-42181-0_1 
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we see that
z = τ(x) + iy,

which one writes as z = x+ iy. Viewing a complex number as a matrix

z =

(
x −y
y x

)
(1.1.1)

= ρ

(
cos θ − sin θ
sin θ cos θ

)
(1.1.2)

gives a geometric interpretation of z 
= 0 as the composition of a homothety by
ρ =

√
x2 + y2 and of a rotation with matrix representation(

cos θ − sin θ
sin θ cos θ

)
, (1.1.3)

where the angle θ ∈ [0, 2π) is defined by

cos θ =
x√

x2 + y2
and sin θ =

y√
x2 + y2

.

This aspect will be of importance in the sequel. See the discussion after Theorem
4.2.3 and also Remark 16.1.14.

Exercise 1.1.2. Show that (1.1.3) is the matrix representation of the rotation by
the angle θ ∈ [0, 2π).

Another construction of the field of complex numbers is by considering the
quotient space R[X ]/(X2 + 1). In this construction, i is the equivalence class of
the monomial X .

We now set the notation, and recall some elementary definitions. The field
of complex numbers will be denoted by C. Let

z = x+ iy, (1.1.4)

be a complex number, with real part x and imaginary part y. The expression
(1.1.4) is called the cartesian form of the complex number z. The number

z = x− iy

is called the conjugate of z, and the number z is called purely imaginary if its real
part is equal to 0. Recall that

x =
z + z

2
, and y =

z − z

2i
.

Thus:



1.1. First properties of the complex numbers 13

Proposition 1.1.3. Let z ∈ C. Then:

z is real if and only if z = z.

z is purely imaginary if and only if z = −z.

Proof. Indeed, z = x+ iy is real if and only if y = 0, that is, if and only if z = z.
Similarly, z ∈ iR if and only if x = 0, that is, if and only if z = −z. �

The following properties of the conjugation are easily verified:

Proposition 1.1.4. Let z, z1 and z2 be complex numbers. Then:

z1 + z2 = z1 + z2, (1.1.5)

z1z2 = z1 · z2, (1.1.6)

z1/z2 = z1/z2, for z2 
= 0, (1.1.7)

z = z, (1.1.8)

zn = (z)n, n ∈ Z and z 
= 0 if n < 0. (1.1.9)

Partial proof. (1.1.5), (1.1.6) and (1.1.8) are direct computations and will be
skipped. Granting (1.1.6) we have for z 
= 0,

z · 1
z
= 1 = z · 1

z
= z

1

z
,

where we have used (1.1.6), and so

1/z =
1

z
. (1.1.10)

We conclude by using (1.1.10) and once more (1.1.6) to prove (1.1.7). Finally,
(1.1.9) is proved by induction for n > 0 and using (1.1.10) for n < 0. �

The positive number

|z| =
√
x2 + y2

is called the modulus, or the absolute value, of the complex number z. Every
complex number z = x+ iy different from 0 can be written as

z = |z|(cos θ + i sin θ), (1.1.11)

where θ is uniquely determined, modulo 2π, by

cos θ =
x

|z| and sin θ =
y

|z| .

Formula (1.1.11) is a mere rewriting of (1.1.2), and is called the polar represen-
tation of z. One also says polar decomposition, and often uses the notation r or
ρ rather than |z| in the polar representation of z. The polar representation is
convenient to compute products and quotients of complex numbers:
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Proposition 1.1.5. Let z1 and z2 be two complex numbers different from 0, and
with polar representations

z� = ρ�(cos θ� + i sin θ�), � = 1, 2.

Then
z1z2 = ρ1ρ2(cos(θ1 + θ2) + i sin(θ1 + θ2)),

and
z1
z2

=
ρ1
ρ2

(cos(θ1 − θ2) + i sin(θ1 − θ2)).

The claims are direct consequences of the trigonometric identities, and proofs
are omitted.

It follows from the preceding proposition that the nth power of a complex
number z 
= 0 is easily computed when its polar representation

z = ρ(cos θ + i sin θ) (1.1.12)

is given. We have de Moivre’s formula

zn = ρn(cos(nθ) + i sin(nθ)), n ∈ Z. (1.1.13)

Exercise 1.1.6. Compute (1 + i)n.

The argument θ in the polar representation is defined modulo 2π, and this
is the key to the following classical result:

Theorem 1.1.7. Let z 
= 0 with polar representation (1.1.12). Then, for every
n ∈ N, z has n roots of order n, i.e., there exist n different numbers z0, . . . , zn−1

such that
znj = z, j = 0, . . . , n− 1.

Proof. Clearly, any root of order n of z will be different from 0 since z 
= 0. Let
now w be a complex number different from 0, with polar decomposition

w = r(cos t+ i sin t). (1.1.14)

The condition wn = z leads to

rn(cosnt+ i sinnt) = ρ(cos θ + i sin θ).

It follows that rn = ρ and that nt = θ (modulo 2π). The first condition leads to
r = ρ1/n while the second leads to

nt = θ + 2kπ, k ∈ Z.

Thus,

t =
θ

n
+

2kπ

n
, k ∈ Z.
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The choices k = 0, . . . , n− 1 lead to n different values of t (modulo 2π) and hence
the roots of order n of z are

zk = ρ1/n
(
cos

(
θ + 2kπ

n

)
+ i sin

(
θ + 2kπ

n

))
, k = 0, . . . , n− 1. (1.1.15)

�

The numbers zj are called the roots of order n of z. See Exercise 2.1.1 for a
geometric interpretation of the roots of order n. We note that the sums

n−1∑
j=0

zmj , m ∈ N0 (1.1.16)

are computed in Exercise 1.2.3, and one has

n−1∑
j=0

zmj =

{
nzk, if m = kn, k ∈ N0,

0, otherwise.
(1.1.17)

The preceding discussion shows that (1.1.14) is multi-valued when n is re-
placed by a real (or even complex, but at this stage of the book, the functions
cos and sin are defined only for a real argument). When θ is restricted to a semi-
open interval of length 2π (for instance (−π, π] or [0, 2π)), and therefore uniquely
defined, the expression (1.1.14) is also uniquely defined (and therefore defines a
function, rather than a multi-valued expression) when n is allowed to be real (or
even complex). For instance, one can define square root functions

f1(z) =
√
ρ

(
cos

θ

2
+ i sin

θ

2

)
, θ ∈ (−π, π],

and

f2(z) =
√
ρ

(
cos

θ

2
+ i sin

θ

2

)
, θ ∈ (0, 2π].

We have
f1(z)

2 = f2(z)
2 = z, z ∈ C \ {0} .

Note that f1 is discontinuous along the negative axis, while f2 is discontinuous
along the positive axis. Moreover,

f1(1) = 1 while f2(1) = −1.

It is sometimes useful to have a formula for θ. We denote by arctanx the
inverse of

tan : (−π/2, π/2) → R.

Exercise 1.1.8. Prove that

arctanu+ arctan
1

u
=

⎧⎪⎨⎪⎩
π

2
, for u > 0,

−π

2
, for u < 0.

(1.1.18)
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Exercise 1.1.9. Let z = x+ iy 
= 0. Then:

(a) The function θ ∈ (−π, π) given by the formulas

θ(x, y) =

⎧⎪⎨⎪⎩
arctan(y/x), x > 0,
π
2 − arctan(x/y) y > 0,

−π
2 − arctan(x/y), y < 0,

(1.1.19)

satisfies (1.1.11).

(b) The function θ is continuous in R2 \ (−∞, 0] and is discontinuous along the
negative axis.

(c) The partial derivatives of θ have continuous extensions (and in fact exten-
sions with partial derivatives of all orders) in R \ {(0, 0)}.

In Exercise 4.1.11 it is shown that one cannot find a continuous function
θ(x, y) defined in C \ {0} and satisfying (1.1.11).

We note that the functions

u(x, y) = ln
√
x2 + y2 and v(x, y) = θ(x, y)

satisfy in R2 \ (−∞, 0] an important pair of partial differential equations, called
the Cauchy–Riemann equations. See Exercise 4.2.8.

We also note the following: The negative result in (c) in the previous exercise
may seem paradoxical. It stems from the following fact: In R2, the existence of
a function with given partial derivatives in a given set depends not only on the
properties of the functions (local aspect of the problem) but on the properties of
the set (global aspect of the problem). See Section 5.7 for more on this question.

The following properties of the absolute value are easily verified, and proofs
are omitted.

Proposition 1.1.10. Let z, z1 and z2 be complex numbers. Then:

|zn| = |z|n, n ∈ Z and z 
= 0 if n < 0, (1.1.20)

|z1z2| = |z1| · |z2|, (1.1.21)

|z1/z2| = |z1|/|z2|, for z2 
= 0. (1.1.22)

The formulas

|z|2 = zz, z ∈ C, (1.1.23)

1

z
=

z

|z|2 , z 
= 0, (1.1.24)
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are useful to compute explicitly expressions involving absolute values and inverses.
See, e.g., the solution of Exercise 4.4.3 for an illustration. With z = x + iy the
second formula reads

1

x+ iy
=

x− iy

x2 + y2
.

For instance
1

cos t+ i sin t
=

cos t− i sin t

cos2 t+ sin2 t
= cos t− i sin t. (1.1.25)

Exercise 1.1.11. Write in cartesian and polar forms the complex number

z =
1

1 + cos t+ i sin t
,

where t is real and not an odd multiple of π.

Related to the preceding exercise, see also Exercise 3.1.1. The following ex-
ercise is related to Exercise 1.2.8.

Exercise 1.1.12. Let x and y be real numbers. Find necessary and sufficient con-
ditions for the complex number

cosx cosh y − i sinx sinh y (1.1.26)

to be different from 0. When these conditions hold, write in cartesian form the
complex number

sinx cosh y + i cosx sinh y

cosx cosh y − i sinx sinh y
. (1.1.27)

We note that the expression (1.1.27) reduces to tanx when y = 0 and, when
x = 0, to i tanh y = tan iy (see (1.2.14) below for the latter).

The formulas

|z + w|2 = |z|2 + 2Re zw + |w|2, (1.1.28)

= |z|2 + 2Re zw + |w|2,
|z + w|2 = |z|2 + 2Re zw + |w|2,

prove to be quite useful in computations. They imply the completing the square
formulas,

|z|2 + 2Re zw = |z + w|2 − |w|2,
|z|2 + 2Re zw = |z + w|2 − |w|2,

(1.1.29)

which are also very useful. See the solutions of Exercise 2.2.1 (and in particular
equation (2.4.6)) and Exercise 2.3.16 for instance.

Exercise 1.1.13. Prove (1.1.28).
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The following identities are classical, and play also an important role in the
sequel, and in function theory in general. They appear in numerous places. See for
instance [75, Exercise 1.68, p. 19].

Exercise 1.1.14. Let z, w ∈ C. Then:

|z + w|2 + |z − w|2 = 2(|z|2 + |w|2), (1.1.30)

|1 + zw|2 + |z − w|2 = (1 + |z|2)(1 + |w|2), (1.1.31)

|1− zw|2 − |z − w|2 = (1 − |z|2)(1 − |w|2), (1.1.32)

|z − w|2 − |z + w|2 = −4(Re z)(Rew). (1.1.33)

We will focus on the geometric interpretation of the complex numbers in
the following chapter, but we mention here the following: When one identifies the
complex numbers and the plane R2, equation (1.1.30) has a nice geometric inter-
pretation: The complex numbers z and w are the sides of a (possibly degenerate)
parallelogram, with diagonals z+w and z−w, and (1.1.30) is then the well-known
relation between the lengths of the sides and of the diagonals of the parallelogram.
We also send the reader to Exercise 1.4.2 for another application of (1.1.30).

It is well to recall in this first chapter that

Re z ≤ |z| and Im z ≤ |z|, ∀z ∈ C, (1.1.34)

and that there is equality in the first case if and only if z ∈ R+, while there is
equality in the second case if and only if z ∈ iR+. These inequalities are really of
interest only for Re z > 0 and Im z > 0 respectively, and allow us to prove∣∣|z1| − |z2|

∣∣ ≤ |z1 − z2| ≤ |z1|+ |z2|. (1.1.35)

For instance, the first inequality in (1.1.35) is equivalent to

|z1|2 + |z2|2 − 2|z1| · |z2| ≤ |z1|2 + |z2|2 − 2Re z1z2, (1.1.36)

that is, since |z1| · |z2| = |z1z2|,

Re z1z2 ≤ |z1z2|.

Exercise 1.1.15. When do equalities hold in (1.1.35)?

The first inequality in (1.1.35) is used over and over in the computations in
the sequel, in particular when |z1| > |z2|. Then we have

|z1| > |z2| =⇒ |z1| − |z2| ≤ |z1 − z2|, (1.1.37)

or, equivalently,

|z1| > |z2| =⇒ 1

|z1 − z2|
≤ 1

|z1| − |z2|
. (1.1.38)
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This is illustrated in the next exercise, and in its continuations, namely part (c) of
Exercise 1.1.23, and Exercise 3.3.1. See also (4.5.1) for another sample application.
The second inequality in (1.1.35) is called the triangle inequality.

Exercise 1.1.16. Let z be in the open unit disk D. Show that∣∣∣ z2n

2 + zn + z5n

∣∣∣ ≤ |z|2n
2(1− |z|) . (1.1.39)

Using appropriately the triangle inequality one can prove:

Exercise 1.1.17 (see [60, Problem 9, p. 14]). Show that

1 + |z1z2 − 1| ≤ (1 + |z1 − 1|)(1 + |z2 − 1|), z1, z2 ∈ C. (1.1.40)

The following important results follow from (1.1.32) and (1.1.33): Let z, w ∈
C. Then it holds that

|z| < 1 and |w| < 1 =⇒
∣∣∣ z − w

1− zw

∣∣∣ < 1, (1.1.41)

Re z > 0 and Rew > 0 =⇒
∣∣∣z − w

z + w

∣∣∣ < 1. (1.1.42)

The proofs of (1.1.41) and (1.1.42) form the topic of Exercise 1.1.19 below. In the
statements, recall that we denote by Cr the open right half-plane:

Cr = {z ∈ C ; Re z > 0} . (1.1.43)

Functions of the form

bw(z) =
z − w

1− zw
, w ∈ D, (1.1.44)

and

Bw(z) =
z − w

z + w
, w ∈ Cr, (1.1.45)

possibly multiplied by a constant of modulus 1, are called Blaschke factors, asso-
ciated respectively to the open unit disk and to the open right half-plane. They
are special instances of Moebius maps. See Section 2.3 for more information. They
play an important role in conformal mapping and in various questions in the the-
ory of Hilbert spaces of analytic functions; see [190]. Finite products of terms of
the form (1.1.44) are called finite Blaschke products (associated to the open unit
disk). One defines similarly Blaschke products associated to Cr as finite products
of terms of the form (1.1.45). One can also define Blaschke factors associated to
the open upper half-plane C+ as terms of the form

Bw(z) =
z − w

z − w
, (1.1.46)

where w ∈ C+.
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As a first consequence of (1.1.41) we have:

Exercise 1.1.18. Let a and b be in the open unit disk. Show that

c =
(1 − |a|2)b+ (1− |b|2)a

1− |ab|2 (1.1.47)

is also in the open unit disk.

The expression (1.1.47) has a special meaning. Applying the Schur algorithm
to the degree two Blaschke product

z − a

1− za

z − b

1− zb
,

one obtains z−c
1−zc . See Section 11.5 for more information. It also appears in the

solution of the question set in Remark 2.4.2.

Exercise 1.1.19. Prove (1.1.41) and (1.1.42).

We note the inequality∣∣1 + |w|
w

bw(z)
∣∣ ≤ 2(1− |w|)

1− |z|

forw and z in the open unit disk,w being moreover different from 0. This inequality
is proved in the solution of Exercise 3.7.12. The reader might want to prove it
already now.

Similarly, we have the inequalities

|1−Bw(z)| ≤
w + w

Re z
, (1.1.48)

for z and w in the open right half-plane, and

|1− Bw(z)| ≤
|w − w|
Im z

(1.1.49)

for z and w in the open upper half-plane.

These inequalities play an important role in the construction of infinite prod-

ucts with factors of the form |w|
w bw(z), Bw(z) and Bw(z) respectively. See Exercises

3.7.12 and 3.7.13 for the first and third cases.

Exercise 1.1.20. Prove (1.1.48).

The function bw makes sense also for |w| ≥ 1. For |w| = 1, it is equal to a
unitary constant (or more precisely, it can be continuously extended to a unitary
constant) since

z − w

1− zw
=

z − w

w(w − z)
= − 1

w
, z 
= w.
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Formula (1.6.4) below,

1− |bw(z)|2 =
(1 − |z|2)(1 − |w|2)

|1− zw|2 ,

which appears in the proof of (1.1.41), can be generalized as follows:

Exercise 1.1.21. Let z, w, v ∈ C be such that

1− zw 
= 0, 1− zv 
= 0 and 1− vw 
= 0. (1.1.50)

Show that
1− bw(z)bw(v)

1− zv
=

1− |w|2
(1− zw)(1 − vw)

. (1.1.51)

Similarly, Bw makes sense for any complex number, and we have:

Exercise 1.1.22. Let z, w, v ∈ C be such that

z + w 
= 0, z + v 
= 0 and v + w 
= 0.

Show that
1−Bw(z)Bw(v)

z + v
=

2Rew

(z + w)(v + w)
. (1.1.52)

We note that, similarly, for z, w, v ∈ C such that

z − w 
= 0, z − v 
= 0 and v − w 
= 0,

it holds that
1− Bw(z)Bw(v)

−2i(z − v)
=

Imw

(z − w)(v − w)
. (1.1.53)

A newcomer in complex analysis may see (1.1.51), (1.1.52) and (1.1.53) as
just curiosities. While keeping in mind that we have not encountered yet at this
stage the notion of analytic function, we will just mention that (1.1.52) has a far
reaching generalization to function theory on a compact Riemann surface, and is
basically equivalent there to an identity called Fay’s trisecant identity. See [78]
and [17] for more details.

We note that any finite product of functions of the form bw (resp. Bw, Bw)
with |w| 
= 1 (resp. Rew 
= 0, Imw 
= 0), possibly multiplied by a constant
of modulus one, is a rational function which maps the unit circle T (resp. the
imaginary axis iR, the real axis) onto T. That these are the only rational functions
with these properties is the topic of Exercise 6.3.4 for the first case.

Finally, we note that the formula

1 + z + · · ·+ zN =
1− zN+1

1− z
, z 
= 1, (1.1.54)

for summing a finite geometric series will be of much use in the sequel, and in
particular in Section 1.3. The proof is the same as for the real case.
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Exercise 1.1.23.

(a) Prove (1.1.54).

(b) Prove that

|1 + z + · · ·+ zN | < 2

1− |z| , for z ∈ D. (1.1.55)

(c) Prove that ∣∣∣∣∣
N∑

n=0

z2n

2 + zn + z5n

∣∣∣∣∣ ≤ 1− |z|2N+2

2(1− |z|)2 , for z ∈ D.

Note that the right side of (1.1.55) is independent of N .

Other exercises which involve only complex numbers but resort to more in-
volved methods include Exercise 3.2.5 and Exercise 3.3.3.

1.2 The exponential function

The exponential function of calculus can be defined in (at least) three equivalent
ways: As a power series

ex =

∞∑
n=0

xn

n!
, x ∈ R, (1.2.1)

as a limit

ex = lim
p→+∞

(
1 +

x

p

)p

, x ∈ R, (1.2.2)

where p ∈ N, and as the unique solution of the differential equation

f ′(x) = f(x), f(0) = 1 (x ∈ R).

Formulas (1.2.1) and (1.2.2), of an analytic nature, still make sense when x is
replaced by a complex variable z = x + iy; see Exercise 3.4.14 in Section 3.4 for
the first formula and Section 14.7 for the second one. The definition in terms
of the differential equation admits also a counterpart here, but one needs first
to define the complex derivative. See Exercise 4.2.4. In this section we consider
another extension, more algebraic in nature: For z = x+iy one defines the complex
exponential function ez as

ez = ex(cos y + i sin y). (1.2.3)

In particular, the complex exponential function coincides for real z with the ex-
ponential function of calculus. For a purely imaginary number z, z = iy, we have

eiy = cos y + i sin y,
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so that

cos y =
eiy + e−iy

2
and sin y =

eiy − e−iy

2i
, y ∈ R.

Thanks to the trigonometric formulas, we have

eiy1eiy2 = ei(y1+y2), y1, y2 ∈ R,

and in particular

(eiy)p = eiyp, p ∈ Z,

which is a mere rewriting of de Moivre’s formula (1.1.13):

(cos y + i sin y)n = cosny + i sinny, n ∈ Z, y ∈ R.

In particular, it holds that

ez1+z2 = ez1ez2 , ∀z1, z2 ∈ C. (1.2.4)

Exercise 1.2.1. Show that

|ez| = eRe z ≤ e|z|. (1.2.5)

Alternative, and equivalent, ways to define the function ez are as a limit or
as a power series, as in the real case. More precisely:

Theorem 1.2.2. Let z = x+ iy ∈ C. Then,

ex(cos y + i sin y) =

∞∑
n=0

zn

n!
= lim

p→∞
p∈N

(
1 +

z

p

)p

. (1.2.6)

As already mentioned, see Section 3.4 for the first equality and Section 14.7
for the second one.

We have chosen to define the exponential function via (1.2.3) in order to
have already at hand a convenient notation, and also to compute sums as the ones
appearing in the following section. Note that we will also use the notation exp z
for ez.

The reader may be interested to know that de Moivre’s formula in its present
form is in fact due to Euler in 1748; de Moivre himself proved another version of
the formula (which we will not recall here) in 1730; see for instance [82, p. 51]. The
reader might also want to know that de Moivre is the creator of the Gaussian, or
normal, distribution of probability theory. See [149, p. 282] for further details on
this latter point.

Exercise 1.2.3. Let z be given by (1.1.12), and let z0, . . . , zn−1 be as in (1.1.15).

Compute for m ∈ N0 the sum
∑n−1

j=0 zmj .
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The formulas

1− eix = eix/2(e−ix/2 − eix/2) = −2ieix/2 sinx/2, (1.2.7)

1 + eix = eix/2(e−ix/2 + eix/2) = 2eix/2 cosx/2, (1.2.8)

n∑
k=0

eikx =
1− ei(n+1)x

1− eix
= einx/2

sin
(

(n+1)x
2

)
sin(x2 )

, (1.2.9)

where x is real and, in the third formula, is not a multiple of 2π, are quite useful.
They are used in particular to obtain formulas for various sums of complex num-
bers. Note that (1.2.9) is proved from the formula (1.1.54). It follows from (1.2.9)
that

n∑
k=0

cos(kx) =
cos
(
nx
2

)
sin
(

(n+1)x
2

)
sin(x2 )

, (1.2.10)

n∑
k=1

sin(kx) =
sin
(
nx
2

)
sin
(

(n+1)x
2

)
sin(x2 )

, x ∈ R \ {2πm, m ∈ Z} . (1.2.11)

See also Exercise 1.3.3. Furthermore, it also follows from (1.2.9), see also (1.1.55),
that for n ∈ N: ∣∣∣∣∣

n∑
k=0

eikx

∣∣∣∣∣ ≤ 1

| sin(x2 )|
, x ∈ R \ {2πm, m ∈ Z} . (1.2.12)

Inequality (1.2.12) is very useful when applying Abel’s theorem on conditionally
convergent series (see Theorem 3.5.1) to compute boundary values of power series.

Formulas (1.2.7) and (1.2.8) are used in the following exercise.

Exercise 1.2.4. ([152, Exercice S9-1-3, p. 188]). Let a = eiα and b = eiβ with α
and β real numbers. Show that

a+ b

a− b
= −i cot

(
α− β

2

)
and

a+ b

1− ab
= i

cos

(
α− β

2

)
sin

(
α+ β

2

) .

When do the expressions make sense?

One defines the trigonometric functions and the hyperbolic functions for
every complex number in terms of the exponential function as follows:

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
,

cosh z =
ez + e−z

2
, sinh z =

ez − e−z

2
.

(1.2.13)
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Note that
sin(iz) = i sinh z and cos(iz) = cosh z, (1.2.14)

and similarly,
sinh(iz) = i sin z and cosh(iz) = cos z. (1.2.15)

All polynomial identities involving the trigonometric functions and the hy-
perbolic functions proved in calculus on the real line still hold in the complex
plane. One way to see this is using the notion of analytic continuation, see Section
6.3, which is not yet available at this stage of the book. The other way, more direct
and elementary, consists in checking directly the presumed identity from the above
definitions of cos z and sin z in terms of eiz,

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
,

and the fact that the complex exponential function is multiplicative. For instance
to prove that

sin(2z) = 2 sin z cos z, (1.2.16)

one can do as follows:

2 sin z cos z = 2
exp(iz)− exp(−iz)

2i
· exp(iz) + exp(−iz)

2

=
1

2i
{exp(iz) exp(iz) + exp(iz) exp(−iz)

− exp(−iz) exp(iz)− exp(−iz) exp(−iz)}

=
1

2i
(exp(2iz) + 1− 1− exp(−2iz))

= sin(2z).

See also the discussion after the proof of the next exercise for another exam-
ple.

Exercise 1.2.5. Show that

cos z = cosx cosh y − i sinx sinh y, (1.2.17)

sin z = sinx cosh y + i cosx sinh y, (1.2.18)

| cos z|2 = cos2 x+ sinh2 y,

| sin z|2 = sin2 x+ sinh2 y. (1.2.19)

Show directly (that is, without resorting to the maximum modulus principle) that
| sin z| has no local maximum.

It is clear from the previous exercise that | cos z| and | sin z| are not bounded
in the plane (the knowledgeable student will recognize that cos z and sin z are
non-constant entire functions, and, by Liouville’s theorem, cannot be bounded in
modulus in the plane).
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Exercise 1.2.6. Let z1 and z2 be complex numbers. Show that

sin z1 = sin z2 ⇐⇒
{
z1 = z2 + 2kπ, for some k ∈ Z, or

z1 + z2 = (2k + 1)π, for some k ∈ Z.

Exercise 1.2.7. Solve the equations

(a) cos z = 0,

(b) sin z = 5,

(c) sin z = a+ ib, a, b ∈ R.

From (c) follows that the range of sin is all of C. It is clearly not one-to-one,
because of the 2π-periodicity.

(d) Show that sin z is one-to-one from the strip

L = {(x, y) ;x ∈ (−π/2, π/2) and y ∈ R}

onto the set
C \ {z = x , x ∈ R and |x| ≥ 1} .

The functions tan and tanh are defined as in the real case by

tan z =
sin z

cos z
and tanh z =

sinh z

cosh z
.

In view of Exercise 1.2.5 we see that tan z is given by (1.1.27),

tan z =
sinx cosh y + i cosx sinh y

cosx cosh y − i sinx sinh y
.

Exercise 1.2.8.

(a) Show that

tan z =
sin(2x)

cos(2x) + cosh(2y)
+ i

sinh(2y)

cos(2x) + cosh(2y)
. (1.2.20)

(b) What is the image of the strip

L = {(x, y) ;x ∈ (−π/2, π/2) and y ∈ R} (1.2.21)

under the function tan?

(c) What is the image of the strip

L1 = {(x, y) ;x ∈ (−π/4, π/4) and y ∈ R}

under the function tan?

See also Exercises 5.7.4 and 9.1.6 in connection with the previous exercise.
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1.3 Computing some sums

The following exercise is taken from [103, p. 515]. It also appears as [20, §5.5,
Problem 1, p. 214].

Exercise 1.3.1. Prove that

cos
π

11
+ cos

3π

11
+ cos

5π

11
+ cos

7π

11
+ cos

9π

11
=

1

2
. (1.3.1)

Hint. Let C denote the sum to be computed, and let

S = sin
π

11
+ sin

3π

11
+ sin

5π

11
+ sin

7π

11
+ sin

9π

11
.

Using de Moivre’s formula, compute C + iS.

More generally than (1.3.1), we have:

Exercise 1.3.2. Show that, for a, b ∈ R (b 
= 0 mod π)

n−1∑
k=0

cos(a+ (2k + 1)b) =
cos(a+ bn) sin(bn)

sin(b)
. (1.3.2)

What does this formula become when b = mπ for some m ∈ Z. What does this
formula become when a and b are assumed to be in C? Using (1.3.2), prove that
for every real u different from 0,

n−1∑
k=0

cosh(2k + 1)u =
cosh(nu) sinh(nu)

sinh(u)
. (1.3.3)

Exercise 1.3.1 corresponds to the case

a = 0, b =
π

11
, and n = 5,

in (1.3.2). As a check, we see that

C5 =
cos(5π/11) sin(5π/11)

sin(π/11)
=

1

2

sin(10π/11)

sin(π/11)
=

1

2
,

as claimed in Exercise 1.3.1. In the same vein, we have the following result, taken
in part from [185, p. 59]. For the second formula with a = 0, see also [213, p. 171].

Exercise 1.3.3. Show that

n−1∑
k=0

cos(a+ kb) =

sin

(
nb

2

)
sin

b

2

· cos
(
a+ (n− 1)

b

2

)
, (1.3.4)

n∑
k=0

(
n
k

)
cos(a+ kb) = 2n

(
cos

b

2

)n

cos

(
a+

nb

2

)
, (1.3.5)
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where a, b ∈ R and where, in the first formula, b 
= 0 (mod 2π). What happens in
the first formula when b = 0 (mod 2π)? What do these formulas become when a
and b are assumed to be in C?

When one sets a = b = 0 and a = 0, b = π in formula (1.3.5) one recovers
the well-known formulas

n∑
k=0

(
n
k

)
= 2n,

n∑
k=0

(−1)k
(

n
k

)
= 0,

which also follow from Newton’s binomial formula

(α+ β)n =
n∑

k=0

(
n
k

)
αkβn−k, α, β ∈ C, (1.3.6)

applied to
(1 + 1)n and (1− 1)n

respectively.

We also mention the formulas (see for instance [44, Exercice 4.7, p. 76]) where
a, b, r ∈ R and n is a positive integer:

n−1∑
k=0

rk cos(a+ kb)=
cos a− r cos(a− b)− rn cos(a+ nb) + rn+1 cos(a+ (n− 1)b)

1 + r2 − 2r cos b

n−1∑
k=0

rk sin(a+ kb) =
sin a− r sin(a− b)− rn sin(a+ nb) + rn+1 sin(a+ (n− 1)b)

1 + r2 − 2r cos b

(1.3.7)

For the next exercise, see [152, S9-1-6, p. 191].

Exercise 1.3.4. Show that

[n/2]∑
k=0

(−1)k
(

n
2k

)
= 2n/2 · cos

(nπ
4

)
, (1.3.8)

[(n−1)/2]∑
k=0

(−1)k
(

n
2k + 1

)
= 2n/2 · sin

(nπ
4

)
. (1.3.9)

In the same vein, and a bit more difficult is the following exercise, taken from
the same book ([152, p. 79]). See also [211, p. 238], and [125, pp. 203–205] for a
related discussion.
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Exercise 1.3.5. Let n ∈ N and

an = {k ∈ N0 ; 0 ≤ 3k ≤ n} ,
bn = {k ∈ N0 ; 0 ≤ (3k + 1) ≤ n} ,
cn = {k ∈ N0 ; 0 ≤ (3k + 2) ≤ n} .

Show that ∑
k∈an

(
n
3k

)
=

2n + 2(−1)n cos(2nπ3 )

3
, (1.3.10)

∑
k∈bn

(
n

3k + 1

)
=

2n + 2(−1)n cos(2(n+1)π
3 )

3
, (1.3.11)

∑
k∈cn

(
n

3k + 2

)
=

2n + 2(−1)n cos(2(n+2)π
3 )

3
. (1.3.12)

Some sums involving trigonometric functions or their inverses are much more
difficult to handle; see for instance [48]. We now present two examples. Among the
places where the first one can be found, see for instance [21, Problem 2.73, p. 69]
and [218, p. 60].

Exercise 1.3.6. Show that

1

cos
π

30

− 1

sin
π

15

+
1

sin
2π

15

+
1

sin
4π

15

= 0. (1.3.13)

The second example, which we took from [218, p. 61] (see also [186, p. 207],
[185, p. 195], [198, p. 53]) has a long history (and we refer to the papers [34], [120],
[177] for more general computations and historical remarks), and is conducive to
an elementary way to prove that

∞∑
k=1

1

k2
=

π2

6
, (1.3.14)

see the remark after the proof of the exercise.

Exercise 1.3.7. Let m ∈ N. Prove that
m∑

k=1

cot2
(

kπ

2m+ 1

)
=

m(2m− 1)

3
. (1.3.15)

Hint (see for instance [218, p. 61]). Compute the sum of the roots of the degree m
monic polynomial p defined by

p(X2) =
1

2i

(
2m+ 1
2m

) ((X + i)2m+1 − (X − i)2m+1
)
. (1.3.16)
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Another possibility (see [177]) is to compute(
cos

(
kπ

2m+ 1

)
+ i sin

(
kπ

2m+ 1

))2m+1

, k = 1, . . . ,m,

in two different ways, namely using de Moivre’s formula and Newton’s binomial
formula.

Remark 1.3.8. For m = 1, (1.3.15) reduces to cot2 π
3 = 1

3 .

Remark 1.3.9. Some related sums can be computed using the residue theorem.
See [75, pp. 276–277] and Question 7.3.15.

1.4 Confinement lemma and other bounds

Exercise 1.4.1 is taken from [88, p. 39]. The result is called a confinement lemma.

Exercise 1.4.1. Given complex numbers z1, . . . , zn in the open unit disk, show that
there exist numbers ε� = ±1, � = 1, . . . , n such that∣∣∣∣∣

m∑
�=1

ε�z�

∣∣∣∣∣ ≤ √
3, m = 1, . . . , n. (1.4.1)

We first give as exercises two easy results which enter in the proof of the
confinement lemma.

Exercise 1.4.2. Let z1 and z2 be in the closed unit disk and such that

|z1 − z2| ≥ 1.

Show that
|z1 + z2| ≤

√
3.

Exercise 1.4.3. Let z1, z2 and z3 be three pairwise different points in the closed
unit disk. Show that there is a pair �, k ∈ {1, 2, 3} such that � 
= k and

|z� − zk| ≤ 1 or |z� + zk| ≤ 1.

We now present another kind of bounds on complex numbers:

Exercise 1.4.4. Given n complex numbers z1, . . . , zn, all different from 0, show that
there exists J ⊂ {1, . . . , n} such that∣∣∣∣∣∑

�∈J

z�

∣∣∣∣∣ > 1

4
√
2

n∑
�=1

|z�|. (1.4.2)

In connection with this section, see also Exercise 6.4.1. Another question,
similar in spirit, is provided by Problem 3.3.8.
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1.5 Polynomials

We begin with the fundamental theorem of algebra which states that every polyno-
mial of degree n has n roots (counting multiplicity). In the framework of the theory
of analytic functions this key theorem is a consequence of Liouville’s theorem. See
Section 6.8. It admits quite a number of other different proofs; see, e.g., [160, p.
8] for a method using differential geometry. We present an elementary proof (but
which uses notions from plane topology) in Section 15.6. We now present, as a
question, a very short proof, due to C. Fefferman [79]. From the analytic point of
view, it uses the extremum value theorem for functions of one or two real variables
continuous on a compact set.

Question 1.5.1. Let P be a polynomial of degree N > 0. We assume by contradic-
tion that P (z) 
= 0 for all z ∈ C. The argument in [79] can be divided into two
steps.

Step 1: Show that there is z0 ∈ C such that

0 < |P (z0)| ≤ |P (z)|, ∀z ∈ C. (1.5.1)

Step 2: Consider the development of P in power series of (z − z0)

P (z) = P (z0) + bn0(z − z0)
n0 + · · ·

(just write z = z− z0+ z0 in P (z) = aNzN + · · ·+a0 to obtain it), where n0 is the
lowest strictly positive power of (z − z0) with a non zero coefficient; thus bn0 
= 0.

Let w be a root of order n0 of −P (z0)
bn0

. Compute P (εw) with ε > 0 to obtain a

contradiction with (1.5.1).

Even without the fundamental theorem of algebra at hand, we would still do
know the following: If p(z) = anz

n+an−1z
n−1+ · · ·+a0 is a polynomial of degree

n, and if p(z0) = 0, then we can factor out (z−z0) from p(z), that is, we can write

p(z) = (z − z0)q(z), (1.5.2)

where q(z) is a polynomial of degree n− 1. This is called the factor theorem. See
[157, Theorem 6.4, p. 11]. In particular, if we know that z0, . . . , zn−1 are the roots
of p(z) (say, all different, for the present applications below), then

p(z) = an

n−1∏
k=0

(z − zk), (1.5.3)

where an 
= 0 is the coefficient of zn in p(z).

Rewriting (1.5.3) as

anz
n + an−1z

n−1 + · · ·+ a0 = an

n−1∏
k=0

(z − zk),
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we can relate the coefficients of the polynomial to the symmetric functions of the
roots. Here we will content ourselves to note the formula

n−1∑
k=0

zk = −an−1

an
. (1.5.4)

Exercise 1.5.2. Prove the factor theorem, that is, check (1.5.2).

Exercise 1.5.3. Compute the sum of the roots of the polynomial equation

z10 + az8 + b = 0,

where a and b are complex parameters.

Exercise 1.5.4. Solve the following equations:

1− z2 + z4 − z6 = 0,

1 + z + · · ·+ z7 = 0,

(1− z)n = (1 + z)n,

(1− z)n = zn.

We refer to [154, Exercise 4.5, p. 42] for the last equation in the last exercise.
In the previous exercises the non-real roots of the various polynomial equations
appear in conjugate pairs. If z0 is a root so is z0. This is because the coefficients
of the polynomials are real. The next result asserts that this is a general fact.

Exercise 1.5.5. (a) Let p(z) = anz
n + · · ·+ a0 with the aj ∈ R. Then:

p(z0) = 0 ⇐⇒ p(z0) = 0. (1.5.5)

In particular non-real roots (if any) appear in conjugate pairs.

(b) Check that z = 2 + 3i is a solution of the equation

z4 − 5z3 + 18z2 − 17z + 13 = 0,

and find all the roots of this equation.

Exercise 1.5.6. Let a ∈ R. Show that the polynomial

z2 − 2z cos a+ 1 (1.5.6)

divides the polynomials

pn(z) = zn sina− z sin(na) + sin((n− 1)a), n = 2, 3, . . . . (1.5.7)

What happens for complex values of a?
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It will follow from the fundamental theorem of algebra that any non-constant
monic polynomial with real coefficients can be factored as a product of terms of
the form (z − r) with r ∈ R, and factors of the form

(z − z0)(z − z0) = z2 − 2zRe z0 + |z0|2, z0 ∈ C \ R.
These last factors are called irreducible. They cannot be factored as products
of degree one polynomials with real coefficients. The following exercise illustrates
these facts for some important polynomials. Formulas (1.5.10) and (1.5.8) are used
in particular in the sequel to prove the following infinite product representations
of sinh z, cosh z, sin z and cos z. See formulas (3.7.23), (3.7.24), (3.7.25), (3.7.26),
and Exercise 3.7.16:

sinh z = z

∞∏
k=1

(
1 +

z2

k2π2

)
,

cosh z =

∞∏
k=0

(
1 +

4z2

(2k + 1)2π2

)
,

sin z = z
∞∏
k=1

(
1− z2

k2π2

)
,

cos z =

∞∏
k=0

(
1− 4z2

(2k + 1)2π2

)
,

for z ∈ C.

Exercise 1.5.7. (See for instance [154, pp. 43–44].) Prove the following classical
factorizations:

z2n + 1 =
n−1∏
k=0

(
z2 − 2z cos

(
2k + 1

2n
π

)
+ 1

)
, (1.5.8)

z2n+1 + 1 = (z + 1)

n∏
k=1

(
z2 − 2z cos

(
2k − 1

2n+ 1
π

)
+ 1

)
, (1.5.9)

z2n − 1 = (z + 1)(z − 1)

n−1∏
k=1

(
z2 − 2z cos

(
k

n
π

)
+ 1

)
︸ ︷︷ ︸

equal to 1 if n = 1

, (1.5.10)

z2n+1 − 1 = (z − 1)

n∏
k=1

(
z2 − 2z cos

(
2k

2n+ 1
π

)
+ 1

)
. (1.5.11)

Using the third identity, decompose the polynomial p(z) =
∑n−1

k=0 z
2k into irre-

ducible factors and prove the identity

n−1∏
k=1

sin

(
kπ

2n

)
=

√
n

2n−1
, n ≥ 2. (1.5.12)
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Still using the third identity, prove (see [154, p. 44]) that

sinnt

sin t
= 2n−1

n−1∏
k=1

(
cos t− cos

kπ

n

)
, n ≥ 2. (1.5.13)

We note that setting z = 1 in (1.5.8) leads to the identity

2 = 2n−1
n−1∏
k=0

(
1− cos

(
(2k + 1)π

2n

))
, (1.5.14)

which will be useful in the proof of Exercise 3.7.16.

Exercise 1.5.8. Prove that all roots of the equation

z3 + 3z + 5

have modulus strictly bigger than 1.

The following exercise is taken from [163, Lemma 3, p. 6].

Exercise 1.5.9. Given complex numbers c1, . . . , cn not all equal to 0, show that

zn + c1z
n−1 + · · ·+ cn = 0 =⇒ |z| < 2 max

j=1,...,n
|cj |

1

j .

For other questions related to polynomials, see Exercises 3.1.10, 6.8.2 and
Question 6.8.14.

1.6 Solutions

Solution of Exercise 1.1.2. Let (u, v) 
= (0, 0) ∈ R2, let r =
√
u2 + v2 and let

ψ ∈ [0, 2π) be (uniquely) determined by

cosψ =
u

r
, and sinψ =

v

r
.

Then, (
cos θ − sin θ
sin θ cos θ

)(
u
v

)
=

(
cos θ − sin θ
sin θ cos θ

)(
r cosψ
r sinψ

)
= r

(
cos θ cosψ − sin θ sinψ
sin θ cosψ + cos θ sinψ

)
= r

(
cos(θ + ψ)
sin(θ + ψ)

)
. �
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Solution of Exercise 1.1.6. We have

1 + i =
√
2

(√
2

2
+ i

√
2

2

)
=

√
2
(
cos

π

4
+ i sin

π

4

)
,

and so, using (1.1.13), we obtain

(1 + i)n = 2
n
2

(
cos

nπ

4
+ i sin

nπ

4

)
. (1.6.1)

�

Remark. It is of course possible to try and solve the previous exercise using New-
ton’s binomial formula (1.3.6)

(α+ β)n =
n∑

k=0

(
n
k

)
αkβn−k.

We then obtain

(1 + i)n =

n∑
k=0

ik
(

n
k

)
=
∑
p

such that
2p≤n

(−1)p
(

n
2p

)
+ i

∑
p

such that
2p+1≤n

(−1)p
(

n
2p+ 1

)
.

Comparing with (1.6.1) we get the formulas∑
p

such that
2p≤n

(−1)p
(

n
2p

)
= 2

n
2 cos

nπ

4
and

∑
p

such that
2p+1≤n

(−1)p
(

n
2p+ 1

)
= 2

n
2 sin

nπ

4
,

and this gives in fact a proof of Exercise 1.3.4.

Solution of Exercise 1.1.8. Since

d arctanu

du
=

1

u2 + 1
and

d arctan 1/u

du
= − 1

u2

1
1

u2
+ 1

= − 1

u2 + 1
,

we have
d(arctanu+ arctan1/u)

du
= 0, u 
= 0.

Thus the function arctanu + arctan 1/u is constant on (−∞, 0) and (0,∞). Its
value on each of these intervals is computed with the choices u = ±1. �
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Solution of Exercise 1.1.9. (a) The formula for θ follows from the definition of
arctan.

(b) The continuity of θ in R2 \ (−∞, 0] follows from formula (1.1.18). Using
the formula for θ, we have, for any given x0 < 0,

lim
y→0
y>0

θ(x0, y) = π and lim
y→0
y<0

θ(x0, y) = −π,

and hence θ is discontinuous along the negative axis.

(c) Finally, in x > 0, y > 0 and in x > 0, y < 0 we have

∂θ

∂x
= − y

x2 + y2
, and

∂θ

∂y
=

x

x2 + y2
,

and so these functions admit continuous extensions to R2 \ {(0, 0)}. �

Solution of Exercise 1.1.11. Using (1.1.24) we have

1

1 + cos t+ i sin t
=

1 + cos t− i sin t

(1 + cos t)2 + sin2 t

=
1 + cos t− i sin t

2(1 + cos t)

=
1

2
− i

sin t

2(1 + cos t)
.

Thus, for t 
= π (mod 2π) we have

Re
1

1 + cos t+ i sin t
=

1

2
and Im

1

1 + cos t+ i sin t
= −1

2
tan

t

2
.

As for the polar decomposition, recall the formulas

1 + cos t = 2 cos2(t/2) and sin t = 2 cos(t/2) sin(t/2).

Thus, using (1.1.25) and for t not an odd multiple of π we have

z =
1

2 cos(t/2)

1

cos(t/2) + i sin(t/2)
=

1

2 cos(t/2)
(cos(t/2)− i sin(t/2)).

For t ∈ (0, π)∪ (3π, 4π) (mod 4π), we have cos(t/2) > 0 and the polar representa-
tion of z is

z =
1

2 cos(t/2)
(cos(t/2)− i sin(t/2)).

For t ∈ (π, 3π) (mod 4π), we have cos(t/2) < 0 and the polar representation of z is

z =
−1

2 cos(t/2)
(cos((t/2) + π)− i sin((t/2) + π)). �
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Solution of Exercise 1.1.12. The number (1.1.26) vanishes if and only if

cosx = 0 and sinh y = 0,

that is, if and only if

x =
(2k + 1)π

2
, with k ∈ Z, and y = 0.

When this condition does not hold, the number (1.1.27) is well defined and we
have

sinx cosh y + i cosx sinh y

cosx cos y − i sinx sinh y

=
(sinx cosh y + i cosx sinh y)(cosx cosh y + i sinx sinh y)

(cos x cosh y)2 + (sinx sinh y)2

=
sinx cos x(cosh2 y − sinh2 y) + i(cosx2 + sin2 x) sinh y cosh y

(cosx cosh y)2 + (sinx sinh y)2

=
sin(2x) + i sinh(2y)

2 ((cosx cosh y)2 + (sinx sinh y)2)

=
sin(2x) + i sinh(2y)

(1 + cos(2x)) cosh2 y + (1− cos(2x)) sinh2 y

=
sin(2x) + i sinh(2y)

cos(2x) + cosh(2y)
. �

Solution of Exercise 1.1.13. We have

|z + w|2 = (z + w)(z + w)

= (z + w)(z + w)

= |z|2 + zw + wz + |w|2

= |z|2 + 2Re(zw) + |w|2.

The second formula follows since

Re(zw) =
zw + zw

2
= Re(zw).

To get the third formula replace w by w. �

Of course one obtains other useful formulas by replacing w by −w or the like.
For instance

|z − w|2 = |z|2 − 2Re zw + |w|2, (1.6.2)

and
|z + iw|2 = |z|2 + 2 Im zw + |w|2.
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To obtain the latter, note that

Re(−izw) = Im(zw).

More generally, we have for any finite number of complex numbers z1, . . . , zN ,

|
N∑
�=1

z�|2 =
N∑
�=1

|z�|2 + 2Re

⎛⎜⎝ N∑
�,k=1
�<k

z�zk

⎞⎟⎠ . (1.6.3)

Solution of Exercise 1.1.14. The first identity is proved by considering (1.1.28) for
w and −w and adding both identities. To prove the following two identities, one
proceeds as follows: We have

|1 + zw|2 = (1 + zw)(1 + zw)

= 1 + zw + zw + |z|2|w|2,

|1− zw|2 = (1− zw)(1 − zw)

= 1− zw − zw + |z|2|w|2,

and

|z − w|2 = (z − w)(z − w)

= |z|2 − zw − wz + |w|2.

Thus

|1 + zw|2 + |z − w|2 = 1 + zw + zw + |z|2|w|2 + |z|2 − zw − wz + |w|2

= 1 + |z|2|w|2 + |z|2 + |w|2

= (1 + |z|2)(1 + |w|2),

and

|1− zw|2 − |z − w|2 = 1− zw − zw + |z|2|w|2 − (|z|2 − zw − wz + |w|2)
= 1 + |z|2|w|2 − |z|2 − |w|2

= (1− |z|2)(1− |w|2).

Finally, the fourth equality is proved as follows:

|z − w|2 − |z + w|2 = |z|2 − 2Re(zw) + |w|2 − (|z|2 + 2Re(zw) + |w|2)
= −2Re(z(w + w))

= −4(Re z)(Rew). �
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Solution of Exercise 1.1.15. It follows from (1.1.36) that the first equality holds if
and only if z1z2 ∈ R+. Similarly, the second inequality in (1.1.35) is equivalent to

|z1|2 + |z2|2 − 2Re(z1z2) ≤ |z1|2 + |z2|2 + 2|z1| · |z2|,

and we see that there will be equality if and only if

−z1z2 = | − z1z2|,

that is, if and only if −z1z2 ∈ R+. �

Solution of Exercise 1.1.16. We have

|2 + zn + z5n| ≥ |2− |zn + z5n||.

For |z| < 1 we have
|zn + z5n| ≤ 2|z| < 2,

and so ∣∣2− |zn + z5n|
∣∣ = 2− |zn + z5n| ≥ 2− 2|z| = 2(1− |z|),

and hence the result. �

Solution of Exercise 1.1.17. It suffices to apply the triangle inequality to

z1z2 − 1 = (z1 − 1)(z2 − 1) + (z1 − 1) + (z2 − 1),

and then add 1 to both sides of the obtained inequality. �

Solution of Exercise 1.1.18. We have

|c| ≤ (1− |a|2)|b|+ (1 − |b|2)|a|
1− |ab|2

=
|a|+ |b| − |ab|(|a|+ |b|)

1− |ab|2

=
(|a|+ |b|)(1− |ab|)
(1 + |ab|)(1− |ab|)

=
|a|+ |b|

1 + |a| · |b|
< 1,

thanks to (1.1.41) with z = |a| and w = −|b|. �

Solution of Exercise 1.1.19. Let z, w ∈ D. Then, |zw| < 1, and thus, by (1.1.37)
with z1 = 1 and z2 = zw we have

|1− zw| ≥ 1− |zw| > 0.
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Recall (1.1.32):

|1− zw|2 − |z − w|2 = (1− |z|2)(1 − |w|2), ∀z, w ∈ C.

Dividing both sides of this equality by |1− zw|2 we obtain

1− |bw(z)|2 =
(1 − |z|2)(1 − |w|2)

|1− zw|2 , (1.6.4)

which is strictly positive since z and w are in D, and hence (1.1.41) holds. To prove
the second claim we note the following: For z and w in Cr,

Re(z + w) = Re(z + w) > 0, and thus z + w 
= 0.

Dividing both sides of (1.1.33) by |z + w|2 we obtain∣∣∣z − w

z + w

∣∣∣2 − 1 = − (2Re z)(Rew)

|z + w|2 < 0. (1.6.5)

�

Solution of Exercise 1.1.20. We have

|1−Bw(z)| =
∣∣∣∣1− z − w

z + w

∣∣∣∣ = |w + w|
|z + w| .

Since w is in the open right half-plane, Rew > 0, and we have

Re(z + w) > Re z,

and hence the result since (use the second inequality in (1.1.34) with z+w instead
of z)

|z + w| ≥ Re(z + w) > Re z. �

Solution of Exercise 1.1.21. We have

1− bw(z)bw(v) = 1− (z − w)(v − w)

(1 − zw)(1− vw)

=
(1− zw)(1− vw) − (z − w)(v − w)

(1− zw)(1− vw)

=
(1− zv)(1 − |w|2)
(1− zw)(1− vw)

,

and hence we obtain the required identity. �

Note that (1.1.50) will hold in particular when z, v and w belong to D. It
allows us then to show (see Definition 16.3.11 for the definition of positive definite
functions):
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Example 1.6.1. Let w ∈ D. The function

1− bw(z)bw(v)

1− zv

is positive definite in Ω = D.

Solution of Exercise 1.1.22. We have

1−Bw(z)Bw(v) = 1− (z − w)(v − w)

(z + w)(v + w)

=
(z + w)(v + w) − (z − w)(v − w)

(z + w)(v + w)

=
2(z + v)(Rew)

(z + w)(v + w)
,

and hence
1−Bw(z)Bw(v)

z + v
=

2Rew

(z + w)(v + w)
. �

Here too we have an example of positive definite kernel:

Example 1.6.2. Let w be in the open right half-plane Cr. The function

1−Bw(z)Bw(v)

z + v

is positive definite in Cr.

Solution of Exercise 1.1.23. (a) It suffices to compute

(1 + z + · · ·+ zN)(1 − z) = 1 + z + · · ·+ zN − (z + z2 + · · ·+ zN+1) = 1− zN+1.

(b) From (1.1.38) we have

1

|1− z| ≤
1

1− |z| for z ∈ D.

Still for z in the open unit disk,

|1− zN+1| < 2,

and inequality (1.1.55) follows.

(c) We use (1.1.39) and (1.1.54) to obtain∣∣∣ N∑
n=0

z2n

2 + zn + z5n

∣∣∣ ≤ N∑
n=0

∣∣∣ z2n

2 + zn + z5n

∣∣∣
≤

N∑
n=0

|z|2n
2(1− |z|)

=
1− |z|2N+2

2(1− |z|)(1− |z|2) ,
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and hence the result since

1

1− |z|2 ≤ 1

1− |z| , z ∈ D. �

Solution of Exercise 1.2.1. This follows directly from (1.2.3):

|ez| = |ex(cos y + i sin y)|
= |ex| · | cos y + i sin y|
= ex

= eRe z

≤ e|z|. �
Solution of Exercise 1.2.3. We write

z = ρeiθ and zj = ρ1/nei
θ+2πj

n , j = 0, . . . , n− 1.

Thus
n−1∑
j=0

zmj = ρm/n
n−1∑
j=0

ei
mθ+2πmj

n = ρm/nei
θm
n

n−1∑
j=0

ei
2πmj

n .

First assume that m is a multiple of n: m = kn for some k ∈ N0. Then,

ei
2πmj

n = ei2πjk = 1, j = 0, . . . , n− 1,

and the sum is equal to nzk. On the other hand, when m is not a multiple of n,
we have

ei
2πm
n 
= 1,

and formula (1.1.54) for the sum of a geometric series leads to

n−1∑
j=0

ei
2πmj

n =
1− e2iπm

1− ei
2πm
n

= 0,

and so the sum is equal to 0. �

Solution of Exercise 1.2.4. The first expression will make sense if and only if a 
= b,
i.e., if and only if α 
= β (mod 2π). When this condition is in force we have

a+ b

a− b
=

ei(α+β)/2(ei(α−β)/2 + ei(β−α)/2)

ei(α+β)/2(ei(α−β)/2 − ei(β−α)/2)
=

2 cos((α− β)/2)

2i sin((α − β)/2)
,

and hence the result.

The second expression makes sense when ab 
= 1, that is, when α + β 
= 0
(mod 2π). Then we have

a+ b

1− ab
=

ei(α+β)/2(ei(α−β)/2 + ei(β−α)/2)

ei(α+β)/2(e−i(α+β)/2 − ei(β+α)/2)
=

2 cos((α− β)/2)

−2i sin((α+ β)/2)
,

and hence the result. �
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Solution of Exercise 1.2.5. Using the formula for the cosine of a sum (which is still
valid for complex numbers) and (1.2.14), and recalling that

cos(iy) = cosh(y) and sin(iy) = i sinh(y),

we have

cos z = cos(x + iy)

= cosx cos(iy)− sinx sin(iy)

= cosx cosh y − i sinx sinh y.

Therefore

| cos z|2 = cos2 x cosh2 y + sin2 x sinh2 y

= (cos2 x)(1 + sinh2 y) + (1 − cos2 x)(sinh2 y)

= cos2 x+ sinh2 y.

We now prove that | cos z|2 has no local maximum. Let (x, y) be a local maximum.
Then

∂| cos z|2
∂x

=
∂| cos z|2

∂y
= 0,

that is

cosx sinx = 0 and sinh y = 0.

If cosx = 0 then cos z = 0 (since sinh y = 0) and we have a minimum. So sinx = 0
and cos2 x = 1. The Hessian at such points is equal to

H =

(
∂2| cos z|2

∂x2

∂2| cos z|2
∂x∂y

∂2| cos z|2
∂x∂y

∂2| cos z|2
∂y2

)

=

(
−2(cos2 x− sin2 x) 0

0 2(sinh2 y + cosh2 y)

)
=

(
−2 0
0 2

)
,

since sinx = sinh y = 0, and we have a saddle point. The formulas for sin z and
| sin z|2 and the fact that | sin z| has no local maximum are proved in much the
same way. �

We note that | sin z|2 can be computed also as follows. First remark that

sin(z) = sin z.
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Then, write

| sin z|2 = sin z sin z

=
1

2
(cos(z − z)− cos(z + z))

=
1

2
(cos(2iy)− cos(2x))

=
cosh(2y)− cos(2x)

2
,

which coincides with (1.2.19).

Solution of Exercise 1.2.6. We have

sin z1 − sin z2 = 2 cos

(
z1 + z2

2

)
sin

(
z1 − z2

2

)
and hence

sin z1 = sin z2 ⇐⇒
{

z1+z2
2 ∈ π

2 + πZ, or
z1−z2

2 ∈ πZ. �

Solution of Exercise 1.2.7. (a) Set z = x+ iy. By Exercise 1.2.5,

cos z = cosx cosh y − i sinx sinh y.

Hence we have

cosx cosh y = 0 and sinx sinh y = 0. (1.6.6)

The function cosh y has no real roots, and therefore we have cosx = 0, and thus
sinx = ±1. Therefore the second equation in (1.6.6) leads to sinh y = 0. Thus,

x =
2k + 1

2
π, k ∈ Z, and y = 0.

(b) Still by Exercise 1.2.5 we have

sinx cosh y = 5 and cosx sinh y = 0.

In the second equation, y = 0 would lead to sinx = 5, which cannot hold for real
x. Therefore, x = π/2 + 2kπ (k ∈ Z), and y = arcosh5.

(c) The best procedure is to solve the equation

eiz − e−iz = 2iz0, where we have set z0 = a+ ib.

This is equivalent to

(eiz)2 − 2iz0e
iz − 1 = 0.
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Hence

eiz =
2iz0 ±

√
−4z20 + 4

2
= iz0 ±

√
1− z20 .

We note that the number

iz0 ±
√
1− z20

is always different from 0, and thus one can then find z, for instance in terms of
the polar representation of iz0 ±

√
1− z20 .

(d) We have seen in (c) above that the range of sin z is C. Because of the
periodicity and of Exercise 1.2.6, it is enough to restrict sin to the closed strip

L = {(x, y) ;x ∈ [−π/2, π/2] and y ∈ R}

to obtain all of C as range. From Exercise 1.2.5 we have

sin(x+ iy) = sinx cosh y + i cosx sinh y,

and hence the image of the line x = −π
2 (resp. x = π

2 ) is the line (−∞,−1] (resp.
[1,∞)). Note that sin z is not one-to-one on these lines. We now show that sin z is
one-to-one and onto between the asserted domains. In view of Exercise 1.2.6, the
function sin z is one-to-one in the open strip

L = {(x, y) ;x ∈ (−π/2, π/2) and y ∈ R} .

In view of the discussion at the beginning of the proof, the image of this open strip
is exactly C from which the lines (−∞,−1] and [1,∞) have been removed. �

Solution of Exercise 1.2.8. Using (1.2.14), we have

tan z =
sinx cos(iy) + cosx sin(iy)

cosx cos(iy)− sinx sin(iy)

=
sinx cosh y + i cosx sinh y

cosx cosh y − i sinx sinh y
,

and the computation is finished as in Exercise 1.1.12 to obtain (1.2.20):

tan z =
sin(2x)

cos(2x) + cosh(2y)
+ i

sinh(2y)

cos(2x) + cosh(2y)
.

We now consider the second question, and show that

tan(L) = C \ {z = it , t ∈ R and |t| ≥ 1} .

The function tan z is well defined in L. Furthermore, for z ∈ L,

tan z ∈ {z = it , t ∈ R and |t| > 1}
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(note the inequality > and not ≥) if and only if x = 0 and∣∣∣∣ sinh 2y

1 + cosh 2y

∣∣∣∣ > 1.

This inequality never holds for real y. Finally the points ±i correspond to the limit
of tan(±iy) as y → ±∞. This shows that the image of L under tan is included in
the set C \ {z = it , t ∈ R and |t| ≥ 1}. To show that equality holds, we use the
fact that the function sin z has range the whole complex plane (see the previous
exercise). More precisely, let u ∈ C \ {z = it , t ∈ R and |t| ≥ 1}. Then

tan z = ±u ⇐⇒ sin2 z = u2(1− sin2 z) ⇐⇒ sin2 z =
u2

1 + u2
.

The number z ∈ ±π
2 + iR if and only if u2

1+u2 is real and of modulus greater than
1, that is, if and only if u = it with t ∈ R and |t| > 1. Thus we can always solve

sin2 z = u2

1+u2 in L.

We now turn to the third question. Let z ∈ L1. We have

| tan z|<1 ⇐⇒ sin2(2x) + sinh2(2y) < cos2(2x) + cosh2(2y) + 2 cos(2x) cosh(2y)

⇐⇒ 1− cos2(2x) + cosh2(2y)− 1 < cos2(2x) + cosh2(2y)

+ 2 cos(2x) cosh(2y)

⇐⇒ 0 < 2 cos(2x)(cos(2x) + cosh(2y)).

This last equality is automatically met when x ∈
(
−π

4 ,
π
4

)
, and therefore the image

of L1 under tan is the open unit disk. �

As a complement, we now compute the image of the boundary of the strip
L1. For x = π/4 we have in view of (1.2.14),

tan
(
iy +

π

4

)
=

1 + i sinh(2y)

cosh(2y)
(1.6.7)

which is of course of modulus 1. When y goes through R, equation (1.6.7) is a
parametrization of the part of the unit circle in the right half-plane. The case
x = −π/4 gives the other half of the circle. The points ±i correspond to y going
to infinity.

Solution of Exercise 1.3.1. Denote by C the left side of (1.3.1), by S the analogous
sum with sin instead of cos, i.e.,

S = sin
π

11
+ sin

3π

11
+ sin

5π

11
+ sin

7π

11
+ sin

9π

11
,

and set
ε = cos

π

11
+ i sin

π

11
= e

iπ
11 .
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Then, ε11 = −1. Using (1.1.54) we have

C + iS =

4∑
n=0

ε2n+1 = ε

4∑
n=0

(ε2)n = ε
1− (ε2)5

1− ε2

= ε
1− ε10

1− ε2

=
ε − ε11

1− ε2

=
ε+ 1

1− ε2

=
1

1− ε

=
1− ε

(1 − ε)(1− ε)

=
1− ε

2(1− Re ε)
=

(
1− cos

π

11

)
+ i sin

π

11

2
(
1− cos

π

11

) .

Hence

C =
1

2
and S =

sin
π

11

2
(
1− cos

π

11

) =
1

2
cot

π

22
. �

Remark 1.6.3. We note that Re 1
1−eit = 1

2 for t 
= 0 (mod 2π). See also Exercises
1.1.11, 3.1.1 (with t+ π instead of t there).

Solution of Exercise 1.3.2. We set Cn to be the sum to be computed and

Sn =

n−1∑
k=0

sin(a+ (2k + 1)b).

Since b 
= 0 (mod π) we have that e2ib 
= 1 and we can write

Cn + iSn =

n−1∑
k=0

ei(a+(2k+1)b)

= ei(a+b)
n−1∑
k=0

(e2ib)k

= ei(a+b) 1− e2ibn

1− e2ib

= ei(a+b) e
ibn

eib
e−ibn − eibn

e−ib − eib
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= ei(a+b) e
ibn

eib
sin bn

sin b

= ei(a+nb) sin bn

sin b
.

Thus taking real and imaginary parts on both sides, we get the required formula
for Cn and also

Sn =
sin(a+ bn) sin(bn)

sin b
. (1.6.8)

Assume now that b = mπ for some m ∈ Z. We have

Cn + iSn =

n−1∑
k=0

ei(a+(2k+1)b)

= ei(a+b)
n−1∑
k=0

(e2ib)k

= n(−1)meia,

and hence
Cn = (−1)mn cos a and Sn = (−1)mn sina. (1.6.9)

It is readily seen that formulas (1.3.2) and (1.6.8) reduce to the formulas in (1.6.9)
when b = 0 (mod π). More precisely,

lim
b→mπ

cos(a+ bn) sin(bn)

sin(b)
= lim

b→mπ

cos(a+ bn) sin(bn)b−mπ

sin(b)
b−mπ

=
cos(a+mnπ)n cos(nmπ)

cos(mπ)

= (−1)mn cosa.

When a and b are assumed complex, the previous computations still make sense,
and we still have

Cn + iSn = ei(a+nb) sin bn

sin b
. (1.6.10)

It is not true anymore that

Re(Cn + iSn) = Cn,

and one cannot take real and imaginary parts to prove the asserted formula. One
obtains the result by remarking that

Cn(a, b) = Cn(−a,−b) and Sn(a, b) = −Sn(−a,−b),

and identify odd and even parts on both sides of (1.6.10). One could also use
analytic continuation, but this is beyond the scope of the present chapter.

Taking into account the relationships (1.2.14) between the trigonometric and
hyperbolic functions, the choice a = 0 and b = iu in (1.3.2) leads to (1.3.3). �



1.6. Solutions 49

We note that (1.3.3) can also be proved directly as follows: Set

Chn =

n−1∑
k=0

cosh(2k + 1)u and Shn =

n−1∑
k=0

sinh(2k + 1)u.

Then, since coshx + sinhx = ex for x ∈ R (or more generally, for a complex
argument), we have

Chn + Shn =

n−1∑
k=0

e(2k+1)u

= eu
1− e2un

1− e2u

= eun
eun − e−un

eu − e−u

= eun
sinh(nu)

sinh(u)
.

One obtains formulas for Chn and Shn by taking the even and odd parts of this
expression, that is

Chn = cosh(nu)
sinh(nu)

sinh(u)
and Shn = sinh(nu)

sinh(nu)

sinh(u)
.

Solution of Exercise 1.3.3. For the first formula, and assuming b 
= 0 (mod 2π),
we compute(

n−1∑
k=0

cos(a+ kb)

)
+ i

(
n−1∑
k=0

sin(a+ kb)

)
=

n−1∑
k=0

(cos(a+ kb) + i sin(a+ kb))

=
n−1∑
k=0

ei(a+kb)

= eia
1− einb

1− eib

= eia
ei

nb
2

ei
b
2

e−inb
2 − ei

nb
2

e−i b
2 − ei

b
2

= ei(a+
nb
2 − b

2 )
sin nb

2

sin b
2

.

By taking real parts on both sides, we obtain (1.3.4). When b = 0 (mod 2π), the
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sum
∑n−1

k=0 cos(a+ kb) is clearly equal to n cosa, and this is also the limit

lim
b→2mπ

sin(nb2 )

sin b
2

· cos(a+ (n− 1)
b

2
) =

n
2 cos(nb2 )

∣∣
b=2mπ

1
2 cos(

b
2 )
∣∣
b=2mπ

cos(a+ (n− 1)mπ)

= n
(−1)nm

(−1)m
(−1)(n−1)m cos a

= n cos a.

To prove the second formula, we use Newton’s binomial formula (1.3.6)

(α+ β)n =
n∑

k=0

(
n
k

)
αkβn−k,

which for β = 1 leads to

(α+ 1)n =

n∑
k=0

(
n
k

)
αk.

To compute the sum (1.3.5) we write(
n∑

k=0

(
n
k

)
cos(a+ kb)

)
+ i

(
n∑

k=0

(
n
k

)
sin(a+ kb)

)

=

n∑
k=0

(
n
k

)
ei(a+kb)

= eia

(
n∑

k=0

(
n
k

)
eikb

)
= eia(1 + eib)n

= eiaei
bn
2

(
e−i b

2 + ei
b
2

)n
= ei(a+

nb
2 )

(
2 cos

b

2

)n

= 2n
(
cos

b

2

)n

ei(a+
nb
2 ),

and hence we obtain (1.3.5) by taking real parts of both sides. The case of possibly
complex numbers a and b is treated as in Exercise 1.3.2. �

We note that the proof of the preceding exercise also leads to the formulas

n−1∑
k=0

sin(a+ bk) =
sin(nb2 )

sin b
2

sin

(
a+

n− 1

2
b

)
(1.6.11)
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and
n∑

k=0

(
n
k

)
sin(a+ kb) = 2n cosn

b

2
sin

(
a+

nb

2

)
, (1.6.12)

as is seen by taking imaginary parts rather than real parts in the arguments.

Solution of Exercise 1.3.4. On the one hand, we have 1 + i =
√
2eiπ/4 and so

(1 + i)n = 2n/2einπ/4 = 2n/2
(
cos
(nπ

4

)
+ sin

(nπ
4

))
. (1.6.13)

On the other hand,

(1 + i)n =

n∑
k=0

ik
(

n
k

)

=

[n/2]∑
k=0

i2k
(

n
2k

)
+

[(n−1)/2]∑
k=0

i2k+1

(
n

2k + 1

)

=

⎛⎝[n/2]∑
k=0

(−1)k
(

n
2k

)⎞⎠+ i

⎛⎝[(n−1)/2]∑
k=0

(−1)k
(

n
2k + 1

)⎞⎠ .

The result follows by comparing real and imaginary parts of this last expression
with the real and imaginary parts of (1 + i)n as given by (1.6.13). �

Solution of Exercise 1.3.5. Let us denote by An, Bn and Cn respectively the sums
in (1.3.10)–(1.3.12). Clearly

An +Bn + Cn = (1 + 1)n = 2n. (1.6.14)

Let j = exp(2iπ/3). We have j3 = 1 and 1 + j + j2 = 0, and so with � = 3k + 1:

j� = 1 if k ∈ an,

j� = j if k ∈ bn,

j� = j2 if k ∈ cn.

Thus

(1 + j)n=
∑

k∈an

(
n
3k

)
+ j

∑

k∈bn

(
n

3k + 1

)
+ j2

∑

k∈cn

(
n

3k + 2

)
=An+jBn+j2Cn.

On the other hand

(1 + j)n = (−j2)n

= (−1)nj2n

= (−1)n exp(4πin/3) = (−1)n exp(−2πin/3).
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Similarly,

(1 + j2)n=
∑

k∈an

(
n
3k

)
+ j2

∑

k∈bn

(
n

3k + 1

)
+ j

∑

k∈cn

(
n

3k + 2

)
=An+j2Bn+jCn,

and on the other hand

(1 + j2)n = (−j)n = (−1)njn

= (−1)n exp(2πin/3)

= (−1)n(cos(2πn/3) + i sin(2πn/3)).

We have thus the system of equations

An +Bn + Cn = 2n,

An + jBn + j2Cn = (−1)n exp(−2πin/3),

An + j2Bn + jCn = (−1)n exp(2πin/3).

(1.6.15)

Note that the third equation is in fact the conjugate of the second one since j = j2.
Adding the three equations together we obtain (since 1 + j + j2 = 0)

3An = 2n + 2(−1)n cos(2πin/3),

and hence we obtain (1.3.10). To obtain (1.3.11) first multiply the second equation
in (1.6.15) by j2 and the third one by j, and then add up the three equations. To
obtain (1.3.12), first multiply the second equation in (1.6.15) by j and the third
one by j2, and then add up the three equations. �

The reader will have remarked the following: To compute only one of the
sums (1.3.8) or (1.3.9) in Exercise 1.3.4, or only one of the sums (1.3.10)–(1.3.12)
in Exercise 1.3.5, and using only real analysis, seems to be a difficult task. To
compute simultaneously the two sums (for Exercise 1.3.4), or the three sums (for
Exercise 1.3.5), and going via the complex domain, is a much easier task. For a
problem similar in spirit, see Exercise 3.3.4. The same method also allows us to
compute the sums(

n
0

)
+

(
n
4

)
+ · · · = 2n−2 + 2n/2−1 cos

(nπ
4

)
,(

n
1

)
+

(
n
5

)
+ · · · = 2n−2 + 2n/2−1 sin

(nπ
4

)
,(

n
2

)
+

(
n
6

)
+ · · · = 2n−2 − 2n/2−1 cos

(nπ
4

)
,(

n
3

)
+

(
n
7

)
+ · · · = 2n−2 − 2n/2−1 sin

(nπ
4

)
.

See [213, pp. 51–52].
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Solution of Exercise 1.3.6. We just outline the proof presented in [218, p. 60] and
[21, Problem 2.73, p. 69]. The idea is as follows: Take x ∈ R and k ∈ N. Then the
quantities 1

cos kx and 1
sin kx are easily expressed as rational functions of z = eix. In

the exercise at hand, we chose x = π
30 . One then obtains for instance

1

cos π
30

=
2z

z2 + 1
and

1

sin π
15

=
2iz2

z4 − 1
.

Equation (1.3.13) is equivalent to a rational equality satisfied by z, which is verified
using the fact that z30 + 1 = 0. �

Remark 1.6.4. The same method allows to prove that

tan

(
3π

11

)
+ 4 sin

(
2π

11

)
=

√
11,

which is a question appearing in [222, Exercise 98, p. 23].

Solution of Exercise 1.3.7. The degreem polynomial p(X) defined by (1.3.16) van-
ishes at the points

cot2
(

kπ

2m+ 1

)
, k = 1, . . . ,m,

as is seen from de Moivre’s formula. The required sum is equal to the opposite of
the coefficient of Xm−1 in the monic polynomial p defined by (1.3.16), that is, the
opposite of the coefficient of the power X2m−2 in the degree 2m polynomial

1

2i

(
2m+ 1
2m

) ((X + i)2m+1 − (X − i)2m+1
)
,

that is,

2i

(
2m+ 1
2m− 2

)
2i

(
2m+ 1
2m

) ,

from which the result follows. �

Remark 1.6.5. With the previous result at hand, the proof of (1.3.14) goes as
follows (see [120], [123], [177], [224, Exercises 141.a and 145a, pp. 23–24]). One
first remarks that, on

(
0, π2
)
,

cot2 x ≤ 1

x2
≤ 1

sin2 x
= 1 + cot2 x.
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Applying this inequality to x = kπ
2m+1 for k = 1, 2, . . . ,m and adding up the

corresponding inequalities we obtain

m(2m− 1)

3
≤ (2m+ 1)2

π2

(
m∑

k=1

1

k2

)
≤ m+

m(2m− 1)

3
,

from which the result follows.

The solution of Exercise 1.4.1 is presented after the solutions of Exercises
1.4.2 and 1.4.3

Solution of Exercise 1.4.2. We use (1.1.30)

|z1 + z2|2 + |z1 − z2|2 = 2(|z1|2 + |z2|2) ≤ 4,

and so
|z1 + z2|2 ≤ 4− |z1 − z2|2 ≤ 3,

since |z1 − z2| ≥ 1. �

We note that one can put strict inequalities in the above exercise, and the
proof goes in the same way.

Solution of Exercise 1.4.3. Assume by contradiction that

|z� ± zk| > 1 (1.6.16)

for all �, k ∈ {1, 2, 3}, with � 
= k. Then the numbers zi are in particular different
from 0. We claim that, furthermore,

z�
zk


∈ R, for � 
= k.

Indeed, assume by contradiction that for some pair (z�, zk), with � 
= k we have
z�/zk ∈ R. By interchanging � and k we may assume that |z�/zk| ≤ 1. Then from

|zk| · |1−
z�
zk

| = |zk| ·
(
1− z�

zk

)
> 1,

|zk| · |1 +
z�
zk

| = |zk| ·
(
1 +

z�
zk

)
> 1

we get
2|zk| > 2,

contradicting the fact that |zk| ≤ 1. We set

{w1, . . . , w6} = {±z1,±z2,±z3} .

The lines defined by the intervals [0, wj ], j = 1, . . . , 6, divide the plane into six
angular sectors. At least one of these sectors is defined by an angle less than or
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equal to π/3. Let wa and wb be the points which define this sector, and let θ be
its angle. We have cos θ ≥ 1/2, and the distance between wa and wb is less than
or equal to 1 since

|wa − wb|2 = |wa|2 + |wb|2 − 2|wa||wb| cos θ
≤ |wa|2 + |wb|2 − |wa||wb|
≤ 1.

To check this last inequality, one can proceed as follows: For u, v ∈ [0, 1] the
function u2 − uv+ v2 is equal to v2 ≤ 1 for u = 0 and to 1+ v2 − v ≤ 1 for u = 1.

Furthermore, its minimum is at the point u = v/2 and is equal to 3v2

4 < 1.

We obtain a contradiction since |wa − wb| > 1 in view of (1.6.16). �

The above argument appears in [88, p. 40]. We note that one cannot replace
the inequalities by strict inequalities in the statement of the exercise, as is seen
for instance by the choice z1 = 1, z2 = 0 and z3 arbitrary in D. Then,

|z1 ± z2| = 1.

Solution of Exercise 1.4.1 (confinement lemma). The proof follows closely the one
given in [88]. Using Exercise 1.4.2, one sees that the result is true for n = 2 (a
different argument would lead in fact to the bound

√
2 rather than

√
3). We proceed

by induction. Assume the result true for n, and let z1, . . . , zn+1 be n + 1 points
in the closed unit disk. If |z1 + z2| ≤ 1 or |z1 − z2| ≤ 1, the induction hypothesis
allows us to proceed with the points (if, say, |z1 + z2| ≤ 1),

z1 + z2 and z3, . . . , zn+1.

Assume now |z1± z2| > 1. By Exercise 1.4.2, |z1± z2| ≤
√
3, and by the preceding

exercise, one of the points z1 ± z3 and z2 ± z3 is in the closed unit disk. The
induction hypothesis allows us to proceed with the points (if, say, |z1 + z3| ≤ 1),

z1 + z3, z2, z4, z5, . . . , zn+1. �

Solution of Exercise 1.4.4. Without loss of generality we assume that the z� 
= 0
do not lie on the lines x±y = 0. This last condition can be insured by multiplying
all the z� by a common number of modulus 1. This will not change condition
(1.4.2). We set

Δ0 =
{
z = x+ iy, with x > 0, y ≥ 0 and x2 < y2

}
=
{
z = ρeiθ, with ρ > 0, and − π/2 < θ < π/2

}
,

and

Δj = e
ijπ
2 Δ0, j = 1, 2, 3.
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We have
n∑

�=1

|z�| =
3∑

j=0

⎛⎝∑
�∈Δj

|z�|

⎞⎠
and so there is j0 ∈ {0, 1, 2, 3} such that

∑
j∈Δj0

|zj | ≥
1

4

n∑
�=1

|z�|. (1.6.17)

Without loss of generality we assume that j0 = 0 (if j0 
= 0, a rotation of all the
z� by a multiple of π/2 will reduce the situation to this case). In Δ0 we have

|z|2 = x2 + y2 < 2y2,

and so

|z| <
√
2y, that is, y >

1√
2
|z|. (1.6.18)

Thus ∣∣∣∣∣∑
�∈Δ0

z�

∣∣∣∣∣ ≥ ∑
�∈Δ0

Im z� ≥
1√
2

∑
�∈Δ0

|z�| >
1

4
√
2

n∑
�=1

|z�|,

where we first used (1.6.18) and then (1.6.17). �
Remark 1.6.6. The same exercise, but with the weaker requirement∣∣∣∣∣∑

�∈J

z�

∣∣∣∣∣ ≥ 1

6

n∑
�=1

|z�| (1.6.19)

appears in [189, p. 114]. It is much more difficult to prove that there exists J such
that ∣∣∣∣∣∑

�∈J

z�

∣∣∣∣∣ ≥ 1

π

n∑
�=1

|z�|.

See [39, Exercice 1, § 3, p. TGVIII.26], [88, Exercise 1.17, p. 34], [57], [58], [135]
for the latter. Using a result of Reinhardt on polygons, one can in fact prove a
stronger result, namely the existence of a subset J such that∣∣∣∣∣∑

�∈J

z�

∣∣∣∣∣ ≥ sin
(

kπ
2k+1

)
(2k + 1) sin

(
π

2k+1

) ( n∑
�=1

|z�|+
∣∣∣∣∣

n∑
�=1

z�

∣∣∣∣∣
)
,

where k is the integer part of n+1
2 . See [57].

We also note that (1.6.19) is a special case of the following result from mea-
sure theory (see [135, Theorem 1, p. 672]. We refer the reader to Chapter 17 for
the needed background.
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Theorem 1.6.7. Let μ be a complex-valued measure of total variation 1. Then there
exists a measurable set A such that |μ(A)| ≥ 1

π

Solution of Exercise 1.5.2. Let p(z) =
∑n

k=0 akz
k. Since p(z0) = 0 we have

p(z) = p(z)− p(z0)

=

n∑
k=1

ak(z
k − zk0 ) (the term with index k = 0 vanishes)

=

n∑
k=1

ak(z − z0)

(
k−1∑
�=0

z�zk−1−�
0

)
where we have used the equality

am − bm = (a− b)

(
m−1∑
�=0

a�bm−1−�

)
(1.6.20)

valid for every a, b ∈ C and m ∈ N. Thus we have p(z) = (z − z0)q(z) with

q(z) =

n∑
k=1

ak

(
�=k−1∑
�=0

z�zk−1−�
0

)
=

n−1∑
�=0

q�z
�

with

q� =

n∑
k=�+1

akz
k−1−�
0 .

The function q(z) is indeed a polynomial; its degree is n− 1 since qn−1 = an 
= 0.
�

Formula (1.6.20) is trivial when a = b. When a 
= b, (1.6.20) is a mere
rewriting of the formula (1.1.54)

1 + z + · · ·+ zm−1 =
1− zm

1− z

for a geometric progression with z = a/b.

Solution of Exercise 1.5.3. It suffices to apply formula (1.5.4) to see that the sum
is equal to 0, independently from the values of a and b. �

Solution of Exercise 1.5.4. To solve the first equation write

1− z2 + z4 − z6 = 0 = 1− z2 + z4(1− z2) = (1− z2)(1 + z4).

Thus the solutions are z = ±1 and the four roots of order 4 of −1, that is

z = exp i

{
π + 2kπ

4

}
, k = 0, 1, 2, 3.
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To solve the second equation we first note that z = 1 is not a solution of it. Thus

1 + z + · · ·+ z7 = 0 ⇐⇒ (1 + z + · · ·+ z7)(1− z) = 0 and z 
= 1

⇐⇒ 1− z8 = 0 and z 
= 1,

where we have used (1.6.20). Hence, the solutions are

z = exp i

{
2kπ

8

}
, k = 1, . . . , 7, (k = 0 would correspond to z = 1).

Thus the equation has seven roots, which are

z = −1, z = ±i, z = ±1 + i√
2

and z = ±1− i√
2
.

We now turn to the third equation. Using the fundamental theorem of algebra we
note that the cases n odd and n even will lead to a different number of solutions,
since the equation is of degree n − 1 when n is even and of degree n when n is
odd. We will recover directly this fact in the proof. The number z = 1 is not a
solution of the equation to be solved, and so z is a solution of

(1− z)n = (1 + z)n (1.6.21)

if and only if

z 
= 1 and

(
1 + z

1− z

)n

= 1,

that is, if and only if

z 
= 1 and
1 + z

1− z
= e

2πik
n , k = 0, . . . , n− 1.

Thus
z
(
1 + e

2πik
n

)
= e

2πik
n − 1, k = 0, . . . , n− 1.

We have
e

2πik
n + 1 = 0

if and only if
2πki

n
= π (mod 2π),

that is, if and only if 2k = n (mod 2), or equivalently, if and only if n is even.
Hence the roots of (1.6.21) are

zk =
e

2πik
n − 1

e
2πik
n + 1

,

where k = 0, . . . , n − 1 for odd n while k = 0, . . . , n
2 − 1, n2 + 1, . . . , n − 1 for n

even.
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To solve the fourth equation, we first note that z = 0 is not a solution of the
equation, and so a number z solves

(1− z)n = zn (1.6.22)

if and only if (1 − z)/z is a nth root of unity, that is if and only if

1− z = ze
2πik
n , k = 0, . . . , n− 1,

that is, if and only if

1 = z
(
1 + e

2πik
n

)
, k = 0, . . . , n− 1. (1.6.23)

If n is odd, 2πik
n will never be an odd multiple of π and so

1 + e
2πik
n 
= 0, k = 0, . . . , n− 1.

The equation has thus n roots, namely

z =
1

1 + e
2πik
n

, k = 0, . . . , n− 1.

If n is even, say n = 2p, the index k = p corresponds to 2πik
n = iπ, and thus

(1.6.23) has no solution for k = p. Equation (1.6.22) has then n − 1 solutions,
given by

z =
1

1 + e
πik
p

, k = 0, . . . , p− 1, p+ 1, . . . , 2p− 1. �

Solution of Exercise 1.5.5. (a) Let z0 be a root of p. We have

p(z0) = 0 ⇐⇒
n∑

�=0

a�z
�
0 = 0

⇐⇒
n∑

�=0

a�z�0 = 0

⇐⇒
n∑

�=0

a�z0
� = 0, since the a� are real,

⇐⇒ p(z0) = 0.

(b) Since the polynomial z4 − 5z3 + 18z2 − 17z + 13 has real coefficients, it
also vanishes at z = 2− 3i and hence is divisible by

(z − (2 + 3i))(z − (2− 3i)) = z2 − 4z + 13.

Doing the division leads to

z4 − 5z3 + 18z2 − 17z + 13 = (z2 − 4z + 13)(z2 − z + 1)
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and hence the other two zeroes of the equation are

z =
1± i

√
3

2
. �

Solution of Exercise 1.5.6. Note that p1(z) ≡ 0, and so we begin with n ≥ 2. We
have

z2 − 2z cos a+ 1 = (z − eia)(z − e−ia).

Since the polynomial pn has real coefficients, it is enough to check that it vanishes
for z = eia. We have

pn(e
ia) = eina sin a− eia sin(na) + sin((n− 1)a),

that is

pn(e
ia) = eina

eia − e−ia

2i
− eia

eina − e−ina

2i
+

ei(n−1)a − e−i(n−1)a

2i
.

But it is clear that this last expression vanishes.

The proof is almost the same for complex values of a. The fact that pn(e
ia) =

0 does not imply automatically that pn(e
−ia) = 0. This last fact, that is

pn(e
−ia) = e−ina e

ia − e−ia

2i
− e−ia e

ina − e−ina

2i
+

ei(n−1)a − e−i(n−1)a

2i
= 0,

is readily checked. Thus, p is divisible by (z−eia)(z−e−ia) = z2−2z cos a+1. �

Solution of Exercise 1.5.7. The idea behind the four factorizations is that the
polynomials are real, and hence their non-real roots appear in pairs, which lead
to second-degree real polynomials:

(z − z0)(z − z0) = z2 − 2(Re z0)z + |z0|2. (1.6.24)

We focus on the first and third equalities, and leave to the reader the proofs of
the other two.

The roots of the polynomial z2n + 1 are zk = eiθk , with

θk =
π

2n
+

kπ

n
, k = 0, . . . , 2n− 1.

The roots corresponding to k = 0, . . . , n−1 are not conjugate to each other; indeed
a pair of indices (k, k′) corresponds to conjugate roots if

π

2n
+

kπ

n
= − π

2n
− k′π

n
(mod 2π),

that is
1

n
+

k + k′

n
= 0 (mod 2),

which cannot hold if both k and k′ are between 0 and n− 1.
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Thus

z2n + 1 =

2n−1∏
k=0

(z − zk) =

n−1∏
k=0

(z − zk)(z − zk).

But
(z − zk)(z − zk) = z2 − 2z cos θk + 1,

which concludes the proof of the first equality since

cos θk = cos

(
(2k + 1)π

2n

)
.

We now prove the third equality, and assume that n ≥ 2 (the case n = 1 is
trivial). The roots of order 2n of unity are

zk = exp i
2kπ

2n
= exp i

kπ

n
, k = 0, . . . , 2n− 1.

We have z0 = 1 and zn = −1. The other roots are not real, and appear in pairs
since p(z) = z2n − 1 has real coefficients (and thus, p(w) = 0 =⇒ p(w) = 0; see
Exercise 1.5.5). The roots from k = 1 to k = n − 1 are all different and so the
roots of p(z) are, besides 1 and −1,

zk and zk, k = 1, . . . , n− 1.

Thus

z2n − 1 = (z + 1)(z − 1)

n−1∏
k=1

(z − zk)(z − zk)

= (z + 1)(z − 1)

n−1∏
k=1

(z2 − 2zRe zk + 1)

which concludes the proof of the third equality since Re zk = cos(
kπ

n
).

Using formula (1.1.54) for the sum of a geometric series we obtain

p(z)
def.
=

n−1∑
k=0

z2k =
1− z2n

1− z2
,

and hence, using the previous arguments to prove the third equality and also using
the third equality itself we have for n ≥ 2

p(z) =

n−1∏
k=1

(
z − exp

ikπ

n

)(
z − exp

−ikπ

n

)
=

n−1∏
k=1

(z2 − 2zRe zk + 1).
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We now prove (1.5.12). Setting z = 1 in the above equality we have

n =
n−1∏
k=1

(
2− 2 cos

(
kπ

n

))
.

Recall that

1− cos

(
kπ

n

)
= 2 sin2

(
kπ

2n

)
.

Hence

n =
n−1∏
k=1

(
2− 2 cos

(
kπ

n

))

=
n−1∏
k=1

4 sin2
(
kπ

2n

)

= 4n−1
n−1∏
k=1

sin2
(
kπ

2n

)
and hence the result by taking the square root of both sides since the numbers

sin(
kπ

2n
) > 0 for k = 1, . . . , n− 1. In view of the proof of Exercise 3.7.16 we note

the formula
n

2n−1
=

n−1∏
k=1

(
1− cos

(
kπ

n

))
, n ≥ 2, (1.6.25)

which follows from the previous arguments. Finally, we prove (1.5.13). We set
z = eit in (1.5.10) to obtain

e2int − 1 = (eit + 1)(eit − 1)

n−1∏
k=1

(
e2it − 2eit cos

(
kπ

n

)
+ 1

)
.

Thus,

eint(eint − e−int) = eit/2(eit/2 + e−it/2)eit/2(eit/2 − e−it/2)

×
n−1∏
k=1

eit
(
eit + e−it − 2 cos

(
kπ

n

))
.

Dividing both sides by 2ieint we obtain

sin(nt) = 2 cos(t/2) sin(t/2)

n−1∏
k=1

(
2 cos t− 2 cos

(
kπ

n

))
,

and hence the result (still for n ≥ 2). �
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One can also try to prove these equalities using only real analysis. For in-
stance, using the formula

a4 + b4 = (a2 + b2)2 − 2a2b2 = (a2 + b2 +
√
2ab)(a2 + b2 −

√
2ab), a, b ∈ C,

(which is basically the completing the square formula), we have

z4 + 1 = (z2 +
√
2z + 1)(z2 −

√
2z + 1)

and

z8 + 1 = (z4 +
√
2z2 + 1)(z4 −

√
2z2 + 1)

=
(
(z2 + 1)2 − z2(2−

√
2)
)(

(z2 + 1)2 − z2(2 +
√
2)
)

=

(
z2 − z

√
2−

√
2 + 1

)(
z2 + z

√
2−

√
2 + 1

)
×
(
z2 − z

√
2 +

√
2 + 1

)(
z2 + z

√
2 +

√
2 + 1

)
.

Similarly the formula

a6 + b6 = (a2 + b2)(a4 − a2b2 + b4)

= (a2 + b2)((a2 + b2)2 − 3a2b2)

= (a2 + b2)(a2 + b2 +
√
3ab)(a2 + b2 −

√
3ab), a, b ∈ C,

will give (see [96, p. 397])

z6 + 1 = (z2 + 1)(z2 +
√
3z + 1)(z2 −

√
3z + 1).

Still, the complex variable arguments above give more insight as to the factors
themselves.

Solution of Exercise 1.5.8. Assume that the equation has a solution z0 with |z0| ≤
1. Then 5 = −z30 − 3z0, and so

5 = | − z30 − 3z0| ≤ |z0|3 + 3|z0| ≤ 4,

which is a contradiction. �

Solution of Exercise 1.5.9. Let c = maxj=1,...,n |cj |
1
j . By hypothesis c > 0. Let z

be a root of the polynomial equation

zn + c1z
n−1 + · · ·+ cn = 0, (1.6.26)

and let u =
z

c
. Dividing both sides of (1.6.26) by cn we obtain

un +
c1
c
un−1 + · · ·+ cn

cn
= 0. (1.6.27)
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By definition of c we have |cj | ≤ cj . Therefore, (1.6.27) leads to

|u|n ≤ |u|n−1 + · · ·+ 1. (1.6.28)

Assume that |u| ≥ 2. Then 1/|u| ≤ 1/2. Dividing both sides of (1.6.28) by |u|n
leads to

1 ≤ 1

|u| + · · ·+ 1

|u|n

≤ 1

2
+ · · ·+ 1

2n

< 1,

which is a contradiction. Thus |u| < 2, that is |z| < 2maxj=1,...,n |cj |
1
j . �



Chapter 2

Complex Numbers: Geometry

As is well known, the complex field can be identified with R2 via the map

z = x+ iy �→ (x, y).

An important new feature with respect to real analysis is the introduction of the
point at infinity, which leads to the compactification of C. These various aspects,
and some others, such as Moebius maps, are considered in this chapter.

2.1 Geometric interpretation

Exercise 2.1.1. Describe the polygon whose vertices are defined by the roots of order
n of unity.

To have a good understanding of some forthcoming notions (for instance,
limit at infinity, or the notion of pole of an analytic function), it is better to be
able to leave the complex plane, and go one step further and add a point, called
infinity, and denoted by the symbol∞ (without sign, in opposition to real analysis,
where you have ±∞), in such a way that the extended complex plane C∪ {∞} is
compact. The set

C ∪ {∞}

is called the extended complex plane. See Section 15.1 for a reminder of the notion
of compactness. For the topological details of the construction, see Section 15.3. In
the next exercise we discuss the geometric interpretation of the point at infinity,
by identifying the extended complex plane with the Riemann sphere

S2 =
{
(x1, x2, x3) ∈ R3 ;x2

1 + x2
2 + x2

3 = 1
}
.

D. Alpay, A Complex Analysis Problem Book, 
DOI 10.1007/978-3-319-42181-0_2 
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Exercise 2.1.2. For (x1, x2, x3) ∈ S2 \ {(0, 0, 1)}, define ϕ(x1, x2, x3) to be the in-
tersection of the line defined by the points (0, 0, 1) and (x1, x2, x3) with the complex
plane. Show that

ϕ(x1, x2, x3) =
x1 + ix2

1− x3
, (2.1.1)

and that ϕ is a bijection between S2 \ {(0, 0, 1)} and C, with inverse given by

ϕ−1(u + iv) =

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
. (2.1.2)

Setting z = u+ iv, (2.1.2) may be rewritten as

ϕ−1(z) =

(
z + z

|z|2 + 1
,

z − z

i(|z|2 + 1)
,
|z|2 − 1

|z|2 + 1

)
.

The map (2.1.1) is called the stereographic projection.

The geometrical interpretation of the point at infinity is as follows: The map
ϕ is extended to the point (0, 0, 1) by

ϕ(0, 0, 1) = ∞, (2.1.3)

and going to ∞ on the complex plane means going to (0, 0, 1) on the Riemann
sphere. More precisely, recall that, by definition, a sequence of complex numbers
(zn)n∈N tends to infinity if

lim
n→∞ |zn| = +∞, (2.1.4)

that is, if and only if

lim
n→∞ϕ−1(zn) = (0, 0, 1), (2.1.5)

where this last limit can be understood in two equivalent ways: The first, and
simplest, is just to say that the limit is coordinate-wise in R3. The second is to
view S2 as a topological manifold, and see the limit in the corresponding topology.
See also Exercise 15.1.5, where ϕ allows us to define a metric on the Riemann
sphere, called the stereographic metric.

The intersection of S2 with a (non-tangent) plane is a circle. Note that the
projection of a circle of the Riemann sphere on the plane will not be a circle in
general. For instance the projection of the circle

x1 = x3,

x2
1 + x2

2 + x2
3 = 1

onto the plane is the ellipse 2x2
1 + x2

2 = 1. But we have:
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Exercise 2.1.3 (see [28, Exercise 19, pp. 16–17]).

(a) There is a one-to-one correspondence between circles on the Riemann sphere
and straight lines or circles on the plane.

(b) Let S be a circle on the Riemann sphere. Then, ϕ(S \ {(0, 0, 1)}) is a circle
on the plane if and only if (0, 0, 1) 
∈ S and is a line otherwise.

To summarize, via the map ϕ−1 the point at infinity in the extended complex
plane should be seen as any other point of the complex plane. Furthermore, there
is no difference between lines and circles in the extended complex plane. A line is
a circle whose image under ϕ−1 goes via the point (0, 0, 1).

The notion of a simply-connected set is central in complex function theory.
In [19, Theorem 4.1], eleven equivalent definitions for an open connected set to
be simply-connected are given. See also [42, Theorem 4.65, p. 113] for a similar
result. In this book, we focus most of the time on the much simpler (but not
conformally invariant) notion of star-shaped set, but we will give a number of
equivalent characterizations of simply-connected sets. Recall first:

Definition 2.1.4. A set Ω ⊂ C is called star-shaped if there is a point z0 ∈ Ω such
that, for every z ∈ Ω, the interval

[z0, z] = {tz0 + (1− t)z, t ∈ [0, 1]}

lies in Ω.

The point z0 need not be unique. For instance, a convex set is star-shaped
with respect to each of its points.

Theorem 2.1.5. An open star-shaped subset of C is simply-connected.

The first definition of a simply-connected set, which is condition (d) in [19,
Theorem 4.1], is as follows:

Definition 2.1.6. A connected open subset Ω of the complex plane is simply-
connected if the set S2 \ ϕ−1(A) is connected (in the topology of S2).

It is enough to check that S2 \ ϕ−1(A) is arc-connected.

Exercise 2.1.7.

(a) Show that the punctured plane C \ {0} is not simply-connected.

(b) Show that the set

Ω = C \ {{x ∈ R; |x| ≥ 1} ∪ {iy; y ∈ R, |y| ≥ 1}}

is simply-connected.

The Riemann sphere can also be identified with the projective line. This last
object is introduced in the next exercise:
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Exercise 2.1.8. In C2 \ {(0, 0)} define the equivalence relation:

(z1, z2) ∼ (w1, w2) ⇐⇒ (z1, z2) = c(w1, w2) (2.1.6)

for some non-zero complex number c.

(1) Show that ∼ indeed defines an equivalence relation. We denote by
◦
z the equiv-

alence class of (z1, z2) ∈ C2 and by P the set of the equivalence classes.

(2) Let
◦

(z1, z2)∈ P. Show that the elements in the equivalence class have all at
the same time either non-zero second component or zero second component.

We denote by A (A stands for affine) the set of equivalence classes for which the
second component in any of its representative is non-zero. Show that the map

ψ(
◦
z) =

z1
z2

is a one-to-one correspondence from A onto C, and that its inverse is given by

ψ−1(u) =
◦

(u, 1) u ∈ C. (2.1.7)

The projective line P is the set of the equivalence classes of ∼.

Exercise 2.1.9. Prove the claim made in the proof of Exercise 2.1.3 on the in-
tersection of the plane and S2, that is, prove that equation (2.4.2) in Section 2.4
below is a necessary and sufficient condition for the plane and the Riemann sphere
to intersect, and that the plane is tangent to the Riemann sphere if and only if
equality holds in (2.4.2).

2.2 Circles and lines and geometric sets

We recall now the formulas for equations of lines and circles in the complex plane.
In the plane R2, a line is the set of points M = (x, y) such that

ax+ by + c = 0,

where (a, b, c) ∈ R3 and (a, b) 
= (0, 0). Setting

x =
z + z

2
and y =

z − z

2i
,

we get
αz + αz + β = 0, (2.2.1)

with
α = a− bi ∈ C \ {0} and β = 2c ∈ R.

Conversely, any expression (2.2.1) with (α, β) ∈ (C \ {0})×R is the equation of a
real line.
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Similarly, a circle in R2 is the set of points M = (x, y) such that

x2 + y2 − 2ax− 2by + c = 0,

where a, b, c are real and such that a2 + b2 − c > 0. The center of the circle is the
point (a, b) and its radius is

√
a2 + b2 − c. In the complex plane we obtain

|z|2 − a(z + z) + ib(z − z) + c = 0,

that is,
|z|2 − z(a− ib)− z(a+ ib) + c = 0,

that is, using (1.6.2),
|z − (a+ ib)|2 = a2 + b2 − c.

We have just seen two analytic expressions, one for lines and one for circles. There
is an alternative way to write the equations of lines and circles in a unified man-
ner as

|z − z0| = λ|z − z1|,
where z0 
= z1 and λ > 0. This expression describes a circle when λ 
= 1, this is an
Apollonius circle, and a line when λ = 1.

Exercise 2.2.1. Show that the set of points

|z − z0| = λ|z − z1| (2.2.2)

where λ > 0, λ 
= 1 and z0 
= z1 is the circle with center and radius

z0 − λ2z1
1− λ2

and
λ

|1− λ2| |z0 − z1|

respectively. Show that, conversely, a line or a circle is of the form (2.2.2) for
some choice of λ and of z0, z1.

Remark 2.2.2. For a fixed choice of z0, z1 one obtains a family of coaxal circles
when one lets λ vary. See [37], [179]. The notion is used in particular in [99] in a
simplified proof of Riemann’s mapping theorem; see Exercise 5.1.5.

Remark 2.2.3. Replacing λ by 1/λ keeps the radius inchanged, but clearly inter-
changes the roles of z0 and z1. Furthermore, the center of the Apollonius circle
tends to z0 and its radius tends to 0 as λ goes to 0. The center goes to z1, and the
radius still goes to 0, when λ goes to infinity.

Exercise 2.2.4. Characterize and draw the sets of points in the plane R2 such that:

(a) |z − 1 + i| = 1.

(b) z2 + z2 = 2.

(c) |z − i| = |z + i|.
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(d) |z|2 + 3z + 3z + 10 = 0.

(e) |z|2 + 3z + z + 5 = 0.

(f) z2 + 3z + 3z + 5 = 0.

(g) |z| ≥ 1− Re z.

(h) Re(z(1− i)) <
√
2.

For a question similar to the last one, see [75, p. 13].

The following is the last exercise of the book [154].

Exercise 2.2.5. Find the image of the unit circle under the map z �→ w(z) =
z − zn/n where n = 2, 3, . . ..

2.3 Moebius maps

Recall that a Moebius map is a transformation of the form

ϕ(z) =
az + b

cz + d

with ad − bc 
= 0. Such transformations are also called linear fractional transfor-
mations, and linear transformations in the older literature. See for instance Ford’s
book [86]. We recall that the image under a Moebius map of a line or a circle in
the complex plane is still a line or a circle. We have already met a special case of
Moebius maps in Section 1.1, namely the Blaschke factors; see (1.1.44), (1.1.45)
and (1.1.46). Finite or infinite products of Blaschke factors (of the same kind) are
considered in Exercise 3.7.12.

The formula

ϕ(z)− ϕ(w) =
(ad− bc)(z − w)

(cz + d)(cw + d)
, (2.3.1)

that is, for z 
= w,
ϕ(z)− ϕ(w)

z − w
=

(ad− bc)

(cz + d)(cw + d)
,

will prove useful in the sequel.

The first exercise expresses the fact that Moebius maps form a group isomor-
phic to the group GL(C, 2)/(C \ {0}) of 2 × 2 invertible matrices with complex
entries factored out by the invertible numbers.

Exercise 2.3.1. Let

ϕ�(z) =
a�z + b�
c�z + d�

, � = 1, 2,

be two Moebius transforms. Show that

ϕ1(ϕ2(z)) =
az + b

cz + d
, (2.3.2)
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where (
a b
c d

)
=

(
a1 b1
c1 d1

)(
a2 b2
c2 d2

)
. (2.3.3)

Sometimes it is convenient to use the following notation: Setting

M =

(
a b
c d

)
,

we define for w ∈ C

TM (w) =
aw + b

cw + d
. (2.3.4)

Equation (2.3.2) can be then rewritten as

TM1(TM2(w)) = TM1M2(w). (2.3.5)

This equation suggests that infinite products of matrices should be considered,
when infinite compositions of Moebius transforms come into play. See Theorem
3.7.3 for the first issue and Section 11.5 for the second one. The matrices in these
products are usually normalized. Indeed we have:

Exercise 2.3.2. Let ϕ be a non-degenerate Moebius map, and let

M1 =

(
a1 b1
c1 d1

)
and M2 =

(
a2 b2
c2 d2

)
be such that

ϕ(z) = TM1(z) = TM2(z),

for every z in their common domain of definition. Show that there is a complex
number λ 
= 0 such that

M2 = λM1.

Using (2.3.3) we can study in particular the compositions of Blaschke factors
of the form (1.1.44).

Exercise 2.3.3. Let u and v be in the open unit disk D. Show that

w =
u+ v

1 + uv
∈ D, (2.3.6)

and that

bu(bv(z)) =
1 + uv

1 + vu
bw(z). (2.3.7)

In Exercise 2.3.15 we compute the nth iterate of a Blaschke factor of the
form (1.1.44).
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Exercise 2.3.4.

(1) Let w ∈ D (resp. w ∈ Cr). Prove that bw (resp. Bw) is a one-to-one map
from D (resp. Cr) onto D.

(2) What happens if |w| > 1 in the first case and Rew < 0 in the second case?

Exercise 2.3.5. Let z1, z2 ∈ D. Show that there is a map of the form cbw with c ∈ T

and w ∈ D such that z2 = cbw(z1).

Exercise 2.3.6 (see [184, p. 25], [75, Exercice 33.15, p. 301]). Given two triples of
complex numbers (z1, z2, z3) and (w1, w2, w3) such that

z� 
= zj and w� 
= wj , for �, j = 1, 2, 3, � 
= j,

show that the map z �→ w defined by

w − w1

w − w2
· w3 − w2

w3 − w1
=

z − z1
z − z2

· z3 − z2
z3 − z1

(2.3.8)

is a Moebius map such that w(z�) = w� for � = 1, 2, 3.

Suitably interpreted, the formula (2.3.8) still makes sense when one of the
wj or/and one of the zj is equal to ∞. For instance, when w1 = z2 = ∞ we have

w3 − w2

w − w2
=

z − z1
z3 − z1

,

that is

w = w2 +
(w3 − w2)(z3 − z1)

z − z1
.

Exercise 2.3.7. Show that four points are on the same complex circle (or on the
same complex line) if and only if the number(

(z1 − z2)

(z1 − z3)

)
(
(z2 − z4)

(z3 − z4)

) (2.3.9)

is real.

The number (2.3.9) is called the cross-ratio. See for instance [199, Theo-
rem 2, p. 3].

Hint to the solution. Consider the case of a circle.

(1) Prove that the result is true for the unit circle.

(2) Prove that any circle can be mapped onto the unit circle by an appropriate
Moebius map.

(3) Prove that (2.3.9) is invariant under Moebius transforms.
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Exercise 2.3.8. For which k ∈ R is the image of the circle |z − 1| = k under the

Moebius map f(z) =
z − 3

1− 2z
a line? Find the equation of the line.

The next result appears in [155]; see also [127, Theorem 7, p. 67]. A natural
approach would be to use the Schur algorithm. See (6.5.7). This approach does
not seem to lead anywhere, and the pedestrian approach leads to a quite short
proof.

Exercise 2.3.9. Show that the non-trivial Moebius map ϕ(z) =
az + b

cz + d
maps the

open unit disk into itself if and only if

|ac− bd|+ |ad− bc| ≤ |d|2 − |c|2. (2.3.10)

We note the following: For the Blaschke factor (1.1.44), we have

a = 1, b = −w, c = −w, d = 1,

and inequality (2.3.10) reads as

| − 1 · w + w · 1|+ |1− |w|2| ≤ 1− |w|2,

and thus becomes an equality. More precisely:

Exercise 2.3.10. Using the previous result, show that a Moebius map sends the
open unit disk onto itself if and only if it is of the form kbw, where k ∈ T and bw
given by (1.1.44) with w ∈ T.

We note that equality in (2.3.10) may hold even when the image of the open
unit disk is included in, but different from, the open unit disk. For instance, take
the function

z + 1

−z + 3
,

which appears in the solution of Exercise 6.5.6.

We send the reader to Exercise 16.3.16 for a related exercise. As suggested
by our colleague Prof. Izchak Lewkowicz, we propose:

Exercise 2.3.11. Let ϕ(z) =
az + b

cz + d
be a non-trivial Moebius map. Find necessary

and sufficient conditions on a, b, c, d for ϕ to map the open left half-plane into
itself.

Exercise 2.3.12. For which values of z0 does the function

ϕ(z) =
z − 1

z − z0

map the open unit disk into itself?
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Exercise 2.3.13. Let ϕ(z) =
az + b

cz + d
be a non-trivial Moebius map, and assume that

the equation ϕ(z) = z has two distinct solutions z1 and z2.

(a) Prove that there is a number k ∈ C such that

ϕ(z)− z1
ϕ(z)− z2

= k
z − z1
z − z2

. (2.3.11)

(b) Give a formula for the nth iterate

ϕ ◦ ϕ ◦ · · ·ϕ︸ ︷︷ ︸
n-times

.

(c) Compute the nth iterate of

ϕ(z) =
1− 3z

z − 3
.

Remark 2.3.14. The number k is called the multiplier of ϕ (see [86, (12), p. 10].
For relations and applications to the theory of automorphic functions, see for
instance [86].

We now look at the special case where ϕ(z) = bw(z), where bw is the Blaschke
factor (1.1.44).

Exercise 2.3.15.

(a) Compute the nth iterate of the Blaschke factor (1.1.44).

(b) What is
lim

n→∞ bw ◦ bw ◦ · · · ◦ bw︸ ︷︷ ︸
n-times

.

In relation with the following exercise, see the Herglotz formula for functions
holomorphic in the open upper half-plane, and with a positive real part there; see
formula (5.5.21).

Exercise 2.3.16. Let w ∈ C \ R. What is the image of the real line under the
Moebius transform zw+1

z−w ?

2.4 Solutions

Solution of Exercise 2.1.1. By formula (1.1.15) with ρ = 1 and θ = 0 we see that
the roots of order n of unity are

zk = cos

(
2kπ

n

)
+ i sin

(
2kπ

n

)
, k = 0, . . . , n− 1.
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The points Mk =
(
cos(2kπn ), sin(2kπn )

)
, k = 0, . . . , n− 1, are on the unit circle, and

are the vertices of a regular polygon of order n, the first vertex being the point
(1, 0). �

Solution of Exercise 2.1.2. The equation of the line passing through the points
(0, 0, 1) and (x1, x2, x3) is

(u, v, w) = (0, 0, 1) + t(x1, x2, x3 − 1) t ∈ R.

We want w = 0, and thus

1 + t(x3 − 1) = 0, that is, t =
1

1− x3
.

The result follows. The map is clearly one-to-one. To show that it is onto, let
u+iv ∈ C be given. A point (x1, x2, x3) ∈ S2\{(0, 0, 1)} is such that ϕ(x1, x2, x3) =
u+ iv if and only if

x1 = u(1− x3) and x2 = v(1 − x3).

Thus

u2 + v2 =
x2
1 + x2

2

(1 − x3)2
=

1− x2
3

(1 − x3)2
=

1 + x3

1− x3
.

Thus

x3 =
u2 + v2 − 1

u2 + v2 + 1
.

So,

1− x3 =
2

u2 + v2 + 1
,

and the formulas for x1 and x2 follow. �

Solution of Exercise 2.1.3. Let

ax1 + bx2 + cx3 = d

be the equation of a plane P in R3. Note that (0, 0, 1) ∈ P if and only if

c = d. (2.4.1)

Using elementary analytic geometry one sees that the plane intersects the Riemann
sphere if and only if

a2 + b2 + c2 ≥ d2, (2.4.2)

and that it is non-tangent if and only if the inequality is strict in (2.4.2):

a2 + b2 + c2 > d2. (2.4.3)
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These facts are proved in Exercise 2.1.9 at the end of this section. Consider now
the image of S ∩ P under ϕ:

(u, v) ∈ ϕ(S ∩ P ) ⇐⇒ ϕ−1(u, v) ∈ S ∩ P,

that is, if and only if it holds that

2au+ 2bv + c(u2 + v2 − 1) = d(u2 + v2 + 1),

that is, if and only if

(c− d)(u2 + v2) + 2au+ 2bv = c+ d. (2.4.4)

If c = d we obtain the equation of a line. If c 
= d, we rewrite (2.4.4) as(
u+

a

c− d

)2

+

(
v +

b

c− d

)2

=
c+ d

c− d
+

a2

(c− d)2
+

b2

(c− d)2

=
a2 + b2 + c2 − d2

(c− d)2
,

which is the equation of a circle since (2.4.3) is in force.

The converse direction is done as follows: Given a line

au+ bv = e,

we consider the plane

ax1 + bx2 + ex3 = e.

Given a circle

(u − a0)
2 + (v − b0)

2 = R2,

we may assume that c− d = 1 in the equation of the plane, and take the plane

a0x1 + b0x2 + cx3 = d,

where c and d satisfy

c− d = 1 and R2 − a20 − b20 = c+ d. �

Solution of Exercise 2.1.7. (a) The set

S2 \ ϕ−1 {C \ {0}}

consists of two points, namely (0, 0,−1) and (0, 0, 1), and therefore is not con-
nected.
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(b) Consider the points

A1 = ϕ−1(1, 0) = (1, 0, 0),

A2 = ϕ−1(−1, 0) = (−1, 0, 0),

A3 = ϕ−1(0, 1) = (0, 1, 0),

A4 = ϕ−1(0,−1) = (0,−1, 0)

in S2. With Ω as in the statement of the exercise, ϕ−1(Ω) consists of the point
(0, 0, 1) and of four non-intersecting lines which link the points each of the point
Aj to (0, 0, 1). �

We note that the above set is in fact star-shaped with respect to the origin.
In this book, we concentrate almost uniquely on star-shaped sets, and therefore
have given a somewhat informal proof of the above exercise.

Solution of Exercise 2.1.8. Let
◦
z∈ P and (z1, z2) and (w1, w2) be two elements in

◦
z. Since z1 = cw1 for c 
= 0, we see that z1 and w1 are simultaneously both zero or
both non-zero. The map ψ is well defined; indeed, let (z1, z2) and (w1, w2) be two

elements in
◦
z. If z1 = 0, then w1 = 0 and ψ(

◦
z) = 0. On the other hand, if z1 
= 0,

then w1 
= 0 and it follows from (2.1.6) that

z2
z1

=
w2

w1
,

and so ψ is well defined. The map is one-to-one. Indeed, let
◦
z and

◦
w be two

elements of P, and assume that
◦
z 
= ◦

w. Let (z1, z2) ∈◦
z and (w1, w2) ∈ ◦

w. Then, if

z1 = 0 we have that w1 
= 0 and so ψ(
◦
z) 
= ψ(

◦
w). If both z1 and w1 are different

from 0,
z2
z1


= w2

w1
,

and in this case too, ψ(
◦
z) 
= ψ(

◦
w). Finally, the formula (2.1.7) follows from the

fact that u ∈
◦

(u, 1). �

Solution of Exercise 2.1.9. The point with coordinates

(x0, y0, z0) =

(
da

a2 + b2 + c2
,

db

a2 + b2 + c2
,

dc

a2 + b2 + c2

)
=

d

a2 + b2 + c2
(a, b, c)

belongs to the plane. Let u and v be a pair of unit and orthogonal vectors in R3,
which are moreover orthogonal to (a, b, c). A point (x, y, z) is in P ∩ S2 if and
only if

x2 + y2 + z2 = 1 and (x− x0, y − y0, z − z0) = tu+ sv

for some t, s ∈ R.
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Equivalently,

(x, y, z) =
d

a2 + b2 + c2
(a, b, c) + tu+ sv,

and therefore, taking norms of both sides of this equality,

1 =
d2

a2 + b2 + c2
+ t2 + s2.

Thus
a2 + b2 + c2 − d2

a2 + b2 + c2
= t2 + s2. (2.4.5)

Thus, the intersection will be non-empty if and only if (2.4.2) is in force, and
reduced to a point if and only if

a2 + b2 + c2 = d2.

Assume now that (2.4.3) holds, and let

R =

√
a2 + b2 + c2 − d2

a2 + b2 + c2
.

It follows from (2.4.5) that there exists θ ∈ [0, 2π) such that

s = R cos θ and t = R sin θ.

It follows that the intersection of the plane P and of the Riemann sphere is the

circle with center d
a2+b2+c2 (a, b, c) and radius R =

√
a2+b2+c2−d2

a2+b2+c2 . �

Solution of Exercise 2.2.1. Equality (2.2.2) is equivalent to

|z|2 + |z0|2 − 2Re zz0 = λ2(|z|2 + |z1|2 − 2Re zz1),

that is, since λ > 0 and λ 
= 1,

|z|2 − 2Re z
z0 − λ2z1
1− λ2

=
λ2|z1|2 − |z0|2

1− λ2
.

Completing the square we obtain∣∣∣z − z0 − λ2z1
1− λ2

∣∣∣2 − ( |z0 − λ2z1|
1− λ2

)2

=
λ2|z1|2 − |z0|2

1− λ2
, (2.4.6)

and hence we get the circle of center z0−λ2z1
1−λ2 and radius R defined by

R2 =

(
|z0 − λ2z1|
1− λ2

)2

+
λ2|z1|2 − |z0|2

1− λ2
=

(
λ

|1− λ2| |z0 − z1|
)2

.



2.4. Solutions 79

We now study the converse, and focus only on the case of a circle. Let

|z − Ω| = R

be the circle of center Ω and radius R > 0. We are looking for λ > 0 and z0, z1 ∈ C

(with z0 
= z1) such that

Ω =
z0 − λ2z1
1− λ2

,

R =
λ

|1− λ2| |z0 − z1|.

From the first equation we get

z0 = (1− λ2)Ω + λ2z1.

Plugging this expression in the second equation we obtain

R = λ|Ω− z1|.

We take

z1 = Ω +
R

λ
.

Then
z0 = (1− λ2)Ω + λ2Ω + λR = Ω + λR,

which ends the proof. �
Remark 2.4.1. We note the equality

(Ω− z0)(Ω− z1) = R2. (2.4.7)

Solution of Exercise 2.2.4. For (a) we have the circle with center (1,−1) and ra-
dius 1. Equation (b) can be rewritten as x2−y2 = 1, and so we obtain a hyperbole.
Case (c) is the line orthogonal to the interval (0, 1) and (0,−1) and passing by
the middle of this interval, i.e., it is just the real line. More misleading are (d), (e)
and (f). The equations look like the equation of a circle but this is not the case.
For (d) we have the empty set. Indeed, we have

|z|2 + 3z + 3z + 10 = 0 ⇐⇒ |z + 3|2 + 10− 9 = 0

⇐⇒ |z + 3|2 + 1 = 0.

Equation (e) becomes in cartesian coordinates

x2 + y2 + 4x+ y + 5 + iy = 0.

Equating real and imaginary parts to 0 we obtain

x2 + y2 + 4x+ y + 5 = 0 and y = 0.
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The equation x2 + 4x+ 5 = 0 has no real solution, and so (e) also corresponds to
the empty set. We leave (f) and (h) to the student, and turn to (g). Condition (g)
is equivalent to √

x2 + y2 ≥ 1− x. (2.4.8)

If x ≥ 1, every y meets this condition. Assume now that x < 1. Equation (2.4.8)
is then equivalent to

x2 + y2 ≥ (1 − x)2,

that is, to
y2 ≥ 1− 2x. (2.4.9)

We already know that x < 1. If x ∈ [ 12 , 1), every y meets this condition. If x ≤ 1
2 ,

we get the points outside or on the parabola defined by (2.4.9) and for which
x ≤ 1/2. All together, the set is the complement of the points inside the parabola
y2 = 1− 2x. �

Solution of Exercise 2.2.5. Write z(t) = eit, with t ∈ [0, 2π], and w(t) = x(t) +
iy(t). We obtain

x(t) = cos t− 1

N
cos(Nt),

y(t) = sin t− 1

N
sin(Nt).

These are the parametric equations of an epicycloid, described by a point on a
circle of radius 1

N rolling over a circle of radius 1− 1
N . See also for instance [166,

Exercise 7, p. 421]. �

Solution of Exercise 2.3.1. Indeed,

ϕ1(ϕ2(z)) =
a1ϕ2(z) + b1
c1ϕ2(z) + d1

=
a1

a2z + b2
c2z + d2

+ b1

c1
a2z + b2
c2z + d2

+ d1

=
a1(a2z + b2) + b1(c2z + d2)

c1(a2z + b2) + d1(c2z + d2)

=
(a1a2 + b1c2)z + a1b2 + b1d2
(c1a2 + d1c2)z + c1b2 + d1d2

=
az + b

cz + d
,

where (
a b
c d

)
=

(
a1 b1
c1 d1

)(
a2 b2
c2 d2

)
. �
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Solution of Exercise 2.3.2. We have for all z ∈ C where both functions are defined:

ϕ(z) =
a1z + b1
c1z + d1

=
a2z + b2
c2z + d2

. (2.4.10)

Hence,

z2(a1c2 − a2c1) + z(a1d2 − a2d1 + c2b1 − b2c1) + b1d2 − b2d1 ≡ 0.

One can proceed by remarking that the coefficients of the above polynomial are all
equal to 0, and then by distinguishing various cases. We will chose another avenue
to solve the problem. With

X(z) =
c1z + d1
c2z + d2

,

and taking into account (2.4.10) we have(
a1 b1
c1 d1

)(
z
1

)
= (c1z + d1)

(
ϕ(z)
1

)
= X(z)(c2z + d2)

(
ϕ(z)
1

)
= X(z)

(
a2 b2
c2 d2

)(
z
1

)
.

Take now two points u and v, with u 
= v, at which all the expressions make sense.
We have (

a1 b1
c1 d1

)(
u v
1 1

)
=

(
a2 b2
c2 d2

)(
uX(u) vX(v)
X(u) X(v)

)
.

Thus (
a1 b1
c1 d1

)
=

(
a2 b2
c2 d2

)(uX(u)−vX(v)
u−v

uv(X(v)−X(u))
u−v

X(u)−X(v)
u−v

uX(v)−vX(u)
u−v

)
. (2.4.11)

Since the map is assumed non-degenerate we can write(
uX(u)−vX(v)

u−v
uv(X(v)−X(u))

u−v
X(u)−X(v)

u−v
uX(v)−vX(u)

u−v

)
=

(
a2 b2
c2 d2

)−1(
a1 b1
c1 d1

)
.

It follows that X(u) is a constant, say K, and that(
a1 b1
c1 d1

)
= K

(
a2 b2
c2 d2

)
. �

Solution of Exercise 2.3.3. It suffices to note that(
1 −u
−u 1

)(
1 −v
−v 1

)
=

(
1 + uv −(u+ v)

−(u+ v) 1 + uv

)
.
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Then, the associated transformation is

(1 + uv)z − (u+ v)

−z(u+ v) + 1 + uv
=

1 + uv

1 + vu
bw(z). �

Solution of Exercise 2.3.4. It follows from (1.1.51) with z = v that bw sends the
open unit disk into itself. It follows from (2.3.6) and (2.3.7) that

bw(b−w(z)) = z,

b−w(bw(z)) = z,

for z ∈ D. The first equation shows that bw is onto and the second equation shows
that bw is one-to-one.

When |w| > 1, the map bw is one-to-one from D \
{

1
w

}
onto {z; |z| > 1}. The

limiting case w = ∞ corresponds to b(z) = 1
z , which is a one-to-one map from

D \ {0} onto {z; |z| > 1}.

The case of Bw is treated in a similar way. �

Solution of Exercise 2.3.5. Let

u = −bz1(z2) and c =
1− z1z2
1− z1z2

.

Then,

c · bu(z1) =
1− z1z2
1− z1z2

z1 +
z2 − z1
1− z1z2

1 + z1
z2 − z1
1− z1z2

=
(1− |z1|2)z2
1− |z1|2

= z2. �

Remark 2.4.2. In [8, p. 26] one asks for more: Given two different points in D, find
a map of the form s(z) = w−z

1−zw sending z1 into z2 and such that s(s(z)) ≡ z.

Solution of Exercise 2.3.6. Solving w in function of z in the above expression
leads to

w(z) =
w1 − w2

z − z1
z − z2

· z3 − z2
z3 − z1

· w3 − w1

w3 − w2

1− z − z1
z − z2

· z3 − z2
z3 − z1

· w3 − w1

w3 − w2

=
(z − z2)w1 − w2(z − z1) ·

z3 − z2
z3 − z1

· w3 − w1

w3 − w2

(z − z2)− (z − z1) ·
z3 − z2
z3 − z1

· w3 − w1

w3 − w2

.
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Hence, z �→ w(z) is indeed a Moebius map. One checks that w(z�) = z� for
� = 1, 2, 3 by direct computation:

w(z1) =
(z1 − z2)w1 − w2(z1 − z1) ·

z3 − z2
z3 − z1

· w3 − w1

w3 − w2

(z1 − z2)− (z1 − z1) ·
z3 − z2
z3 − z1

· w3 − w1

w3 − w2

=
(z1 − z2)w1

(z1 − z2)

= w1.

w(z2) =
(z2 − z2)w1 − w2(z2 − z1) ·

z3 − z2
z3 − z1

· w3 − w1

w3 − w2

(z2 − z2)− (z2 − z1) ·
z3 − z2
z3 − z1

· w3 − w1

w3 − w2

=
−w2(z2 − z1) ·

z3 − z2
z3 − z1

· w3 − w1

w3 − w2

−(z2 − z1) ·
z3 − z2
z3 − z1

· w3 − w1

w3 − w2

= w2.

w(z3) =
(z3 − z2)w1 − w2(z3 − z1) ·

z3 − z2
z3 − z1

· w3 − w1

w3 − w2

(z3 − z2)− (z3 − z1) ·
z3 − z2
z3 − z1

· w3 − w1

w3 − w2

=
(z3 − z2)w1 − w2(z3 − z2) ·

w3 − w1

w3 − w2

(z3 − z2)− (z3 − z2) ·
w3 − w1

w3 − w2

=
w1 − w2 ·

w3 − w1

w3 − w2

1− w3 − w1

w3 − w2

=
w1(w3 − w2)− w2(w3 − w1)

w3 − w2 − w3 + w1

=
w3(w1 − w2)

w1 − w2

= w3. �
Solution of Exercise 2.3.7. We follow the hints given after the exercice, and focus
on the case of a circle. We first assume that the four points are on a common
circle. For the unit circle, we can always assume that one of the points is z1 = 1,
and so we have to check that for any t2, t3 and t4 in (0, 2π),

(1− eit2)(eit3 − eit4)

(1− eit3)(eit3 − eit4)
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is real, that is, to check that

(1− eit2)(eit3 − eit4)

(1− eit3)(eit3 − eit4)
=

(1− e−it2)(e−it3 − e−it4)

(1− e−it3)(e−it3 − e−it4)
.

This is checked by multiplying both the numerator and denominator of the right
side by eit2eit3eit4 .

Let now |z − z0| = R be the equation of another circle. The Moebius map
ϕ(z) = z−z0

R maps this circle onto the unit circle. We now check the invariance of
the cross ratio using (2.3.1). Indeed using this equation we have

ϕ(z1)− ϕ(z2) =
(ad− bc)(z1 − z2)

(cz1 + d)(cz2 + d)
,

ϕ(z1)− ϕ(z3) =
(ad− bc)(z1 − z3)

(cz1 + d)(cz3 + d)
,

ϕ(z2)− ϕ(z4) =
(ad− bc)(z2 − z4)

(cz2 + d)(cz4 + d)
,

ϕ(z3)− ϕ(z4) =
(ad− bc)(z3 − z4)

(cz4 + d)(cz3 + d)
,

and hence the result by a direct computation.

Still for the case of a circle, we consider the converse statement: Let there
be therefore four pairwise points for which (2.3.9) is real. The first three points
determine uniquely a circle, which we move, via a Moebius map, to be the unit
circle. The corresponding quotient (2.3.9) does not change. So we are left with the
following question: Given four pairwise different points for which the quotient is
real, three of them being on the unit circle, show that the fourth is also on the
unit circle. We set z1 = eiθ1 , z2 = eiθ2 , z3 = eiθ3 , where θ1, θ2, θ3 ∈ [0, 2π) are
pairwise different. We have thus:

(e−iθ1 − e−iθ2)(e−iθ1 − e−iθ3)

(e−iθ2 − e−iθ4)(e−iθ3 − z4)
=

(eiθ1 − eiθ2)(eiθ1 − eiθ3)

(eiθ2 − eiθ4)(eiθ3 − z4)
.

Applying the previous exercise with the Moebius map ϕ(z) = 1/z we see that

ϕ(eiθj ) = e−iθj , j = 1, 2, 3,

and so z4 = ϕ(z4), i.e., |z4| = 1. This concludes the proof. �

Solution of Exercise 2.3.8. Set w =
z − 3

1− 2z
. Then, z =

w + 3

1 + 2w
. The condition

|z − 1| = k becomes thus

∣∣∣∣ w + 3

1 + 2w
− 1

∣∣∣∣ = k, i.e.,

|w + 3− (1 + 2w)| = k|1 + 2w|,



2.4. Solutions 85

which can be rewritten as

|2− w| = 2k

∣∣∣∣w +
1

2

∣∣∣∣ .
Hence, we obtain a line if and only if k =

1

2
. The equation of the line is |2−w| =∣∣∣w +

1

2

∣∣∣, i.e., x =
3

4
.

If one wants only the value of k but not the equation of the line, a shorter
way is as follows: We know that the image of the circle is either a line or a circle.

It will be a line if and only if it is not a bounded set, i.e., if and only if z =
1

2

belongs to the circle |z − 1| = k, i.e.,
∣∣∣1
2
− 1
∣∣∣ = k. Hence k =

1

2
. �

Solution of Exercise 2.3.9. By hypothesis, ad − bc 
= 0 and thus the map z �→ w
is invertible, and its inverse is given by

z =
wd− b

a− cw
.

We know that |z| < 1 and want to find a necessary and sufficient condition for the
set of images w to be in the open unit disk. We have

|z| < 1 ⇐⇒ |z|2 < 1

⇐⇒ |wd− b|2 < |a− wc|2

⇐⇒ |w|2|d|2 + |b|2 − 2Re(bdw) < |w|2|c|2 + |a|2 − 2Re(acw)

⇐⇒ |w|2(|d|2 − |c|2)− 2Re
{
(bd− ac)w

}
+ |b|2 − |a|2 < 0.

(2.4.12)

At this stage we pause and remark that, necessarily, |c| < |d|. Indeed, if |d| = |c|,
the above can be rewritten as

−2Re
{
(bd− ac)w

}
+ |b|2 − |a|2 < 0, (2.4.13)

which is an unbounded set (in fact, a half-plane). Note that, under the hypothesis
|d| = |c|, we necessarily have

(bd− ac) 
= 0.

If it is equal to 0, then on the one hand (2.4.13) leads to |b| < |a| and on the other
hand we have

bd− ac = 0 =⇒ |b||d| = |a||c|

=⇒ |d| = |c| |a||b|

which together with |d| = |c| leads to |a| = |b|.
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If |c| > |d|, the point −d

c
is in D, and ϕ has a pole at this point. Thus the

image of D by ϕ cannot be bounded. So |c| < |d|. We divide both sides of (2.4.12)
by |d|2 − |c|2 and obtain

|w|2 − 2Re

{
bd− ac

|d|2 − |c|2w
}
+

|b|2 − |a|2
|d|2 − |c|2 < 0.

Completing the square we obtain∣∣∣∣w − bd− ac

|d|2 − |c|2

∣∣∣∣2 < −|b|2 − |a|2
|d|2 − |c|2 +

∣∣∣∣ bd− ac

|d|2 − |c|2

∣∣∣∣2 .
We have

−|b|2 − |a|2
|d|2 − |c|2 +

∣∣∣∣ bd− ac

|d|2 − |c|2

∣∣∣∣2 =
−(|b|2 − |a|2)(|d|2 − |c|2) + |bd− ac|2

(|d|2 − |c|2)2

=
|ad− bc|2

(|d|2 − |c|2)2 .

Thus the image of the open unit disk is the open disk of center

w0 =
bd− ac

|d|2 − |c|2

and radius

r0 =
|ad− bc|
|d|2 − |c|2 .

This open disk will be included in the open unit disk if and only if

|w0|+ r0 ≤ 1,

which can be rewritten as

|bd− ac|
|d|2 − |c|2 +

|ad− bc|
|d|2 − |c|2 ≤ 1.

Multiplying both sides by the strictly positive number |d|2−|c|2 we obtain (2.3.10).
�

Solution of Exercise 2.3.10. Necessary and sufficient conditions are that the center
is w0 = 0 and the radius is r0 = 1. This leads to the equations

bd = ac (2.4.14)

|ad− bc| = |d|2 − |c|2. (2.4.15)
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The second equation implies that d 
= 0. The first equation then gives b = ac
d
.

Plugging this expression into the second equation and dividing both sides by d2

leads to ∣∣∣∣ad − a

d

cc

dd

∣∣∣∣ = 1−
∣∣∣ c
d

∣∣∣2 .
Thus k

def.
=

a

d
∈ T and α

def.
= − c

d
∈ D. Equation (2.4.14) implies that

b

d
= −kα

and the Moebius map is of the required form. �
Remark 2.4.3. We now solve the previous question directly, without resorting to
Exercise 2.3.9. Of course the computations are basically the same. We remark that
d 
= 0 (otherwise the point 0 would go to the point at infinity), and write without
loss of generality ϕ(z) = az+b

cz+1 . We look at the image of the unit circle.

w =
aeit + b

ceit + 1
⇐⇒ eit =

w − b

−cw + a
,

and so |w − b|2 = |a− cw|2, that is

|w|2(1− |c|2)− 2Rew(b − ca) = |a|2 − |b|2. (2.4.16)

Writing that the image is |w| = 1 gives

b = ca and 1− |c|2 = |a|2 − |b|2.

The first equation gives

ϕ(z) =
az + c

cz + 1
= a

z + c

cz + 1
. (2.4.17)

Plugging the first equation into the second we obtain

1− |c|2 = |a|2 − |a|2|c|2 = |a|2(1 − |c|2).

We also note that |c| < 1 (since the image of − 1
c is the point at infinity) and so

|a| = 1. Thus the map ϕ is necessarily of the form (2.4.17). The converse follows
from (1.1.41).

Solution of Exercise 2.3.11. The map

z �→ ϕ0(z) =
1− z

1 + z

is one-to-one and onto from the open unit disk onto the open left half-plane, and

is equal to its inverse. Therefore the map ϕ(z) =
az + b

cz + d
maps the open left half-

plane into itself if and only if ϕ0 ◦ ϕ ◦ ϕ0 maps the open unit disk into itself. In
view of (2.3.3) the coefficients of ϕ0 ◦ ϕ ◦ ϕ0 can be chosen to be(

−1 1
1 1

)(
a b
c d

)(
−1 1
1 1

)
=

(
−a− b− c+ d −a− b+ c+ d
−a+ b− c+ d a+ b+ c+ d

)
.
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Applying (2.3.10), we obtain the condition

|(b−d)(a+c)+(a−c)(b+d)|+2|ad−bc| ≤ (a+c)(b+d)+(a+c)(b+d). (2.4.18)

We note that, in (2.4.18), equality will hold in particular for

ϕ(z) = z + w and ϕ(z) =
1

z + w
,

where w + w ≥ 0. �

Solution of Exercise 2.3.12. Of course, from (2.3.10) with

a = 1, b = −1, c = 1, and d = −z0,

we know that the condition is

2|1− z0| < |z0|2 − 1. (2.4.19)

We reproduce this result directly as follows: Set

w =
z − 1

z − z0
.

Then

z =
1− wz0
1− w

,

and the condition |z| < 1 becomes

|1− wz0| < |1− w|, that is, |1− wz0|2 < |1− w|2.

This in turn can be rewritten as

|w|2|z0|2 − 2Re(wz0) + 1 < |w|2 − 2Re(w) + 1,

i.e.,

|w|2(|z0|2 − 1)− 2Rew(z0 − 1) < 0. (2.4.20)

Now, if |z0| = 1 the above inequality defines a half-plane, and cannot be inside
the unit disk. Assume now that |z0| > 1. Then (2.4.20) becomes

|w|2 − 2Rew

(
z0 − 1

|z0|2 − 1

)
< 0,

i.e., ∣∣∣∣w − z0 − 1

|z0|2 − 1

∣∣∣∣2 <

∣∣∣∣ z0 − 1

|z0|2 − 1

∣∣∣∣2 .
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Thus the image of the open unit disk is the open disk with center C = z0−1
|z0|2−1

and radius R = | z0−1
|z0|2−1 |. This disk will be inside the open unit disk if and only if

|C|+R < 1, that is

2
|z0 − 1|
|z0|2 − 1

< 1,

which is (2.4.19) since |z0| > 1.

Assume now |z0| < 1. Then (2.4.20) becomes

|w|2 − 2Re

(
w

(
z0 − 1

|z0|2 − 1

))
> 0.

This can be rewritten as ∣∣∣∣w − z0 − 1

|z0|2 − 1

∣∣∣∣2 >

∣∣∣∣ z0 − 1

|z0|2 − 1

∣∣∣∣2 ,
and thus defines an unbounded set, and cannot be in the open unit disk. Thus
z0 cannot be of modulus strictly less than 1, and the necessary and sufficient
condition is (2.4.19). �

Solution of Exercise 2.3.13. (a) In view of formula (2.3.1) we have

ϕ(z)− z1
ϕ(z)− z2

=
ϕ(z)− ϕ(z1)

ϕ(z)− ϕ(z2)

=

(z − z1)(ad− bc)

(cz + d)(cz1 + d)

(z − z2)(ad− bc)

(cz + d)(cz2 + d)

= k
z − z1
z − z2

,

with

k =
cz2 + d

cz1 + d
. (2.4.21)

(b) Denote by ϕ◦n(z) the nth iterate of ϕ. Iterating (2.3.11) we have

ϕ◦n(z)− z1
ϕ◦n(z)− z2

= kn
z − z1
z − z2

, (2.4.22)

and hence

ϕ◦n(z) =
z1 − z2k

n z − z1
z − z2

1− kn
z − z1
z − z2

=
z1(z − z2)− z2k

n(z − z1)

z − z2 − kn(z − z1)
.
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Thus

ϕ◦n(z) =
(z1 − z2k

n)z − (1− kn)z1z2
(1− kn)z − (z2 − z1kn)

. (2.4.23)

(c) When ϕ(z) = (1− 3z)/(z − 3) the equation

ϕ(z) = z

has two distinct roots, namely z1 = 1 and z2 = −1. We have c = 1, d = −3 and

k =
cz2 + d

cz1 + d
= 2.

Therefore, from (2.4.23) we have

ϕ◦n(z) =
(1 + 2n)z + 1− 2n

(1 − 2n)z + 1 + 2n
. �

We note the following: When |k| > 1, equation (2.4.22) implies that, for
z 
= z1,

lim
n→∞ϕ◦n(z) = z2,

while we have
lim
n→∞ϕ◦n(z) = z1

for z 
= z2 when |k| < 1.

Solution of Exercise 2.3.15. We use the preceding exercise. For w 
= 0 (which is
the only case of interest), the equation

bw(z) = z,

that is,
z − w = z − z2w

has two distinct solutions, say z1 and z2. Set w = ρeiθ. Then

z1 = eiθ and z2 = −eiθ. (2.4.24)

The multiplier k is given by formula (2.4.21), and hence equal to

k =
−wz2 + 1

−wz1 + 1
=

1 + ρ

1− ρ
.

In particular, we see that k is real and belongs to (1,+∞). Formula (2.4.23) and
equation (2.4.24) give

bw ◦ bw ◦ · · · ◦ bw︸ ︷︷ ︸
n-times

(z) =
z − wn

1− zwn
,
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where

wn = eiθ
kn − 1

kn + 1
.

(b) We have
lim

n→∞wn = eiθ,

and thus
lim
n→∞ bw ◦ bw ◦ · · · ◦ bw︸ ︷︷ ︸

n-times

(z) = eiθ.

In particular the limit is independent of z ∈ D. �

Solution of Exercise 2.3.16. Let λ = zw+1
z−w . Then z = λw+1

λ−w . The number z is real
if and only if it holds that

λw + 1

λ− w
=

λw + 1

λ− w
,

which can be rewritten as

|λ|2 − λα− λα+ 1 = 0,

with

α =
|w|2 + 1

w − w
.

Completing the square we get

|λ− α|2 = |α|2 − 1.

It is readily checked that

|α|2 − 1 =

(
|w2 + 1|
|w − w|

)2

,

and we get a circle of center α and radius

R =
|w2 + 1|
|w − w| .

The circle reduces to a point when w = ±i. �



Chapter 3

Complex Numbers and Analysis

We begin by discussing complex-valued functions of a real variable. This gives
us more freedom for exercises in the sequel of the chapter. We discuss series and
power series, and introduce the exponential function and the various trigonometric
functions. Infinite products are also discussed. At the end of this chapter, we
therefore will have a number of examples of functions, some highly non-trivial,
which will be shown in subsequent chapters to be instances of analytic functions.

3.1 Complex-valued functions on an interval;
derivatives and integrals

Let
f(t) = u(t) + iv(t) (3.1.1)

where t belongs to an interval I (which can be open, closed, or half-closed), be a
complex-valued function. We recall that f has a limit at the point t0 ∈ I if and
only both u and v have limits at the point t0. The function f is continuous at t0
(resp. in I) if and only if both u and v are continuous at t0 (resp. in I).

Exercise 3.1.1. Give an example of a map t �→ z(t) from an open interval (a, b) ⊂ R

into C such that limt→b z(t) does not exist, but limt→b Re z(t) exists.

Exercise 3.1.2. Let a1, . . . , an be arbitrary complex numbers. Show that there is at
least one t ∈ [0, 1] such that ∣∣∣∣∣1−

n∑
k=1

ake
2πikt

∣∣∣∣∣ ≥ 1.

The function 1−
∑n

k=1 ake
2πikt in the previous exercise is periodic. The result

itself can be extended to the almost-periodic case, as is illustrated in the following
exercise:

D. Alpay, A Complex Analysis Problem Book, 
DOI 10.1007/978-3-319-42181-0_3 
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Exercise 3.1.3. Let α1, . . . , αn be real pairwise different numbers, all different from
0, and let a1, . . . , an be complex numbers. Show that

∀ε ∈ (0, 1), ∃t ∈ R such that

∣∣∣∣∣1−
n∑

k=1

ake
iαkt

∣∣∣∣∣ > ε. (3.1.2)

Hint. Compute

lim
T→∞

1

T

∫ T

0

∣∣∣∣∣1−
n∑

k=1

ake
iαkt

∣∣∣∣∣
2

dt. (3.1.3)

The function (3.1.1) has a derivative in the given interval if both u and v
have derivatives there, and then

f ′(t) = u′(t) + iv′(t).

The various formulas of derivation for sum, product and quotient still hold for
complex-valued functions. For instance, for a ∈ R,

(eiat)′ = (cos at+ i sinat)′ = −a sin at+ ia cosat = iaeiat.

Exercise 3.1.4. Check that for any z0 ∈ C,

(ez0t)′ = z0e
z0t.

Differentiation allows us to obtain new and non-trivial formulas from known
ones, as illustrated in the next exercises.

Exercise 3.1.5. Compute for n ≥ 2 in closed form the sums

n−1∑
k=1

k cos(a+ bk) and

n−1∑
k=1

k sin(a+ bk)

Exercise 3.1.6. Compute in closed form

n∑
k=1

keikt.

Integration of a complex-valued function along a path in the complex plane
is one of the keystones of complex analysis. In the present section we consider a
preliminary, and much easier notion, namely the integral of a (say continuous)
function of a real variable, but with values in C. We recall the definition of this
integral: If f(t) = u(t) + iv(t) is a continuous function from the compact interval
[a, b] ⊂ R into C, one has∫ b

a

f(t)dt
def.
=

∫ b

a

u(t)dt+ i

∫ b

a

v(t)dt.
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A key property is that∣∣∣∣∣
∫ b

a

f(t)dt

∣∣∣∣∣ ≤
∫ b

a

|f(t)|dt, with a ≤ b. (3.1.4)

For instance, the sequence ∫ 1

0

eintetdt, n ∈ N,

is bounded. In fact, an easy integration by parts shows that it goes to 0 as n goes
to infinity.

The following illustration of (3.1.4) is taken from [161, pp. 476–477]:

Question 3.1.7. (see [161, pp. 476–477]) Let in (3.1.4)

f(t) =
1

(t+ ci)n+1
, where c > 0 and n ∈ N0.

Show that
1

n

∣∣(a+ ci)n − (b+ ci)n
∣∣

(a2 + c2)n/2(b2 + c2)n/2
≤
∫ b

a

dt

(t2 + c2)
n+1
2

,

and that, in particular,

b− a√
(a2 + c2)(b2 + c2)

≤ 1

c

(
arctan

b

c
− arctan

a

c

)
.

It is also well to have in mind the Cauchy–Schwarz inequality in this setting∣∣∣∣∣
∫ b

a

f(t)g(t)dt

∣∣∣∣∣
2

≤
(∫ b

a

|f(t)|2dt
)(∫ b

a

|g(t)|2dt
)
, (3.1.5)

where f and g are continuous on [a, b]. Equality holds if and only if f and g are
linearly dependent, that is,

f(t) ≡ 0 or g(t) ≡ λf(t) for some complex number λ.

Exercise 3.1.8.

(a) Compute
∫ 2π

0 cos2p tdt.

(b) Using (a), show that

lim
p→∞

(
2p
p

)
22p

= 0. (3.1.6)

3.1. Complex-valued functions on an interval; derivatives and integrals
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We note that the sequence of integrals
∫ 2π

0
(cos2p t)dt is decreasing. The asso-

ciated difference sequence
(∫ 2π

0 (cos2p t)dt−
∫ 2π

0 (cos2(p+1) t)dt
)
p∈N0

is closely re-

lated to the sequence of Catalan numbers (the sequence of moments of the semi-
circle law, which plays a key role in free probability and in the theory of random
matrices; see [119, 158]).

Exercise 3.1.9. Let

mp =
1

2π

∫ 2

−2

√
4− x2x2pdx, p = 0, 1, . . .

denote the even moments of the semi-circle law. Compute for p = 0, 1, . . .∫ 2π

0

cos2p tdt−
∫ 2π

0

cos2(p+1) tdt,

and show that

mp =
1

p+ 1

(
2p+ 2
p+ 1

)
︸ ︷︷ ︸
Catalan number

.

The next result would be a direct consequence of Cauchy’s integral formula.
At this stage, the exercise is to be proved from first principles. The exercise is
taken from [52], where it is used as an intermediate tool to prove, without inte-
gration theory, that a complex-valued function which admits a complex derivative
everywhere in an open set Ω admits a power series expansion at every point of Ω.

Exercise 3.1.10. Let p(z) =
∑n

�=0 p�z
� be a polynomial bounded by 1 in modulus

in the closed unit disk. Show that all |p�| ≤ 1 for � = 0, . . . , n.

It is an interesting problem to find necessary and sufficient conditions on
the coefficients p� for |p(z)| ≤ 1 to hold for all z in the closed unit disk. This
question is beyond the scope of the present book, but let us briefly discuss it. Let
α(z) =

∑n
�=0 α�z

�, with α0, . . . , αn arbitrary complex numbers. Writing

1

2π

∫ 2π

0

|p(eit)α(eit)|2dt ≤ 1

2π

∫ 2π

0

|α(eit)|2dt,

we obtain that

n∑
�,k=0

α�αk

⎛⎝ n∑
u=max{�,k}

pu−�pu−k

⎞⎠ ≤
n∑

�=0

|α�|2,

which implies the matrix inequality⎛⎜⎜⎜⎜⎝
p0 0 0 · · · 0
p1 p0 0 · · · 0

0
0

pn pn−1 pn−2 · · · p0

⎞⎟⎟⎟⎟⎠
∗⎛⎜⎜⎜⎜⎝

p0 0 0 · · · 0
p1 p0 0 · · · 0

0
0

pn pn−1 pn−2 · · · p0

⎞⎟⎟⎟⎟⎠ ≤ In+1, (3.1.7)
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where In+1 denotes the (n+ 1)× (n+ 1) identity matrix, and where M∗ denotes
the complex conjugate of a matrix M . The above inequality means that

In+1 −

⎛⎜⎜⎜⎜⎝
p0 0 0 · · · 0
p1 p0 0 · · · 0

0
0

pn pn−1 pn−2 · · · p0

⎞⎟⎟⎟⎟⎠
∗⎛⎜⎜⎜⎜⎝

p0 0 0 · · · 0
p1 p0 0 · · · 0

0
0

pn pn−1 pn−2 · · · p0

⎞⎟⎟⎟⎟⎠ ≥ 0.

See Definition 16.3.1 for the definition of a positive matrix, if need be. This in-
equality is not a sufficient condition for p to be bounded in modulus by 1 in the
closed unit disk, but is equivalent to the existence of a power series bounded by 1
in D and which begins with p. The result in the preceding exercise is still true for
infinite power series. This is presented in Exercise 3.4.12. Inequality (3.1.7) is still
true, and expresses that a certain lower triangular operator is a contraction from
�2 into itself. See Exercise 16.1.5 for the definition of the Hilbert space �2.

The integrals in the exercises above were on a bounded interval. The following
exercises are related to functions defined on an unbounded interval. If f(t) =
u(t) + iv(t) is a continuous complex-valued function of the real variable t, we say
that the integral ∫

R

f(t)dt

exists if both integrals ∫
R

u(t)dt and

∫
R

v(t)dt

converge.

Exercise 3.1.11. Show that ∫ 0

−∞

dt

(t− z)2
=

1

z

for all z ∈ C \ (−∞, 0].

A follow-up of the next exercise is Exercise 5.5.25.

Exercise 3.1.12. Let m be a continuous positive function on the real line, subject to∫
R

m(t)dt

t2 + 1
< ∞. (3.1.8)

Show that the integral

fm(z) = −i

∫
R

{
1

t− z
− t

t2 + 1

}
m(t)dt, (3.1.9)

makes sense for z off the real line. Compute Re fm(z).

3.1. Complex-valued functions on an interval; derivatives and integrals
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In preparation to the next exercise, we mention that positive definite func-
tions and kernels are defined in Section 16.3; see Definition 16.3.11.

Exercise 3.1.13.

(1) Let w be in the right open half-plane Cr (that is, Rew > 0). Compute∫ ∞

0

e−twdt.

(2) Show that the function
1

z + w
(3.1.10)

is a positive definite kernel in Cr.

More generally we have the following question. In the statement, we have set
zν = ρν(cos(νθ)+ i sin(νθ)) where z = ρ(cos θ+ i sin θ) is the polar representation
of z, with θ ∈ (−π, π). Since in the question, z and w are restricted to be in Cr,
the expressions zν and (z + w)ν make sense.

Question 3.1.14. Let ν > −1, and let Γ denote Euler’s Gamma function

Γ(ν) =

∫ ∞

0

e−ttν−1dt. (3.1.11)

Compute
∫∞
0

tνe−ztdt for z in Cr, and show that the function

Γ(ν + 1)

(z + w)ν
(3.1.12)

is positive definite in Cr.

See (4.4.11) for the counterpart of this result in the open unit disk.

Exercise 3.1.15. Prove (0.0.5)

3.2 Sequences of complex numbers

Recall that a sequence (zn)n∈N of complex numbers converges to a number z if3

∀ε > 0 ∃N, n ≥ N =⇒ |z − zn| < ε.

The number z is unique, and is called the limit of the sequence.

Exercise 3.2.1. Compute, for t ∈ R,

lim
n→∞

1 + eit + · · ·+ eint

n
.

3Recall also that if, in a definition, always means if and only if.



3.2. Sequences of complex numbers 99

With the preceding exercise at hand we will now give an indirect proof that,
for any t 
= 0 (mod 2π), the sequence n �→ eint has no limit. The first item is a
well-known result in calculus and the proof is the same in the complex case.

Exercise 3.2.2.

(a) Assume that the sequence (un)n∈N has a limit � ∈ C. Show that the sequence

vn =
u0 + · · ·+ un

n

tends to � too.

(b) Using (a), show that n �→ eint has no limit for t 
= 0 (mod 2π).

Exercise 3.2.3. Study the convergence of the sequences

zn =

∑n
k=1 ke

ikt

n

and

wn =

∑n
k=1 ke

ikt

n2
.

We make now some remarks: Quite often it is difficult, or even impossible,
to guess what the limit is. A more abstract criterion to study the existence of a
limit is as follows: The sequence (zn)n∈N converges if and only if it is a Cauchy
sequence, that is, if and only if

∀ε > 0 ∃N, n,m ≥ N =⇒ |zn − zm| < ε.

Most of the methods taught in calculus for real sequences can be seen to hold in
the case of complex sequences, by looking separately at the real and imaginary
part. For instance, if f is a complex-valued function continuous on [0, 1], then

lim
n→∞

∑n
k=0 f(k/n)

n
=

∫ 1

0

f(t)dt. (3.2.1)

Exercise 3.2.4. Study the convergence of the sequence

zn =

∑n
k=0 ke

2πik/n

n2
.

The following exercise is easily proved using the notion of radius of conver-
gence of power series; see Exercise 5.6.4 in Section 5.6. The reader should consult
[62] for a direct proof.

Exercise 3.2.5. Let z1, . . . , zm be complex numbers different from 0. Show that

lim sup
n→∞

|
m∑
�=1

zn� |1/n = max
�=1,...,m

|z�|. (3.2.2)
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In particular we have the non-trivial fact: Given any m real numbers t1, . . .,
tm we have

lim sup
n→∞

∣∣∣∣∣
m∑
�=1

eint�

∣∣∣∣∣
1/n

= 1.

The following exercise is used in the proof of Exercise 13.4.3 to get a formula
for the Gamma function. The first claim is taken from [23, p. 119].

Exercise 3.2.6.

(a) Show that (
1− t

n

)n

≤ e−t, t ∈ [0, n].

(b) Show that, for t > 0 the sequence

n �→
(
1− t

n

)n

is eventually increasing.

3.3 Series of complex numbers

We now consider series of complex numbers. See also Sections 4.4, and 5.6, where
various facts on power series are given as exercises. See for instance Exercises 4.4.9,
4.4.11 and 5.6.1 there.

The easiest criterium to check convergence of a series with running term zn
is to check that the series of positive numbers |zn| converges. The series is then
called absolutely convergent, and is in particular convergent. For example:

Exercise 3.3.1. Show that the series

∞∑
n=1

z2n

2 + zn + z5n

converges in the open unit disk.

Exercise 3.3.2. Show that the series

∞∑
n=1

(
1

z − n
+

1

n

)
converges for every z 
∈ N. Show that the convergence is uniform on any compact
set which does not intersect N.
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The next exercise is taken from [154]; see Exercise 4.19, p. 49 there. In the
proof, one needs the formula of the partial fraction expansion

nzn−1

zn − 1
=

n−1∑
�=0

1

z − z�
, (3.3.1)

where z0, . . . , zn−1 are the roots of unity of order n. The proof of this simple result
is postponed to Exercise 7.3.4.

Exercise 3.3.3. Let z0, . . . , zn−1 be the roots of order n of the unity. Show that

n∑
�=0

zm� = 0, m = 1, . . . , n− 1.

The next exercise is yet another example of solving a problem in real analysis
by going via the complex domain. But first some preliminary discussion: To find
a closed formula for the sum ∞∑

�=0

1

(4�+ 1)!
,

or, more generally for the sums

Ak =
∞∑
�=0

1

(4�+ k)!
, k = 0, 1, 2, 3,

one needs only to know the power series expansion of the real functions coshx,
cosx, sinhx and sinx. It is readily seen that

A0 =
cosh 1 + cos 1

2
, A1 =

sinh 1 + sin 1

2
,

A2 =
cosh 1− cos 1

2
and A3 =

sinh 1− sin 1

2

(see for instance [211, p. 238] for the computation of A1). Such a simple approach
does not seem to help for computing the sums in the next exercise:

Exercise 3.3.4. Let m,n ∈ N be such that 0 ≤ n < m. Compute in closed form

Am,n =
∞∑
�=0

1

(m� + n)!
, n = 0, 1, . . . ,m− 1.

The books of Polya and Szegö [182, 183] are a mine of exercises, most of them
quite challenging; here are some of them (see [182, Exercises 36, 37, 38, p. 110]).

Exercise 3.3.5. Assume that the complex numbers zn, n = 1, 2, . . . are in the right
half-plane and that both the series

∑∞
n=1 zn and

∑∞
n=1 z

2
n converge. Show that the

series
∑∞

n=1 |zn|2 converges. Give a counterexample when the zn are not restricted
to the right half-plane.
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Exercise 3.3.6. Find a sequence of complex numbers such that all the series∑∞
n=1 z

k
n converge but all the series

∑∞
n=1 |zn|k diverge, k = 1, 2, . . ..

Exercise 3.3.7. Let 0 < α < π/2 and let zn = ρne
iθn, n = 1, 2, . . ., be a sequence

of complex numbers all different from 0 and such that

−α ≤ θn ≤ α.

Show that the series
∑∞

n=1 zn and
∑∞

n=1 |zn| converge or diverge at the same time.

We conclude with a question taken from [186, Exercise 5.1.19, p. 186]. We
refer to that source for a proof.

Question 3.3.8. Let z1, . . . , be a sequence of complex numbers such that |zj−zk| ≥ 1
for j 
= k. Study the convergence of the series

∑∞
n=1

1
|zn|u for u > 0.

3.4 Power series and elementary functions

As in the real case, a power series is an expression of the form

∞∑
n=0

an(z − z0)
n, (3.4.1)

where now z0 and the an are complex numbers. One now speaks of a disk of con-
vergence rather than of an interval of convergence, and the proof of the following
result is the same as in the real case.

Theorem 3.4.1. The power series

∞∑
n=0

an(z − z0)
n (3.4.2)

converges absolutely for |z| < R with

R =

{
1

lim supn→∞ |an|1/n , if lim supn→∞ |an|1/n > 0,

∞, if lim supn→∞ |an|1/n = 0.
(3.4.3)

It diverges for all |z| > R.

Proof. For simplicity, we set z0 = 0. We assume that the series converges for some
w 
= 0. Then, the sequence of numbers (anw

n)n∈N0 goes to 0 and in particular is
bounded in absolute value by a finite positive number, say M . For |z| < |w| we
have

anz
n = anw

n
( z
w

)n
,
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and so

|anzn| ≤ M

(
|z|
|w|

)n

, (3.4.4)

and the power series (3.4.2) converges absolutely for |z| < |w|. Furthermore, from

|anzn| ≤ M,

we have for every n ∈ N,
|an|1/n · |w| ≤ M1/n,

and taking lim sup on both sides we get

lim sup
n→∞

|an|1/n · |w| ≤ 1.

It follows that w is arbitrary if lim supn→∞ |an|1/n = 0 and

|w| ≤ 1

lim supn→∞ |an|1/n

otherwise. It follows that the power series converges for every z of modulus strictly
less than R, where R is given by (3.4.3). Let now z be such that |z| > R. By
definition of the lim sup there exists an infinite subsequence of integers (nk)k∈N

such that |ank
|1/nk |z| ≥ 1. In particular |ank

znk | ≥ 1 and the power series (3.4.2)
cannot converge. �

Note that the theorem says nothing on the behaviour of the power series on
the circle |z − z0| = R. This is illustrated in various exercises in the section. See
Exercises 3.4.4 through 3.4.6. The number R is called the radius of convergence
of the power series. It may be equal to 0 (for instance, when an = n!), and then
the power series converges only for z = 0 and it may be equal to ∞ (for instance,
when an = 1

n! ), and then the power series converges for every complex number.

The following result is of special importance:

Corollary 3.4.2. Let (3.4.2) be a power series with strictly positive radius of con-
vergence R (possibly, R = ∞). Then, the power series converges uniformly and
absolutely in every closed disk |z − z0| ≤ r with r ∈ (0, R).

Often, and as in the real variable case, there are easier ways to compute the
radius of convergence of a given power series, as we recall in the next proposition.

Proposition 3.4.3. Consider the power series (3.4.1), and in case (a) assume that
an 
= 0 from a certain index. Then:

(a) Formula using D’Alembert’s (the ratio) test: Assume that

lim
n→∞

|an+1|
|an|

(3.4.5)
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exists. Then
1

R
= lim

n→∞
|an+1|
|an|

.

(b) Formula using Cauchy’s test: Assume that

lim
n→∞ |an|1/n (3.4.6)

exists. Then,
1

R
= lim

n→∞ |an|1/n.

Moreover, we make the following remark: It follows from the proof of Theorem
3.4.1 that R is the radius of the largest open disk with center z0 within which the
powers series converges. This gives a geometric (or “picturial”) way to compute
R. See Exercise 5.6.4.

Exercise 3.4.4. Find the radius of convergence of the power series

∞∑
n=1

n(−1)nzn. (3.4.7)

The topic of Exercise 5.7.7 is to compute in closed form the sum (3.4.7).

Exercise 3.4.5. Radius of convergence of the power series

∞∑
n=0

zn!. (3.4.8)

Exercise 3.4.6. Radius of convergence of the power series

∞∑
n=0

z2
n

.

In the preceding two exercises, the unit circle is the natural boundary of
analyticity: The functions defined by the power series cannot be extended across
the unit circle. See Exercise 6.3.3.

The behaviour at the boundary of the disk of convergence is much more
delicate. One can study the convergence sometimes using Abel’s theorem (see
Section 3.5. The behaviour at the point z = 1 can be sometimes studied using
Raabe’s test, which we now recall.

Theorem 3.4.7 (Raabe’s convergence test). Let (an)n∈N be a sequence of strictly
positive numbers, and assume that the limit

lim
n→∞n

(
an

an+1
− 1

)
= R (3.4.9)

exists. Then, if R > 1 the series
∑∞

n=1 an converges while it diverges if R < 1. No
conclusion can be given (without more information) if R = 1.
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We recall the following result, which states that multiplication of power series
corresponds to the convolution of the sequences of their coefficients. See Exercise
4.4.8 for an illustration.

Proposition 3.4.8. Let

f(z) =

∞∑
n=0

an(z − z0)
n and g(z) =

∞∑
n=0

bn(z − z0)
n

be the two power series, centered at the same point z0, and with strictly positive
radiuses of convergence R1 and R2 respectively. Then, the product fg is a power
series centered at z0, with a strictly positive radius of convergence greater than or
equal to min(R1, R2). Furthermore,

f(z)g(z) =

∞∑
n=0

(
n∑

�=0

a�bn−�

)
(z − z0)

n. (3.4.10)

Proof. The result is really a particular case of Cauchy’s multiplication theorem;
see Section 14.2. Indeed, for z such that |z − z0| < min(R1, R2), both the series

∞∑
n=0

an(z − z0)
n and

∞∑
n=0

bn(z − z0)
n

are absolutely convergent. Since

(z − z0)
n = (z − z0)

�(z − z0)
n−�,

Cauchy’s multiplication theorem then implies that (3.4.10) holds. �
Exercise 3.4.9.

(a) Let (tn)n∈N0 be a sequence of non-zero numbers. Show that

lim inf
n→∞ tn =

1

lim supn→∞
1
tn

.

(b) Let R be the radius of convergence of the series

f(z) =

∞∑
n=0

anz
n,

and assume that an 
= 0 for all n ∈ N0. What can you say about the radius
of convergence of the series

g(z) =
∞∑

n=0

1

an
zn.
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The following is a classical exercise (as most of the exercises presented in this
book); see, e.g., [209, Exercice 200, p. 75]. It corresponds to set a = 0 and N → ∞
in formulas (1.3.7).

Exercise 3.4.10. Compute, for a real number r of absolute value strictly less than
1 and θ ∈ R, the sums

S(r, θ) =

∞∑
n=1

rn sin(nθ)

and

C(r, θ) =

∞∑
n=0

rn cos(nθ).

On a similar vein, try the following ([209, Exercice 199, p. 75]):

∞∑
n=1

nrn sin(nθ) =
r(1 − r2) sin θ

(1− 2r cos θ + r2)2
. (3.4.11)

Hint. Recall that

z(1 + 2z + 3z2 + 4z3 + · · · ) = z

(1− z)2
. (3.4.12)

There are (at least) two ways to prove this formula. The easiest (but logically
not at this place in the book) is to resort to the general theorem on differentiation
of power series in their disk of convergence and to differentiate the power series of
1/(1− z). The more direct one is as follows: Start from (1.1.54):

1 + z + · · ·+ zN =
1− zN+1

1− z
.

This is an identity between two rational functions, and we can differentiate to
obtain

1 + 2z + · · ·+NzN−1 =
1

(1− z)2
−
{
(N + 1)zN(1− z) + zN+1

(1− z)2

}
, (3.4.13)

or

z + 2z2 + · · ·+NzN = z · NzN+1 − (N + 1)zN + 1

(1− z)2
. (3.4.14)

You may also decide to prove the above formula by induction if you do not want to
allow differentiation of rational functions at this stage. Then multiply both sides
of (3.4.13) by z and let N → ∞ to obtain (3.4.12). This last equation will be
instrumental to compute (3.4.11). Exercise 4.4.3 is also connected to the previous
discussion.

Yet another way to find closed formulas for sums as in (3.4.11) and in (4.4.7)
below is to differentiate term by term the series defining C(r, θ) and S(r, θ) with
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respect to θ or r. This is legitimate because the derivatives converge uniformly on
every closed disk |z| ≤ R < 1. For instance, differentiating with respect to θ both
sides of the formula giving C(r, θ) we obtain (3.4.11).

We note that equation (3.4.13) can be generalized as follows; see [203, (3.14),
p. 11]:

N−1∑
n=0

(
n+ p− 1

n

)
zn =

1

(1− z)p
− zN

1− z

{
p−1∑
n=0

(
N + p− 1
N + n

)(
z

1− z

)n
}
,

and moreover, for |z| < 1,∣∣∣ zN

1− z

{
p−1∑
n=0

(
N + p− 1
N + n

)(
z

1− z

)n
}∣∣∣ ≤ (N + p− 1)p−1|z|N

(1− |z|)p .

See [203, p. 12] for the latter.

As mentioned in [125, p. 205], the formulas of Exercise 1.3.5 can be gener-
alized as follows (see [192, Exercise 3, p. 127] for j = 0 and [124, p. 210], for the
general case).

Exercise 3.4.11. Let f(z) =
∑∞

k=0 akz
k be a convergent power series with radius

of convergence R. Let n ∈ N and j ∈ {0, . . . , n− 1}. Show that, for |z| < R,

∞∑
k=0

aj+knz
j+kn =

∑n−1
u=0 w

−juf(wuz)

n
, (3.4.15)

where w = exp 2πi
n .

Exercise 1.3.5 corresponds to f(z) = (1 + z)n. See also Exercise 6.3.10 for a
related question.

Exercise 3.4.12 below is [52, Lemma 4, p. 233]. See the discussion before
Exercise 3.1.10 for more on this exercise. Interestingly enough, the proof uses the
finite case, i.e., Exercise 3.1.10. It is of course possible to give a direct proof for
all cases, for instance by computing∫ 2π

0

|f(reit)|2dt (3.4.16)

for r ∈ (0, 1). See Exercise 5.6.12 in relation with (3.4.16).

Exercise 3.4.12. Let f(z) =
∑∞

n=0 anz
n be a power series which converges in the

open unit disk and assume moreover that

|f(z)| ≤ 1, ∀z ∈ D. (3.4.17)

Show that
|an| ≤ 1, ∀n ∈ N0.
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Exercise 3.4.13. Let m be a continuous complex-valued function defined on the
interval [0, 1]. Show that the expression

f(z) =

∫ 1

0

eztm(t)dt

exists for every z ∈ C and that

f(z) =

∞∑
n=0

zn
∫ 1

0 tnm(t)dt

n!
, ∀z ∈ C. (3.4.18)

In connection with the previous exercise, see also Exercise 4.2.14.

We have defined the exponential function ez (which we also denote by exp z)
in Section 1.2 by the formula (1.2.3)

ez = ex(cos y + i sin y).

As already reminded, one defines in elementary calculus the exponential function
ex in terms of a power series

ex =

∞∑
n=0

xn

n!
, x ∈ R.

In the next exercise we show that this last formula can still be used in the complex
case to define the exponential function.

Exercise 3.4.14. Let z = x+ iy ∈ C. Show that

ex(cos y + i sin y) =

∞∑
n=0

zn

n!
. (3.4.19)

Now we therefore have (1.2.6)

ex(cos y + i sin y) =

∞∑
n=0

zn

n!
= lim

p→∞

(
1 +

z

p

)p

.

The following exercise has a much easier proof using complex integration, see
Exercise 5.2.6. At this stage, we give a proof based on the power series definition
of the exponential, and using real integration of a complex-valued function.

Exercise 3.4.15. Let z1 and z2 be in the left closed half-plane. Show that

|ez1 − ez2 | ≤ |z1 − z2|. (3.4.20)
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Hint. Show that

ez − 1 = z

∫ 1

0

etzdt. (3.4.21)

The next inequality plays an important role in certain infinite products; for
the proof, see the solutions of Exercises 3.7.9 and 3.7.11. We repeat the proof for
completeness.

Exercise 3.4.16. Prove that, for every z ∈ D,

|1− (1− z)ez| ≤ |z|2. (3.4.22)

Finally, we recall the definitions of the trigonometric functions (1.2.13) in
terms of power series. These definitions are known from calculus classes, when
restricted to a real argument.

sin z =
∞∑
n=0

(−1)nz2n+1

(2n+ 1)!
,

cos z =

∞∑
n=0

(−1)nz2n

(2n)!
,

sinh z =

∞∑
n=0

z2n+1

(2n+ 1)!
,

cosh z =

∞∑
n=0

z2n

(2n)!
.

(3.4.23)

3.5 Abel’s theorem and behaviour on the boundary

The study of the convergence of a power series of radius of convergence R on the
circle |z| = R is a difficult problem. For instance the series

f(z) =

∞∑
n=1

zn

n2

has radius of convergence R = 1 and converges for every z on the unit circle.
The convergence is moreover absolute and uniform. On the other hand, the power
series ∞∑

n=0

zn

has the same radius of convergence, but converges for no z on the unit circle, since
the running term zn does not go to 0 when z is on the unit circle.

We now present Abel’s summation theorem; see for instance [31, p. 127]. To
ease the presentation we divide the result into two parts, namely Theorems 3.5.1
and 3.5.4.
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Theorem 3.5.1. Let (an)n∈N and (bn)n∈N be two sequences, of complex and real
numbers respectively, and assume that:

(1) The bn ≥ 0 and the sequence (bn)n∈N decreases to 0.

(2) There is a number K such that all the partial sums∣∣∣∣∣
m∑
�=1

a�

∣∣∣∣∣ ≤ K.

Then the series
∑∞

n=1 anbn converges.

The proof of the above theorem is a consequence of the identity

M∑
n=1

anbn =

M∑
k=2

(
k−1∑
u=1

au

)
(bk−1 − bk) +

(
M∑
u=1

au

)
bM , (3.5.1)

valid for M ≥ 2. For instance, for M = 3 we have

a1b1 + a2b2 + a3b3 = a1(b1 − b2) + (a1 + a2)(b2 − b3) + (a1 + a2 + a3)b3,

and

a1b1 + a2b2 + a3b3 + a4b4 = a1(b1 − b2) + (a1 + a2)(b2 − b3)

+ (a1 + a2 + a3)(b3 − b4) + (a1 + a2 + a3 + a4)b4

for M = 4.

We also note that (3.5.1) implies the useful upper bound∣∣∣∣∣
M∑
n=1

anbn

∣∣∣∣∣ ≤ Kb1, (3.5.2)

or, more generally, for N ≤ M ,∣∣∣∣∣
M∑

n=N

anbn

∣∣∣∣∣ ≤ KbN , (3.5.3)

which is obtained from (3.5.2) by a shift of index n �→ n+N − 1.

Remark 3.5.2. One can weaken the first condition in the theorem and assume
that the sequence (bn)n∈N is of bounded variation (see Remark 3.7.10 below for
the latter).

To solve Exercise 3.5.3 you need Theorem 3.5.1, and inequality (1.2.9). When
θ = π we have the case of an alternating series.
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Exercise 3.5.3. For which real θ does the sum
∞∑

n=1

einθ√
n

(3.5.4)

converge?

The power series
∑∞

n=1
zn√
n
converges in D, and the sum (3.5.4) defines “its

boundary values”. The following theorem makes this statement more precise.

Theorem 3.5.4. Let f(z) =
∑∞

n=0 anz
n be a power series with radius of convergence

R, and assume that for some θ ∈ [0, 2π] the series
∑∞

n=0 anR
neinθ converges.

Then,

lim
r→R

r∈(0,R)

f(reiθ) =

∞∑
n=0

anR
neinθ. (3.5.5)

Remark 3.5.5. Rather than a radial limit, one can also consider z tending to Reiθ

in a set of points z satisfying

|Reiθ −z| ≤ α(R− |z|) (3.5.6)

for some α > 0 (that is, z stays inside a Stolz angle).

The proof of Theorem 3.5.4 is a consequence of Theorem 3.5.1, and is now
outlined (see also for instance [112, pp. 250–251]). Fix ε > 0. By hypothesis there
exists N ∈ N such that

M ≥ N + 1 =⇒
∣∣∣∣∣

M∑
n=N+1

anR
neinθ

∣∣∣∣∣ ≤ ε

3
. (3.5.7)

Similarly, and with r ∈ (0, R), applying (3.5.3) with anR
neinθ in place of an and

rn

Rn instead of bn leads to∣∣∣∣∣
M∑

n=N+1

anr
neinθ

∣∣∣∣∣ =
∣∣∣∣∣

M∑
n=N+1

anR
neinθ

rn

Rn

∣∣∣∣∣
≤
∣∣∣∣∣

M∑
n=N+1

anR
neinθ

∣∣∣∣∣ rN+1

RN+1

≤
∣∣∣∣∣

M∑
n=N+1

anR
neinθ

∣∣∣∣∣ ≤ ε

3
.

(3.5.8)

It suffices now to write∣∣∣∣∣
∞∑
n=0

anr
neinθ −

∞∑
n=0

anR
neinθ

∣∣∣∣∣ ≤
∣∣∣∣∣

N∑
n=0

an(r
n −Rn)einθ

∣∣∣∣∣
+

∣∣∣∣∣
∞∑

n=N+1

anr
neinθ

∣∣∣∣∣+
∣∣∣∣∣

∞∑
n=N+1

anR
neinθ

∣∣∣∣∣ .
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For a given ε one first finds N such that each the last two terms is smaller
than ε

3 (see (3.5.7) and (3.5.8) with M → ∞). Then one finds r0 such that the

finite sum
∣∣∑N

n=0 an(r
n −Rn)einθ

∣∣ ≤ ε
3 for r ∈ (r0, R).

Question 3.5.6. Modify the proof to obtain the result when z varies in a set of the
form (3.5.6).

The following exercise will be used in Exercise 10.3.9, where a conformal map
from the open unit disk onto a square is studied. The proof of the exercise itself
is of interest only when the series

∑∞
n=0 αn is not assumed to converge.

Exercise 3.5.7. Let (αn)n∈N0 be a decreasing sequence of positive numbers, with
limit equal to 0, and let θ ∈ [−π

4 ,
π
4 ] \ {0}, and assume that

M =

∞∑
n=0

αn

n+ 1
< ∞ (3.5.9)

(1) Show that∫ 1

0

( ∞∑
n=0

αnt
4nei(4n+1)θ

)
dt =

∞∑
n=0

αn
ei(4n+1)θ

4n+ 1
(3.5.10)

= M + i

∫ θ

0

( ∞∑
n=0

αne
i(4n+1)u

)
du,

where M is given by (3.5.9).

(2) Show that (3.5.10) still holds for θ = 0.

3.6 Summable families

Before trying to solve the exercises in this section, the reader may want to go to
Section 14.3, where the highlights on summable families are reviewed.

Exercise 3.6.1. Show that
∞∑

n=1

zn

1 + zn
=

∞∑
p=1

(−1)(p−1)zp

1− zp
, |z| < 1.

One more exercise related to elliptic functions; see [47, p. 235].

Exercise 3.6.2. Show that the family of functions indexed by Z2

fpq(z) =

⎧⎪⎨⎪⎩
1

z2
, if (p, q) = (0, 0)

1

(z − (p+ iq))2
− 1

(p+ iq)2
, if (p, q) 
= (0, 0)

is summable for every z 
∈ Z+ iZ, and that its sum ℘(z) satisfies

℘(z) = ℘(z + 1) = ℘(z + i).
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3.7 Infinite products

Infinite products seem to first appear in 1579 in the work of Viete, who proved

2

π
=

√
1

2

√
1

2
+

1

2

√
1

2

√√√√1

2
+

1

2

√
1

2
+

1

2

√
1

2
· · · .

The first to have made a systematic development of infinite products is Euler. See
[188, p. 3] for these and more information.

Recall that the infinite product
∏∞

k=0 bk is said to converge if the sequence∏n
k=0 bk converges to a number different from 0. In particular, all the numbers bk

are assumed different from 0. Write bk = 1 + ak. The infinite product is said to
converge absolutely if the infinite product

∏∞
k=0(1 + |ak|) converges to a number

different from 0. The infinite product is then convergent. Note that it may be
that the product

∏∞
k=0 |1+ ak| converges while the infinite product

∏∞
k=0(1 + ak)

diverges, as is illustrated by the example

∞∏
k=1

(
1 +

i

k

)
. (3.7.1)

See [39, TG VIII.26, Exercice 4], [97, p. 354] for the latter. In this book the result
is explicated in Section 4.4 since it uses the notion of logarithm. See Exercise
4.4.15. We also mention in that section an alternative condition for convergence
of an infinite product in terms of logarithms. See Theorem 4.4.14.

One can find a number of approaches to infinite products in textbooks. One
can discuss them after developing function theory. In particular using the proper-
ties of the function ln(1 − z), results can be proved in a quite short way. See for
instance Lang’s book [143, p. 372]. One can also give conditions in terms of the
arguments of the elements of the products; see for instance [5, Theorem 6, p. 192].
Here, we focus on the absolute convergence, see [47] and [77, pp. 208–209], and
mention the following result:

Theorem 3.7.1. Let (an)n∈N0 be a sequence of numbers all different from −1, and
assume that ∞∑

n=0

|an| < ∞. (3.7.2)

Then, the infinite product
∏∞

n=0(1+an) is absolutely convergent. Let P denote the
value of the infinite product. Then it holds that∣∣∣∣∣

N∏
n=0

(1 + an)− P

∣∣∣∣∣ ≤ e2
∑∞

n=0 |an|
∞∑

n=N+1

|an|. (3.7.3)
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The proof below appears for instance in [47], [77], [167, pp. 284–286]. It has
the advantage of being valid in much more general settings than the complex
numbers. It is important to master the details of the proof because of various
upper bounds which are derived in it.

Proof of Theorem 3.7.1.

Step 1: It holds that∣∣∣∣∣∣
n∏

j=0

(1 + aj)− 1

∣∣∣∣∣∣ ≤
⎛⎝ n∏

j=0

(1 + |aj |)

⎞⎠− 1. (3.7.4)

We proceed by induction: For n = 0 the inequality is trivial. Assume now that
(3.7.4) holds at rank n. Then we have∣∣∣∣∣∣

n+1∏
j=0

(1 + aj)− 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
⎛⎝ n∏

j=0

(1 + aj)

⎞⎠ (1 + an+1)− 1

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
⎛⎝ n∏

j=0

(1 + aj)

⎞⎠− 1

∣∣∣∣∣∣+ |an+1|

⎛⎝ n∏
j=0

(1 + |aj |)

⎞⎠
≤

⎛⎝⎛⎝ n∏
j=0

(1 + |aj |)

⎞⎠− 1

⎞⎠+ |an+1|

⎛⎝ n∏
j=0

(1 + |aj |)

⎞⎠
=

⎛⎝ n∏
j=0

(1 + |aj |)

⎞⎠ (1 + |an+1|)− 1

=

⎛⎝n+1∏
j=0

(1 + |aj |)

⎞⎠ − 1,

where we have used the induction hypothesis to go from the second to the third
line.

Note that, replacing aj by aj+n we also get for m > n:∣∣∣∣∣
m∏

k=n+1

(1 + ak)− 1

∣∣∣∣∣ ≤
(

m∏
k=n+1

(1 + |ak|)
)

− 1. (3.7.5)

Step 2: We set

bn =

n∏
j=0

(1 + aj).
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It holds that

|bn| =
n∏

k=0

|1 + ak|

≤
n∏

k=0

(1 + |ak|)

≤
n∏

k=0

e|ak| ≤ e
∑∞

k=0 |ak| = eK < ∞,

with K =
∑∞

k=0 |ak|.

Step 3: (bn)n∈N0 is a Cauchy sequence.

Indeed, for m > n and using (3.7.5),

|bm − bn| =
(

n∏
k=0

|1 + ak|
)

·
∣∣ m∏
k=n+1

(1 + ak)− 1
∣∣

≤ eK

{(
m∏

k=n+1

(1 + |ak|)
)

− 1

}
.

(3.7.6)

But, we have that(
m∏

k=n+1

(1 + |ak|)
)

− 1 ≤ e
∑m

k=n+1 |ak| − 1

≤
(

m∑
k=n+1

|ak|
)
e
∑m

k=n+1 |ak|

≤
(

m∑
k=n+1

|ak|
)
eK ,

(3.7.7)

where we have used the inequality

ex ≤ 1 + xex, x ≥ 0,

with x =
∑m

k=n+1 |ak|.

Step 4: Let r0, r1, . . . ∈ (0, 1) be such that
∑∞

k=0 rk < 1. Then it holds that

n∏
k=0

(1− rk) ≥ 1−
n∑

k=0

rk, n = 0, 1, . . . . (3.7.8)
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We proceed by induction. For n = 0, (3.7.8) holds trivially. Assume that it holds
at rank n. Then

n+1∏
k=0

(1− rk) =

(
n∏

k=0

(1− rk)

)
(1− rn+1)

≥ (1−
n∑

k=0

rk)(1 − rn+1), (since (3.7.8) holds at rank n)

≥ 1− (

n∑
k=0

rk)− rn+1,

where we have used that (3.7.8) holds at rank 2 to go to the last line. This shows
that (3.7.8) holds at rank n+ 1, and hence for every n ∈ N0.

Step 5: limn→∞ bn 
= 0.

Indeed, let N be such that
∑∞

k=N |ak| < 1/2. Using the preceding step we can
write for M ≥ N ,∣∣∣∣∣

M∏
k=N

(1 + ak)

∣∣∣∣∣ ≥
M∏

k=N

(1− |ak|) ≥ 1−
M∑

k=N

|ak| ≥ 1− 1/2 = 1/2.

Hence ∣∣∣∣∣
∞∏

k=N

(1 + ak)

∣∣∣∣∣ ≥ 1/2,

and so

lim
n→∞ |bn| =

(
N∏

k=1

|1 + ak|
)( ∞∏

k=N+1

|1 + ak|
)

≥
(

N∏
k=1

|1 + ak|
)

·
(
1

2

)
> 0.

Step 6: The bound (3.7.3)∣∣∣∣∣
N∏

n=0

(1 + an)− P

∣∣∣∣∣ ≤ e2
∑∞

n=0 |an|
∞∑

n=N+1

|an|

is in force.

This follows directly from (3.7.6) and (3.7.7), and letting m → ∞. �

Remarks 3.7.2.

(1) Inequality (3.7.3) is of paramount importance in the study of the convergence
of the infinite product, in particular when the an are functions of the complex
variable. It then follows from (3.7.3) that uniform convergence of the series
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∑∞
n=0 |an(z)| in some (usually compact) set K will imply uniform conver-

gence of the sequence of the partial products. See [18, Proposition 4.10.1, p.
157] for a complete result related to products of functions, which uses in the
proof estimates on the logarithm function, and not the above estimates.

(2) We note that (3.7.8) holds under a weaker requirement, namely rk ∈ (−∞, 1)
for all k. When r1 = r2 = · · · we then get back Bernoulli’s lemma (see, e.g.,
[112, Exercise 2.4, p. 28]):

(1 + x)n ≥ 1 + nx, x ∈ (−1,∞) and n ∈ N.

Theorem 3.7.1 is still valid in a (possibly non-commutative) Banach algebra
with identity, say B, with norm ‖ · ‖ such that

‖ab‖ ≤ ‖a‖ · ‖b‖,

but one loses a bit the specificity of complex numbers. The proof goes in the
same way, with absolute value replaced by the norm of B. Taking B = CN×N

with the Euclidean norm (or any other norm, since all norms are equivalent in a
finite-dimensional vector space) we have the following result, which will play an
important role in Section 11.5.

Theorem 3.7.3. Let (An)n∈N0 be a sequence of matrices in CN×N such that
det(IN +An) 
= 0 for all n ∈ N0 and

∞∑
n=0

‖An‖ < ∞.

Then the sequence of matrices

Pn = (IN +A0)(IN +A1) · · · (IN +An), n = 0, 1, . . .

converges to an invertible matrix in the norm ‖ · ‖.

The limit in the above theorem will be denoted by

�∞∏
n=0

(IN +An).

Because of the lack of commutativity, other choices of partial products are possible.
For instance one could take

Qn = (IN +An) · · · (IN +A1)(IN +A0), n = 0, 1, . . . .

The limit is then denoted by

�∞∏
n=0

(IN +An).
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An analog of Theorem 3.7.1 does not hold when absolute convergence is not re-
quired, as one sees from the following classical counter-example (see for instance
[192, Exercise 6, p. 294], and [180, p. 43], [28, Exercise 4, p. 226] for item (a)). In
that setting, see also Theorem 4.4.14.

Exercise 3.7.4.

(a) Show that the infinite product

∞∏
n=2

(
1 +

(−1)n√
n

)
(3.7.9)

diverges, while the series
∞∑

n=2

(−1)n√
n

(3.7.10)

converges.

(b) Let

a2n−1 = − 1√
n

and a2n =
1√
n
+

1

n
, n = 2, 3, . . . .

Then the series
∑∞

n=2 an diverges and the infinite product
∏∞

n=2(1 + an)
converges.

The next exercise, taken from [5, Exercise 1, p. 193], also deals with an infinite
product of real numbers.

Exercise 3.7.5. Compute, if it converges, the value of the infinite product

∞∏
n=2

(
1− 1

n2

)
.

The following infinite products appear in the theory of fractals; see [129],
[70]. It is set for a real variable t, but it can be also be chosen complex. For the
case ρ = 2, see Exercise 3.7.15.

Exercise 3.7.6. Let ρ > 1 and t ∈ R. Show that the infinite product

∞∏
n=1

cos

(
t

ρn

)
(3.7.11)

converges, with the exception of a countable number of values of t.

Exercise 3.7.7. Show that the infinite product
∏∞

k=1

(
1 + zk

k2

)
converges in the

closed unit disk, with the exception of the point z = −1.

It is important to express analytic functions as infinite products. An im-
portant instance is Exercise 13.1.1, which deals with elliptic functions. See [107,
Exercice 604, p. 91]. We first give some other examples.
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Exercise 3.7.8. Let 0 < |q| < 1. Show that the infinite product

∞∏
�=1

(1− q�z)

converges in C for all z and that it vanishes only at the points z = q−�, � = 1, 2, . . ..
Show that the convergence is uniform in every set of the form |z| ≤ r, where
r ∈ (0, 1), and that the limit satisfies the functional equation

f(z) = (1− qz)f(qz). (3.7.12)

A follow-up of the previous exercise is given in Section 4.2; see Exercise 4.2.25.

See Exercise 3.4.16 for a result related to the exercise below.

Exercise 3.7.9. Let a0, a1, a2, . . . be a sequence of complex numbers such that a0 =
a1 = 1 and

∞∑
n=0

|an+1 − an| < ∞. (3.7.13)

Show that the convergence radius of the power series f(z) =
∑∞

n=0 anz
n is at

least 1. Assume that it is equal to infinity. Show that the infinite product

∞∏
n=2

(
1− z

n

)
f(z/n)

converges in C, and that it vanishes at the points z = 2, 3, . . ..

Remark 3.7.10. Sequences which satisfy (3.7.13) are called of bounded variation.
Note that a decreasing sequence of positive numbers is always of bounded variation
since

∞∑
n=0

|an+1 − an| = lim
N→∞

N∑
n=0

|an+1 − an|

= lim
N→∞

N∑
n=0

(an − an+1)

= lim
N→∞

a0 − aN+1

≤ a0.

For instance, the decreasing sequence 1, 12 ,
1
3 , . . . is of bounded variation.

The following exercise is a special case of Exercise 3.7.9 and is related to
Euler products.
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Exercise 3.7.11. Show that the infinite product

∞∏
n=1

(
1 +

z

n

)
e−z/n

converges to a non-zero number for all z different from −1,−2, . . ..

The solution of the preceding exercise is based on the inequality (3.4.22)

|1− (1− z)ez| ≤ |z|2, for |z| ≤ 1.

More generally, define for p ∈ N,

Ep(z) = (1− z)e

(
z+ z2

2 +···+ zp

p

)
. (3.7.14)

The function Ep is called a Weierstrass factor, and it holds that

|1− Ep(z)| ≤ |z|p+1, |z| ≤ 1. (3.7.15)

This last inequality is the key to the Weierstrass product theorem. For p > 1 the
proof we present involves derivative, and is differed to Section 4.4. See Exercise
4.4.22.

The next exercise deals with a very important family of functions, called
Blaschke products.

Exercise 3.7.12. Let z0, z1, . . . be a sequence of numbers in the open unit disk,
different from 0 and such that

∞∑
n=0

(1− |zn|) < ∞. (3.7.16)

Show that the product
∞∏

n=0

(
|zn|
zn

zn − z

1− zzn

)
(3.7.17)

converges for z in the open unit disk and different from the points z = zn, n =
0, 1, . . ..

Exercise 3.7.13. Let z0, z1, . . . be a sequence of numbers in the open upper half-
plane, and such that

∞∑
n=0

Im zn < ∞. (3.7.18)

Show that the product
∞∏
n=0

z − zn
z − zn

(3.7.19)

converges for z in the open upper half-plane and different from the points z = zn,
n = 0, 1, . . ..
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Remark 3.7.14. Blaschke products play an important role in complex analysis; see
for instance [69], [121], [190]. Blaschke products are examples of analytic functions;
see Exercise 6.7.1. It is of interest to study the boundary behaviour of infinite
Blaschke products. For instance, when (3.7.16) is strengthened to

∞∑
n=0

(1− |zn|)α < ∞, (3.7.20)

where α ∈ (0, 1), the Blaschke product has radial limits of modulus 1 everywhere,
at the possible exception of a set of α-capacity 0 (we will not recall the definition
of the latter). See [51, p. 14] and [93]. We note that the case where condition
(3.7.16) fails is of special importance. The product diverges, but this means that
there is uniqueness in some underlying interpolation problem. In another line of
research, one can find in [51, Chapter 10, p. 86] results regarding generalizations
of Blaschke products, when (3.7.16) is weakened, for instance to the condition of
the form ∞∑

n=0

(1− |zn|)2 < ∞.

See [141] for this case.

You can find examples of infinite products appearing in the theory of wavelets
in [90, § 4]. See also Exercise 4.2.10 below.

Exercise 3.7.15 (see for instance [203, Exercise 4, p. 66] for (3.7.21)).

(a) Show that

|1− cos z| ≤ |z|2
2

e|z|. (3.7.21)

(b) Show that the infinite product

∞∏
n=0

cos(z/2n) (3.7.22)

converges for every complex number z such that cos(z/2n) 
= 0.

The following exercise comes from [112, p. 64].

Exercise 3.7.16. The purpose of the exercise is to show that

sinh z = z

∞∏
k=1

(
1 +

z2

k2π2

)
, (3.7.23)

cosh z =
∞∏
k=0

(
1 +

4z2

(2k + 1)2π2

)
, z ∈ C. (3.7.24)
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(a) Using formulas (1.5.10) and (1.5.12), show that for every z ∈ C,

(
1 +

z

2n

)2n
−
(
1− z

2n

)2n
= 2z

n−1∏
k=1

⎛⎜⎝1 +
z2

4n2

1 + cos
kπ

n

1− cos
kπ

n

⎞⎟⎠ .

(b) Prove (3.7.23) using (14.7.1) (see also Theorem 14.7.2).

(c) Proceed in a similar way to prove (3.7.24), but now starting from (1.5.8).

We note that replacing z by iz in (3.7.23) and (3.7.24) respectively leads to
the formulas

sin z = z

∞∏
k=1

(
1− z2

k2π2

)
, (3.7.25)

cos z =

∞∏
k=0

(
1− 4z2

(2k + 1)2π2

)
, (3.7.26)

where z ∈ C.

3.8 Multiplicable families

In Theorem 3.7.1 the infinite product will be the same for any rearrangement of
the indices. More generally, one can consider an infinite product of the form∏

w∈L

(1 + aw)

where L is a countable set and where∑
w∈L

|aw| < ∞.

The function appearing in the following question is called the Weierstrass sigma
function (associated to the given lattice L). It plays a key role in the theory of
elliptic functions. See Section 13.1.

Question 3.8.1. Let L = {n+ im ; n,m ∈ N0}. Show that the infinite product

σ(z) = z
∏
w∈L
w 
=0

(
1− z

w

)
e

(
z
w+ z2

2w2

)
(3.8.1)

converges and vanishes only at the points of the lattice L.

Hint. In the proof use is made that∑
w∈L
w 
=0

1

|w|3 < ∞.

See the proof of Exercise 3.6.2.



3.9. Solutions 123

3.9 Solutions

Solution of Exercise 3.1.1. Consider the example of Exercise 1.1.11:

z(t) =
1

1 + cos t+ i sin t
,

where t is real and not an odd multiple of π. Then,

lim
t→π

z(t)

does not exist, but

Re z(t) ≡ 1

2
. �

Solution of Exercise 3.1.2. Using (1.6.3), or directly, we have∣∣∣∣∣1−
n∑

k=1

ake
2πikt

∣∣∣∣∣
2

= 1 +
n∑

k=1

|ak|2 −
n∑

k=1

ake
2πikt −

n∑
�=1

a�e
−2πi�t

+

n∑
k,�=1
k 
=�

aka�e
2πi(k−�)t,

and thus

1

2π

∫ 1

0

∣∣∣∣∣1−
n∑

k=1

ake
2πikt

∣∣∣∣∣
2

dt = 1 +

n∑
k=1

|ak|2. (3.9.1)

Note that (3.9.1) is just a particular case of Parseval’s equality. From (3.9.1) it
follows that

1

2π

∫ 1

0

∣∣∣∣∣1−
n∑

k=1

ake
2πikt

∣∣∣∣∣
2

dt ≥ 1,

and hence that

max
t∈[0,1]

∣∣∣∣∣1−
n∑

k=1

ake
2πikt

∣∣∣∣∣ ≥ 1. (3.9.2)

(Otherwise, the integral

1

2π

∫ 1

0

∣∣∣∣∣1−
n∑

k=1

ake
2πikt

∣∣∣∣∣
2

dt

would be strictly less than 1.) From (3.9.2) it follows that∣∣∣∣∣1−
n∑

k=1

ake
2πikt

∣∣∣∣∣ ≥ 1

for at least one value of t ∈ [0, 1]. �
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Solution of Exercise 3.1.3. We first note that for any real number β 
= 0,

1

T

∫ T

0

eiβtdt =
eiβT − 1

iβT
,

and thus

lim
T→∞

1

T

∫ T

0

eiβtdt = 0. (3.9.3)

A direct computation shows that

1

T

∫ T

0

∣∣∣∣∣1−
n∑

k=1

ake
αkit

∣∣∣∣∣
2

dt =
1

T

∫ T

0

{
1 +

n∑
k=1

|ak|2 −
n∑

k=1

ake
αkit

−
n∑

k=1

ake
−αkit +

n∑
k,�=1
k 
=�

aka�e
i(αk−α�)t

}
dt.

In view of (3.9.3) with β = αk and β = αk − α� (k 
= �), we obtain that

lim
T→∞

1

T

∫ T

0

∣∣∣∣∣1−
n∑

k=1

ake
αkit

∣∣∣∣∣
2

dt = 1 +

n∑
k=1

|ak|2 ≥ 1. (3.9.4)

Assume now that (3.1.2) was to fail, and let K = supt∈R |1−
∑n

k=1 ake
αkit|. Then,

K < 1 and we would have

lim
T→∞

1

T

∫ T

0

∣∣∣∣∣1−
n∑

k=1

ake
αkit

∣∣∣∣∣
2

dt ≤ lim
T→∞

1

T

∫ T

0

K2 = K2 < 1,

contradicting (3.9.4). �

Solution of Exercise 3.1.4. Write z0 = x0 + iy0. We then have (in view of (1.2.4))

ez0t = ex0teiy0t,

and the rest is plain by using the usual formulas for computing derivatives:

(ez0t)′ = (ex0teiy0t)′ = x0e
x0teiy0t + eix0(iy0e

iy0t) = (x0 + iy0)e
z0t. �

Solution of Exercise 3.1.5. We consider the second sum. Differentiating formula
(1.3.4) with respect to the real variable b we obtain

n−1∑
k=1

k sin(a+ bk) =
−1

sin2 b
2

{
sin

(
b

2

)(
n

2
cos

(
nb

2

)
cos

(
a+ (n− 1)

b

2

)
−n− 1

2
sin

(
nb

2

)
sin

(
a+ (n− 1)

b

2

))
−1

2
cos

b

2
sin

(
nb

2

)
cos

(
a+ (n− 1)

b

2

)}
.
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Writing n
2 = n−1

2 + 1
2 in the term n

2 cos
(
nb
2

)
cos
(
a+ (n− 1) b2

)
, we get:

n−1∑
k=1

k sin(a+ bk) =
−1

sin2 b
2

{
sin

(
b

2

)(
n− 1

2

(
cos

(
nb

2

)
cos

(
a+ (n− 1)

b

2

)
− sin

(
nb

2

)
sin

(
a+ (n− 1)

b

2

)))
+
1

2

(
cos

nb

2
sin

b

2
− cos

b

2
sin

nb

2

)
cos

(
a+ (n− 1)

b

2

)}
=

sin n−1
2 b cos(a+ n−1

2 b)− (n− 1) sin b
2 cos(a+ (n− 1

2 )b)

2 sin2( b2 )
.

A formula for the first sum is proved in much the same way using (1.3.5), and is
left to the reader. �

We note that the method is valid only for n ≥ 2. As a verification of the
formula, let us consider the case n = 2. On the left side the sum reduces to
sin(a+ b), while the formula gives

sin b
2 cos(a+

1
2b)− sin b

2 cos(a+
3b
2 )

2 sin2( b2 )
=

(sin b
2 )2 sin(a+ b) sin b

2

2 sin2( b2 )
= sin(a+ b),

where we have used the formula

cos p− cos q = 2 sin

(
p+ q

2

)
sin

(
q − p

2

)
.

Solution of Exercise 3.1.6. We have (see (1.2.9)),

n∑
k=0

eikt =
1− ei(n+1)t

1− eit
.

Differentiating with respect to t both sides of this equality, we obtain:

n∑
k=1

ikeikt =
−i(n+ 1)ei(n+1)t(1− eit) + ieit(1− ei(n+1)t)

(1 − eit)2
,

and so
n∑

k=1

keikt =
nei(n+2)t − (n+ 1)ei(n+1)t + eit

(1− eit)2
. (3.9.5)

�
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Solution of Exercise 3.1.8. (a) We have cos t =
eit + e−it

2
and so

∫ 2π

0

cos2p tdt =

∫ 2π

0

(
eit + e−it

2

)2p

dt =

∫ 2π

0

(e2it + 1)2p

22pe2pit
dt

=
1

22p

2p∑
�=0

(
2p
�

)∫ 2π

0

e2i(�−p)tdt = 2π

(
2p
p

)
22p

,

(3.9.6)

since
1

2π

∫ 2π

0

e2i(�−p)tdt =

{
0, if � 
= p,

1, if � = p.

(b) The dominated convergence theorem (see Theorem 17.5.2) implies that

lim
p→∞

∫ 2π

0

cos2p tdt = 0,

and hence the result. �

Remark. One could also prove (3.1.6) using Stirling’s formula on the asymptotic
behaviour of n! as n goes to infinity. Indeed, Stirling’s formula states in particular
that

lim
n→∞

n!√
2πnnn

en

= 1. (3.9.7)

See for instance [112, (10.17), p. 165] for the precise formula. Write(
2p
p

)
22p

=
(2p)!

(p!)!4p
=

(2p)!
√
4πp(2p)(2p)

e2p

1⎛⎜⎝ p!√
2πppp

ep

⎞⎟⎠
2 · 1

4p
·

√
4πp (2p)(2p)

e2p(√
2πppp

ep

)2

=
(2p)!

√
4πp (2p)(2p)

e2p

1⎛⎜⎝ p!√
2πp pp

ep

⎞⎟⎠
2 ·
√

1

πp
.

It then follows from (3.9.7) that

lim
p→∞

(
2p
p

)
22p

= 0.
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We note that the proof using Stirling’s formula is more precise than the proof
using the dominated convergence theorem.

Solution of Exercise 3.1.9. Making the change of variable x = 2 cos t in the inte-
gral defining mp we obtain:

mp =
2

2π

∫ 2

0

√
4− x2x2pdx

=
22p+3

2π

∫ π
2

0

(cos2p t)(sin2 t)dt

=
22p+3

2π

∫ π
2

0

(cos2p t)(1 − cos2 t)dt

=
22p+3

2π

1

4

∫ 2π

0

(cos2p t)(1− cos2 t)dt

and, using (3.9.6),

= 2 · 1
4

{
4

(
2p
p

)
−
(
2p+ 2
p+ 1

)}
=

1

2

{
4

(
2p
p

)
− (2p+ 2)(2p+ 1)

(p+ 1)(p+ 1)

(
2p
p

)}
=

1

2

(
2p
p

)(
4− (2p+ 2)(2p+ 1)

(p+ 1)(p+ 1)

)

=

(
2p
p

)
p+ 1︸ ︷︷ ︸

Catalan number

.

�

Solution of Exercise 3.1.10. We compute

1

2π

∫ 2π

0

|p(eit)|2dt = 1

2π

∫ 2π

0

⎧⎨⎩
n∑

�,k=0

p�pke
i(�−k)t

⎫⎬⎭ dt

=
1

2π

n∑
�,k=0

p�pk

∫ 2π

0

ei(�−k)tdt

=

n∑
�=0

|p�|2.

From the hypothesis, we have

1

2π

∫ 2π

0

|p(eit)|2dt ≤ 1,
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and hence
n∑

�=0

|p�|2 ≤ 1,

which implies that each of the p� is of modulus less than or equal to 1. �

Solution of Exercise 3.1.11. For a fixed z ∈ C the complex-valued function of the
real variable t,

f(t) =
1

t− z
,

has derivative

f ′(t) = − 1

(t− z)2
.

Let now z 
∈ (−∞, 0). The function f is then continuous on the negative axis, and
for every a ∈ (−∞, 0), ∫ 0

a

dt

(t− z)2
= − 1

t− z

∣∣0
a

=
1

z
− 1

z − a

−→ 1

z
as a −→ −∞. �

Solution of Exercise 3.1.12. We rewrite fm as (see also (5.5.21))

fm(z) = −i

∫
R

m(t)

t2 + 1
· tz + 1

t− z
dt.

By Exercise 2.3.16, the set
tz + 1

t− z
, t ∈ R,

is a circle, and in particular is bounded, and so fm is well defined. Furthermore,

Re fm(z) = −i

∫
R

{
1

t− z
− t

t2 + 1
− 1

t− z
+

t

t2 + 1

}
m(t)dt

= −i(z − z)

∫
R

m(t)dt

|t− z|2 . �

Solution of Exercise 3.1.13. (1) Let w = a+ ib with a > 0. Then

|e−tw| = e−ta,

and the integral
∫∞
0 e−twdt converges absolutely. Moreover,∫ ∞

0

e−twdt = lim
R→∞

∫ R

0

e−twdt =
1

w
.
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(2) If z and w are in Cr so is z + w and so∫ ∞

0

e−t(z+w)dt =
1

z + w
.

The above expression expresses 1
z+w as an inner product, and therefore defines

a positive definite kernel. More precisely, let N ∈ N, w1, . . . , wN ∈ Cr and
c1, . . . , cN ∈ C. We have

N∑
�,j=1

c�cj
w� + wj

=

∫ ∞

0

N∑
�,j=1

c�cje
−t(w�+wj)dt =

∫ ∞

0

∣∣∣∣∣
N∑
�=1

c�e
−tw�

∣∣∣∣∣
2

dt

≥ 0. �

Solution of Exercise 3.1.15. In view of (0.0.3) we have for w = c + id and d > 0
and t ≥ 0 ∣∣∣∣∫ t

−∞
eiuwr(u)du

∣∣∣∣ ≤ ∣∣∣∣∫ 0

−∞
eiuwr(u)du

∣∣∣∣ + tetdr(0),

and so

lim
t→∞

eit(λ−w)

i(λ− w)

(∫ t

−∞
eiuwr(u)du

)
= 0. (3.9.8)

We have:∫∫
[0,∞)×[0,∞)

eiλte−iswr(t − s)dtds =

∫ ∞

0

eiλt
(∫ ∞

0

e−iswr(t − s)ds

)
dt

=

∫ ∞

0

eiλt
(∫ t

−∞
e−i(t−u)wr(u)du

)
dt

=

∫ ∞

0

ei(λ−w)t

(∫ t

−∞
eiuwr(u)du

)
dt.

We now use integration by parts and obtain, thanks (3.9.8):∫ ∞

0

ei(λ−w)t

(∫ t

−∞
eiuwr(u)du

)
dt

=

[
eit(λ−w)

i(λ− w)

(∫ t

−∞
eiuwr(u)du

)]∞
0

−
∫ ∞

0

eiu(λ−w)

i(λ− w)
eiuwr(u)du

=

∫ 0

−∞ eiuwr(u)du +
∫∞
0 eiuλr(u)du

−i(λ− w)

=
ϕ(λ) + ϕ(w)

−i(λ− w)

since r(−u) = r(u). �
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Solution of Exercise 3.2.1. For t = 0 (mod 2π),

1 + eit + · · ·+ eint

n
=

n+ 1

n

and the limit is 1. For t 
= 0 (mod 2π),

1 + eit + · · ·+ eint =
1− ei(n+1)t

1− eit
,

and so

|1 + eit + · · ·+ eint| =
∣∣∣∣1− ei(n+1)t

1− eit

∣∣∣∣ ≤ 2

|1− eit| ,

and so ∣∣∣∣1 + eit + · · ·+ eint

n

∣∣∣∣ ≤ 2

n|1− eit| → 0

as n goes to infinity. �

To solve the preceding exercise, one could also have used formula (1.2.9)

1 + eit + · · ·+ eint = ei
nt
2
sin (n+1)t

2

sin t
2

, t 
= 0 (mod 2π).

Solution of Exercise 3.2.2. We recall the classical solution of (a). By hypothesis,
for every ε > 0 there exists an integer N such that:

n ≥ N =⇒ |un − �| < ε/2.

For such an N there exists N1, which can be assumed greater than or equal to N ,
such that

n ≥ N1 =⇒
∣∣∣∣u0 + · · ·+ uN −N�

n

∣∣∣∣ < ε/2.

Let n ≥ N1. We have

|vn − �| =
∣∣∣∣u0 + · · ·+ un − n�

n

∣∣∣∣
=

∣∣∣∣u0 + · · ·+ uN −N�+
∑n

k=N+1(uj − �)

n

∣∣∣∣
≤
∣∣∣∣u0 + · · ·+ uN −N�

n

∣∣∣∣+ ∣∣∣∣
∑n

k=N+1(uj − �)

n

∣∣∣∣
≤ ε

2
+

(n−N)

n

ε

2
≤ ε.

We now turn to (b). Assume that the sequence has a limit. Then, this limit
has modulus 1. But the associated sequence vn tends to 0, in view of the preceding
exercise, and we have a contradiction. �
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Solution of Exercise 3.2.3. If t = 0 (mod 2π), then

zn =
n+ 1

2
and wn =

n+ 1

2n

since 1 + · · ·+ n = n(n+1)
2 . Thus

lim
n→+∞ zn = +∞ and lim

n→+∞wn =
1

2
.

Now assume that t 
= 0 (mod 2π). We use formula (3.9.5) to obtain

zn =
eit − e(n+1)t

n(1− eit)2
+ eint

eit

eit − 1
.

Since eint has no limit as n → +∞ (see Exercise 3.2.2), it follows that the sequence
zn has no limit as n → ∞. That same formula for zn also shows that |zn| is
uniformly bounded with respect to n, and hence wn tends to 0 as n → +∞. �

Solution of Exercise 3.2.4. It suffices to apply (3.2.1)

lim
n→∞

∑n
k=0 f(k/n)

n
=

∫ 1

0

f(t)dt

to f(t) = te2πit to obtain that

lim
n→∞ zn =

∫ 1

0

te2πitdt = − i

2π
. �

Solution of Exercise 3.2.5. As already mentioned we send the reader to [62] for a
direct proof. Another proof, using the notion of radius of convergence of power
series, is presented in Exercise 5.6.4 in Section 5.6. �

Solution of Exercise 3.2.6. (a) For t = 0 or t = n the claim is trivial. For t ∈ (0, n),
we have t/n ∈ (0, 1) and we can take the logarithm on both sides. It is thus
equivalent to proving

t+ n ln

(
1− t

n

)
≤ 0, t ∈ (0, n).

Using the power expansion of ln(1− x),

ln(1− x) = −
∞∑
p=1

xp

p
, x ∈ (0, 1),

this inequality is in turn equivalent to

t+ n

(
− t

n
− t2

2n2
− · · ·

)
≤ 0.

This in turn is obvious.
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(b) Given t > 0, we take n’s such that 0 < t/n < 1. Claim (b) is equivalent
to showing that the sequence

n �→ n ln

(
1− t

n

)
is increasing. Once more using the power expansion of ln(1 − x), it is equivalent
to proving that

−n

( ∞∑
p=1

tp

pnp

)
+ (n+ 1)

( ∞∑
p=1

tp

p(n+ 1)p

)
≤ 0.

This in turn is equivalent to checking that

∞∑
p=1

tp

p

(
1

(n+ 1)p−1
− 1

np−1

)
≤ 0.

But this is clear. �

Solution of Exercise 3.3.1. In view of (1.1.39)∣∣∣∣ z2n

2 + zn + z5n

∣∣∣∣ ≤ |z|2n
2(1− |z|) , z ∈ D,

the series with running term |z|2n
2(1−|z|) converges for |z| < 1 and hence the series at

hand converges absolutely. �

Solution of Exercise 3.3.2. For z = 0 the series trivially converges since every term
is then equal to 0. Write

1

z − n
+

1

n
= − z

n2(1− z
n )

.

Given any z ∈ C there exists n0 ∈ N such that

n ≥ n0 −→ |z/n| < 1/2.

For n ≥ n0 we have:∣∣∣∣ 1

z − n
+

1

n

∣∣∣∣ = ∣∣∣∣ z

n2(1− z
n )

∣∣∣∣ ≤ |z|
n2(1− | zn |)

≤ 2|z|
n2

. (3.9.9)

Hence the series is absolutely convergent. Let now K be a compact set which does
not intersect N. It is included in a closed set of the form

K0 = {|z| ≤ R} \ ∪ {|z − nj | < εj} ,
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where we take R 
∈ N, and where the nj are the elements of N (if any) such that
|nj| < R. The εj are small enough strictly positive numbers. We now take n0 such
that, moreover

R/n0 ≤ 1/2,

and write

∞∑
n=1

(
1

z − n
+

1

n

)
=

N∑
n=1

(
1

z − n
+

1

n

)
+

∞∑
n=N+1

(
1

z − n
+

1

n

)
.

In this decomposition, we take N > n0. The first sum, which is finite, is well
defined since the positive integers smaller than R do not belong to K0. In view
of (3.9.9), the terms of the second sum are bounded by 2R

n2 , and hence the second
sum converges uniformly in K0, and hence in K. �

Solution of Exercise 3.3.3. We have

z� = e
2πi�
n , � = 0, 1, . . . , n− 1,

and (3.3.1):

nzn−1

zn − 1
=

n−1∑
�=0

1

z − z�
.

But, for |z| < 1,

1

z − z�
= − 1

z�(1 − zz−1
� )

= −
∞∑

m=0

zmz−1−m
� .

Thus, the mth coefficient in the power series expansion of
∑n−1

�=0
1

z−z�
is

−
n−1∑
�=0

z−1−m
� .

The result follows by taking conjugates since

nzn−1

zn − 1
= −n

∞∑
k=0

znk+n−1. �

Solution of Exercise 3.3.4. Let θ ∈ R, and set

Am,n(θ) =

∞∑
�=0

eim�θ

(m�+ n)!
, n = 0, 1, . . . ,m− 1. (3.9.10)

We have

ee
iθ

=

m−1∑
n=0

einθAm,n(θ). (3.9.11)
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Setting in (3.9.10)

θk =
2πk

m
, k = 0, . . . ,m− 1,

we have Am,n(θk) = Am,n. Therefore, we obtain from (3.9.11):

ee
iθk

=

m−1∑
n=0

e
2πink

m Am,n, k = 0, 1, . . . ,m− 1.

Set wk = ee
iθk and zk = eiθk . This system of equations can be rewritten in matrix

form as ⎛⎜⎜⎜⎝
w0

w1

...
wm−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎝
1 1 · · · 1
1 z1 · · · zm−1

1 zm−1
1 · · · zm−1

m−1

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

Am,0

Am,1

...
Am,m−1

⎞⎟⎟⎟⎠ . (3.9.12)

Since
1 + z� + · · ·+ zm−1

� = 0, � = 1, . . . ,m− 1,

multiplying both sides of (3.9.12) by the row vector(
1 1 · · · 1

)
,

we obtain (since the Am,n, and in particular Am,0, are real):

Am,0 =

∑m−1
k=0 ecos(

2πk
m ) cos(sin(2πkm ))

m
.

More generally, one computes Am,n by multiplying both sides of (3.9.12) by the
row vector (

1 zn · · · zm−1
n

)
,

and obtains

Am,n =

∑m−1
k=0 zn

kwk

m
,

that is,

Am,n =

∑m−1
k=0 ecos(

2πk
m ) cos(sin(2πkm )− 2πkn

m )

m
. �

The formula above seems difficult to obtain using only real analysis.

Solution of Exercise 3.3.5. Let zn = xn + iyn. By hypothesis xn ≥ 0 and so

∞∑
n=1

xn converges =⇒
∞∑

n=1

x2
n < ∞ (3.9.13)
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since x2
n ≤ xn ≤ 1 for n large enough. Since

∑∞
n=1 z

2
n converges we have that the

series ∞∑
n=1

(x2
n − y2n) =

∞∑
n=1

Re z2n

converges, and hence so does the series

−
∞∑
n=1

(x2
n − y2n) + 2

∞∑
n=1

x2
n =

∞∑
n=1

(x2
n + y2n) =

∞∑
n=1

|zn|2.

Remark that (3.9.13) does not necessarily hold when the xn are not in the

right half-plane. Take for instance xn =
(−1)n√

n
. The series

∑∞
n=1 xn converges

(use Abel’s theorem), but
∑∞

n=1 x
2
n is the harmonic series and is divergent. More

generally, consider

zn =
einθ√
n

n = 1, 2, . . .

where θ is a real number such that both θ and 2θ are not multiples of 2π (take for
instance θ = π/4). Here too, by Abel’s theorem, both the series

∑∞
n=1 zn and

∞∑
n=1

z2n =

∞∑
n=1

e2inθ

n

converge. But the series with term |zn|2 =
1

n
diverges. �

Solution of Exercise 3.3.6. (see [182, p. 306]). It suffices to take

zn =
e2πiθn

ln(n+ 1)
,

where θ is irrational. �

Solution of Exercise 3.3.7. (see [182, p. 305]). Let zn = xn + iyn. By hypothesis

|zn| ≤
xn

cosα
,

from which follows the result. �

Solution of Exercise 3.4.4. For |z| > 1 the running term of the series diverges, and
so the radius of convergence is at most equal to 1. It is equal to 1 since the sums

∞∑
p=1

(2p)(−1)2pz2p =

∞∑
p=1

2pz2p (3.9.14)
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and ∞∑
p=0

(2p+ 1)(−1)2p+1

z2p+1 =

∞∑
p=0

z2p+1

2p+ 1

both converge there.

Another, and quicker way, is of course to apply formula (3.4.3) with

an = n(−1)n .

Then,
lim sup
n→∞

|an|1/n = 1. �

The sum of the series in the above exercise is computed in closed form in
Exercise 5.7.7.

Solution of Exercise 3.4.5. For |z| < 1 we have

∞∑
n=0

|zn!| =
∞∑

n=0

|z|n! ≤
∞∑
p=0

|z|p =
1

1− |z| .

Thus the series (3.4.8) converges absolutely for every z in the open unit disk. It
does not converge for |z| ≥ 1. Indeed, the running term of a converging series goes
to 0, and this is not the case for the series with term

up =

{
zp, p = n!,

0, otherwise,

when |z| ≥ 1. �

Solution of Exercise 3.4.6. The proof is as in the previous exercise. The series
converges absolutely for every z in the open unit disk. It does not converge for
|z| ≥ 1, since its running term does not go to 0 for |z| > 1. �

As mentioned after the statement of Exercise 3.4.6, much more is true: The
unit circle is the natural boundary of the two power series considered in Exercises
3.4.4 and 3.4.6. See Exercise 6.3.3.

Solution of Exercise 3.4.9. We skip the solution of (a). To prove (b), set R−1 be
the radius of convergence of g. We have

R−1 =
1

lim supn→∞
1

|an|1/n
= lim inf

n→∞ |an|1/n,

and this last limit is in general different from

lim sup
n→∞

|an|1/n,
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so that, in general,

R−1 
= 1

R
.

To illustrate this, consider the sequence

an =

{
2n, if n is even,

3−n, if n is odd.

We have

lim sup
n→∞

|an|1/n = 2, lim inf
n→∞ |an|1/n =

1

3

and

lim sup
n→∞

|1/an|1/n = 3, lim inf
n→∞ |1/an|1/n =

1

2
.

With this choice of an, the radius of convergence of the series
∑∞

n=0 anz
n is equal

to 1/2, while the radius of convergence of the series
∑∞

n=0(1/an)z
n is 1/3.

We note that, in the general case, we will have R−1 = 1/R if and only if the
sequence |an|1/n has a limit. �

Solution of Exercise 3.4.10. We have

C(r, θ) + iS(r, θ) =

∞∑
n=0

rneinθ

=
1

1− reiθ

=
1− re−iθ

|1− reiθ|2

=
1− r cos θ + ir sin θ

1 + r2 − 2r cos θ
,

and so

C(r, θ) =
1− r cos θ

1 + r2 − 2r cos θ
and S(r, θ) =

r sin θ

1 + r2 − 2r cos θ
. (3.9.15)

�

We refer the reader to formula (8.5.1) for a related computation.

Solution of Exercise 3.4.11. In the notation of the statement of the exercise, we
have: ∑n−1

u=0 w
−juf(wuz)

n
=

∑n−1
u=0 w

−ju (
∑∞

m=0 amwumzm)

n

=

∞∑
m=0

amzm

(∑n−1
u=0 w

u(m−j)

n

)
.
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Recall that w = exp 2πi
n . Thus

n−1∑
u=0

wu(m−j) =

{
n, if m− j ∈ nZ,

0, otherwise.

Since j ∈ {0, . . . , n− 1} and m ∈ N0, we see that in fact m − j ∈ nN when
m− j ∈ nZ. The result follows. �

Solution of Exercise 3.4.12. We follow the proof of Lemma 4 in [52]. Take r and r0
in (0, 1) such that r < r0. For z ∈ D we have that |rz| ≤ r and so (3.4.4) leads to

|anrnzn| ≤ M

(
r

r0

)n

,

where M = supn∈N0
|anrn0 |. Therefore, given r and ε > 0 there exists N0 ∈ N such

that

N ≥ N0 =⇒ |
∞∑

n=N+1

anr
nzn| ≤ ε,

and so, still for N ≥ N0 and in view of (3.4.17),∣∣∣∣∣
N∑

n=0

anr
nzn

∣∣∣∣∣ =
∣∣∣∣∣
∞∑

n=0

anr
nzn −

∞∑
n=N+1

anr
nzn

∣∣∣∣∣ ≤ 1 + ε.

Using Exercise 3.1.10 we get∣∣∣∣ |an|rn1 + ε

∣∣∣∣ ≤ 1, n = 0, . . . , N.

For a given choice of r and ε we may let N → ∞ and then

|an| ≤ (1 + ε)rn, n ∈ N0.

Letting r vary in (0, 1) and ε → 0 we get that |an| ≤ 1 for all n ∈ N0. �

We remark the following: Computing (3.4.16) leads to the much stronger
statement ∞∑

n=0

|an|2 ≤ 1.

From this last equality the following claim is quite clear: If |an0 | = 1 for some
n0 ∈ N0 then

f(z) = an0z
n0 .

We leave it to the industrious to find a direct proof of this fact.
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Solution of Exercise 3.4.13. Let M = maxt∈[0,1] |m(t)|. For a given z ∈ C, let

fn(t) =
tnzn

n!
m(t).

We have

|fn(t)| ≤ M
|z|n
n!

.

Since ∞∑
n=0

M
|z|n
n!

< ∞,

Weierstrass theorem (see Theorem 14.4.1) insures that∫ 1

0

eztm(t)dt =

∫ 1

0

( ∞∑
n=0

zntn

n!

)
m(t)dt =

∞∑
n=0

zn
∫ 1

0
tnm(t)dt

n!
. �

Remark.The same result will hold ifm is only measurable with respect to Lebesgue
measure, and

∫
[0,1]

|m(t)|dt < ∞. One then has to resort to the dominated conver-

gence theorem. The same remark holds if we replace m(t)dt by a general signed
measure dμ(t) for which

∫
[0,1]

d|μ|(t) < ∞.

Solution of Exercise 3.4.14. Let us denote by ψ(z) the power series on the right
side of (3.4.19). Since the series

∞∑
n=0

|z|n
n!

converges for every z ∈ C, it follows that the series (3.4.19) converges absolutely
in C. We note that for real z, the function ψ(z) reduces to the usual exponential
function from calculus. On the other hand, for z = iy and using the known power
series expansions for sin y and cos y for real y, we have

ψ(iy) =

∞∑
n=0

(iy)n

n!

=

∞∑
p=0

(iy)2p

(2p)!
+

∞∑
p=0

(iy)2p+1

(2p+ 1)!

= cos y + i sin y.

(3.9.16)

We now show that for every pair of complex numbers z1 and z2 it holds that

ψ(z1 + z2) = ψ(z1)ψ(z2). (3.9.17)

To prove (3.9.17), we apply Cauchy’s multiplication theorem (see Theorem 14.2.1
below) to the sequences fn = (zn1 /n!) and gn = (zn2 /n!). Then,

n∑
p=0

fpgn−p =

n∑
p=0

zp1z
n−p
2

p!(n− p)!
=

1

n!

n∑
p=0

n!

p!(n− p)!
zp1z

n−p
2 =

(z1 + z2)
n

n!
,
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and we obtain

ψ(z1)ψ(z2) =

( ∞∑
n=0

zn1
n!

)( ∞∑
n=0

zn2
n!

)
=

∞∑
n=0

(z1 + z2)
n

n!
= ψ(z1 + z2).

(3.4.19) will then follow with the choices z1 = x and z2 = iy since

ex(cos y + i sin y) = ψ(x)ψ(iy) = ψ(x+ iy) =

∞∑
n=0

(x+ iy)n

n!
. �

Solution of Exercise 3.4.15. Using Weierstrass’ theorem we can write for z ∈ C,

ez − 1 =

∞∑
n=0

zn+1

(n+ 1)!
=

∞∑
n=0

zn+1

∫ 1

0

tn

n!
dt =

∫ 1

0

( ∞∑
n=0

zn+1 t
n

n!

)
dt,

so that

ez − 1 = z

∫ 1

0

etzdt.

Thus,

|ez − 1| ≤ |z|
∫ 1

0

et(Re z)dt. (3.9.18)

Let now z1 and z2 be in the closed left half-plane. Since the formula we want to
prove is symmetric in z1 and z2, we can assume without loss of generality that

Re z2 ≤ Re z1.

Then, using (3.9.18) with z = z2 − z1, we have

|ez1 − ez2 | = |ez1 | · |ez2−z1 − 1| ≤ |z2 − z1|
∫ 1

0

et(Re z2−Re z1)dt ≤ |z2 − z1|,

since we assumed Re z2 ≤ Re z1. �

Solution of Exercise 3.4.16. We have

(1− z)ez − 1 = −1 + (1− z)

(
1 + z +

z2

2!
+

z3

3!
+ · · ·

)
= −1 + 1 + z2

(
1

2!
− 1

)
+ z3

(
1

3!
− 1

2!

)
+ · · · .

Therefore, for |z| ≤ 1,

|(1 − z)ez − 1| ≤ |z2|
(
1− 1

2!

)
+ |z3|

(
1

2!
− 1

3!

)
+ · · ·

≤ |z|2
(
1− 1

2!
+

1

2!
− 1

3!
+ · · ·

)
= |z|2. �
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Solution of Exercise 3.5.3. For θ = 0 (mod 2π) we have einθ = 1 and the series
diverges. Let us now assume that θ 
= 0 (mod 2π). Then, we can apply (1.2.9).
More precisely, |1− eiθ| > 0 and we have∣∣∣∣∣

m∑
n=1

einθ

∣∣∣∣∣ =
∣∣∣∣1− eimθ

1− eiθ

∣∣∣∣
≤ 2

|1− eiθ|
def.
= M.

Thus, condition (2) in Abel’s theorem (Theorem 3.5.1) is met. The sequence
( 1√

n
)n∈N decreases to 0, and so the first condition is also met, and the series

converges. �

Solution of Exercise 3.5.7. (1) For preassigned t ∈ [0, 1] and θ ∈ [−π
4 ,

π
4 ] \ {0} we

use the bound (3.5.3) (and (1.2.9) to find K in (3.5.3)) to the sequences an = e4inθ

and bn = αnt
n, to obtain ∣∣∣∣∣

N∑
n=0

αnt
nei(4n+1)θ

∣∣∣∣∣ ≤ 2αN tN

| sin 2θ| .

Furthermore, by Abel’s theorem, the sequence of functions (still for fixed θ ∈
[−π

4 ,
π
4 ] \ {0})

fN(t) =
N∑

n=0

αnt
nei(4n+1)θ

converges pointwise for t ∈ [0, 1]. Applying the dominated convergence theorem
(see Theorem 17.5.2) to the sequence (fN )N∈N0 we obtain that∫ 1

0

( lim
N→∞

fN (t))dt = lim
N→∞

∫ 1

0

fN(t)dt = lim
N→∞

N∑
n=0

αn
ei(4n+1)θ

4n+ 1

and, using Exercise 3.5.7,

=

∞∑
n=0

αn
ei(4n+1)θ

4n+ 1

=
∞∑

n=0

αn

4n+ 1︸ ︷︷ ︸
denoted by M

+
∞∑
n=0

αn
ei(4n+1)θ − 1

4n+ 1

= M +

∞∑
n=0

i

∫ θ

0

αne
i(4n+1)udu

= M + i

∫ θ

0

( ∞∑
n=0

αne
i(4n+1)u

)
du,
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where, as above, to go from the penultimate line to the last line, we have used
(3.5.2) and (1.2.9) and the dominated convergence theorem, now with the functions

gN(u) =
N∑

n=0

αne
i(4n+1)u, N = 0, 1, . . . .

(2) For θ = 0, we need to prove that∫ 1

0

( ∞∑
n=0

αnt
4n

)
dt =

∞∑
n=0

αn

4n+ 1
,

and this identity follows directly from the monotone convergence theorem. �

Solution of Exercise 3.6.1. That the series on the left is absolutely convergent for
|z| < 1 follows from ∣∣∣∣ zn

1 + zn

∣∣∣∣ ≤ |z|n
1− |z|n ≤ |z|n

1− |z| .

Similarly the series on the right is absolutely convergent for |z| < 1. Here we want
to compute explicitly the sum on the left. We consider the family

an,p = (−1)pzn(1+p), n ∈ N and p ∈ N0.

For |z| ≤ r < 1 we have

∞∑
n=1

∞∑
p=0

|an,p| ≤
∞∑

n=1

rn

1− rn
<

∞∑
n=1

rn

1− r
< ∞,

and so the family (an,p)n∈N,
p∈N0

is absolutely summable. We have

∞∑
n=1

∞∑
p=0

an,p =

∞∑
n=1

zn

1 + zn
,

and ∞∑
p=0

∞∑
n=1

an,p =

∞∑
p=0

(−1)pz(1+p)

1− z(1+p)
,

and hence the result. �

Solution of Exercise 3.6.2. We follow the argument in the book of Choquet on
topology; see [46, 47]. For z 
∈ Z+ iZ we have∣∣∣∣ 1

(z − (p+ iq))2
− 1

(p+ iq)2

∣∣∣∣ = ∣∣∣∣ z(z − 2(p+ iq))

(z − (p+ iq))2(p+ iq)2

∣∣∣∣
≤ |z|(|z|+ 2

√
p2 + q2)

(|z| −
√
p2 + q2)2(p2 + q2)

.
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Fix now R > 0. For (p, q) such that
√
p2 + q2 > 2R and for |z| < R we have

|z|+ 2
√

p2 + q2 < R+ 2
√
p2 + q2 <

√
p2 + q2

2
+ 2
√
p2 + q2 =

5
√
p2 + q2

2
,

and ∣∣|z| −√p2 + q2
∣∣ ≥√p2 + q2 −R ≥

√
p2 + q2 −

√
p2 + q2

2
=

√
p2 + q2

2
.

Hence, ∣∣∣∣ 1

(z − (p+ iq))2
− 1

(p+ iq)2

∣∣∣∣ ≤ 5R
√
p2 + q2

2 (p2+q2)
4 (p2 + q2)

=
10R

(
√

p2 + q2)3
.

To conclude it remains to show that the family(
1

(
√
p2 + q2)3

)
(p,q)∈Z2\(0,0)

is summable. Since p2 + q2 ≥ (|p|+|q|)2
2 it is enough to show that the family

( 1
(|p|+|q|)3 )(p,q)∈Z2\(0,0) is summable. It is enough in turn to check that the family

is summable for (p, q) both greater than or equal to 1. But, for p ≥ 1,

∞∑
q=1

1

(p+ q)3
≤
∫ ∞

0

dx

(p+ x)3
=

1

2p2
.

Thus ∞∑
p=1

( ∞∑
q=1

1

(p+ q)3

)
< ∞,

and the summability follows from Theorem 14.3.1 of Section 14.3. �

Solution of Exercise 3.7.4. (a) Abel’s theorem on alternating series (see Theorem
3.5.1) insures that the series (3.7.10) converges. We now check that the infinite
product (3.7.9) diverges. Using Taylor’s formula with remainder we have

ln(1 + x) = x− x2

2
+

1

2

∫ x

0

2(x− u)2

(1 + u)3
du, x ∈ (−1, 1),

and so

ln(1 + x) = x− x2

2
+ t(x), x ∈ (−1, 1),

where, for |x| ≤ 1/2,

|t(x)| ≤ 8|x|3
3

.
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Thus, for n ≥ 4,

ln

(
1 +

(−1)n√
n

)
=

(−1)n√
n

− 1

2n
+ tn, |tn| ≤

8

3n3/2
.

It follows that the series
∑∞

n=2 ln
(
1 + (−1)n√

n

)
diverges to −∞, and so the infinite

product has limit 0.

(b) The series is divergent since

2p∑
n=3

an =

p∑
n=2

1

n
.

As for the product, we have

a2n−1a2n = 1− 1

n
√
n
,

and so the sequence of products P2p =
∏2p

n=3(1 + an) converges since

P2p =

2p∏
n=3

(1 + an) =

p∏
n=2

(
1− 1

n
√
n

)
.

Furthermore, we have

P2p+1 = P2p ·
(
1− 1√

p+ 1

)
,

and so the sequence P2p+1 converges to the same limit as the sequence P2p, and
hence the result. �

Solution of Exercise 3.7.5. It is readily shown by induction that

N∏
n=2

(
1− 1

n2

)
=

N + 1

2N
.

Thus the infinite product is convergent, and its value is 1/2. �

Solution of Exercise 3.7.6. The infinite product will in particular diverge at the
points t where one of the factors vanishes, that is at those t such that

cos

(
t

ρn

)
= 0

for some n ∈ N, that is

t =
π

2
ρn(2k + 1), n ∈ N, k ∈ Z.
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Consider now a point different from those points. Since cos is an even function we
focus on t > 0. Since

sinu ≤ u, u ≥ 0,

we have

1− cosu =

∫ u

0

sin vdv ≤
∫ u

0

vdv =
u2

2
,

and therefore

1− cos

(
t

ρn

)
≤ t2

ρ2n
.

Since ρ > 1 the series with running term t2

ρ2n converges and so the infinite product
also converges. �

Solution of Exercise 3.7.7. The series

∞∑
k=1

|z|k
k2

converges in the closed unit disk, and only there. Furthermore, the equation

1 +
zk

k2
= 0

has a solution in the closed unit disk only for k = 1; then z = −1. �

Solution of Exercise 3.7.8. The series with running term q�z converges absolutely
for every z ∈ C. The infinite product converges thus to a function (which is entire)
that vanishes only at the point q−�. Furthermore,

(1− qz)f(qz) = (1− qz)

∞∏
�=1

(1 − q�+1z) = f(z). �

Solution of Exercise 3.7.9. We have for n ≥ 2,

an = a1 +

n∑
�=2

(a� − a�−1)

and hence

|an| ≤ |a1|+
n∑

�=2

|a� − a�−1| ≤ |a1|+
∞∑
�=2

|a� − a�−1|

and so the sequence (|an|)n∈N0 is bounded and thus the radius of convergence of
the power series

∑∞
n=0 anz

n is at least 1. Set g(z) = (1 − z)f(z). We have, for
|z| < 1,

g(z) = (1− z)

( ∞∑
n=0

anz
n

)
= 1 + z(−1 + a1) + z2(−a1 + a2) + · · ·+ zn(−an−1 + an) + · · · .
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Since a1 = 1 we have

sg(z) = 1 +

∞∑
n=2

zn(−an−1 + an),

and so, for |z| < 1, we have:

|g(z)− 1| ≤
∞∑
n=2

|z|n| − an−1 + an|

≤ |z|2
∞∑

n=2

| − an−1 + an|.
(3.9.19)

We now assume that the radius of convergence is equal to infinity. Let z ∈ C and
let n0 ∈ N be such that |z/n0| < 1. Using (3.9.19) we have

|g(z/n)− 1| ≤ |z|2
n2

( ∞∑
n=2

| − an−1 + an|
)

for n ≥ n0. By Theorem 3.7.1, the product converges and vanishes at the points
z = 2, 3, . . .. �

Solution of Exercise 3.7.11. The sequence 1/n is decreasing, and in particular
of bounded variation, and hence the preceding exercise applies. More precisely,
(3.9.19) reads now

|1− (1− z)ez| ≤ |z|2, z ∈ D. (3.9.20)�

Solution of Exercise 3.7.12. We write

|zn|
zn

zn − z

1− zzn
= 1 + an(z).

To prove the claim of the exercise it is enough to show that, for |z| < 1,

∞∑
n=0

|an(z)| < ∞. (3.9.21)

We have

an(z) =
|zn|
zn

zn − z

1− zzn
− 1

=
|zn|zn − |zn|z − zn + |zn|2z

zn(1− zzn)

=
(|zn| − 1)(|zn|z + zn)

zn(1− zzn)

=

(|zn| − 1)

(
|zn|
zn

z + 1

)
(1− zzn)

.
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Thus, for |z| < 1,

|an(z)| ≤ (1− |zn|)
2

1− |z| , (3.9.22)

and (3.9.21) holds since (3.7.16) holds. �

Solution of Exercise 3.7.13. It suffices to write

z − zn
z − zn

= 1 +
zn − zn
z − zn

and take into account (3.7.18). �

Solution of Exercise 3.7.15. (a) Using the power expansion for cos z we have

|1− cos z| = |z|2 ·
∣∣ ∞∑
n=1

(−1)nz2n−2

(2n)!

∣∣
≤ |z|2

2
·

∞∑
n=1

2|z|2n−2

(2n)!

≤ |z|2
2

∞∑
n=1

|z|2n−2

(2n− 2)!
since, for n ≥ 1, 2(2n− 2)! ≤ (2n)!,

≤ |z|2
2

e|z|.

(b) Take M > 0 and consider z such that |z| ≤ M . In view of (a), we have∣∣∣1− cos
( z

2n

)∣∣∣ ≤ M2e
M
2n

22n+1
< 1

for n large enough (which depends on M), and hence the given infinite product
converges at those points z such that cos(z/2n) 
= 0. �

Solution of Exercise 3.7.16. We begin with (3.7.23), and first replace z in (1.5.10)
by z/λ to obtain the formula

z2n − λ2n = (z2 − λ2)

n−1∏
k=1

(
z2 − 2zλ cos

(
kπ

n

)
+ λ2

)
.

Replacing z and λ by (1 + z/2n) and (1− z/2n) respectively we obtain(
1 +

z

2n

)2n
−
(
1− z

2n

)2n
=

2z

n

n−1∏
k=1

(
2 +

z2

2n2
− 2

(
1− z2

4n2

)
cos

(
kπ

n

))

=
2z

n

n−1∏
k=1

(
2

(
1− cos

(
kπ

n

))) n−1∏
k=1

⎛⎜⎝1 +
z2

4n2

1 + cos
kπ

n

1− cos
kπ

n

⎞⎟⎠
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=
2z

n
2n−1

n−1∏
k=1

(
1− cos

(
kπ

n

)) n−1∏
k=1

⎛⎜⎝1 +
z2

4n2

1 + cos
kπ

n

1− cos
kπ

n

⎞⎟⎠

= 2z

n−1∏
k=1

⎛⎜⎝1 +
z2

4n2

1 + cos
kπ

n

1− cos
kπ

n

⎞⎟⎠ ,

where we have used (1.6.25) to go from the penultimate line to the last line. We
conclude using Theorem 14.7.2 since

lim
n→∞

z2

4n2

1 + cos
kπ

n

1− cos
kπ

n

=
z2

k2π2
.

The proof of (3.7.24) is done in much the same way. We now start from
(1.5.8) and, with the same change of variables as above, obtain

(
1 +

z

2n

)2n
+
(
1− z

2n

)2n
=

n−1∏
k=0

(
2 +

z2

2n2
− 2

(
1− z2

4n2

)
cos

(
(2k + 1)π

2n

))

=

n−1∏
k=0

(
2

(
1− cos

(
(2k + 1)π

2n

))) n−1∏
k=0

⎛⎜⎝1 +
z2

4n2

1 + cos
(2k + 1)π

2n

1− cos
(2 + 1)kπ

2n

⎞⎟⎠

= 2
n−1∏
k=0

⎛⎜⎝1 +
z2

4n2

1 + cos
(2k + 1)π

2n

1− cos
(2k + 1)π

2n

⎞⎟⎠ ,

where now we use (1.5.14) to go from the penultimate line to the last line. As
above, we conclude using Theorem 14.7.2 since

lim
n→∞

z2

4n2

1 + cos
(2k + 1)π

n

1− cos
(2k + 1)π

2n

=
4z2

(2k + 1)2π2
. �
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Functions of a Complex Variable



Chapter 4

Cauchy–Riemann Equations and
C-differentiable Functions

In this chapter we present exercises on C-differentiable functions and the Cauchy-
Riemann equations. We begin with exercises related to continuity in Section 4.1.
We then study derivatives. Recall that C-differentiability of a function f(z) =
u(x, y)+ iv(x, y) at a given point z0 = x0 + y0 implies the Cauchy-Riemann equa-
tions at that point. The converse in general does not hold. It will hold in particular
when the real and imaginary parts of f are differentiable (as real-valued functions
of two real variables) at (x0, y0). Section 4.2 gives a geometric interpretation of
the lack of derivative at z0, when u and v are differentiable at (x0, y0). In Section
4.3 we present various counterexamples that exhibit functions which are not C-
differentiable, but for which the Cauchy-Riemann equations hold. Exercises related
to analytic functions are given in Section 4.4. A complex-valued function f contin-
uous in an open set Ω ⊂ C is called holomorphic if it has a derivative at every point
of Ω. At this stage of the book, we do not know yet that a holomorphic function
has a power expansion in a neighborhood of every point of its domain of definition
(that is, is analytic) but we know that power series are examples of holomorphic
functions. Section 4.4 contains exercises on analyticity and power series.

4.1 Continuous functions

Il est naturellement gênant de ne pas pouvoir
définir dans le corps C une authentique fonction
continue

√
z qui vérifirait (

√
z)2 = z.

Jean Dieudonné, [63, p. 202]

D. Alpay, A Complex Analysis Problem Book, 
DOI 10.1007/978-3-319-42181-0_4 

151© Springer International Publishing AG 2016
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Let us first review some definitions. Let f be a complex-valued function
defined in a neighborhood of a point z0 ∈ C. We will say that

lim
z→z0

f(z)

exists and is equal to � ∈ C if the following condition holds:

∀ε > 0, ∃η > 0 : |z − z0| < η =⇒ |f(z)− �| < ε.

It is an easy exercise to check that the limit, if it exists, is unique. Furthermore,
we have:

Proposition 4.1.1. Let f be a complex-valued function defined in a neighborhood
of the point z0. Then,

lim
z→z0

f(z) = � ⇐⇒

⎧⎪⎨⎪⎩
limz→z0 Re f(z) = Re �

and

limz→z0 Im f(z) = Im �.

The usual results on limits proved in calculus for functions of a real variable
still hold here, and we list them without proof.

Theorem 4.1.2. Let f and g be defined in a neighborhood of the point z0, and
admitting limits at z0. Then the functions af + bg (where a and b are arbitrary
points in C) and fg have a limit at z0, and we have

lim
z→z0

(af + bg) = a lim
z→z0

f + b lim
z→z0

g,

lim
z→z0

(fg) =

(
lim
z→z0

f

)(
lim
z→z0

g

)
.

Assume moreover that limz→z0 g is different from 0. Then limz→z0(f/g) exists and
it holds that

lim
z→z0

f

g
=

limz→z0 f

limz→z0 g
.

Sometimes the function will be defined only in a punctured neighborhood
of z0. Then, the condition |z − z0| < η is replaced by 0 < |z − z0| < η and the
definition of the limit becomes

∀ε > 0, ∃η > 0 : 0 < |z − z0| < η =⇒ |f(z)− �| < ε.

The limit is then sometimes denoted by limz→z0
z 
=z0

f(z), but we will here mostly stick

to the notation limz→z0 f(z). The uniqueness of the limit and Theorem 4.1.2 still
hold in the case of punctured neighborhoods.
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Theorem 4.1.3. Let f and g be defined in a punctured neighborhood of the point
z0, and admitting limits at z0. Then the functions af + bg (where a and b are
arbitrary points in C) and fg have a limit at z0, and we have

lim
z→z0

(af + bg) = a lim
z→z0

f + b lim
z→z0

g,

lim
z→z0

(fg) =

(
lim
z→z0

f

)(
lim
z→z0

g

)
.

Assume moreover that limz→z0 g is different from 0. Then limz→z0(f/g) exists and
it holds that

lim
z→z0

f

g
=

limz→z0 f

limz→z0 g
.

A new feature is that we may allow ∞ both as a limit point and at the point
where the limit is taken. Definitions are as follow:

Definition 4.1.4. Let f be a complex-valued function whose domain of definition
contains a set of the form |z| > R0 for some R0 ≥ 0, and let � ∈ C. One says that

lim
z→∞ f(z) = �

if

∀ε > 0, ∃R > 0, |z| > R =⇒ |f(z)− �| < ε.

One says that

lim
z→∞ f(z) = ∞

if

lim
|z|→∞

|f(z)| = +∞. (4.1.1)

Note that condition (4.1.1) can be rewritten as

∀S > 0, ∃R > 0, |z| > R =⇒ |f(z)| > S.

Thus, for a complex-valued function f whose domain of definition contains a
set of the form |z| > R0 for some R0 ≥ 0, and which does not vanish for |z| > R0,
we have the equivalence

lim
z→∞ f(z) = ∞ ⇐⇒ lim

z→∞
1

f(z)
= 0.

Question 4.1.5. Let p and q be two polynomials with deg q ≥ deg p+ 2. Show that

lim
z→∞

p(z)

q(z)
= 0.
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Definition 4.1.6. The function f defined in a neighborhood of the point z0 ∈ C is
said to be continuous at z0 if

lim
z→z0

f(z) = f(z0).

The definitions of limit and continuity depend really on the metric space
structure of C. All the usual results on continuity of sums, products, quotient and
composition still hold here, and we will not recall them. These are local properties.
The specific structure of C, or of its subsets, will come into play when one studies
the existence of a continuous function in a given set.

The following example is taken from [115, 14.2, p. 269].

Exercise 4.1.7. As usual, we set z = x + iy to be the cartesian representation of
the complex number z, and, for z 
= 0 we write reiθ, where θ ∈ [−π, π) and r > 0
its polar representation. Let f be defined by

f(z) =

⎧⎨⎩0, if z = 0 or θ = 0,

r

θ
, if z 
= 0.

(a) Show that f is continuous along every straight line passing through the origin.

(b) Show that f is not continuous at the origin.

The function (4.1.2) below is a special case of the functions defined in Exer-
cise 4.4.21, and is in fact analytic in C \ [0, 1]. In Exercise 4.1.8 we focus on the
continuity.

Exercise 4.1.8.

(a) Show that the function

F (z) =

∫ 1

0

dt

t− z
(4.1.2)

is continuous in C \ [0, 1].
(b) Show that for s ∈ (0, 1) both the limits

F+(s) = lim
ε↓0

F (s+ iε),

F−(s) = lim
ε↓0

F (s− iε)
(4.1.3)

exist and are finite.

(c) Show that the limits

lim
z→0

z 
∈[0,1]

F (z) and lim
z→1

z 
∈[0,1]

F (z) (4.1.4)

do not exist.
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Roughly speaking, continuity creates no special problems when the function
is defined in an (open) simply-connected set. The precise definition of a simply-
connected set is somewhat beyond the level of a first course on complex variables.
We will use here the notion of star-shaped sets. See Definition 2.1.4 above. These
sets are much easier to handle. For instance, C\(−∞, 0] is star-shaped, but C\{0}
is not. Any non-zero complex number z admits a logarithm, that is, there always
exists a number w such that z = expw. To see this write z = ρ exp(iθ). It suffices
to take

w = ln ρ+ iθ.

On the other hand, it is false that there always exists a continuous logarithm
function on a given set Ω. The same problem holds for continuous square root
functions. The following two exercises discuss the non-existence of a continuous
square root of the function f(z) = z.

Exercise 4.1.9. Show that there is no function f continuous on C \ {0} such that
f(z)2 = z. To that purpose, let Ω = C\R−, and for z = ρeiθ ∈ Ω with θ ∈ (−π, π),

let f0(z) =
√
ρei

θ
2 . Assume by contradiction that f exists and consider the function

f(z)/f0(z) for z ∈ Ω.

A pure topological proof of the previous exercise uses homotopy groups. An
elementary proof (but which uses the fact that the continuous image of a connected
set is connected) is as follows (see, e.g., [223, p. 106], where the case of a square
root of order n is considered). Assume that a function f exists with the required
properties. Then, for every t ∈ R, the number f(eit) is a square root of eit. So we
can write

f(eit) = s(t)e
it
2 ,

where s(t) ∈ {−1, 1}. The function s(t) = e−
it
2 f(eit) is continuous and with values

in {−1, 1}, and so is constant. Thus we have

f(eit) ≡ e
it
2 or f(eit) ≡ −e

it
2 .

Setting t = 0 and t = 2π we obtain a contradiction in both cases.

Another very elementary approach to the same question is illustrated by the
following exercise, taken and from [91, p. 41], [92, p. 34]. See [42, Exercise 4.22, p.
93] for a more general result. We also refer to [42, Theorem 4. 18, p. 92] for the
abstract monodromy theorem which characterizes when a continuous logarithm
exists.

Exercise 4.1.10.

(a) Show that there is no function from C \ {0} into itself such that

f(zw) = f(z)f(w) and f(z)2 = z (4.1.5)

for all z, w ∈ C \ {0}.
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(b) Show that there is no continuous function from C \ {0} into itself such that
f(z)2 = z.

(c) Show that there is no continuous logarithm on C \ {0}.
(d) Show that there is a continuous logarithm on C \ R−. Explain.

Related to this exercise and the discussion preceding it, we mention that a
continuous function from the closed unit disk into the unit circle always has a
continuous logarithm. This can be seen from the above-mentioned monodromy
theorem, or by direct arguments; see [87, Theorem 1, p. 372]. In this last work,
this result is used to prove Brouwer’s theorem, and as a consequence of the latter,
to prove the fundamental theorem of algebra.

As a corollary of Exercise 4.1.10 we have:

Exercise 4.1.11. Show that there is no continuous real-valued function θ defined
on R2 \ {(0, 0)} and such that

z =
√
x2 + y2eiθ(x,y).

Indeed, should such a function exist, z would have a continuous square root
in C \ {0}.

We recall that in any star-shaped open set (or more generally, in any open
simply-connected domain) a non-vanishing holomorphic function (that is a func-
tion which has everywhere a derivative) has a holomorphic (and in particular
continuous) logarithm. We also recall that one can give necessary and sufficient
conditions in terms of integrals for a holomorphic logarithm to exist when the set
is not simply-connected.

Remark 4.1.12. By Exercise 4.2.18 below, any function f continuous in C \ {0}
such that f(z)2 = z there, would be automatically holomorphic. One can then
proceed as in Exercise 7.2.21 to prove that no such function exists.

The following exercise has follow-up exercises. See Exercises 6.1.9 and 10.2.7.

Exercise 4.1.13. Let Ω be a connected open subset of C and let a and b be continuous
functions in Ω. Assume that the sets

Ω+ = {z ∈ Ω ; |b(z)| < |a(z)|} and Ω− = {z ∈ Ω ; |b(z)| > |a(z)|}

are both non-empty. Show that the set

Ω0 = {z ∈ Ω ; |b(z)| = |a(z)|}

is also non-empty.
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4.2 Derivatives

The complex-valued function f(z) = u(x, y) + iv(x, y) defined in a neighborhood
of the point z0 is said to have a derivative at z0 (or to be differentiable at z0, or
to be C-differentiable at z0) if the limit

lim
z→z0
z 
=z0

f(z)− f(z0)

z − z0
(4.2.1)

exists.

The various rules of derivations still hold in the present case.

Question 4.2.1. Let f and g be defined in an open set Ω, and assume that they
have derivatives of order N at the point z0. Then, the product fg has a derivative
of order N at z0 and we have

(fg)(N)(z0) =

N∑
k=0

(
N
k

)
f (k)(z0)g

(N−k)(z0). (4.2.2)

Let f be a function C-differentiable at a point z0 and not vanishing there.
The number

L(f) =
f ′(z0)
f(z0)

is called the logarithmic derivative of f at the point z0.

Question 4.2.2. Let f1, . . . , fn, g1, . . . , gm be functions differentiable at the point
z0 ∈ C and assume moreover that f�(z0) 
= 0 for � = 1, . . . , n and gj(z0) 
= 0 for
j = 1, . . . ,m. Show that(

f1 · · · fn
g1 · · · gm

)′
(z0)(

f1 · · · fn
g1 · · · gm

)
(z0)

=
n∑

�=1

f ′
�(z0)

f�(z0)
−

m∑
j=1

g′j(z0)
gj(z0)

. (4.2.3)

Condition (4.2.1) is equivalent to the existence of a complex number �z0 such
that

lim
z→z0

|f(z)− f(z0)− �z0(z − z0)|
|z − z0|

= 0. (4.2.4)

In other words, f is differentiable when we view C as a Banach space over C, both
for the domain and the range of f (and hence the terminology C-differentiability at
the point z0; we have B1 = B2 = C in Definition 16.1.13).We have the following key
result (the notion of differentiability of a real-valued function of two real variables
has been recalled in Section 14.1):
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Theorem 4.2.3. Let f(z) = u(x, y) + iv(x, y) be defined in a neighborhood of the
point z0 = x0 + iy0 ∈ C. Then, f is C-differentiable at the point z0 if and only
if both the real part and the imaginary part of f are differentiable at the point
(x0, y0) and satisfy the Cauchy–Riemann equations

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0),

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0).

(4.2.5)

Furthermore the following formula holds for the derivative at the point z0:

f ′(z0) =
∂u

∂x
(x0, y0)− i

∂u

∂y
(x0, y0). (4.2.6)

See for instance [192, (6.4), p. 59], [74, Theorem 1.1, p. 25]. As mentioned
in the statement of the theorem, the equations in (4.2.5) are called the Cauchy–
Riemann equations. Formula (4.2.6) for the derivative is of central importance, and
will be used over and over in the sequel. Using the previous theorem we get the
complex counterpart of the third definition of the function exponential discussed
at the beginning of Section 1.2, (and hence the fourth definition of ez that we
have, including defining ez via the formula ez = ex(cos y + i sin y)).

Exercise 4.2.4. Show that the function ez is the only function which admits a
derivative at every point in C and is such that

f ′(z) = f(z), and f(0) = 1.

We now give a geometric interpretation of C-differentiability at a point. One
can view a complex-valued function of a complex variable as a map from an open
subset of R2 into R2:

r : (x, y) �→ (u(x, y), v(x, y)).

For the geometric discussion below it is better to view both the domain of r and
the range space as column vectors, that is

r :

(
x
y

)
�→
(
u(x, y)
v(x, y)

)
.

When u and v are differentiable at the point (x0, y0), the Jacobian matrix of the
map r at the point (x0, y0) is equal to

dr(x0,y0) =

(
∂u
∂x (x0, y0)

∂u
∂y (x0, y0)

∂v
∂x (x0, y0)

∂v
∂y (x0, y0)

)
. (4.2.7)

When the Cauchy–Riemann equations hold, this Jacobian becomes

dr(x0,y0) =

(
∂u
∂x (x0, y0)

∂u
∂y (x0, y0)

−∂u
∂y (x0, y0)

∂u
∂x (x0, y0)

)
, (4.2.8)
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that is, in the notation (1.1.1) with ∂u
∂x (x0, y0) and −∂u

∂y (x0, y0) in place of x and y,

f ′(z0) = dr(x0,y0).

dr(x0, y0) is a rotation composed with a homothety; it is therefore a complex
number. This can be seen also as follows: The map r has an expansion of the form

r(x0 + h, y0 + k) = r(x0, y0) + (dr(x0,y0))

(
h
k

)
+
√
h2 + k2

(
E(h, k)
F (h, k)

)
,

where the functions E and F tend to 0 as h and k go to 0. When the function

f(z) = u(x, y) + iv(x, y)

is C-differentiable at the point (x0, y0), the Cauchy–Riemann equations hold at
that point, and the transformation(

h
k

)
�→
(
h1

k1

)
= (dr(x0,y0))

(
h
k

)
can be rewritten as

h1 + ik1 =

(
∂u

∂x
(x0, y0)− i

∂u

∂y
(x0, y0)

)
(h+ ik).

The transformation keeps angles invariant. It is said to be conformal at the point
(x0, y0).

Exercise 4.2.5. At which points are the following functions C-differentiable?

(a) f(z) = x2 + y2 + 2ixy.

(b) f(z) = zRe z.

(c) f(z) = ez = ex(cos y + i sin y).

(d) The function f defined by

f(z) =

⎧⎨⎩
z2

z
, if z 
= 0,

0, if z = 0.

(e) The function f(z) = z.

Compute their derivative at these points where they are C-differentiable.

Exercise 4.2.6 (see also Exercise 6.3.9). Let Ω ⊂ C be symmetric with respect
to the real axis (that is, z ∈ Ω → z ∈ Ω). Assume that the pair of functions
(u(x, y), v(x, y)) defined in Ω satisfy the Cauchy–Riemann equations at the point
(x0, y0). Show that the pair of functions (U(x, y), V (x, y)) defined by

U(x, y) = u(x,−y) and V (x, y) = −v(x,−y)

satisfy the Cauchy–Riemann equations at the point (x0,−y0). Explain the result
when u and v are differentiable at the point (x0, y0).
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Remark 4.2.7. As a corollary of the previous exercise, and under the hypothesis
of the exercise, we have the formula(

f(z)
)′

= f ′(z). (4.2.9)

For (x, y) ∈ R2 \ (−∞, 0], define

ln z = ln
√
x2 + y2 + iθ(x, y), (4.2.10)

where θ(x, y) is defined by (1.1.19).

Exercise 4.2.8. Let u(x, y) = ln
√
x2 + y2. Show that for (x, y) ∈ R2 \ (−∞, 0] it

holds that

∂u

∂x
=

∂θ

∂y
,

∂u

∂y
= − ∂θ

∂x
.

(4.2.11)

It follows from Theorem 4.2.3 that the function (4.2.10) is C-differentiable in
C \ (−∞, 0]. Formula (4.2.6) implies that

(ln z)′ =
1

z
.

In Exercise 4.2.5 we saw that the function ez is differentiable in the whole
complex plane (such functions are called entire functions) and is its own derivative.
Recall that the functions, sin z, cos z, sinh z and cosh z have been defined in (1.2.13)
in terms of ez (their definitions in terms of power series is recalled in (3.4.23)).

Exercise 4.2.9. Show that

(sin z)′ = cos z,

(cos z)′ = − sin z,

(sinh z)′ = cosh z,

(cosh z)′ = sinh z.

Exercise 4.2.10. Show that

cos(z/2) cos(z/22) · · · cos(z/2n) = sin z

2n sin(z/2n)
, n = 1, 2, . . . ,

and compute
lim
n→∞ cos(z/2) cos(z/22) · · · cos(z/2n).

See also Exercise 3.7.15 in connection with the previous exercise.
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Exercise 4.2.11 (see [207, p. 3]). Let f = u + iv be differentiable in an open
connected set Ω, and assume that the real and imaginary parts of f are related by

au(x, y) + bv(x, y) + c = 0, (4.2.12)

where the numbers a, b, c are real, the numbers a and b not being simultaneously
0. Find f .

Let f(z) = u(x, y)+ iv(x, y) be a complex-valued function defined in an open
set Ω and such that u and v admit first-order continuous partial derivatives in Ω.
We introduce

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
and

∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
. (4.2.13)

In other words,

∂f

∂z
=

1

2

{(
∂u

∂x
− i

∂u

∂y

)
+

(
∂v

∂y
+ i

∂v

∂x

)}
,

∂f

∂z
=

1

2

{(
∂u

∂x
+ i

∂u

∂y

)
+

(
−∂v

∂y
+ i

∂v

∂x

)}
.

(4.2.14)

These operators will also be denoted by

∂zf and ∂zf or ∂f and ∂f. (4.2.15)

respectively. Their significance is explained in the following exercise, taken from
[215, pp. 8–9].

Exercise 4.2.12. Let u(x, y) and v(x, y) be real-valued and differentiable at the point
(x0, y0). Let z0 = x0 + iy0. For z = x+ iy in an open neighborhood Ω of z0, let

f(z) = u(x, y) + iv(x, y).

Show that

f(z)− f(z0) =
∂f

∂z

∣∣
z=z0

(z − z0) +
∂f

∂z

∣∣
z=z0

(z − z0) + o(z − z0), z ∈ Ω, (4.2.16)

where o(z − z0) denotes an expression such that

lim
z→z0

|o(z − z0)|
|z − z0|

= 0.

Describe the set of limits

lim
zn→z0

f(zn)− f(z0)

zn − z0
,

as (zn)n∈N is a sequence which tends to z0. When is this set reduced to a single
element (that is, when is the limit independent of the given sequence)?
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Exercise 4.2.13. Assume that the function f(z) admits a derivative at the point
z0. Show that

∂f

∂z

∣∣
z=z0

= f ′(z0),

∂f

∂z

∣∣
z=z0

= 0.

(4.2.17)

Recall that a function which is C-differentiable in an open set Ω is called
holomorphic in Ω. It is called entire if it is holomorphic in Ω = C.

Exercise 4.2.14. Let m ∈ C0[0, 1], that is m is a (possibly complex-valued) contin-
uous function on the interval [0, 1]. From the definition of the derivative show that
the function

F (z) =

∫ 1

0

eiztm(t)dt

is entire and compute its derivative.

Exercise 4.2.15. Let m ∈ C0[1, 2]. Show that the function

F (z) =

∫ 2

1

m(t)dt

(z − t)2

is holomorphic in C \ [1, 2] and show that

F ′(z) = −2

∫ 2

1

m(t)dt

(z − t)3
, ∀z ∈ C \ [1, 2].

The next exercise is taken from [42, Theorem 2.34, p. 48]. In the statement,
[0, 1] can be replaced by any piecewise differentiable (and not necessarily con-
nected) path.

Exercise 4.2.16. Let m ∈ C0[0, 1]. Show that for every n ≥ 1, the function

Fn(z) =

∫ 1

0

m(t)dt

(t− z)n

is holomorphic in C \ [0, 1] and that

F ′
n(z) = nFn+1(z), ∀z ∈ C \ [0, 1]. (4.2.18)

For the next exercise, see [42, Exercise 3.41, p. 79]. The aim is to show that
a continuous logarithm on an open set is holomorphic.

Exercise 4.2.17. Let Ω be an open set and let f be a function continuous on Ω and
such that

exp(f(z)) = z, z ∈ Ω.

Show that f is holomorphic in Ω.
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The following exercise is taken from [62, Exercise 5.7.9, p. 70]. For yet another
proof, which uses much deeper machinery, but allows f to vanish in Ω, see Exercise
5.4.3.

Exercise 4.2.18. Let f be a function continuous in an open set Ω ⊂ C and assume
that f2 is holomorphic in Ω. Assume moreover that f does not vanish in Ω. Show
that f is holomorphic in Ω.

We conclude this section with exercises on further properties of the operators
(4.2.13).

Exercise 4.2.19. Show that, for a complex-valued function with continuous second-
order derivatives,

∂2f

∂z∂z

def.
=

∂

∂z

(
∂f

∂z

)
=

∂

∂z

(
∂f

∂z

)
=

1

4

(
∂2f

∂x2
+

∂2f

∂y2

)
.

(4.2.19)

The operator

Δ
def.
=

∂2

∂x2
+

∂2

∂y2

is called the Laplacian. Real-valued functions u such that

Δu = 0

in an open set Ω are called harmonic functions. See Chapter 9 for more on these
functions.

Exercise 4.2.20.

(i) Show that the operators ∂
∂z and ∂

∂z satisfy the usual rule of differentiation for
a product and a quotient.

(ii) Show that for z0 ∈ C,

∂

∂z

(
g(z)

z0 − z

)
=

∂g

∂z
(z)

z0 − z
, (4.2.20)

where g is in the domain of definition of ∂z. More generally, show that, if
f(z) is C-differentiable,

∂

∂z
(f(z)g(z)) = f(z)

∂g

∂z
(z). (4.2.21)
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The function (4.2.22) which appears in the following exercise has been also
studied in Exercise 4.2.5.

Exercise 4.2.21. Compute
∂f

∂z
and

∂f

∂z
for the function

f(z) =

⎧⎨⎩
z2

z
, if z 
= 0,

0, if z = 0.
(4.2.22)

Exercise 4.2.22.

(a) Compute

∂|z|n
∂z

and
∂|z|n
∂z

, n = 1, 2, . . . .

(b) Compute

∂ ln |z|
∂z

and
∂ ln |z|
∂z

.

It is well known that 1/z has no primitive in C\{0}; see Exercise 5.2.3 below.
On the other hand from the previous exercise we see that

2
∂ ln |z|
∂z

=
1

z
.

The result in the following exercise is used in the computation of the Chern
class of a complex line bundle of a compact Riemann surface; see for instance [111,
pp. 101–102].

Exercise 4.2.23. Let Ω be an open subset of C, and let f, g be functions taking
strictly positive values in Ω, and with real and imaginary parts having continuous
second derivatives there. Let furthermore h be analytic and non-vanishing in Ω,
and assume that

f(z) = |h(z)|2g(z), z ∈ Ω. (4.2.23)

Then,

Δ ln f(z) = Δ ln g(z), z ∈ Ω. (4.2.24)

The following question is adapted from [163, Proposition 3, p. 22].

Question 4.2.24. Let f ∈ C∞(D) be such that f vanishes on the unit circle. Show
that there is u ∈ C∞(D) such that

∂u

∂z
= f.
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For q ∈ (0, 1) and f defined in a neighborhood Ω of the origin, and C-
differentiable at the origin we define (see for instance [216, p. 4747]):

(Rqf)(z) =

{
f(z)−f(qz)

z(1−q) , z ∈ Ω \ {0} ,
f ′(0), z = 0.

(4.2.25)

For q = 0 we have the celebrated backward-shift operator

(R0f)(z) =

{
f(z)−f(0)

z , z ∈ Ω \ {0} ,
f ′(0), z = 0,

(4.2.26)

while q = 1 corresponds to R1f(z) = f ′(z).

Exercise 4.2.25. Solve the equation

Rqf = λf, (4.2.27)

for λ ∈ C.

4.3 Various counterexamples

The Cauchy–Riemann equations at a point do not imply differentiability at the
given point. The next three exercises illustrate this phenomenon. In all three exer-
cises, the point under consideration is z = 0. The first example is not very strong
since the function is not even continuous at the point where the Cauchy–Riemann
equations hold. The second is a bit more involved. The function is continuous, but
all radial derivatives at the origin (the point where the Cauchy–Riemann equations
hold)

lim
ε→0

f(εeiθ)− f(0)

εeiθ
, where θ is fixed,

exist, but depend on the angle θ. In the last exercise, the function is continu-
ous, all radial derivatives are the same at the origin, but the function still is not
differentiable.

Without the continuity hypothesis, differentiability in an open set is not
insured even if one assumes that the Cauchy–Riemann equations hold in the given
open set. Still, it is well to recall the not-so-well-known Looman–Menchoff theorem
(see, e.g., [164, Chapter I, § 6]). If f is continuous in the open set Ω and if the
Cauchy–Riemann equations hold there, then f is analytic in Ω. One can weaken
the continuity hypothesis, and merely assume that f is bounded in Ω. This is a
result, stated by Montel in 1913, and proved by G.P. Tolstov.

In the first example below, due to Montel, the Cauchy–Riemann equations
hold in the whole plane, but the function f is not bounded, and this shows that
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the above-mentioned result of Montel does not hold without the hypothesis of
boundedness. See the discussion in the introduction of [215] for more information.
The paper [108], with the suggestive title When is a function that satisfies the
Cauchy–Riemann equations analytic, is also recommended.

Exercise 4.3.1 (see [91, p. 66]). Let

f(z) =

⎧⎨⎩exp

(
− 1

z4

)
, if z 
= 0,

0, if z = 0.

(a) Where does f(z) have a derivative?

(b) Show that the Cauchy–Riemann equations hold in C.

For the next exercise, see [53, Exercise 1, p. 50].

Exercise 4.3.2. Let

f(z) =

⎧⎨⎩
x3y(y − ix)

x6 + y2
, if z 
= 0,

0, if z = 0.

(a) Show that f is continuous at the origin.

(b) Show that limz→0
f(z)− f(0)

z
exists along any fixed direction, that all these

limits are equal to 0, but that f is not differentiable at the origin.

(c) Show that the Cauchy–Riemann equations hold at the origin.

After these exercises, the second item in the following question is quite easy
(see [138, Exercise 1, p. 12]).

Exercise 4.3.3.

(a) Can a function of a complex variable which is defined and continuous for
|z| < 1 be such that it is only differentiable at the origin?

(b) Can a function which is continuous in a region have a derivative only along
certain lines of that region?

4.4 Analytic functions

Recall that a continuous function f which is defined in an open set Ω ⊂ Ω is called
analytic if it admits at every point of Ω a power series expansion: For every z0 ∈ Ω
there exists R > 0 such that

f(z) =

∞∑
n=0

an(z − z0)
n, ∀z ∈ B(z0, R), (4.4.1)
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where B(z0, R) is defined by (15.4.1). The coefficients an of course depend on z0.
The largest R for which (4.4.1) holds is called the radius of convergence of the
power series, and is given by the formula (3.4.3):

R =
1

lim supn→∞ |an|1/n
.

Theorem 4.4.1. A power series is differentiable in its open disk of convergence.
The derivative of f defined by (4.4.1) is given by

f ′(z) =
∞∑
n=1

nan(z − z0)
n−1. (4.4.2)

Hence analytic functions are holomorphic. The converse is also true. This is
one of the keystones of the theory. See Chapter 5.

Formula (4.4.2) can be iterated, and we have:

f (p)(z) =
∞∑

n=p

n(n− 1) · · · (n− p+ 1)an(z − z0)
n−p. (4.4.3)

The simplest such power series is maybe the geometric series

1

1− z
=

∞∑
n=0

zn, |z| < 1,

for which R = 1. Its derivative is thus given by the formula

1

(1− z)2
=

∞∑
n=1

nzn−1, |z| < 1. (4.4.4)

Exercise 4.4.2. Show that ∞∑
n=1

n

2n
= 2. (4.4.5)

Exercise 4.4.3. Show that

∞∑
n=2

n(n− 1)zn−2 =
2

(1− z)3
, |z| < 1, (4.4.6)

and find a closed-form formula for the sum

∞∑
n=2

n(n− 1)rn−2 cos((n− 2)θ), θ ∈ R, r ∈ [0, 1). (4.4.7)
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We set for α ∈ C (
α
n

)
=

α(α− 1) · · · (α− n+ 1)

n!
(4.4.8)

For α = ± 1
2 , see (4.5.7) below.

Exercise 4.4.4. Define for α ∈ C,

fα(z) = 1 +

∞∑
n=1

(
α
n

)
zn. (4.4.9)

Show that fα is analytic in the open unit disk (and is a polynomial when α is a
natural number) and that the following formulas hold:

f ′
α(z) =

αfα(z)

1 + z
,

fα(z)fβ(z) = fα+β(z), |z| < 1.

(4.4.10)

Remark 4.4.5. The function f1/2 is used in particular in Exercises 4.4.8 and 7.3.13,
where it is needed to construct an analytic square root of z2 − 4z in |z| > 4.

We also remark the following: for ν > −1 the coefficients of the power series

(1− z)−ν−1 = 1 +

∞∑
n=1

(1 + ν) · · · (n+ ν)

n!
zn

are positive, and hence the function

1

(1− zw)ν+1
(4.4.11)

is positive definite in the open unit disk. One can also get to this conclusion by
replacing z and w in (3.1.12) by 1−z

1+z and 1−w
1+w respectively.

Exercise 4.4.6. Let

J0(z) =

∞∑
p=0

(−1)p

(p!)2

(z
2

)2p
. (4.4.12)

Show that J0 is an entire function. Show that

J0(z) =
1

2π

∫
[0,2π]

eiz cosudu. (4.4.13)

The function J0 is the Bessel function of order 0. It is one of the solutions of
the differential equation (called Bessel’s equation of order 0)

x2y(2)(x) + xy(1)(x) + x2y(x) = 0.
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We also note that the function J0(z) is positive definite (see Definition 16.3.11)
since

J0(z − w) =
1

2π

∫ 2π

0

eiz cosueiw cosudu.

In connection with the following two exercises, see Exercise 7.2.20. The first
one, Exercise 4.4.7, is just a rewriting of Proposition 3.4.8, to which we send back
the reader if the proof has been skipped in a first reading.

Exercise 4.4.7. Let f(z) =
∑∞

n=0 anz
n and g(z) =

∑∞
n=0 bnz

n be two convergent
power series with radiuses of convergence R1 and R2 respectively.

(a) Show that the product fg is a convergent power series

(fg)(z) =

∞∑
n=0

cnz
n

with radius of convergence bigger or equal to Min (R1, R2).

(b) Show that

cn =

n∑
�=0

a�bn−�, n = 0, 1, . . . . (4.4.14)

The sequence (cn)n∈N above is called the convolution, or Cauchy product,
of the sequences (an)n∈N and (bn)n∈N. The convolution of two sequences plays an
important role in the theory of discrete signals. See Section 11.4 for more details.

The following exercise is taken from [126, pp. 18–19]. The number an is equal
to the number of possible n-ary compositions of n elements for a non associative
binary law.

Exercise 4.4.8. Let a1, a2, . . . , be a sequence of numbers satisfying a1 = 1 and

an =

n−1∑
k=1

akan−1−k. (4.4.15)

Compute
∑∞

n=1 anz
n and show that

an =
(2n− 1)!

n!(n− 1)!
.

Exercise 4.4.9. Given a sequence a�, � = 0, 1, 2, . . . of complex numbers such that

lim sup |a�+1|
1

�+1 < 1, let Sn =
∑n

�=0 a�. Show that

∞∑
n=0

Snz
n =

1

1− z

∞∑
�=0

a�z
�, |z| < 1.
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Exercise 4.4.10. Let f(z) =
∑∞

n=0
an

n! z
n and g(z) =

∑∞
n=0

bn
n! z

n be two convergent
power series with radiuses of convergence R1 and R2 respectively. Show that the
product fg (which is a convergent power series by Exercise 4.4.7) can be written as

(fg)(z) =

∞∑
n=0

cn
n!

zn

where

cn =

n∑
�=0

(
n
�

)
a�bn−�, n = 0, 1, . . . .

Exercise 4.4.11 (Fibonacci numbers). Let an, n = 0, 1, . . . be defined by

a0 = 1,

a1 = 1,

an+2 = an+1 + an.

(4.4.16)

Show that ∞∑
n=0

anz
n =

1

1− z − z2
, |z| <

√
5− 1

2
.

Remark 4.4.12. The coefficients an in the previous exercise are called the Fibonacci

numbers, and can be computed as follows. Let z− = −1−√
5

2 and z+ = −1+
√
5

2 be
the zeroes of the polynomial 1− z − z2, and write

1

1− z − z2
=

1

z− − z+

(
1

z − z+
− 1

z − z−

)
=

1

z+ − z−

(
1

z+(1− z/z+)
− 1

z−(1− z/z−)

)
=

1

z+ − z−

∞∑
n=0

zn
(
z−n−1
+ − z−n−1

−
)

=
1

z+ − z−

∞∑
n=0

znz−n−1
+ z−n−1

−
(
zn+1
− − zn+1

+

)
=

∞∑
n=0

zn(−1)n
zn+1
+ − zn+1

−
z+ − z−

,

since z−z+ = −1. It follows that

an = (−1)n
zn+1
+ − zn+1

−
z+ − z−

, n = 0, 1, . . . .

Equations (4.4.16) can also be checked directly from this explicit expression.
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Exercise 4.4.13. Define F (z) = −
∑∞

n=1(−1)n
zn

n
.

(1) Show that F is analytic in the open unit disk and that

expF (z) = 1 + z, for |z| < 1.

(2) The function F (z) is denoted by ln(1 + z). Show that

| ln(1 + z)− z| ≤ |z|2, |z| ≤ 1

2
, (4.4.17)

and that, in particular (see [4, p. 192]),

|z|
2

≤ | ln(1 + z)| ≤ 3|z|
2

, |z| ≤ 1

2
. (4.4.18)

The function F (z) is the analytic extension to the open unit disk of the
function ln(1 + x) of calculus defined on (−1, 1) by the same power series (and
hence the notation ln(1 + z)). For another proof of Exercise 4.4.13 using analytic
continuation, see Exercise 6.3.1.

We can now continue the discussion on infinite products began in Section
3.7, and mention the following result (see [4, p. 191]):

Theorem 4.4.14 ([4, p. 191]). Let ln(1 + z) be defined as in Exercise 4.4.13, and
let (an)n∈N be a sequence of complex numbers, all different from −1. The infi-
nite product

∏∞
n=1(1 + an) converges if and only if the series

∑∞
n=N0

ln(1 + an)

converges, where N0 is such that |an| < 1
2 for n ≥ N0.

For an illustration of this theorem for real an’s, see Exercise 3.7.4 above.
The proof of the theorem may be outlined as follows (see [4, p. 191]): Since the
condition limn→∞ an = 0 is necessary for the infinite product to converge, we
may assume that |an| ≤ 1

2 for all n. This assumption will allow us to use (4.4.18).
Assume first that the infinite product converges to � 
= 0, and set � = es (of course,
s is defined up to an additive multiple of 2πi). Write 1+an = eln(1+an), where the

function ln(1+ z) is defined as in Exercise 4.4.13, and zN = −s+
∑N

n=1 ln(1+an).
We have

ezN =

∏N
n=1(1 + an)

�
.

Hence there exists a sequence of integers k1, k2, . . . such that

lim
N→∞

|zN − 2πikN | = 0.

Thus there exists M such that:

N ≥ M =⇒ |zN − 2πikN | ≤ 1

4
.
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In particular,

|zN − zN+1 − 2πi(kN − kN+1)| ≤
1

2
, N ≥ M,

that is

| ln(1 + aN+1) + 2πi(kN − kN+1)| ≤
1

2
, N ≥ M,

and so ∣∣| ln(1 + aN+1)| − 2π|kN − kN+1|| ≤
1

2
, N ≥ M,

Assuming kN 
= kN+1 we have, using (4.4.18),

2π|kN − kN+1| −
3|aN+1|

2
≤ 1

2
, N ≥ M.

Hence (since |aN+1| ≤ 1
2 )

2π|kN − kN+1| ≤
3

4
+

1

2
,

which is impossible. Hence kM = kN for N ≥ M . If follows that limN→∞ zN
exists, and this is equivalent to the convergence of the series

∑∞
n=N0

ln(1 + an).

The converse statement is trivial.

Question 4.4.15. Prove directly (without Theorem 4.4.14) that the infinite product
(3.7.1):

∞∏
k=1

(
1 +

i

k

)
diverges.

Exercise 4.4.16. (adapted from [202, p. 484]). Show that

ln(1− z)

1− z
= −

∞∑
n=1

(
n∑

�=1

1

�

)
zn, |z| < 1.

Is there a continuous function ψ such that

ln(1− z)

1− z
=

∫ 2π

0

ψ(eit)dt

eit − z
, |z| < 1.

Exercise 4.4.17. Let F (z) =
∑∞

n=0 anz
n be a convergent power series with conver-

gence radius greater than or equal to 1. Show that

∫ 1

0

F ′(tz)dt =

⎧⎨⎩
F (z)− F (0)

z
, for z 
= 0,

F ′(0), for z = 0.
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Exercise 4.4.18. Let F (z) =
∑∞

n=0 anz
n be a power series with radius of conver-

gence R (R may be infinite). Let a > 0, and let f be a continuous function from
[0, a] into C. Where is the function

G(z) =

∫ a

0

F (zt)f(t)dt

analytic? Compute its derivative, both as power series and in closed form.

Same question for H(z) =
∫ a

1
F (z/t)f(t)dt, where now a > 1 and f is con-

tinuous on [1, a].

Exercise 4.4.19. Let m be a complex-valued continuous function in the interval
[0, 1]. Show that the function

f(z) =

∫ 1

0

eiztm(t)dt (4.4.19)

is entire by computing its power series expansion centered at the origin, and com-
pute its derivative.

In connection with the previous exercise, see Exercises 3.4.13 and 4.2.14.

One way to solve the following exercise would be to use Theorem 6.2.3. Here,
we suggest a simpler, and more effective way: Show that ϕ has a power series
expansion centered at the origin, with radius of convergence equal to 1, and show
a symmetry property satisfied by ϕ(z); see (4.5.9).

Exercise 4.4.20. Let t �→ m(t) be a complex-valued continuous function on the
closed interval [0, 2π]. Show that the function

ϕ(z) =

∫ 2π

0

eit + z

eit − z
m(t)dt (4.4.20)

is analytic in C \ T.

Food for thought. Here are some related additional questions.

(1) Show that

ϕ′(z) =
∫ 2π

0

2eit

(eit − z)2
m(t)dt, for |z| 
= 1.

(2) Assume that m vanishes on some closed subinterval I ⊂ [0, 2π]. Then, the
function ϕ is analytic across the interior of the corresponding arc of circle.

(3) Assume that the function m is real-valued and that moreover it takes positive
values: m(t) ≥ 0 on [0, 2π]. Show that

Reϕ(z) ≥ 0, for |z| < 1.

See also Exercise 6.5.12 in Section 6.5.
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Functions ϕ of the form (4.4.20) with a positive m(t) are called Carathéodory
functions. They play an important role in the prediction of stationary second-
order processes. Indeed, let (xn)n∈N0 be a, say real-valued, second-order stationary
process with covariance function

E(xnxm) = r(n −m), n,m ∈ N0,

where E denotes expectation in the probability space. Then, by the Cauchy–
Schwarz inequality,

|r(n−m)| ≤
√
r(0)

√
r(0) = r(0),

(see (0.0.3) for the analogous fact in the case of processes indexed by R), and the
function

ϕ(z) = r(0) + 2

∞∑
n=1

znr(n) (4.4.21)

is analytic in the open unit disk, and has a real positive part there. To check
this, we apply Theorem 14.3.1 to check that the family (znwmr(n − m))n,m∈N0

is absolutely summable for fixed z, w ∈ D. That same theorem allows us to write
(see (14.3.1))

∞∑
n,m=0

znwmr(n−m) =
r(0)

1− zw
+

r(1)z

1− zw
+ · · ·

+
r(−1)w

1− zw
+

r(−2)w2

1− zw
+ · · ·

=
ϕ(z) + ϕ(w)

2(1− zw)
,

(4.4.22)

where one uses that r(−n) = r(n) (or, more generally, r(−n) = r(n) when the
process is complex-valued). By the Herglotz representation theorem (see the dis-
cussion after Exercise 5.5.10 for the statement), ϕ is of the form (4.4.20) (but with
a positive finite measure dμ rather than a positive function m(t) in general). See
[6] for a survey. Note that (4.4.21) and (4.4.22) are the discrete counterparts of
(0.0.4) and (0.0.5).

Exercise 4.4.21. Let m(t) be a complex-valued continuous function defined in the
closed interval [0, 1]. Show that the function

F (z) =

∫ 1

0

m(t)dt

(t− z)2
(4.4.23)

is analytic in C \ [0, 1] and that

F ′(z) =
∫ 1

0

2m(t)dt

(t− z)3
.
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The Laurent expansion of the function (4.4.23) in |z| > 1 is considered in
Exercise 7.1.14.

Exercise 4.4.22. Prove (3.7.15).

Hint. Compute the derivative of the function Ep(z).

Exercise 4.4.23. Show that the infinite product

∞∏
n=1

(
1− z√

n

)
e

z√
n
+ z2

2n (4.4.24)

converges to a function which vanishes at the points z =
√
n, n = 1, 2, . . ., and

only at these points.

4.5 Solutions

Solution of Exercise 4.1.7. The function f is continuous at the origin on the real
axis, since

f(x) =

{
0, if x ≥ 0,
−x
π , if x < 0.

Let us now consider another straight line, different from the real axis, and passing
through the origin. Its equation is

z = teiθ0 , t ∈ R,

where θ0 ∈ (0, π) is fixed, and different from 0 and π. For t < 0 we can write

teiθ0 = (−t)ei(−π+θ0),

and π + θ0 ∈ (−π, 0). Hence, we have

f(z) =

{
t
θ0
, if t > 0,

−t
θ0−π , if t < 0.

Hence, f is continuous at the origin on the given line.

To show that f is not continuous at the origin, it suffices to take, for n ≥ 1,

zn =
e

i
n

n
.

Then
lim
n→∞ zn = 0 while f(zn) = 1. �
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Solution of Exercise 4.1.8. (a) Let z ∈ C \ [0, 1], and let d be the distance from z
to [0, 1]:

d = min
t∈[0,1]

|t− z|.

For h ∈ C such that |h| < d/2 we have

1

|t− z − h| ≤
1

|t− z| − |h| <
1

d− d/2
=

2

d
. (4.5.1)

Thus, for z and h as above, we have

F (z + h)− F (z) =

∫ 1

0

hdt

(t− z)(t− z − h)
.

Inequalities (3.1.4) and (4.5.1) lead to∣∣F (z + h)− F (z)
∣∣ ≤ |h|

∫ 1

0

2dt

d2
=

2|h|
d2

,

and the continuity of F at the point z follows.

(b) Let s ∈ (0, 1) and ε > 0. We have

ReF (s+ iε) =

∫ 1

0

(t− s)dt

(t− s)2 + ε2
and ImF (s+ iε) =

∫ 1

0

εdt

(t− s)2 + ε2
.

These integrals are easily evaluated with the change of variable u = (t− s)/ε:∫ 1

0

(t− s)dt

(t− s)2 + ε2
=

∫ 1−s
ε

− s
ε

udu

u2 + 1
=

1

2
ln

(
(1 − s)2 + ε2

s2 + ε2

)
,

∫ 1

0

εdt

(t− s)2 + ε2
=

∫ 1−s
ε

− s
ε

du

u2 + 1
= arctan

(
1− s

ε

)
+ arctan

(s
ε

)
.

The same computations hold for the real and imaginary parts of F (s − iε), and
we obtain

F+(s) = ln

∣∣∣∣1− s

s

∣∣∣∣+ iπ,

F−(s) = ln

∣∣∣∣1− s

s

∣∣∣∣− iπ.

(c) We show that the first limit does not exist. The other one is treated in
the same way. First let h be real and strictly negative. We have for z = reiθ , where
r > 0 and θ ∈ (0, 2π),

ReF (z) = sin θ

∫ 1

0

rdt

(t− r cos θ)2 + r2 sin2 θ

= sin θ

∫ 1/r

0

du

u2 − 2u cosθ + 1
(change of variable t = ru).
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Thus, for fixed θ ∈ (0, 2π),

lim
r→0

F (reiθ) = sin θ

∫ ∞

0

du

u2 − 2u cos θ + 1
. (4.5.2)

In Exercise 8.3.4 we will compute the integral appearing in (4.5.2) for every θ ∈
(0, 2π) using residues, and it will follow from (8.6.15) that

sin θ

∫ ∞

0

du

u2 − 2u cos θ + 1
= θ, θ ∈ (0, 2π).

Here it suffices to note that this integral is equal to 1 if θ = π and to π/2 for
θ = π/2 and hence the corresponding limits in (4.5.2) are then equal to 0 and π/2.
Hence the first limit in (4.1.4) does not exist. As already mentioned, the second
limit is treated in much the same way. �

Solution of Exercise 4.1.9. Assume by contradiction that there is such a function
f , and consider f0(z) =

√
ρei

θ
2 in C \ R−. In C \ R− we have (f(z)/f0(z))

2 = 1,
so that the range of f/f0 is included in {−1,+1}. The continuous image of a
connected set is connected, see Theorem 15.1.2, and thus a continuous function
which takes a discrete set of values on a connected set is constant. Thus f(z) ≡
f0(z) or f(z) ≡ −f0(z) in C \ R−. So f0 would be equal in C \ R− to a function
which is continuous on C \ {0}. This cannot be since f0 is not continuous across
the negative axis. �

Solution of Exercise 4.1.10. (see also the remark after the proof).

(a) We assume by contradiction that such a function exists. Set in (4.1.5)
first z = w = 1 and then z = w = −1. We get on the one hand

f(1) = f(1)2 and f(1)2 = 1,

so that f(1) = f(1)2 = 1. On the other hand

f(1) = f(−1)2 and f(−1)2 = −1,

so that f(1) = f(−1)2 = −1, which leads to a contradiction.

(b) We also proceed by contradiction. Assume that f exists. Let z0 be in

C \ {0} and define g(z) =
f(z0z)

f(z)f(z0)
. The function g is continuous in C \ {0} since

f is continuous there and since f does not vanish on C\{0} (recall that f(z)2 = z).
Since

g(z)2 =
f(z0z)

2

f(z0)2f(z)2
=

z0z

z0z
= 1

we get that g(z) takes only the values 1 and −1. The open set C \ {0} is arc-
connected (see for instance Exercise 15.1.8), and therefore connected (see Lemma
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15.4.7). Since g is continuous and since the image of a connected set under a
continuous map is connected (see Theorem 15.1.2) we have

g(z) ≡ 1 or g(z) ≡ −1.

In the first case g(z) ≡ 1 implies that f(z)f(z0) = f(zz0); since f(z)2 = z, we
obtain a contradiction with (a). In the second case it suffices to replace f by −f
to obtain a contradiction.

(c) Assume that there is a function h(z) continuous on C \ {0} such that
exp(h(z)) = z for all z ∈ C \ {0}. Set g(z) = exp(h(z)/2). Then h(z) is continuous
on C \ {0} and h(z)2 = z, a contradiction with (b).

(d) The function

ln z
def.
= ln ρ+ iθ,

where z = ρ exp(iθ) and where −π < θ < π, is continuous (in fact differentiable,
with derivative 1/z) and satisfies exp(ln z) = z in C \ {0}. The difference between
(c) and (d) is that the set C \ {0} is not simply-connected whereas C \ R− is
simply-connected. �

We have divided the previous proof into two steps to help the student, but
a slightly quicker proof, based on the same arguments, goes as follows: Assume
a continuous function exists in C \ {0} such that f(z)2 = z (it can be extended
continuously to z = 0, but we will not use this). Then,

(f(z2))2 = z2, ∀z ∈ C \ {0} .

Thus
f(z2)

z
= ±1, ∀z ∈ C \ {0} .

Using that f(z2)
z is continuous on the connected set C \ {0} we have

f(z2) ≡ z or f(z2) ≡ −z.

Taking z = ±1 leads then to a contradiction.

Solution of Exercise 4.1.13. The set Z(a) of points in Ω where a vanishes is closed
since a is assumed continuous. The function

σ(z) =
b(z)

a(z)

is continuous in the open set Ω \ Z(a), and therefore

Ω+ = σ−1(D)

is open in Ω \ Z(a), and therefore in Ω since Ω is open. A similar argument shows
that Ω− is open. If Ω0 is empty, we will have

Ω = Ω+ ∪ Ω−,

which contradicts the connectedness of Ω. �
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Solution of Exercise 4.2.4. That the function

ez = ex cos y + iex sin y

satisfies the asserted conditions is clear, and is also checked in item (c) of Exercise
4.2.5. We consider the converse statement, and set f(z) = u(x, y)+ iv(x, y) to be a
function which admits a derivative at every point in C and such that f ′(z) = f(z)
and f(0) = 1. Formula (4.2.6) for the derivative implies that

∂u

∂x
(x, y) = u(x, y),

−∂u

∂x
(x, y) = v(x, y).

In particular, u(x, y) = exc(y) and (taking into account the second Cauchy–
Riemann equation) v(x, y) = exs(y), for some functions c and s of the variable y.
These functions admit first-order derivatives since u and v are differentiable, and
the Cauchy–Riemann equations lead to

c′(y) = s(y) and s′(y) = −c(y).

It follows that c(y) = cos y and s(y) = sin y and hence the result. �

Solution of Exercise 4.2.5. (a) We have f(z) = u(x, y) + iv(x, y) with

u(x, y) = x2 + y2 and v(x, y) = 2xy.

The functions u(x, y) and v(x, y) are polynomials and in particular differentiable
(in the sense of functions of two real variables) everywhere and so the Cauchy–
Riemann equations give a necessary and sufficient condition (as opposed to only
necessary in general) for f(z) to be differentiable (in the complex variable sense).
We have

∂u

∂x
(x, y) = 2x,

∂u

∂y
(x, y) = 2y,

∂v

∂x
(x, y) = 2y,

∂v

∂y
(x, y) = 2x.

Hence the Cauchy–Riemann equations are

2x = 2x and 2y = −2y.
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Thus y = 0 and x is arbitrary, and the Cauchy–Riemann equations are satisfied
at any real point. The function f(z) is differentiable on the real line. By formula
(4.2.6) the derivative is given by

f ′(x) = 2x− i2y = 2x, since y = 0.

(b) Here u(x, y) = x2 and v(x, y) = xy, and as in the previous case, the
existence of a derivative at a given point is equivalent to the Cauchy–Riemann
equations being satisfied at that point. We have now

∂u

∂x
(x, y) = 2x,

∂u

∂y
(x, y) = 0,

∂v

∂x
(x, y) = y,

∂v

∂y
(x, y) = x.

Hence the Cauchy–Riemann equations are

2x = x and 0 = −y.

Thus x = y = 0 and the Cauchy–Riemann equations are satisfied if and only if
z = 0. The function f(z) is differentiable if and only if z = 0. By formula (4.2.6)
we have for z = 0 that f ′(0) = 0.

(c) The Cauchy–Riemann equations are satisfied at every point of R2, and
u(x, y) = ex cos y and v(x, y) = ex sin y are differentiable (as real-valued functions
of two real variables) in all of R2. Thus, ez is C-differentiable in C and, using once
more formula (4.2.6) we obtain

(ez)′ =
∂u

∂x
(x, y)− i

∂u

∂y
(x, y)

= ex cos y + iex sin y

= ez.

(d) This is a standard counterexample. It can be found, e.g., in [49, Exercise 7,
p. 48]. See also Exercise 4.2.21. We will show that:

(i) f is continuous at the origin.

(ii) The Cauchy–Riemann equations hold at the origin.

(iii) f is not differentiable at the origin.

(iv) f is not differentiable in C \ {0}.
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(i) We have for z 
= 0,

|f(z)− f(0)| =
∣∣∣∣z2z − 0

∣∣∣∣
=

|z2|
|z|

= |z|,

and so we get that
lim
z→0

|f(z)− f(0)| = lim
z→0

|z| = 0.

Hence f is continuous at the origin.

(ii) Write

f(z) =
(x− iy)2

x+ iy
= u(x, y) + iv(x, y).

Since
f(x) = x and f(iy) = iy

we obtain

u(x, 0) = x, v(x, 0) = 0, u(0, y) = 0, and v(0, y) = y,

for x 
= 0 and y 
= 0. Moreover, since f(0) = 0, we have u(0, 0) = v(0, 0) = 0. Thus

lim
x→0

u(x, 0)− u(0, 0)

x
= 1 and lim

y→0

v(0, y)− v(0, 0)

y
= 1.

Thus
∂u

∂x
(0, 0) and

∂v

∂y
(0, 0) exist and are equal to 1. Hence the first Cauchy–

Riemann equation holds at z = 0. The second one is proved in the same way, and
one has

∂u

∂y
(0, 0) = −∂v

∂x
(0, 0) = 0.

(iii) We now prove that f is not differentiable at the origin. Write z = εeiθ.
Then,

f(z)− f(0)

z
=

z2

z2
=

ε2e−2iθ

ε2e2iθ
= e−4iθ.

Hence, for a fixed θ,

lim
ε→0

f(z)− f(0)

z
= lim

ε→0
e−4iθ = e−4iθ.

Thus limz→0
f(z)− f(0)

z
= 1 when θ = 0 and = −1 when θ =

π

4
.

So limz→0
f(z)− f(0)

z
does not exist and f is not differentiable at the origin.
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(iv) One can check that the Cauchy–Riemann equations do not hold at points
different from the origin. One can also note that

lim
z=ρz0
ρ∈R
ρ→1

f(z)− f(z0)

z − z0
=

z20
z20

,

while

lim
z=(1+iε)z0

ε∈R
ε→0

f(z)− f(z0)

z − z0
= −3

z20
z20

.

(e) The function f(z) = z is nowhere differentiable since the Cauchy–Rie-
mann equations do not hold at any point. As pointed out in various places (see
for instance [203, p. 21]), this is a very simple example of a continuous function
which is nowhere C-differentiable while the counterparts in real analysis are much
more difficult to obtain. �

Solution of Exercise 4.2.6. Using the chain rule for differentiation and the fact
that the Cauchy–Riemann equations hold for the pair (u, v) at the point (x0, y0),
we obtain

∂U

∂x
(x0,−y0) =

∂u

∂x
(x0, y0)

=
∂v

∂y
(x0, y0)

=
∂V

∂y
(x0,−y0)

and

∂U

∂y
(x0,−y0) = −∂u

∂y
(x0, y0)

=
∂v

∂x
(x0, y0)

= −∂V

∂x
(x0,−y0).

Let f(z) = u(x, y) + iv(x, y). When the functions u and v are differentiable at
the point (x0, y0), the functions U and V are differentiable at the point (x0,−y0),
and the result expresses that the function f(z) is C-differentiable at the point
z0 = x0 + iy0 when the function f(z) is C-differentiable at the point z0. �

Solution of Exercise 4.2.8. Although the computation is just an application of the
chain rule, we prove the first equation. We have

∂ ln
√
x2 + y2

∂x
=

1

2
· 2x

x2 + y2
=

x

x2 + y2
,
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and, for x > 0,
∂ arctan(y/x)

∂y
=

1

x

1

1 + y2

x2

=
x

x2 + y2
.

Therefore the first Cauchy–Riemann equation holds when x > 0. The other cases
are treated in the same way, and so is the second Cauchy–Riemann equation. �

Solution of Exercise 4.2.9. We will prove that the C-derivative of cos z is − sin z.
Recall that

cos z = cosx cosh y − i sinx sinh y.

(See (1.2.17).) Thus Re cos z = cosx cosh y. We use formula (4.2.6) and obtain

(cos z)′ = − sinx cosh y − i cosx sinh y = − sin z,

where we have used (1.2.18). The other formulas are proved in the same way. �

Solution of Exercise 4.2.10. Set

fn(z) = cos(z/2) cos(z/22) · · · cos(z/2n).

If z = 0, then fn(0) = 1 for every n and so is the limit. We now assume that z 
= 0.
We use the identity (1.2.16) to show by induction that

fn(z) =
sin z

2n sin(z/2n)
.

For n = 1 the claim is true since

f1(z) = cos(z/2) =
sin(z)

2 sin(z/2)
.

Assume the claim true at n. Then

sin(z/2n+1)fn+1(z) = fn(z) sin(z/2
n+1) cos(z/2n+1)

= fn(z)
sin(z/2n)

2

=
sin(z)

2n sin(z/2n)

sin(z/2n)

2

=
sin(z)

2n+1
,

where we have used (1.2.16) to go from the first line to the second and the induction
hypothesis to go from the second line to the third. Thus

fn+1(z) =
sin(z)

2n+1

1

sin(z/2n+1)
,

and the induction hypothesis is true at rank n+1. Since it holds at rank n = 1 it
holds for every positive integer.
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Thus

lim
n→∞ fn(z) = lim

n→∞
sin(z)

z

(
sin(z/2n+1)

z/2n+1

)−1

.

The function sin(z) is differentiable at every point z and its derivative is sin(z).
Thus, by definition of the derivative,

sin′(0) = lim
n→∞

sin(z/2n+1)

z/2n+1
,

and so

lim
n→∞ fn(z) =

sin(z)

z
, (z 
= 0).

The formula also holds for z = 0 when one extends the function
sin(z)

z
to be 1 at

the origin. �

For a (more complicated) proof using wavelets and Haar systems, see [90,
Exercise 5.4.3, p. 423].

Solution of Exercise 4.2.11. Since f is differentiable in Ω, the functions u and
v have first-order derivatives and the Cauchy–Riemann equations hold. We can
differentiate (4.2.12) with respect to x and y and obtain

a
∂u

∂x
+ b

∂v

∂x
= 0,

a
∂u

∂y
+ b

∂v

∂y
= 0.

These equations together with the Cauchy–Riemann equations can be written as

⎛⎜⎜⎝
1 0 0 −1
0 1 1 0
a 0 b 0
0 a 0 b

⎞⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎝
0
0
0
0

⎞⎟⎟⎠ .

We have

det

⎛⎜⎜⎝
1 0 0 −1
0 1 1 0
a 0 b 0
0 a 0 b

⎞⎟⎟⎠ = a2 + b2 > 0
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since a and b are not simultaneously equal to 0. It follows that

∂u

∂x
(x, y) =

∂u

∂y
(x, y) =

∂v

∂x
(x, y) =

∂v

∂y
(x, y) = 0,

and u and v are constant in Ω since Ω is connected. So f is a constant function
u+ iv, with the real numbers u and v satisfying (4.2.12) (that is, the point (u, v)
belongs to the straight line defined by (4.2.12)). �

Solution of Exercise 4.2.12. We have, with x− x0 = h and y − y0 = k,

u(x, y) = u(x0, y0) + h
∂u

∂x
(x0, y0) + k

∂u

∂y
(x0, y0) + o(x− x0, y − y0),

v(x, y) = v(x0, y0) + h
∂v

∂x
(x0, y0) + k

∂v

∂y
(x0, y0) + o(x− x0, y − y0),

where we denote by the same letter o expressions which, after division by√
(x− x0)2 + (y − y0)2,

tend to 0 as (x, y) tends to (x0, y0). Since

h =
z − z0 + z − z0

2
and k =

z − z0 − z − z0
2i

,

these expressions become

u(x, y) = u(x0, y0) +
z − z0 + z − z0

2

∂u

∂x
(x0, y0) +

z − z0 − z − z0
2i

∂u

∂y
(x0, y0)

+ o(x − x0, y − y0),

v(x, y) = v(x0, y0) +
z − z0 + z − z0

2

∂v

∂x
(x0, y0) +

z − z0 − z − z0
2i

∂v

∂y
(x0, y0)

+ o(x − x0, y − y0).

We obtain the result by multiplying both sides of the second equality by i and
adding the first and the second equality side by side.

From (4.2.16) we obtain

f(z)− f(z0)

z − z0
=

∂f

∂z
|z=z0 +

∂f

∂z
|z=z0

z − z0
z − z0

+
o(z − z0)

z − z0
,

and hence the set of possible limits is the circle with center
∂f

∂z
|z=z0 and radius

∂f

∂z
|z=z0 .

This circle reduces to a single point if and only if the function f admits a
derivative at the point z0. �
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Solution of Exercise 4.2.13. The result is a direct consequence of the Cauchy–
Riemann equations and of (4.2.14). More precisely, assume that F admits a deriva-
tive at the point z0 = x0 + iy0. Then,

∂F

∂z

∣∣
z=z0

=
1

2

(
∂

∂x
+ i

∂

∂y

)
(u+ iv)

∣∣
x=x0,y=y0

=
1

2

{
∂u

∂x
+ i

∂v

∂x
+ i

∂u

∂y
− ∂v

∂y

} ∣∣
x=x0,y=y0

=
1

2

{
∂u

∂x
− i

∂u

∂y
+ i

∂u

∂y
− ∂u

∂x

} ∣∣
x=x0,y=y0

= 0

where we have used the Cauchy–Riemann equations to go from the second to the
third equality. Similarly,

∂F

∂z

∣∣
z=z0

=
1

2

(
∂

∂x
− i

∂

∂y

)
(u+ iv)

∣∣
x=x0,y=y0

=
1

2

{
∂u

∂x
+ i

∂v

∂x
− i

∂u

∂y
+

∂v

∂y

} ∣∣
x=x0,y=y0

=
1

2

{
∂u

∂x
− i

∂u

∂y
− i

∂u

∂y
+

∂u

∂x

} ∣∣
x=x0,y=y0

=
∂u

∂x
(x0, y0)− i

∂u

∂y
(x0, y0),

and this last expression is exactly F ′(z0). �

Solution of Exercise 4.2.14. We will show that

lim
h→0

F (z + h)− F (z)

h
=

∫ 1

0

iteiztm(t)dt.

We note that, for |h| ≤ 1∣∣∣∣eith − 1

h
− it

∣∣∣∣ = ∣∣∣∣eizt − 1− ith

h

∣∣∣∣
=

∣∣∣∣∣∣∣
∑∞

2

hntnin

n!
h

∣∣∣∣∣∣∣
≤ |h|

∞∑
2

|h|n−2

n!

≤ |h|
∞∑
2

|h|n−2

(n− 2)!

≤ |h|e|h| ≤ e|h|.
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Thus, for |h| ≤ 1, and with M = maxt∈[0,1] |m(t)|, we have∣∣∣∣F (z + h)− F (z)

h
−
∫ 1

0

iteitzm(t)dt

∣∣∣∣ = ∣∣∣∣∫ 1

0

(
eith − 1

h
− it

)
m(t)dt

∣∣∣∣
≤
∫ 1

0

∣∣∣∣eith − 1

h
− it

∣∣∣∣ |m(t)|dt

≤ |h|eM → 0 as h → 0. �

An alternative solution of this result uses Weierstrass’ theorem on interchang-
ing the order of summation and integration. We then have (in a way similar to
(3.4.18) in Exercise 3.4.13)

F (z) =

∞∑
n=0

zn
∫ 1

0
intnm(t)dt

n!
, ∀z ∈ C. (4.5.3)

A function F of the form (4.4.19) can be seen as a signal with band limited
spectrum m(t); see Section 11.1. An interesting question is to recover m from F .
The function F is, up to normalization, equal to the Fourier transform of m, and
one can of course use the inverse Fourier transform. Another interesting way, when
m(t) ≥ 0, is to view (4.5.3) as a moment problem:∫ 1

0

tnm(t)dt = i−nF (n)(0), n = 0, 1, . . . .

Solution of Exercise 4.2.15. Recall that the distance from a complex number z0
to [1, 2] is

dist (z0, [1, 2]) = Mint∈[1,2] |z0 − t|.

Let z be such that d
def.
= dist (z0, [1, 2]) < 1. For z such that |z − z0| < d we have:

F (z) =

∫ 2

1

m(t)dt

(t− z)2

=

∫ 2

1

m(t)dt

(t− z0 − (z − z0))2

=

∫ 2

1

m(t)dt

(t− z0)2(1− z−z0
t−z0

)2

=

∫ 2

1

m(t)

(t− z0)2

( ∞∑
n=1

n

(
z − z0
t− z0

)n−1
)
dt

=

∞∑
n=1

(z − z0)
n−1Fn,
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where we have used Weierstrass’ theorem (Theorem 14.4.1) to interchange sum-
mation and integration, and where we have defined

Fn = n

∫ 2

1

m(t)dt

(t− z0)n+1
.

Thus F is locally equal to a Maclaurin series around every point z0 ∈ C \ [1, 2],
and hence is analytic there. �

Solution of Exercise 4.2.16. As in the previous exercise, we have

Fn(z)− Fn(z0)

z − z0
− n

∫ 1

0

m(t)dt

(t− z0)n+1

=

∫ 1

0

⎧⎪⎪⎨⎪⎪⎩
1

(t− z)n
− 1

(t− z0)n

z − z0
− n

(t− z0)n+1

⎫⎪⎪⎬⎪⎪⎭m(t)dt

=

∫ 1

0

{
(
∑n−1

k=0 (t− z)k(t− z0)
n−1−k)(z − z0)

(t− z)n(t− z0)n(z − z0)
− n

(t− z0)n+1

}
m(t)dt

=

∫ 1

0

{
(
∑n−1

k=0 (t− z)k(t− z0)
n−1−k)

(t− z)n(t− z0)n
− n

(t− z0)n+1

}
m(t)dt.

We now note that, for every t ∈ [0, 1],

lim
z→z0

(
∑n−1

k=0 (t− z)k(t− z0)
n−1−k)

(t− z)n(t− z0)n
− n

(t− z0)n+1
= 0.

With the notation as in the solution of the previous exercise, we have that, for
d(z) < d(z0)/2 and |z| ≤ 2|z0|,∣∣∣∣∣ (

∑n−1
k=0 (t− z)k(t− z0)

n−1−k)

(t− z)n(t− z0)n
− n

(t− z0)n+1

∣∣∣∣∣
≤

n−1∑
k=0

2n(1 + |z0|)n−1−k(1 + 2|z0|)k
d(z0)2n

+
n

d(z0)n+1
,

we can conclude using the dominated convergence theorem. One can also avoid
this theorem and proceed in a direct way; see [42, pp. 48–49]. �

Solution of Exercise 4.2.17. Let z ∈ Ω and let (zn)n∈N be a sequence of points in
Ω converging to z. Since f is continuous, we have that

lim
n→∞ f(zn) = f(z).
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We set f(zn) = wn and f(z) = w. We have

lim
n→∞

f(zn)− f(z)

zn − z
= lim

n→∞
f(zn)− f(z)

ef(zn) − ef(z)

= lim
n→∞

wn − w

ewn − ew
=

1

limn→∞ ewn−ew

wn−w

=
1

ew
=

1

ef(z)
=

1

z
. �

Solution of Exercise 4.2.18. Let z0, z ∈ Ω. We have:

f(z)2 − f(z0)
2

z − z0
= (f(z) + f(z0))

f(z)− f(z0)

z − z0
.

By hypothesis the limit limz→z0

f(z)2 − f(z0)
2

z − z0
exists and, in view of the conti-

nuity of f , the limit limz→z0 f(z) + f(z0) = 2f(z0). Since f(z0) 
= 0 we have that

limz→z0

f(z)− f(z0)

z − z0
exists, and is equal to

limz→z0

f(z)2 − f(z0)
2

z − z0
2f(z0)

. �

Solution of Exercise 4.2.19. Recall the notation (4.2.15). We have

∂z(∂zf) =
1

2

(
∂

∂x
(∂zf)− i

∂

∂y
(∂zf)

)
=

1

4

(
∂

∂x

(
∂f

∂x
+ i

∂f

∂y

)
− i

∂

∂y

(
∂f

∂x
+ i

∂f

∂y

))
=

1

4
Δf,

since
∂2f

∂x∂y
=

∂2f

∂y∂x
,

due to the smoothness of the real and imaginary parts of f . �

Solution of Exercise 4.2.20. Let F1 = u1 + iv1 and F2 = u2 + iv2 where u1, v1, u2

and v2 have smooth partial derivatives. We want to show that

∂F1F2

∂z
=

∂F1

∂z
F2 + F1

∂F2

∂z

and similarly for ∂
∂z . We have

∂F1F2

∂x
=

∂F1

∂x
F2 + F1

∂F2

∂x
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and
∂F1F2

∂y
=

∂F1

∂y
F2 + F1

∂F2

∂y

and the result follows by linearity. �

Solution of Exercise 4.2.21. At the origin, we have

∂f

∂z
(0, 0) =

∂f

∂z
(0, 0) = 1

since
∂u

∂x
(0, 0) = 1 and

∂u

∂y
(0, 0) = 0.

At a point z 
= 0 we have, using Exercise 4.2.20,

∂f

∂z
= −

(
z

z

)2

and
∂f

∂z
=

2z

z
. �

In the previous exercise, the function f is continuous in all of C, and the real
and imaginary parts of f have partial derivatives of first order in all of R2. The
Cauchy–Riemann equations hold only at the origin. The function is not differen-
tiable at the origin. There is no contradiction with Theorems 4.2.3 and 14.1.3,
since the partial derivatives are not continuous at the origin.

Solution of Exercise 4.2.22. To prove (a), we first consider the case p = 1.

∂|z|
∂z

=
1

2

(
∂
√
x2 + y2

∂x
+ i

∂
√
x2 + y2

∂y

)

=
1

2

(
2x

2
√
x2 + y2

+ i
2y

2
√
x2 + y2

)
=

z

2|z| .

Similarly,
∂|z|
∂z

=
z

2|z| . (4.5.4)

For n = 2p we have

|z|2p = zpzp,

and formula (4.2.21) leads to

∂|z|2p
∂z

= pzpzp−1 = pz|z|2p−2.
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For n = 2p+ 1 we have

∂|z|2p+1

∂z
= |z|2p∂|z|

∂z
+

∂|z|2p
∂z

|z| =
(z
2
+ pz

)
|z|2p−1 =

2p+ 1

2
z|z|2p−1.

We now turn to (b).

∂ ln |z|
∂z

=
1

4

(
∂ ln(x2 + y2)

∂x
+ i

∂ ln(x2 + y2)

∂y

)
=

1

4

(
2x

x2 + y2
+ i

2y

x2 + y2

)
=

2z

4|z|2

=
1

2z

and

∂ ln |z|
∂z

=
1

4

(
∂ ln(x2 + y2)

∂x
− i

∂ ln(x2 + y2)

∂y

)
=

1

4

(
2x

x2 + y2
− i

2y

x2 + y2

)
=

2z

4|z|2

=
1

2z
. �

Solution of Exercise 4.2.23. Taking logarithm on both sides of (4.2.23), we obtain

ln f(z) = ln |h(z)|2 + ln g(z). (4.5.5)

Now, if one knows that the logarithm of the modulus of an analytic function is
harmonic (see Exercise 9.1.5), the result is immediate by applying the operator Δ
on both sides of the above equality. Otherwise, applying the operator ∂ (we here
use notation (4.2.15)) to both sides of (4.5.5) we have:

∂ ln f(z) = ∂ ln |h(z)|2 + ∂ ln g(z)

=
∂|h(z)|2
|h(z)|2 + ∂ ln g(z)

=
h(z)∂h(z)

|h(z)|2 + ∂ ln g(z)

=
∂h(z)

h(z)
+ ∂ ln g(z), z ∈ Ω,
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where we have used the fact that ∂h(z) = 0 (since h is analytic in Ω) and the
equality

∂(h(z)h(z)) = h(z)∂h(z).

The result follows by applying ∂ on both sides of the last equality since ∂ ∂h(z)
h(z) = 0.

�

Solution of Exercise 4.2.25. By definition of Rq we assume any solution of the
equation (4.2.27) is defined in some neighborhood, say Ω, of the origin (a priori
depending on f), and which we assume invariant under the map z �→ qz. From
(4.2.27) we have

(1− λz(1− q))f(z) = f(qz), z ∈ Ω.

Iterating this equality we obtain⎛⎝n−1∏
j=0

(1− λqjz(1− q))

⎞⎠ f(z) = f(qnz), z ∈ Ω.

We can let n → ∞ since the infinite product
∏∞

j=0(1−λqjz(1− q)) converges (see
Exercise 3.7.8) and since f is differentiable, and hence continuous, at the origin.
We obtain thus f(z) ≡ f(0) if λ = 0 and

f(z) =
f(0)∏∞

j=0(1 − λqjz(1− q))
, z ∈ C \

{
1

λ(1 − q)qj
, j = 0, 1, . . .

}
if λ 
= 0. �

Solution of Exercise 4.3.1. The function − 1

z4
is a rational function (quotient of

polynomials) and as such admits a derivative at all points where it is defined, that
is in C \ {0}. The function exp z admits a derivative at all points of (that is,
it is an entire function). By composition of differentiable functions the function
f(z) admits a derivative in all of C \ {0}, and in particular the Cauchy–Riemann
equations hold there.

The function f(z) is not continuous at the origin. Indeed, for z = x ∈ R,

lim
x→0

f(x) = 0

while for z = ρ exp
iπ

4
, f(z) = exp

1

ρ4
and so

lim
ρ→0

f(ρe

iπ

4 ) = ∞.
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Since the function f is not continuous at the origin, it is in particular not
differentiable there. We show that the Cauchy–Riemann equations hold at z = 0.
Write

f(z) = exp

(
− 1

(x+ iy)4

)
= u(x, y) + iv(x, y).

We have

u(x, 0) = exp

(
− 1

x4

)
,

v(x, 0) ≡ 0,

u(0, y) = exp

(
− 1

y4

)
,

v(0, y) ≡ 0.

By hypothesis, f(0) = 0 and hence u(0, 0) = v(0, 0) = 0. Moreover,

lim
x→0

u(x, 0)− u(0, 0)

x
= lim

x→0

1

x
exp

(
− 1

x4

)
= 0,

lim
y→0

v(0, y)− v(0, 0)

y
= lim

y→0

0− 0

y
= 0.

Thus
∂u

∂x
(0, 0) and

∂v

∂y
(0, 0) exist and are equal to 0. Hence the first Cauchy–

Riemann equation holds at z = 0. The second one is proved in the same way. �

Solution of Exercise 4.3.2. Recall that for any two real numbers a and b,

2|ab| ≤ a2 + b2. (4.5.6)

We have

|f(z)− f(0)| = |x|3|y|
x6 + y2

√
x2 + y2 ≤ 1

2

√
x2 + y2,

where we have used (4.5.6) with a = x3 and b = y. Thus

lim
z→0

|f(z)− f(0)| ≤ lim
z→0

1

2

√
x2 + y2 = lim

z→0

|z|
2

= 0.

Thus f is continuous at the origin. This proves (a). To prove (b) we compute with
θ fixed and z = εeiθ (so that x = ε cos θ and y = ε sin θ):

f(z)− f(0)

z
=

ε5(cos3 θ)(sin θ)(sin θ − i cos θ)

(ε6(cos θ)6 + ε2(sin θ)2)ε(cos θ + i sin θ)
.

Hence, ∣∣∣∣f(z)− f(0)

z

∣∣∣∣ = ε2|(cos θ)3 sin θ|
ε4(cos θ)6 + (sin θ)2

.

If sin θ = 0, the function is identically equal to 0 and so is the limit. If sin θ 
= 0
the limit is equal to 0 since the denominator tends to sin2 θ > 0.
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We now show that f is not C-differentiable at the origin. Take z = t + it3.
Then

f(z)− f(0)

z
=

t3t3(t3 − it)

2t6(t+ it3)
=

1

2

t2 − i

1 + it2
.

This expression tends to −i/2 when t → 0 and so is different from the limit along
the rays and so f is not differentiable at the origin.

Finally, since the real and imaginary parts of f(z) are given by

u(x, y) =
x3y2

x6 + y2
and v(x, y) =

−x4y

x6 + y2
,

we have

u(x, 0) = v(0, y) = u(0, y) = v(x, 0) ≡ 0 for x 
= 0 and y 
= 0.

Hence the various partial derivatives of first order all exist at the origin and are
equal to 0, that is, the Cauchy–Riemann equations hold at the origin. �

Solution of Exercise 4.3.3. (a) We have

Re f(z) = x2 + y2 and Im f(z) ≡ 0.

Since the real part and imaginary part of f are smooth, a necessary and sufficient
condition for f to be C-differentiable is that the Cauchy–Riemann equations hold
at that point. Here, these equations take the form

2x = 0 and 2y = 0.

Therefore, f is differentiable only at the point 0.

(b) The function in the preceding exercise answers the question. �

Solution of Exercise 4.4.2. It suffices to look at the development (4.4.4) for z =
1/2:

1

(1/2)2
=

∞∑
n=1

n

2n−1
,

so that

4 = 2
∞∑
n=1

n

2n
,

and hence the result. �

As a matter of fact, since
∑∞

n=1 1/2
n = 1, the sum (4.4.5) corresponds to an

entropy calculation; it appears in [140, p. 61].
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Solution of Exercise 4.4.3. Applying formula (4.4.3) with p = 2 to the function
1

1−z we obtain (4.4.6):

2

(1− z)3
=

∞∑
n=2

n(n− 1)zn−2, z ∈ D.

We put z = reiθ and, taking the real part of both sides of (4.4.6), we obtain

∞∑
n=2

n(n− 1)rn−2 cos((n− 2)θ) = 2 · Re 1

(1− reiθ)3

= 2 · Re(1− e−iθr)3

(1− 2r cos θ + r2)3

= 2 · 1− 3r cos θ + 3r2 cos(2θ)− r3 cos(3θ)

(1− 2r cos θ + r2)3
. �

Solution of Exercise 4.4.4. If α is a natural integer, then fα is a polynomial, and
R = ∞. If α 
∈ N all the coefficients

an =
α(α − 1) · · · (α − n+ 1)

n!

are non-zero. Since

|an+1|
|an|

=
|α− n|
n+ 1

−→ 1 as n −→ ∞,

we have that R = 1. Using the result on the differentiation of a complex power
series we have

f ′
α(z) =

∞∑
n=1

α(α − 1) · · · (α− n+ 1)

(n− 1)!
zn−1,

and

zf ′
α(z) =

∞∑
n=1

α(α− 1) · · · (α− n+ 1)

(n− 1)!
zn,

and the coefficient of zn (n > 0) of (1 + z)f ′
α(z) is

α(α− 1) · · · (α− n)

n!
+

α(α − 1) · · · (α − n+ 1)

(n− 1)!

=
α(α− 1) · · · (α− n+ 1)

n!
(α− n+ n)

= αan,

and hence the result. To prove the second equality, it suffices to differentiate the
function H = fαfβ − fα+β. By Proposition 3.4.8 the function H is defined by a
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power series, which is convergent in the open unit disk. Furthermore, H(0) = 0.
We have

H ′(z) = f ′
α(z)fβ(z) + fα(z)f

′
β(z)− f ′

α+β(z)

=
αfα(z)

1 + z
fβ(z) + fα(z)

βfβ(z)

1 + z
− (α+ β)fα+β(z)

1 + z

= (α+ β)
H(z)

1 + z
,

from which it follows by induction that

H ′(0) = · · · = 0.

When checking the induction, formula (4.2.2) will prove useful. Since H is defined
by a power series, it vanishes identically. �

We see in particular that, for every N ∈ N,

(f1/N (z))N = 1 + z, z ∈ D,

and special cases of α give the well-known power series expansions (see [204, p.
137], if need be)

(1 + z)1/2 = 1 +
1

2
z − 1

2 · 4z
2 +

1 · 3
2 · 4 · 6z

3 + · · · ,

(1 + z)−1/2 = 1− 1

2
z +

1 · 3
2 · 4z

2 − 1 · 3 · 5
2 · 4 · 6z

3 + · · · .
(4.5.7)

One uses the notation fα(z) = (1 + z)α for α ∈ C. One should not forget
that, for α 
∈ Z, this is, a priori, just a notation for the power series (4.4.9). We
will see in Exercise 6.3.2 that, for real α, the function fα is the analytic extension
to D of the classical function from calculus (1 + x)α = exp(α ln(1 + x)).

Solution of Exercise 4.4.6. It follows from the very rough estimate

∣∣ z2p

22p(p!)2
∣∣ ≤

(
|z2|
4

)p

p!

that the power series (4.4.12) converges for every z. We now prove (4.4.13). Using
Weierstrass’ theorem (Theorem 14.4.1) we have∫

[0,2π]

eiz cosudu =

∞∑
n=0

znin

n!

∫
[0,2π]

cosn udu

=

∞∑
p=0

z2p(−1)p

(2p)!

∫
[0,2π]

cos2p udu,
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since ∫
[0,2π]

(cosu)2p+1du = 0.

See the discussion following the proof of Exercise 3.1.8 for the latter. The integrals∫
[0,2π]

(cos u)2pdu = 2π

(
2p
p

)
22p = 2π

(2p)!22p

(p!)2

have been computed in Exercise 3.1.8. The result follows. �

Solution of Exercise 4.4.8. We follow [126, pp. 18–19], and assume first that the
power series f(z) =

∑∞
n=1 anz

n has a strictly positive radius of convergence. Then
equation (4.4.15) implies that

f(z)2 = f(z)− z.

This equation has a unique solution for which f ′(0) = 1 (see Remark 4.4.5), namely

f(z) =
1− (1− 4z)1/2

2
,

and so the power series f has in fact radius of convergence equal to 1. The formula
for an follows from (4.4.9). �

Solution of Exercise 4.4.9. Since 1/(1− z) = 1+ z+ z2+ · · · , the sequence (Sn) is
the convolution of the sequence identically equal to 1 with the sequence (an). �

Solution of Exercise 4.4.10. From Exercise 4.4.7 (or from Proposition 3.4.8) the
sequence ( cnn! )n∈N0 is the convolution of the sequences (an

n! )n∈N0 and ( bnn! )n∈N0 ,
that is

cn
n!

=
n∑

�=0

a�
�!

bn−�

(n− �)!
=

1

n!

n∑
�=0

(
n
�

)
a�bn−�. �

Solution of Exercise 4.4.11. The zeroes of the polynomial 1− z − z2 are

z− =
−1−

√
5

2
and z+ =

−1 +
√
5

2
,

and therefore 1
1−z−z2 is analytic in the open disk |z| < min {|z−|, |z+|} = |z+|.

Hence, there is a power series expansion

1

1− z − z2
=

∞∑
n=0

anz
n, |z| < |z−|.

From the equality,

(1− z − z2)

( ∞∑
n=0

anz
n

)
= 1,

and comparing coefficients we then obtain (4.4.16). �
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Solution of Exercise 4.4.13.

(1) The function F is defined by a power series with radius of convergence equal
to

R =
1

limn→∞
|an+1|
|an|

=
1

limn→∞
n+ 1

n

= 1.

Thus it is analytic in the open unit disk and

F ′(z) = −
∞∑
n=1

(−1)nzn−1 =
1

1 + z
.

Set G(z) = (1 + z) exp(−F (z)). The function G is analytic in the open unit disk
and we have

G′(z) = −(1 + z)F ′(z) exp(−F (z)) + exp(−F (z)) = 0, |z| < 1.

Thus G(z) = G(0) = 1 and exp(F (z)) = 1 + z in the open unit disk.

(2) Since F ′(z) = 1
1+z and F (0) = 0, we have

ln(1 + z) =

∫
[0,z]

ds

1 + s
=

∫ 1

0

z

1 + tz
dt

and

ln(1 + z)− z =

∫ 1

0

(
z

1 + tz
− z

)
dt = −

∫ 1

0

tz2

1 + tz
dt.

Therefore, we can write for |z| ≤ 1/2:

∣∣ ln(1 + z)− z
∣∣ ≤ ∣∣∣∣∫ 1

0

tz2

1 + tz
dt

∣∣∣∣
≤
∣∣∣∣∫ 1

0

tz2

1− 1
2

dt

∣∣∣∣
= |z|2

∫ 1

0

2t = |z|2.

To prove (4.4.18) we use (1.1.35) and get∣∣| ln(1 + z)| − |z|
∣∣ ≤ |z|2,

and hence
|z| − |z|2 ≤ | ln(1 + z)| ≤ |z|+ |z|2.

The result follows since |z| ≤ 1
2 and so

|z|+ |z|2 ≤ |z|+ |z|
2

=
3|z|
2

and |z| − |z|2 ≥ |z| − |z|
2

=
|z|
2
. �
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Solution of Exercise 4.4.16. For every z ∈ D we have

(1− z)

( ∞∑
n=1

(
n∑

�=1

1

�

)
zn

)
=

∞∑
n=1

(
n∑

�=1

1

�

)
zn −

∞∑
n=1

(
n∑

�=1

1

�

)
zn+1

= z +

∞∑
n=2

(
n∑

�=1

1

�

)
zn −

∞∑
n=1

(
n∑

�=1

1

�

)
zn+1

= z +

∞∑
n=1

(
n+1∑
�=1

1

�

)
zn+1 −

∞∑
n=1

(
n∑

�=1

1

�

)
zn+1

=

∞∑
n=1

zn

n
= − ln(1− z).

Assume now that a function ψ exists with the required property. Then, for |z| <
1, applying Weierstrass’ theorem on interchanging the order of summation and
integration (Theorem 14.4.1) we have∫ 2π

0

ψ(eit)dt

eit − z
=

∞∑
n=0

zncn,

where

cn =
1

2πi

∫ 2π

0

ψ(eit)e−i(n+1)tdt.

Thus, by uniqueness of the coefficients of the power series expansion at the origin,
we would have

1

2πi

∫ 2π

0

ψ(eit)e−i(n+1)tdt = −
n∑

�=1

1

�
.

But the sequence on the left of this equality is bounded in modulus:

|cn| ≤ max
t∈[0,2π]

|ψ(eit)|,

while the sequence on the right is unbounded in modulus:

lim
n→∞

n∑
�=1

1

�
= ∞,

and this concludes the proof. �

Solution of Exercise 4.4.17. For |z| < 1 ≤ R and t ≤ 1 we have |zt| < 1 ≤ R and
so by the theorem on differentiability of a power series we have

F ′(tz) =
∞∑
n=1

nant
n−1zn−1
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for |z| < 1. Set fn(t) = nan−1t
n−1zn−1 and Mn = n|an−1||z|n−1. Since the radius

of convergence of the series of the derivative is also R we have

∞∑
n=1

Mn < ∞ for |z| < 1 ≤ R.

Using Weierstrass’ theorem we then have∫ 1

0

F ′(tz)dt =
∫ 1

0

( ∞∑
n=1

nant
n−1zn−1

)
dt

=

∞∑
n=1

nanz
n−1

∫ 1

0

tn−1dt

=

∞∑
n=1

nanz
n−1 1

n

=

∞∑
n=1

anz
n−1

=

⎧⎨⎩
F (z)− F (0)

z
, if z 
= 0,

a1 = F ′(0), for z = 0.
�

Solution of Exercise 4.4.18. The idea is the same as in Exercise 4.4.17. We just
give the outline of the proof. For a fixed z we set fn(t) = anz

ntnf(t). Then with
M = maxt∈[0,a] |f(t)| we have

|fn(t)| ≤ M |an||az|n = Mn.

By definition of the radius of convergence,
∑∞

n=0 Mn < ∞ for |z| < R/a. For such
z one can apply Weierstrass’ theorem and write

G(z) =

∫ a

0

( ∞∑
n=0

anz
ntn

)
f(t)dt =

∞∑
n=0

znAn,

where

An = an

∫ a

0

tnf(t)dt.

Thus G has a development in power series in |z| < R/a and is analytic there. Its
derivative is (recall the theorem on differentiability of power series)

G′(z) =
∞∑

n=1

nAnz
n−1.
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Another application of Weierstrass’ theorem leads to

G′(z) =
∫ a

0

tF ′(zt)f(t)dt.

The arguments for the function H are similar. Set now fn(z) = an
zn

tn
f(t).

With M = maxt∈[1,a] |f(t)| and since 1/a ≤ 1/t ≤ 1 for 1 ≤ t ≤ a we have, for
z ∈ C,

|fn(t)| ≤ |an||z|nM = Mn,

and
∑∞

n=0 Mn < ∞ for |z| < R. For such z one can apply Weierstrass’ theorem
and write

H(z) =

∫ a

1

( ∞∑
n=0

an
zn

tn

)
f(t)dt =

∞∑
n=0

znAn,

where

An = an

∫ a

1

f(t)

tn
dt.

Thus H has a development in power series in |z| < R and is analytic there. Its
derivative is (recall the theorem on differentiability of power series)

H ′(z) =
∞∑
n=1

nAnz
n−1.

Another application of Weierstrass’ theorem leads to

H ′(z) = −
∫ a

0

F ′(z/t)
f(t)

t2
dt.

If R = ∞ the above arguments show that G and H are entire functions. �

Solution of Exercise 4.4.19. It follows from (3.4.18) in Exercise 3.4.13 that f is
equal to a power series centered at the origin, and convergent for every complex
number z. Thus f is analytic in C, that is, is an entire function. Its derivative is
equal to

f ′(z) =
∫ 1

0

tetzm(t)dt

=

∞∑
n=1

nzn−1

∫ 1

0 tnm(t)dt

n!
.

The first formula is done by computing the limit

lim
h→0

f(z + h)− f(z)

h
=

∫ 1

0

lim
h→0

et(z+h) − etz

h
m(t)dt =

∫ 1

0

tetzm(t)dt.
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We justify the interchange of limit and integral in the above chain of equalities
by using the dominated convergence theorem. Indeed, it is enough to consider a
sequence (hn)n∈N with limit 0 to compute the limit. Let

fn(t) =
et(z+hn) − etz

hn
m(t), n ∈ N.

For |hn| ≤ 1 we have

|fn(t)| = |etz| ·
∣∣∣∣ethn − 1

hn

∣∣∣∣ · |m(t)|

= |etz| ·
∣∣∣∣∣
∞∑
p=1

tphp−1
n

p!

∣∣∣∣∣ · |m(t)|

≤ t|etz| · |m(t)| ·
∞∑
p=0

|t|p
(p+ 1)!

,

and the function

t �→ t|etz| · |m(t)| ·
∞∑
p=0

|t|p
(p+ 1)!

is continuous on [0, 1] and in particular absolutely summable on [0, 1]. The dom-
inated convergence theorem is therefore applicable, and we obtain a formula for
f ′(z) in term of an integral. The expression of f ′(z) as a power series is a direct
consequence of Theorem 4.4.1. �

We remark that the above argument, slightly adapted, also works if m is
only assumed to be in L1(0, 1), and in particular in L2(0, 1) since by the Cauchy–
Schwarz inequality

L2(0, 1) ⊂ L1(0, 1).

The function

t �→ t|etz| · |m(t)| ·
∞∑
p=0

|t|p
(p+ 1)!

is not anymore continuous, but it is in L1(0, 1), and the dominated convergence
theorem can still be applied.

Solution of Exercise 4.4.20. We first consider z in the open unit disk. The idea is
to show that ϕ is equal to a power series centered at the origin and with radius
of convergence at least 1 (in fact, for m not identically equal to 0, the radius of
convergence is exactly 1, but we will not prove it here). We then conclude with
the theorem on the analyticity of power series in their disk of convergence. The
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key is to use Weierstrass’ theorem to interchange integration and infinite sum at
an appropriate place of the argument. For |z| < 1 we can write

eit + z

eit − z
=

eit − z + 2z

eit − z

= 1 +
2z

eit − z

= 1 + 2ze−it 1

1− e−itz

= 1 + 2ze−it

( ∞∑
n=0

(e−itz)n

)

= 1 + 2

∞∑
n=0

zn+1e−i(n+1)t,

and so
eit + z

eit − z
m(t) = m(t) +

∞∑
n=0

fn(t),

where
fn(t) = 2zn+1e−i(n+1)tm(t), n ∈ N0.

Then, fn is a continuous function of t in the interval [0, 2π] and

|fn(t)| ≤ M |z|n+1,

where M = 2 supt∈[0,2π] |m(t)|. Set Mn = M |z|n+1. We have

∞∑
n=0

Mn = M

∞∑
n=0

|z|n+1 < +∞,

and so,

ϕ(z) =

∫ 2π

0

eit + z

eit − z
m(t)dt

=

∫ 2π

0

(
m(t) +

∞∑
n=0

fn(t)

)
dt

=

∫ 2π

0

m(t)dt+

∫ 2π

0

( ∞∑
n=0

fn(t)

)
dt

=

∫ 2π

0

m(t)dt+

∞∑
n=0

∫ 2π

0

fn(t)dt,

where we have used Weierstrass’ theorem to go from the penultimate line to the
last line.
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By definition of fn we have∫ 2π

0

fn−1(t)dt = 2znan, n = 1, 2, . . . ,

where, for n = 0, 1, . . . ,

an =

∫ 2π

0

e−intm(t)dt

is called the nth trigonometric moment. Then,

ϕ(z) = a0 + 2

∞∑
n=1

anz
n. (4.5.8)

The argument above was made for any |z| < 1. Thus (4.5.8) converges for all
|z| < 1 and by the theorem on the analyticity of convergent power series in their
disk of convergence, ϕ is analytic in the open unit disk.

The case of |z| > 1 is done by the change of variable z �→ 1/z. Assume first
m real-valued. The function

ϕ(1/z) = −
∫ 2π

0

1 + zeit

1− zeit
m(t)dt = −ϕ(z) (4.5.9)

is analytic in the open unit disk. Therefore ϕ is analytic in |z| > 1. The case of
complex-valued m is easily adapted. �

Solution of Exercise 4.4.21. For z0 and z in C \ [0, 1], and since

(t− z0)
2 − (t− z)2 = (2t− z − z0)(z − z0),

we have

F (z)− F (z0)

z − z0
−
∫ 1

0

2m(t)dt

(t− z0)3
=

∫ 1

0

⎧⎪⎪⎨⎪⎪⎩
1

(t− z)2
− 1

(t− z0)2

z − z0
− 2

(t− z0)3

⎫⎪⎪⎬⎪⎪⎭m(t)dt

=

∫ 1

0

{
(2t− z − z0)

(t− z)2(t− z0)2
− 2

(t− z0)3

}
m(t)dt

=

∫ 1

0

(2t− z − z0)(t− z0)− 2(t− z)2

(t− z)2(t− z0)3
m(t)dt.

For z ∈ C, let d(z) be the distance from z to [0, 1]:

d(z) = min
t∈[0,1]

|t− z|.
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We have that d(z0) > 0. Moreover, for |z − z0| < d(z0)/2 we have

|t− z| ≥ |t− z0| − |z − z0| ≥ d(z0)− d(z0)/2 = d(z0)/2,

and so d(z) > d(z0)/2. Therefore,∣∣∣∣F (z)− F (z0)

z − z0
−
∫ 1

0

2m(t)dt

(t− z0)3

∣∣∣∣ = ∣∣∣∣∫ 1

0

(2t− z − z0)(t− z0)− 2(t− z)2

(t− z)2(t− z0)3
m(t)dt

∣∣∣∣
≤ 4

d(z0)5

∫ 1

0

|(2t− z − z0)(t− z0)− 2(t− z)2| · |m(t)|dt.

To end the proof we show that

lim
z→z0

∫ 1

0

|(2t− z − z0)(t− z0)− 2(t− z)2| · |m(t)|dt = 0. (4.5.10)

But

(2t− z − z0)(t− z0)− 2(t− z)2 = (z − z0)(3t− z0 − 2z),

and so (say, for |z| ≤ 2|z0|),

lim
z→z0

∫ 1

0

|(2t− z − z0)(t− z0)− 2(t− z)2| · |m(t)|dt

≤ lim
z→z0

|z − z0| · (3 + |z0|+ 2|z|)
∫ 1

0

|m(t)|dt

≤ lim
z→z0

|z − z0| · (3 + 5|z0|)
∫ 1

0

|m(t)|dt

= 0. �

We note that, pointwise,

lim
z→z0

(2t− z − z0)(t− z0)− 2(t− z)2 = 0,

and one could also justify interchanging the integral and the limit in (4.5.10)
using the dominated convergence theorem (see Theorem 17.5.2) since (say, for
|z| ≤ 2|z0|)

|(2t− z − z0)(t− z0)− 2(t− z)2| · |m(t)| ≤ (2 + 3|z0|)(1 + |z0|) + 2(1 + 2|z0|)2 ·M,

where M = maxt∈[0,1] |m(t)|. In the case at hand, this method is an overkill, but
there are cases where it will prove useful.

Solution of Exercise 4.4.22. Recall that

Ep(z) = (1− z)e

(
z+ z2

2 +···+ zp

p

)
.
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We note that

(1− Ep(z))
′ = e

(
z+ z2

2 +···+ zp

p

)
− (1 − z)(1 + z + · · ·+ zp−1)e

(
z+ z2

2 +···+ zp

p

)

= zpe

(
z+ z2

2 +···+ zp

p

)
,

and therefore the coefficients in the power series expansion at the origin of the
function

(1 − Ep(z))
′

are positive numbers. Thus there exist positive numbers bn,p, n > p such that

1− Ep(z) =
∞∑

n=p+1

znbn,p, |z| < 1.

The radius of convergence of this series is infinity. Setting z = 1 we obtain that

∞∑
n=p+1

bn,p = 1.

Hence, for |z| ≤ 1,

|1− Ep(z)| =
∣∣∣∣∣

∞∑
n=p+1

znbn,p

∣∣∣∣∣
≤ |z|p+1

{ ∞∑
n=p+1

|z|n−p−1bn,p

}

≤ |z|p+1

{ ∞∑
n=p+1

bn,p

}
= |z|p+1. �

Remark 4.5.1. The bound,

|1− Ep(z)| ≤ e|z|
p+1 − 1, z ∈ C, (4.5.11)

can be found in [60, Problem 7, p. 13]. When |z| ≤ 1 it leads to

|1 − Ep(z)| ≤ (e− 1)|z|p+1

Solution of Exercise 4.4.23. The infinite product can be rewritten as

∞∏
n=1

E2(z/
√
n),
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where E2 is defined by (3.7.14) with p = 2. Let R > 0 and consider |z| ≤ R. Take
n0(R) ∈ N such that R/

√
n0(R) < 1. Then

|z/
√
n| < 1, ∀|z| ≤ R and n ≥ n0(R).

For such z and n, the previous exercise gives us

|1− E2(z
√
n)| ≤ R3

n3/2
.

Taking into account the bound (3.7.3) we see that the infinite product

∞∏
n=n0(R)

E2(z/
√
n)

(and hence the infinite product (4.4.22)) converges uniformly in |z| ≤ R. The
claims on the analyticity of the infinite product and on its zeros follow. �



Chapter 5

Cauchy’s Theorem

In this chapter we need the simplest version of Cauchy’s theorem, and not the
homological or homotopic versions. Furthermore, in the computations of Section
5.1, the weaker form of Cauchy’s theorem proved using Green’s theorem is enough.

We begin with a couple of exercises on the computation of path integrals,
and then focus on exercises related to Cauchy’s theorem.

5.1 Line integrals

In topology, and in particular in algebraic topology, the emphasis is on continuous
rather than differentiable functions. A path (we will also say arc, or curve) will be
any subset of C homeomorphic to [0, 1], and a simple closed path, or Jordan curve,
will be any subset of C homeomorphic to the unit circle. See for instance [118,
p. 19]. In the setting of complex integration, we need to change a bit the above
definition of a path, and consider appropriate equivalent classes. Two continuous
complex-valued functions defined on compact intervals

γ�(t) = x�(t) + iy�(t), t ∈ [a�, b�], � = 1, 2,

are called equivalent if there is an increasing homeomorphism ϕ of class C1 from
[a1, b1] onto [a2, b2] such that

γ1(t) = γ2(ϕ(t)), t ∈ [a1, b1]. (5.1.1)

An equivalence class of such functions will be called a continuous path (or arc, or
curve), and the elements of an equivalence class C are called the parametrizations
of the arc; it will be called a smooth path when the components of one (and hence
all) of the elements in the equivalence class are continuously differentiable. All
the elements in a given equivalence class have the same geometric image in the

D. Alpay, A Complex Analysis Problem Book, 
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complex plane, but the path and its image are completely different objects. This
is illustrated in the next examples, where the two given functions have for image
the unit circle, but are not equivalent.

Exercise 5.1.1. Prove that the smooth paths defined by the parametrizations

γ1(t) = eit, t ∈ [0, 2π],

and
γ2(t) = eit, t ∈ [0, 4π]

are not equivalent.

Let C be a smooth path. It is called closed if for one (and hence for every)
parametrization γ(t), t ∈ [a, b] of C, it holds that

γ(a) = γ(b).

It is called simple if one (and hence every) parametrization γ of C is one-to-one
onto its image. It is called simple and closed if

γ(t) = γ(s) ⇐⇒ t, s ∈ {a, b} .

Let C1 and C2 be two smooth paths, with parametrizations γ1(t), t ∈ [a1, b1] and
γ1(t), t ∈ [a2, b2], and assume that

γ1(b1) = γ2(a2).

The concatenation of γ1 and γ2 is the continuous arc with a parametrization
given by

γ(t) =

{
γ1(t), t ∈ [a1, b1],

γ2(t+ a2 − b1), t ∈ [b1, b1 + b2 − a2],

and will be denoted by C = C1C2.
4 We will usually use the simple representation

γ(t) =

{
γ1(t), t ∈ [a1, b1],

γ2(t), t ∈ [a2, b2].

A piecewise smooth arc C is given by the concatenation C = C1C2 · · ·CN of a
finite number of smooth arcs C1, C2, . . . , CN such that

γj(bj) = γj+1(aj+1), j = 1, . . . , N − 1

where γj : [aj , bj ] �→ C is a parametrization of Cj . The piecewise smooth arc is
called closed if moreover,

γN (bN ) = γ1(a1).

4Sometimes the notation C = C2C1 is used. Here we will stick to the notation C = C1C2.
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The closed piecewise smooth path will be called a closed contour (or a simple
closed Jordan curve; see [53, p. 54]) if the continuous path obtained by successive
concatenation of the arcs C�, � = 1, . . . , N is closed and simple.

Given a function f continuous on the image of the path, one defines the line
integral ∫

C

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt, (5.1.2)

where γ is a parametrization of the path; the integral does not depend on the
choice of the parametrization, as follows from the change of variable theorem. The
integral on a piecewise smooth path is defined as the sum of the integrals on the
smooth paths which compose it.

Exercise 5.1.2. Compute
∫
C(x

2 − iy2)dz where C is the upper semicircle: z(t) =
cos t+ i sin t with 0 ≤ t ≤ π ([156, Exercice 13, p. 175]).

It is well to recall the formula∣∣∣∣∫
C

f(z)dz

∣∣∣∣ ≤ max
t∈[a,b]

|f(γ(t))|L(C), (5.1.3)

for a piecewise smooth path C of length L(C).

The formula is used in particular in Exercise 5.1.4 below, taken from the
paper [99]. There, the result serves as a tool in a proof of a simple version of
Riemann’s mapping theorem. A follow-up of the exercise is given in Exercise 5.5.2.
In formula (5.1.5) in Exercise 5.1.4, the notation |dz| stands for the integral with
respect to |γ′(t)|dt: If C is a smooth curve with parametrization γ(t), t ∈ [a, b] and
h is a continuous function on C, we have∫

C

h(z)|dz| =
∫ b

a

h(γ(t))|γ′(t)|dt. (5.1.4)

Definition 5.1.3. (5.1.4) is called the line integral with respect to arc length (see,
e.g., [22, Section 10.7]).

Exercise 5.1.4. Let f be continuous in the open set Ω and let C be a smooth curve
in Ω, not containing the origin. Show that∣∣∣∣∫

C

f(z)

z
dz

∣∣∣∣2 ≤
(
max
z∈C

1

|z|2

)
· L(C) ·

∫
C

|f(z)|2|dz|. (5.1.5)

The result presented in the following exercise is also taken from [99, p. 825];
see also [98, pp. 397–398] and [145, p. 528].

Exercise 5.1.5. Let C be a smooth Jordan curve, and let z0 and z1 be two points
symmetric with respect to a common given normal of C. Let γ(t), t ∈ [a, b], be a
parametrization of C. Show that

lim
|z0−z1|→0

(
max
t∈[a,b]

|γ(t)− z0|
|γ(t)− z1|

)
= 1. (5.1.6)
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Hint. Use Exercise 2.2.1 and the family of coaxal circles based on z0 and z1, and
consider the set of points z such that, for λ ∈ (0, 1) given,

λ <
|z − z0|
|z − z1|

<
1

λ
. (5.1.7)

The next exercise is taken from Cartan’s book; see [45, Exercice 1, p. 76]. In
the statement we use the notation |z| = 1 for the path

γ(t) = e2πit, t ∈ [0, 1].

This is of course an abuse of notation, since a path and its image are two different
objects.

Exercise 5.1.6. Let C be a path with parametrization γ(t) = x(t) + iy(t) and let
C∗ be the path with parametrization

γ∗(t) def.
= γ(t) = x(t)− iy(t),

where t ∈ [a, b]. Assume that f is defined on the images of both C and C∗. Show
that (∫

C

f(z)dz

)
=

∫
C∗

f(z)dz, (5.1.8)

and (∫
|z|=1

f(z)dz

)
= −

∫
|z|=1

f(z)
dz

z2
. (5.1.9)

Let C be a piecewise smooth closed path, and let z0 
∈ Ran C. The number

W (C, z0) =
1

2πi

∫
C

dz

z − z0
(5.1.10)

is an integer. The number W (C, z0) is called the winding number of the closed
curve around the point z0 (see for instance [144, p. 134]), or the index of z0 with
respect to the closed curve C. We note that various notation and variations on
the above terminology appear in the literature, and sometimes one can find the
notation n(z0, C) (that is, z0 appears before C). For instance, Cartan in [45, p.
62] speaks of the index of C with respect to the point z0, and uses the notation
I(C, z0). Ahlfors, [4, p. 114], uses the notation n(C, z0), and Dieudonné in [63, p.
228] uses both j(z0, C) and j(C, z0), and speaks of the index of the curve with
respect to the point z0, or of the point z0 with respect to the curve. Andersson,
see [19, p. 18], speaks of the index of the curve with respect to the point z0, and
uses the notation IndC(z0)

Exercise 5.1.7. Prove that indeed the winding number is an integer.
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For an extension of the preceding result, see Exercise 5.5.22.

The next result is also important when computing definite integrals using the
residue theorem. See [1, Exercise 8, p. 81] for a particular case. In the statement,
|z| = R denotes the path

γ(t) = Re2πit, t ∈ [0, 1].

Exercise 5.1.8. Let p(z) and q(z) be two polynomials and assume that deg q ≥
deg p+ 2. Show that

lim
R→∞

∫
|z|=R

p(z)

q(z)
dz = 0.

Jordan’s lemma plays an important role in the sequel. It reads as follows:

Exercise 5.1.9 (Jordan’s lemma). It holds that

lim
R→∞

∫ π
2

0

e−R sin tdt = 0 and lim
R→∞

∫ π
2

0

e−R cos tdt = 0. (5.1.11)

Integrals in (5.1.11) are integrals on a closed interval, and as such, are par-
ticular instances of line integrals. The following exercise requires a different more
geometric interpretation.

Exercise 5.1.10. Write the integrals in (5.1.11) as line integrals on some arc of a
circle.

Exercise 5.1.11. Let Ω be an open connected subset of R2, and let u admit con-
tinuous first-order partial derivatives in Ω. Show that, for every closed piecewise
smooth path C in Ω, ∫

C

∂u

∂x
dx+

∂u

∂y
dy = 0. (5.1.12)

Remark 5.1.12. When u admits continuous second-order derivatives and when
moreoverC is simple, (5.1.12) is a direct consequence of Green’s theorem. Compare
with (9.2.2).

5.2 The fundamental theorem of calculus for
holomorphic functions

Assume now that the function f is C-differentiable at the point γ(t). Then, the
complex-valued function of a real variable f(γ(t)) is differentiable, and its deriva-
tive is given by the formula

f(γ(t))′ = γ′(t)f ′(γ(t)). (5.2.1)

This important and non trivial formula calls for some comments. The function on
the left side of (5.2.1) is the derivative of the complex-valued function of a real
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variable. Similarly, the term γ′(t) is the derivative at the point t of the complex-
valued function of a real variable γ(t). On the other hand, f ′(γ(t)) is the complex
derivative of the function f at the point γ(t).

Formula (5.2.1) leads to the fundamental theorem of calculus for holomor-
phic functions. In the statement, the derivative f ′(z) is assumed continuous. This
hypothesis is in fact superfluous, since a holomorphic function has derivatives of
all orders. But this fact is proved at a later stage, following the Cauchy–Goursat
theorem.

Theorem 5.2.1. Let Ω be an open connected set, and let C be a smooth path with
parametrization γ(t), t ∈ [a, b]. Let f be holomorphic in Ω, and assume that f ′ is
continuous in Ω. Then, ∫

C

f ′(z)dz = f(γ(b))− f(γ(a)). (5.2.2)

Formula (5.2.2) is also called the Newton–Leibniz formula. See [74, p. 37]. At
this stage it is well to recall the following definition: A function f is a primitive of
a function g in an open set Ω if we have

f ′(z) = g(z), ∀z ∈ Ω.

Note that g is necessarily continuous since differentiability at a point implies con-
tinuity at that point. In fact, g is necessarily holomorphic, since f is holomorphic
and since a holomorphic function has derivatives of all orders. Every power series
has a primitive in its domain of convergence. This is a local result. One impor-
tant difference with the real case is the following: A given function g may lack a
primitive in a set Ω but admits one in some open subset of Ω. The geometry of
the set plays an important role; see Exercise 5.2.3 for a first illustration of this
fact. Exercises on existence of primitives will be given in Section 5.7. Here, as a
corollary of Theorem 5.2.1 we get the proof of the direct statement in the following
theorem:

Theorem 5.2.2. Let Ω be an open connected subset of C and let g be continuous in
Ω. A necessary and sufficient condition for g to have a primitive in Ω is that∫

C

g(z)dz = 0 (5.2.3)

holds for every closed path C in Ω.

Exercise 5.2.3. The function f(z) = 1/z has no primitive in C \ {0}.

We recall that the function 1/z does have a primitive in the set C \ (−∞, 0].
This last set is star-shaped. In fact it follows from the Cauchy–Goursat theorem
that any function holomorphic in a star-shaped domain has a primitive there. This
leads us to the following definition of a simply-connected set:
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Definition 5.2.4. An open connected set Ω ⊂ C is simply-connected if every func-
tion holomorphic in Ω has a primitive there, or, equivalently, if (5.2.3) holds for
every closed path C in Ω.

Let us go back now to Theorem 5.2.1. Integration by parts in the present
setting reads as follows:

Exercise 5.2.5 (see [219, p. 58]). In the notation of Theorem 5.2.1, let f and g be
holomorphic in Ω, and such that f ′ and g′ are continuous on C. Let γ : [a, b] �→ Ω
be a parametrization of C. Then,∫

C

f(z)g′(z)dz = (fg)(γ(b))− (fg)(γ(a))−
∫
C

f ′(z)g(z)dz. (5.2.4)

Theorem 5.2.1 allows us to get a simpler solution to Exercise 3.4.15.

Exercise 5.2.6. Give a proof of (3.4.20):

|ez1 − ez2 | ≤ |z1 − z2|,

where z1 and z2 are in the left closed half-plane, using Theorem 5.2.1.

A non-trivial application of Theorem 5.2.1 allows us to compute the Fresnel
integrals ∫

R

cos(t2)dt and

∫
R

sin(t2)dt. (5.2.5)

These last integrals play an important role in optics. They can be computed by di-
rect methods, without using complex analysis; see for instance [83], [147]. Theorem
5.2.1 allows us to compute them directly. The existence of the Fresnel integrals
follows from the proof itself, but it is also a simple, but instructive, calculus ex-
ercise to check directly that they converge. The idea is as follows: It is enough to
check that the limit

lim
R→∞

∫ R

1

cos(t2)dt

exists since the integral
∫ 1

0
cos(t2)dt exists. But∫ R

1

cos(t2)dt =

∫ R

1

1

2t
(2t cos(t2))dt

=

(
sin(t2)

2t

)R

1

+

∫ R

1

sin(t2)

2t2
dt.

The first term tends to − sin 1

2
as R → ∞ and the integral

∫ R

1

sin(t2)

2t2
dt is abso-

lutely convergent since ∣∣∣∣ sin(t2)2t2

∣∣∣∣ ≤ 1

2t2
.
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Thus
∫∞
0 cos(t2)dt converges. The proof of the convergence of the other Fresnel

integral is of course similar. For another proof of convergence, see [61, Solution to
1.5.21, p. 209].

Usually, these integrals are computed in books using the weak version of
Cauchy’s theorem (see the discussion before Exercise 5.3.2 for the latter). Saks
and Zygmund in [192, p. 103] compute the Fresnel integral in an even easier way:

They remark that e−z2

has a primitive in C (since it is given by a power series
with infinite radius of convergence), and resort directly to Theorem 5.2.1 to show
that the integral in the closed contour in Exercise 5.2.7 below is equal to 0.

To compute the Fresnel integrals we need the Gaussian integral∫
R

e−t2dt =
√
π. (5.2.6)

More generally, the moments∫
R

e−t2t2udt, u = 1, 2, . . . (5.2.7)

could be computed using integration by part starting from (5.2.6). In Exercise
13.5.1, and also using (5.2.6), these moments are computed using the Fourier
transform.

Recall that the integral (5.2.6) may be computed in the following way. Set

K =
∫
R
e−t2dt. Then,

K2 =

(∫
R

e−t2dt

)(∫
R

e−s2ds

)
=

∫∫
R2

e−(t2+s2)dtds

=

∫∫
[0,∞)×[0,2π]

e−r2rdrdθ = π,

where one has made the change of variables t = r cos θ and s = r sin θ. As recalled
in [27], one can also compute this integral using the residue theorem. See Exercise
8.5.1.

Exercise 5.2.7.

(a) Show that the function e−z2

has a primitive in C.

(b) For R > 0 consider the closed contour ΓR = γ1,R + γ2,R + γ3,R where:

(i) γ1,R is the interval [0, R].

(ii) γ2,R is the arc of the circle of radius R and centered at the origin, with
angle varying between 0 and π/4.
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(iii) γ3,R is the interval linking the origin to the point Re
iπ
4 .

Compute the Fresnel integrals by computing the integral of the function e−z2

over the contour ΓR and letting R → ∞.

Similar arguments allow us to compute the integrals in the next exercise; see
[42, p. 386] (see also [83, 147] and Remark 5.9.1 after the solution of the exercise).

Exercise 5.2.8. Show that∫ ∞

0

e−t2 cos t2dt =

√
π
√√

2 + 1

4
,∫ ∞

0

e−t2 sin t2dt =

√
π
√√

2− 1

4
.

We now give an application of the fundamental theorem of calculus for line
integrals to prove an injectivity result.

Exercise 5.2.9. Assume that the complex numbers a2, a3, . . . are such that

∞∑
n=2

n|an| < 1. (5.2.8)

Show that

f(z) = z +
∞∑
n=2

anz
n

defines a function f holomorphic in the open unit disk D, and that f is one-to-one
in D.

Another proof of the above result is the topic of Exercise 10.2.3. The result
itself can be found in [191], where the following question is also added:

Let c > 1. There exists a function such that

∞∑
n=2

n|an| ≤ c,

and which is not one-to-one in the open unit disk.

5.3 Computations of integrals

Let f be continuous in a convex open set Ω, and holomorphic in Ω\{z0}, for some
point z0 ∈ Ω. The Cauchy–Goursat theorem for triangles states that, for every
triangle in Ω, with boundary ∂Δ, it holds that∫

∂Δ

f(z)dz = 0.
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It follows that f has a primitive in Ω and therefore (5.2.3)∫
C

f(z)dz = 0

for every closed path C inside Ω. The same conclusion holds when Ω is star-shaped.

It is also useful to consider open sets which are not simply-connected, or
curves which are not connected. For the present setting we will only need the
following result:

Theorem 5.3.1. Let Ω be a convex set and let C,C1, . . . , CN be simple closed non-
intersecting curves inside Ω. Assume that the interiors R1, . . . , RN of the curves
C1, . . . , CN are inside the interior R of C. Let f be analytic in a neighbourhood of
R−

⋃N
n=1 Cj. Then, ∫

C

f(z)dz =

N∑
n=1

∫
Cn

f(z)dz, (5.3.1)

where all the curves have the positive orientation.

The proof of (5.2.3) is very involved when no continuity hypothesis is made
on the derivative of f in Ω. On the other hand, when one assumes f ′ continuous
in Ω, and when γ is a closed simple path whose interior is contained in Ω, (5.2.3)
is a simple consequence of Green’s theorem; see [53, p. 60]. This is the version
of Cauchy’s theorem which we need in this section to compute certain definite
integrals. If you want to avoid Green’s theorem and use Cauchy’s theorem, one
has, for instance, to choose Ω = C− i(−∞, 0] in the following exercises. It is star-
shaped with respect to any point on i(0,∞), and therefore the Cauchy–Goursat
theorem insures that the integral on a closed curve of any function holomorphic
in Ω vanishes.

Exercise 5.3.2. Compute
∫∞
0

sin t

t
dt using Cauchy’s theorem as follows: Integrate

the function
eiz

z
on the closed contour defined below and let R → ∞ and ε → 0.

The contour is built from four parts (both ε and R are strictly positive numbers):

(i) γ1,R,ε is the real interval [ε, R].

(ii) γ2,R is the half-circle of radius R, centered at the origin, which lies in the
upper half-plane, and positively oriented.

(iii) γ3,R,ε is the real interval [−R,−ε].

(iv) γ4,ε is the half-circle of radius ε, centered at the origin, and which lies in the
upper half-plane, and with negative orientation.

The above integral is called the Dirichlet integral. In the following exercise
the formula

lim
ε→0

∫
γ4,ε

g(z)

z
dz = −iπg(0), (5.3.2)
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which can also be written, if you already know the notions of residue and of simple
pole, as

lim
ε−→0

∫
γ4,ε

h(z)dz = −iπRes (h, 0), (5.3.3)

when h has a simple pole at z = 0, will prove useful.

The above formula still holds when 0 is a pole of h of order possibly bigger
than one, when in the Laurent expansion of h at the origin only odd powers occur.
See [45, Lemma 4, p. 105] (for a simple pole) and Exercise 7.3.2.

Exercise 5.3.3. Using the function

f(z) =
1− e2iz

z2

and the same path as in the previous exercise, compute∫
R

(
sinx

x

)2

dx.

Exercise 5.3.4. Show that ∫
R

(
sinx

x

)3

dx =
3π

4
.

We want to compute the integrals∫ ∞

0

1− cosx

x2
x1−2Hdx,

where H ∈ (0, 1). Such integrals appear in computations related to the fractional
Brownian motion.

Exercise 5.3.5. Show that, for H ∈ (0, 1) different from 1/2,∫ ∞

0

1− cosx

x2
x1−2Hdx =

cos(πH)Γ(1− 2H)

2H
=

cos(πH)Γ(2− 2H)

(1− 2H)2H
, (5.3.4)

where Γ denotes the Gamma function (3.1.11).

Hint. Distinguish the cases H ∈ (0, 1/2) and H ∈ (1/2, 1), and in each case
integrate an appropriate function along the contour γε,R constructed as follows:
γε,R consists of four components:

(1) The interval [ε, R].

(2) The quarter of circle CR of radius R linking the points R and iR.

(3) The interval [iR, iε].

(4) The quarter of circle cε of radius ε and linking the points ε and iε.

The Gamma function is studied in further detail in Exercise 13.4.2. It is the
Mellin transform (see (13.4.1)) of the function e−t, t > 0.
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5.4 Riemann’s removable singularities theorem
(Hebbarkeitssatz)

We note that an important consequence of the Cauchy–Goursat theorem is Rie-
mann removable singularity theorem (Riemann Hebbarkeitsseitz):

Theorem 5.4.1. Let f be bounded in B(z0, r) and holomorphic in B(z0, r) \ {z0}.
Then

lim
z→z0

f(z)
def.
= �

exists, and the function h defined by

h(z) =

{
f(z), z 
= z0,

�, z = z0,

is holomorphic in B(z0, r).

See for instance [81, Satz 4.3, p. 79]. We briefly recall its proof here. One
first assumes f continuous rather than only bounded. From the Cauchy–Goursat
theorem we have that

∫
∂Δ f(z)dz = 0 for every triangle Δ ⊂ B(z0, r). Morera’s

theorem implies then that f has a primitive in B(z0, r) and hence is analytic in
B(z0, r). To deal with the bounded case, it suffices to consider the function

g(z) = (z − z0)f(z).

It is continuous at the point z0 since f is bounded. By the preceding argument it
is analytic in B(z0, r), and it is a power series expansion there:

(z − z0)f(z) = a1(z − z0) + a2(z − z0)
2 + · · · .

It follows that f has also a power expansion in B(z0, r), and therefore is analytic
there.

The function f(x) = |x| shows, if need be, that an analog of Theorem 5.4.1
does not hold in the real case. The function |x| is of class C∞ in R \ {0}, and is
continuous at the origin. It is not differentiable at the origin.

Exercise 5.4.2. Let z0 ∈ C and let ϕ be analytic and with positive real part in
Ω = {z ; 0 < |z − z0| < 1}. Show that z0 is a removable singularity.

For the following two exercises we recall that the zeroes of an analytic function
cannot accumulate at a point of the domain of analyticity of the given function.
This is a consequence of the existence of a power series expansion at every point
of the domain of analyticity.

Exercise 5.4.3. Let f be a function continuous in an open set Ω ⊂ C and assume
that f2 is holomorphic in Ω. Show that f is holomorphic in Ω.
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The example f(x) = |x| shows that the claim in the previous exercise does
not have a direct counterpart in the real case. Furthermore, the example

f(z) =

{
1, if z 
= 0,

−1, if z = 0,

shows that one cannot assume f to be only bounded in Ω. In a similar vein, we
have:

Exercise 5.4.4. Let f be defined in the open set Ω and assume that both f2 and f3

are analytic there. Show that f is analytic in Ω. More generally, let n1, n2 ∈ N be
relatively prime, and assume that fn1 and fn2 are analytic in Ω. Show that f is
analytic in Ω.

Exercise 5.4.5. Let f be analytic in Ω. For a ∈ Ω define

Raf(z) =

{
f(z)−f(a)

z−a , z 
= a,

f ′(a), z = a.
(5.4.1)

Show that Raf is still analytic in Ω and that the resolvent identity

Raf −Rbf = (a− b)RaRbf, ∀a, b ∈ Ω. (5.4.2)

holds.

We note that the resolvent identity (5.4.2) also appears in algebra and in
analysis: Let M be an n× n matrix with complex entries, let In denote the n× n
identity matrix, and let

R(a) = (M − aIn)
−1

for a in the resolvent set of M . Then we have

R(a)−R(b) = (a− b)R(a)R(b).

Indeed,

R(a)−R(b) = (M − aIn)
−1 − (M − bIn)

−1

= (M − aIn)
−1 (M − bIn − (M − aIn)) (M − bIn)

−1

= (a− b)(M − aIn)
−1(M − bIn)

−1

= (a− b)R(a)R(b).

The resolvent identity, and in particular the backward-shift operator

R0f(z) =
f(z)− f(0)

z
,

play a key role in operator theory. See Section 16.1. An important problem is
the study of all closed R0 invariant subspaces of the Hardy space H2(D) (for
the definition of this space, see Definition 5.6.11). Another example of operators
satisfying (5.4.2) is presented in Exercise 12.3.3.To discuss these various points
would lead us too far astray.
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5.5 Cauchy’s formula and applications

We will begin with a result which is used in the proof of Malgrange’s theorem
on the existence of a fundamental solution of a partial differential equation. See
[29, Lemma 7.3, p. 205]. We send the reader to [29, (7.14) p. 214] to see how the
lemma is used. We will not recall the statement of the theorem here. Recall that
a monic polynomial is a polynomial whose highest power has coefficient 1:

p(z) = zn + an−1z
n−1 + · · ·+ a0. (5.5.1)

Exercise 5.5.1. Let f be a function analytic in |z| < 1 + ε for some ε > 0. Then
for every monic polynomial p it holds that

|f(0)| ≤ 1

2π

∫ 2π

0

|f(eit)p(eit)|dt. (5.5.2)

The following result, a bit in the spirit of (5.5.2), is a follow-up of Exercise
5.1.4. The result in fact holds for any simply connected set containing the origin,
and C any simple Jordan curve with interior containing the origin. See [99].

Exercise 5.5.2. In the notation of Exercise 5.1.4, take Ω = D and C to be a circle
of radius r < 1. Show that the minimum of the expression∫

C

|f(z)|2|dz|

over all functions analytic in Ω and such that f(0) = 1 is strictly positive.

Consider the function f(t) = e−it on the interval [0, 2π]. By Weierstrass’
approximation theorem, there exists a sequence of polynomials pn(t) in the variable
t, such that

lim
n→∞ max

t∈[0,2π]
|e−it − pn(t)| = 0.

The result is not true if one takes polynomials in eit, as is required to be shown
in the following exercise, taken from [184, p. 127].

Exercise 5.5.3. Show that there is a constant M such that, for every polynomial
p(z),

max
z∈T

|z−1 − p(z)| ≥ M. (5.5.3)

Exercise 5.5.4. Let Ω be a star-shaped open set and let C be a closed simple smooth
curve in Ω. Let z0 be a point not on the image of C, and let f be analytic in Ω.
Prove that ∫

C

f ′(z)
z − z0

dz =

∫
C

f(z)

(z − z0)2
dz. (5.5.4)
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As usual, in the following exercise, |z| = r is an abuse of notation for the
closed curve with parametrization

γ(t) = reit, t ∈ [0, 2π].

Exercise 5.5.5. Compute the integral∫
|z|=r

esin z2

dz

(z2 + 1)(z − 2i)3

for strictly positive r different from 1 and 2.

For the next two exercises, it is well to use the formula∫ 2π

0

f(eit)dt =

∫
|z|=1

f(z)
dz

iz
. (5.5.5)

Exercise 5.5.6. Compute ∫ 2π

0

ee
2it−3itdt.

Exercise 5.5.7. Solve Exercise 3.1.8 using Cauchy’s formula.

Exercise 5.5.8. Let f be analytic in |z| < 1 + ε for some ε > 0. Show that

f(z) = i Im f(0) +
1

2π

∫ 2π

0

eit + z

eit − z

(
Re f(eit)

)
dt, z ∈ D. (5.5.6)

Prove that for z in the open unit disk,

f(z)− f(0) =
1

2π

∫ 2π

0

2z

eit − z
Re f(eit)dt,

f (n)(z)

n!
=

1

2π

∫ 2π

0

2eit

(eit − z)n+1

(
Re f(eit)

)
dt, n = 1, 2, . . .

Re f(z) =
1− |z|2

2π

∫ 2π

0

Re f(eit)

|eit − z|2 dt.

(5.5.7)

The proof of Exercise 5.5.8 presented in this section is a direct application of
Cauchy’s formula. Another proof for polynomials is asked for in Exercise 7.3.11.

It is interesting to remark that the right side of (5.5.6) is analytic in the
non-connected set C \ T, while f is analytic in a neighborhood of the closed unit
disk. The formula (5.5.6) does not coincide with f outside the open unit disk.

We note that formulas (5.5.6) and (5.5.7) express the analytic function as
an integral of its real part. Analogous formulas exist for functions analytic in
|z| < R+ ε. This is the topic of the next exercise.
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Exercise 5.5.9 (see [139, Hilfssatz 2, z. 242]). Let f be analytic in |z| < R+ ε, with
R > 1. Show that for |z| < R we have

f(z) = i Im f(0) +
1

2π

∫ 2π

0

2Rz

Reit − z

(
Re f(Reit)

)
dt,

f (n)(z)

n!
=

Rn

2π

∫ 2π

0

2
(
Re f(Reit)

)
eitdt

(Reit − z)n+1
.

(5.5.8)

We remark that formula (5.5.8) for n = 1 allows us to show directly that an
entire function with a bounded real part is a constant.

Exercise 5.5.10. Assume in Exercise 5.5.8 that Re f(eit) ≥ 0 Then, f has a positive
real part in the open unit disk.

The general Herglotz representation formula states that a function analytic
and with a positive real part in the open unit disk can be written as

f(z) = ia+

∫ 2π

0

eit + z

eit − z
dμ(t), (5.5.9)

where dμ is a positive and finite measure on [0, 2π). To prove this formula, one
first notes that the function f(rz) with r < 1 is analytic in |z| < 1/r, with 1/r > 1,
and so one can apply to it formula (5.5.6):

f(rz) = i Im f(0) +
1

2π

∫ 2π

0

eit + z

eit − z

(
Re f(reit)

)
dt.

The positive measures
dμr(t) = Re f(reit)dt

are such that ∫ 2π

0

dμr(t) = Re f(0).

We pick up a sequence of numbers (rn)n∈N in (0, 1) such that

lim
n→∞ rn = 1.

At this stage, one has to resort to a deep result of functional analysis to ensure
that the family (dμrn) has a convergent subsequence which tends to a positive
and finite measure dμ in the following sense: For every continuous complex-valued
function g defined on [0, 2π] it holds that

lim
n→∞

∫ 2π

0

g(t)dμrn(t) =

∫ 2π

0

g(t)dμ(t).

This is Helly’s theorem. For discussions, see [59, p. 158], [85, Proposition 7.19, p.
223] and [165, p. 220].

The definition of a non-negative (or positive) matrix, used in the following
question, is recalled in Section 16.3. See Definition 16.3.1 there.
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Exercise 5.5.11. Let f be analytic in the open unit disk, and with a positive real part
there. Prove that, for every N ∈ N and every choice of (not necessarily distinct)
points in D, the N ×N matrix with (�, j) entry equal to

f(w�) + f(wj)

1− w�wj
(5.5.10)

is non-negative.

In fact, the claim in the preceding exercise can be made much stronger: If
f is a function defined in the open unit disk and such that all N × N matrices
with (�, j) entry (5.5.10) are non-negative, then ϕ is analytic in the open unit
disk. One can also replace the open unit disk by a uniqueness set inside D; see
[6, Theorem 2.6.5, p. 39] for the case of contractive functions. The present case is
deduced using the Cayley transform. In other words positivity implies analyticity.
For more information we send the interested student to [67].

The previous discussion and formula (5.5.9) hint at deep connections between
the theory of functions of a complex variable and functional analysis. A fascinating
fact is that functions for which the condition in Exercise 5.5.11 holds, play an
important role in electrical engineering. These connections go beyond the one
variable case.

Exercise 5.5.12. Assume in Exercise 5.5.8 that Re f(eit) ≥ 0 for t ∈ [0, 2π]. Let

f(z) = f0 + 2

∞∑
�=1

f�z
�

be the power expansion of f centered at the origin. Show that

|f�| ≤ Re f0, � = 1, 2, . . . . (5.5.11)

As a consequence of the previous exercise we have the following result, which
is still true when the function f in the statement is not assumed analytic across
the unit circle. The proof requires then the general Herglotz representation for-
mula (5.5.9). The result was proved by Harald Bohr in 1914, and is called Bohr’s
inequality.

Exercise 5.5.13. Let f be analytic in |z| < 1 + ε for some ε > 0 and assume that
|f(z)| ≤ 1 for |z| < 1. Let

f(z) =

∞∑
�=0

f�z
�

be the power expansion of s centered at the origin. Show that
∞∑
�=0

|f�z�| ≤ 1 (5.5.12)

for |z| ≤ 1/3.

Hint. Consider the function 1− f and apply to it (5.5.11).
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Remark 5.5.14. By considering functions of the form f(z) = c z−z0
1−zz0

, where |z0| < 1
and |c| = 1, one shows that 1 is optimal in (5.5.12).

Also a consequence of Exercise 5.5.8, we have a special case of Harnack’s
inequalities (see [42, p. 143]). The result itself is valid without the hypothesis that
f is analytic in |z| < 1 + ε, but merely in D.

Exercise 5.5.15. Let f be analytic in |z| < 1 + ε for some ε > 0 and assume that
Re f(eit) ≥ 0 for t ∈ [0, 2π]. Show that

1− |z|
1 + |z| Re f(0) ≤ Re f(z) ≤ 1 + |z|

1− |z| Re f(0), ∀z ∈ D. (5.5.13)

We now turn to an exercise which has a long history and can be found in
numerous places (see for instance [207, p. 10]).

Exercise 5.5.16. Let f = u + iv be analytic in |z| < 1 + ε with ε > 0, and assume
that f(0) = 0. Show that∫ 2π

0

u(cos t, sin t)4dt ≤ 36

∫ 2π

0

v(cos t, sin t)4dt (5.5.14)

and ∫ 2π

0

v(cos t, sin t)4dt ≤ 36

∫ 2π

0

u(cos t, sin t)4dt.

Hint. Apply Cauchy’s formula to f4 and z0 = 0.

The next exercise is [122, Lemma 2.6.9, p. 61].

Exercise 5.5.17. Let f be an analytic function in |z| < R, with power series

f(z) =

∞∑
k=0

akz
k, |z| < R,

and let r < R. Let
M = max

|z|≤r
|f(z)|.

Show that
|akzk| ≤ M, k = 0, 1, 2, . . . and |z| ≤ r.

In a similar vein one has the next exercise, which can be found in [75, Exercise
10.37, p. 120].

Exercise 5.5.18. Let f be analytic in the open disk |z| < R and assume that
|f ′(z)| ≤ M < ∞ for |z| < R. Show that in the expansion f(z) =

∑∞
n=0 fnz

n

one has

|fn| ≤
M

nRn−1
n = 1, 2, . . . . (5.5.15)
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The next exercise can be found in [75, Exercise 10.38, p. 120].

Exercise 5.5.19. Let f be analytic in the open disk |z| < R and assume that |f(z)| ≤
Me|z|. Show that in the expansion f(z) =

∑∞
n=0 fnz

n one has

|fn| ≤ M
(n
e

)−n

. (5.5.16)

The next exercise is taken from [62]. It is quite difficult if given without hints
towards the solution.

Exercise 5.5.20. Let f be an analytic function in the open unit disk and assume
that

sup
r∈[0,1)

∫ 2π

0

|f ′(reit)|dt < M for some M > 0. (5.5.17)

Show that
∫ 1

0
|f(x)|dx < ∞.

Hints. Write f(z) =
∑∞

n=0 anz
n and give an upper bound on |an| using (5.5.17)

and then give an upper bound to
∫ 1

0 |f(x)|dx using

|f(x)| ≤
∞∑
n=0

|an|xn, x > 0.

Exercise 5.5.21. Show that, for |z| < 1,

1

2πi

∫
T

ζ + z

ζ − z
ζn−1dζ =

⎧⎪⎨⎪⎩
2zn, n ≥ 1,

1, n = 0,

0, n < 0.

(5.5.18)

Exercise 5.5.22. Let f be analytic and not vanishing in r0 < |z − z0| < r1. Show
that, for r0 < r < r1,

1

2πi

∫
|z−z0|=r

f ′(z)
f(z)

dz ∈ Z.

Exercise 5.5.23. Show that there is no function f analytic in Ω = C \ [−1, 1] such
that f(z)2 = z there.

Remark 5.5.24. The arguments of Exercise 6.3.6 cannot be applied in the exercise
below, since z = 0 is not assumed to be an isolated singularity. The exercise
could be seen as a consequence of the stronger statement in Exercise 4.1.10, but
a reasoning using analyticity is asked for here.

There is an analog of formula (5.5.6) for functions analytic in the open up-
per half-plane. Its proof uses the residue theorem, and therefore the statement
is postponed to Exercise 8.5.3. More generally, formula (5.5.9) has a counterpart
when the open unit disk is replaced by the open upper half-plane C+: A function
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f is holomorphic in C+ and has a real positive part there if and only if it can be
written as

f(z) = a− ibz − i

∫
R

{
1

t− z
− t

t2 + 1

}
dμ(t), (5.5.19)

where a ∈ R, b ≥ 0 and dμ is a positive Borel measure on the real line subject to∫
R

dμ(t)

t2 + 1
< ∞. (5.5.20)

It is convenient to rewrite (5.5.19) as

f(z) = a− ibz − i

∫
R

tz + 1

t− z
· dμ(t)

t2 + 1
. (5.5.21)

When a real imaginary part rather than a real positive part is considered (i.e.,
when one replaces f by if), one obtains the Pick class (see [67, Chapter II]). Pick
functions are also called Nevanlinna functions, although this may create confusion
with another, and completely different, class of analytic functions.

Exercise 5.5.25. Let m be a continuous positive function on the real line, subject
to (3.1.8) ∫

R

m(t)dt

t2 + 1
< ∞.

Show that the function (3.1.9)

fm(z) = −i

∫
R

{
1

t− z
− t

t2 + 1

}
m(t)dt,

is holomorphic in C+ and has a positive real part there. Show that the real part is
strictly positive in C+ unless m(t) ≡ 0.

It is of interest to compute fm for various choices of m. See Exercise 8.3.8 for
instance. For more information on functions of the form fm (and, more generally,
of the form (5.5.21)), we refer to [67].

Among other exercises involving Cauchy’s formula appearing in the present
book, we mention in particular Exercise 7.3.12, where the sum

∞∑
n=0

(
2n
n

)
7n

=

√
7

3

is computed. There the residue theorem is invoked, but Cauchy’s formula could
have been used just as well.

We do not present a solution of the following question. You can assume that
Ω is the open unit disk if you forgot what a simply-connected domain is. Formula
(5.5.22) is called the inhomogeneous Cauchy formula.
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Question 5.5.26. Let Ω be a simply-connected domain, which is bounded, and with
smooth boundary Γ. Let f(x, y) be smooth in an open neighborhood of Ω. Show
that, for every z ∈ Ω,

f(z) =
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ +

1

2πi

∫∫
Ω

∂f

∂ζ

ζ − z
dζ ∧ dζ. (5.5.22)

5.6 Power series expansions of analytic functions

We begin with an exercise taken from [208, p. 100]. There, the variable is taken to
be real, and the proof is based on the remark that cosx coshx = Re cos(1 + i)x,
and allows also to compute directly the primitive of cosx coshx.

Exercise 5.6.1. Find the power series expansion at the origin of the function

f(z) = cos z cosh z.

We also note that the function f(z) is a solution of the differential equation

f (4) + 4f = 0,

as is easily verified, for instance using formula (4.2.2) for the Nth derivative of a
product.

The next exercise is taken from [35, p. 118].

Exercise 5.6.2. Let f be analytic in a neighborhood of the point z0, and assume
that f ′(z0) 
= 0. Show that, for ε ∈ C where the expression are defined,

f(z0 + iε)− f(z0 + ε)

f(z0 + ε+ iε)− f(z0)
= i+O(ε2) (5.6.1)

and

f(z0 + ε)− f(z)

f(z0 + iε)− f(z0)
· f(z0 + iε+ ε)− f(z0 + iε)

f(z0 + ε+ iε)− f(z0 + ε)
= −1 +O(ε2). (5.6.2)

It is well to recall that the radius of convergence of the power series centered
at z = z0 of a function f is the radius of the largest open disk centered at z = z0
and in which f is analytic.

Exercise 5.6.3. Let

g(z) =
1

(z2 + 1)(z − (1 + i))
.

What is the radius of convergence of the Taylor series of g centered at z0 = 1/2?

The following exercise is taken from [81, Exercise 2, p. 88]. We thank Yarden
Sharabi for pointing out a mistake in the solution in the first edition of the book.
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Exercise 5.6.4. Let z1, . . . , zm be complex numbers different from 0. Find the radius
of convergence of the Taylor expansion at the origin of the function

f(z) =
m∑
�=1

1

1− z�z
,

and prove (3.2.2)

lim sup
n→∞

|
m∑
�=1

zn� |1/n = max
�=1,...,m

|z�|.

Related to the following exercise, see also Exercise 6.3.10.

Exercise 5.6.5. Let N ∈ N and let ε = e
2πi
N . Let f be analytic in the open unit disk

D and such that
f(z) = f(εz), ∀z ∈ D.

(a) Show that there is a function g analytic in D such that f(z) = g(zN).

(b) Let k ∈ {1, . . . , N − 1}. Is there a function g analytic in D such that

zk = g(zN), z ∈ D? (5.6.3)

The following exercise is taken from [62]:

Exercise 5.6.6. Let F be analytic in |z| < R, and assume that F (z) is real for
z = ρ and z = ρ exp(iπ

√
2) when ρ varies in (0, R). Show that F is a constant.

Exercise 5.6.7. Show that there are polynomials h0(t), h1(t), . . . such that

etz−z2/2 =
∞∑
n=0

hn(t)z
n. (5.6.4)

The polynomials hn in the preceding exercise are called the Hermite polyno-
mials.

Related to the following question, see also Exercise 7.2.20.

Exercise 5.6.8. Let f be analytic in |z| < 1 + ε for some ε > 0, with power series
expansion f(z) =

∑∞
n=0 fnz

n. Define, for |z| < 1,

A(z) =

∫
[0,z]

f(s)ds

1− z
.

Show that the function A(z) is analytic in the open unit disk, and show that its
power series expansion at the origin is equal to

A(z) =

∞∑
n=0

⎛⎝ n∑
j=0

fj
j + 1

⎞⎠ zn+1. (5.6.5)
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In the following two exercises, one has to compute integrals of the form∫ 2π

0

|g(reit)|2dt,

where r > 0 and where g is analytic in |z| < R with R > r. One can use Parseval’s
identity from the theory of Fourier series, or proceed directly as is done in the
proofs presented here.

Exercise 5.6.9. Let
A = {(u(x, y), v(x, y)) ; (x, y) ∈ D}

and assume that f(z) = u(x, y)+ iv(x, y) is analytic and one-to-one in D. Assume
for simplicity that f is moreover analytic in a neighborhood of the closed unit disk.
Compute the area of A.

Exercise 5.6.10.

(1) Let f be analytic in B(0, R) and set

M2(f, r) =
1

2π

∫ 2π

0

|f(reit)|2dt, r ∈ (0, R).

Show that M2 is strictly increasing, unless f is a constant.

(2) Find all entire functions such that∫∫
R2

|f(z)|2dxdy < ∞. (5.6.6)

Definition 5.6.11. The set of functions analytic in D and such that

sup
r∈(0,1)

M2(f, r) < ∞ (5.6.7)

is a Hilbert space, called the Hardy space H2(D) (of order 2, of the disk).

Exercise 5.6.12. Let f be analytic in the open unit disk, with power series expansion
f(z) =

∑∞
n=0 fnz

n. Then, f is in the Hardy space H2(D) if and only if

∞∑
n=0

|fn|2 < ∞. (5.6.8)

This last expression is then equal to (5.6.7).

The Hardy space H2(D) is the reproducing kernel Hilbert space with repro-
ducing kernel 1

1−zw , meaning that, for every w ∈ D the function

kw : z �→ 1

1− zw



232 Chapter 5. Cauchy’s Theorem

belongs to H2(D), and that moreover, for every f ∈ H2(D),

〈f , kw〉H2(D) = f(w),

where we have denoted by 〈 · , · 〉H2(D) the inner product in H2(D) defined from
the norm (5.6.7).

More generally, for p ∈ [1,∞), the function

Mp(f, r) =

(
1

2π

∫ 2π

0

|f(reit)|pdt
)1/p

(5.6.9)

is strictly increasing (unless f is a constant). To prove this fact requires results from
the theory of subharmonic functions. See for instance [189, Chapitre 17]. The space
of functions analytic in the open unit disk and such that supr∈(0,1)Mp(f, r) < ∞
is a Banach space (called the Hardy space Hp), when endowed with the norm

‖f‖Hp = sup
r∈(0,1)

Mp(f, r).

When a weight is allowed in (5.6.6) one obtains very interesting spaces.

Definition 5.6.13. The Fock space F is the space of entire functions such that

1

π

∫∫
R2

e−|z|2 |f(z)|2dxdy < ∞ (5.6.10)

Exercise 5.6.14.

(a) Show that for every n ∈ N0 the function zn belongs to the Fock space, and
compute the inner products

〈zn, zm〉F
for the inner product associated to the norm (5.6.10).

(b) Show that an entire function f(z) =
∑∞

n=0 fnz
n belongs to the Fock space if

and only if
∞∑
n=0

n!|fn|2 < ∞. (5.6.11)

The Fock space is the reproducing kernel Hilbert space with reproducing
kernel ezw, meaning that:

(a) For every complex number w, the function

kw(z) = ezw

belongs to F , and

(b) for every f ∈ F ,
〈f, kw〉F = f(w).
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Exercise 5.6.15. Prove claims (a) and (b) above.

For the following result, see for instance [203, Theorem 5.16, p. 53].

Exercise 5.6.16. Let

f(z) =

∞∑
n=0

anz
n

be a convergent power series, with radius of convergence R > 0. Let z0 ∈ B(0, R)
(that is, z0 arbitrary when R = +∞). Show that

f(z) =

∞∑
n=0

an(z0)(z − z0)
n,

for |z − z0| < R − |z0| (resp. for any z when R = +∞), with (see [203, (5.18),
p. 53]):

an(z0) =

∞∑
m=0

an+m

(
n+m

n

)
zm0 .

See Exercise 7.2.20 for another exercise of interest related to power series.

Let us conclude this section with a remark. A function analytic in a neigh-
borhood of the origin has a power series expansion

f(z) =
∞∑
n=0

anz
n

convergent in some open disk B(0, r), with r > 0. An inverse problem would be
as follows: Given a series (an)n∈N0 of complex numbers, does it correspond to a
function analytic f in a neighborhood of the origin with

an =
f (n)(0)

n!
, n ∈ N0. (5.6.12)

The answer in general is of course no, as the example an = n! shows. On the
other hand, and this is a result of Borel, discussed for instance, in the form of an
exercise, in [88, pp. 263–267], for any sequence (an)n∈N0 there exists a function
in C∞(R) such that (5.6.12) holds. The result is also true for C∞ functions of N
real variables. See [63, p. 195].

5.7 Primitives and logarithm

Recall the discussion at the end of Section 5.2. A function analytic in an open
connected set Ω has a primitive if and only if∫

C

f(z)dz = 0 (5.7.1)
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for every closed contour C in Ω. Recall also that a function analytic and non-
vanishing in an open connected set Ω has an analytic logarithm (that is, there
exists a function g analytic in Ω and such that

f(z) = exp g(z), z ∈ Ω,

if and only if ∫
C

f ′(z)
f(z)

dz = 0 (5.7.2)

for every closed contour in Ω.

Equation (5.7.2) has a nice interpretation in terms of zeroes and poles of the
function f when C is a smooth Jordan curve. See Remark 7.3.6 after Exercise
7.3.5.

Remark 5.7.1. When one works in a convex set, or, more generally, in a star-
shaped set, the situation is easier: A function analytic in a star-shaped domain
has always a primitive, and a non-vanishing function analytic in a star-shaped
domain has always a logarithm.

The case of general connected open sets is much more involved. To disprove
the existence of a primitive or of an analytic logarithm, it is enough to find one
closed contour in Ω for which (5.7.1) or (5.7.2) fail. On the other hand to prove the
existence of an analytic logarithm, one has a priori a very difficult task, that is, to
check (5.7.2) (and, similarly, to check (5.7.1) to prove the existence of a primitive).
It is of interest to find a minimum set of closed contours on which to check (5.7.2)
or (5.7.1). For instance, if Ω is an open convex connected set from which a finite
number of compact sets have been removed (for instance, the open unit disk from
which are removed a finite number of points), it is enough to check conditions
such as (5.7.2) on non-overlapping contours around these holes; see for instance
[95, p. 126]. Furthermore, the fact that conditions (5.7.1) or (5.7.2) do not hold
for some closed contour C is not the end of the story, but rather the beginning of
a fascinating other story, related to the homology group of Ω. For the punctured
disk mentioned above, its homology group will be generated by non-overlapping
circles around these points.

When the function f has an analytic logarithm g in the open set Ω it obviously
has analytic roots of any order: For every N ∈ Z \ {0} there exists a function h
analytic in Ω such that

f(z) = (h(z))N , ∀z ∈ Ω.

It suffices to take h(z) = exp g(z)
N . On the other hand, a function may have an

analytic square root and no analytic logarithm: For instance, the function f(z) =
z2 has an analytic square root in C (and all the more in C \ {0}), but no analytic
logarithm in C\ {0}). See for instance [42] for more information on the differences
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between square roots (or, more generally Nth roots) and logarithms. Analytic
square roots are the topic of Section 5.8.

In the first two exercises the sets under consideration are star-shaped. A
very special case of a result of Montel is presented in the first exercise (see [42,
Theorem 12.20, p. 433], and the bibliographic note page 458 of that same book).
The relation with logarithms is not that clear on a first reading!

Exercise 5.7.2. Let f and g be entire functions. Show that

f(z)2 + g(z)2 = 1, ∀z ∈ C (5.7.3)

if and only if there is an entire function E(z) such that

f(z) = cosE(z) and g(z) = sinE(z).

Exercise 5.7.3. Does the function f(z) = |z| have a primitive in C. Is there a
function g of class C1 in R2 \ {(0, 0)} such that

∂zf = |z|.

Exercise 5.7.4. Does the function

f(z) =
1

z2 + 1

have a primitive in Ω where:

(i) Ω = C \ {−i, i}.
(ii) Ω = C \ [−i, i], where [−i, i] denotes the closed interval [−i, i], that is:

[−i, i] = {−i+ 2ti , t ∈ [0, 1]} .

(iii) Ω = C \ {z = iy , y ∈ R and |y| ≥ 1}. In this last case, show that on the
real line the primitive is F (x) = arctan(x) when we fix F (0) = 0, and find
the power expansion of F at the origin.

(iv) Let L be the strip defined by (1.2.21). Show that

F (tan z) = z, z ∈ L. (5.7.4)

Exercise 5.7.5. Same questions as in Exercise 5.7.4 for the function
z

z2 + 1
. In

case (iii), show that on the real line F (x) =
1

2
ln(x2 + 1).

We now give an exercise which plays a role in the proof (due to L. Fejér
and F. Riesz) of Riemann’s mapping theorem presented in [45]; see [45, (3.2),
p. 190]. See [42, p. 239] for more historical background on, and for a different proof
(originating with the works of Koebe and Carathéodory) of Riemann’s mapping
theorem.
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Exercise 5.7.6. Let f be a function analytic in the open unit disk D, and assume
that its range is strictly included in D. Let a ∈ D \ f(D). Show that there exists a
function F analytic in D and such that

eF (z) =
f(z)− a

1− af(z)
, z ∈ D.

Compute F ′(z).
Show that

ReF (z) < 0, z ∈ D.

Exercise 5.7.7. Compute in closed form the sum of the series (3.4.7)

∞∑
n=0

n(−1)nzn.

Exercise 5.7.8. Let a ∈ (0, 1) and let

Ω = C \ {[−1,−a] ∪ [a, 1]} .

Show that the function f(z) = (z2 − 1)(z2 − a2) has no analytic logarithm in Ω
but show that it has an analytic square root.

Exercise 5.7.9. The function
sin z

z2
has no primitive in C \ {0}.

For related questions, see also Exercise 7.1.15.

Exercise 5.7.10. Let a, b ∈ C and p, q ∈ N0. Find a necessary and sufficient con-
dition for the function

f(z) = a
sin z

zp+1
− b

cos z

zq+1

to have a primitive in C \ {0}.

Exercise 5.7.11. Let a, b ∈ C and q ∈ N, and let Q(z) be a polynomial of degree
less than or equal to q. Find a necessary and sufficient condition for the function

f(z) = a
sin z

z6
− b

exp z −Q(z)

zq+2

to have a primitive in C \ {0}.

The following is taken from [5, Exercise 6, p. 108]

Exercise 5.7.12. Let Ω be an open connected open set and let f be analytic in Ω
and such that

|1 − f(z)| < 1 ∀ z ∈ Ω.
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(a) Show that ∫
γ

f ′(z)
f(z)

dz = 0

for all closed contours γ in Ω.

(b) Show that f has an analytic logarithm in Ω.

Exercise 5.7.13. Let Ω be the complex plane from which are removed the half-
lines x = k, y ≥ 0 for k = 0, 1, 2, 3, 4, . . . , 2016. Show that there exists a function
analytic in Ω such that

f(z)2016 = z(z − 1)(z − 2)(z − 3)(z − 4) · · · (z − 2016).

Exercise 5.7.14. Let f be analytic and not vanishing in r0 < |z − z0| < r1. Show
that, for r0 < r < r1,

1

2πi

∫
|z−z0|=r

f ′(z)
f(z)

∈ Z.

The next exercise is taken from [62].

Exercise 5.7.15. Let f be analytic in the annulus 1 < |z| < 2 and not vanishing
there. Show that there exist an integer n ∈ Z and a function g analytic in 1 <
|z| < 2 such that

f(z) = zneg(z).

Similarly:

Exercise 5.7.16. Let f be analytic in the domain Ω which consists of the plane,
from which are removed the closed unit disk and the closed disk of center 5 and
radius 1, and not vanishing there. Show that there exist numbers n1 and n2 in Z

and a function g analytic in Ω such that

f(z) = zn1(z − 5)n2eg(z), z ∈ Ω.

Exercise 5.7.17. Let m be a strictly positive and continuous function on [0, 1]. Do
the functions

Fn(z) =

∫ 1

0

m(t)dt

(t− z)n
, n = 1, 2, . . .

have primitives in C \ [0, 1].

Exercise 5.7.18. Let a > 0. Is there a function analytic in C \ [e−a, ea] and which
coincides with the function ln(x2 − 2x cosha+ 1) on R \ [e−a, ea]?
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5.8 Analytic square roots

As illustrated by Exercise 5.7.8, there are subtle differences between existence
of analytic square roots and analytic logarithms; see [42, Exercise 4.60, p. 111,
Exercise 10.5, p. 346]. For instance, there is no analytic logarithm to z2 in C\{0}.
But it has an analytic square root, namely f(z) = z in C. Similarly there is no
analytic logarithm to the function f(z) = 1− z2 in C \ [−1, 1] since∫

|z|=2

f ′(z)
f(z)

dz =

∫
|z|=2

2z

z2 − 1
dz

=

∫
|z|=2

(
1

z − 1
+

1

z + 1

)
dz = 4πi 
= 0.

Still, we have:

Exercise 5.8.1. Show that there is a function analytic in C \ [−1, 1] such that

f(z)2 = 1− z2.

Exercise 5.8.2.

(a) Show that the function 1
1−z2 has an analytic square root in

Ω = C− {(−∞,−1] ∪ [1,∞)} ,

which takes the value 1 for z = 0. We denote by 1√
1−z2

this square root.

(b) Define

arcsin z =

∫
Cz

dζ√
1− ζ2

,

where Cz is any smooth path joining the origin to z. Show that arcsin z is well
defined, and is the analytic extension to Ω of the function arcsinx defined on
the interval [−1, 1].

(c) Compute the power expansion of arcsin z at the origin. What is its radius of
convergence?

(d) Using analytic continuation, compute sin(arcsin z) for z ∈ Ω.

Exercise 5.8.3. Let [α�, β�], � = 1, . . . , N , be N non-intersecting closed intervals.
Show that the function

f(z) =

∏N
�=1(z − α�)∏N
�=1(z − β�)

(5.8.1)

has an analytic square root in Ω = C \
⋃N

�=1[α�, β�].
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Remark 5.8.4. Let α 
= β ∈ C, and Ω = C\[α, β]. The function f(z) = (z−α)(z−β)
has no analytic logarithm in Ω. It follows from the previous exercise that f has
an analytic square root, as is seen by writing

(z − α)(z − β) = (z − β)2
z − α

z − β
.

Exercise 5.8.5. There is no analytic square root of z in the annulus 1 < |z| < 2.

5.9 Solutions

Solution of Exercise 5.1.1. Assume by contradiction that the functions are equiv-
alent, and let ϕ : [0, 2π] −→ [0, 4π] be such that (5.1.1) holds. Then,

eit = eiϕ(t), t ∈ [0, 2π],

and taking the derivative with respect to t we get (see Exercise 3.1.4 if need be)

ieit = iϕ′(t)eiϕ(t), t ∈ [0, 2π].

Thus
ϕ′(t) = 1, t ∈ [0, 2π],

and

4π = ϕ(2π)− ϕ(0) =

∫ 2π

0

ϕ′(t)dt =
∫ 2π

0

1dt = 2π,

which is impossible. �

Solution of Exercise 5.1.2. By definition of the path integral,∫
C

(x2 − iy2)dz =

∫ π

0

(cos2 t− i sin2 t)(− sin t+ i cos t)dt

=

∫ π

0

(− cos2 t sin t+ sin2 t cos t)dt+ i

∫ π

0

(sin3 t+ cos3 t)dt

=
cos3 t+ sin3 t

3

∣∣∣∣t=π

t=0

+ i

(
− cos t+

cos3 t

3

)∣∣∣∣t=π

t=0

+ i

(
sin t− sin3 t

3

)∣∣∣∣t=π

t=0

=
−2 + 4i

3
,

where we have used that the primitives of sin3 t and cos3 t are

− cos t+
cos3 t

3
and sin t− sin3 t

3

respectively. �
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Solution of Exercise 5.1.4. Let γ(t), t ∈ [a, b] be a parametrization of C. By defi-
nition of the line integral we have∣∣∣∣∫

C

f(z)

z
dz

∣∣∣∣2 =

∣∣∣∣∣
∫ b

a

f(γ(t))

γ(t)
γ′(t)dt

∣∣∣∣∣
2

and, using (3.1.4),

≤
∣∣∣∣∣
∫ b

a

|f(γ(t))|
|γ(t)|

∣∣∣∣∣ γ′(t)|dt
∣∣2

≤
(
max
t∈[a,b]

1

|γ(t)|2

)
·
∣∣∣∣∣
∫ b

a

|f(γ(t))|
√
|γ′(t)|

√
|γ′(t)|dt

∣∣∣∣∣
2

and, using the Cauchy-Schwarz inequality (see (3.1.5)),

≤
(
max
t∈[a,b]

1

|γ(t)|2

)
·
(∫ b

a

|f(γ(t))|2|γ′(t)|dt
)(∫ b

a

|γ′(t)|dt
)
,

which is the required result. �

Solution of Exercise 5.1.5. Let t0 ∈ [a, b] and let M0 be the point on the curve
defined by z = γ(t). Let z0 and z1 be on the normal line of the curve at the point
M , and symmetric with respect to M0. We want to show that

lim
|z0−z1|→0

|γ(t)− z0|
|γ(t)− z1|

= 1

uniformly in t ∈ [a, b]. To that purpose we will show the following: For every
λ ∈ (0, 1) there exists η > 0 such that

|z0 − z1| < η =⇒ λ <
|γ(t)− z0|
|γ(t)− z1|

<
1

λ
. (5.9.1)

At this stage we recall that, for u ∈ (0, 1) the set of points z such that

|z − z0|
|z − z1|

= u or
|z − z0|
|z − z1|

=
1

u
(5.9.2)

form two circles, symmetric with respect to M , and with same radius

R =
u

1− u2
|z0 − z1|, (5.9.3)

and centers Ω and Ψ given respectively by

Ω =
z0 − u2z1
1− u2

= z0+
u2

1− u2
(z0−z1) and Ψ =

z1 − u2z0
1− u2

= z1+
u2

1− u2
(z1−z0).

(5.9.4)
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These circles, say Cu and C 1
u
, form a coaxal family, and it is useful to remark that

when u1 < u2 the circle Cu1 lies in the interior of the disk defined by the circle
Cu2 , and C0 = {z0}.

Using formulas (5.9.3)–(5.9.4) we see that for any λ ∈ (0, 1), there exists η
such that, for |z0 − z1| < η, the circle Cλ lies inside the curve and C 1

λ
lies outside

the curve. Thus the curve lies in the set (5.1.7), and the claim follows. �

Solution of Exercise 5.1.6. We only prove (5.1.9):(∫
|z|=1

f(z)dz

)
=

(∫ 2π

0

f(eit)eitidt

)
= −

∫ 2π

0

f(eit)e−itidt

= −
∫ 2π

0

f(eit)

e2it
eitidt

= −
∫
|z|=1

f(z)

z2
dz. �

Solution of Exercise 5.1.7. Let γ(t), t ∈ [a, b] be a parametrization of the closed
and piecewise smooth path C. Set

g(s) = (γ(s)− z0) exp−
{∫ s

a

γ′(t)
γ(t)− z0

dt

}
, s ∈ [a, b].

We have

g′(s) = γ′(s) exp−
{∫ s

a

γ′(t)
γ(t)− z0

dt

}
− (γ(s)− z0)

γ′(s)
γ(s)− z0

exp−
{∫ s

a

γ′(t)
γ(t)− z0

dt

}
≡ 0,

and so g(a) = g(b). Thus

γ(a)− z0 = (γ(b)− z0) exp−
{∫ b

a

γ′(t)
γ(t)− z0

dt

}
.

We have γ(a) = γ(b) 
= z0. Thus,∫ b

a

γ′(t)
γ(t)− z0

dt ∈ 2πiZ. �
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Solution of Exercise 5.1.8. We write

p(z) = pnz
n + pn−1z

n−1 + · · ·+ p0 and q(z) = qmzm + qm−1z
m−1 + · · ·+ q0,

with pn and qm different from 0 and m ≥ n+ 2. For z 
= 0 we can write

q(z) = qmzm(1 + r(z))

where

r(z) =
qm−1

qm

1

z
+ · · ·+ q0

qm

1

zm
.

Since limz→∞ r(z) = 0, there is R0 > 0, which we will assume greater than 1, such
that

|z| > R0 =⇒ |r(z)| < 1

2
,

and hence, still for |z| > R0,

1

|q(z)| ≤
1

|qmzm|(1− |r(z)|) <
1

|qmzm|(1 − 1/2)
=

2

|qmzm| .

Furthermore, for |z| > 1,

|p(z)| ≤ K|z|n, with K =

n∑
�=0

|p�|.

Thus, for |z| = R > R0,∣∣p(z)
q(z)

∣∣ ≤ 2KRn

|qm|Rm
=

K1

Rm−n
, with K1 =

2K

|qm| .

Using formula (5.1.3) we thus have∣∣∣∣∣
∫
|z|=R

p(z)

q(z)
dz

∣∣∣∣∣ ≤ 2πR
K1

Rm−n
=

2πK1

Rm−n−1
,

which goes to 0 as R → ∞ since m− n− 1 > 0. �

Solution of Exercise 5.1.9. The change of variable t �→ π
2 − t shows that both

integrals coincide. The claim (5.1.11) is a direct consequence of Jordan’s inequality
(see for instance [184, § 19.5, p. 224], [175, p. 114]):

2

π
≤ sin t

t
≤ 1 where 0 < t ≤ π

2
,

which leads to ∫ π
2

0

e−R sin tdt <
π

R
. (5.9.5)

See [49, p. 187]. �
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We note that a shorter, but not elementary proof, consists in invoking the
dominated convergence theorem for sequences of positive numbers (Rn)n∈R which
tend to ∞.

Solution of Exercise 5.1.10. Let γ++ denote the first quarter of the unit circle,
with the positive orientation. Then∫ π

2

0

e−R sin tdt =

∫
γ++

e−R z−z−1

2i
dz

iz
.

The second integral is treated in the same way. �

Solution of Exercise 5.1.11. Let

γ(t) = (x(t), y(t)), t ∈ [a, b],

be a parametrization of C. We have

du(γ(t))

dt
=

∂u

∂x
(γ(t))x′(t) +

∂u

∂y
(γ(t))y′(t)

and so ∫
C

∂u

∂x
dx+

∂u

∂y
dy =

∫ b

a

du(γ(t))

dt
dt = u(γ(b))− u(γ(a)) = 0,

since C is closed. �

Solution of Exercise 5.2.3. It suffices to take as path γ the closed unit circle:

γ(t) = eit, t ∈ [0, 2π].

Then γ′(t) = iγ(t) and we have∫
γ

dz

z
=

∫ 2π

0

γ′(t)
γ(t)

dt =

∫ 2π

0

idt = 2πi 
= 0. �

Solution of Exercise 5.2.5. The rule of differentiation for a product holds for C-
differentiable functions, and thus

(fg)′(z) = f ′(z)g(z) + f(z)g′(z).

Taking into account this formula and applying the Newton–Leibniz formula (5.2.2)
to fg we obtain

(fg)(γ(b))− (fg)(γ(a)) =

∫
C

(fg)′(z)dz

=

∫
C

f ′(z)g(z)dz +
∫
C

f(z)g′(z)dz,

and hence the result. �
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Solution of Exercise 5.2.6. Take z1 and z2 to be in the left closed half-plane, and
assume z1 
= z2 (if z1 = z2 the result is trivial). The interval [z1, z2] is also included
in the left closed half-plane. Consider the parametrization

γ(t) = z1 + t(z2 − z1), t ∈ [0, 1]

of the interval. The function ez is its own derivative, and therefore

ez2 − ez1 =

∫
[z1,z2]

ezdz.

For every t ∈ [0, 1], we have

|eγ(t)| ≤ 1

since γ(t) belongs to the left closed half-plane. Using (5.1.3) we have:

|ez2 − ez1 | = |
∫
[z1,z2]

ezdz| ≤ max
t∈[0,1]

|eγ(t)| · |z2 − z1| ≤ |z2 − z1|. �

Solution of Exercise 5.2.7. We give to ΓR the positive orientation. We then have
the following parametrizations for the components of ΓR:

γ1,R(t) = t, t ∈ [0, R],

γ2,R(θ) = Reiθ, θ ∈ [0, π/4],

γ3,R(t) = (R − t)e
iπ
4 , t ∈ [0, R].

Since e−z2

is defined by a power series centered at the origin, and converging in
all of C, it has a primitive in C and we can write∫

ΓR

e−z2

dz = 0, ∀R > 0,

that is, ∫
γ1,R

e−z2

dz +

∫
γ2,R

e−z2

dz +

∫
γ3,R

e−z2

dz = 0, ∀R > 0. (5.9.6)

We now show that limR→∞
∫
γ2,R

e−z2

dz = 0. Indeed, for θ ∈
[
0,

π

4

]
we have

cos(2θ) ≥ 1− 4

π
θ. (5.9.7)
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Thus ∣∣∣∣∣
∫
γ2,R

e−z2

dz

∣∣∣∣∣ =
∣∣∣∣∣∣
∫ π

4

0

e−{R
2(cos(2θ)+i sin(2θ))}iReiθdθ

∣∣∣∣∣∣
≤ R

∫ π
4

0

e−{R
2 cos(2θ)}dθ

≤ R

∫ π
4

0

e{−R2(1− 4θ
π )} (where we use (5.9.7))

= Re−R2

∫ π
4

0

e(R
2 4θ

π )dθ

= Re−R2 π

4R2

(
e

4R2θ
π

)θ=π
4

θ=0

= Re−R2 π

4R2

(
eR

2 − 1
)

=
π

4R

(
1− e−R2

)
→ 0 as R → ∞.

Since limR→∞
∫
γ1,R

e−z2

dz =
∫∞
0

e−t2dt < ∞, the limit

lim
R→∞

∫
γ3,R

e−R2

dz

also exists and we have

lim
R→∞

∫
γ1,R

e−z2

dz + lim
R→∞

∫
γ3,R

e−z2

dz = 0,

i.e., ∫
γ3,R

e−z2

dz = −
√
π

2
.

But ∫
γ3,R

e−z2

dz =

∫ R

0

e

{
−e

iπ
2 (R−t)2

}
(−1)e

iπ
4 dt

=

(
1 + i√

2

)∫ R

0

e−i(R−t)2(−1)dt

→ −
(
1 + i√

2

)∫ ∞

0

(cos(t2)− i sin(t2))dt as R → ∞,

where to go from the penultimate line to the last line we made the change of
variable t �→ R− t. Hence

−
(
1 + i√

2

)(∫ ∞

0

cos(t2)dt− i

∫ ∞

0

sin(t2)dt

)
= −

√
π

2
.
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Thus ∫ ∞

0

cos(t2)dt =

∫ ∞

0

sin(t2)dt =

√
π

8
,

and the Fresnel integrals are equal to twice this number, i.e.,

√
π

2
. �

For a proof which uses complex analysis but not the Jordan lemma see the
paper of C. Olds [172]. This paper, as well as the papers of Flanders and Leonard
quoted in the introduction of Section 5.3, can be obtained from the site:

http : //www.jstor.org.

Solution of Exercise 5.2.8. Both integrals are absolutely convergent since

|e−t2 cos t2| ≤ e−t2 and |e−t2 sin t2| ≤ e−t2 .

We note that∫ ∞

0

e−t2 cos t2dt+ i

∫ ∞

0

e−t2 sin t2dt =

∫ ∞

0

e−t2(1−i)dt.

This suggests taking the following closed contour ΓR = γ1,R + γ2,R + γ3,R where:

(i) γ1,R is the interval [0, R].

(ii) γ2,R is the arc of the circle of radius R and centered at the origin, with angle
varying between 0 and π/8.

(iii) γ3,R is the interval linking the point R exp iπ
8 to the origin.

We now remark that the functions

f(z) = cos z2e−z2

and sin z2e−z2

are equal to power series centered at the origin and with radius of convergence ∞.
Therefore they admit primitives in C. By Theorem 5.2.1, we have∫

ΓR

e−z2(1−i)dz = 0 for all R > 0,

and in a way similar to the computations of the Fresnel integrals

lim
R→∞

∫
γ2,R

e−z2(1−i)dz = 0.

Thus

lim
R→∞

∫
γ1,R

e−z2(1−i)dz = − lim
R→∞

∫
γ3,R

e−z2(1−i)dz. (5.9.8)

http://www.jstor.org
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The limit on the left is∫ ∞

0

e−t2(1−i)dt =

∫ ∞

0

e−t2 cos t2dt+ i

∫ ∞

0

e−t2 sin t2dt.

A parametrization of γ3,R is given by

γ(u) = ei
π
8 (R− u), u ∈ [0, R],

and so the limit on the right side of (5.9.8) is equal to

− lim
R→∞

∫ R

0

e
−
{
(R−u)2ei

π
4 (1−i)

}
ei

π
8 (−1)du = lim

R→∞

∫ R

0

e
−
{
u2 (1+i)√

2
(1−i)

}
ei

π
8 du

=

∫ ∞

0

e−
√
2u2

ei
π
8 du

=

∫ ∞

0

e−v2

21/4ei
π
8 dv

=

√
π

2
2−1/4

(√√
2 + 2

2
+ i

√
2−

√
2

2

)

=

√
π

4

(√√
2 + 1 + i

√√
2− 1

)
,

and hence the result.

In the chain of equalities we have used that

cos
π

8
=

√√√√cos
π

4
+ 1

2
=

√
2 +

√
2

2
and sin

π

8
=

√√√√1− cos
π

4
2

=

√
2−

√
2

2
,

and

2−
1
4

√√
2 + 2

2
= 2−

1
4

√√
2(
√
2 + 1)

2
=

√√
2 + 1

2
,

2−
1
4

√
2−

√
2

2
= 2−

1
4

√√
2(
√
2− 1)

2
=

√√
2− 1

2
. �

Remark 5.9.1. More generally, for Re z > 0, it holds that∫ ∞

0

e−zt2dt =
1

2

√
π

z
, (5.9.9)

where
√
z denotes the analytic square root of z in the open right half-plane, which

coincides with
√
x on (0,∞); see [53, Example 1, p. 113]. Equality (5.9.9) is clear for
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z = x > 0. This is just a change of variable in the Gaussian integral (5.2.6). On the
other hand both sides of (5.9.9) are analytic in Re z > 0, and the equality follows

by analytic continuation. We also note that the function
1

2

√
π

z
is an analytic

extension of the function
∫∞
0

e−zt2dt to C \ (−∞, 0]. See Section 6.3. Finally,
setting z = x− i with x ≥ 0 leads to the formula (see [83], [147]):∫ ∞

0

e−xt2 cos t2dt =

√
π

8

√√
x2 + 1 + x

x2 + 1
,

∫ ∞

0

e−xt2 sin t2dt =

√
π

8

√√
x2 + 1− x

x2 + 1
,

(5.9.10)

where x ≥ 0. Indeed, write
√

1
x−i = a(x) + ib(x). Then we get the system

a(x)2 − b(x)2 =
x

x2 + 1
and a(x)b(x) =

1

x2 + 1
,

which has a unique solution such that a(0) = b(0) > 0.

We note also the two formulas∫ ∞

0

sinxndx =
1

n
Γ(1/n) sin(

π

2n
),∫ ∞

0

cosxndx =
1

n
Γ(1/n) cos(

π

2n
),

(5.9.11)

where Γ denotes Euler’s Gamma function. See [204, 18.54 and 18.55].

Solution of Exercise 5.2.9. The function f is analytic in the open unit disk since
it is the sum of a convergent power series there. Let now z1 and z2 be in D,
and let [z1, z2] be the interval linking z1 and z2. We have [z1, z2] ⊂ D, and a
parametrization of [z1, z2] is given by

γ(t) = z1 + t(z2 − z1), t ∈ [0, 1].

By the fundamental theorem of calculus for analytic functions,

f(z2)− f(z1) =

∫
[z1,z2]

f ′(z)dz

=

∫ 1

0

f ′(γ(t))γ′(t)dt

= (z2 − z1)

∫ 1

0

f ′(γ(t))dt

= (z2 − z1)

{
1 +

∫ 1

0

( ∞∑
n=2

nan(γ(t))
n−1

)
dt

}
,
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since

f ′(z) = 1 +

∞∑
n=2

anz
n−1.

Thus

|f(z2)− f(z1)| = |z2 − z1| ·
∣∣∣∣∣
{
1 +

∫ 1

0

(

∞∑
n=2

nan(γ(t))
n−1)dt

}∣∣∣∣∣
≥ |z2 − z1| ·

∣∣∣∣∣1−
∣∣∣∣∣
∫ 1

0

( ∞∑
n=2

nan(γ(t))
n−1

)
dt

∣∣∣∣∣
∣∣∣∣∣ .

(5.9.12)

But we have∣∣∣∣∣
∫ 1

0

( ∞∑
n=2

nan(γ(t))
n−1

)
dt

∣∣∣∣∣ ≤
∫ 1

0

( ∞∑
n=2

n|an| · |(γ(t))n−1|
)
dt

≤
∫ 1

0

( ∞∑
n=2

n|an|
)
dt

=
∞∑

n=2

n|an| < 1.

Hence:∣∣∣∣∣1−
∣∣∣∣∣
∫ 1

0

( ∞∑
n=2

nan(γ(t))
n−1

)
dt

∣∣∣∣∣
∣∣∣∣∣ = 1−

∣∣∣∣∣
∫ 1

0

( ∞∑
n=2

nan(γ(t))
n−1

)
dt

∣∣∣∣∣
≥ 1−

∞∑
n=2

n|an| > 0,

and (5.9.12) leads to

|f(z2)− f(z1)| ≥ |z2 − z1| ·
∣∣∣∣∣1−

∣∣∣∣∣
∫ 1

0

( ∞∑
n=2

nan(γ(t))
n−1

)
dt

∣∣∣∣∣
∣∣∣∣∣

≥ |z2 − z1|
(
1−

∞∑
n=2

n|an|
)
.

Thus, in view of (5.2.8),

|f(z2)− f(z1)| = 0 =⇒ |z2 − z1| = 0,

that is,

f(z2) = f(z1) =⇒ z2 = z1. �
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Solution of Exercise 5.3.2. An abridged solution is as follows: First consider∫
γ2,R

f(z)dz. We have∣∣∣∣∣
∫
γ2,R

f(z)dz

∣∣∣∣∣ =
∣∣∣∣∫ π

0

(
eiR cos t−R sin t

) iReit

Reit
dt

∣∣∣∣
≤
∫ π

0

e−R sin tdt

= 2

∫ π
2

0

e−R sin tdt

−→ 0

by Jordan’s lemma. On the other hand,

lim
ε→0

∫
γ4,ε

f(z)dz = − lim
ε→0

∫ π

0

(
eiε cos t−ε sin t

) iεeit
εeit

dt

= −iπ.

Thus

lim
ε→0
R→∞

∫ −R

−ε

eit

t
dt+

∫ R

ε

eit

t
dt = −iπ. (5.9.13)

But ∫ −ε

−R

eit

t
dt+

∫ R

ε

eit

t
dt = 2i

∫ R

ε

sin t

t
dt,

and hence the result is ∫ ∞

0

sin t

t
dt =

π

2
. (5.9.14)

�

Solution of Exercise 5.3.3. With the notation of the previous exercise,

lim
R→∞

∫
γ2,R

f(z)dz = 0,

and, using (5.3.2) with g(z) = 1−e2iz

z we have:

lim
ε→0

∫
γ4,ε

f(z)dz = −π
4

2
= −2π,

and hence ∫ ∞

−∞

1− e2ix

x2
dx = 2π.

Taking into account that 1− cos(2x) = 2 sin2 x we have∫
R

sin2 x

x2
dx = π. (5.9.15)

�
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For a more detailed proof we suggest [80, pp. 159–161]. The previous result
can be checked in [204, p. 107]. The definite integrals on pages 107–109 of Schaum’s
Mathematical handbook of formulas and tables form a nice source of integrals which
you can try to compute using Cauchy’s theorem (or, for some of them, the residue
theorem). For instance, you might want to check that∫

R

(
sinx

x

)4

dx =
2π

3
,

see [204, 18.59, p. 108]. To evaluate the integral first note that

sin4 x =
3− 4 cos(2x) + cos(4x)

8
.

One calculates on the same contour as in the previous two exercises the integral
of the function

f(z) =
3− 4e2iz + e4iz

8z4
.

We now check that

lim
ε→0

∫
γ4,ε

f(z)dz = −2π

3
.

We have

f(z) =
3− 4(1 + 2iz − 4z2

2 − 8iz3

3! + · · · ) + 1 + 4iz − 16z2

2 − 64iz3

3! + · · ·
8z4

= − i

2z3
− 2i

3z
+ g(z),

where g is analytic in a neighborhood of the origin. The important point is that
there is no term in 1/z2. We have∫

γ4,ε

f(z)dz =

∫ 0

π

f(εeit)εieitdt

= − i

2

∫ 0

π

εieit

ε3e3it
dt− 2i

3

∫ 0

π

εieit

εeit
dt+

∫ 0

π

g(εeit)iεeitdt

= T1(ε) + T2(ε) + T3(ε)

where

T1(ε) = − i

2

∫ 0

π

εieit

ε3e3it
dt =

1

2ε2

∫ 0

π

e−2itdt ≡ 0,

T2(ε) = −2i

3

∫ 0

π

εieit

εeit
dt ≡ −2π

3
,

T3(ε) =

∫ 0

π

g(εeit)iεeitdt → 0 as ε → 0.
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Thus, as ε → 0 and R → ∞ we have∫ −ε

−R

f(x)dx +

∫ R

ε

f(x)dx − 2π

3
→ 0.

Thus ∫ R

ε

(f(x) + f(−x))dx− 2π

3
→ 0.

Since f(−x) = f(x), we have∫ ∞

0

2Re f(x)dx =
2π

3
.

Since Re f(x) = sin4 x
x4 the result follows. �

Understanding this method leads without too much difficulty to the compu-
tation of the integrals ∫

R

(
sinx

x

)2p

dx, p ∈ N, (5.9.16)

as we now explain. Newton’s binomial formula (1.3.6) applied to

(eix − e−ix)2p = e2ixp(1− e−2ix)2p

leads to a sum which contains only even powers of e±ix, and which moreover is an
even function of x. Thus, we can write(

eix − e−ix

2i

)2p

=

∑p
k=−p cp,ke

2ikx

2
,

where the numbers cp,k, k = −p, . . . , p are (real) rational numbers such that

cp,−k = cp,k, k = 0, . . . , p.

Thus,

sin2p x =

(
eix − e−ix

2i

)2p

=

∑p
k=−p cp,ke

2ikx

2

=
cp,0
2

+ Re

p∑
k=1

cp,ke
2ikx (5.9.17)

=
cp,0
2

+

p∑
k=1

cp,k cos(2kx). (5.9.18)
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In particular,

cp,0
2

+

p∑
k=1

cp,k = 0. (5.9.19)

We note that

cp,k =

(
2p

p− k

)
(−1)k−p

22p−1
, k = 0, . . . , p. (5.9.20)

Differentiating (5.9.18) 2p− 2 times, and setting each time x = 0 we obtain that

p∑
k=1

cp,kk
2t = 0, t = 1, . . . , p− 1. (5.9.21)

To compute (5.9.16) we integrate, along the same contour as above, the function

g(z) =

cp,0
2 +

∑p
k=1 cp,ke

2ikz

z2p
. (5.9.22)

Let z = εeiθ. To compute the line integral
∫
γ4,ε

f(z)dz we first write

g(εeiθ)iεeiθ =
cp,0iεe

iθ

2ε2pe2piθ
+

p∑
k=1

cp,k

∑∞
�=0

(2iε)�

�!
k�ei�θ

ε2pe2piθ
iεeiθ

=
cp,0iεe

iθ

2ε2pe2piθ
+

∞∑
�=0

(
p∑

k=1

cp,kk
�

)
2�i�+1ε(�−2p+1)

�!
ei(�−2p+1)θ.

(5.9.23)

In the computation of
∫
γ4,ε

f(z)dz the terms with a strictly positive power of ε in

(5.9.23) do not play a role because their sum goes to 0 as ε → 0. We thus focus on

2p−1∑
�=0

(
p∑

k=1

cp,kk
�

)
2�i�+1ε(�−2p+1)

�!
ei(�−2p+1)θ.

The terms corresponding to even values of � vanish in view of (5.9.19) (for � = 0)
and (5.9.21) (for � 
= 0). On the other hand, the integral of ei(�−2p+1)θ on γ4,ε is
equal to 0 when � is odd and different from 2p−1. Hence the only contribution from
the sum (5.9.23) to limε→0

∫
γ4,ε

g(z)dz is the term corresponding to � = 2p − 1,

and we conclude that∫
R

(
sinx

x

)2p

dx = π
(−1)p22p−1

(∑p
k=1 cp,kk

2p−1
)

(2p− 1)!
. (5.9.24)

Taking into account (5.9.20), we have

∫
R

(
sinx

x

)2p

dx = π

∑p
k=1

(
2p

p− k

)
(−1)kk2p−1

(2p− 1)!
. (5.9.25)
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In the following two examples we use the first formula. When p = 2 we have

c2,0 =
3

8
, c2,1 = −4

8
, c2,2 =

1

8
,

and

∫
R

(
sinx

x

)4

dx = π
(−1)223

(∑2
k=1 c2,kk

3
)

3!
= π

8

(
−4 + 23

8

)
6

=
2π

3
.

When p = 3, we have

c3,0 =
10

25
, c3,1 = −15

25
, c3,2 =

6

25
, and c3,3 = − 1

25
,

and ∫
R

(
sinx

x

)6

dx = π
(−1)325(−35 + 6 · 25 − 15)

25 · 5! =
11π

20
.

We now turn to the computation of the integrals∫
R

(
sinx

x

)2p+1

dx, p ∈ N.

Exercise 5.3.4 considers the case p = 1. The general case is considered after the
solution.

Solution of Exercise 5.3.4. We have

sin3 x =

(
eix − e−ix

2i

)3

=
3eix − 3e−ix + e3ix − e−3ix

8i
=

3 sinx− sin 3x

4
.

These equalities suggest integrating the function

f(z) =
3eiz − e3iz

4z3

along the above contour, and letting ε → 0 and R → ∞. Cauchy’s theorem gives∫
[−R,−ε]∪[ε,R]

3eix − e3ix

4x3
dx +

∫
γ2,R

f(z)dz +

∫
γ4,ε

f(z)dz = 0. (5.9.26)

It is easy to check that

lim
R−→∞

∫
γ2,R

f(z)dz = 0.

We now prove that

lim
ε−→0

∫
γ4,ε

f(z)dz = i
3π

4
.
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Indeed, we have

f(z) =
3 + 3iz − 3

2z
2 + · · · − 1− 3iz + 9

2z
2 + · · ·

4z3

=
2 + 3z2 + z3O(z)

4z3

=
2

4z3
+

3

4z
+O(z),

where O(z) denotes a quantity which stays bounded as z goes to 0. But (with γ4,ε
defined as in Exercise 5.3.2)∫

γ4,ε

dz

z3
=

∫ 0

π

εieit

ε3e3it
dt = − i

ε2

∫ π

0

e−2itdt = 0,

∫
γ4,ε

dz

z
≡ −iπ

and

lim
ε−→0

∫
γ4,ε

O(z)dz = 0.

Hence letting ε −→ 0 and R −→ ∞ in (5.9.26) we have that∫
R

3eix − e3ix

4x3
dx =

3πi

4
.

Taking imaginary parts on both sides leads to the result. �

A different and shorter proof, based on formula (5.3.3), appears in [207,
p. 132].

We now present the analog of formula (5.9.24). We only outline the argu-
ments. The first step consists in finding the rational (real) numbers such that(

eix − e−ix

2i

)2p+1

=

∑p
k=0 cp,k(e

i(2k+1)x − e−i(2k+1)x)

2i
.

We have therefore

sin2p+1(x) =

p∑
k=0

cp,k sin((2k + 1)x).

As above we note that

cp,k =

(
2p+ 1
p− k

)
(−1)k−p

22p
, k = 0, . . . , p. (5.9.27)
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Differentiating this equation 2p+ 1 times and setting x = 0 we obtain the coun-
terpart of (5.9.21):

p∑
k=0

cp,k(2k + 1)2t+1 = 0, t = 0, . . . , p. (5.9.28)

We now integrate the function

f(z) =

∑p
k=0 cp,kz

2k+1

z2p+1

along the same contour as above. Since

f(εeiθ)iεeiθ =

∞∑
�=0

(
p∑

k=0

cp,k(2k + 1)�

)
i�+1ε�−2p

�!
ei(�−2p)θ, (5.9.29)

the terms corresponding to odd values of � vanish in view of (5.9.28). On the other
hand, the integral of ei(�−2p)θ on γ4,ε is equal to 0 when � is even and different
from 2p. Hence the only contribution from the sum (5.9.29) to limε→0

∫
γ4,ε

f(z)dz

is the term corresponding to � = 2p, and we conclude that∫
R

(
sinx

x

)2p+1

dx = π
(−1)p

(∑p
k=0 cp,k(2k + 1)2p

)
(2p)!

. (5.9.30)

Taking into account (5.9.27) this formula can be rewritten as

∫
R

(
sinx

x

)2p+1

dx = π

∑p
k=0(−1)k

(
2p+ 1
2k

)
(2k + 1)2p

22p(2p)!

= π

∑p
k=0(−1)k

(
2p+ 1
2k

)
(k + 1

2 )
2p

(2p)!
.

(5.9.31)

As a check, let us use formula (5.9.30) and consider the cases p = 0, p = 1 and
p = 2. For p = 0 we trivially have c0,1 = 1 and so∫

R

sinx

x
dx = π,

and we get back the value of the Dirichlet integral (5.9.13). When p = 1 we have

c1,0 =
3

4
, c1,1 = −1

4
,

and formula (5.9.30) gives ∫
R

sin3 x

x3
dx =

3π

4
,
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and we get back the integral computed in Exercise 5.3.4. For p = 2, we have

c2,0 =
10

16
, c2,1 = − 5

16
, c2,2 =

1

16
,

and we get the integral ∫
R

(
sinx

x

)5

dx =
115π

192
.

Solution of Exercise 5.3.5.

Case 1: H ∈ (0, 1/2). We take the function

f(z) =
1− eiz

z2
exp {(1− 2H) ln z} ,

where ln z is the logarithm function defined on C \ R−, and equal to lnx on the
positive line. By Cauchy’s theorem the integral of f along γε,R is equal to 0. We
now show that

lim
ε→0

∫
cε

f(z)dz = lim
R→∞

∫
CR

f(z)dz = 0. (5.9.32)

Indeed, ln(εeit) = ln ε+ it for t ∈ [0, π/2], and we have∫
cε

f(z)dz =

∫ 0

π/2

1− eiεe
it

ε2e2it
exp {(1− 2H)(ln ε+ it)} iεeitdt

= −i

∫ π/2

0

1− eiεe
it

εeit
ε1−2He(1−2H)itdt.

For |z| ≤ 1 (and in particular when z = iεeit with ε < 1), we have that∣∣∣∣1− ez

z

∣∣∣∣ =
∣∣∣∣∣
∞∑
n=1

zn−1

n!

∣∣∣∣∣ ≤
∞∑

n=1

1

n!
= e− 1.

Moreover, for H ∈ (0, 1/2) we have 1 − 2H > 0 and so limε→0 ε
1−2H = 0. Hence,

for ε < 1, ∣∣∣∣∫
cε

f(z)dz

∣∣∣∣ ≤ (e − 1)
π

2
ε1−2H → 0,

as ε → 0. Similarly,∫
CR

f(z)dz = i

∫ π/2

0

1− eiReit

Reit
R1−2He(1−2H)itdt

= i

∫ π/2

0

1− eiReit

eit
R−2He(1−2H)itdt.
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Since

|eiReit | = e−R sin t ≤ 1, t ∈ [0, π/2],

we have |1− eiReit | ≤ 2 for t ∈ [0, π/2], and∣∣∣∣∫
CR

f(z)dz

∣∣∣∣ ≤ πR−2H → 0,

as R → ∞. Thus we have∫ ∞

0

f(x)dx = − lim
ε→0,
R→∞

∫ ε

R

i
1− e−y

−y2
y1−2Hei(1−2H)π/2dy

= (iei(1−2H)π/2)

∫ ∞

0

1− e−y

−y2
y1−2Hdy

= e−iπH

∫ ∞

0

1− e−y

y2
y1−2Hdy,

so that, equating real parts of both sides, we have∫ ∞

0

1− cosx

x2
x1−2Hdx = cos(πH)

∫ ∞

0

1− e−y

y2
y1−2Hdy.

Finally, integration by parts gives∫ ∞

0

(1− e−y)y−1−2Hdy =
(1 − e−y)y−2H

−2H

∣∣∞
0

−
∫ ∞

0

e−yy−2H

−2H
dy

= −
∫ ∞

0

e−yy−2H

−2H
dy

=
Γ(1− 2H)

2H
.

To go from the first line to the second, note that (1−e−y)y−2H

−2H

∣∣∞
0

= 0 since H ∈
(0, 1/2). So ∫ ∞

0

1− cosx

x2
x1−2Hdx = cos(πH)

Γ(1− 2H)

2H
,

which can also be rewritten as∫ ∞

0

1− cosx

x2
x1−2Hdx = cos(πH)

Γ(2− 2H)

2H(1− 2H)
,

since Γ(1 + z) = zΓ(z).
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Case 2: H ∈ (1/2, 1). We first integrate twice by parts to obtain∫ ∞

0

(1− cosx)x−1−2Hdx = (1− cosx)
x−2H

−2H

∣∣∞
0

+
1

2H

∫ ∞

0

sinx

x2H
dx

=
1

2H

∫ ∞

0

sinx

x2H
dx

= sinx
x1−2H

2H(1− 2H)

∣∣∞
0

− 1

2H(1− 2H)

∫ ∞

0

x1−2H cosxdx

= − 1

2H(1− 2H)

∫ ∞

0

x1−2H cosxdx.

(5.9.33)

Note that

(1− cosx)
x−2H

−2H

∣∣∞
0

= sinx
x1−2H

2H(1− 2H)

∣∣∞
0

= 0,

since H ∈ (1/2, 1).

To compute the last integral we use the same contour as in the first case,
but with the function f(z) = eize(1−2H) ln z. We first show that (5.9.32) still holds
here with the present choice of f . We have∫

CR

f(z)dz =

∫ π/2

0

eiReitR1−2Hei(1−2H)tiReitdt,

and so ∣∣∣∣∫
CR

f(z)dz

∣∣∣∣ ≤ ∫ π/2

0

e−R sin tR2−2Hdt.

From the proof of Jordan’s lemma, or, equivalently, checking that on [0, π/2], it
holds that

sin t ≥ 2t

π
,

we obtain ∫ π/2

0

e−R sin tdt ≤
∫ π/2

0

e−2tR/πdt =
π

2R
(1− e−R) ≤ π

R
.

Hence ∣∣∣∣∫
CR

f(z)dz

∣∣∣∣ ≤ ∫ π/2

0

e−R sin tR2−2Hdt ≤ πR1−2H → 0,

as R → ∞ since 1− 2H < 0. In a similar way,∫
cε

f(z)dz =

∫ 0

π/2

eiεe
it

ε1−2Hei(1−2H)tiεeitdt.

We now use that
|eiεeit | = e−ε sin t ≤ 1, t ∈

[
0,

π

2

]
,
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and so ∣∣∣∣∫
cε

f(z)dz

∣∣∣∣ ≤ π

2
ε2−2H → 0,

as ε → 0 since 2− 2H > 0. Hence,∫ ∞

0

f(x)dx = − lim
ε→0,
R→∞

∫ ε

R

e−ye(1−2H)(iπ/2+ln y)idy

= (ie(1−2H)iπ/2)

∫ ∞

0

e−yy1−2Hdy

= −e−iπHΓ(2− 2H).

Taking real parts we obtain∫ ∞

0

x1−2H cosxdx = − cos(πH)Γ(2 − 2H).

Comparing with (5.9.33), we obtain:∫ ∞

0

1− cosx

x2
x1−2Hdx =

cos(πH)Γ(2− 2H)

2H(1− 2H)
. �

Solution of Exercise 5.4.2. Let z ∈ Ω. Then

|1 + ϕ(z)| ≥ |1 + Reϕ(z)| ≥ 1

since Reϕ(z) ≥ 0. Thus (1 + ϕ(z)) 
= 0 and the function

s(z) =
1− ϕ(z)

1 + ϕ(z)

is well defined in Ω. Furthermore,

1− |s(z)|2 =
2Reϕ(z)

|1 + ϕ(z)|2 ≥ 0.

Thus s(z) is bounded in a punctured neighborhood of z0, and hence, by Riemann’s
removable singularity theorem (see Theorem 5.4.1), z0 is a removable singularity.

�

Solution of Exercise 5.4.3. From the arguments of Exercise 4.2.18 the function f
has a derivative at every point where it does not vanish, and so f is analytic
in Ω \ {w ∈ Ω ; f(w) = 0} . The points {w ∈ Ω ; f(w) = 0} are a priori isolated
singularities of f . Since f is continuous at these points, an application of Riemann’s
removable singularity Theorem (see Theorem 5.4.1) shows that f is analytic in
all of Ω. �
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Solution of Exercise 5.4.4. Let Z(f) denote the set of zeroes of f in Ω. We have
Z(f) = Z(f2). Hence, Z(f) has only isolated points in Ω since f2 is analytic. The
function

f =
f3

f2
(5.9.34)

is a quotient of two functions analytic in Ω \ Z(f), and hence is analytic there.
From expression (5.9.34) we see that the points in Z(f) are isolated singularities
of f . We will now show that they are removable singularities. Let z0 ∈ Z(f). We
write

f2(z) = (z − z0)
Ng(z),

f3(z) = (z − z0)
Mh(z),

where N,M ∈ N and where g and h are analytic in B(z0, r) for some r > 0, and
do not vanish in B(z0, r). Therefore, for z ∈ B(z0, r) \ {z0} we have

f(z) = (z − z0)
M−N h(z)

g(z)
. (5.9.35)

The function f2 is analytic in Ω and so it is bounded in modulus in a neighborhood
of z0, and so f is also bounded in modulus in a neighborhood of z0. This forces
M ≥ N , and (5.9.35) expresses that z0 is a removable singularity of f . Since
f(z0) = 0 we have in fact M > N .

To prove the last claim, let p1 and p2 in Z be such that

p1n1 + p2n2 = 1.

One, and only one, of the numbers p1 or p2 is negative. Without loss of generality
we assume p1 > 0. It suffices to redo the preceding analysis with fp1n1 and f−p2n2

instead of f3 and f2. �

Solution of Exercise 5.4.5. The first claim is a direct application of Riemann’s
removable singularity theorem (see Theorem 5.4.1 for the latter). To prove the
second claim, one first takes a 
= b, and z different from a and b. One then has:

(Raf)(z)− (Rbf)(z)

a− b
=

f(z)− f(a)

z − a
− f(z)− f(b)

z − b
a− b

=
(f(z)− f(a))(z − b)− (f(z)− f(b))(z − a)

(z − a)(z − b)(a− b)
,

and

RaRbf(z) =

f(z)− f(b)

z − b
− f(a)− f(b)

a− b
z − a

=
(f(z)− f(b))(a− b)− (f(a)− f(b))(z − b)

(z − a)(z − b)(a− b)
.
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The equality follows (still for z different from a and b, and a 
= b) since

(f(z)− f(a))(z − b)− (f(z)− f(b))(z − a)

= (f(z)− f(b))(a− b)− (f(a)− f(b))(z − b)

= (a− b)f(z)− (z − b)f(a) + (z − a)f(b).

Therefore, for a 
= b, and using (5.4.1), we see that the function

Raf(z)−Rbf(z)

a− b

can be extended analytically to all of Ω. Hence RaRbf can also be extended
analytically to all of Ω, and we obtain the resolvent equation. Finally, in the case
a = b, equation (5.4.2) is trivial. �

Solution of Exercise 5.5.1. We follow [29, p. 206]. Let p be as in (5.5.1). The func-
tion

p�(z) = 1 + an−1z + · · ·+ a0z
n (5.9.36)

is still a polynomial, and Cauchy’s formula applied to p�(z)f(z) leads to

p�(0)f(0) =
1

2π

∫ 2π

0

p�(eit)f(eit)dt.

Since p�(0) = 1, using (3.1.4) we have

|f(0)| ≤ 1

2π

∫ 2π

0

|p�(eit)f(eit)|dt.

To conclude we note that, for z 
= 0,

p�(z) = znp(1/z).

In particular, for z = eit (with t ∈ R) we have 1/z = z and so

|p�(eit)| = |p(eit)|,

and hence we get the required inequality. �

We note that the operation p �→ p� appears also in the solution of Exercise
6.4.3.

Solution of Exercise 5.5.2. In view of Cauchy’s formula, (5.1.5) can be rewritten as

4π2|f(0)|2 ≤
(
max
z∈C

1

|z|2

)
· L(C) ·

∫
C

|f(z)|2|dz|,

and so the infimum is strictly positive when we fix f(0) = 1. �
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Solution of Exercise 5.5.3. Let p be a polynomial. Then, by Cauchy’s formula,

1

2πi

∫
T

1− zp(z)

z
dz = 1. (5.9.37)

Therefore, using (5.1.3),

1 =
∣∣ 1

2πi

∫
T

1− zp(z)

z
dz
∣∣

≤ max
z∈T

|1− zp(z)|

= max
z∈T

|z−1 − p(z)|,

where we have used formula (5.1.3) to go from the first to the second line. This
proves the claim with M = 1. �

Solution of Exercise 5.5.4. If z0 is in the exterior of C, both functions

f ′(z)
z − z0

and
f(z)

(z − z0)2

are analytic in a neighborhood of the interior of C, and Cauchy’s theorem insures
that both sides of (5.5.4) vanish.

If z0 is in the interior of C, Cauchy’s formula applied to f ′ shows that∫
C

f ′(z)
z − z0

dz = 2πif ′(z0),

while Cauchy’s formula applied to f shows that∫
C

f(z)

(z − z0)2
dz = 2πif ′(z0),

and hence the result. �

Another proof, using the notion of removable singularity, is presented in
Exercise 7.2.3.

Solution of Exercise 5.5.5. The function

esin z2

(z2 + 1)(z − 2i)3

is analytic in |z| < 1, and therefore for every r < 1, Cauchy’s theorem implies that∫
|z|=r

esin z2

dz

(z2 + 1)(z − 2i)3
= 0.
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Let now 1 < r < 2. Let Ci and C−i be two circles around the points i and −i, with
(say common) radius ρ such that B(i, ρ) and B(−i, ρ) are both inside B(0, r). By
Theorem 5.3.1, we have∫

|z|=r

esin z2

dz

(z2 + 1)(z − 2i)3
=

∫
Ci

esin z2

dz

(z2 + 1)(z − 2i)3
+

∫
C−i

esin z2

dz

(z2 + 1)(z − 2i)3
,

where all the curves are taken with the positive orientation. The function

esin z2

(z + i)(z − 2i)3

is analytic in an open neighborhood of |z − i| ≤ ρ. By Cauchy’s formula,

∫
Ci

esin z2

dz

(z2 + 1)(z − 2i)3
=

∫
Ci

esin z2

(z + i)(z − 2i)3

z − i
dz

= 2πi
esin z2

(z + i)(z − 2i)3

∣∣
z=i

= −iπe− sin 1.

The integral

∫
C−i

esin z2

dz

(z2 + 1)(z − 2i)3
=

∫
C−i

esin z2

(z − i)(z − 2i)3

z + i
dz

is computed in a similar way.

For the case r > 2 one takes ρ such that B(2i, ρ) is inside B(0, r). Theorem
5.3.1 now gives∫

|z|=r

esin z2

dz

(z2 + 1)(z − 2i)3
=

∫
Ci

esin z2

dz

(z2 + 1)(z − 2i)3
+

∫
C−i

esin z2

dz

(z2 + 1)(z − 2i)3

+

∫
C2i

esin z2

dz

(z2 + 1)(z − 2i)3
,

where C2i denotes the positively oriented circle C2i around z = 2i with radius ρ.
The first two integrals on the right side of the above equality have already been
computed using Cauchy’s formula. The third one is computed in the same way,
namely

∫
C2i

esin z2

dz

(z2 + 1)(z − 2i)3
=

∫
C2i

esin z2

z2 + 1
(z − 2i)3

dz = 2πi · 2! ·
(

esin z2

z2 + 1

)(2) ∣∣
z=2i

. �
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Solution of Exercise 5.5.6. Using formula (5.5.5), we have∫ 2π

0

ee
2it−3itdt =

∫
|z|=1

ez
2

iz4
dz

= 2π
1

2πi

∫
|z|=1

ez
2

z4
dz

= 2π
(ez

2

)(3)

3!

∣∣∣∣∣
z=0

= 0,

where we have used Cauchy’s formula. �

Solution of Exercise 5.5.7. We begin as for Exercise 3.1.8 and write cos t =
eit + e−it

2
and

∫ 2π

0

cos2p tdt =

∫ 2π

0

(
eit + e−it

2

)2p

dt =

∫ 2π

0

(e2it + 1)2p

22pe2pit
dt.

Using formula (5.5.5) we see that this equation in turn is equal to

1

4pi

∫
|z|=1

(z2 + 1)2p

z2p+1
dz.

Let f(z) = (z2 + 1)2p. Cauchy’s formula implies that

1

2πi

∫
|z|=1

(z2 + 1)2p

z2p+1
dz =

f (2p)(0)

(2p)!
.

But

f (2p)(0) = (2p)!

(
2p
p

)
,

since

f(z) =

2p∑
�=0

z2�
(
2p
�

)
,

and so ∫ 2π

0

cos2p tdt =
2πi

4pi

1

2πi

∫
|z|=1

(z2 + 1)2p

z2p+1
dz

=
2πi

4pi

f (2p)(0)

(2p)!

=
2π

4p

(
2p
p

)
. �
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The dominated convergence theorem leads to

lim
p→∞

∫ 2π

0

cos2p tdt = 0.

This can also be checked directly from the formula for
∫ 2π

0
cos2p tdt using Stirling’s

formula.

We also note that
∫ 2π

0 cos2p+1 tdt = 0. Indeed, the change of variable t �→
u = t+ π leads to ∫ 2π

0

cos2p+1 tdt =

∫ 3π

π

(−1)2p+1 cos2p+1 udu

= −
∫ 3π

π

cos2p+1 udu

= −
∫ 2π

0

cos2p+1 udu,

where the last equality holds since the function cos2p+1 u has period 2π, and so
its integral is the same on any interval of length 2π.

Finally we remark that one can apply the residue theorem to compute∫
|z|=1

(z2 + 1)2p

z2p+1
dz.

Solution of Exercise 5.5.8. We have

1

4π

∫ 2π

0

eit + z

eit − z
f(eit)dt =

1

4π

∫ 2π

0

2eit − eit + z

eit − z
f(eit)dt

=
1

2π

∫ 2π

0

eit

eit − z
f(eit)dt− 1

4π

∫ 2π

0

f(eit)dt

= f(z)− f(0)

2
,

since, by Cauchy’s formula,

f(z) =
1

2πi

∫
|ζ|=1

f(ζ)

ζ − z
dζ =

1

2π

∫ 2π

0

eit

eit − z
f(eit)dt

and in particular

f(0) =
1

2π

∫ 2π

0

eit

eit
f(eit)dt =

1

2π

∫ 2π

0

f(eit)dt.

On the other hand, for a given z ∈ D, Cauchy’s formula applied to the
function

g(ζ) = f(ζ)
1 + ζz

1 − ζz
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leads to

f(0) = g(0) =
1

2π

∫ 2π

0

g(eit)dt =
1

2π

∫ 2π

0

f(eit)
1 + eitz

1− eitz
dt,

and so

1

2π

∫ 2π

0

f(eit)
1 + eitz

1 − eitz
dt = f(0).

Therefore,

1

4π

∫ 2π

0

f(eit)
eit + z

eit − z
dt =

(
1

4π

∫ 2π

0

f(eit)
e−it + z

e−it − z
dt

)

=

(
1

4π

∫ 2π

0

f(eit)
1 + eitz

1 − eitz
dt

)

=
f(0)

2
,

and hence the result since

1

2π

∫ 2π

0

eit + z

eit − z
Re f(eit)dt

=
1

2

(
1

2π

∫ 2π

0

eit + z

eit − z
f(eit)dt+

1

2π

∫ 2π

0

eit + z

eit − z
f(eit)dt

)
.

To prove the first equality in (5.5.7), it suffices to subtract f(0) from each side of
(5.5.6). One obtains

f(z)− f(0) = i Im f(0)− f(0) +
1

2π

∫ 2π

0

eit + z

eit − z
Re f(eit)dt

=
1

2π

∫ 2π

0

eit + z

eit − z
Re f(eit)dt− Re f(0)

=
1

2π

∫ 2π

0

eit + z

eit − z
Re f(eit)dt− 1

2π

∫ 2π

0

Re f(eit)dt

=
1

2π

∫ 2π

0

2z

eit − z
Re f(eit)dt.

Differentiating n times with respect to z both sides of the first equality in (5.5.7) we
obtain the second claim. Interchanging integration and differentiation is legitimate
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thanks to Theorem 14.6.1. The third claim is a direct computation, done as follows:

Re f(z) = Re

(
i Im f(0) +

1

2π

∫ 2π

0

eit + z

eit − z
Re f(eit)dt

)
=

1

2π

∫ 2π

0

(
Re

eit + z

eit − z

)
Re f(eit)dt

=
1

2π

∫ 2π

0

1− |z|2
|eit − z|2 Re f(eit)dt. �

Solution of Exercise 5.5.9. It suffices to define the function g(z) = f(Rz) for z ∈ D

and apply Exercise 5.5.8 to g. �

Solution of Exercise 5.5.10. This is a direct consequence of the third equality in
(5.5.7). �

Solution of Exercise 5.5.11. We use the representation (5.5.9) for f :

f(z) = ia+

∫ 2π

0

eit + z

eit − z
dμ(t),

and write for z, w ∈ D,

f(z) + f(w)

1− zw
=

∫ 2π

0

{
eit + z

eit − z
+

e−it + w

e−it − w

}
dμ(t)

1− zw

=

∫ 2π

0

{
2− 2zw

(eit − z)(e−it − w)

}
dμ(t)

1− zw

= 2

∫ 2π

0

dμ(t)

(eit − z)(e−it − w)
.

Therefore for N ∈ N, w1, . . . , wN ∈ D and c1, . . . , cN ∈ C we have

N∑
�,j=1

c�cj
f(w�) + f(wj)

1− w�wj
= 2

∫ 2π

0

N∑
�,j=1

(
c�cj

(eit − w�)(e−it − wj)

)
dμ(t)

= 2

∫ 2π

0

∣∣∣∣∣
N∑
0

c�
eit − w�

∣∣∣∣∣
2

dμ(t)

≥ 0. �

Solution of Exercise 5.5.12. Using formula (5.5.6) and the equality

eit + z

eit − z
= 1 + 2

∞∑
n=0

zn+1e−i(n+1)t, |z| < 1,
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we have for |z| < 1,

f(z) = i Im f(0) +
1

2π

∫ 2π

0

Re f(eit)dt+ 2
∞∑
�=1

z�
1

2π

∫ 2π

0

e−i�t Re f(eit)dt.

Thus

f0 = Re f(0) =
1

2π

∫ 2π

0

Re f(eit)dt,

and

f� =
1

2π

∫ 2π

0

e−i�t Re f(eit)dt, � = 1, 2, . . . .

Since the real part of f is positive on T, it follows from these expressions that

|f�| ≤
1

2π

∫ 2π

0

Re f(eit)dt = 2Re f(0), � = 1, 2, . . . . �

Solution of Exercise 5.5.13. We will assume f0 ∈ R and positive. This can always
be achieved by multiplying f by a constant of modulus 1, and this operation does
not affect (5.5.12). The function g = 1− f is analytic in |z| < 1+ ε and has a real
positive part in the open unit disk. By (5.5.11)

|f�| ≤ 2Re(1− f0) = 2(1− f0), � = 1, 2, . . . ,

and thus, for |z| ≤ 1/3 we have:

∞∑
�=0

|f�z�| ≤ f0 +

∞∑
�=1

|f�|
3�

≤ f0 +
∞∑
�=1

2(1− f0)

3�

= f0 + 2(1− f0)

∞∑
�=1

1

3�

= f0 + (1− f0) = 1. �

Solution of Exercise 5.5.15. From (5.5.6) we have:

Re f(z) =
1

2π

∫ 2π

0

Re

(
eit + z

eit − z

)
Re f(eit)dt =

1

2π

∫ 2π

0

1− |z|2
|eit − z|2 Re f(eit)dt.

But, for |z| < 1 we have

1− |z|2
(1 + |z|)2 ≤ 1− |z|2

|eit − z|2 ≤ 1− |z|2
(1− |z|)2
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and so (since 1− |z|2 = (1− |z|)(1 + |z|))

1− |z|
1 + |z| ≤

1− |z|2
|eit − z|2 ≤ 1 + |z|

1− |z| .

Therefore

1− |z|
1 + |z| Re f(e

it) ≤ 1− |z|2
|eit − z|2 Re f(eit) ≤ 1 + |z|

1− |z| Re f(e
it).

Integrating these inequalities we obtain (5.5.13) since

Re f(0) =
1

2π

∫ 2π

0

Re f(eit)dt. �

Solution of Exercise 5.5.16. By Cauchy’s formula applied to f4 and z0 = 0 we
obtain:

0 = f(0)4 =
1

2πi

∫
|z|=1

f4(z)

z
dz =

1

2π

∫ 2π

0

f4(eit)dt.

In particular,

Re

∫ 2π

0

f4(eit)dt = 0.

Since
Re f4 = Re(u+ iv)4 = u4 + v4 − 6u2v2,

we obtain∫ 2π

0

(u(cos t, sin t)4 + v(cos t, sin t)4)dt = 6

∫ 2π

0

u(cos t, sin t)2v(cos t, sin t)2dt,

and in particular∫ 2π

0

u(cos t, sin t)4dt ≤ 6

∫ 2π

0

u(cos t, sin t)2v(cos t, sin t)2dt.

Taking squares of both sides and applying the Cauchy–Schwarz inequality to the
expression on the right, we obtain(∫ 2π

0

u(cos t, sin t)4dt

)2

≤ 36

(∫ 2π

0

u(cos t, sin t)2v(cos t, sin t)2dt

)2

≤ 36

(∫ 2π

0

u(cos t, sin t)4dt

)(∫ 2π

0

v(cos t, sin t)4dt

)
.

If
∫ 2π

0 u(cos t, sin t)4dt > 0 we divide both sides of the last inequality by this

expression and obtain (5.5.14). If
∫ 2π

0
u(cos t, sin t)4dt = 0, then (5.5.14) is trivially

satisfied. The second inequality follows since the function if = −v + iu is still
analytic in |z| < 1 + ε and vanishes at the origin. �
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Solution of Exercise 5.5.17. By Cauchy’s formula we have

ak =
f (k)(0)

k!
=

1

2πi

∫
|z|=r

f(z)dz

zk+1
,

and so

|ak| = |
∫ 2π

0

f(reit)ireitdt

rk+1ei(k+1)t
| ≤ M

rk
.

Thus, for |z| ≤ r,

|akzk| ≤ rk
M

rk
= M. �

Solution of Exercise 5.5.18. Take R1 < R. The coefficient of the power zn−1 in
the power expansion of f ′ is nfn. By Cauchy’s formula applied to f ′,

|nfn| =
∣∣∣∣∣ 1

2πi

∫
|z|=R1

f ′(z)dz
zn

∣∣∣∣∣
=

∣∣∣∣ 1

2πi

∫ 2π

0

f ′(R1e
it)R1ie

it

Rn
1 e

int
dt

∣∣∣∣
≤ 1

2π

∫ 2π

0

∣∣∣∣f ′(R1e
it)R1ie

it

Rn
1 e

int

∣∣∣∣ dt
≤ 1

2π

∫ 2π

0

∣∣∣∣MR1ie
it

Rn
1 e

int

∣∣∣∣ dt
=

1

2π

∫ 2π

0

∣∣∣∣MR1

Rn
1

∣∣∣∣ dt
=

M

Rn−1
1

.

Since this estimate holds for all R1 ≤ R, we obtain (5.5.15). �

Solution of Exercise 5.5.19. Take r > 0. Cauchy’s formula gives us

|fn| =
∣∣∣∣∣ 1

2πi

∫
|z|=r

f(z)dz

zn+1

∣∣∣∣∣
=

∣∣∣∣ 1

2πi

∫ 2π

0

f(reit)rieit

rn+1ei(n+1)t
dt

∣∣∣∣
≤ 1

2π

∫ 2π

0

∣∣∣∣ f(reit)rieitrn+1ei(n+1)t

∣∣∣∣ dt
≤ 1

2π

∫ 2π

0

∣∣∣∣Mrer

rn+1

∣∣∣∣ dt
= M

er

rn
.
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Thus

|fn| ≤ M inf
r>0

er

rn
.

The minimum of the function r �→ er

rn is for r = n. Plugging r = n in the formula
one obtains the required estimate. �

Solution of Exercise 5.5.20. From

f ′(z) =
∞∑
n=1

nanz
n−1,

we have

nan =
1

2πi

∫
|z|=r

f ′(z)
zn

dz, n = 1, 2, . . .

for any 0 < r < 1. Thus,

nan =
1

2π

∫ 2π

0

f ′(reit)
rn−1ei(n−1)t

dt.

In view of (5.5.17) we have

n|an| ≤ M.

Now we can write∫ 1

0

|f(x)|dx ≤
∫ 1

0

∞∑
n=0

|an|xndx

≤ |a0|+
∫ 1

0

∞∑
n=1

M

n
xndx

≤ |a0|+M

∫ 1

0

(− ln(1− x))dx < ∞. �

Solution of Exercise 5.5.21. For n ≥ 1, this is just Cauchy’s formula applied to
the function

g(ζ) = (ζ + z)ζn−1.

For n ≤ 0, and using (5.1.9) if need be, we have that

1

2πi

∫
T

ζ + z

ζ − z
ζn−1dζ =

1

2πi

∫
T

1 + ζz

1− ζz
ζ−1−ndζ,

which is equal to −1 for n = 0 thanks to Cauchy’s formula, and 0 for n < 0 thanks
to Cauchy’s theorem since |z| < 1. �
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Solution of Exercise 5.5.22. Without loss of generality and to keep the notation
simple we set z0 = 0 and r = 1. The integral to compute is

1

2π

∫ 2π

0

f ′(eit)
f(eit)

eitdt.

Recall that (see (5.2.1))

f(eis)′ = ieisf ′(eis). (5.9.38)

Set, for 0 ≤ s ≤ 2π,

g(s) = f(eis) exp−i

{
1

2π

∫ s

0

f ′(eit)
f(eit)

eitdt

}
.

Then, in view of (5.9.38),

g′(s) ≡ 0

and so g(s) = g(0) = g(2π). Hence

1 = exp−i

{
1

2π

∫ 2π

0

f ′(eit)
f(eit)

eitdt

}
,

and hence the result. �

Solution of Exercise 5.5.23. Assume that such a function exists. Then for z ∈ Ω,

2f(z)f ′(z) = 1.

Dividing this expression by f(z)2 = z we obtain

f ′(z)
f(z)

=
1

2z
.

Integrating both sides of this equality along the circle of radius 2 and using the
preceding exercise, we obtain on the left side a multiple of 2π, while on the right
side we get π, and hence a contradiction. �

Solution of Exercise 5.5.25. We saw in Exercise 3.1.12 that the integral (3.1.9) is
well defined for z off the real line and that

Re fm(z) = −i(z − z)

∫
R

m(t)dt

|t− z|2 .

Furthermore, the integral will vanish if and only if

m(t)

|t− z|2 ≡ 0,
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that is, if and only if m(t) ≡ 0. We now turn to the proof that fm is holomorphic
in C \ R. We focus on the case where z is in the open upper half-plane C+, and
will show that

f ′
m(z) = −i

∫
R

m(t)dt

(t− z)2
. (5.9.39)

The case of the open lower half-plane is treated in the same way. Let z and w in
C+. We have

fm(z)− fm(w)

z − w
= −i

∫
R

m(t)dt

(t− z)(t− w)
,

and therefore,

fm(z)− fm(w)

z − w
+ i

∫
R

m(t)dt

(t− z)2
= −i

∫
R

{
1

(t− z)(t− w)
− 1

(t− z)2

}
m(t)dt

= −i(w − z)

∫
R

m(t)dt

(t− z)2(t− w)
.

Let

d = dist (z,R) = min
t∈R

|t− z| = Im z.

We chose w such that |z − w| < d
2 . Then, for t ∈ R we have∣∣∣w − z

t− z

∣∣∣ ≤ |w − z|
d

<
1

2
. (5.9.40)

In view of (5.9.40) we have, for w as above,∣∣∣ 1

t− w

∣∣∣ = ∣∣∣ 1

t− z + z − w

∣∣
=
∣∣∣ 1

(t− z)(1− w−z
t−z )

∣∣∣
≤ 1

|t− z|(1− |w−z
t−z |)

≤ 1

|t− z|(1− 1/2)
=

2

|t− z| .

Therefore, for w such that |z − w| < d
2 we have∣∣∣fm(z)− fm(w)

z − w
+ i

∫
R

m(t)dt

(t− z)2

∣∣∣ ≤ |w − z| · 2
∫
R

m(t)dt

|t− z|3 ,

from which we obtain that fm is holomorphic in the open upper half-plane, and
that its derivative is given by (5.9.39). �
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Solution of Exercise 5.6.1. We have

cos z cosh z =
eiz + e−iz

2

ez + e−z

2

=
e(1+i)z + e(i−1)z + e(−i+1)z + e−(1+i)z

4
.

Thus

4 cos z cosh z =

∞∑
n=0

zn

n!
{(i+ 1)n + (i − 1)n + (−i+ 1)n + (−i− 1)n} .

But

cn
def.
= (i+ 1)n + (i− 1)n + (−i+ 1)n + (−i− 1)n

= (i + 1)n(1 + (−1)n) + (i− 1)n(1 + (−1)n).

Thus cn = 0 when n is odd, as it should be since the function cos z cosh z is even.
For n = 2p we have

c2p = 2((i+ 1)2p + (i− 1)2p)

= 2((2i)p + (−2i)p)

=

{
0, if p is odd,

4 · 22�(−1)�, if p = 2� is even.

Hence

cos z cosh z =

∞∑
�=0

(−1)�22�

(4�)!
z4�. �

Solution of Exercise 5.6.2. We prove only (5.6.1). The proof of (5.6.2) is similar.
For small enough ε we can write:

f(z0 + iε)− f(z0 + ε)

f(z0 + ε+ iε)− f(z0)
=

A

B

where

A = f(z0) + iεf ′(z0)−
ε2

2
f ′′(z0) + ε2O(ε) − f(z0)− εf ′(z0)−

ε2

2
f ′′(z0) + ε2O(ε)

= ε ((i− 1)f ′(z0)− εf ′′(z0) + εO(ε))

and (since (1 + i)2 = 2i)

B = f(z0) + ε(1 + i)f ′(z0) + iε2f ′′(z0) + ε2O(ε)− f(z0)

= ε ((1 + i)f ′(z0) + iεf ′′(z0) + εO(ε)) .
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Hence,

f(z0 + iε)− f(z0 + ε)

f(z0 + ε+ iε)− f(z0)
− i

=
(i− 1)f ′(z0)− εf ′′(z0) + εO(ε)− i ((1 + i)f ′(z0) + iεf ′′(z0) + εO(ε))

(1 + i)f ′(z0) + iεf ′′(z0) + εO(ε)

=
εO(ε)

(1 + i)f ′(z0) + iεf ′′(z0) + εO(ε)

from which the result follows since f ′(z0) 
= 0. �

Solution of Exercise 5.6.3. By definition of the radius of convergence,

R = min(|1/2−±i|, |1/2− (1 + i)|) =
√
5

2
. �

Solution of Exercise 5.6.4. The radius of convergence of the power series expan-
sion at the origin is

R = min
�=1,2,...,m

1/|z�| =
1

max�=1,2,...,m |z�|
,

since this is the radius of the largest open disk centered at the origin where the
power expansion exists. Moreover, for z < 1/max�=1,2,...,m |z�|, we have

f(z) =

m∑
�=1

∞∑
n=0

znzn� =

∞∑
n=0

zn

(
m∑
�=1

zn�

)
. (5.9.41)

The interchange of summations makes sense since one of the sums is finite. The
radius of convergence of (5.9.41) is

1

lim supn→∞ |
∑m

�=1 z
n
� |1/n

.

Thus
1

lim supn→∞ |
∑m

�=1 z
n
� |1/n

=
1

max�=1,2,...,m |z�|
,

and hence the result. �

Solution of Exercise 5.6.5. (a) Let f(z) =
∑∞

n=0 anz
n be the power series expan-

sion of f in D centered at the origin. We have

∞∑
n=0

anz
n =

∞∑
n=0

anε
Nzn, ∀z ∈ D.

By uniqueness of the coefficients in the power series expansion, we have

an = anε
N , n ∈ N0.
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It follows that an = 0 when n is not a multiple of N , that is

f(z) =

∞∑
k=0

akNzkN , z ∈ D.

Set g(z) =
∑∞

k=0 akNzk, and let R denote the radius of convergence of g. If R = ∞,
we have f(z) = g(zN) in particular in D. Assume now R < ∞. Then

RN =
1

lim supk→∞ |akN |1/kN ≥ 1

lim supn→∞ |an|1/n
≥ 1,

since f is analytic in the open unit disk. Thus R ≥ 1 and g is analytic in the open
unit disk, and satisfies f(z) = g(zN) there.

(b) Assume that (5.6.3) holds in the open unit disk. Then replacing z by εz
we have

zk = g(zN) = g((εz)N) = (εz)k,

and hence εk = 1. But this is impossible for k ∈ {1, . . . , N − 1}. �

Solution of Exercise 5.6.6. Let F (z) =
∑∞

�=0 a�z
� be the power series expansion

of F centered at the origin. By hypothesis,

∞∑
�=0

a�ρ
� ∈ R ∀ρ ∈ (0, R).

We prove by induction that an ∈ R for all n. For n = 0 the claim is true, as is
seen by letting ρ → 0 (recall that the power series is continuous in |z| < R and in
particular at the origin). Assume now that a0, . . . , an are real. Then the expression

∞∑
�=n+1

a�ρ
� =

∞∑
�=0

a�ρ
� −

n∑
�=0

a�ρ
�

is real for all ρ ∈ (0, R). Dividing by ρn+1 we obtain that

∞∑
�=n+1

a�ρ
�−n−1 ∈ R, ∀ρ ∈ (0, R).

Letting ρ → 0 we get that an+1 ∈ R. We now use the second hypothesis

∞∑
n=0

anρ
n exp(inπ

√
2) ∈ R, ∀ρ ∈ (0, R).

In particular the imaginary part of the above expression is 0 for all ρ ∈ (0, R),
that is ∞∑

n=1

anρ
n sin(nπ

√
2) = 0, ∀ρ ∈ (0, R).
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By the same argument as above,

an sin(nπ
√
2) = 0, n = 1, 2, . . . .

But
√
2 is irrational and so nπ

√
2 is never a multiple of π and so sin(nπ

√
2) 
= 0

for n = 1, 2, . . .. It follows that an = 0 for n = 1, 2, . . . and so F (z) ≡ a0. �

Solution of Exercise 5.6.7. For a given t ∈ C the function z �→ etz−z2/2 is entire
and therefore admits a power series expansion of the form (5.6.4). We now show
that the hn are polynomial functions of the variable t. By Cauchy’s formula

hn(t) =
1

2πi

∫
|z|=1

etz−z2/2

zn+1
dz

=

∞∑
�=0

t�
1

2πi

∫
|z|=1

z�

�!

e−z2/2

zn+1
dz.

By Cauchy’s theorem, the integral
∫
|z|=1 z

(�−n−1)e−z2/2dz = 0 for � > n. By

Cauchy’s formula, it is equal to 2πi for � = n. Thus hn is a polynomial of degree n.
�

Solution of Exercise 5.6.8. The formula for A(z) involves an integral along the
interval [0, z]. Since the function f is analytic in the open unit disk, and since
the open unit disk is convex (and in particular star-shaped) the integral does not
depend in fact on the path within D linking 0 to z. We have∫

[0,z]

f(s)ds =

∞∑
n=0

fn
n+ 1

zn+1.

Thus, for |z| < 1,

A(z) =

( ∞∑
n=0

fn
n+ 1

zn+1

)( ∞∑
n=0

zn

)

= z

( ∞∑
n=0

fn
n+ 1

zn

)( ∞∑
n=0

zn

)
,

and (5.6.5) is a direct consequence of the formula (4.4.14) for the product of power
series. �

Solution of Exercise 5.6.9. By definition, the area S(A) is equal to

S(A) =

∫∫
A
dxdy.

We make the change of variable

ϕ(x, y) = (u(x, y), v(x, y)).
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Since f is analytic in D, the Jacobian matrix is equal to (4.2.8), and its determinant
is equal to |f ′(z)|2. By the theorem of change of variables for double integrals we
have

S(A) =

∫∫
D

|f ′(z)|2dxdy. (5.9.42)

Let f(z) =
∑∞

n=0 anz
n be the power series expansion centered at the origin of f

in the open unit disk. With the change of variable

x = r cos t y = r sin t,

this integral becomes

S(A) =

∫ 2π

0

∫ 1

0

∞∑
n,m=1

nmrn+m−2ei(n−m)tdrdt. (5.9.43)

The family of functions

fn,m(r, t) = nmrn+m−2ei(n−m)t, n,m = 1, . . .

converges uniformly and absolutely in [0, 1] × [0, 2π]. This allows us to exchange
the integral and the double sum in (5.9.43). Indeed, let ε > 0. There exists N ∈ N

such that ∞∑
n,m=N+1

|fn,m(r, t)| < ε,

and thus ∫ 2π

0

∫ 1

0

∞∑
n,m=1

nmrn+m−2ei(n−m)trdrdt

=

∫ 2π

0

∫ 1

0

(
N∑

n,m=1

nmrn+m−2ei(n−m)t

)
rdrdt

+

∫ 2π

0

∫ 1

0

⎛⎝ ∞∑
n,m=N+1

nmrn+m−2ei(n−m)t

⎞⎠ rdrdt.

The second integral is bounded by 2πε, and the first integral is equal to

π
N∑

n=1

n|an|2.

The formula

S(A) = π

N∑
n=1

n|an|2

for the area follows. �
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We note the following: Starting from (5.9.42), we can use the Parseval equal-
ity, and obtain∫ 2π

0

∣∣∣∣∣
∞∑

n=1

nanr
n−1ei(n−1)t

∣∣∣∣∣
2

dt = 2π

∞∑
n=1

n2|an|2r2n−2

and proceed as follows (recall that we assume f analytic in a neighborhood of the
closed unit disk):

S(A) =

∫∫
D

|f ′(z)|2dxdy

=

∫ 1

0

(∫ 2π

0

|f ′(reit)|2dt
)
rdr

= 2π

∫ 1

0

∞∑
n=1

n2|an|2r2n−1dr

= π

∞∑
n=1

n|an|2,

where the interchange of integral and summation to get to the last line is done
using for instance the monotone convergence theorem.

Solution of Exercise 5.6.10. (1) Let f(z) =
∑∞

n=0 anz
n be the Maclaurin expan-

sion of f in B(0, R). As in the solution of the preceding exercise we have

1

2π

∫ 2π

0

|f(reit)|2dt =
∞∑

n=0

r2n|an|2, r ∈ [0, R).

Therefore M2(f, r) is increasing, and is strictly increasing unless

a1 = a2 = · · · = 0.

(2) Let f be entire and let R > 0. We have∫∫
|z|≤R

|f(z)|2dxdy =

∫ R

0

∫ 2π

0

|f(reit)|2rdrdt = 2π

∫ R

0

rM2(f, r)dr. (5.9.44)

Since M2(f, r) is increasing, this last integral cannot converge as R → ∞, unless
M2(f, r) ≡ 0, that is, unless f(z) ≡ 0. Another proof using subharmonic functions
goes as follows: The function |f |2 is subharmonic (see (9.3.3)), and so (9.3.6)
implies that

|f(0)|2 ≤ M2(f, r).

If f(0) 
= 0, we see from (5.9.44) that∫∫
|z|≤R

|f(z)|2dxdy ≥ πR2|f(0)|2 −→ +∞
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as R −→ +∞. If f(0) = 0, we have f(z) = zng(z) where n ∈ N and where g is an
entire function not vanishing at the origin. We have∫∫

|z|>1

|g(z)|2dxdy ≤
∫∫

|z|>1

|z2n| · |g(z)|2dxdy ≤
∫∫

C

|f(z)|2dxdy < ∞,

and therefore ∫∫
C

|g(z)|2dxdy < ∞,

and we are back to the preceding case. �

Here also we could use Parseval’s identity to compute∫ 2π

0

|f(reit)|2dt = 2π

( ∞∑
n=0

|an|2r2n
)
, (5.9.45)

and proceed.

Solution of Exercise 5.6.12. This is a direct consequence of (5.9.45). �

Solution of Exercise 5.6.14. (a) Let n,m ∈ N0. Going to polar coordinates we
have:

1

π

∫∫
R2

e−|z|2zn(z)mdxdy =
1

π

∫ 2π

0

∫ ∞

0

e−r2rn+m+1ei(n−m)tdtdr

=

{
2
∫∞
0 e−r2r2n+1dr, if n = m,

0, if n 
= m.

But

2

∫ ∞

0

e−r2r2n+1dr =

∫ ∞

0

e−rrndr = n!. (5.9.46)

(b) Using polar coordinates and using (5.9.45) we have:

1

π

∫
R2

e−|z|2 |f(z)|2dxdy =

∫ ∞

0

e−r2
(∫ 2π

0

|f(reit)|2dt
)
rdr

= 2

∫ ∞

0

e−r2

( ∞∑
n=0

r2n|fn|2n
)
rdr

= 2

∞∑
n=0

|fn|2
∫ ∞

0

e−r2r2n+1dr

=

∞∑
n=0

n!|fn|2

in view of (5.9.46). The interchange of sum and integral above can be done for
instance using the monotone convergence theorem. �
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Solution of Exercise 5.6.15. (a) We have

ezw =
∞∑

n=0

cnz
n with cn =

wn

n!
, n = 0, 1, . . . .

Since ∞∑
n=0

n!|cn|2 =

∞∑
n=0

n!
|w|2n
(n!)2

=

∞∑
n=0

|w|2n
n!

= e|w|2 < ∞,

the function
kw : z �→ ezw ∈ F .

Furthermore, for f ∈ F with power series expansion f(z) =
∑∞

n=0 fnz
n, we have

〈f, kw〉F =

∞∑
n=0

n!fn
wn

n!
=

∞∑
n=0

fnw
n = f(w). �

Solution of Exercise 5.6.16. We have

an(z0) =
f (n)(z0)

n!
.

Hence

an(z0) =
∞∑

v=n

v(v − 1) · · · (v − n+ 1)

nF !
avz

v−n
0

=
∞∑

m=0

(n+m)(n+m− 1) · · · (m+ 1)

n!
an+mzm0

=

∞∑
m=0

an+mzm0

(
n+m

n

)
. �

Solution of Exercise 5.7.2. Assume that a solution exists. Then,

(f(z)− ig(z))(f(z) + ig(z)) = 1.

In particular, the function (f(z)+ ig(z)) is entire and does not vanish in C. It has
therefore a logarithm, which is analytic in C (that is, which is an entire function):
We denote this logarithm by iE(z).

f(z) + ig(z) = eiE(z).

Then,
f(z)− ig(z) = (f(z) + ig(z))−1 = e−iE(z),

and we get
f(z) = cosE(z) and g(z) = sinE(z). �
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As a consequence of the previous exercise, we check that (5.7.3) has no non-
constant polynomial solutions. Indeed, if there are polynomials p(z) and q(z) such
that (5.7.3) holds, then

p(z) + iq(z) = cosH(z) + i sinH(z) = eiH(z)

for some entire function H(z). The right side of this equation does not vanish in
C, while the left side has roots if p(z)+ iq(z) is not equal identically to a constant.
But p(z) + iq(z) constant implies that p(z)− iq(z) is also a constant since

(p(z) + iq(z))(p(z)− iq(z)) = p(z)2 + q(z)2 = 1,

and hence p(z) and q(z) are constant polynomials.

Finally try the following question: Find all entire solutions to the equation

f(z)2 + g(z)2 = h(z)2,

where h(z) 
≡ 0.

Hint. Assume first that f, g and h have no common zero. Then the functions f/h
and g/h have entire extensions.

Solution of Exercise 5.7.3. If there was a function g such that g′(z) = f(z), then f
would be analytic and with identically vanishing imaginary part. By the Cauchy–
Riemann equations, this forces f to be a constant, and thus leads to a contradic-
tion.

Using (4.5.4) and Exercise 4.2.20 we now show that

∂z

(
2z|z|
3

)
= |z|, z 
= 0.

Indeed, in a way similar to Exercise 4.2.22,

∂z|z| =
1

2

(
2x

2|z| − i
2y

2|z|

)
=

z

2|z|

and so

∂z

(
2z|z|
3

)
=

2|z|
3

+
2z

3
· z

2|z| = |z|, for z 
= 0. �

Solution of Exercise 5.7.4. In case (i), we compute (using Cauchy’s formula)∫
|z−i|=1/2

dz

z2 + 1
=

∫
|z−i|=1/2

dz

(z + i)(z − i)
= 2πi× 1

2i
= π 
= 0,

and hence the function has no primitive in C \ {−i, i}.
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In case (ii), we compute∫
|z|=2

dz

z2 + 1
=

∫
|z−i|=1/2

dz

(z + i)(z − i)
+

∫
|z+i|=1/2

dz

(z + i)(z − i)
= 0,

and in this case there is a primitive in the given open (non-simply-connected) set.

In case (iii), the set

Ω = C \ {z = iy , with y ∈ R and |y| ≥ 1}

is star-shaped, and thus a primitive exists. The primitive F which takes value
F (0) = 0 is given by the formula

F (z) =

∫
γz

ds

s2 + 1
,

where γz is any path linking 0 and z in Ω. For z = x on the real line, one can
takes γx to be

γx(t) = t, t ∈ [0, x]

and we get F (x) = arctan(x). We have in particular tan(F (z)) = z on the real
line, and so on the whole of Ω by analytic continuation. The Taylor expansion

1

1 + z2
=

∞∑
n=0

(−1)nz2n

has radius of convergence R = 1, and so

F (z) =

∞∑
n=0

(−1)n

2n+ 1
z2n+1, |z| < 1.

(iv) The image of L under tan is the set Ω (see Exercise 1.2.8), and therefore
F (tan z) is well defined for z ∈ L. We have

(F (tan z))′ = (1 + tan2 z)
1

1 + tan2 z
= 1,

and thus
F (tan z) = z, z ∈ L. (5.9.47)

�

Solution of Exercise 5.7.5. In case (i) there is no primitive since, using Cauchy’s
formula for the function z/(z + i) and the point i we have∫

|z−i|=1/2

zdz

z2 + 1
=

∫
|z−i|=1/2

zdz

(z + i)(z − i)
= 2πii/2ii 
= 0.
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In case (ii), we have∫
|z|=2

zdz

z2 + 1
=

∫
|z−i|=1/2

zdz

(z + i)(z − i)
+

∫
|z+i|=1/2

zdz

(z − i)(z + i)

= 2πi

{
i

2i
+

i

−2i

}
= 0.

Hence a primitive exists in the asserted set.

In case (iii) a primitive exists since the set is star-shaped. The argument to
show that the primitive which vanishes at the origin is the analytic extension of
the function 1

2 ln(x
2 + 1) to C \ {z = iy , y ∈ R and |y| ≥ 1} is done as in the

previous exercise. �

The function F in (iii) in the preceding exercise is the analytic extension
of arctanx to Ω = C \ {z = iy , y ∈ R and |y| ≥ 1}. Note that the left side of
(5.9.47) is periodic, with period π, while the right side is not periodic.

Solution of Exercise 5.7.6. The function

f(z)− a

1− af(z)

has no zeros in the open unit disk since a ∈ D \ f(D). Therefore there exists an
analytic logarithm F (z).

We have

F ′(z) =

(
f(z)−a
1−af(z)

)′
f(z)−a
1−af(z)

=
(1− |a|2)f ′(z)

(1− af(z))(f(z)− a)
.

Finally, in view of (1.1.41), we have that

f(z)− a

1− af(z)
∈ D, ∀z ∈ D.

It follows that
eReF (z) < 1, ∀z ∈ D,

and so ReF (z) < 0. �

Solution of Exercise 5.7.7. We go back to the solution of Exercise 3.4.4. The sum
(3.9.14) creates no special problem, and is not related to the topic of the present
section. Using formula (3.4.12) we obtain

∞∑
p=0

(2p)(−1)2pz2p =

∞∑
p=0

2pz2p =
2z2

(1 − z2)2
.
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The second sum,

∞∑
p=0

(2p+ 1)(−1)2p+1

z2p+1 =

∞∑
p=0

z2p+1

2p+ 1
,

is the unique primitive of the function

1

1− z2
= 1 + z2 + z4 + · · ·

=
1

2

(
1

1− z
+

1

1 + z

)
in the open unit disk, with value 0 at the origin. This primitive is the analytic

extension of the function ln
√

1+x
1−x to the open unit disk, and will still be denoted

by ln
√

1+z
1−z . �

Solution of Exercise 5.7.8. Using the logarithmic derivative (see formula (4.2.3)),
or by direct computation, we have

f ′(z)
f(z)

=
2z

z2 − 1
+

2z

z2 − a2
=

{
1

z − 1
+

1

z − a

}
+

{
1

z + 1
+

1

z + a

}
.

Let now γ be a simple closed contour such that [a, 1] lies in the interior of γ and
[−1,−a] lies in the exterior of γ. We have

1

2πi

∫
γ

f ′(z)
f(z)

dz =
1

2πi

∫
γ

{
1

z − 1
+

1

z − a

}
dz +

1

2πi

∫
γ

{
1

z + 1
+

1

z + a

}
dz.

The first integral is equal to 2 while the second integral is equal to 0. Therefore,∫
γ

f ′(z)
f(z) dz 
= 0 and f has no analytic logarithm. On the other hand we can write

f(z) = (z2 − a2)2
z2 − 1

z2 − a2
.

Let q(z) = z2−1
z2−a2 . We have now

q′(z)
q(z)

=
2z

z2 − 1
− 2z

z2 − a2
=

{
1

z − 1
− 1

z − a

}
+

{
1

z + 1
− 1

z + a

}
,

and so q has an analytic logarithm, and so an analytic square root, in the asserted
set. Hence f has an analytic square root in Ω. �

Solution of Exercise 5.7.9. Indeed, by Cauchy’s formula,∫
|z|=1

sin z

z2
dz = 2πi(cos 0) 
= 0. �
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We note that, for p ∈ N the function
sin z

zp
will have a primitive in C \ {0} if

and only if p is odd.

Solution of Exercise 5.7.10. A necessary and sufficient condition is that∫
|z|=1

f(z)dz = 0.

Using Cauchy’s formula, we obtain

2πiap!(sin z)(p)
∣∣
z=0

= 2πibq!(cos z)(q)
∣∣
z=0

. (5.9.48)

Depending on p and q one can get specific conditions. For instance, if p is even and
q is odd, condition (5.9.48) reduces to 0 = 0, and thus is met for all a, b ∈ C. �

Solution of Exercise 5.7.11. Here too, as in the preceding exercise, a necessary
and sufficient condition for the existence of a primitive is that the integral of the
function along the unit circle vanishes. We have∫

|z|=1

sin z

z6
= −2πi

5!
,

and, since degQ ≤ q, ∫
|z|=1

ez −Q(z)

zq+2
= 2πi

1

(q + 1)!
.

Hence the condition for the existence of a primitive in C \ {0} is

a

5!
+

b

(q + 1)!
= 0. �

Solution of Exercise 5.7.12. For z ∈ Ω we have

f ′(z)
f(z)

=
f ′(z)

1− (1− f(z))

=

∞∑
n=0

f ′(z)(1− f(z))n

= −
∞∑
n=0

(1− f)′(z)(1− f(z))n.

Let now γ be a closed contour in Ω. Using Weierstrass’ theorem we can write∫
γ

f ′(z)
f(z)

dz = −
∞∑
n=0

∫
γ

(1− f)′(z)(1− f(z))ndz.
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Each of the integrals ∫
γ

(1− f)′(z)(1− f(z))ndz = 0,

since the function (1− f)′(z)(1 − f(z))n is the derivative of the function

(1− f(z))n+1/(n+ 1).

Therefore, f has a logarithm in Ω. Fix z0 ∈ Ω. The logarithm function g which
vanishes at z = z0 is given by

g(z) =

∫ z

z0

f ′(s)
f(s)

ds

= −
∞∑
n=0

∫ z

z0

(1 − f ′(s))(1 − f(s))nds

= −
∞∑
n=0

(1− f(z))n+1

n+ 1
+

∞∑
n=0

(1− f(z0))
n+1

n+ 1
. �

Solution of Exercise 5.7.13. The set Ω is simply-connected (consider the comple-

ment of its image on the Riemann sphere). The function
∏2016

�=0 (z − �) does not
vanish there. Thus, it has an analytic logarithm and analytic roots of any or-
der. �

Solution of Exercise 5.7.14. Without loss of generality, and to keep the notation
simple, we set z0 = 0 and r = 1. The integral to compute is

1

2π

∫ 2π

0

f ′(eit)
f(eit)

eitdt.

Recall that
f(eis)′ = ieisf ′(eis). (5.9.49)

Set, for 0 ≤ s ≤ 2π,

g(s) = f(eis) exp−i

{∫ s

0

f ′(eit)
f(eit)

eitdt

}
.

Then, in view of (5.9.49),
g′(s) ≡ 0

and so g(s) = g(0) = g(2π). Hence

1 = exp−i

{∫ 2π

0

f ′(eit)
f(eit)

eitdt

}
,

and hence the result. �
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Solution of Exercise 5.7.15. By the preceding exercise,

n =
1

2πi

∫
|z|=3/2

f ′(z)
f(z)

dz ∈ Z.

Set h(z) = z−nf(z). Then

h′(z)
h(z)

= −n

z
+

f ′(z)
f(z)

.

In particular,
1

2πi

∫
|z|=3/2

h′(z)
h(z)

dz = −n+ n = 0,

and the function h has an analytic logarithm in the given annulus: h(z) = exp g(z),
where g is analytic in 1 < |z| < 2. It follows that f(z) = zn exp g(z). �

Solution of Exercise 5.7.16. Let γ1(t) = 2eit, and let γ2(t) = 5 + 2eit, where in
both cases t ∈ [0, 2π]. The numbers

n� =
1

2πi

∫
γ�

f ′(z)
f(z)

dz, � = 1, 2,

belong to Z. Let

h(z) =
f(z)

zn1(z − 5)n2
.

Then, for any closed curve γ in Ω,∫
γ

h′(z)
h(z)

dz = 0,

and so there exists a function g analytic in Ω such that h(z) = eg(z) there. This
ends the proof. �

See [42, p. 97] for related results.

Solution of Exercise 5.7.17. We see that

F ′
n(z) = −nFn+1(z),

and therefore the function Fn has a primitive for n ≥ 2. We now show that F1

has no primitive in C \ [0, 1]. Let C denote the circle of center 0 and radius 4,
positively oriented. For t ∈ [0, 1] we have∫

C

dz

t− z
= 2πi
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and so ∫
C

F (z)dz =

∫ 1

0

(∫
C

dz

t− z

)
m(t)dt

= 2πi

∫ 1

0

m(t)dt 
= 0 since m(t) > 0, t ∈ [0, 1],

where we have used Theorem 14.6.1 to interchange integration and derivation. It
follows that F1 has no primitive in the asserted domain. �

Solution of Exercise 5.7.18. We first remark that the function ln(x2−2x cosha+1)
is defined in R \ [e−a, ea]. Assume that a function f exists. Then, on R \ [e−a, ea],
its complex derivative is given by

f ′(x) =
2(x− cosha)

x2 − 2x cosha+ 1

as is seen from formula (4.2.6). By analytic continuation, we have that

f ′(z) =
2(z − cosha)

z2 − 2z cosha+ 1
, ∀z ∈ C \ [e−a, ea].

But the function

2(z − cosha)

z2 − 2z cosha+ 1
=

1

z − ea
+

1

z − e−a

has no primitive in R \ [e−a, ea], as is seen by computing its integral on a circle of
center 0 and radius R > ea. �

Solution of Exercise 5.8.1. The function

h(z) =
1− z

1 + z

has an analytic logarithm in the asserted domain. Indeed, we have

h′(z)
h(z)

=
1

z − 1
− 1

z + 1

and the integral along a closed simple curve whose interior contains the interval
[−1, 1] is therefore equal to 0. We conclude by noting that

f(z) = 1− z2 =
1− z

1 + z
(z + 1)2. �

Solution of Exercise 5.8.2. (a) We first note that Ω is star-shaped with respect
to the origin. Therefore the function 1

1−z2 has an analytic logarithm in Ω, and
hence an analytic square root there. By possibly multiplying this square root by
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a constant of modulus 1, one can always suppose that it takes the value 1 at the
origin. For |z| < 1 we then have (with f−1/2 defined as in Exercise 4.4.4)

1√
1− z2

= f−1/2(z
2) = 1 +

1

2
z2 +

1 · 3
2 · 4z

4 +
1 · 3 · 5
2 · 4 · 6z

6 + · · · .

See, e.g., [204, p. 135] for the latter.

(b) The function arcsin z is well defined since Ω is star-shaped. For z = x ∈
(−1, 1) we take as Cz the interval on the real line defined by 0 and x. We have

arcsinx =

∫ x

0

ds√
1− s2

,

which indeed coincides with the classical function arcsin of calculus.

(c) In view of the power series expansion in (a) we have

arcsin z = z +
1

2 · 3z
3 +

1 · 3
2 · 4 · 5z

5 +
1 · 3 · 5

2 · 4 · 6 · 7z
7 + · · · , z ∈ D.

(d) We have sin(arcsinx) = x for x ∈ (−1, 1). By analytic continuation, this
identity holds in Ω. �

Solution of Exercise 5.8.3. Let γ� be for � = 1, . . . , N a simple closed path in Ω,
whose interior contains only the interval [α�, β�]. To check the existence of a square
root, it is enough to check that∫

γ�

f ′(z)
f(z)

dz = 0, � = 1, . . . , N.

Using the formula (4.2.3) for the logarithmic derivative we have:

f ′(z)
f(z)

=

N∑
�=1

(
1

z − α�
− 1

z − β�

)
,

and thus for �0 ∈ {1, . . . , N} we have∫
γ�0

f ′(z)
f(z)

=

∫
γ�0

(
1

z − α�0

− 1

z − β�0

)
dz +

N∑
�=1
� 
=�0

∫
γ�0

(
1

z − αj
− 1

z − βj

)
dz.

The first integral on the right side is equal to∫
γ�0

(
1

z − α�0

− 1

z − β�0

)
dz =

∫
γ�0

1

z − α�0

dz −
∫
γ�0

1

z − β�0

dz = 2πi− 2πi = 0.

The second integral vanishes thanks to Cauchy’ theorem. Thus the function f has
an analytic square root in the asserted domain. �
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Solution of Exercise 5.8.5. Assume by contradiction that such a function exists.
Then,

2f(z)f ′(z) = 1

in 1 < |z| < 2, and dividing by 2πif(z)2 on both sides we have

2
1

2πi

f ′(z)
f(z)

=
1

2πiz
. (5.9.50)

Let
γ : γ(t) = 1.5eit, t ∈ [0, 2π].

Integrating both sides of (5.9.50) on γ, and taking into account that

1

2πi

∫
γ

f ′(z)
f(z)

dz ∈ Z,

we obtain that there is an integer N such that

2N = 1,

which is a contradiction. �



Chapter 6

Morera, Liouville, Schwarz, et
les autres: First Applications

Cauchy’s formula is the key to most, if not all, important results in complex
variables, and in particular to the existence of a power series expansion around
each point of analyticity, the maximum modulus principle and the fact that the
zeros of a non-identically vanishing analytic function are isolated. In this chapter
we present exercises on these topics.

6.1 Zeroes of analytic functions

The zeros of a non-identically vanishing analytic function cannot accumulate at
an inner point, but they can of course accumulate at a boundary point of the
domain of analyticity. This is the essence of item (a) in the next exercise. Item (c)
illustrates the fact that one should always be careful with conditions on functions
given in terms of integrals. In relation with this exercise, see also Exercise 6.8.10.

Exercise 6.1.1.

(a) Let f be a function analytic in |z| < 1 and such that∫
|z|=1

f(z)

(n+ 1)z − 1
dz = 0, ∀n ∈ N. (6.1.1)

Show that f(z) ≡ 0 in |z| < 2.

(b) What can be said if (6.1.1) is replaced by∫
|z|=1

f(z)

((n+ 1)z − 1)2
dz = 0, ∀n ∈ N? (6.1.2)

(c) Assume that f is analytic in 0 < |z| < 2 and satisfies (6.1.1). Is f necessarily
identically equal to 0?

D. Alpay, A Complex Analysis Problem Book, 
DOI 10.1007/978-3-319-42181-0_6 
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Hint. Look at f(z) = sin π
z .

The following exercise appears in [190].

Exercise 6.1.2. Let f be an entire function and assume that for every Maclaurin
expansion

f(z) =

∞∑
n=0

cn(z0)(z − z0)
n,

there is an n such that cn(z0) = 0. Show that f is a polynomial.

Exercise 6.1.3. Let a0, a1, . . . be a sequence of complex numbers such that

∞∑
n=0

|an| < ∞. (6.1.3)

Assume that for all integers k ≥ 2,

∞∑
n=0

an
kn

= 0. (6.1.4)

Show that all the an are equal to 0.

Exercise 6.1.4. Find all functions f analytic in the open unit disk and such that
f( 1n ) = 0 for n = 2, 3, . . ..

Exercise 6.1.5 (see, e.g., [75, Exercice 13.03, p. 141]). Same question as in the
previous exercise for each of the following conditions:

f

(
1

n

)
= e−n, (6.1.5)∣∣∣∣f ( 1

n

)∣∣∣∣ ≤ e−n. (6.1.6)

Is there a function analytic in the punctured disk such that (6.1.5) hold? Explain
the difference with the first question.

Exercise 6.1.6. Is there a function analytic in the open unit disk and such that

f(1/(2n)) = f(1/(2n− 1)) =
1

n
, n = 2, 3, . . .?

Exercise 6.1.7 (see [45, Exercise 11, p. 78]). Let f and g be analytic and not
vanishing in the open unit disk D. Assume that for all n ≥ 2,

f ′( 1n )
f( 1n )

=
g′( 1

n )

g( 1n )
. (6.1.7)

Show that there is a constant c such that f(z) = cg(z) for all z ∈ D.
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Exercise 6.1.8.

(a) Find all functions analytic in a neighborhood of the origin, and for which
there exists n0 ∈ N such that

f(1/n) + f ′′(1/n) = 0

for n ≥ n0.

(b) Same question for
f(1/n) = f ′′(1/n).

The following exercise considers Exercise 4.1.13 when a and b are analytic in
the given set Ω.

Exercise 6.1.9. In Exercise 4.1.13 we moreover assume that a and b are analytic
in Ω. Prove the following claims:

(a) There are at most countably many points z ∈ Ω for which

a(z) = b(z) = 0, (6.1.8)

and the set of such points has no accumulation points in Ω.

(b) There is a point z ∈ Ω such that

|a(z)| = |b(z)| 
= 0. (6.1.9)

(c) The set Ω \ Ω0 is not connected.

Hint. Use Theorem 15.6.2.

In Exercise 10.2.7 we show that in fact there are uncountably many points
for which (6.1.9) holds.

The properties of the zeroes of analytic functions lead to the following fasci-
nating questions: Given a connected set Ω, a set {z1, z2, . . .} with an accumulation
point in Ω, and numbers w1, w2, . . ., can we reconstruct a function analytic in Ω
and such that

f(zj) = wj , . . . j = 1, 2, . . .?

More generally, can we reconstruct, if possible in a unique way, an analytic function
from its values at given points? This type of question is called an interpolation
problem. When the points do not accumulate in Ω, one can always find such
an f if no metric structure is imposed on the function. See for instance [189,
Chapitre 15]. In engineering and signal theory, interpolation problems are often set
under additional constraints on the function (for instance, such as being analytic
and bounded by 1 in modulus in the open unit disk). Such questions will be
considered in two special instances in Chapter 11. We will meet simple instances of
the Nevanlinna–Pick and Carathéodory–Fejér interpolation problems in Problems
6.5.9 and 6.5.10. These problems will also be discussed in Section 11.5, and the
sampling theorem in Section 11.2.
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6.2 Morera’s theorem

The following theorem, called Morera’s theorem, is used in particular to prove
that certain functions defined by integrals are analytic; see Theorem 6.2.3. In the
statement, Δ denotes a triangle defined by points in Ω (and, in particular, not on
the boundary of Ω) and ∂Δ denotes the contour defined by the boundary of the
triangle.

Theorem 6.2.1 (Morera’s theorem). Let Ω be an open convex subset of C, and let
f be continuous in Ω. Assume that∫

∂Δ

f(z)dz = 0, (6.2.1)

for every triangle in Ω. Then, f is analytic in Ω.

A first, and key, application of this result is:

Theorem 6.2.2. Let (fn)n∈N be a sequence of functions analytic in the open subset
Ω of the complex plane, and converging uniformly on compact subsets of Ω to f .
Then, f is analytic in Ω.

The proof goes as follows. The function f is continuous since the limit is
uniform on compact sets. Take an open convex subset U of Ω. For any triangle in
U , the uniform convergence implies that

lim
n→∞

∫
∂Δ

fn(z)dz =

∫
∂Δ

f(z)dz.

By Cauchy’s theorem,
∫
∂Δ

fn(z)dz = 0 for every n, and we obtain that (6.2.1)
holds, and so f is analytic in U . This ends the proof since Ω can be covered by
open convex sets (for instance, open balls).

Among the other applications of Morera’s theorem we mention the Schwarz
reflection principle (see Exercise 6.3.9 in the next section). Another important ap-
plication is the following result, which gives a useful criterium to prove analyticity
for functions defined by integrals.

Theorem 6.2.3. Let Ω be an open connected set, and let F (z, s) be a function
continuous for (z, s) ∈ Ω × [c, d] such that for every s ∈ [c, d] the function z �→
F (z, s) is analytic in Ω. Then the function

G(z) =

∫ d

c

F (z, s)ds (6.2.2)

is analytic in Ω.
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Proof. Since the property is local, we can assume that Ω is convex. The result is
then a consequence of Morera’s theorem and of Theorem 14.5.2. Indeed for every
s ∈ [c, d] and every triangle Δ ⊂ Ω, Cauchy’s theorem gives∫

∂Δ

F (z, s)dz = 0,

where we have denoted by ∂Δ the boundary of the triangle, and hence∫ d

c

(∫
∂Δ

F (z, s)dz

)
ds = 0.

By (14.5.1) we have ∫
∂Δ

(∫ d

c

F (z, s)ds

)
dz = 0.

Morera’s theorem implies that the function z �→
∫ d

c F (z, s)ds is analytic in Ω. �

This last theorem does not give the power series expansion of the function
(6.2.2). For the latter, one needs more (Weierstrass’ theorem, for instance).

The following result is used in particular in Dixon’s proof of the global
Cauchy’s theorem; see [64] and [144, p. 147]. There a closed chain homologous
to 0 is considered. We here consider only the case of a closed contour. The state-
ment of the question speaks of star-shaped domain, but the true setting is that of
simply-connected domains.

Question 6.2.4. Let Ω be an open star-shaped domain, and let Γ be a closed smooth
curve inside Ω. Let f be analytic in Ω. Show that the function

F (z) =

∫
Γ

g(s, z)ds (6.2.3)

where

g(s, z) =

⎧⎨⎩
f(s)− f(z)

s− z
, z, s ∈ Ω, z 
= s,

f ′(s), z, s ∈ Ω, z = s,
(6.2.4)

is analytic in Ω.

6.3 Analytic continuation

This notion has already been used earlier in the book. See for instance item (d)
of Exercise 5.8.2, and the discussion following (5.9.9).

For the first exercise, see also Exercise 4.4.13.
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Exercise 6.3.1. Define F (z) = −
∑∞

n=1(−1)n
zn

n
(we denote the function F (z) =

ln(1 + z)).

(a) Show that F is analytic in the open unit disk and that

expF (z) = 1 + z, for |z| < 1.

(b) Does F have an analytic extension across a sub-arc of the unit circle?

In a similar way to Exercise 6.3.1, and in view of Exercise 10.3.9, we mention:

Exercise 6.3.2. For x ∈ (−1, 1) and α ∈ R define5

(1 + x)α = exp(α ln(1 + x)). (6.3.1)

(1) Show that the function fα defined in (4.4.9) is the analytic extension of
(6.3.1) to D (resp. to C) when α ∈ R \ N0 (resp. α ∈ N0).

(2) Let α ∈ (−1, 0). Show that (with the notation (4.4.8))

(−1)n
(
α
n

)
> 0, n = 0, 1, . . .

and ∞∑
n=0

(−1)n
(
α
n

)
diverges.

(3) Let α ∈ (0, 1). Show that

(−1)n−1

(
α
n

)
> 0, n = 0, 1, . . .

and

∞∑
n=0

(−1)n−1

(
α
n

)
n+ 1

< ∞.

In the following exercise, the natural boundary means that the function can-
not be continued analytically across the unit circle. We refer to [195, Chapter VI]
for a survey on natural boundaries.

Exercise 6.3.3.

(a) Show that the unit circle is the natural boundary of the series

∞∑
n=0

zn! and

∞∑
n=0

z2
n

.

5One could take α ∈ C; see Remark 6.9.3.
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(b) Does the power series
∞∑

n=1

zn

n2

have an analytic extension across some sub-arc of the unit circle?

We now want to find all rational functions which send the unit circle onto
itself. Because of a priori possible poles or zeros on the unit circle, we set the
question as follows (see also [42, Example 11.14, p. 367] for instance):

Exercise 6.3.4. Find all rational functions which map an open arc of the unit circle
into the unit circle.

For the next exercise, see [53, p. 109] and see also Exercise 8.4.1.

Exercise 6.3.5.

(a) Prove that for z ∈ C \ {(−∞− 1] ∪ [1,∞)}, there exists an analytic square
root to the function 1− z2 such that f(0) = 1.

(b) With f as in (a), show that∫ 2π

0

dt

1 + z sin t
=

2π

f(z)
(6.3.2)

for all z ∈ C \ {(−∞− 1] ∪ [1,∞)}.

We already saw (see Exercise 4.1.10) that there does not exist a continuous
square root to the function f(z) = z in the plane. Another proof of a weaker
statement (one requires analyticity rather than continuity) is presented now (see
also Exercise 5.5.23):

Exercise 6.3.6. Let r > 0. Show that there is no analytic square root to the function
z in 0 < |z| < r.

Let Ω = C \ (−∞, 0]. In view of the following exercise, we recall that the
function defined by √

z =
√
ρei

θ
2 , (6.3.3)

where z = ρeiθ and θ ∈ (−π, π) is an analytic square root of z in Ω. We also
remark that 1− z ∈ C \ (−∞, 0] if and only if z ∈ C \ [1,∞).

Exercise 6.3.7. Let U = C \ [1,∞). The function
√
1− z obtained by composition

of the function 1− z with the square root function (6.3.3) is an analytic extension
in U of the function f1/2 defined by (4.4.9) with α = 1/2.

As we have already discussed, Riemann’s removable singularity theorem
states that if f is analytic in B(z0, r) \ {z0} and continuous in B(z0, r), then
it is analytic in B(z0, r). The following exercise considers what happens when a
point is replaced by a closed interval:
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Exercise 6.3.8. Let Ω be an open and convex subset of C and let I be a closed
interval in Ω. Let f be continuous in Ω and analytic in Ω \ I. Show that f is
analytic in Ω.

Hint. Use Morera’s theorem (see Theorem 6.2.1).

The next related result is called Schwarz’ reflection principle, and also follows
from Morera’s theorem. It has numerous applications. An important one is the
derivation of the Schwarz–Christoffel formula which gives the conformal mapping
from the open upper half-plane onto the interior of a non-intersecting (but not
necessarily convex) polygon.

Exercise 6.3.9. Let x0 ∈ R and f be holomorphic in the open half-disk

B+(x0, r) = {z ∈ C; Im z > 0 and |z − x0| < r} .

Assume that f is continuous up to the real line and that it takes real values on the
real line. Show that the function

h(z) =

{
f(z), if z ∈ B+(z0, r) ∪ (x0 − r, x0 + r),

f(z), if z ∈ B+(z0, r) ∪ (x0 − r, x0 + r)

is holomorphic in B(x0, r).

Other related exercises, whose proofs require the residue theorem, are Exer-
cise 8.2.4 and 8.5.2. We conclude this section with an exercise which has its im-
portance in multiscale signal processing. Recall that B(0, r) = {z ∈ C ; |z| < r}.
See also Exercise 3.4.11 for some related formulas.

Exercise 6.3.10. Let f be analytic in the open unit disk D, and let n ∈ N. The
purpose of this exercise is to show that the formula

gn(z) =
1

n

∑
w∈D
wn=z

f(w) (6.3.4)

defines a function analytic in D, and expresses its power series expansion at the
origin in terms of the power series expansion of f at the origin. The map f �→ gn
is called the decimation, or downsampling, operator.

(a) Let q be the analytic square root of order n in D\ (−1, 0] and which coincides
with x1/n on (0, 1). Express gn in terms of q for z ∈ D \ (−1, 0].

(b) Using the power expansion of f at the origin, show that gn has an analytic
extension to the open unit disk.
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6.4 The maximum modulus principle

The first example provides an application of complex variables to a geometrical
question; see [211, p. 401].

Exercise 6.4.1. Given n points P1, . . . , Pn in the plane, show that the product of
their distance to a point in the plane has no local extremum, with the exception of
the points Pj .

If p is a polynomial of degree n, the function znp(1/z) is also a polynomial
(possibly of lesser degree). This is the idea behind the next two exercises.

Exercise 6.4.2 (see [75]). Let p(z) = zn + an−1z
n−1 + · · · + a0. Prove that either

p(z) ≡ zn or that there exists a point ζ on the unit circle such that |p(ζ)| > 1.

Exercise 6.4.3. Let p be a polynomial of degree n and let, for r > 0,

M(r, p) = sup
|z|=r

|p(z)|.

Show that the function r �→ M(r, p) is increasing and that the function r �→
M(r, p)

rn
is decreasing.

Exercise 6.4.4. Is there a function analytic in the open unit disk and such that
|f(z)| = e|z| there?

Using Exercise 5.5.15 one can prove the following surprising result; it appears
as an exercise (without any hint) in [121, Exercise 4, p. 40]. The proof is given
in [42, Exercise 5.36, p. 146]. We give the exercise and the solution with the
hypothesis that f is analytic in a neighborhood of the closed unit disk. This can
be dispensed with.

Exercise 6.4.5. Let h be analytic in |z| < 1 + ε for some ε > 0 and assume that h
does not vanish in |z| < 1 + ε and is bounded by 1 in modulus in D. Show that

sup
|z|≤1/5

|h(z)|2 ≤ inf
|z|≤1/7

|h(z)|.

Hint. Since h does not vanish in |z| < 1 + ε, there is a function f analytic there
and such that h = e−f . Since |h(z)| ≤ 1 for z in the open unit disk, we have that
Re f(z) ≥ 0 there. Then apply (5.5.13) to f for appropriate values of R.

6.5 Schwarz’ lemma

Schwarz’ lemma states that if a function f is analytic and contractive in the open
unit disk, and if moreover f(0) = 0, then

|f(z)| ≤ |z|, ∀z ∈ D. (6.5.1)

6.5. Schwarz’ lemma
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Moreover, equality holds if and only if f(z) = cz for some c ∈ T. This lemma is of
utmost importance. It is the key to the Schur algorithm (see [6] for a survey, and
Section 11.5 below), which itself is related to fast algorithms in signal processing.
See [131].

It follows from (6.5.1) that

|f ′(0)| ≤ 1. (6.5.2)

Usually, it appears in textbooks after the notion of singularities, since z = 0 is
a removable singularity of the function f(z)/z. A shorter way to prove Schwarz’
lemma is to use Riemann’s Hebbarkeitssatz (see Theorem 5.4.1).

We send to the paper [173] for a survey and history of the Schwarz lemma. As
explained in that paper, considering a function analytic in B(0, R1) and bounded
in modulus by R2 there, we obtain the bound

|f(z)| ≤ R2

R1
|z|, |z| ≤ R1, (6.5.3)

from which one get Liouville’s theorem; see Section 6.8 for the latter.

The next exercise is [45, Exercice 1, p. 171].

Exercise 6.5.1. Let f be a function analytic in the open unit disk, bounded by 1 in
modulus there and vanishing at the origin. Show that the series

∞∑
n=0

f(zn)

converges uniformly in the closed disks |z| ≤ r < 1.

The following exercise gives an extension of (6.5.2), called Pick’s inequality,
to the whole open unit disk. Recall that the functions ba were defined in (1.1.44):

ba(z) =
z − a

1− za
, a ∈ D.

Exercise 6.5.2. Let f be analytic in the open unit disk and bounded by 1 in modulus.
Then,

|f ′(z)| ≤ 1− |f(z)|2
1− |z|2 , ∀z ∈ D. (6.5.4)

Show that equality holds if and only if f is of the form

f(z) = c
z − a

1− za
= cba(z),

where c ∈ T and a ∈ D.
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We note that, more generally, for any choice of different complex numbers z1
and z2 in D, the matrix

P =

⎛⎝ 1−|f(z1)|2
1−|z1|2

f(z1)−f(z2)
z1−z2

f(z1)−f(z2)
z1−z2

1−|f(z2)|2
1−|z2|2

⎞⎠ (6.5.5)

is non-negative. Pick’s inequality is a limiting case of this inequality, by considering
the determinant of P , and letting z1 tend to z2. The methods to prove that P is
non-negative are far beyond the scope of this book. See [9] for instance for a survey
and references.

Another application of Schwarz’ lemma is given in [45, Exercice 10, p. 112]
and [42, Exercise 6.5, p. 192]: If f is analytic from the open unit disk into itself
and has two fixed points, then f(z) ≡ z. The result is called Cartan’s theorem. As
a simpler case, solve the following:

Exercise 6.5.3. If f sends D into itself and if

f(0) = 0 and f

(
1

2

)
=

1

2
,

then f(z) ≡ z.

Exercise 6.5.4. Prove the general case of the preceding question: If f is analytic
from the open unit disk into itself and has two fixed points, then f(z) ≡ z.

Exercise 6.5.5. Let f be a function analytic from the open unit disk D into itself.
Assume that for some point z0 ∈ D it holds that

f(z0) = z0 and f ′(z0) = 1.

Find f .

The case of the boundary is more involved. The first positive result seems to
be due to Burns and Krantz, see [43], but is beyond the scope of this book.

Exercise 6.5.6. Show by a counterexample that the preceding result does not remain
valid when z0 is on the unit circle. To avoid any problem with boundary values,
assume that f is analytic in a neighborhood of the closed unit disk; you can look
for a Moebius map.

The following exercise originates with Schur’s celebrated paper [194]. We
denote by S the family of functions analytic in the open unit disk and with values
in the closed unit disk. These functions bear various names, and are in particular
called Schur functions. They are the transfer functions of discrete time-invariant
dissipative systems. See Section 11.4 for more information. Blaschke products (see
(3.7.17)) are special cases of Schur functions.
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Exercise 6.5.7.

(a) Let f ∈ S. Assume that |f(0)| < 1. Show that the function

f1(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f(z)− f(0)

z(1− f(0)f(z))
, z ∈ D \ {0} ,

f ′(0)
1− |f(0)|2 , z = 0,

is analytic and contractive in the open unit disk.

(b) Let ρ0 ∈ D. Show that the formula

f(z) =
ρ0 + zg(z)

1 + zρ0g(z)
(6.5.6)

describes all functions in S such that f(0) = ρ0 when g runs through S.
(c) Find f ′(0) in terms of g(0) and ρ0 in (6.5.6). Conclusion?

In his 1917 paper [194] Schur associates to f ∈ S a series of functions
f1, f2, . . . of S via the recursion

f0(z) = f(z),

fn+1(z) =

⎧⎪⎨⎪⎩
fn(z)− fn(0)

z(1− fn(0)fn(z))
, z ∈ D \ {0} ,

f ′
n(0), z = 0,

n = 0, 1, . . .
(6.5.7)

called the Schur algorithm. The recursion stops at rank n if |fn(0)| = 1. This
algorithm, originally developed to solve classical interpolation problems such a
the trigonometric moment problem, has been shown to have numerous applications
in signal processing. In Exercise 11.5.3 in Section 11.5 we will see that the Schur
algorithm ends after a finite number of iterations if and only if f is a finite Blaschke
product.

Remark 6.5.8. It is interesting to note that G. Hamel, at the same time but
independently of Schur, developed a very closely related algorithm (in the words of
Szegö in his review for Zentralblatt MATH, dasselbe Hauptresultat). See [113, 128].

The following two exercises are solved using Exercise 6.5.7, and are (very)
special instances of the Carathéodory–Fejér and Nevanlinna–Pick interpolation
problems. See Section 11.5 for more on these interpolation problems.

Exercise 6.5.9. Given a and b in C, find a necessary and sufficient condition for
f ∈ S to exist such that

f(0) = 0 and f ′(0) = b, (6.5.8)

and describe the set of all solutions.



6.5. Schwarz’ lemma 305

Exercise 6.5.10. Given two pairs of numbers (z1, w1) and (z2, w2) in D2, find a
necessary and sufficient condition for a function f ∈ S to exist such that

f(z1) = w1 and f(z2) = w2, (6.5.9)

and describe the set of all solutions.

Exercise 6.5.11. Let f be analytic from D into D and assume that f(a) = f(b) = 0
for two different numbers a and b in D. Show that

|f(z)| ≤
∣∣∣∣ z − a

1− za

∣∣∣∣ · ∣∣∣∣ z − b

1− zb

∣∣∣∣ .
As a variation on this theme, find a bound on f when f (which is analytic

and map D into itself) vanishes at the point a and at its first Na derivatives at a
and at the point b and at its first Nb derivatives at b.

Exercise 6.5.12. Consider the function (4.4.20) and assume that m(t) ≥ 0 and

that
∫ 2π

0
m(t)dt = 1. Show that∣∣∣∣ϕ(z)− 1

ϕ(z) + 1

∣∣∣∣ ≤ |z|, ∀z ∈ D.

Exercise 6.5.13.

(a) Let z0 be in the open upper half-plane C+. Show that the map Bz0 defined
by (1.1.46),

Bz0(z) =
z − z0
z − z0

,

is one-to-one from the closed upper half-plane onto the closed unit disk. It is
one-to-one onto from the real line onto the unit circle and from C+ onto the
open unit disk D.

Let f be a function analytic in C+ and bounded by 1 in modulus there.

(b) Assume that f(z0) = 0. Show that

|f(z)| ≤
∣∣∣z − z0
z − z0

∣∣∣, ∀z ∈ C+.

(c) Assume that f(z0) = f ′(z0) = 0. Show that

|f(z)| ≤
∣∣∣z − z0
z − z0

∣∣∣2, ∀z ∈ C+.

The book of Burckel [42] contains a whole chapter on applications of Schwarz’
lemma (pp. 191–217).
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6.6 Series of analytic functions

Series and infinite products of functions have appeared already in the book, for in-
stance as power series, or as series of complex numbers depending on a parameter.
In the present section we focus on examples of series of analytic functions which
converge uniformly on compact subsets of their common domain of analyticity.
The limit is then an analytic function. See Theorem 6.2.2.

Remark 6.6.1. Uniform convergence on compact subsets defines a topology, which
is moreover metrizable. These aspects are reviewed in Section 10.1.

Exercise 6.6.2. Show that

| sin z| ≤ sinh |z|, z ∈ C.

Show that, for x ∈ [0, 1],
sinhx ≤ x(cosh 1).

Show that the series ∞∑
n=0

sin(zn)

converges absolutely in the open unit disk, uniformly on compact sets.

Exercise 6.6.3. Show that the series
∞∑
n=1

z(z + 1) · · · (z + n− 1)

nn

defines an entire function.

See [23, Exercice 1.6, p. 278] for the following problem.

Exercise 6.6.4. Show that the function f defined in Exercise 3.7.8 is entire, and
that

f(z) = 1 +

∞∑
n=1

q
n(n+1)

2

(1− q) · · · (1− qn)
(−1)nzn.

Exercise 6.6.5. Show that the domain of convergence of the sum

∞∑
n=0

e−n2z (6.6.1)

is the open right half-plane, and that the convergence is uniform in every set of
the form Re z ≥ ε > 0.

Another example of series is given in Exercise 7.2.22, where, using Liouville’s
theorem, one is asked to prove that

1

z
+

∞∑
n=1

(
1

z − n
+

1

n

)
= π cot(πz).
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6.7 Analytic functions as infinite products

We have already met in Exercise 3.7.16 the representation of sin z as an infinite
product. Note that item (a) of Exercise 6.7.2 is Exercise 3.7.12.

Exercise 6.7.1. Show that the Blaschke products defined in Exercise 3.7.12 are
analytic in the open unit disk.

Exercise 6.7.2.

(a) Show that, for |z| < 1,

|(1− z)ez − 1| ≤ |z|2.

(b) Given a sequence of non-zero complex numbers zn, n = 1, 2, . . . such that

∞∑
n=1

1

|zn|2
< ∞.

Show that the function
∞∏

n=1

(
1− z

zn

)
ez/zn

is entire and vanishes exactly at the points zn.

Exercise 6.7.3. Consider the infinite product representation (3.7.25) of sin z:

sin z = z

∞∏
k=1

(
1− z2

k2π2

)
, z ∈ C.

Comparing with the power series expansion of sinπz, prove (1.3.14), that is:

∞∑
k=1

1

k2
=

π2

6
.

(see [28, p. 233]). Similarly, using the infinite product representation of cos z (see
(3.7.26)), prove that

∞∑
k=0

1

(2k + 1)2
=

π2

8
. (6.7.1)

Remark 6.7.4. Knowing the value of (1.3.14) and of (6.7.1) is equivalent. Another
proof of (6.7.1) is given after Theorem 11.2.1, and gives a proof of (1.3.14). In [56]
another elementary proof of (6.7.1) can be found, leading to yet another proof of
(1.3.14).
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Remark 6.7.5. We take this opportunity to mention an open problem, consisting
in getting any information, let alone compute explicitly, the Catalan constant

∞∑
k=0

(−1)k

(2k + 1)2
,

that is, of the value at z = 2 of Dirichlet beta function β(z) =
∑∞

k=0
(−1)k

(2k+1)z .

6.8 Liouville’s theorem and the fundamental theorem

of algebra

Liouville’s theorem states that a bounded entire function is constant. We note
that it was first proved by Cauchy; see [42, p. 82]. As an application of Liouville’s
theorem we will prove in Exercise 16.1.11 an important result from functional
analysis. The fundamental theorem of algebra has numerous proofs. One very
short proof, due to C. Fefferman, was outlined in Question 1.5.1. One topological
proof is presented in Section 15.6. Another proof, usually given in complex analysis
classes, uses Liouville’s theorem. We begin this section by recalling this theorem
and this latter proof.

Theorem 6.8.1 (The fundamental theorem of algebra). Every non-constant poly-
nomial has at least one complex root.

Proof. We consider a non-constant polynomial (which we assume monic6 without
loss of generality) p(z) = zn + an−1z

n−1 + · · ·+ a0, and assume by contradiction
that it does not vanish in C. Then the function 1/p(z) is entire and non-constant.
We will show that it is bounded in modulus, which will lead to a contradiction,
thanks to Liouville’s theorem. For z 
= 0 we can write

p(z) = zn(1 + g(z)),

where
g(z) =

an−1

z
+ · · ·+ a0

zn

is such that limz→∞ g(z) = 0. Take R > 0 such that

|z| > R =⇒ |g(z)| < 1

2
.

Then, using (1.1.38) with z1 = 1 and z2 = g(z), we have for |z| > R,∣∣ 1

p(z)

∣∣ ≤ 1

1− |g(z)| ≤ 2.

6that is, the coefficient of the highest power is equal to 1.
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On the other hand the function
∣∣ 1
p(z)

∣∣ is bounded in |z| ≤ R since it is continuous

there and since |z| ≤ R is compact. It follows that the non-constant entire function
1/p(z) is bounded in modulus. This cannot be, in view of Liouville’s theorem. �

It follows from the previous theorem that a polynomial of degree n > 0
has n roots, counting multiplicities. Let n ≥ 2. The n roots of unity of order n,
zk = exp

(
2πik
n

)
, k = 0, . . . , n− 1 have total sum equal to 0, as follows for instance

from (1.1.54) with z = exp
(
2πi
n

)
. See also Exercise 1.2.3. But (1.1.54) will not be

useful to solve the following exercise:

Exercise 6.8.2. Let n ≥ 3 and a, b ∈ C. Show that the sum of the roots of the
polynomial equation

zn + az + b = 0

is equal to 0.

Remark 6.8.3. Let p(z) = anz
n + an−1z

n−1 + · · ·+ a0 be a polynomial of degree
n, with (possibly repeated) roots z1, . . . , zn. We have

p(z) = an(z − z1)(z − z2) · · · (z − zn). (6.8.1)

Comparing the coefficient of zn−1 we get

z1 + · · ·+ zn = −an−1

an
. (6.8.2)

For instance, the sum of the roots of the equation

zN − 3zN−1 + aN−2z
N−2 + · · ·+ a0 = 0

is equal to 3, independently of N ≥ 3 and of the values of a0, . . . , aN−2.

More generally, the numbers (−1)k an−k

an
(k = 0, . . . , n− 1) express the sym-

metric functions of the roots:

(−1)k
an−k

an
=

∑
1≤i1<i2<···<ik≤n

zi1 · · · zik .

For instance, for k = 2 one has:

z1z2 + · · ·+ z1zN + z2z3 + · · ·+ z2zN + · · ·+ zN−1zN =
aN−2

aN
.

Exercise 6.8.4. Find all entire functions f such that

(a) |f(z)| ≤ M(1 +
√
|z − i|),

(b) |f ′(z)| ≤ M(1 +
√
|z|),

(c) |f(z)| ≤ M(1 + |z − i|),
(d) |f ′(z)| ≤ M(1 + |z|),

for some strictly positive number M .
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Exercise 6.8.5. Show that the range of a non-constant entire function is dense
in C.

When in the above exercise, f is not a polynomial, then the function f(1/z)
has an essential singularity at the origin, and a much more precise statement can
be given using Picard’s theorem: f(C) is equal to C or to C \ {w} for some w ∈ C.
The example f(z) = ez illustrates the fact that f(C) can be strictly included in C.

Exercise 6.8.6. Show that an entire function f such that Re f(z) ≤ M for some
M ∈ R is constant.

The following exercise can be found for instance in [150, Exercise 11, p. 123].

Exercise 6.8.7. Find all entire functions f such that

|f(z)| = 1 for |z| = 1. (6.8.3)

The result in the next exercise is called Liouville’s first theorem (when a
general lattice is considered).

Exercise 6.8.8. Show that there are no entire non-constant functions f such that

f(z + 1) = f(z), (6.8.4)

f(z + i) = f(z), ∀z ∈ C. (6.8.5)

Remark. There are biperiodic non-constant meromorphic functions. These are the
elliptic functions. See Exercise 13.1.1.

Exercise 6.8.9. Is there a polynomial P of degree N such that∫
|z|=2

P (z)

(n+ 1)z − 1
dz = 0, n = 0, 1, . . . , N.

Same question for P such that∫
|z|=1

P (z)

(2z − 1)n+1
dz = 0, n = 0, . . . , N.

Exercise 6.8.10. Find all polynomials of degree N such that∫
|z|=r

P (z)

(n+ 1)z − 1
dz = 0, n = 0, 1, . . . , N, (6.8.6)

for r = 3/4 and r = 1/(N + 2) respectively.

Related to these problems see also Exercise 6.1.1.

Exercise 6.8.11. Find all polynomials p and q such that

p(z) cos2 z + q(z) sin2 z = 1.
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Exercise 6.8.12 (see [62, Problem 5.6.7, p. 69]). Is there a function f analytic in
C \ {0} such that

|f(z)| ≥ 1√
|z|

, ∀z ∈ C \ {0} . (6.8.7)

For other exercises using, or related to, Liouville’s theorem, see for instance
Exercises 6.8.5 and 6.8.7. Finally we note that there exist non-constant entire
functions H which go to 0 along every fixed direction:

lim
r→∞H(reiθ) = 0

for every θ ∈ [0, 2π). One such function is given by R0f (recall that R0 has been
defined in (5.4.1), with

f(z) =

∫ ∞

0

etz

tt
dt.

See [28, § 12.2, pp. 152–155]. Another, more involved example, is given by the
function

g(z)e−g(z),

where g(z) is the analytic extension to the complex plane of the function

1

2πi

∫
∂U

ee
u

du

u− z
,

where U is the half-strip

U = {z ∈ C ; Re z > 0 and | Im z| < π} .

See [63, Exercice 5, p. 248], [75, Exercice 10.54, p. 124], [189, Exercice 11, p. 314].

The solution of the following exercise using Rouché’s theorem was shown to
us by Dennis Gulko. See Exercise 7.4.7. What is asked in Exercise 6.8.13 is an
elementary solution without this theorem, but using the fact that the polynomial
has four roots.

Exercise 6.8.13. How many solutions has the equation

z4 + 3z2 + z + 1

in the closed upper half unit disk?

We conclude with a unicity question, first considered in [3]. See [181] for
possible extensions to the case of rational functions.

Question 6.8.14. Let P and Q be two non constant polynomials, with same sets of
preimages of 0 and 1, that is

P−1 {0} = Q−1 {0} and P−1 {1} = Q−1 {1} .

Show that P = Q.
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6.9 Solutions

Solution of Exercise 6.1.1. (a) By Cauchy’s formula, condition (1.6.17) can be
rewritten as

f

(
1

n+ 1

)
= 0, ∀n ∈ N.

It follows that f ≡ 0 since the points 1
n+1 accumulate at the origin.

(b) Cauchy’s formula now leads to

f ′
(

1

n+ 1

)
= 0, ∀n ∈ N.

It follows that f ′ ≡ 0 and f is constant.

(c) When we assume that f is analytic only in 0 < |z| < 2, Cauchy’s formula
cannot be used, and the preceding argument fails, as is illustrated by the function
f(z) = sin π

z . For every a ∈ D it holds that∫
|z|=1

sin π
z

z − a
dz = 0. (6.9.1)

To show that (6.9.1) holds, we first rewrite the integral as a line integral∫
|z|=1

f(z)

z − a
dz = i

∫ 2π

0

sin(πe−it)

1− e−ita
dt.

To prove (6.9.1), we write

sin(πe−it)

1− e−ita
=

∞∑
n=0

ane−intsin(πe−it),

and, using Weierstrass’ theorem, we see that∫ 2π

0

sin(πe−it)

1− e−it
dt =

∞∑
n=0

an
∫ 2π

0

e−intsin(πe−it)dt.

Another application of Weierstrass’ theorem leads to∫ 2π

0

e−intsin(πe−it)dt = 0, n = 0, 1, 2, . . . . �

Remark 6.9.1. A much quicker proof, but which is beyond the scope of this book,

goes as follows: The function
sin(πe−it)

1− e−ita
is the boundary value of the function

sin(πz )

1− z−1a
,

which belongs to the Hardy space H2(D) (see [190] for the definition) and so the
integral is equal to 0.
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Remark 6.9.2. The function
sin(πe−it)

1− e−ita
belongs to the Wiener algebra W−. See

for instance [104] for the definition.

Solution of Exercise 6.1.2. First a remark: If there is an integer n such that cn(z0)
≡ 0, then f is a polynomial since

cn(z0) =
f (n)(z0)

n!
.

Assume now by contradiction that f is not a polynomial. Then, for every n the
coefficient cn(z0) does not vanish identically. Since z �→ cn(z) = f (n)(z)/n! is an
entire function, its set of zeroes is at most countable (but of course can be empty
or finite). Thus the set

A = {z ∈ C, there exists n ∈ N such that cn(z) = 0}

is at most countable. On the other hand, this set is equal to C by hypothesis,
which leads to a contradiction. �

The preceding result is still true for C∞ functions of a real variable. See
[217, pp. 278–279] for two proofs, one involving Baire’s theorem. As mentioned in
Burckel’s book [42, p. 166], the result (proved using Baire’s theorem) originates
with [55], and can be found in the book [66].

Solution of Exercise 6.1.3. Let z be such that |z| < 1. We have |anzn| ≤ |an| and
so, in view of (6.1.3), the power series

F (z) =

∞∑
n=0

anz
n

converges absolutely for all z in the open unit disk, and defines an analytic function
there. Condition (6.1.4) reads

F (1/k) = 0, k = 2, 3, . . . .

Thus the zeroes of F have a limit point in the open unit disk, and so F (z) ≡ 0,
from which we obtain that all the coefficients

an =
F (n)(0)

n!
, n ∈ N0,

vanish. �

Solution of Exercise 6.1.4. Since the zeros accumulate at the point z = 0, the only
function is f(z) ≡ 0. �
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Solution of Exercise 6.1.5. We consider the first case and show by contradiction
that no such function exists. If it exists, we note that it is not identically vanish-
ing, since the values at 1/n are different from 0. From (6.1.5) we obtain f(0) =
limn→∞ f(1/n) = 0. Thus there is an integer p > 0 and a function g analytic in
the open unit disk such that g(0) 
= 0 and

f(z) = zpg(z). (6.9.2)

Thus

f(1/n) = n−pg(1/n), n = 2, 3, . . . .

Since f(1/n) = e−n we obtain

g(1/n) = npe−n, n = 2, 3, . . . ,

and thus

g(0) = lim
n→∞npe−n = 0.

But g(0) 
= 0, and thus we obtain a contradiction and there is no function with
the required property.

We now turn to the second case. The function f(z) ≡ 0 answers the question.
We show that it is the only solution. The proof is quite similar as in the first case.
Assume that a solution which is not identically vanishing exists. Condition (6.1.6)
implies that

|f(0)| = lim
n→∞ |f(1/n)| = 0,

so that f(0) = 0 and we have the representation (6.9.2). Thus,

|f(1/n)| = |g(1/n)|
np

≤ e−n

and so

|g(1/n)| ≤ npe−n,

once more leading to g(0) = 0, and hence to a contradiction.

In the last case we cannot assume that f is continuous at the origin. The
function f(z) = e−1/z meets conditions (6.1.5). �

Solution of Exercise 6.1.6. Assume such a function exists. The condition

f(1/(2n)) =
1

n
, n = 2, 3, . . .

forces

f(z) = 2z,
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since both functions coincide at the points 1/2, 1/3, . . .. Similarly, the second con-
dition forces

f(z) =
2z

z + 1
,

since both functions coincide at the points 1/2, 1/3, . . .. Hence we obtain a con-
tradiction, and no such function exists. �

Solution of Exercise 6.1.7. The function h(z) = f(z)
g(z) is analytic in the open unit

disk (since g does not vanish there). The derivative of h is

h′(z) =
f ′(z)g(z)− f(z)g′(z)

g2(z)

= h(z)

(
f ′(z)
f(z)

− g′(z)
g(z)

)
.

Since f does not vanish in D, (6.1.7) expresses that h′( 1n ) = 0 for n ≥ 2. Since the
sequence 1

n converges to 0 which is an interior point of D, it follows that h′(z) is
identically equal to 0 and hence h is a constant. �

The previous exercise is [45, Exercice, 11 p. 78].

Solution of Exercise 6.1.8. (a) The analytic function f+f ′′ vanishes at the points
1/n for n ≥ n0 and so its zeros accumulate at z = 0. It follows that

f(z) + f ′′(z) = 0

in a neighborhood of the origin. Thus

f(z) = a cos z + b sin z

for some complex numbers a and b (use analytic continuation from a real neigh-
borhood of the origin to a complex neighborhood of the origin). The formula for
f shows moreover that it extends to an entire function.

In case (b),

f(z) = a cosh z + b sinh z. �

Solution of Exercise 6.1.9. We denote by Z(a) and Z(b) the sets of zeros of a and
b, and by Ω00 = Z(a) ∩ Z(b) the set of points in Ω for which (6.1.8) holds. We
first remark the following: The sets of zeros of a and b are at most countable, and
without accumulation points in Ω. Otherwise, one of the functions a and b would
be identically vanishing in Ω, and one of the sets Ω+ and Ω− would be empty. We
now prove the claims of the exercise.

(a) By the above, Ω00 = Z(a) ∩ Z(b) is at most countable, and has no
accumulation points in Ω.
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(b) By Theorem 15.6.2, the set Ω \ Ω00 is connected. It is open since Ω00 is
closed, and hence Ω \Ω00 is path-connected. See Lemma 15.4.7. Let z+ ∈ Ω+ and
z− ∈ Ω−, and let C be a path linking z+ to z−, with parametrization γ(t), t ∈ [a, b].
The function

t �→ l(t) =
|b(γ(t))|
|a(γ(t))|

is continuous and
l(a) < 1 and l(b) > 1.

By continuity, there exists a point c ∈ (a, b) such that l(c) = 1. This point c
belongs to Ω0 \ Ω00.

(c) The set Ω0 is closed, and so Ω\Ω0 is open. Assume that Ω\Ω0 is connected.
Then, it is path-connected, see Lemma 15.4.7, and any pair of points z± in Ω± is
connected by a path inside Ω \ Ω0. But, as above, this implies the existence of a
μ where |a(μ)| = |b(μ)|. This point μ is thus in Ω0, and this contradicts the fact
that the path lies inside Ω \ Ω0. �

Solution of Exercise 6.3.1. (a) The function F is analytic in the open unit disk
(this was shown in the proof of Exercise 4.4.13 using a theorem on power series).
The functions expF (z) and 1+z are both analytic in the open unit disk. In calculus
classes one proves (basically, the same proof as the one in Exercise 4.4.13) that

expF (x) = 1 + x, x ∈ (−1, 1).

By analytic continuation this identity extends to the open unit disk.

(b) Let ln(z) be the usual analytic extension of ln(x) to C \ (−∞, 0):

ln(z) = ln ρ+ iθ, z = reiθ, θ ∈ (−π, π).

Then, for z ∈ C \ (−∞, 0) we have

eln(z) = z.

Thus, for z ∈ C \ (−∞,−1), we have

eln(1+z) = 1+ z.

It follows that ln(1+ z) is the analytic extension of F to C \ (−∞, 0). For (b), use
item (b) of the previous exercise. �

Solution of Exercise 6.3.2. (1) The power series fα restricted to (−1, 1) and the
function (6.3.1) have the same value at the origin and solve the same differential
equation, namely

y′(x) =
α

1 + x
y(x),

Both functions are thus equal in (−1, 1).
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(2) The first claim follows from the definition (4.4.8). Furthermore, from the
previous item we have for x ∈ (−1, 1),

eα ln(1−x) =

∞∑
n=0

(−1)n
(
α
n

)
xn.

See (4.4.8) for the definition of

(
α
n

)
. The result follows by letting x ↑ 1.

(3) The proof is similar to that of (2), and will be omitted. �
Remark 6.9.3. The previous exercise also holds for complex α = a + bi provided
we defined for real x ∈ (−1, 1)

(1 + x)α = exp(a ln(1 + x))(cos(b ln(1 + x)) + i sin(b ln(1 + x))).

Solution of Exercise 6.3.3. For the first function in (a), consider a rational number
p/q. For n ≥ q,

p

q
n! ∈ 2N

and hence
(re2πip/q)n! = rn!e2πi

pn!
q = rn!.

It follows that

lim
r↑1

∞∑
n=q

rn!e2πi
pn!
q =

∞∑
n=q

lim
r↑1

rn!e2πi
pn!
q

=

∞∑
n=q

lim
r↑1

rn! = +∞,

(6.9.3)

where the interchange of limit and summation is done using the monotone conver-
gence theorem if you know measure theory, and by direct estimates, omitted here,
if you want an elementary proof. Since the numbers e2πip/q are dense on the unit
circle, the function f cannot be continued in any open sub-arc of the unit circle.

For the second function, we first remark that f satisfies the functional equa-
tion

f(z) = −z + f(z2).

Therefore
lim
ρ↑1

f(ρ)

does not exist. Since
f(−ρ) = ρ+ f(ρ2),

it follows that
lim
ρ↑1

f(−ρ)

does not exist either. Since

f(iρ) = −iρ+ f(−ρ2),
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it then follows that
lim
ρ↑1

f(iρ)

does not exist. The same argument will show that the limit

lim
ρ↑1

f(ρeiθ)

does not exist at the points θ = 2π k
2n , with n = 0, 1, . . . and k = 0, 1, . . . , 2n−1. �

Solution of Exercise 6.3.4. We assume that f is rational and that |f(z)| = 1 when
z ∈ I, where I is some open arc of a circle. Thus,

f(z) =
1(

f
(
1
z

)) = 1 when z ∈ I. (6.9.4)

By analytic continuation, this equation holds for all complex numbers where both
f(z) and f(1/z) are defined. From (6.9.4) we note that f cannot have a zero or a
pole on the unit circle. Moreover, if w is a zero (resp. a pole) of f different from 0,
then 1/w is a pole (resp. a zero) of f . Let w1, . . . , wN be the zeros of f different
from 0. The function

f(z)∏N
n=1 bwn(z)

has at most a zero or a pole at the origin. Therefore there exists M ∈ Z such that

f(z)

zM
∏N

n=1 bwn(z)

is a constant. This constant is unitary since the function takes unitary values on
I (and in fact is defined on all of T and takes unitary values there). �

Solution of Exercise 6.3.5. We note the following. The left side of (6.3.2) defines
a function analytic in the open unit disk. Indeed, using Weierstrass’ theorem, we
have that for |z| < 1,∫ 2π

0

dt

1 + z sin t
=

∞∑
n=0

zn(−1)n
∫ 2π

0

sinn tdt.

On the other hand, for z = a ∈ (−1, 1), the right-hand side is equal to

2π√
1− a2

.

See Exercise 8.4.1 below. Thus both sides of (6.3.2) coincide on the interval
(−1, 1), and by analytic continuation they coincide in the open unit disk. Thus,
the right side is an analytic continuation of the left side. �

Other examples of analytic extensions appear in Exercises 5.7.4 and 5.7.10.
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Solution of Exercise 6.3.6. Assume by contradiction that such a function f exists.
The function f is in particular bounded in a neighborhood of the origin, and thus,
by Riemann’s Hebbarkeitssatz (see Theorem 5.4.1), the function F defined by

F (z) =

{
f(z), if 0 < |z| < r

0, if z = 0

is analytic in B(0, r). The point z = 0 is a zero of F , say of order N ≥ 1. Thus we
have

z2NG(z)2 = z, z ∈ B(0, r),

where G is analytic in B(0, r) and such that G(0) 
= 0. We thus get

z2N−1G(z)2 = 1, z ∈ B(0, r).

Setting z = 0 in the above equation we obtain a contradiction. �

Solution of Exercise 6.3.7. It suffices to remark that the two functions coincide on
the real interval (−1, 1) with the function

√
1− x. �

Solution of Exercise 6.3.8. Let Δ be a triangle inside Ω, with boundary ∂Δ. We
take Δ to be closed (that is, the interior of the triangle and its boundary). To
check that

∫
∂Δ f(z)dz = 0. Four cases have to be distinguished. More precisely we

need to consider:

(a) I ∩ ∂Δ 
= ∅ and I∩
◦
Δ= ∅,

which itself is divided into:

(a1) I ∩ ∂Δ consists of one point.

(a2) I ∩ ∂Δ consists of an interval.

(b) I ∩ ∂Δ 
= ∅ and I∩
◦
Δ 
= ∅.

(c) I ∩ ∂Δ = ∅ and I∩
◦
Δ= ∅.

(d) I ∩ ∂Δ = ∅ and I∩
◦
Δ 
= ∅.

In the last case, I is in the outside of Δ, and Morera’s theorem insures that∫
∂Δ

f(z)dz = 0. In the other cases, the continuity of f insures that we still have∫
∂Δ f(z)dz = 0. In case (a1), the continuity of f insures that the integral of f on
one of the segments of ∂Δ does not change if one removes one point from that
segment. In cases (b), (c) and (d), we triangularize Δ in such a way that I ∩Δ is
a side of part of the triangles which make the triangularization, and then use the
continuity of f to approximate the integral of f on this segment. �

Solution of Exercise 6.3.9. We remark first that the function h is continuous in
B(x0, r). Let f(z) = u(x, y) + iv(x, y). We note that

f(z) = u(x,−y)− iv(x,−y),
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and it is clear that the functions

U(x, y) = u(x,−y) and V (x, y) = −v(x,−y)

satisfy the Cauchy–Riemann equations when u and v do. See Exercise 4.2.6 if
need be. Therefore, f(z) is analytic in the image of B+(z0, r) under conjugation.
To prove that the function h is holomorphic in B(x0, r), we use Morera’s theorem.
Consider a triangle Δ in B(x0, r). We want to show that∫

∂Δ

h(z)dz = 0. (6.9.5)

Various cases occur:

(a) The triangle does not intersect the real interval (x0 − r, x0 + r). Then, the
integral is zero because h is analytic in B(z0, r) \ (x0 − r, x0 + r).

(b) The triangle intersects (x0 − r, x0 + r) at one point only.

(c) The triangle intersects (x0 − r, x0 + r) at two points.

(d) One of the edges is (x0 − r, x0 + r).

We discuss the case (d). Two nodes, say A and B, of the triangle are on the real
axis. Without loss of generality we may assume that the remaining node, say C,
is in the open upper half-plane, that is in B+(x0, r). Let ε > 0. The intersection
of the line −iε+x, x ∈ R with the triangle consists of two points. We denote by
A(ε) the one on the interval [A,C] and by B(ε) the one on the interval [B,C]. The
integral of h on the triangle defined by A(ε), B(ε) and C is equal to 0 since h is
analytic in the open convex set B+(x0, r). Furthermore, in view of the continuity
at the points of (x0 − r, x0 + r), the integral of f on the quadrilateral defined by
A,B,A(ε) and B(ε) goes to 0 as ε goes to 0. This shows that (6.9.5) holds. Cases
(b) and (c) are treated in a similar way. By Morera’s theorem, h is analytic in
B(z0, r). �

Solution of Exercise 6.3.10. (a) For z = ρeiθ ∈ D\ (−1, 0] we have q(z) = ρ1/ne
iθ
n .

Let ε = e
2πi
n . We have wn = z if and only if

w = wj = εjq(z), j = 0, . . . , n− 1.

The formula

gn(z) =
1

n

n−1∑
j=0

f(εjq(z))

expresses that gn is analytic in D \ (−1, 0].
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(b) Let

f(z) =

∞∑
m=0

amzm

be the Taylor expansion of f in D centered at the origin. We have

gn(z) =
1

n

n−1∑
j=0

∞∑
m=0

amρm/ne
imθ
n

=
1

n

∞∑
m=0

amρm/ne
imθ
n

⎛⎝n−1∑
j=0

εjm

⎞⎠ .

By formula (1.1.17) we have

n−1∑
j=0

εjm =

{
n, if m = kn, k ∈ N0,

0, otherwise.

It follows that

gn(z) =

∞∑
k=0

aknz
k.

Hence gn has an analytic continuation to D. �

Solution of Exercise 6.4.1. We translate the problem in the complex plane. Let
z1, . . . , zn be the complex numbers corresponding to P1, . . . , Pn. Let P = (x, y) be
in the plane, and let z = x+ iy. We have

n∏
�=1

‖PP�‖ =

∣∣∣∣∣
n∏

�=1

(z − z�)

∣∣∣∣∣ .
The function

∏n
�=1(z− z�) is a polynomial, and in particular is an entire function.

By the maximum modulus principle, its modulus has no local extrema, besides at
the points z�. �

Solution of Exercise 6.4.2. Assume that

|p(eiθ)| ≤ 1 ∀ θ ∈ [0, 2π],

and consider

q(z) = znp(1/z) = 1 + an−1z + · · ·+ a0z
n.

The function q is also a polynomial and it holds that

max
|z|≤1

|q(z)| = max
|z|=1

|q(z)| = max
θ∈[0,2π]

|einθp(e−iθ)| ≤ 1,
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where we used the maximum modulus principle and the hypothesis that |p(eiθ)| ≤
1 for all θ ∈ [0, 2π]. But q(0) = 1 and so q(z) ≡ 1 by the maximum modulus
principle. This forces an−1 = · · · = a0 = 0 and so p(z) = zn. The converse is
trivial. �

Solution of Exercise 6.4.3. Let r1 < r2. We have

{z ; |z| ≤ r1} ⊂ {z ; |z| ≤ r2} ,

and so sup|z|≤r1 |f(z)| ≤ sup|z|≤r2 |f(z)|. By the maximum modulus principle,

M(r, p)
def.
= sup

|z|=r

|p(z)| = sup
|z|≤r

|p(z)|,

and hence M(r, p) is increasing.

Let p(z) = anz
n+an−1z

n−1+· · ·+a0. To prove the second claim, we consider
the function p�(z) given by (5.9.36):

p�(z) =

⎧⎨⎩znp

(
1

z

)
, z 
= 0,

an, z = 0.

We have:

M(r, p�) = sup
|z|=r

|p�(z)| = sup
|z|=r

rn
∣∣∣∣p(1

z

)∣∣∣∣ = rnM(
1

r
, p), (6.9.6)

and so

M

(
1

r
, p�
)

=
M(r, p)

rn
. (6.9.7)

The function p�(z) is a polynomial and so the function z �→ M(r, p�) is

increasing and so the map z �→ M(
1

r
, p�) is decreasing. This concludes the proof,

thanks to (6.9.7). �

Solution of Exercise 6.4.4. Assume by contradiction that such a function f exists.
It does not vanish and |f−1(z)| = e−|z| ≤ 1 for z ∈ D. But |f(0)| = e0 = 1.
The maximum modulus principle implies that f is a constant. But no constant
function can satisfy |f(z)| = e|z| for all |z| < 1. �

Solution of Exercise 6.4.5. Since h does not vanish in |z| < 1+ε, there is a function
f analytic there and such that h = e−f ; in particular

|h(z)| = e−Re f(z).

Since |h(z)| ≤ 1 for z in the open unit disk we have that Re f(z) ≥ 0 there. Since f
is analytic in |z| < 1+ε we can use Harnack’s inequalities (as proved in the present
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set of exercises; recall that (5.5.13) is a special case of Harnack’s inequalities). Fix
R < 1 and ζ ∈ [0, 2π]. We have then

1− |R|
1 + |R| Re f(0) ≤ Re f(Reiζ) ≤ 1 + |R|

1− |R| Re f(0), ∀ζ ∈ [0, 2π].

The cases R = 1/7 and R = 1/5 lead to

3

4
Re f(0) ≤ Re f

(
eiζ

7

)
≤ 4

3
Re f(0), ∀ζ ∈ [0, 2π],

and
2

3
Re f(0) ≤ Re f

(
eiζ

5

)
≤ 3

2
Re f(0), ∀ζ ∈ [0, 2π].

In particular,

Re f

(
eiζ

7

)
≤ 4

3
Re f(0) ≤ 2Re f

(
eiζ

5

)
, ∀ζ ∈ [0, 2π].

Thus

sup
|z|=1/5

|h(z)|2 = inf
|z|=1/5

e−2Re f(z)

≤ e−
4
3 Re f(0)

≤ inf
|z|=1/7

e−Re f(z)

= inf
|z|=1/7

|h(z)|,

and thus, using the maximum modulus principle for h in |z| ≤ 1/5 and 1/h in
|z| ≤ 1/7 we obtain the result. �

Solution of Exercise 6.5.1. By Schwarz’ lemma, we have |f(z)| ≤ |z| in the open
unit disk D. If z is in D so is zn for any positive integer n, and so |f(zn)| ≤ |zn|.
Thus for |z| ≤ r we have ∣∣∣∣∣

∞∑
n=0

f(zn)

∣∣∣∣∣ ≤
∞∑

n=0

|f(zn)|

≤
∞∑

n=0

|zn|

≤
∞∑

n=0

rn

=
1

1− r
.

Hence, the series
∑∞

n=0 f(z
n) converges absolutely and uniformly in |z| ≤ r for

r < 1. �
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We recall that, for a ∈ D, the map

ba(z) =
z − a

1− za

denotes the elementary Blaschke factor (1.1.44), and that ba maps conformally D

onto itself, with inverse b−a.

Solution of Exercise 6.5.2. If f is a unitary constant, (6.5.4) is trivial. If f is not
a unitary constant, the maximum modulus principle implies that |f(z)| < 1 for
all z ∈ D. Let z0 ∈ D. The idea is to reduce the situation to the case where z = 0
using appropriate maps of the form ba. The function

g(z) =
f(b−z0(z))− f(z0)

1− f(b−z0(z))f(z0)

is analytic and contractive in D, and vanishes at the origin. Schwarz’ lemma implies
that

|g′(0)| ≤ 1.

An easy computation leads to

g′(z) =
1− |z0|2
(1 + zz0)2

f ′(b−z0(z))
1− |f(z0)|2

(1− f(b−z0(z))f(z0))
2
.

Thus,

g′(0) =
1− |z0|2

1− |f(z0)|2
f ′(z0),

and the result follows. The claim on the case of equality follows from the fact that
g′(0) has modulus 1 if and only if g(z) = cz for some c ∈ T. �

Solution of Exercise 6.5.3. By Schwarz’ lemma we can write f(z) = zg(z) where
g is analytic and bounded by 1 in modulus in D. The condition f(1/2) = 1/2 leads

to g(1/2)
2 = 1

2 , so that g(1/2) = 1, and the maximum modulus principle leads to
g(z) ≡ 1. �

Solution of Exercise 6.5.4. Let z1 and z2 in D such that f(z�) = z� for � = 1, 2.
The function

g = bz1 ◦ f ◦ b−z1,

sends the open unit disk into itself and is such that g(0) = 0. By Schwarz’ lemma,
g(z) = zσ(z), where the function σ is analytic and bounded by 1 in modulus in
the open unit disk.

The second condition f(z2) = z2 can be rewritten as

f ◦ b−z1 ◦ bz1(z2) = z2,
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and so
bz1 ◦ f ◦ b−z1 ◦ bz1(z2) = bz1(z2).

Thus with w = bz1(z2), we have g(w) = w, i.e., σ(w) = 1. By the maximum
modulus principle, σ(z) ≡ 1 and so g(z) = z, meaning that f(z) ≡ z. �

Solution of Exercise 6.5.5. The function F = bz0 ◦ f ◦ b−z0 is analytic from D into
itself and

F (0) = bz0(f(b−z0(0)) = bz0(f(z0)) = bz0(z0) = 0.

By Schwarz’ lemma,
F (z) = zG(z),

where G is analytic and contractive in D. Hence

(f ◦ b−z0)(z) = (b−z0)(zG(z))

=
zG(z) + z0
1 + zG(z)z0

.

But

(f ◦ b−z0)
′(z) =

1− |z0|2
(1 + zz0)2

f ′(b−z0(z)),

and (
zG(z) + z0
1 + zG(z)z0

)′
=

1− |z0|2
(1 + zG(z)z0)2

(zG′(z) +G(z)).

Hence,
1− |z0|2
(1 + zz0)2

f ′(b−z0(z)) =
1− |z0|2

(1 + zG(z)z0)2
(zG′(z) +G(z)).

Setting z = 0 and using the fact that f ′(z0) = 1 we obtain

G(z0) = 1.

By the maximum principle, G(z) ≡ 1 and so f(z) = z. �

Solution of Exercise 6.5.6. It suffices to take

f(z) =
1 + z

3− z
.

We have f(1) = f ′(1) = 1. �

Solution of Exercise 6.5.7. (a) We assume |f(0)| < 1, and therefore f is not a
constant of modulus 1 (it can be a constant of modulus strictly less than 1), and
therefore |f(z)| < 1 for all z ∈ D. Therefore (see (1.1.41) if needed with f(z)
instead of z and f(0) instead of w),

h(z) =
f(z)− f(0)

1− f(0)f(z)
∈ D, ∀z ∈ D.
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Since h(0) = 0, it follows from Schwarz’ lemma that the function

f1(z) =

⎧⎪⎨⎪⎩
h(z)

z
, z ∈ \ {0} ,

h′(0), z = 0

(6.9.8)

is in S.
(b) Given g ∈ S we have that |zg(z)| < 1 for all z ∈ D. Using (1.1.41) with

zg(z) instead of z and ρ0 instead of w, we see the function (6.5.6)

f(z) =
ρ0 + zg(z)

1 + zρ0g(z)

is in S. It clearly satisfies f(0) = ρ0. Conversely, if f is a solution, the function f1
defined by (6.9.8) with f(0) = ρ0 belongs to S. Solving f in terms of f1 we obtain
(6.5.6) (with f1 instead of g). So f is indeed of the form (6.5.6).

(c) Recall that the derivative of the function

z �→ z + ρ0
zρ0 + 1

is given by

z �→ 1− |ρ0|2
(zρ0 + 1)2

.

Furthermore
(zg(z))′ = zg′(z) + g(z).

Hence, the usual rule of differentiation for the composition of two functions leads
to

f ′(z) = (zg′(z) + g(z)) · 1− |ρ0|2
(zg(z)ρ0 + 1)2

.

Thus,
f ′(0) = g(0)(1− |ρ0|2).

It follows that to find f ∈ S with preassigned values of f(0) and f ′(0), it suffices
to first solve the problem of finding all f ∈ S such that f(0) is given. If |f(0)| > 1
there are no solutions. If |f(0)| = 1, then f(z) ≡ f(0), and necessarily f ′(0) = 0.
Assume now that |f(0)| < 1. Then finding all f (if any) such that f ′(0) is given
amounts to find all g ∈ S such that

g(0) =
f ′(0)

1− |ρ0|2
.

This problem has no solution if ρ1
def.
= f ′(0)

1−|ρ0|2 has modulus greater than 1; it has

a unique solution if |ρ1| = 1, and it has an infinity of solutions, described in a way
similar to (6.5.6) if ρ1 ∈ D. �
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Solution of Exercise 6.5.9. By Schwarz’ lemma, we have f(0) = 0 if and only if

f(z) = zg(z)

for some g ∈ S. We have
f ′(z) = zg′(z) + g(z),

and therefore
g(0) = f ′(0) = b.

If |b| > 1 there is no solution to (6.5.8). If |b| = 1, the maximum modulus principle
implies that g is unique and equal to g(z) ≡ b. Thus the interpolation problem
(6.5.8) has a unique solution, namely f(z) = zb. If |b| < 1, it follows from (6.5.6)
that g is of the form

g(z) =
b+ zh(z)

1 + zbh(z)
,

where h varies in S. The solutions of the interpolation problem (6.5.8) are therefore
exactly the functions of the form

f(z) = z
b+ zh(z)

1 + zbh(z)
,

where h varies in S. �

Solution of Exercise 6.5.10. If |w1| = 1, the only function in S which satisfies
f(z1) = w1 is the constant function f(z) ≡ w1. Thus, if w2 
= w1, the interpolation
problem at hand has no solution, and has a unique solution f(z) ≡ w1 if w1 = w2.
Assume now |w1| < 1. Then by Exercise 6.5.7, a function f ∈ S satisfies f(z1) = w1

if and only if it is of the form

f(z) =
w1 +

z − z1
1− z1z

g(z)

1 + w1
z − z1
1− z1z

g(z)
, g ∈ S. (6.9.9)

The condition f(z2) = w2 reads

w2 =
w1 +

z2 − z1
1− z1z2

g(z2)

1 + w1
z2 − z1
1− z1z2

g(z2)
,

that is

g(z2) =
w2 − w1

1− w1w2
· 1− z1z2
z2 − z1

.

As in the previous exercise, three cases are possible depending on the value of

ρ
def.
=

w2 − w1

1− w1w2
· 1− z1z2
z2 − z1

.
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If |ρ| > 1 there is no solution. If |ρ| = 1, the unique solution of the interpolation
problem is

f(z) =
w1 +

z − z1
1− zz1

w2 − w1

1− w1w2
· 1− z1z2
z2 − z1

1 + w1
z − z1
1− zz1

w2 − w1

1− w1w2
· 1− z1z2
z2 − z1

.

If |ρ| < 1, in view of Exercise 6.5.7, the set of all solutions g is of the form

g(z) =

w2 − w1

1− w1w2
· 1− z1z2
z2 − z1

+
z − z2
1− zz2

h(z)

1 +
w2 − w1

1− w1w2
· 1− z1z2
z2 − z1

z − z2
1− zz2

h(z)
, h ∈ S. �

To conclude it suffices to plug this expression in (6.9.9).

It can be shown that a necessary and sufficient condition for Problem 6.5.9
to have a solution is that the matrix⎛⎜⎜⎝

1− |w1|2
1− |z1|2

1− w1w2

1− z1z2
1− w2w1

1− z2z1

1− |w2|2
1− |z2|2

⎞⎟⎟⎠
is non-negative. Recall that a hermitian matrix is called non-negative if all its
eigenvalues are greater than or equal to 0. See Definition 16.3.1.

Solution of Exercise 6.5.11. Recall that

b−a(z) =
z + a

1 + za
.

The function F (z) = f(b−a(z)) is analytic in the open unit disk D, and maps D

into itself. Furthermore

F (0) = f(b−a(0)) = f(a) = 0.

By Schwarz’ lemma,
F (z) = zG(z),

where G is analytic and contractive in the open unit disk. Replacing in this equa-
tion z by ba(z) we obtain

F (ba(z)) = f(b−a(ba(z))) = f(z) on the one hand,

= ba(z)G(ba(z)) on the other hand,

and so

f(z) =
z − a

1− za
g(z),
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where the function g(z) = G(ba(z)) is analytic and contractive in D. Furthermore,
g(b) = 0 since f(b) = 0 and a 
= −b. We reiterate the same argument on g and
obtain

g(z) =
z − b

1− zb
h(z)

for some function h analytic and contractive in D. Thus

f(z) =
z − a

1− za
g(z) =

z − a

1− za

z − b

1− zb
h(z),

and so

|f(z)| =
∣∣∣∣ z − a

1− za

∣∣∣∣ ∣∣∣∣ z − b

1− zb

∣∣∣∣ |h(z)| ≤ ∣∣∣∣ z − a

1− za

∣∣∣∣ ∣∣∣∣ z − b

1− zb

∣∣∣∣ . �

Solution of Exercise 6.5.12. We have

Reϕ(z) =

∫ 2π

0

1− |z|2
|eit − z|2m(t)dt ≥ 0.

Thus the function

s(z) =
ϕ(z)− 1

ϕ(z) + 1

is bounded by one in modulus in the open unit disk. The condition∫ 2π

0

m(t)dt = 1

forces ϕ(0) = 1 and so s(0) = 0. It suffices then to apply Schwarz’ lemma to obtain
the result. �

Solution of Exercise 6.5.13. The first claim follows from the identity

1−
∣∣∣z − z0
z − z0

∣∣∣2 =
2Re z(z0 − z0)

|z − z0|2
=

4yy0
|z − z0|2

,

where y = Im z and y0 = Im z0. See formula (1.1.53) with w = z0 and v = z if
need be. The inverse map

B−1
z0 (z) =

z0 − zz0
1− z

maps then in a one-to-one way the closed unit disk onto the closed upper half-
plane. To prove the second claim, consider the function

s(z) = f(B−1
z0 (z)) = f

(
z0 − zz0
1− z

)
.

It is analytic and contractive in the open unit disk. Furthermore, s(0) = f(z0) = 0.
Applying Schwarz’ lemma to s we get

|s(z)| ≤ |z|, z ∈ D.

Replacing in this inequality z by Bz0(z), with now z ∈ C+ we obtain the claim.
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To prove the last claim, we see now that s(0) = s′(0) = 0. By Schwarz’
lemma, the first condition implies that s(z) = zσ(z), where σ is analytic and
contractive in the open unit disk. Since

s′(z) = σ(z) + zσ′(z),

the second condition implies that σ(z) = zσ1(z), where σ1 is analytic and con-
tractive in the open unit disk. Thus s(z) = z2σ1(z), and in particular,

|s(z)| ≤ |z|2, z ∈ D.

Once more replacing in this inequality z by Bz0(z), with now z ∈ C+ we obtain
the last claim. �

Solution of Exercise 6.6.2. From the power series defining sin z we have

| sin z| =
∣∣∣∣∣
∞∑

n=0

(−1)nz2n+1

(2n+ 1)!

∣∣∣∣∣ ≤
∞∑
n=0

|z|2n+1

(2n+ 1)!
= sinh |z|.

The second claim is an easy calculus exercise. Consider the function

f(x) = x cosh 1− sinhx.

Then
f ′(x) = cosh 1− coshx ≥ 0 for x ∈ [0, 1].

Thus f is increasing on [0, 1] and f(x) ≥ f(0) = 0, that is sinhx ≤ x(cosh 1) on
[0, 1]. The last claim follows easily from

| sin zn| ≤ |z|n cosh 1

for z ∈ D. �

Solution of Exercise 6.6.3. Let

fn(z) =
z(z + 1) · · · (z + n− 1)

nn
, n = 1, 2, . . . .

We have

fn+1(z) =
z + n

n+ 1
·
(

n

n+ 1

)n

fn(z) =

⎛⎜⎝1 +
z

n

1 +
1

n

⎞⎟⎠ ·
(
1 +

1

n

)−n

fn(z).

For R > 0 we have

lim
n→∞

1 +
R

n

1 +
1

n

·
(
1 +

1

n

)−n

= e−1.
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Therefore, for any R > 0 there exists n0(R) ∈ N such that:

n ≥ n0(R) =⇒
∣∣fn+1(z)

∣∣ ≤ 2

e

∣∣fn(z)∣∣, ∀|z| ≤ R. (6.9.10)

Since 2/e < 1, it follows that the series
∑∞

n=1 fn(z) converges absolutely and
uniformly on every closed set |z| ≤ R, and its sum is therefore analytic. �

Solution of Exercise 6.6.4. It suffices to notice that the series q�z converges uni-
formly on compact subsets of C. We now turn to the formula for the coefficients
(an)n∈N of the Taylor series

f(z) = 1 +

∞∑
n=1

anz
n

of f centered at the origin. From formula (3.7.12) (see Exercise 3.7.8) we get (with
a0 = 1)

an = − qn

1− qn
an−1, n = 1, 2, . . . ,

and hence the result since

1 + 2 + · · ·+ n =
n(n+ 1)

2
. �

Solution of Exercise 6.6.5. Let z = x+ iy. Then

|e−n2z| = e−n2x =

(
1

ex

)n2

,

and the series is absolutely convergent, and hence convergent, in the open right
half-plane. On the other hand, for x ≤ 0, the absolute value |e−n2z| = e−n2x does
not go to zero, and hence the sum (6.6.1) cannot be convergent.

For x ≥ ε > 0 we have
|e−n2z| ≤ e−n2ε,

and hence the sum is absolutely and uniformly convergent there. �

Solution of Exercise 6.7.1. From the estimate (3.9.22) it follows that the sequence
of finite products converges uniformly on compact subsets of D. Thus the limit is
an analytic function. �

Solution of Exercise 6.7.2. It suffices to use (3.9.19) with an = 1/n. �

Solution of Exercise 6.7.3. Replacing z by iπz in the formula (3.7.23) for sinh z
we obtain

sinπz

πz
=

∞∏
k=1

(
1− z2

k2

)
. (6.9.11)
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The infinite product defines an entire function, and it is therefore legitimate to
identity the coefficients of the powers of z on both sides of (6.9.11). The coefficient
of z2 on the left is

−π2

6
.

On the right the coefficient of z2 is

−
∞∑
k=1

1

k2
,

and hence the result. The proof of (6.7.1) is done in the same way, using (3.7.26)
to obtain

cos z = 1− z2

2
+ higher-order terms

= 1− 4z2

{ ∞∑
k=0

1

(2k + 1)2π2

}
+ higher-order terms. �

Solution of Exercise 6.8.2. The result is a direct application of formula (6.8.2). �

Solution of Exercise 6.8.4. We consider (a). The other cases are treated similarly.
Let

f(z) =

∞∑
n=0

fn(z − i)n

be the power expansion of f at the point i. It has infinite radius of convergence,
and hence

fn =
1

2πi

∫
|z−i|=R

f(z)

(z − i)n+1
dz =

1

2π

∫ 2π

0

f(i+Reit)

Rneint
dt

for every R > 0. Taking into account the bound in (a) we have

|fn| ≤
1

2π

∫ 2π

0

|f(i+Reit)|
Rn

dt ≤ 1

2π

∫ 2π

0

M(1 +
√
R)

Rn
dt =

M(1 +
√
R)

Rn
.

Letting R → ∞ we get that fn = 0 for n ≥ 1. Thus, f is a constant, of modulus
less than or equal to M . �

Solution of Exercise 6.8.5. If the given function f is a polynomial, this is clear
from the fundamental theorem of algebra. The image is in fact all of C since the
equation

f(z) = w

has at least one solution for all w ∈ C.
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Assume now that f is an arbitrary non-constant entire function, and proceed
by contradiction. There is then a number a and a positive number r such that

|f(z)− a| > r, ∀z ∈ C,

and in particular ∣∣∣∣ 1

f(z)− a

∣∣∣∣ ≤ 1

r
, ∀z ∈ C.

Hence the function 1/(f(z)− a) is entire and bounded. By Liouville’s theorem it
is constant. This is a contradiction since f itself is not constant. �

Solution of Exercise 6.8.6. The function F (z) = ef(z)−M is entire. But

|F (z)| = eRe f(z)−M ≤ 1.

By Liouville’s theorem, F is a constant function. Thus

F ′(z) = f ′(z)F (z) ≡ 0,

and so f ′(z) ≡ 0 and f is a constant function. �

Solution of Exercise 6.8.7. We note that functions of the form f(z) = czn where
c is a complex number of modulus 1 and n ∈ N answer the question. We show
that these are the only entire functions satisfying (6.8.3). Assume f is an entire
function satisfying (6.8.3). We can always write f(z) = znf0(z), where f0 is entire
and does not vanish at the origin. Rewriting (6.8.3) as

f0(z)f0(1/z) = 1, z 
= 0, (6.9.12)

we see that

lim
z→∞ f0(z) = 1/f0(0).

By Liouville’s theorem, f0 is a constant, which is unitary thanks to (6.9.12), and
this concludes the proof. �

Solution of Exercise 6.8.8. By the periodicity conditions, it is enough to know the
values of the function f in the closed square with corners

(0, 0), (0, 1), (1, 0), (1, 1).

In this square, the function is bounded in modulus (by an elementary property of
continuous functions on closed bounded sets). Thus, it is bounded in the complex
plane, and hence constant by Liouville’s theorem. �
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Solution of Exercise 6.8.9. Assume that such a polynomial exists. By Cauchy’s
formula, the first condition reads

P (1) = P (1/2) = P (1/3) = · · · = P (1/(N + 1)) = 0.

Thus P would be a polynomial of degree N with (N + 1) zeroes; this cannot be,
and the only polynomial satisfying the condition is the polynomial P (z) ≡ 0.

In the second case, we have that all the derivatives of P up to order N vanish
at z = 1/2. But, by the Taylor expansion at z = 1/2 and since P has degree N ,

P (z) =
N∑
�=0

P (�)(1/2)

�!
(z − 1/2)�,

and so P ≡ 0 (and in particular no polynomial of degreeN meets the requirement).
�

Solution of Exercise 6.8.10. We rewrite the vanishing condition (6.8.6) as∫
|z|=r

P (z)

z − 1
n+1

dz = 0, n = 0, 1, . . . , N.

For r = 3/4, the points 1
2 ,

1
3 , . . . ,

1
N+1 are inside the circle |z| = r, and (6.8.6)

becomes

P (1/2) = P (1/3) = · · · = P (1/(N + 1)) = 0.

Since P has degree N , these conditions uniquely determine it, up to a multiplica-
tive constant:

P (z) = K ·
(
z − 1

2

)
· · ·
(
z − 1

N + 1

)
.

For r = 1/(N + 2), no point of the form 1/(n+1) with n = 0, . . . , N +1 lies
inside the circle |z| = r, and every polynomial (not only of degree N) answers the
question. �

Solution of Exercise 6.8.11. Set first z = 2πk with k ∈ Z. You get

p(2πk) cos2 2πk = 1.

Thus

p(2πk) = 1 k ∈ Z,

the polynomial p(z)− 1 has an infinite number of zeros, and so must be equal to
0. So p(z) ≡ 1. To see that q(z) ≡ 1, put z = π

2 + kπ. �
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Solution of Exercise 6.8.12. Assume that such a function exists. Then f does not
vanish in C \ {0} and therefore 1/f is analytic there. Moreover, 1/f is bounded
in a neighborhood of the origin, and hence, by Riemann’s removable singularity
theorem, is analytic in a neighborhood of the origin, and hence the function

h(z) =

{
1

f(z) , z 
= 0,

0, z = 0

is entire. It can be written as

h(z) = zNh1(z),

where N ∈ N and h1 is an entire function not vanishing at the origin (and hence
not vanishing in C). From (6.8.7) we get∣∣ 1

f(z)2

∣∣ = |z2Nh2
1(z)| ≤ |z|, z ∈ C,

and the entire function z2N−1h2
1(z) is bounded and hence is equal to a constant,

say K. Thus
z2N−1h2

1(z) = K.

Setting z = 0 we obtain 0 = 1. Hence, no such function f exists. �

Solution of Exercise 6.8.13. The polynomial

p(z) = z4 + 3z2 + z + 1

has real coefficients, and so its roots are either real or appear in conjugate pairs.
See Exercise 1.5.5. For z = x ∈ (−1, 1), we have that x + 1 > 0 and hence
x4 + 3x2 + x+ 1 > 0. Furthermore, ±1 are not roots of p and hence no roots are
in [−1, 1]. Let z0, z0, z1, z1 be the roots of p, with z0 and z1 in the open upper
half-plane (and a priori possibly equal). We have

p(z) = (z − z0)(z − z0)(z − z1)(z − z1),

and in particular
z0z0z1z1 = 1,

that is |z0z1| = 1. It follows that two cases may occur:

(a) z0 or z1 has modulus strictly less than 1. Then p has exactly one solution
in the closed upper half unit disk.

(b) All roots are of modulus 1. Let z0 = eieθ0 and z1 = eieθ1 . Then,

p(z) = (z2 − 2z cos θ0 + 1)(z2 − 2z cos θ1 + 1).

Comparing the coefficients of z and z3 we obtain:

cos θ0 + cos θ1 = 0 and − 2(cos θ0 + cos θ1) = 1,

which cannot be. �



Chapter 7

Laurent Expansions, Residues,
Singularities and Applications

Laurent expansions deal with functions analytic in an open ring

r0 < |z − z0| < r1, (7.0.1)

(r0 = 0 and r1 = +∞ are allowed). The result (see Theorem 7.1.1 below) expresses
f as the sum f = f+ + f− of a part f+ analytic in the disk |z − z0| < r1 and of
a part f− analytic in r0 < |z − z0|. When r1 = +∞, the function f+ is entire,
while the function f−(1/z) is entire when r0 = 0. The case r0 = 0 is of particular
importance. The point z0 is then called an isolated singularity of f . At this stage of
a course on complex variables, the student already knows that a function analytic
in a punctured open neighborhood of a point, say z0, and continuous (or even,
bounded) in that neighborhood is analytic in the whole neighborhood. This is
called Riemann’s removable singularity theorem (also known by its German name
Riemann’s Hebbarkeitssatz) and its proof follows from the proof of Cauchy’s the-
orem. The point z0 is then called a removable (isolated) singularity. When the
function is analytic in a punctured neighborhood of a point z0, but not assumed
bounded there, two possibilities occur:

(a) We have

lim
z→z0

|f(z)| = +∞. (7.0.2)

Then, and only then, z0 is a pole.

(b) The limit (7.0.2) does not exist. Note the following: Since f is assumed un-
bounded near z0, |f(z)| will go to infinity via a subsequence, but via other
subsequences the values of f(z) will stay bounded, and the limit will not
exist, or will be finite.

D. Alpay, A Complex Analysis Problem Book, 
DOI 10.1007/978-3-319-42181-0_7 
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7.1 Laurent expansions

We recall the theorem on Laurent expansion for functions analytic in a ring. In
the statement, we use the abuse of notation |ζ − z0| = r to denote the path

γ(t) = z0 + reit, t ∈ [0, 2π].

Theorem 7.1.1. Let f be a function analytic in r0 < |z − z0| < r1. Then, f can be
written as the sum of two functions f(z) = f+(z)+ f−(z), where f+ is analytic in
|z − z0| < r1 and f− is analytic in r0 < |z − z0|. We have

f+(z) =

∞∑
n=0

an(z − z0)
n,

where the coefficients an are given by

an =
1

2πi

∫
|ζ−z0|=r

f(ζ)

(ζ − z0)n+1
dζ, n = 0, 1, . . .

with r any number in (0, r1), and

f−(z) =
∞∑
n=1

bn
(z − z0)n

,

where the coefficients bn are given by

bn =
1

2πi

∫
|ζ−z0|=r

f(ζ)(ζ − z0)
n−1dζ, n = 1, 2, . . . (7.1.1)

with r any number in (r0,∞).

When r0 = 0, one has the following classification of isolated singular points:

(a) If all the bn = 0, the point z0 is a removable singularity.

(b) If for some N ∈ N, bN 
= 0 and bN+1 = bN+2 = · · · = 0, the point z0 is a pole
of order N .

(c) If bn 
= 0 for an infinite number of indices, z0 is an essential singularity.

Before turning to the exercises it is of interest to hint at a connection with
another mathematical topic. When in Theorem 7.1.1 we have z0 = 0 and 1 ∈
(r0, r1) the function f is analytic in a neighborhood of the unit circle. For z = eit

the Laurent expansion becomes

f(eit) =

∞∑
n=0

ane
int +

∞∑
n=1

bn
eint

,
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and the reader will recognize a Fourier series. In particular, Parseval’s identity
leads to

1

2π

∫ 2π

0

|f(eit)|2dt = |a0|2 +
∞∑

n=1

(|an|2 + |bn|2).

Exercise 7.1.2. Find the Laurent expansions for the following functions in the
indicated domains:

(a)
1

z(z − 1)
, 0 < |z − 1| < 1;

(b)
1

(z2 + 1)2
, 0 < |z − i| < 2;

(c)
1

z
sin2

2

z
, 0 < |z|;

(d)
1− e−z

z3
, 0 < |z|;

(e)
sin z

z − 2
, |z − 2| 
= 0;

(f)
1

z2(z2 + 1)
, 0 < |z| < 1.

Exercise 7.1.3. Find the Laurent expansion of the function

ez

z(z2 + 1)

in the domain 0 < |z| < 1.

Exercise 7.1.4. Represent the function

z + 1

z − 1

(a) as a Maclaurin series and find its convergence radius;

(b) as a Laurent series in the domain {z : |z| > 1}.
Exercise 7.1.5. Represent the function

1

z2(z − 1)

in all possible series in powers of z centered at z = 0 and in powers of z − 1
centered at z = 1. Find the domains of convergence of these representations.

Exercise 7.1.6. Check the formula

1

4z − z2
= −

∞∑
n=2

4n−2

zn
, |z| > 4.
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Exercise 7.1.7. Build an analytic square root for the function 1+z2 in the domains
{z : |z| < 1} and {z : |z| > 1}, denoted in either case by

√
1 + z2, and give the

Laurent expansions of √
1 + z2

z

in {z : 0 < |z| < 1} and {z : |z| > 1}.

The next exercise is taken from [53, Example 1, p. 77].

Exercise 7.1.8. Show that

cosh

(
z +

1

z

)
= a0 +

∞∑
n=1

an

(
zn +

1

zn

)
, z 
= 0,

where

an =
1

2π

∫ 2π

0

cos(nt) cosh(2 cos t)dt, n = 0, 1, 2, . . . .

Exercise 7.1.9. Prove the following theorem of Weierstrass: If f is analytic in
C \ {z1, . . . , zN}, then there are N + 1 entire functions f0, . . . , fN such that

f(z) = f0(z) + f1(1/(z − z1)) + · · ·+ fN (1/(z − zN )). (7.1.2)

Remarks 7.1.10. When f is rational the functions f0, . . . , fN are polynomials, and
(7.1.2) is the partial fraction expansion of f . For an application of Exercise 7.1.9
to the realization theory of rational functions, see Exercise 12.1.2.

Question 7.1.11. Let f(z) =
∫ 1

0
et

(t−z)2 dt.

(1) Let t0 ∈ [0, 1]. Explain why there is only one expansion of f centered at t0.

(2) Let z0 ∈ C \ [0, 1]. How may Laurent expansions centered at z0 are there?
Compute them.

Exercise 7.1.12. Prove that

f(z) =

∫ 1

0

cos t

t− z
dt+

∫ 3

2

sin t

t− z
dt (7.1.3)

admits a Laurent expansion in the ring 1 < |z| < 2 and compute this expansion.

Exercise 7.1.13. Let z0 ∈ C and f as in (7.1.3).

(a) Compute the Laurent expansion of (7.1.3) in |z − z0| > D where

D = max
t∈[0,1]∪[2,3]

|t− z0|.

(b) Give a condition on z0 for Laurent expansions centered at z0 (possibly degen-
erating to a Taylor expansion) to exist. Compute these as well.
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Exercise 7.1.14. Find the Laurent expansion of the function (4.4.23) and of its
second derivative in |z| > 1.

Exercise 7.1.15. Let p ∈ N. Show that the function
sin z

zp
will have primitives in

C \ {0} if and only if p is odd. Give the Laurent expansion centered at the origin
of any of its primitives.

Another interesting example of Laurent expansion is presented in Exercise
7.3.13.

7.2 Singularities

We first recall the following characterization of poles and zeros:

Theorem 7.2.1. Let f be analytic in a punctured neighborhood of the complex num-
ber z0. The following are equivalent:

1. z0 is a pole of order N of f .

2. z0 is a zero of order N of 1/f .

3. The limit
lim
z→z0

(z − z0)
Nf(z)

exists, is finite and different from 0.

Exercise 7.2.2. Assume that z0 is a zero (resp. a pole) of order N of the function
f , and let M ∈ N. Show that z0 is a zero (resp. a pole) of order NM of fM .

In the next exercise we go back to Exercise 5.5.4.

Exercise 7.2.3. Let Ω be a star-shaped open set and let C be a closed simple smooth
curve in Ω. Let z0 not belong to the image of C, and let f be analytic in Ω. Show
that z = z0 is a removable singularity of the function

h(z) =
f(z)− (z − z0)f

′(z)
(z − z0)2

and, using this fact, give another solution of (5.5.4).

Exercise 7.2.4. Show that z = 0 is a removable singularity of the function

f(z) =
1

tan z
− 1

sin z
.

Exercise 7.2.5. Find the poles and zeros of the function

f(z) =
(cos z − 1)3 sin(z2) sin(πz)

(ez − 1)(z2 + 1)
.
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Exercise 7.2.6. What are the singularities of the functions

f(z) =
z(z − 1)2

sin2(πz)
,

g(z) =
z4(z − 1)

sin2(πz)
,

h(z) =
z3(z − 1)6

sin5(πz)
?

Hints. For f , z = 0 is a pole of order 1, z = 1 is a removable singularity (which is
not a zero) and all other integers are poles of order 2.

For g, z = 0 is a removable singularity which is a zero of order 2, z = 1 is a
pole of order 1, and all other integers are poles of order 2.

For h, z = 0 is pole of order 2, z = 1 is a removable singularity which is a
zero of order 1, and all other integers are poles of order 5.

Exercise 7.2.7. What is the point z = 0 for the function

f(z) =
sin z

z4
?

Exercise 7.2.8. Nature of z = 0 for the function f(z) = sin3 z
z .

Exercise 7.2.9. Show that the function

cos e(
1
z2

+z2) +

(
8 sin(z2)

z50

)100

has an essential singularity at the origin.

Exercise 7.2.10. Show that z=0 is an essential singularity of the function cos(e1/z).

Exercise 7.2.11. Let f and g be analytic in a punctured neighborhood of the point
z0 and assume that z0 is an essential singularity of f and a pole of g. What kind
of singularity is it for any of the functions fg, f/g and f + g.

Exercise 7.2.12. Assume that z = 0 is an essential singularity of f . Show that it
is also an essential singularity of f2.

Exercise 7.2.13. Assume that z = a is a pole of order N of the function f . Show
that it is a pole of order N + 1 of the function f ′.

Related to Exercise 7.2.9 we have the following general fact:

Exercise 7.2.14. Assume that f has a pole at the point z0. Show that z0 is an
essential singularity of ef .



7.2. Singularities 343

Exercise 7.2.15. Let f(z) be even and analytic in Ω = C\{z = m+ in ; m,n ∈ Z},
and assume that

f(z) = f(z +m+ ni) (7.2.1)

for all m,n ∈ Z and all z ∈ Ω. Assume that the only singular point of f modulo
the lattice Z + iZ is the origin, and that it is a pole of f of order 2. Show that
there exist complex numbers g0, g1, g2 and g3 such that g0 
= 0 and

(f ′)2 = g3f
3 + g2f

2 + g1f + g0. (7.2.2)

Hint. The function f has poles at all the points of the lattice

L = {m+ in ; m,n ∈ Z} .

For any choice of a0, a1, a2, a3, the function

q(z) = (f ′)2 − (a3f
3 + a2f

2 + a1f + a0)

is biperiodic, with periods i and 1. Assume there is a choice of the ai such that
z = 0 is a removable singularity of q, and moreover is a zero of q. Then, all
the points of the lattice L are zeros of q. The function q is therefore entire and
biperiodic, and so is a constant (see Exercise 6.8.8).

Recall that ∞ is an isolated singular point of f(z) if, by definition, 0 is an
isolated singular point of f(1/z).

Exercise 7.2.16. Let f be an entire function and assume that ∞ is a pole of f .
Find f .

Exercise 7.2.17. Show that the origin is a removable singularity of the function

z

ez − 1
.

Show that there exist numbers B0, B1, . . . such that

z

ez − 1
=

∞∑
n=0

Bn

n!
zn (7.2.3)

for |z| < 2π. Show that B0 = 1 and that the recursion(
n+ 1
0

)
B0 +

(
n+ 1
1

)
B1 + · · ·+

(
n+ 1
n

)
Bn = 0, n ≥ 1,

holds.

Prove that B2k+1 = 0 for k ≥ 1.
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The numbers bn = (−1)(n−1)B2n, n = 1, 2, . . . are called the Bernoulli num-
bers. As topic of exercises, one can find them in numerous places, for instance
in [75, p. 132]. Bernoulli numbers appear in various places, and particular in the
expressions for the sums

∞∑
n=1

1

n2p
=

π2pbp2
2p−1

(2p)!
. (7.2.4)

Following [45, pp. 114–115], a proof of (7.2.4) is outlined in the next question.

Question 7.2.18.

(1) Let n ∈ N. Show that

Res

(
1

z2n(ez − 1)
, 0

)
=

B2n

(2n)!
,

where B2, B4, . . . are defined as in (7.2.3), and compute

Res

(
1

z2n(ez − 1)
, 2iπp

)
, p ∈ Z \ {0} .

(2) Prove (7.2.4) by computing the integral of the function 1
z2n(ez−1) along the

square with vertices ±(2k + 1)± (2k + 1)πi, and letting k → ∞.

More generally than (7.2.3) one has:

Exercise 7.2.19. Show that there are polynomials Bn(t), n = 0, 1, . . . such that

zetz

ez − 1
=

∞∑
n=0

Bn(t)

n!
zn, |z| < 2π. (7.2.5)

Prove that, with B� as in the previous exercise,

Bn(t) =

n∑
�=0

B�

(
n
�

)
tn−�, (7.2.6)

Bn(t+ 1) = Bn(t) + ntn−1, (7.2.7)

B′
n(t) = nBn−1(t). (7.2.8)

The functions Bn appear in quadratic approximation (one step Euler–McLau-
rin formula); for a discussion, see for instance [23, pp. 255–256].

For the formulas in the next two exercises, see for instance [201, p. 153].

Exercise 7.2.20. Let f be analytic in the open unit disk, with power series f(z) =∑∞
n=0 anz

n. Show that the function

C(z) =

{
1
z

∫
[0,z]

f(s)
1−sds, z 
= 0,

a0, z = 0,



7.3. Residues and the residue theorem 345

is analytic in the open unit disk, and show that its power series expansion at the
origin is equal to

C(z) =

∞∑
n=0

(∑n
j=0 aj

n+ 1

)
zn. (7.2.9)

The map which to the sequence (an)n∈N0 associates the sequence(∑n
j=0 aj

n+ 1

)
n∈N0

(7.2.10)

is called the Cesàro operator. See Question 16.1.9 for more information on this
operator.

We conclude with the following result. We have already proved in fact a
stronger result in Exercise 4.1.10. The strategy here is to argue by contradiction
and to use the power expansion at the origin of a function f satisfying the claim
of the exercise.

Exercise 7.2.21. Show that there is no function analytic in C \ {0} such that
f(z)2 = z.

We conclude this section with the series appearing in Exercise 3.3.2.

Exercise 7.2.22. Show the formulas

1

z
+

∞∑
n=1

(
1

z − n
+

1

n

)
= π cot(πz),

and ∑
n∈Z

1

(z − n)2
=

π2

sin2(πz)
.

7.3 Residues and the residue theorem

Suppose that, in Theorem 7.1.1, we have r0 = 0. The coefficient b1,

b1 =
1

2πi

∫
|ζ−z0|=r

f(ζ)dζ, (7.3.1)

is called the residue of f at the point z0. We set

b1 = Res(f, z0).

Various formulas are available to compute the residue without computing the
Laurent expansion. We mention in particular the following:
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Proposition 7.3.1. Let f and g be analytic in a neighborhood of the point z0 and
assume that z0 is a simple zero of g. Then,

Res

(
f

g
, z0

)
=

f(z0)

g′(z0)
. (7.3.2)

More generally, assume that z0 is a zero of order N of g, and write

g(z) = (z − z0)
Nc(z), (7.3.3)

where c is analytic in a neighborhood of z0 and does not vanish at z0. Then formula
(7.3.1) for the residue gives (where r is small enough)

Res

(
f

g
, z0

)
=

1

2πi

∫
|ζ−z0|=r

f(ζ)

c(ζ)

(ζ − z0)N
dζ

=

(
f

c

)(N−1)

(z0)

(N − 1)!
(7.3.4)

= lim
z→z0

(
f(z)(z − z0)

N

g(z)

)(N−1)

(N − 1)!

where we have used Cauchy’s formula for the derivative. To express (7.3.4) directly
in terms of g we remark that the relation (7.3.3) implies that

g(N+n)(z0)

(N + n)!
=

c(n)(z0)

n!
, n = 0, 1, . . . (7.3.5)

The case N = 2 gives the formula

Res

(
f

g
, z0

)
= −

f ′(z0)
g(2)(z0)

2
− f(z0)

g(3)(z0)

3!(
g(z0)

2!

)2 . (7.3.6)

When c(z) ≡ 1 we then get from (7.3.4) the formula

Res

(
f(z)

(z − z0)N
, z0

)
=

f (N−1)(z0)

(N − 1)!
. (7.3.7)

The following formula is a generalization of (5.3.3), and is used implicitly
in the computations of the integrals

∫
R

(
sin x
x

)p
dx for p ∈ N; see Exercises 5.3.3,

5.3.4, and the discussions after the proofs of these exercises. In the case of a simple
pole it can be found for instance in [45, Lemma 4, p. 105].
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Question 7.3.2. Let 0 be a pole of the function h, and assume that the principal
part in the Laurent expansion of h at the origin has only odd powers. Let cε be the
half-circle of radius ε, centered at the origin, and which lies in the upper half-plane,
and with negative orientation. Then

lim
ε−→0

∫
cε

h(z)dz = −iπRes(h, 0). (7.3.8)

Exercise 7.3.3. Compute the residue at the origin of

ez − 1

sin2 z
.

Let f be analytic for |z| > R for some R > 0. The residue at infinity is
defined to be

Res(f,∞) = −Res(
1

z2
f(1/z), 0).

We note that

Res(f,∞) = − 1

2πi
lim

R→∞

∫
|z|=R

f(z)dz. (7.3.9)

Indeed, for any r small enough,

Res(f,∞) = −Res(1/z2f(1/z), 0)

= − 1

2π

∫ 2π

0

f(e−it/r)e−it/rdt

= − 1

2π

∫ 2π

0

f(eit/r)eit/rdt

= − lim
R→∞

1

2π

∫ 2π

0

f(Reit)Reitdt

= − 1

2πi
lim

R→∞

∫
|z|=R

f(z)dz.

Exercise 7.3.4.

(a) Compute the residues of the function

nzn−1

zn − 1
,

at its poles, including infinity.

(b) Prove formula (3.3.1)

nzn−1

zn − 1
=

n−1∑
�=0

1

z − z�
,

where z0, . . . , zn−1 are the roots of unity of order n.
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Exercise 7.3.5. Let Γ be a simple closed contour, and f analytic in and on Γ, with
the possible exception of a finite number of poles inside Γ. Show that

1

2πi

∫
Γ

f ′(z)
f(z)

dz = Z − P, (7.3.10)

where Z (resp. P ) denotes the number of zeros (resp. poles) of f inside Γ, counting
multiplicity.

Hint. Apply the residue theorem to f ′

f .

Remark 7.3.6. We can now express condition (5.7.2) in terms of zeros and poles
when Γ is a smooth Jordan curve: The function f should have the same numbers
of poles and zeros (counting multiplicity) inside Γ (of course, these points do not
belong to the domain where the logarithm is looked for). For example consider
four different complex numbers a, b, c, d, such that

[a, c] ∩ [b, d] = [a, b] ∩ [c, d] = ∅,

and let

F (z) =
(z − a)(z − b)

(z − c)(z − d)
.

Then F has an analytic logarithm in C\{[a, c] ∪ [b, d]} but not in C\{[a, b] ∪ [c, d]}.
A simple closed curve around [a, c], and with [c, d] in its exterior (resp. [b, d], and
with [a, b] in its exterior) encloses one zero and one pole of F , while a simple closed
curve around [a, b] encloses two zeros and no poles of F . The same arguments allow
easily to find (non simply connected) domains in which a rational function, that
is (with obvious notations) a function of the form∏n

i=1(z − ai)
ni∏m

j=1(z − cj)mj

has, or has not, an analytic logarithm.

We now give a small variation on Exercise 7.3.5.

Exercise 7.3.7. Let Γ be a simple closed contour, and f analytic in and on Γ, with
the possible exception of a finite number of poles inside Γ. Let g be analytic in and
on Γ. Compute

1

2πi

∫
Γ

g(z)f ′(z)
f(z)

dz. (7.3.11)

As a corollary of Exercise 7.3.5 we have the following important result (the
converse statement is the content of Theorem 10.2.2 and of Exercise 10.2.1)

Exercise 7.3.8. Let f analytic in a neighborhood of the point z0, and assume that
z0 is a zero of order M > 1 of f . Show that there is no neighborhood of z0 where
f is one-to-one.
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For the partial fraction expansion appearing in the following exercise, see the
discussion following Exercise 12.1.2.

Exercise 7.3.9.

(a) Let P be a polynomial of degree n ≥ 2 and let z1, . . . , zk be the distinct roots
of P . Let

1

P (z)
=

A1

z − z1
+ · · ·+ Ak

z − zk
+ terms of the form

B

(z − zj)j�
, (7.3.12)

with j� ≥ 2 being the partial fraction expansion of 1/P . Show that

k∑
�=1

A� = 0. (7.3.13)

(b) Compute ∫
|z|=2

dz

(z1000 + 1)(z − 3)
.

Hint for (a). Compute
∫
|z|=R

dz
P (z) and let R → ∞.

More generally we have:

Exercise 7.3.10. Let f be a rational function. The sum of all the residues, included
at infinity, is equal to 0.

The fact that the sum of all the residues in the previous exercise is equal to
0 (or, as a particular case, (7.3.13)) is called the exactity relation; see [91, p. 173].

Exercise 7.3.11. Compute

1

2π

∫ 2π

0

eit + z

eit − z
eintdt, z ∈ D, n ∈ Z, (7.3.14)

and deduce a proof of formula (5.5.6) for polynomials.

It seems difficult to compute the sum (7.3.15) below by direct methods, that
is, using only real analysis.

Exercise 7.3.12. Compute

∞∑
n=0

(
2n
n

)
7n

. (7.3.15)



350 Chapter 7. Laurent Expansions, Residues, Singularities and Applications

Exercise 7.3.12 is taken from [176, Example 8.5, p. 195]. In a similar vein, we
have (see [28, p. 144], [18, Exercise 8.38, p. 261])

∞∑
n=0

(
2n
n

)
5n

=
√
5. (7.3.16)

More generally:

Exercise 7.3.13. Show that the sum

∞∑
n=0

(
2n
n

)
ζn

is the Laurent expansion of a function analytic in |ζ| > 4 and compute the sum in
closed form.

The same method allows us to solve the next exercise. That exercise appears
in [211, p. 328], and is solved there by a completely different method (using the
power series expansion of the real function x �→ sin(α arcsinx)).

Exercise 7.3.14. Show that

∞∑
n=0

(
2

27

)n(
3n
n

)
=

√
3 + 1

2
.

We conclude with a question taken from [75, pp. 276–277], and which is
conducive to the computation of sums of inverses of trigonometric functions. See
Remark 1.3.9.

Question 7.3.15 (see [75, Exercice 30.04, p. 276, Exercice 30.05, p. 277]). Let f(z)
be a rational function of cos z and sin z with no poles on the x and y axis, and
going out 0 as Im z → ∞. Let z1, . . . , zm be the poles of f with real part in (0, 2π).
Show that for n ∈ N,

n−1∑
k=0

f

(
2πk

n

)
= −n

2

m∑
u=1

Res
(
f(z) cot

nz

2
, zu

)
. (7.3.17)

As an application, compute the sums

n−1∑
k=1

1

sin2 kπ
n

and
n−1∑
k=0

1

1 + cos2 kπ
n

.
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7.4 Rouché’s theorem

Exercise 7.4.1. Let γ be a simple closed curve. Using Exercise 7.3.5 prove Rouché’s
theorem: If f and g are analytic in a neighborhood of the interior of γ, and if
|f(z)| > |g(z)| on γ, then f and f + g have the same number of zeros inside γ.

Hint. Compute
∫
γ

(
f ′

f − (f+g)′

f+g

)
dz.

For a nice application of Rouché’s theorem which is used in the proof of
Riemann’s mapping theorem, see Exercise 10.2.8. See also [45, Exercice 19, p.
116].

Exercise 7.4.2. If f is analytic in |z| ≤ 1.2 and if |f(z)| < 1 on |z| = 1, the
equation f(z) = zn has exactly n solutions in |z| < 1.

Exercise 7.4.3. By using Rouché’s theorem with F (z) = z4 and f(z) = z3 + 1,
show that all the roots of z4 + z3 + 1 = 0 are of modulus less than 3

2 (see [84, pp.
302–303]).

The following exercise is also taken from Flanigan’s book [84, p. 303]. It
consists in proving, for analytic functions, a very important theorem of topology,
Brouwer’s theorem, which is in fact true for continuous functions.

Exercise 7.4.4. Let F be analytic in |z| < 1.2 and map the closed unit disk into
the open unit disk. Show that F has a fixed point, i.e., there is z in the open unit
disk such that F (z) = z.

Hint. Apply Rouché’s theorem with f(z) = −2z and g(z) = F (z) + z.

Exercise 7.4.5. How many roots has the equation

z4 − 3z + 1 = 0

in the open unit disk?

Exercise 7.4.6. How many roots has the equation

z4 + z3 − 4z + 1 = 0

in the ring 1 < |z| < 3?

Exercise 7.4.7. Solve Exercise 6.8.13 using Rouché’s theorem.

Exercise 7.4.8. Prove that for real λ strictly greater than 1, there is a unique
solution to the equation

zeλ−z = 1

in the open unit disk.

We conclude with a result which allows to prove the open mapping theorem
(see Theorem 10.2.6 for a statement of the latter).
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Exercise 7.4.9. Let Ω be an open subset of C, and let f be analytic in Ω. Let z0 ∈ Ω
be a zero of order N of f .

(1) Show that there exists r0 > 0 with the following property: For every r ∈ (0, r0)
there exists ε > 0 such that, for every a ∈ B(f(z0), ε), the equation f(z) = a
has exactly N solutions.

(2) Show that f(B(z0, r)) contains B(f(z0), ε).

7.5 Solutions

Solution of Exercise 7.1.2. We consider only (a) and (e).

(a) We have

1

z(z − 1)
=

1

(1 + z − 1)(z − 1)

=
1

z − 1
·

∞∑
n=0

(−1)n(z − 1)n,

and hence the result.

(e) We write

sin z

z − 2
=

sin(z − 2 + 2)

z − 2

=
sin(z − 2) cos 2 + cos(z − 2) sin 2

z − 2

=

∑∞
p=0

(−1)p(z−2)2p+1

(2p+1)! cos 2 +
∑∞

p=0
(−1)p(z−2)2p

(2p)! sin 2

z − 2

and the rest is smooth sailing. �

Solution of Exercise 7.1.3. The function ez

z(z2+1) is analytic in C \ {0, i,−i}. Thus
the Laurent expansion at the origin converges in 0 < |z| < 1. The point z = 0 is
a simple pole, and so there is only one term corresponding to a negative power
of z in the Laurent expansion. The terms of the expansion can be computed as
follows. For |z| < 1 we have

ez

1 + z2
=

( ∞∑
n=0

zn

n!

)( ∞∑
p=0

(−1)pz2p

)

=
∞∑
j=0

zj

⎛⎜⎜⎝∑
p∈N0,
2p≤j

(−1)p

(j − 2p)!

⎞⎟⎟⎠ ,
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where we have used (4.4.14), and so, for 0 < |z| < 1,

ez

z(1 + z2)
=

∞∑
j=0

zj−1

⎛⎜⎜⎝∑
p∈N0

2p≤j

(−1)p

(j − 2p)!

⎞⎟⎟⎠ . �

Solution of Exercise 7.1.4. The MacLaurin series has radius of convergence equal
to 1 since z = 1 is a pole of the function z+1

z−1 . Moreover,

z + 1

z − 1
= 1− 2

1− z
= 1− 2

∞∑
n=0

zn

and hence the result.

In the domain |z| > 1 we have

z + 1

z − 1
= 1 +

2

z − 1

= 1 +
1

z

2

1− 1
z

= 1 +
1

z

∞∑
n=0

1

zn
,

and hence the result. �

Solution of Exercise 7.1.5. There are four possible cases:

|z| < 1, |z| > 1, |z − 1| < 1, and |z − 1| > 1.

The first and third cases are Taylor expansions. The other two cases are Laurent
expansions. We will only compute the Laurent expansion for the last case. We
have

1

z2(z − 1)
=

1

(z − 1 + 1)2(z − 1)

=
1

(z − 1)3
1(

1 + 1
(z−1)

)2
=

1

(z − 1)3

∞∑
n=0

(−1)n(n+ 1)

(z − 1)2n

=
∞∑
n=0

(−1)n(n+ 1)

(z − 1)2n+3
. �
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Solution of Exercise 7.1.6. It suffices to write

1

4z − z2
= − 1

z2(1− 4
z )

= − 1

z2

( ∞∑
�=0

4�

z�

)
= −

∞∑
�=0

4�

z�+2
. �

Solution of Exercise 7.1.7. The function fα defined by (4.4.9) with α = 1/2 is
analytic in the open unit disk. In view of (4.4.10) with α = β = 1/2, it satisfies

(f1/2(z))
2 = 1 + z, z ∈ D,

and thus
(f1/2(z

2))2 = 1 + z2, z ∈ D.

From the power series expansion of f1/2 (see (4.5.7)), the Laurent expansion of
the function (f1/2(z

2))/z is equal to

f1/2(z
2)

z
=

1 + 1
2z

2 − 1
2·4z

4 + 1·3
2·4·6z

6 + · · ·
z

=
1

z
+

1

2
z − 1

2 · 4z
3 +

1 · 3
2 · 4 · 6z

5 + · · · , z ∈ D \ {0} .

We now turn to the domain |z| > 1. Writing

1 + z2 = z2
(
1 +

1

z2

)
,

we see that the function g(z) = zf1/2(1/z
2) is analytic in |z| > 1 and satisfies

g(z)2 = 1 + z2 there. Using again (4.4.10) we get the Laurent expansion

zf1/2(1/z
2) = z +

1

2z
− 1

2 · 4z3 +
1 · 3

2 · 4 · 6z5 + · · · , |z| > 1. �

Solution of Exercise 7.1.8. Since the function f(z) = cosh
(
z + 1

z

)
is such that

f(z) = f(1/z), the Laurent expansion at the origin is symmetric:

an = bn−1, n = 1, 2, . . .

and so

cosh

(
z +

1

z

)
= a0 +

∞∑
n=1

an

(
zn +

1

zn

)
,

where

an =
1

2πi

∫
|z|=1

cosh
(
z + 1

z

)
zn+1

dz, n = 0, 1, 2, . . . .

But

an =
1

2π

∫ 2π

0

cosh(eit + e−it)e−intdt

=
1

2π

∫ 2π

0

cosh(2 cos t) cos(nt)dt
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since, by the change of variable t �→ t− π,

1

2π

∫ 2π

0

cosh(2 cos t) sin(nt)dt = (−1)n
1

2π

∫ π

−π

cosh(2 cos t) sin(nt)dt = 0.

The last equality follows from the fact that the function t �→ cosh(2 cos t) sin(nt)
is odd. �

It is easy to construct similar exercises for the Laurent expansion of exp(z+
1/z), or generally, of g(z + 1/z) for appropriate functions g.

Solution of Exercise 7.1.9. Consider the Laurent expansion at one of the singular
points, say z1. There is R1 > 0 such that

f(z) =

∞∑
�=0

a�(z − z1)
� +

∞∑
�=1

b�
(z − z1)�

, |z − z1| < R1.

The series
∑∞

�=1
b�

(z−z1)�
converges for all z 
= z1. This last fact implies that the

function

f1(z) =

∞∑
�=1

b�z
�

is entire. The function

F1(z) = f(z)− f1(1/(z − z1))

has a removable singularity at z1. If N = 1, the function F1 is entire and the result
is proved. Assume that N > 1. We reiterate the argument just done for f and z1
with now F1 and one of the remaining singularities, say z2, to obtain an entire
function f2 such that z2 is a removable singularity of the function

F2(z) = F1(z)− f2(1/(z − z2)) = f(z)− {f1(1/(z − z1)) + f2(1/(z − z2)} .

Reiterating this argument a finite number of times, we obtain the result. �

For a discussion of the above result, and much more information, see [139, § 7].

Solution of Exercise 7.1.12. The function
∫ 1

0
cos t
t−z dt is analytic in C \ [0, 1] while

the function
∫ 3

2
sin t
t−z dt is analytic in C \ [2, 3]. So f admits a Laurent expansion in

the asserted ring. Let 1 < |z| < 2. Then, for every t ∈ [0, 1] we have that |t/z| < 1
while |z/t| < 1 for every t ∈ [2, 3]. Thus

f(z) =

∫ 1

0

cos t

t− z
dt+

∫ 3

2

sin t

t− z
dt

= −1

z

∫ 1

0

cos t

1− t/z
dt+

∫ 3

2

sin t

t(1− z/t)
dt

= −
∞∑
n=0

∫ 1

0 tn cos t dt

zn+1
+

∞∑
n=0

zn
(∫ 3

2

tn−1 sin t dt

)
,
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where we have used Weierstrass’ theorem (Theorem 14.4.1) to interchange sums
and integrals. �

Solution of Exercise 7.1.13.

(a) We write

1

t− z
=

1

t− z0 − (z − z0)
= − 1

(z − z0)

(
1− t− z0

z − z0

) = −
∞∑
u=0

(t− z0)
u

(z − z0)u+1

for z such that |z − z0| > D. Plugging this expression in (7.1.3) and using Weier-
strass’ theorem one gets the required expansion.

(b) Let

d1 = min
t∈[0,1]

|z0 − t| and D1 = max
t∈[2,3]

|z0 − t|,

and

d2 = min
t∈[2,3]

|z0 − t| and D2 = max
t∈[0,1]

|z0 − t|.

Note that d1 or d2 may be equal to 0 (but not simultaneously). The function∫ 1

0
cos t
t−z dt has a Taylor expansion in B(z0, d1) when d1 > 0 and a Laurent expansion

in |z − z0| > D1. Similarly, the function
∫ 3

2
sin t
t−z dt has a Taylor expansion in

B(z0, d2) when d2 > 0 and a Laurent expansion in |z − z0| > D2. The number of
Laurent expansions centered at z0 depends on the respective positions of [d1, D1]
and [d2, D2]. A number of cases may occur (in the list below we do not mention
symmetric cases, where the role of the indices 1 and 2 is interchanged):

(a) d1 = 0 < D1 < d2 < D2. Then, there are Laurent expansions in D1 < |z| <
d2 and |z| > D2.

(b) d1 = 0 < d2 ≤ D1 < D2. Then, there is a Laurent expansion in |z| > D2.

(c) d1 = 0 < d2 ≤ D2 < D1. Then, there is a Laurent expansion in |z| > D1.

(d) 0 < d1 < D1 < d2 < D2 Then, there is Taylor expansion in B(0, d1) and
Laurent expansions in D1 < |z| < d2 and |z| > D2.

(e) 0 < d1 < d2 ≤ D1 < D2. Then, there is a Taylor expansion in B(0, d1) and
a Laurent expansion in |z| > D2.

(f) 0 < d1 < d2 ≤ D2 < D1. Then, there is a Taylor expansion in B(0, d1) and
a Laurent expansion in |z| > D1.

We will leave to the reader the computations of these various expansions. �

Solution of Exercise 7.1.14. For |z| > 1 we have that

|t/z| < 1 for t ∈ [0, 1],
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and therefore,

F (z) =

∫ 1

0

m(t)dt

z2(1− t/z)2

=
1

z2

∫ 1

0

m(t)

( ∞∑
�=0

(�+ 1)(t/z)�

)
dt

=

∞∑
�=0

F�

z�+2
,

where

F� = (�+ 1)

∫ 1

0

t�m(t)dt, � = 0, 1, . . . . �

Solution of Exercise 7.1.15. The function has a primitive if and only if∫
T

sin z

zp
dz = 0.

By Cauchy’s formula, we have∫
T

sin z

zp
dz = 2πi

sin(p−1)(z)

(p− 1)!

∣∣
z=0

.

This last number is equal to 0 if and only if p− 1 is even, that is, if and only if p
is odd.

Writing

sin z

zp
=

∞∑
�=0

(−1)�z2�+1−p

(2�+ 1)!
,

we see that the primitives of sin z
zp in C \ {0} can be written as

F (z) = K +

∞∑
�=0

(−1)�z2�−p+2

(2�+ 1)!(2�− p+ 2)
, K ∈ C. �

Solution of Exercise 7.2.2. Assume that z0 is a zero of order N of f . Then, in a
neighborhood V of z0 we have

f(z) = (z − z0)
Nh(z),

where h is analytic in V and h(z0) 
= 0. Thus

fM (z) = (z − z0)
NMhM (z), z ∈ V. (7.5.1)

Since hM is analytic in V and hM (z0) 
= 0, equation (7.5.1) expresses exactly that
z0 is a zero of order NM of fM .

The case of a pole is treated by considering the function 1/f . �
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Solution of Exercise 7.2.3. We assume that f is not identically equal to 0 in Ω
(the case f(z) ≡ 0 is trivial). Let g(z) = f(z)− (z − z0)f

′(z). We have g(z0) = 0.
Moreover,

g′(z) = f ′(z)− f ′(z)− (z − z0)f
′′(z) = −(z − z0)f

′′(z).

Hence, g′(z0) = 0, and g has a zero of order at least 2 at z = z0. Thus, h(z) =
g(z)/(z−z0)

2 has a removable singularity at z = z0, and has an analytic extension
to all of Ω. We still call h this extension. By Cauchy’s theorem,∫

γ

h(z)dz = 0

for every closed path γ in Ω. When the image of γ does not contain z0, this last
integral can be divided into two integrals to obtain∫

γ

f(z)

(z − z0)2
dz −

∫
γ

(z − z0)f
′(z)

(z − z0)2
dz = 0,

which is exactly (5.5.4). �

Solution of Exercise 7.2.4. We have

f(z) =
z

sin z

(
cos z − 1

z

)
.

The point z = 0 is a removable singularity of z/ sin z since

lim
z→0

sin z

z
= 1.

(To check this, note that the limit is equal to sin′(0).) It is also a removable
singularity of

cos z − 1

z
=

z

2
− z3

4!
+ · · · , z 
= 0.

This last equation also shows that the origin is a first-order zero of (cos z − 1)/z.
Thus z = 0 is a removable singularity of f , and moreover is a zero of order 1 of
this function. �

Solution of Exercise 7.2.5. The various factors composing f vanish at

(i) z = 2πk, k ∈ Z (for (cos z − 1)3),

(ii) z = ±
√
kπ and z = ±i

√
kπ, k = 0, 1, 2, . . . (for sin(z2)),

(iii) z = k, k ∈ Z (for sin(πz)),

(iv) z = 2iπk, k ∈ Z (for (ez − 1)),

(v) z = ±i (for (z2 + 1)).
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The only difficulty is really z = 0, which appears in (i)–(iv). The origin is a zero
of order 2 of the function cos z − 1, a zero of order 2 of the function sin z2 and a
simple zero of the functions sin(πz) and ez − 1. Thus we have

(cos z − 1)3 = z6g1(z), sin(z2) = z2g2(z), sin(πz) = zg3(z), ez − 1 = zg4(z),

where the gj denote functions analytic in a neighborhood of the origin (in fact
they are entire functions) not vanishing at the origin. Thus we can write

f(z) =
z6g1(z)z

2g2(z)zg3(z)

zg4(z)(z2 + 1)
= z8g(z), (7.5.2)

where g is analytic in a neighborhood of the origin and not vanishing there. Thus,
z = 0 is a removable singularity of f , which moreover is a zero of order 8.

For k = 1, 2, . . ., the derivative of sin(z2) does not vanish at z = ±
√
kπ or

z = ±i
√
kπ, and thus the corresponding point is a simple zero of f . For k =

±1,±2, . . ., z = k is a simple zero of f and z = 2iπk is a simple pole of f . Finally
z = ±i are simple poles. We prove only this last assertion. We have

f(z) =
h(z)

z − i
,

where

h(z) =
(cos z − 1)3 sin(z2) sin(πz)

(ez − 1)(z + i)

is analytic in a neighborhood of i and does not vanish there. So z = i is a simple
pole. �
Remark 7.5.1. The function g appearing in (7.5.2) is in fact analytic in |z| < 1.
Explain why.

Solution of Exercise 7.2.6. We will consider only the function h(z). Its (possibly
removable) singularities are at the points where sinπz vanishes, that is for z ∈ Z.
The integers are therefore either poles or removable singularities (these last ones
may turn out to be zeroes of h). The numerator in the expression for h,

h(z) =
z3(z − 1)6

sin5(πz)
,

vanishes at z = 0 and z = 1. We therefore distinguish three cases:

(a) z = n with n 
∈ {0, 1}. Then z is a simple zero of sinπz and therefore (see
Exercise 7.2.2), it is a zero of order 5 of sin5(πz). Since the numerator of h does
not vanish at these points, they are poles of order 5 of h.

(b) z = 0. We have

lim
z→0

z2h(z) = lim
z→0

( z

sinπz

)5
=

1

π5

= 0,

and thus z = 0 is a pole of order 2 of h.
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(c) z = 1. We have

lim
z→1

sinπz

z − 1
= π cosπz|z=1 = −π.

Therefore,

lim
z→1

z − 1

h(z)
= lim

z→1

(z − 1)5

sin5(πz)
=

1

(−π)5

= 0.

Thus z = 1 is a pole of order 1 of 1/h, and a removable singularity, which moreover
is a zero of order 1, of h. �

Solution of Exercise 7.2.7. The function f is analytic in C\{0}, and therefore has
a Laurent expansion around z = 0 in that set. Using the expansion for sin z we
have

f(z) =
z − z3

3! +
z5

5! − · · ·
z4

=
1

z3
− 1

3!
· 1
z
+

1

5!
· z + · · · . (7.5.3)

Hence, z = 0 is a pole of order 3. �

Note. The function g(z) = z3f(z) = sin z
z has a removable singularity at 0 and

g(0) = 1 
= 0.

Solution of Exercise 7.2.8. Since

lim
z→0

z2

f(z)
= lim

z→0

( z

sin z

)3
= 1,

the origin is a pole of order 2 of 1/f and hence a zero of order 2 of f .

A different and longer proof would go as follows: The function f is analytic
in C \ {0}, and therefore has a Laurent expansion around z = 0 in that set. Using
the formula

sin3 z =
3

4
sin z − 1

4
sin 3z

and the power series expansion of sin z we obtain

f(z) =

3
4

(
z − z3

3! +
z5

5! − · · ·z4
)
− 1

4

(
3z − (3z)3

3! + (3z)5

5! − · · ·
)

z

=
z3 + z5 1

4
1
5!(3 − 35) + · · ·

z

= z2 + z4
1

4

1

5!
(3− 35) + · · ·. (7.5.4)

Hence z = 0 is a removable singularity for f , which has an analytic extension to
all of C. By abuse of notation we still denote by f this extension. Furthermore
(7.5.4) expresses that z = 0 is a zero of order 2. �
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Solution of Exercise 7.2.9. The origin is a pole of the function(
8 sin(z2)

z50

)100

=

(
8100

(
sin(z2)

z2

)100
)
(z−48)100

since it is a removable singularity of the function sin(z2)
z2 . It is thus enough to prove

that it is an essential singularity of

h(z) = cos e(
1
z2

+z2).

Let z be such that

z2 +
1

z2
= ln(πn), i.e., z4 − z2(lnπn) + 1 = 0.

Thus

z2 =
(lnπn)±

√
(lnπn)2 − 4

2
.

The choice

z2 =
(ln πn)−

√
(lnπn)2 − 4

2
=

2

ln(πn) +
√
(ln(πn))2 − 4

leads to the sequence

zn =

√
2√

ln(πn) +
√
(ln(πn))2 − 4

,

which goes to 0 as n goes to infinity. Since h(zn) = (−1)n, the limit does not exist
and z = 0 is an essential singularity. �

Solution of Exercise 7.2.10. We will show that the function has no limit as z → 0.
Let

zn =
1

ln(nπ)
, n = 1, 2, . . . .

Then e1/zn = nπ and sin(e1/zn) = (−1)n. This shows that the limit does not exist,
and so z = 0 is an essential singularity. �

Such examples are classical; see for instance [75, p. 187].

Solution of Exercise 7.2.11. We first note that, in a punctured neighborhood of
z0, we have

g(z) =
h(z)

(z − z0)N
, (7.5.5)

where N ∈ N and h is analytic in a neighborhood of z0, and such that h(z0) 
= 0.
We will now show that, in the three cases, the point z0 is an essential singularity.
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The proof goes by contradiction. Consider first the function fg and assume that
z0 is not an essential singularity of fg. Then, in a neighborhood of z0, we have,
for z 
= z0,

f(z)g(z) = H(z)(z − z0)
M ,

where M ∈ Z and H is analytic in a neighborhood of z0, and such that H(z0) 
= 0.
Taking into account (7.5.5) we have

f(z) =
H(z)

h(z)
(z − zo)

M+N ,

in a punctured neighborhood of z0. Since H/h is an analytic neighborhood of z0,
the above expression contradicts the fact that z0 is an essential singularity of f .

The case of f/g is treated in the same way. We now focus on f+g. Assuming
that z0 is not an essential singularity of f + g we have, with the same notation as
above,

f(z) +
h(z)

(z − z0)N
= H(z)(z − z0)

M

for z in a punctured neighborhood of z0. It follows that

f(z) = − h(z)

(z − z0)N
+H(z)(z − z0)

M ,

and z0 will be, depending on M and N , either a pole or a removable singularity
of f , which cannot be by assumption. �

Solution of Exercise 7.2.12. Assume that 0 is a removable singularity of f2. Then,
|f |2 would be bounded in a punctured neighborhood of 0, and so |f | would be
bounded in a punctured neighborhood of 0, and thus 0 would be a removable
singularity of f . Assume now that 0 is a pole of f2. Then limz→0 |f |2(z) = +∞,
and thus also limz→0 |f |(z) = +∞, that is z = 0 would be a pole of f .

Another phrasing is as follows: Assume by contradiction that 0 is not an
essential singularity of f . Then there exist an integer n ∈ Z and a function g
analytic in a neighborhood of the origin such that g(0) 
= 0 such that

f2(z) = zng(z).

If n ≥ 0 it follows that |f |2, and hence |f |, is bounded near the origin, and thus
z = 0 is a removable singularity of f . If n < 0, the same argument applies to
z−2nf(z)2 = z−ng. Thus z = 0 would be a removable singularity of z−nf , and
thus z = 0 would then be a pole of f . �

Solution of Exercise 7.2.13. By definition of a pole of order N , we can write in a
punctured neighborhood of z = a,

f(z) =
h(z)

(z − a)N
, (7.5.6)
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where h is analytic in a neighborhood of z = a, and is such that h(a) 
= 0.
Differentiating both sides of (7.5.6), we obtain

f ′(z) =
(z − a)h′(z)−Nh(z)

(z − a)N+1
.

This expresses the fact that z = a is pole of order N + 1 of f ′, since the function

g(z) = (z − a)h′(z)−Nh(z)

is analytic in a neighborhood of z = a, and is such that g(a) = −Nh(a) 
= 0. �

Solution of Exercise 7.2.14. Without loss of generality we will assume that z0 = 0.
There is M ∈ N and g analytic in some neighborhood V of 0 such that g(0) 
= 0
and is finite, and

f(z) =
g(z)

zM
.

We note that M is uniquely defined by the condition g(0) 
= 0 and finite. Further-
more,

f ′(z) =
zg′(z)−Mg(z)

zM+1
, z ∈ V \ {0} .

Assume now by contradiction that 0 is not an essential singularity of the function
ef . Then, there exist a unique N ∈ Z and h analytic in some neighborhood of 0,
which may be assumed equal to V , such that h(0) is finite and h(0) 
= 0 and

ef(z) = zNh(z), z ∈ V. (7.5.7)

Differentiating both sides of this equation we get

f ′(z)ef(z) = zNh′(z) +NzN−1h(z),

and hence

ef(z) = zM+N zh′(z) +Nh(z)

−Mg(z) + zg′(z)

in a possibly smaller neighborhood of 0. The function

w(z) =
zh′(z) +Nh(z)

−Mg(z) + zg′(z)

is analytic in a neighborhood of the origin, and

w(0) = −Nh(0)

Mg(0)

= 0.

This contradicts the uniqueness of the power of z in (7.5.7). �
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Remark 7.5.2. In a possibly quicker way one can use the logarithmic derivative
(see formula (4.2.3)) to get from (7.5.7)

f ′(z)
f(z)

=
h′(z)
h(z)

+
N

z
,

and so
g′(z)
zM

− Mg(z)

zM+1
=

h′(z)
h(z)

+
N

z
,

leading to a contradiction since M ≥ 1.

Solution of Exercise 7.2.15. Since f is odd there are only odd powers in the Lau-
rent expansion at the origin, and we have

f(z) =
α

z2
+

∞∑
n=0

αnz
2n =

α

z2

(
1 +

∞∑
n=0

αn

α
z2n+2

)
,

where α 
= 0. The above expression is valid for 0 < |z| < 1. Differentiating both
sides we obtain

f ′(z) =
−2α

z3
+

∞∑
n=1

2nαnz
2n−1 = −2α

z3

(
1−

∞∑
n=1

nαn

α
z2n+2

)
.

Moreover,

(f(z)− α0)
3 =

α3

z6

(
1 + 3

α1

α
z4 + 3

α2

α
z6 + g(z)

)
=

α3

z6
+

3α2α1

z2
+ 3α2α2 +

α3g(z)

z6
,

where the function g(z) is a convergent power series with powers greater than or
equal to 8, and

(f ′(z))2 =
4α2

z6

(
1− 2

α1

α
z4 − 2

2α2

α
z6 + h(z)

)
=

4α2

z6
− 8αα1

z2
− 16αα2 +

4α2h(z)

z6
,

where the function h(z) is a convergent power series with powers greater than or
equal to 8. Therefore,

(f ′(z))2 − 4

α
(f(z)− α0)

3 = −20αα1

z2
− 28αα2 + k(z),

where the function k(z) is a convergent power series with powers greater than or
equal to 2. Thus, the function

(f ′(z))2 − 4

α
(f(z)− α0)

3 + 20α1(f(z)− α0) + 28αα2



7.5. Solutions 365

has a removable singularity at z = 0, which moreover is a zero. In view of the
condition (7.2.1), this function has no pole at the points m+ ni and therefore is
entire. Since it is biperiodic, it is a constant (see Exercise 6.8.8) and thus vanishes
identically. (7.2.2) follows by developing

(f(z)− α0)
3 = f3(z)− 3α0f

2(z) + 3α2
0f(z)− α3

0. �

The Weierstrass function (see Exercise 6.8.8) is an example of a function with
the properties of the preceding exercise.

Solution of Exercise 7.2.16. f has a power series expansion at the origin

f(z) = f0 + f1z + · · ·

with radius of convergence equal to infinity. The point 0 is a pole of

f(1/z) = f0 +
f1
z

+ · · · , (7.5.8)

and so there is only a finite number of coefficients in the Taylor series which are
not equal to 0. Thus f is a polynomial. �

We note that the converse statement in the previous result also holds. Every
non-constant polynomial is an entire function with a pole at infinity.

Solution of Exercise 7.2.17. z = 0 is a removable singularity of the function z/
(ez − 1) since

lim
z→0

z

ez − 1
=

1

limz→0
ez−1

z

=
1

1
= 1.

The zeros of ez − 1 different from the origin and of smallest modulus are
z = ±2πi. Thus, the Taylor expansion of f around z = 0 has radius of convergence
R = 2π. Since, for z 
= 0,

z

ez − 1
=

1

1 + z
2! +

z2

3! + · · ·
,

we have, for |z| < 2π, ( ∞∑
n=0

zn

(n+ 1)!

)( ∞∑
n=0

Bn

n!
zn

)
= 1.

We now compare the coefficients in zn on both sides of the above equality for
n = 0, 1, . . .. We have B0 = 1. Using the convolution formula for the coefficients
of the product of two power series (see Exercise 4.4.7), we obtain that the nth
coefficient in the power series expansion of the above product is equal to∑

j+k=n

Bj

j!(k + 1)!
=

n∑
j=0

Bj

j!(n+ 1− j)!
=

1

(n+ 1)!

n∑
j=0

(
n+ 1
j

)
Bj .
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Thus, for n ≥ 1,
n∑

j=0

(
n+ 1
j

)
Bj = 0.

The above equation leads in particular to

B1 +
B0

2
= 0, n = 1,

B2

2
+

B1

2
+

B0

6
= 0, n = 2,

and in particular we have

B1 = −1

2
, B2 =

1

6
.

Finally we have that B3 = B5 = · · · = 0 since the function

z

ez − 1
−
(
1− z

2

)
=

z

2

ez + 1

ez − 1
− 1

is even. �

Solution of Exercise 7.2.19. The function z
ez−1 has a removable singularity at the

origin, and therefore there are functions B0(t), B1(t), . . . such that (7.2.5) holds in
|z| < 2π. Using Cauchy’s formula and Weierstrass’ theorem (see Theorem 14.4.1)
we have

Bn(t)

n!
=

1

2πi

∫
|z|=1

(
zetz

ez − 1

)
zn+1

dz

=

∞∑
p=0

tp

p!

1

2πi

∫
|z|=1

zp−n

ez − 1
dz

=

n∑
p=0

tp

p!

Bn−p

(n− p)!
,

since, by definition of the Bernoulli numbers and in view of Cauchy’s formula (for
p < n) and Cauchy’s theorem (for p ≥ n),

1

2πi

∫
|z|=1

zp−(n+1)

ez − 1
dz =

{
Bn−p

(n−p)! , if p < n+ 1,

0, if p ≥ n+ 1.

Equation (7.2.6) follows. The proof of (7.2.7) goes as follows:

Bn(t+ 1)

n!
=

1

2πi

∫
|z|=1

(
ze(t+1)z

ez − 1

)
zn+1

dz
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=
1

2πi

∫
|z|=1

(
zetz(ez − 1 + 1)

ez − 1

)
zn+1

dz

=
1

2πi

∫
|z|=1

(
zetz

ez − 1
+ zetz

)
zn+1

dz

=
1

2πi

∫
|z|=1

(
zetz

ez − 1

)
zn+1

dz +
1

2πi

∫
|z|=1

zetz

zn+1
dz

=
Bn(t)

n!
+

tn−1

(n− 1)!
,

and hence the result.

The proof of (7.2.8) involves the interchange of derivation and integral in the
integral

1

2πi

∫
|z|=1

(
zetz

ez − 1

)
zn+1

dz.

By rewriting explicitly this integral as

1

2π

∫ 2π

0

eiuete
iu

(eeiu − 1)einu
du

one sees that the conditions of Theorem 14.6.1 are in force, and one can write

B′
n(t)

n!
=

1

2πi

∫
|z|=1

(
z2etz

ez − 1

)
zn+1

dz

=
1

2πi

∫
|z|=1

(
zetz

ez − 1

)
zn

dz

=
Bn−1(t)

(n− 1)!
,

and hence B′
n(t) = nBn−1(t) for n = 1, 2, . . .. �

Solution of Exercise 7.2.20. The function f(s)
1−s is analytic in the open unit disk,

and it has a power series expansion centered at the origin, and with radius of
convergence at least 1. See Exercise 4.4.7. Furthermore, since

1

1− s
=

∞∑
n=0

1 · sn, s ∈ D,
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formula (4.4.14) from that same exercise, or the formula in Exercise 4.4.9, leads to

f(s)

1− s
=

∞∑
n=0

⎛⎝ n∑
j=0

aj

⎞⎠ sn.

It follows that ∫
[0,z]

f(s)

1− s
ds =

∞∑
n=0

∑n
j=0 aj

n+ 1
zn+1. (7.5.9)

Therefore the point z = 0 is a removable singularity of the function C(z), and its
power series expansion in the open unit disk is given by (7.5.9). �

Solution of Exercise 7.2.21. Assume by contradiction that such a function exists.
Then, |f(z)|2, and hence |f(z)| is bounded in a neighborhood of the origin. Hence,
z = 0 is a removable singularity of f , and f can be extended to an analytic function
in a neighborhood of the origin by f(0) = 0. Differentiating f(z)2 = z at the origin
we obtain

2f(0)f ′(0) = 1,

which leads to a contradiction. �

See also [31, p. 140, 2.4.4].

Remark 7.5.3. There is also no function in 1 < |z| < 2 such that f(z)2 = z. See
Exercise 5.8.5.

For a related problem, see also Exercise 5.4.3.

Solution of Exercise 7.2.22. We have already seen in Exercise 3.3.2 that the series
converges. From the proof there the convergence is uniform on compact sets, and
hence the series defines an analytic function, with a simple pole with residue 1 at
the points z = 0, 1, 2, . . .. The idea is to check that the function

q(z)
def.
=

1

z
+

∞∑
n=1

(
1

z − n
+

1

n

)
− π cot(πz)

is entire and bounded. By Liouville’s theorem, it is a constant, which is then
easily computed. The singularities of q consists of N0. Using formula (7.3.2) for
the residue, we have, for n ∈ N0,

Res(π cot(πz), n) = Res

(
π
cos(πz)

sin(πz)
, n

)
=

π cos(πz)

π cos(πz)
= 1.

Therefore q has only removable singularities and extends to an entire function,
which we still call q. To show that q is bounded it is enough, by the maximum
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modulus principle, to show that q is uniformly bounded on the boundary of the
squares with nodes

(±1± i)

(
N +

1

2

)
.

It is then readily seen that
lim
z→0

q(z) = 0.

We will skip the details and refer to [91, p. 189] for more information.

The second formula follows from the first by differentiation. �

Solution of Exercise 7.3.3. Write

ez − 1

sin2 z
=

z(1 + z/2 + z2/3! + · · · )
z2(1 − z2/3! + z4/5! + · · · )2

=
g(z)

z
,

where

g(z) =
1 + z/2 + z2/3! + · · ·

(1 − z2/3! + z4/5! + · · · )2

is analytic in a neighborhood of the origin, and g(0) = 1 
= 0. Thus the origin
is a simple pole, and by the formula (7.3.2) to compute residues, the residue is
g(0) = 1.

Another way amounts to rewriting

ez − 1

sin2 z
=

ez − 1

z(
sin z

z

)2

z

,

and using formula (7.3.2) with

f(z) =

⎧⎨⎩
ez − 1

z
, z 
= 0,

1, z = 0,
and g(z) =

⎧⎪⎨⎪⎩
(
sin z

z

)2

z, z 
= 0,

0, z = 0.

�

Solution of Exercise 7.3.4. The function

zn−1

zn − 1

has simple poles at the points

z� = e
2πi�
n , � = 0, 1, . . . , n− 1,
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(that is, at the roots of unity of order n) and takes value 0 at infinity. Therefore
it can be written as

zn−1

zn − 1
=

n−1∑
�=0

A�

z − z�
.

By the formula (7.3.2) for computing the residue, we have

Res

(
nzn−1

zn − 1
, z�

)
=

nzn−1

nzn−1

∣∣
z=z�

= 1, � = 0, 1, . . . , n− 1,

and this proves formula (3.3.1). Recall that the residue at infinity is given by

Res(f,∞) = −Res (1/z2f(1/z), 0).

Since here
1

z2
f

(
1

z

)
=

n

z(1− zn)
,

we have

Res

(
nzn−1

zn − 1
,∞
)

= −n,

and we have, in accordance with Exercise 7.3.9, that the sum of all the residues is
equal to 0. �

Solution of Exercise 7.3.5. Let α be a zero of f with multiplicity n. Then, in some
neighborhood V of α we have

f(z) = (z − α)nh(z),

where h is analytic in V and is such that h(α) 
= 0. Therefore, for z 
= α, and in a
possibly smaller neighborhood, and using the formula (4.2.3) for the logarithmic
derivative if need be, we have

f ′(z)
f(z)

=
n

z − α
+

h′(z)
h(z)

, (7.5.10)

so that

Res

(
f ′

f
, α

)
= n.

Similarly, let β be a pole of f of multiplicity m. Then, in some neighborhood W
of β, we have

f(z) =
g(z)

(z − β)m
,

where g is analytic in W and such that g(β) 
= 0. Therefore, for z 
= β, and in a
possibly smaller neighborhood, and here too possibly using the formula (4.2.3) for
the logarithmic derivative, we have

f ′(z)
f(z)

=
−m

z − β
+

g′(z)
g(z)

,
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so that

Res

(
f ′

f
, β

)
= −m.

The result is obtained by summing on all zeros and poles of f in the interior
of Γ. �

Solution of Exercise 7.3.7. We compute the residues of g(z)f ′(z)
f(z) at a zero and a

pole of f and use the notation of the solution of the previous exercise. In the case
of a pole α of multiplicity n, and using (7.5.10) we have

f ′(z)g(z)
f(z)

=
ng(z)

z − α
+

g(z)h′(z)
h(z)︸ ︷︷ ︸

analytic in a neigborhood of α

, (7.5.11)

so that, in view of formula (7.3.2) we have

Res

(
f ′(z)g(z)

f(z)
, α

)
= ng(α).

Similarly, in the case of a pole β of multiplicity m, we have

Res

(
f ′(z)g(z)

f(z)
, β

)
= −mg(β).

It follows that the integral (7.3.11) is equal to

N∑
j=1

njg(zj)−
M∑
j=1

mjg(wj),

where we have denoted by z1, . . . , zN the zeros of f inside Γ, and by n1, . . . , nN

their respective multiplicities, and by w1, . . . , wM the poles of f inside Γ, and by
m1, . . . ,mM their respective multiplicities. �

Solution of Exercise 7.3.8. By assumption, there exist r0 > 0 and a function h
analytic and not vanishing in |z − z0| < r0 such that f(z) = (z − z0)

Mh(z). In
particular

f ′(z)
f(z)

=
M

z − z0
+

h′(z)
h(z)

, 0 < |z − z0| < r0.

Thus for r ∈ (0, r0),∫
|z−z0|=r

f ′(z)
f(z)

dz =

∫
|z−z0|=r

M

z − z0
dz +

∫
|z−z0|=r

h′(z)
h(z)

dz

= 2πM
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and so, by Exercise 7.3.5, the equation f(z) = f(z1) has exactly M solutions
(counting multiplicity) for every z1 ∈ B(z0, r) since the function

k �→ 1

2πi

∫
|z−z0|=r

f ′(z)
f(z)− k

dz

is continuous and integer-valued in a neighborhood of the origin �

Solution of Exercise 7.3.9. (a) Multiply both sides of (7.3.12) by z, and let z → ∞.
Since degP ≥ 2 we obtain the desired relation.

(b) The function

f(z) =
1

(z1000 + 1)(z − 3)

has 1000 poles, say z1, . . . , z1000, inside the circle |z| = 2, and one pole outside. By
(7.3.13) we have

1000∑
n=1

Res(f, zn) = −Res(f, 3) = − 1

31000 + 1
.

Thus, using the residue theorem and this last expression, we obtain∫
|z|=2

1

(z1000 + 1)(z − 3)
dz = 2πi

1000∑
n=1

Res(f, zn) = −2πiRes(f, 3) = − 2πi

31000 + 1
.

�

Solution of Exercise 7.3.10. We write f as a sum of the form (7.3.12) and of a
polynomial p. For any R > 0 we have (for instance because p has a primitive and
the integration is over a closed path)∫

|z|=R

p(z)dz = 0

and so for R large enough (that is, strictly larger that maxj=1,...,k |zj|) we have

1

2πi

∫
|z|=R

f(z)dz =

k∑
j=1

Aj .

To conclude we let R → ∞ and use formula (7.3.9). �

Solution of Exercise 7.3.11. We first note that (7.3.14) can be rewritten as

1

2π

∫ 2π

0

eit + z

eit − z
eintdt =

1

2πi

∫
|s|=1

s+ z

s− z
sn−1ds.

For n ≥ 1, Cauchy’s formula applied to the function s �→ (s+z)sn−1 gives the value
2zn for the integral. For n ≤ −1 the exactity relation (see Exercise 7.3.10) and
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the residue theorem give the value 0 for the integral since the residue at infinity
is 0. For n = 0 we have

s+ z

s− z

1

s
= −1

s
+

2

s− z
,

and the residue theorem gives the value 1 for the integral. Thus

1

2π

∫ 2π

0

eit + z

eit − z
eintdt =

⎧⎪⎨⎪⎩
2zn, n ≥ 1,

1, n = 0,

0, n ≤ −1.

If follows that, for a polynomial p(z) = a0 + · · ·+ aNzN we have:

1

2π

∫ 2π

0

eit + z

eit − z

(
p(eit) + p(eit)

2

)
dt

=
1

2π

∫ 2π

0

eit + z

eit − z

(
a0 + a0 + a1e

it + · · · aNeiNt + a1e
−it + ·+ aNe−iNt

2

)
dt

=
a0 + a0

2
+

N∑
n=1

anz
n

= p(z)− i Im p(0). �

Solution of Exercise 7.3.12. From the equality

(1 + z)n =

n∑
k=0

(
n
k

)
zk

we see that

(1 + z)n

z�+1
=

n∑
k=0

(
n
k

)
z�+1−k

.

Recall now that ∫
|z|=1

dz

z�+1−k
= 0

unless �+1− k = 1, that is, unless k = �. Then the integral is equal to 2πi. Thus,

1

2πi

∫
|z|=1

(1 + z)n

z�+1
dz =

n∑
k=0

(
n
k

)
1

2πi

∫
|z|=1

dz

z�−k+1
=

(
n
�

)
. (7.5.12)

For z on the unit circle we have∣∣∣∣ (1 + z)2

7z

∣∣∣∣ < 4

7
< 1.
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Thus:

∞∑
n=0

(
2n
n

)
7n

=
1

2πi

∞∑
n=0

1

7n

∫
|z|=1

(1 + z)2n

zn+1
dz

=
1

2πi

∫
|z|=1

( ∞∑
n=0

(
(1 + z)2

7z

)n
)

dz

z
(by Weierstrass’ theorem)

=
1

2πi

∫
|z|=1

1

1− (1 + z)2

7z

dz

z

=
7

2πi

∫
|z|=1

dz

7z − (1 + z)2

=
7

2πi

∫
|z|=1

dz

5z − 1− z2
.

We apply the residue theorem to compute this last integral. The zeroes of the
equation 5z − 1− z2 = 0 are z± = (5±

√
21)/2. Thus

1

2πi

∫
|z|=1

dz

5z − 1− z2
= − 1

2πi

∫
|z|=1

dz

(z − z−)(z − z+)

= −Res

(
1

(z − z−)(z − z+)
, z−

)
= − 1

z− − z+
=

1√
21

,

and so the sum is equal to 7/
√
21:

∞∑
n=0

(
2n
n

)
7n

=
7√
21

=

√
7

3
.

Note that we could also just apply Cauchy’s formula to the function 1
z−z+

to

compute the last integral. �

Solution of Exercise 7.3.13. We follow the solution of the previous exercise. Take

|ζ| > 4. Then, (1+z)2

ζ ∈ D for z ∈ T. We have (where we use Weierstrass’ theorem

to go from the first line to the second line):

∞∑
n=0

(
2n
n

)
ζn

=
1

2πi

∞∑
n=0

1

ζn

∫
|z|=1

(1 + z)2n

zn+1
dz
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=
1

2πi

∫
|z|=1

∞∑
n=0

(
(1 + z)2

ζz

)n
dz

z

=
1

2πi

∫
|z|=1

1

1− (1 + z)2

ζz

dz

z

=
ζ

2πi

∫
|z|=1

dz

ζz − (1 + z)2

=
ζ

2πi

∫
|z|=1

dz

(ζ − 2)z − 1− z2
.

Consider the equation
z2 + z(2− ζ) + 1 = 0.

Its zeros are

z =
ζ − 2±

√
ζ2 − 4ζ

2
.

We now wish to give an analytic meaning to this expression. More precisely, we
wish to show that there exists an analytic square root to the function ζ2 − 4ζ in
|ζ| > 4, equal to

√
x2 − 4x for x real of modulus bigger than 4. Writing

ζ2 − 4ζ = ζ2
(
1− 4

ζ

)
,

we see that the function ζf1/2(ζ), where the function f1/2 has been defined in
(4.4.9), answers the question. Thus, with

ζ± =
ζ − 2± ζf1/2(4/ζ)

2

we have

∞∑
n=0

(
2n
n

)
ζn

=
ζ

2πi

∫
|z|=1

dz

(ζ − 2)z − 1− z2

=
ζ

2πi

∫
|z|=1

dz

−(z − ζ+)(z − ζ−)
.

We have ζ− ∈ D and therefore the above integral is equal to

ζ Res

(
1

−(z − ζ+)(z − ζ−)
, ζ−

)
=

ζ

ζ+ − ζ−
=

1

f1/2(4/ζ)
. �

We note that we retrieve for ζ = 7 and ζ = 5 the result in Exercise 7.3.12
and formula (7.3.16) respectively.



376 Chapter 7. Laurent Expansions, Residues, Singularities and Applications

Solution of Exercise 7.3.14. From (7.5.12) we have(
3n
n

)
=

1

2πi

∫
|z|=1

(1 + z)3n

zn+1
dz.

Hence, and using Weierstrass’ theorem to justify the interchange of sum and inte-
gration,

∞∑
n=0

(
2

27

)n(
3n
n

)
=

∞∑
n=0

(
2

27

)n
(

1

2πi

∫
|z|=1

(1 + z)3n

zn+1
dz

)

=
1

2πi

∫
|z|=1

∞∑
n=0

(
2(1 + z)3

27z

)n
dz

z

=
1

2πi

∫
|z|=1

1

1− 2(1 + z)3

27z

dz

z

=
1

2πi

∫
|z|=1

27dz

27z − 2(1 + z)3
.

The polynomial p(z) = 27z − 2(1 + z)3 vanishes at z = 2. To find its other two
roots, one can divide it by z − 2 directly; one may also proceed as follows: Write

27z − 2(1 + z)3 = 27(z − 2)− 2((1 + z)3 − 33)

= 27(z − 2)− 2(1 + z − 3)((1 + z)2 + (1 + z)3 + 32)

= (z − 2)(27− 2(1 + z)2 − 6(1 + z)− 18)

= (z − 2)(−2z2 − 10z + 1).

In any event the other two zeros of p(z) are

z± =
5± 3

√
3

−2
.

The only zero inside the unit circle is

z− =
3
√
3− 5

2

and the residue of 27/p(z) at this point is equal to

Res

(
27

p(z)
, z−

)
=

27

(z− − 2)(−4z− − 10)

=
27

3
√
3− 9

2
(−6

√
3)

=
1√
3− 1

=

√
3 + 1

2
,

and this ends the proof. �
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Solution of Exercise 7.4.1. Since |f(z)| > |g(z)| on γ, we note that the functions f
and f + g do not vanish on γ, and the integrals in the hint given after the exercise
make sense. Following this hint, we write∫

γ

(
f ′(z)
f(z)

− (f + g)′(z)
f(z) + g(z)

)
dz =

∫
γ

f ′(z)g(z)− f(z)g′(z)
f(z)(f(z) + g(z))

dz

= −
∫
γ

(
g

f

)′
(z)

1 +
g

f
(z)

dz

where we have divided both numerator and denominator by f2 on the right side.
Thus, using Weierstrass’ theorem,∫

γ

(
f ′(z)
f(z)

− f ′(z) + g′(z)
f(z) + g(z)

)
dz = −

∫
γ

(
g

f

)′
(z)

( ∞∑
n=0

(−1)n
(
g(z)

f(z)

)n
)
dz

= −
∫
γ

( ∞∑
n=0

(−1)n
(
g

f

)′
(z)

(
g(z)

f(z)

)n
)
dz

= −
∞∑
n=0

(−1)n
∫
γ

(
g

f

)′
(z)

(
g(z)

f(z)

)n

dz.

Each of the functions (
g

f

)′(
g

f

)n

, n = 0, 1, 2, . . .

has a primitive. Hence, by Theorem 5.2.1, each of the integrals∫
γ

(
g

f

)′
(z)

(
g(z)

f(z)

)n

dz = 0, n = 0, 1, 2, . . . .

Therefore ∫
γ

(
f ′

f
− (f + g)′

f + g

)
dz = 0,

and f and f + g have the same number of zeros inside γ by Exercise 7.3.5 since
they have no poles there. �

Solution of Exercise 7.4.2. On the unit circle we have

| − f(z)| < 1 = |zn|.

Rouché’s theorem asserts then that the functions zn and zn − f(z) have the same
numbers of zeros in the open unit disk. This concludes the proof since zn has a
zero of order n at the origin. �
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Solution of Exercise 7.4.3. For |z| = 3/2 we have

|f(z)| ≤ 33

23
+ 1 =

35

8
<

81

16
= |z4| = |F (z)|.

Rouché’s theorem asserts then that the functions F and F + f have the same
number of zeros in |z| < 3/2. Since F has a zero of order 4 there, the function
F (z) + f(z) = z4 + z3 + 1 has four roots in |z| < 3/2. By the fundamental
theorem of algebra it has altogether four roots in C, and hence all its roots are in
|z| < 3/2. �

Solution of Exercise 7.4.4. With f and F as in the hint we have, for |z| = 1,

|f(z) + g(z)| = |F (z)− z| < 2 = |f(z)|,

and hence, by Rouché’s theorem, f and f + g have the same number of zeroes in
the open unit disk. �

Solution of Exercise 7.4.5. Take f(z) = 1− 3z and g(z) = z4. We have

|f(z)| ≥ |3z| − 1 = 2,

so that

|g(z)| = 1 < 2 ≤ |f(z)|.

Thus, f(z) + g(z) = z4 − 3z + 1 has exactly one zero in |z| ≤ 1. �

Solution of Exercise 7.4.6. Let g(z) = z4 + z3 and f(z) = −4z+1. For |z| = 1 we
have

|g(z)| ≤ |z|4 + |z|3 = 2 < 3 = |4z| − 1 ≤ | − 4z + 1| = |f(z)|,

and so the equation z4 + z3 − 4z + 1 = 0 has one solution in the open unit disk.
On the other hand, for |z| = 3 we have, with F (z) = z4 and G(z) = z3 − 4z + 1,

|G(z)| ≤ |z|3 + 4|z|+ 1 = 33 + 4 · 3 + 1 = 40 < 81 = |F (z)|.

Thus the equation F (z) + G(z) = 0 has four roots in |z| < 3, and hence three
roots in the ring 1 < |z| < 3. �

Solution of Exercise 7.4.7. We follow the solution of Exercise 6.8.13 up to (b). We
then consider f(z) = 3z2 and g(z) = z4 + z + 1. Then, on |z| = 1.1 we have

|g(z)| < |f(z)|,

and so p has two roots inside |z| < 1.1. But under (b), it has four roots there (on
the unit circle), and we obtain a contradiction. �
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Solution of Exercise 7.4.8. It suffices to apply Rouché’s theorem for f(z) = zeλ

and g(z) = ez. Since λ > 1 we have, for |z| = 1,

|g(z)| = |ez| ≤ e|z| = e < eλ = |f(z)|.

Here we have used that

|ez| =
∣∣∣∣∣
∞∑

n=0

zn

n!

∣∣∣∣∣ ≤
∞∑
n=0

|z|n
n!

= e|z|. �

Solution of Exercise 7.4.9. To ease the notation we consider the case z0 = 0. By
definition of a zero of order N , there exist r0 > 0 and h analytic in B(0, r0) and
not vanishing there, such that

f(z) = zNh(z), z ∈ B(0, r0).

Let r ∈ (0, r0) and let
ε = min

|z|=r
|zNh(z)|.

We note that ε > 0. Let a ∈ B(0, ε). Rouché’s theorem applied to f(z) = zNh(z)
and g(z) = −a insures that the equation f(z) = a has exactly N solutions in
B(0, r) since the only zero of f there is z = 0, and it has order N .

The second item is a direct consequence of the first item. �



Chapter 8

Computations of
Definite Integrals Using
the Residue Theorem

We have seen in Chapter 5 how the fundamental theorem of calculus for line
integrals, or Cauchy’s theorem, allow us to compute (in general real) definite
integrals such as the Fresnel integrals. In that chapter no residues are computed.
The approach in the present chapter is different. The main player is the residue
theorem. There are numerous kinds of definite integrals which one can compute
using this theorem, and in the present chapter we do not try to be exhaustive.

8.1 Integrals on the real line of rational functions

For real values of a and b, item (1) of the first exercise, and the second exercise,
are taken from [75], which is a mine of problems. For item (2) of Exercise 8.1.1, see
also Exercise 3.1.13. Recall that we have denoted by Cr the open right half-plane;
see (1.1.43).

Exercise 8.1.1.

(1) Let a, b ∈ Cr. Compute ∫
R

dx

(x2 + a2)(x2 + b2)
,

first for a 
= b and then for a = b.

D. Alpay, A Complex Analysis Problem Book, 
DOI 10.1007/978-3-319-42181-0_8 

381© Springer International Publishing AG 2016
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(2) Show that for every choice of N and points a1, . . . , aN ∈ Cr, the N × N
Hermitian matrix with (�, j)-entry equal to

1

a� + aj

is non-negative (see Definition 16.3.1 for the latter).

The integral
∫
R

dx
x2+1 is easy to compute. Its generalizations∫

R

dx

x2n + 1
and

∫
R

dx

(x2 + 1)n
, n = 1, 2, . . . ,

are a bit more difficult.

Exercise 8.1.2. Compute ∫
R

dx

x2n + 1
n = 1, 2, . . . , (8.1.1)

and ∫
R

x2dx

x2n + 1
n = 2, 3, . . . .

We note the formula ∫
R

x2p

x2n + 1
dx =

π
n

sin (2p+1)π
2n

(8.1.2)

for p < n. See [153, p. 313], [200, Exercise 17, p. 188], [211, p. 267] for instance.
These integrals diverge for n ≤ p. For n = p, the right side of (8.1.2) is negative,
while the left side is equal to +∞.

For computing the integral (8.1.1) using another method see [184, p. 236]
and [175, p. 110]. The method in these two books shows in fact that the formula∫ ∞

0

dx

xp + 1
=

π

p sin π
p

(8.1.3)

is valid for any integer p ≥ 2 and not only for even p. See also Exercise 8.3.1 in
the next section. The proof given there works for all integers greater than or equal
to 2 and requires us to compute only one residue. Formula (8.1.3) is even true for
any real p > 1; see [80, equation (9), p. 165], and Exercise 8.3.2 below. We give
another computation of (8.1.3) in Exercise 8.3.3, valid for p ∈ {2, 3, 4, . . .}, and
computing p residues.

Question 8.1.3. Interpret (8.1.3) in terms of analytic continuation.
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Exercise 8.1.4. Compute ∫
R

dx

(x2n + 1)2
, n = 1, 2, . . . .

More generally:

Exercise 8.1.5. Using the monotone convergence theorem applied to the series

∞∑
p=1

tp

(x2n + 1)p
, t ∈ (0, 1)

compute the integrals ∫
R

dx

(x2n + 1)p
, p = 3, 4, . . . .

Exercise 8.1.6. Compute ∫
R

dx

(x2 + 1)n
, n = 1, 2, . . . .

Exercise 8.1.7. Show that ∫
R

xdx

(x2 + x+ 1)2
= − 2π

3
√
3
.

Exercise 8.1.8. Compute∫
R

dx

(x2 + 1)(x− 2i)2(x − 3i)3(x− 4i)4
.

Remark 8.1.9. In fact it is not needed to use the residue theorem to compute

integrals of the form
∫
R

p(x)
q(x)dx, where p and q are polynomials such that deg q ≥

deg p+2 and assuming moreover that q has no zeros on the real line. It is enough
to use the partial fraction expansion of p/q; see Remarks 7.1.10 for the latter.
More precisely, let α1, . . . , αN be the distinct zeros of q and, for u = 1, . . . , N , let
au be the coefficient of the factor 1

x−αu
in the partial fraction expansion of p/q

(of course au is the residue of p/q at αu). In [211, p. 266] on can find the formula
(proved using only the partial fraction expansion)∫

R

p(x)

q(x)
dx = iπ

N∑
u=1

e(αu)au,

where e(αu) is the sign of the imaginary part of αu. One gets the same formula as
using the residue theorem, as is verified using the exactity relation (see (7.3.13)
and Exercise 7.3.10).
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8.2 Integrals on the real line of rational functions
multiplied by a trigonometric function

We now compute integrals of the form∫
R

p(x)

q(x)
sin axdx or

∫
R

p(x)

q(x)
cos axdx,

where a ∈ R and where p and q are now polynomials with real coefficients, and
still with deg q ≥ deg p+ 2.

We begin with a simple computation, which has an important consequence.
For the notion of positive definite function, see Definition 16.3.11. The function
e−|t−s| appearing in the statement is the covariance function of a Gaussian process
called the Ornstein–Uhlenbeck process.

Exercise 8.2.1.

(1) Compute ∫
R

eitx

x2 + 1
dx, t ∈ R.

(2) Show that the kernel

f(t− s) = e−|t−s|, t, s ∈ R,

is positive definite.

Exercise 8.2.2. Let CR denote the closed upper half-circle with radius R. Show that

lim
R→∞

∫
CR

cos z

z2 + 1
dz

exists, and compute its value.

Exercise 8.2.3. Compute ∫
R

cos ax

x4 + 1
dx, a ≥ 0.

The following exercise is taken from [75, Exercise 13.28, p. 146].

Exercise 8.2.4. Show that the function f defined by

f(z) =

∫
R

cosu

(u2 + 1)(u− z)2
du (8.2.1)

is analytic in C+ = Im z > 0 and has an analytic extension to Im z > −1.
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Rational functions p/q which appeared in the previous exercises were such
that deg q ≥ deg p + 2, and without poles on the real line. We consider now the
case when simple poles are allowed on the real line. Then, the integrals of the
preceding type ∫

R

p(x)

q(x)
eimxdx,

where deg q ≥ deg p+ 2, but where now q is allowed to have simple poles on the
real line, can be computed as above, with the principal value taken at the real
poles. Let b ∈ R be a simple pole of q. Let γε be the contour

γε(t) = b+ εei(π−t), t ∈ [0, π].

Then we recall that

lim
ε→0

∫
γε

p(z)

q(z)
eizmdz = −πi

p(b)

q(b)
eimb.

Indeed, write q(z) = (z − b)h(z), where h(b) 
= 0. We have∫
γε

p(z)

q(z)
eizmdz =

∫ π

0

p(b+ εei(π−t))

h(b+ εei(π−t))εei(π−t)
ei(mb+mεei(π−t))(−i)εei(π−t)dt

= −i

∫ π

0

p(b+ εei(π−t))

h(b+ εei(π−t))
ei(mb+εei(π−t))dt

→ −iπ
p(b)

h(b)
eimb as ε → 0.

This last expression can also be rewritten as

−πiRes

(
p(z)

q(z)
eimz, b

)
. (8.2.2)

Exercise 8.2.5. Compute ∫
R

dx

(x− a)(x2 + 1)
, a ∈ R. (8.2.3)

Not exactly of the form discussed above, but in the same vein, we have:

Exercise 8.2.6. Let p, q ∈ N0. Compute∫
R

cos(px)− cos(qx)

x2
dx.
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8.3 Integrals of rational functions on a half-line

The integrals alluded to in the title are of the form∫ ∞

0

r(x)dx

where the function r(x) is rational, and the degree of its denominator is larger
than the degree of the numerator by at least 2. We begin with a simple case,
which is a continuation of Exercise 8.1.2.

Exercise 8.3.1. Compute for n = 2, 3, . . . the integral∫ ∞

0

dx

xn + 1
. (8.3.1)

In fact, it is not more difficult to compute the previous integral when n is
replaced by any real p > 1.

Exercise 8.3.2. Prove that, for any real p > 1,∫ ∞

0

dx

xp + 1
=

π

p

1

sin(πp )
.

The computations in the solutions of the previous two exercises were ad hoc,
and did not indicate a general method to compute integrals on a half-line. We now
describe a general method to tackle such integrals. One considers contours of the
following form: The contour is composed of four parts:

(i) γ1,r,R,ε is the interval

γ1,r,R,ε(t) = iε+ t, t ∈ [r, R].

(ii) γ2,R,ε is the part of the circle of radius
√
R2 + ε2 and center 0, which starts

at iε+R and ends at −iε+R.

(iii) γ3,r,R,ε is the interval

γ1,r,R,ε(t) = −iε+ (R+ r − t), t ∈ [r, R].

(iv) γ4,r,ε is the part of the circle of radius
√
ε2 + r2 which connects the points

iε+ r and −iε+ r with parametrization

γ4,r,R,ε(t) =
√
ε2 + r2eit, t ∈ [θ, 2π − θ],

where θ ∈ [0, π/2] is such that

tan θ =
ε

r
.
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One then obtains the following formulas, which appear for instance in [81,
p. 178] (and in most chapters on computations in integrals in complex analysis
books). We leave the proofs as an exercise to the reader.∫ ∞

0

r(x)dx = −
∑
z 
=0

Res(r(s) ln s, z), (8.3.2)

∫ ∞

0

xαr(x)dx =
2πi

1− e2iπα

∑
z 
=0

Res(sαr(s), z). (8.3.3)

In these expressions, for

s = ρeiθ, with 0 < θ < 2π,

we set:

sα = exp {α(ln ρ+ iθ)} and ln s = ln ρ+ iθ.

As a first application we give yet another computation of the integral (8.3.1),
where n ∈ {2, 3, 4, . . .}.

Exercise 8.3.3. Compute (8.3.1) using formula (8.3.2).

We now use formula (8.3.2) to compute the integral appearing in the solution
of Exercise 4.1.8; see (4.5.2) there.

Exercise 8.3.4. Compute, for θ ∈ (0, 2π),∫ ∞

0

du

u2 − 2u cos θ + 1
.

Integrals on (−∞, 0] are treated in a similar way, and the reader will easily
adapt formulas (8.3.2)–(8.3.3). One now takes the determination of the logarithm
with θ ∈ (−π, π), and we get∫ 0

−∞
r(x)dx =

∑
z 
=0

Res(r(s) ln s, z),

∫ 0

−∞
|x|αr(x)dx =

2πi

e−iπα − eiπα

∑
z 
=0

Res(sαr(s), z),

(8.3.4)

where

sα = eα(ln |s|+iθ) for s ∈ C \ (−∞, 0].

One can also make a real change of variable x �→ −x to go from one set of formulas
to the other.

As an application we have the following:
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Exercise 8.3.5. Let α ∈ (0, 1). Prove that for z ∈ C \ (−∞, 0],

zα =
sinπα

π

∫ 0

−∞
|x|α

{
1

x− z
− x

x2 + 1

}
dx+ cos

πα

2
. (8.3.5)

We remark the following: Let z = ρeiθ, where θ ∈ (−π, π). For α ∈ (0, 1) the
function

zα = ρα(cosαθ + i sinαθ)

is analytic in C \ (−∞, 0], and has a positive imaginary part in the open upper
half-plane; when α ∈ (−1, 0), it is the function −zα which has a positive imaginary
part in the open upper half-plane. These functions belong therefore to the Pick
class, and admit a representation of the form (5.5.21), multiplied by the constant
i if α ∈ (0, 1) and −i if α ∈ (−1, 0). This was verified directly in the preceding
exercise. For α = 1

2 we get back the formula in [67, p. 27] (note that
√
λ should

be
√
|λ| in the formula there).

The following two examples are taken from [116, p. 418].

Question 8.3.6. Let r ∈ (0, 1). Show that∫ ∞

0

tr

1 + t2
dt =

π

2 cos
(
πr
2

) , (8.3.6)∫ ∞

0

tr

(1 + t)2
dt =

πr

sin(πr)
(8.3.7)

Remark 8.3.7. It follows from (8.3.6) and (8.3.7) that the functions

K1(r, s) =
π

2 cos
(

π(s+r)
2

) , (8.3.8)

K2(r, s) =
π(r + s)

sin(π(r + s))
(8.3.9)

are positive definite in [0, 1/2); see Definition 16.3.11. The first one is moreover
a complete Nevanlinna–Pick kernel, meaning that 1/K1 has one positive square.
This can be seen from

1

K1(t, s)
=

2

π

(
cos
(r
2

)
cos
(s
2

)
− sin

(r
2

)
sin
(s
2

))
.

See [CAPB2, p. 61 and p. 366] for a discussion of complete Nevanlinna–Pick ker-
nels, and connections with a theorem of Kaluza (see [133] and [114, Theorem 22,
p. 68] for the latter).

Exercise 8.3.8. Compute, for z ∈ C \ (−∞, 0],

g(z) =

∫ 0

−∞

{
1

x− z
− x

x2 + 1

}
dx. (8.3.10)
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A quick solution would be as follows: We have that

g′(z) =
∫ 0

−∞

dx

(x− z)2
,

which in turn is equal to

g′(z) =
−1

x− z

∣∣0
−∞ =

1

z
,

and hence g(z) = ln z, up to an additive constant. This constant is shown to be
equal to 0 by computing g(i). Indeed,

g(i) =

∫ 0

−∞

xi+ 1

(x− i)(x2 + 1)
dx =

∫ 0

−∞

i

x2 + 1
dx = i

π

2
= ln i.

We leave it to the reader to check this formula using the residue theorem.

We conclude this section with two integrals on [0,∞) which require a dif-
ferent, and simpler approach. To prove them it suffices to differentiate both sides
and see that equality holds. See [32, p. 76]. In the second formula, Γ denotes the
Gamma function.

Exercise 8.3.9. Show that, for Re z > 0, the formulas

ln(1 + z) =

∫ ∞

0

(1− e−zu)
e−u

u
du, (8.3.11)

zα =
α

Γ(1− α)

∫ ∞

0

(1− e−zu)
du

uα+1
, (8.3.12)

where α ∈ (0, 1), hold.

8.4 Integrals of rational expressions of the
trigonometric functions

Exercise 8.4.1. Show that, for a ∈ (−1, 1),∫ 2π

0

dt

1 + a cos t
=

2π√
1− a2

. (8.4.1)

In relation with the preceding exercise, see also Exercises 6.3.5 and 5.5.7.
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More precisely, an application of Weierstrass’ theorem to (8.4.1) leads to

2π√
1− a2

=

∫ 2π

0

dt

1 + a cos t

=

∞∑
n=0

(−a)n
∫ 2π

0

cosn tdt

=

∞∑
p=0

a2p
∫ 2π

0

cos2p tdt,

since the integrals corresponding to odd values of n vanish. Hence

2π√
1− a2

=

∞∑
p=0

a2p
∫ 2π

0

cos2p tdt.

On the other hand it is well known that (see, e.g., [204, p. 135])

1√
1− a2

= 1 +
1

2
a2 +

1 · 3
2 · 4a

4 +
1 · 3 · 5
2 · 4 · 6a

6 + · · · .

Hence we return to the formula (3.9.6)

∫ 2π

0

cos2p tdt = 2π

(
2p
p

)
22p

,

since, as is shown by an easy induction,(
2p
p

)
22p

=
1 · 3 · · · (2p− 1)

2 · 4 · · · (2p) .

Exercise 8.4.2. Show that ∫ 2π

0

dt

1 + 8 cos2 t
=

2π

3
.

(See [184, p. 217]).

8.5 Other examples

The residue theorem can also be used in numerous other instances to derive for-
mulas. For example, it can be used to sum series of the form∑

Z

f(n) and
∑
Z

(−1)nf(n)
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where f is meromorphic in C, and subject to some supplementary hypothesis. We
present here an example, and prove, without resorting to Poisson’s summation
formula, the formula (see [40, (10), p. 357])

2a
∑
n∈Z

1

a2 + (θ − 2πn)2
=

1− r2

1 + r2 − 2r cos θ
, θ ∈ R, (8.5.1)

where a and r are real and related by r = e−a. We use the formula (see [36, (7.3),
p. 129]) ∑

n∈Z

f(n) = −
∑

zk, pole of f

Res(πf(z) cot(πz), zk), (8.5.2)

where f is a function meromorphic in C, whose poles are not in Z, and such that
the sum

∑
n∈Z f(n) converges. We take

f(z) =
1

a2 + (θ − 2πz)2
,

which has two poles, namely z+ = θ+ia
2π and z− = θ−ia

2π . Using (8.5.2) we see that
the sum is equal to

−
{
Res

(
π

cot(πz)

a2 + (θ − 2πz)2
, z+

)
+Res

(
π

cot(πz)

a2 + (θ − 2πz)2
, z−

)}

= −π

{(
cot(πz)

4π(2πz − θ)

)
z=z+

+

(
cot(πz)

4π(2πz − θ)

)
z=z−

}

= − 1

4ia

{
cot

(
θ + ia

2

)
− cot

(
θ − ia

2

)}

= − 1

4ia

cos( θ+ia
2 ) sin( θ−ia

2 )− cos( θ−ia
2 ) sin( θ+ia

2 )

sin( θ−ia
2 ) sin( θ+ia

2 )
.

We now remark that

cos

(
θ + ia

2

)
sin

(
θ − ia

2

)
− cos

(
θ − ia

2

)
sin

(
θ + ia

2

)
= − sin(ia).

To check this equality, it suffices to note that the derivative of the function on
the left (with respect to θ) is identically 0, and hence the function is equal to
its value at the origin. This formula, together with trigonometric equalities and
the connections between trigonometric and hyperbolic functions (see (1.2.14) and
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(1.2.15)) leads to

− 1

4ia

cos( θ+ia
2 ) sin( θ−ia

2 )− cos( θ−ia
2 ) sin( θ+ia

2 )

sin( θ−ia
2 ) sin( θ+ia

2 )

=
1

4ia

sin ia

(sin( θ2 ))
2(cos( ia2 ))

2 − (cos( θ2 ))
2(sin( ia2 ))

2

=
sinha

4a
(
(sin( θ2 ))

2(cosh(a2 ))
2 − (cos( θ2 ))

2(sinh(a2 ))
2
)

=
sinh a

4a(cosh2(a/2)− cos2(θ/2))

=
sinh a

2a(cosha− cos θ)
.

To conclude we note that

sinh a =
1/r − r

2
=

1− r2

2r
and cosha =

1/r + r

2
=

1 + r2

2r
.

Inserting these formulas in the last equation above we obtain (8.5.1). We refer to
(3.9.15) for a related formula. Using the second formula in (3.9.15) we thus obtain,
when r < 1, ∑

n∈Z

2a

a2 + (θ − 2πn)2
= (1− r2)

∞∑
n=1

rn−1 sin(nθ)

sin θ
.

We now turn to the computation of the Gaussian integral, promised before
Exercise 5.2.7. We follow [91, Exercise 17, p. 193], [27, p. 15]. The latter quotes
[187] who himself quotes [137]. For another proof using the residue theorem, see
[42, p. 381]. Admittedly we do not provide the motivation for the choice of the
given contour and function.

Exercise 8.5.1. For R > 0, consider the parallelogram ΓR with vertices −R, R,
R + (1 + i)

√
π
2 and −R + (1 + i)

√
π
2 . Compute the Gaussian integral using the

residue theorem for the function

g(z) =
e−z2

1 + e−z(1+i)
√
2π

(8.5.3)

along this contour.

Let f be a function in L∞(R) (or, continuous and bounded on the real line
if you want to avoid measurable functions). Then, the function

F (z) =
1

2πi

∫
R

f(u)du

(u− z)2
(8.5.4)

is analytic in C \ R. We now want to inquire when is F analytic across the real
axis.
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Exercise 8.5.2. Assume that f is entire, and that f is bounded in the closed upper
half-plane. Then, the function F+ defined by (8.5.4) in C+ has an extension to the
whole of C. Is this extension equal to the restriction F− of F to the open lower
half-plane C−?

Exercise 8.5.3. Let ε > 0 and let f be analytic in the open half-plane Im z > −ε,
and assume that

lim
R→∞

∫ π

0
|f(Reit)|dt

R
= 0, (8.5.5)

and ∫
R

|Re f(x)|
x2 + 1

dx < ∞. (8.5.6)

(These conditions hold in particular when f is bounded in the closed upper half-
plane.)

(a) Show that for all z ∈ C+ it holds that

f(z) = i Im f(i) +
1

πi

∫
R

{
1

x− z
− x

x2 + 1

}
Re f(x)dx. (8.5.7)

(b) Assume that Re f(x) ≥ 0 on the real line. Show that

Re f(z) ≥ 0, z ∈ C+,

and show that the inequality is strict, unless f ≡ 0.

Exercise 8.5.4. Compute for z ∈ C \ R,

g(z) =
1

2πi

∫
R

{
1

x− z
− x

x2 + 1

}
dx.

8.6 Solutions

Solution of Exercise 8.1.1. (1) We note that ia and ib are in the open upper half-
plane C+. Let

f(z) =
1

(z2 + a2)(z2 + b2)
.

We first suppose a 
= b. Then∫
R

dx

(x2 + a2)(x2 + b2)
= 2πi

{
Res(f, ia) + Res (f, ib)

}
= 2πi

{
1

2ia(−a2 + b2)
+

1

2ib(a2 − b2)

}
=

π

ab(a+ b)
.
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Now assume a = b. Then

f(z) =
1

(z2 + a2)2
=

1

(z + ia)2(z − ia)2
,

and we have

Res(f, ia) =

(
1

(z + ia)2

)′ ∣∣
z=ia

= − 2

(z + ia)3
∣∣
z=ia

= − 2

(2ia)3
=

−i

4a3
.

Thus, ∫
R

dx

(x2 + a2)2
= 2πiRes(f, ia) = 2πi

−i

4a3
=

π

2a3
, (8.6.1)

which coincides with the formula

π

ab(a+ b)

for a = b.

(2) Set fa(x) =
a

x2+a2 . We have, for a, b ∈ Cr,

1

a+ b
=

∫
R

fa(x)fb(x)dx. (8.6.2)

Therefore, for N ∈ N, a1, . . . , aN ∈ Cr and c1, . . . , cN ∈ C we have

N∑
�,j=1

c�cj
a� + aj

=

∫
R

(
N∑
�=1

c�fa�
(x)

)⎛⎝ N∑
j=1

cjfaj (x)

⎞⎠dx ≥ 0. (8.6.3)

�

We remark that (8.6.2) expresses 1
a+b

as an inner product, and so we can

conclude already from this equation that 1
a+b

is a positive definite kernel. We

leave it to the student to check that the inequality in (8.6.3) is strict if all the a�
are different and if at least one of the c� 
= 0. Furthermore, the choice a� = �− 1

2
leads to: For every N the matrix⎛⎜⎜⎜⎜⎝

1 1
2

1
3 · · · 1

1+N
1
2

1
3

1
4 · · · 1

2+N

1
N+1

1
N+2 · · · 1

2N+1

⎞⎟⎟⎟⎟⎠ > 0, (and not only ≥ 0).

Such a matrix, constant on the anti-diagonals, is an example of a Hankel matrix.
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Solution of Exercise 8.1.2. We will show that the integral is equal to∫
R

dx

x2n + 1
=

π
n

sin π
2n

. (8.6.4)

(See [45, Exercice 23, p. 117].) The zeroes of z2n + 1 are

z� = exp i

(
π

2n
+

2�π

2n

)
, � = 0, 1, . . . , 2n− 1.

The choices � = 0, . . . , n− 1 correspond to the zeroes in the upper half-plane and
so, by the residue theorem,∫

R

dx

x2n + 1
= 2πi

{
n−1∑
�=0

Res

(
1

z2n + 1
, z�

)}

= 2πi

{
n−1∑
�=0

1

2nz2n−1
�

}

= −2πi

{
n−1∑
�=0

z�
2n

}
,

where we multiplied the denominator and numerator of the �th term by z� and
used z2n� = −1 to go from the penultimate line to the last line.

We have

n−1∑
�=0

z� = e(iπ)/2n
n−1∑
�=0

(e(iπ)/n)�

= e(iπ)/2n
1− e(iπn)/n

1− e(iπ)/n

=
2

−2i sin( π
2n )

,

and hence the result.

The computation of the second integral is done in much the same way: By
the residue theorem,∫

R

x2dx

x2n + 1
= 2πi

{
n−1∑
�=0

Res

(
z2

z2n + 1
, z�

)}

= 2πi

{
n−1∑
�=0

z2�
2nz2n−1

�

}

= −2πi

{
n−1∑
�=0

z�
3

2n

}
.
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Furthermore, we have

n−1∑
�=0

z3� = e(3iπ)/2n
n−1∑
�=0

(e(3iπ)/n)�

= e(3iπ)/2n
1− e(3iπn)/n

1− e(3iπ)/n

=
2

−2i sin(3π2n )

and hence ∫
R

x2dx

x2n + 1
=

π
n

sin 3π
2n

. (8.6.5)

�

We note the following: Letting n → ∞ the integral (8.6.4) tends to 2. On the
other hand the functions

fn(x) =
1

x2n + 1

tend pointwise to the function

f(x) =

⎧⎪⎨⎪⎩
1, x ∈ (−1, 1),
1
2 , x = ±1,

0, |x| > 1,

and
fn(x) ≤ f(x).

The dominated convergence theorem then allows the interchange of limit and
integral in

lim
n→∞

∫
R

dx

x2n + 1
=

∫
R

(
lim
n→∞

1

x2n + 1

)
dx =

∫ 1

−1

dx = 2.

Similarly, (8.6.5) tends to 2/3 as n → ∞. This is consistent with

lim
n→∞

∫
R

x2dx

x2n + 1
=

∫
R

(
lim
n→∞

x2

x2n + 1

)
dx =

∫ 1

−1

x2dx =
2

3
,

where here too, the dominated convergence theorem allows us to interchange limit
and integral.

Solution of Exercise 8.1.4. We use the notation of the solution of the previous
exercises. As above we have∫

R

dx

(x2n + 1)2
= 2πi

{
n−1∑
�=0

Res

(
1

(z2n + 1)2
, z�

)}
,
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but now the points z� are zeros of multiplicity of the denominator. We set g(z) =
(z2n+1)2 and use formula (7.3.6) to compute the residue. Setting f = 1 in (7.3.6)
we have:

Res

(
1

(x2n + 1)2
, z�

)
= −

g(3)(z�)

3!(
g(2)(z�)

2!

)2 , � ∈ {0, . . . , n− 1} . (8.6.6)

g(2) = 2u(2)u+ 2(u(1))2

g(3) = 2u(3)u+ 6u(2)u.

Since u(z�) = 0 we obtain

g(2)(z�) = 2
(
2nz2n−1

�

)2
= 8n2z−2

�

and

g(3)(z�) = 6
(
2n(2n− 1)z2n−2

�

)
· 2nz2n−1

�

= 24n2(2n− 1)z−3
� .

Thus,

Re

(
1

(x2n + 1)2
, z�

)
= −

4n2(2n− 1)

z−3
�

16n4z−4
�

= −2n− 1

2n

1

2n
z�.

Since
∑n−1

�=0 z� = − 1
i sin( π

2n ) we obtain∫
R

1

(x2n + 1)2
dx =

2n− 1

2n

π

n sin( π
2n )

=
2n− 1

2n

∫
R

1

(x2n + 1)
dx. (8.6.7)

�

Solution of Exercise 8.1.5. Set In =
∫
R

1
x2n+1dx. For t ∈ (0, 1) we have

∞∑
p=1

tp

(x2n + 1)p
=

t

x2n + 1− t
.

By Exercise 8.1.2 we have (with the change of variable x �→ 2n
√
1− tu)∫

R

t

x2n + 1− t
dx = t · 1−2n

2n

√
1− tIn, (8.6.8)
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and the monotone convergence theorem for series of positive functions (see Theo-
rem 17.5.3) gives

∞∑
p=1

tp
∫
R

1

(x2n + 1)p
dx =

∫
R

( ∞∑
p=1

tp
1

(x2n + 1)p

)
dx

=

∫
R

t

x2n + 1− t
dx

= t ·
1−2n
2n

√
1− tIn.

Writing

t ·
1−2n
2n

√
1− t = t

(
1 + t

2n− 1

2n
+

t2

2

2n− 1

2n

(
1− 2n− 1

2n

)
+ · · ·

)
=

∞∑
p=1

tpcp,n,

where the coefficients cp,n are computed as in (4.4.9), we have∫
R

1

(x2n + 1)p
dx = cp,n

∫
R

1

x2n + 1
dx, p = 1, 2, . . . .

The special case p = 2 is proved in the previous exercise; see (8.6.8). �

Solution of Exercise 8.1.6. Let

f(z) =
1

(z2 + 1)n
.

We have ∫
R

dx

(x2 + 1)n
= 2πiRes(f, i).

Let g(z) = (z + i)−n. We have, for n ≥ 2,

g(n−1)(z) = (−1)(n−1)

(
n−2∏
�=0

(n+ �)

)
(z + i)−2n+1,

and so

Res(f, i) =
g(n−1)(i)

(n− 1)!

=
(−1)(n−1)

∏n−2
�=0 (n+ �)

(2i)2n−1(n− 1)!

= −i

∏n−2
�=0 (n+ �)

22n−1(n− 1)!
.
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Thus ∫
R

dx

(x2 + 1)n
=

2π
∏n−2

�=0 (n+ �)

22n−1(n− 1)!
=

2π(2n− 2)!

22n−1((n− 1)!)2
. �

As a check, we note that n = 2 in the above formula leads to the formula
(8.6.1) when a = 1.

Solution of Exercise 8.1.7. Let

f(z) =
z

(z2 + z + 1)2
=

z

(z − z−)2(z − z+)2
,

with

z± =
−1± i

√
3

2
.

The point z+ = (−1 + i
√
3)/2 is in the open upper half-plane, and we have that∫

R

xdx

(x2 + x+ 1)2
= 2πiRes (f, z+)

= 2πi

(
z

(z − z−)2

)′ ∣∣
z=z+

= 2πi

(
1

(z − z−)2
− 2z

(z − z−)3

) ∣∣
z=z+

= 2πi

(
1

(z+ − z−)2
− 2z+

(z+ − z−)3

)
= 2πi

(
1

(i
√
3)2

− (−1 + i
√
3)

(−i3
√
3)

)
= − 2π

3
√
3
. �

Solution of Exercise 8.1.8. Let

f(z) =
1

(z2 + 1)(z − 2i)2(z − 3i)3(z − 4i)4
.

We have∫
R

dx

(x2 + 1)(x− 2i)2(x− 3i)3(x− 4i)4
= 2πi {Res(f, i) + Res (f, 2i)

+Res (f, 3i) + Res (f, 4i)} .

We know by Exercise 7.3.9, that the sum of all the residues of f is equal to 0.
Thus

Res(f, i) + Res (f, 2i) + Res (f, 3i) + Res (f, 4i) = −Res (f,−i)

= − 1

(−2i)(−3i)2(−4i)3(−5i)4

=
1

2 · 9 · 43 · 54 ,
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and hence ∫
R

dx

(x2 + 1)(x− 2i)2(x− 3i)3(x− 4i)4
=

2πi

2 · 9 · 43 · 54 . �

The reader should check directly that the above integral is indeed purely
imaginary without computing it explicitly.

Solution of Exercise 8.2.1. (1) The case t = 0 is clear and can also be obtained
from Exercise 8.1.2 if need be. We now assume t > 0, and define

f(z) =
eitz

z2 + 1
.

The function z �→ eitz is bounded in the closed upper half-plane, and the residue
theorem gives us ∫

R

f(x)dx = 2πiRes(f, i) = 2πi
e−t

2i
= πe−t.

By symmetry it follows that∫
R

eitx

x2 + 1
dx = πe−|t|, t ∈ R.

(2) We have, for t, s ∈ R,

e−|t−s| =
1

π

∫
R

eix(t−s)

x2 + 1
dx. (8.6.9)

Thus, for N ∈ N, t1, . . . , tN ∈ R and c1, . . . , cN ∈ C we have

N∑
�,j=1

c�cje
−|t�−tj | =

1

π

∫
R

(∑N
�=1 c�e

ixt�
)(∑N

j=1 cje
ixtj

)
x2 + 1

dx

≥ 0. �

As in the case of Exercise 8.1.1, we remark that (8.6.9) expresses e−|t−s| as
an inner product, and so we can conclude already from this equation that e−|t−s|

is a positive definite kernel, that is e−|t| is positive definite. Hence, the formula

e−|t| =
1

π

∫
R

eitx

x2 + 1
dx (8.6.10)

is an illustration of Bochner’s theorem. See Theorem 16.3.14 for the latter. It is also
an easy computation of a Fourier transform (see Exercise 13.5.1 for the definition
of the latter): The Fourier transform of the function 1

x2+1 is equal to πe−|t|.
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Solution of Exercise 8.2.2. On the one hand,∫
R

cosx

x2 + 1
dx = Re

∫
R

eix

x2 + 1
dx

= Re

{
2πiRes

(
eiz

z2 + 1
, i

)}
= Re

{
2πi

e−1

2i

}
=

π

e
.

On the other hand, the residue theorem applied to the function cos z
z2+1 in the

closed upper half-circle of radius R > 1 leads to∫ R

−R

cosx

x2 + 1
dx+

∫
CR

cos z

z2 + 1
dz = 2πiRes

(
cos z

z2 + 1
, i

)
= 2πi

cosh 1

2i
= π

e+ e−1

2
.

Thus

lim
R→∞

∫
CR

cos z

z2 + 1
dz = π

{
e+ e−1

2
− e−1

}
= π sinh 1. �

Solution of Exercise 8.2.3. Let γR denote the contour made of the interval [−R,R]
and of the half-circle of radius R and centered at the origin and which is in the
upper half-plane. Consider the function f(z) = eiaz/(z4 + 1). We have∫

R

f(x)dx = lim
R→∞

∫
γR

f(z)dz = 2πi
{
Res
(
f, e

iπ
4

)
+Res

(
f, e

3iπ
4

)}
.

But for z0 a zero of z4 + 1 we have

Res(f, z0) =
eiaz0

4z30
= −z0e

iaz0

4
,

and so the integral is equal to (the real part of)

2πi

(
−e

iπ
4 eiae

iπ
4

4
+

−e
3iπ
4 eiae

3iπ
4

4

)
=

πe
− a√

2

√
2

(
cos(a/

√
2) + sin(a/

√
2)
)
. �

When a = 0, the previous result corresponds to the case n = 2 in Exercise
8.6.4.

Solution of Exercise 8.2.4. We first prove that f is indeed analytic for Im z > 0.
This requires the interchange of an infinite sum and of an integral. The integral
is not on a compact interval, and we cannot use Weierstrass’ theorem (Theorem
14.4.1), and we will use the dominated convergence theorem. Let z0 ∈ C+, and let

d = dist (z0,R) = Im z0.
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For z ∈ C+ such that |z − z0| < d we have∣∣∣∣ z − z0
u− z0

∣∣∣∣ < 1, ∀u ∈ R.

Furthermore,

f(z) =

∫
R

cosu

(u2 + 1)(u− z0 − (z − z0))2
du

=

∫
R

cosu

(u2 + 1)(u− z0)2

{ ∞∑
n=1

n

(
z − z0
u− z0

)n−1
}
du

=

∞∑
n=1

an(z − z0)
n−1

where

an = n

∫
R

cosu

(u2 + 1)(u− z0)n+1
du,

and where the interchange of sum and integral is done using the dominated con-
vergence theorem. The function f admits a power series development around every
point in C+, and is therefore analytic there.

We note that formula (8.2.1) makes sense for Im z > 0 but does not make
sense for z on the real line. The fact that there is an analytic extension to the
asserted set requires us to find another formula for f . We now compute directly f
using the residue theorem. We have

f(z) =
1

2

{∫
R

eiu

(u2 + 1)(u− z)2
du+

∫
R

e−iu

(u2 + 1)(u− z)2
du

}
. (8.6.11)

Therefore, for z in the open upper half-plane,∫
R

eiu

(u2 + 1)(u− z)2
du = 2πi

{
Res

(
eiu

(u2 + 1)(u− z)2
, i

)
+Res

(
eiu

(u2 + 1)(u− z)2
, z

)}
= 2πi

{
e−1

2i(i− z)2
+

ieiz(z2 + 1)− 2zeiz

(z2 + 1)2

}
and∫

R

e−iu

(u2 + 1)(u− z)2
du = −2πiRes

(
e−iu

(u2 + 1)(u− z)2
,−i

)
= −2πi

e−1

−2i(z + i)2
.

From these two formulas we see that the right side of (8.6.11) is analytic in the
band

−1 < Im z < 1. (8.6.12)
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It follows that the function defined by the right side of (8.2.1) in the upper half-
plane has an analytic extension to Im z > −1 given by the formula

πi

{
e−1

2i(i− z)2
+

ieiz(z2 + 1)− 2zeiz

(z2 + 1)2
+

e−1

2i(z + i)2

}
in the band (8.6.12). �

Solution of Exercise 8.2.5. Using formula (8.2.2), the integral (8.2.3) is equal, in
the sense of the principal value, to∫

R

dx

(x − a)(x2 + 1)
= πiRe

(
1

(z − a)(z2 + 1)
, a

)
+ 2πiRe

(
1

(z − a)(z2 + 1)
, i

)
= πi

1

a2 + 1
+ 2πi

1

(i− a)(2i)

= − πa

a2 + 1
.

�

Solution of Exercise 8.2.6. We take the function

f(z) =
eipz − eiqz

z2
.

We integrate f on the contour appearing in Exercise 5.3.2. We obtain∫
R

f(x)dx − πiRes(f, 0) = 0,

but Res(f, 0) = i(p− q), and hence∫
R

f(x)dx = πii(p− q) = π(q − p). �

As a verification, let p = 0 and q = 2. We obtain∫
R

1− cos 2x

x2
dx = 2π,

in accordance with Exercise 5.3.3 and (5.9.15). Similarly, the choice p = 0 and
q = 1 gives ∫

R

1− cosx

x2
dx = π.

Solution of Exercise 8.3.1. We consider the positively oriented contour ΓR made
of the three following arcs:

(a) The closed interval [0, R]:

γ1,R(x) = x, x ∈ [0, R].
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(b) The arc of circle of radius R and angle varying from 0 to 2πi
n :

γ2,R(t) = Reit, t ∈
[
0,

2π

n

]
.

(c) The interval joining the point Re
2πi
n to the origin:

γ3,R(x) = (R − x)e
2πi
n , x ∈ [0, R].

For R > 1 there is only one zero of zn + 1 inside the contour, namely z = exp iπ
n .

Thus the residue theorem applied to f(z) = 1
zn+1 and the contour γR leads to∫ R

0

dx

xn + 1
+

∫ 2π
n

0

Rieitdt

Rneint + 1
−
∫ R

0

e
2πi
n dx

(R − x)nxn + 1
= 2πiRes

(
1

zn + 1
,
iπ

n

)
=

2πi

ne
(n−1)iπ

n

= −2πie
iπ
n

n
.

The change of variable t �→ R− t and letting R → ∞ lead to(
1− e

2πi
n

) ∫ ∞

0

dx

xn + 1
= −2πie

iπ
n

n
.

Thus ∫ ∞

0

dx

xn + 1
=

−2πie
iπ
n

n(1− e
2πi
n )

=
π

n sin π
n

. (8.6.13)

�

The dominated convergence theorem shows that

lim
n→∞

∫ ∞

0

dx

xn + 1
=

∫ ∞

0

(
lim
n→∞

1

xn + 1

)
dx = 1.

This is also, of course,

lim
n→∞

π

n sin π
n

.

Solution of Exercise 8.3.2. The solution of the preceding exercise has to be appro-
priately adapted. Let ln z be the function

ln z = ln r + iθ,

with z = reiθ ∈ C \ (−∞, 0] and θ ∈ (−π, π). The function 1
1+xp is the restriction

to (0,+∞) of the function

f(z) =
1

1 + exp(p ln z)
,
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which is analytic in C \ (−∞, 0]. The contour in the preceding exercise has to be
changed, in order to exclude the origin. For 0 < ε < R < ∞ we consider the
positively oriented contour Γε,R made of the four following arcs:

(a) The closed interval [ε, R]:

γ1,ε,R(x) = x, x ∈ [ε, R].

(b) The arc of circle of radius R and angle varying from 0 to 2πi
p :

γ2,R(t) = Reit, t ∈
[
0,

2π

p

]
.

(c) The interval joining the points Re
2πi
p and εe

2πi
p :

γ3,ε,R(x) = (R− x)e
2πi
p , x ∈ [0, R− ε].

(d) The arc of circle of radius ε and angle varying from 2πi
p to 0:

γ4,ε(t) = εeit, t ∈
[
2π

p
, 0

]
.

For R > 1 there is only one zero of f(z) inside the contour, namely zp = e
iπ
p

since, with z = ρeiθ,

f(z) = 0 ⇐⇒ exp(p ln z) = −1

⇐⇒ ipθ = i(2k + 1)π, k ∈ Z and exp(p ln ρ) = 1.

The residue of f at zp is

Res(f, zp) =
1

(exp(p ln z))′|z=zp

=
1

(p/z exp(p ln z))|z=zp

.

But ln zp = iπ
p and so

Res(f, zp) = −e
iπ
p

p
.

The residue theorem applied to the contour Γε,R, and letting R → ∞ and ε → 0
lead then to the result. �

Solution of Exercise 8.3.3. By formula (8.3.2), we have:∫ ∞

0

dx

xn + 1
= −

n−1∑
k=0

Res

(
ln(z)

zn + 1
, e

iπ
n + 2kiπ

n

)

= −
n−1∑
k=0

(
iπ
n + 2kiπ

n

)
ne(n−1)( iπ

n + 2kiπ
n )

=
e

iπ
n

n2

n−1∑
k=0

(iπ + 2kiπ)e
2kiπ
n ,

(8.6.14)
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where the sum begins in fact at k = 1, and where we used formula (7.3.2) to
compute the residue. But

n−1∑
k=0

e
2kiπ
n = 0,

and (see (3.4.14) with z = e
2iπ
n )

n−1∑
k=0

ke
2kiπ
n = e

2iπ
n · (n− 1)e

2niπ
n − ne

2(n−1)iπ
n + 1

(1− e
2iπ
n )2

= e
2iπ
n · n− 1− ne−

2iπ
n + 1

(1− e
2iπ
n )2

=
n

e
2iπ
n − 1

.

Plugging this expression in the last line in (8.6.14) we obtain:∫ ∞

0

dx

xn + 1
=

2πie
iπ
n

n2

n

e
2iπ
n − 1

=
π

n

1

sin(πn )
. �

Solution of Exercise 8.3.4. We use formula (8.3.2). Then

r(x) = x2 − 2x cos θ + 1,

with zeroes equal to
z± = e±iθ.

See (1.6.24) with z0 = eiθ if need be.

Assume first that θ 
= π. Then

Res

(
ln(z)

r(z)
, z+

)
=

iθ

2i sin θ
=

θ

2 sin θ
and Res

(
ln(z)r(z), z−

)
= −2π − θ

2 sin θ
,

and hence the integral is equal to∫ ∞

0

du

u2 − 2u cos θ + 1
=

π − θ

sin θ
. (8.6.15)

The case θ = π is treated in the same way; r has now a zero of multiplicity 2, and

Res

(
ln z

r(z)
,−1

)
= −1.

One sees also that formula
π − θ

sin θ

is extended continuously for θ = π by taking its value to be equal to 1 at this
point. �
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As a check for (8.6.15), let us put θ = π/2. Then, the right side of (8.6.15)
is equal to π/2. On the other hand, now cos θ = 0, and the left side of (8.6.15) is
equal to ∫ ∞

0

du

u2 + 1
=

π

2
,

as can be seen from formula (8.6.4) with n = 1 (this formula gives twice the
integral

∫∞
0

du
u2+1 ).

Solution of Exercise 8.3.5. Let

g(s) = sα
sz + 1

(s− z)(s2 + 1)
, s ∈ C \ (−∞, 0],

where z, viewed as a parameter, also belongs to C \ (−∞, 0]. We have∫ 0

−∞
|x|α

{
1

x− z
− x

x2 + 1

}
dx =

∫ 0

−∞
|x|α xz + 1

(x− z)(x2 + 1)
dx

=
2πi

eiπα − e−iπα
{Res(g, z)

+Res(g, i) + Res (g,−i)} .

By definition of sα, we have

iα = e
iπα
2 and (−i)α = e−

iπα
2 ,

so that the residues are equal to

Res(g, z) = zα
z2 + 1

z2 + 1
= zα,

Res(g, i) = e
iπα
2

iz + 1

(i− z)(2i)
= −e

iπα
2

2
,

Res(g,−i) = e
−iπα

2
−iz + 1

(−i− z)(−2i)
= −e−

iπα
2

2
,

and the right side of the last line above becomes

2πi

eiπα − e−iπα
{Res(g, z) + Res(g, i) + Res (g,−i)}

=
2πi

eiπα − e−iπα

{
zα − e

iπα
2

2
− e−

iπα
2

2

}

=
2πi

eiπα − e−iπα

{
zα − cos

πα

2

}
=

π

sinπα

{
zα − cos

πα

2

}
,

and formula (8.3.5) follows. �
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Solution of Exercise 8.3.8. We take the function

g(s) = ln s
sz + 1

(s− z)(s2 + 1)
,

where ln s is the principal branch of the logarithm in C \ (−∞, 0], that is

ln s = ln |s|+ iθ, where s = |s|eiθ, θ ∈ (−π, π).

We take the following contour, composed of four parts, where 0 < r < R and
ε > 0:

(i) γ1,r,R,ε is the interval

γ1,r,R,ε(t) = iε+ t, t ∈ [−R,−r].

(ii) γ2,r,R,ε is the part of the circle of radius
√
ε2 + r2 which connects the points

iε− r and −iε− r with parametrization

γ2,r,R,ε(t) =
√
ε2 + r2eit, t ∈ [−θ, π + θ],

where θ ∈ [0, π/2] is such that

tan θ =
ε

r
.

(iii) γ3,r,R,ε is the interval

γ3,r,R,ε(t) = −iε+ (−r − t), t ∈ [r, R − r].

(iv) γ4,R,ε is the part of the circle of radius
√
R2 + ε2 and center 0, which starts

at iε−R and ends at −iε−R.

By the residue theorem, and letting ε and r go to 0 and R go to infinity we
obtain for z 
= ±i:∫

(−∞,0]

(iπ)
sz + 1

(s− z)(s2 + 1)
ds−

∫
(−∞,0]

(−iπ)
sz + 1

(s− z)(s2 + 1)
ds

= 2πi {Res(g(s), z) + Res(g(s),−i) + Res (g(s), i)} .

But

Res(g(s),−i) = − iπ

2

−iz + 1

(−i− z)(−2i)
= i

π

4
,

and similarly for the residue at i. Hence∫
(−∞,0]

sz + 1

(s− z)(s2 + 1)
ds = ln z + i

π

4
− i

π

4
= ln z,

first for z 
= ±i, and then to all of C \ (−∞, 0] by analytic continuation. �
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Solution of Exercise 8.3.9. We have(∫ ∞

0

(1− e−zu)
e−u

u
du

)′
=

∫ ∞

0

e−(z+1)udu

=
e−(z+1)u

−(z + 1)

∣∣u=∞
u=0

=
1

1 + z
,

and hence the result. For the second example, we proceed as follows. On the one
hand,

(zα)′ = (eα ln z)′

= α
1

z
eα ln z

= αzα−1.

On the other hand,(
α

Γ(1− α)

∫ ∞

0

(1− e−zu)
du

uα+1

)′
=

α

Γ(1− α)

∫ ∞

0

e−zu

uα
du.

To compute this last integral, we first consider the case where z = x > 0. Then,
the change of variable xu = v leads to

α

Γ(1− α)

∫ ∞

0

e−xu

uα
du =

αxα−1

Γ(1− α)

∫ ∞

0

e−vv−αdv = αxα−1.

By analytic continuation we have, for all z in the open right half-plane,

α

Γ(1− α)

∫ ∞

0

e−zu

uα
du = αzα−1.

Therefore both sides of (8.3.12) have the same derivative. To check that both sides
coincide in Re z > 0, we check that there is equality for z = 1. The left side is
trivially equal to 1. Using integration by parts we see that the right side is equal to

α

Γ(1 − α)

∫ ∞

0

(1 − e−u)
du

uα+1
=

α

Γ(1 − α)

{(
(1 − e−u)u−α

−α

)u=∞

u=0

+
1

α

∫ ∞

0

e−uu−αdu

}
=

α

Γ(1 − α)

Γ(1− α)

α

= 1. �
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Solution of Exercise 8.4.1. If a = 0 the result is trivial and we assume now a 
= 0
(so, a ∈ (−1, 0) ∪ (0, 1)). We have∫ 2π

0

dt

1 + a cos t
=

∫
T

dz

iz
(
1 + a

2

(
z + 1

z

))
=

1

i

∫
T

2dz

az2 + 2z + a

=
1

i

∫
T

2dz

a(z − z1)(z − z2)
,

where

z1 =
−1−

√
1− a2

a
and z2 =

−1 +
√
1− a2

a
.

The point z1 is outside the closed unit disk while the point z2 is inside the open
unit disk; thus the residue theorem (or Cauchy’s formula) leads to∫ 2π

0

dt

1 + a cos t
=

1

i

∫
T

2dz

a(z − z1)(z − z2)

= 2πi
1

i
Res

(
2

a(z − z1)(z − z2)
, z2

)
= 2π

2

a
2
√
1− a2

a

=
2π√
1− a2

. �

Solution of Exercise 8.4.2. Since cos t = (z + 1/z)/2 for z = eit we have∫ 2π

0

dt

1 + 8 cos2 t
=

∫
|z|=1

1

1 + 2

(
z2 + 2 +

1

z2

) dz

iz

=

∫
|z|=1

zdz

i(2z4 + 5z2 + 2)

=

∫
|z|=1

zdz

2i(z2 + 2)(z + i/
√
2)(z − i/

√
2)

= 2πi

{
Res

(
z

2i(z2 + 2)(z + i/
√
2)(z − i/

√
2)

,
i√
2

)
+Res

(
z

2i(z2 + 2)(z + i/
√
2)(z − i/

√
2)

,− i√
2

)}
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= 2πi

{
z

2i(z2 + 2)(z + i/
√
2)

∣∣∣
z= i√

2

+
z

2i(z2 + 2)(z − i/
√
2)

∣∣∣
z=− i√

2

}

=
2π

3
. �

Solution of Exercise 8.5.1. By the residue theorem∫
ΓR

g(z)dz = 2πiRes(g(z), z0)

with z0 = 1+i
2

√
π
2 . We compute the residue using formula (7.3.2) and get:

Res(g(z), z0) =
e−z2

−(1 + i)
√
2πe−(1+i)

√
2πz

∣∣
z=z0

=
e−iπ4

(1 + i)
√
2π

=
1− i

(1 + i)
√
2

1√
2π

= − i

2
√
π
.

Thus,
∫
ΓR

g(z)dz =
√
π. Remarking that

g(z)− g(z + 2z0) = e−z2

we have ∫
[−R,R]

g(z)dz +

∫
[R+2z0,−R+2z0]

g(z)dz =

∫
[−R,R]

e−z2

dz.

To conclude it remains to show that

lim
R→∞

∫
R,R+2z0

g(z)dz = lim
R→∞

∫
−R,−R+2z0

g(z)dz = 0.

We consider only the first integral and take the parametrization

γ(t) = R+ 2z0t, t ∈ [0, 1].

Then we have

|e−γ(t)2 | ≤ e−R2

e2|z0|R+4|z0|2 , t ∈ [0, 1]
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and
|e−γ(t)(1+i)

√
2π| = e−

√
2πR · e4|z0|t.

Thus for R large enough we have |e−γ(t)(1+i)
√
2π| ≤ 1

2 , and

|g(γ(t))| ≤ 2e−R2

e2|z0|R+4|z0|2 .

The claim follows then from inequality (5.1.3). �

Solution of Exercise 8.5.2. By the residue theorem we have, for z ∈ C+,

F+(z) = f ′(z).

Thus the function f ′ is an analytic extension to C of the function F+.

For z is the lower half-plane, the function u �→ f(u)
(u−z)2 is analytic in C+, and

the residue theorem will lead to F−(z) ≡ 0 in C−. Thus the analytic extension of
F+ to the lower half-plane will coincide with F− if and only if f is a constant. �

Solution of Exercise 8.5.3. (a) We consider the contour CR consisting of the in-
terval [−R,R] (in view of (8.5.6), the definite integral can be computed as a limit
of the integral on the symmetric interval [−R,R]) and of the semi-circle of center
0 and radius R which lies in the upper half-plane C+. Let

g(s) = f(s)

{
1

s− z
− s

s2 + 1

}
= f(s)

sz + 1

(s− z)(s− i)(s+ i)
.

By the residue theorem we have, for z ∈ C+,∫
CR

f(s)
sz + 1

(s− z)(s− i)(s+ i)
ds = 2πi {Res(g, z) + Res(g, i)}

= 2πi

(
f(z) + f(i)

iz + 1

(i− z)(2i)

)
= 2πi

(
f(z)− f(i)

2

)
.

Still for z ∈ C+ and with the same contour we have∫
CR

f(s)
sz + 1

(s− z)(s− i)(s+ i)
ds = 2πif(i)

iz + 1

(i− z)(2i)
= 2πi(−f(i)

2
).

In view of (8.5.5), the integral on the half-circle goes to 0 as R → ∞, and we get∫
R

f(x)
xz + 1

(x − z)(x2 + 1)
dx = 2πi

(
f(z)− f(i)

2

)
,∫

R

f(x)
xz + 1

(x − z)(x2 + 1)
dx = 2πi

(
−f(i)

2

)
.
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Taking the conjugate of the second equation, and adding to the first equation side
by side we get∫

R

xz + 1

(x− z)(x2 + 1)
(2Re f(x))dx = 2πi(f(z)− i Im f(i)),

and hence we get (8.5.7)

f(z) = i Im f(i) +
1

πi

∫
R

xz + 1

(x − z)(x2 + 1)
(Re f(x))dx

= i Im f(i) +
1

πi

∫
R

{
1

x− z
− x

x2 + 1

}
(Re f(x))dx, z ∈ C+.

(b) From the above expression we get

Re f(z) =
z − z

2πi

∫
R

Re f(x)

|x− z|2 dx, (8.6.16)

and hence Re f(z) ≥ 0 for z ∈ C+. Assume now that for some z ∈ C+, it holds
that Re f(z) = 0. Then, (8.6.16) implies that Re f(x) ≡ 0 on the real line. Hence
f is a unitary constant, as is seen from (8.5.7). �

More generally we have, for z and w off the real line,

f(z) + f(w) =
z − w

2πi

∫
R

Re f(x)

(x− z)(x− w)
dx.

Therefore the kernel

f(z) + f(w)

−i(z − w)
=

1

2π

∫
R

Re f(x)

(x − z)(x− w)
dx

is positive definite in Ω = C \ R.

Solution of Exercise 8.5.4. Rewrite

1

x− z
− x

x2 + 1
=

xz + 1

(x− z)(x+ i)(x− i)
.

For z ∈ C+ we have by the residue theorem

g(z) = Res

(
xz + 1

(x− z)(x+ i)(x− i)
, x = z

)
+Res

(
xz + 1

(x− z)(x+ i)(x− i)
, x = i

)
= 1− 1

2
=

1

2
.

The function g satisfies the symmetry

g(z) = −g(z), z ∈ C \ R,
and is therefore identically equal to −1/2 in the open lower half-plane. �
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Chapter 9

Harmonic Functions

The notion of a harmonic function arises from real analysis and appeared before
the notion of an analytic function. In some sense, analytic functions were defined
to study in an efficient way problems related to harmonic functions.

9.1 Harmonic functions

Let f(z) = u(x, y) + iv(x, y) be a function analytic in some open set Ω. The
functions u and v admit partial derivatives of all orders, and thus the Cauchy–
Riemann equations

∂u

∂x
(x, y) =

∂v

∂y
(x, y),

∂u

∂y
(x, y) = −∂v

∂x
(x, y), x+ iy ∈ Ω,

imply

∂2u

∂x2
(x, y) =

∂2v

∂x∂y
(x, y),

∂2u

∂y2
(x, y) = − ∂v

∂y∂x
(x, y), x+ iy ∈ Ω.

The smoothness of v implies that the mixed derivatives are equal; adding these
two equations we get

Δu
def.
=

∂2u

∂x2
+

∂2u

∂y2
= 0.

Definition 9.1.1. A real-valued function defined in an open subset of R2 is harmonic
if it has continuous partial derivatives of order 2 and if it solves the Laplace
equation in Ω:

Δu = 0.

D. Alpay, A Complex Analysis Problem Book, 
DOI 10.1007/978-3-319-42181-0_9 
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418 Chapter 9. Harmonic Functions

Exercise 9.1.2. Show that the functions

u(x, y) = ex cos y, (x, y) ∈ R2,

u(x, y) = cosx cosh y, (x, y) ∈ R2,

u(x, y) = ln(x2 + y2), (x, y) ∈ R2 \ {(0, 0)}

are harmonic.

Exercise 9.1.3. Show that a harmonic function u is locally the real part of an
analytic function, and in particular has partial derivatives of all orders.

Exercise 9.1.4. Let u1(x, y) and u2(x, y) be two real-valued function harmonic in
the open sets Ω1 and Ω2 respectively, and assume that the range of the function

(x, y) �→
(
∂u2

∂x
,−∂u2

∂y

)
is inside Ω1. Show that the function

U(x, y) = u1

(
∂u2

∂x
,−∂u2

∂y

)
(9.1.1)

is harmonic in Ω2.

Exercise 9.1.5. Given f analytic and not vanishing in an open set Ω. Show that
ln |f(z)| is harmonic in Ω.

From Exercise 1.2.8 it is clear that the function u(x, y) defined by (9.1.2)
below is harmonic. The point in Exercise 9.1.6 is to provide a direct and different
proof.

Exercise 9.1.6. Show that

u(x, y) =
sinx

cosx+ cosh y
(9.1.2)

is harmonic in

Ω = {z = x+ iy, −π < x < π and y ∈ R} .

Remark 9.1.7. If u(x, y) is harmonic in a neighborhood of the origin, then u(x, y)
is the real part of the function

F (z) = 2u(z/2, z/2i)− u(0, 0). (9.1.3)

This is a well-known formula; see for instance [45]. A good exercise (see Exercise
9.1.9) is to prove this formula for polynomials. The formula does not hold if u(x, y)
is not defined in a neighborhood of the origin, as one can see with the function
u(x, y) = ln(x2 + y2).

Exercise 9.1.8. Apply formula (9.1.3) to u(x, y) =
sinx

cosx+ cosh y
.
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Exercise 9.1.9. Prove formula (9.1.3) for a polynomial.

Exercise 9.1.10. Let u(x, y) and v(x, y) admit partial derivatives which are con-
tinuous in an open set Ω, and assume that u and v satisfy the Cauchy–Riemann
equations in Ω. Assume moreover that u2 + v2 
= 0 in Ω. Show that the function

u
∂u

∂x
+

∂v

∂x
v

u2 + v2

is harmonic in Ω.

Zeroes of harmonic functions are not isolated (see for instance the sets where
the functions u(x, y) = x2 − y2 and ln(x2 + y2) vanish), but we have:

Exercise 9.1.11. Let u be harmonic in the connected open set Ω and assume that
u vanishes in a set B(z0, r) ⊂ Ω. Show that u is identically equal to 0 in Ω.

9.2 Harmonic conjugate

Let Ω be an open subset of R2, and let u be harmonic in Ω. The function v(x, y) is
called a conjugate harmonic of u if the function f(z) = u(x, y)+iv(x, y) is analytic
in Ω.

Exercise 9.2.1. Assume that v is a conjugate harmonic of the harmonic function u
in an open set Ω. Let a and b be two real numbers. Show that V (x, y) = bu(x, y)+
av(x, y) is a harmonic conjugate of the function U(x, y) = au(x, y)−bv(x, y) in Ω.

Exercise 9.2.2. Assume that u and v are harmonic in an open set Ω and that v is
the harmonic conjugate of u in Ω. Define functions U and V by

U(x, y) = eu(x,y)
2−v(x,y)2 cos 2u(x, y)v(x, y),

V (x, y) = eu(x,y)
2−v(x,y)2 sin 2u(x, y)v(x, y).

Show that U and V are harmonic in Ω and that V is a harmonic conjugate to U
there.

A real-valued function u harmonic in the open set Ω need not have a harmonic
conjugate (see Exercise 9.2.5 below), but we have the following key fact (see also
Exercise 9.1.3):

Exercise 9.2.3. Let u be real-valued and harmonic in the open set Ω. Then −∂u
∂y is

a harmonic conjugate of ∂u
∂x . In other words, the function

∂u

∂x
− i

∂u

∂y
(9.2.1)

is analytic in Ω
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Remark 9.2.4. One should not confuse the contexts of equations (4.2.6) and (9.2.1).
The first equation gives the derivative of an analytic function. The second formula
defines an analytic function from a given harmonic function; this analytic function
need not have a primitive in Ω.

It was proved in Exercise 9.1.3 that a harmonic conjugate always exists lo-
cally, that is, in a neighborhood of a point, but need not exist globally. If it exists,
it is harmonic.

Exercise 9.2.5.

(a) Show that the function ln(x2+y2) has no harmonic conjugate in R2\{(0, 0)}.
(b) Show that it has a harmonic conjugate in R2 \ {(x, 0) ; x ≤ 0}.

We have now the penultimate characterization of simply-connected sets to
be given in these notes.

Definition 9.2.6. A connected open set Ω ⊂ R2 is simply-connected if every function
harmonic in Ω admits a harmonic conjugate in Ω.

Strictly speaking, the definition of a simply-connected set does not require
the set to be connected. The existence of a harmonic conjugate has then to be
checked in every connected component of the given set.

Theorem 9.2.7. Let Ω be an open connected subset of C and let u be harmonic in
Ω. Then, u has a harmonic conjugate in Ω if and only if∫

C

−∂u

∂y
dx+

∂u

∂x
dy = 0 (9.2.2)

for all closed piecewise smooth paths C in Ω.

Proof. Assume that u admits a harmonic conjugate, say v, in Ω. Then, the function
f(z) = u(x, y)+ iv(x, y) is analytic in Ω and its derivative is equal to the function

g(z) =
∂u

∂x
− i

∂u

∂y
. (9.2.3)

So, by Theorem 5.2.1, ∫
C

g(z)dz =

∫
C

f ′(z)dz = 0.

Conversely, if (9.2.2) is in force for every closed curve C inside Ω, it holds that∫
C

g(z)dz =

∫
C

∂u

∂x
dx+

∂u

∂y
dy + i

∫
C

−∂u

∂y
dx+

∂u

∂x
dy = 0,

where we have also used (5.1.12). Hence g has a primitive F (z) = U(x, y)+iV (x, y)
in Ω. Since

F ′(z) =
∂U

∂x
− i

∂U

∂y
,
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we see that, up to a real constant, U = u and hence V is a harmonic conjugate
to u. �

In the following exercise, the set Ω is not required to be connected.

Exercise 9.2.8. Let u(x, y) be harmonic in an open set Ω. Let n,m ∈ N0 such that
n+m > 0. Show that the function

U(x, y) =
∂n+mu

∂xn∂ym
(x, y)

is harmonic in Ω; prove that U has a harmonic conjugate, and find all functions
f analytic in Ω and with real part U .

Exercise 9.2.9. Let f be an entire function and assume that Re f ′(z) = x2 − y2 +
6xy. The value f(0) is known. Find f .

Exercise 9.2.10. Prove that the function

u(x, y) = y cos y sinhx+ x sin y coshx

is harmonic in R2, and find its harmonic conjugate.

Exercise 9.2.11. Prove formula (9.5.2), which is given in the solution of Exercise
9.2.10.

More generally, one has the following formula for the harmonic conjugate:

Exercise 9.2.12. Let Ω be a simply-connected set, and let u be harmonic in Ω.

(a) Prove that ∫
C

−∂u

∂y
dx+

∂u

∂x
dy = 0

for every closed contour C.

(b) Fix a point (x0, y0) ∈ Ω. Prove that the function

v(x, y) =

∫
Cx,y

−∂u

∂y
dx +

∂u

∂x
dy (9.2.4)

is the harmonic conjugate of u (up to an additive constant), where Cx,y is
any path connecting (x0, y0) to (x, y).

We recall that the Cauchy–Riemann equations in polar coordinates are
given by

∂u

∂ρ
=

1

ρ

∂v

∂θ
,

∂v

∂ρ
= −1

ρ

∂u

∂θ
,

(9.2.5)
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and that the Laplacian in polar coordinates is given by

Δu(ρ, θ) =
∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2
∂2u

∂θ2
. (9.2.6)

The functions

u(ρ, θ) = ln ρ and v(ρ, θ) = θ

(θ ∈ (−π, π) for instance, or more generally in an open interval of length 2π) are
harmonic since

ln z = ln ρ+ iθ.

Exercise 9.2.13. Find all functions harmonic in R2 \ {(x, 0) ; x ≤ 0} of the form
f(ρ) and of the form f(θ), where f is a real-valued function of class C2.

Exercise 9.2.14. Show that the function

u(ρ, θ) = ρθ cos θ + ρ sin θ ln ρ

is harmonic in Ω = R2 \ {(x, 0) ; x ≤ 0}, and compute its harmonic conjugate.

9.3 Various

Exercise 9.3.1. Let u be a harmonic function such that u2 is also harmonic. Show
that u is constant.

Exercise 9.3.2. Let u and v be harmonic in R2 and assume that v is the harmonic
conjugate of u. Assume that

u3 − 3uv2 ≥ 0 in R2.

Find u and v.

The preceding exercise relies on the following fact: If u is a function harmonic
in the whole plane and is bounded from above or from below, then u is a constant.

Exercise 9.3.3. Prove the previous claim.

Exercise 9.3.4. Find all functions u harmonic in R2 and satisfying

∂u

∂x
≤ 0.

The next exercise is almost identical to the previous one.

Exercise 9.3.5. Find all functions u harmonic in R2 and such that ∂u
∂x ≥ 5.
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Let f be analytic in Ω. We saw in Exercise 9.1.5 that ln |f | is harmonic in Ω
when it does not vanish there. On the other hand, the modulus function |f | is not
harmonic, but subharmonic

Δ|f | ≥ 0,

as illustrated by the examples
Δ|z|2 = 4,

and

Δr =
1

r
, r = |z|. (9.3.1)

Exercise 9.3.6. Let f be analytic and non-vanishing in the open set Ω. Show that

Δ|f | = |f ′|2
|f | .

The case f(z) = zn, n ∈ Z, leads to

Δ|z|n = n2|z|n−2. (9.3.2)

When replacing f by f2 in the preceding exercise, one can remove the hy-
pothesis that f does not vanish, and obtain the formula

Δ|f2| = 4|f ′|2. (9.3.3)

More generally, one has the following formulas (see [75, Exercises 8.41 and
8.42]): Let F be a function of class C2 on R, and let f be analytic in some domain
Ω and not vanishing there. Then

ΔF (|f(z)|) = |f ′(z)|2
{
F (2)(|f(z)|) + F (1)(|f(z)|)

|f(z)|

}
. (9.3.4)

The special choice F (t) = tn and f(z) = z leads to (9.3.2). Furthermore, choosing
F (t) = ln(1 + t2) we have

Δ(ln(1 + |f(z)|2)) = |f ′(z)|2
(1 + |f(z)|2)2 ,

Δ(ep|f(z)|) = p2ep|f(z)|
(
p+

1

|f(z)|

)
|f ′(z)|2, p ∈ R.

(9.3.5)

Exercise 9.3.7. Let u be a subharmonic function defined in B(z0, R).

(1) Show that for every r ∈ (0, R) it holds that

u(x0, y0) ≤
1

2π

∫ 2π

0

u(x0 + r cos t, y0 + r sin t)dt. (9.3.6)

(2) Prove the strict maximum principle for subharmonic functions.
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As a corollary of (9.3.6) we have the following result, which expresses the
fact that the Bergman space of the open unit disk is a reproducing kernel Hilbert
space.

Exercise 9.3.8. Let f be a function analytic in the open unit disk and such that

‖f‖2B
def.
=

∫∫
D

|f(z)|2dxdy < ∞.

Show that for every z0 ∈ D there exists a number Kz0 > 0 such that

|f(z0)| ≤ Kz0 · ‖f‖B. (9.3.7)

Exercise 9.3.9.

(a) Find all harmonic functions of the form u(x, y) = ϕ(x2 − y2), where ϕ is of
class C2 on all of R.

(b) Find all harmonic functions of the form u(x, y) = ϕ(y/x).

Exercise 9.3.10. Let Ω be an open connected set, and let

u(x, y) = Re(zf(z) + g(z)),

where f and g are analytic in Ω. Show that

Δ2u = 0. (9.3.8)

Functions which satisfy (9.3.8) are called biharmonic, and appear in mathe-
matical physics, in particular in elasticity. See [33, p. 246], [226].

9.4 The Dirichlet problem

We conclude this chapter with a discussion of the Dirichlet problem.

Definition 9.4.1. Let f be a real-valued piecewise continuous function on the unit
circle T. The Dirichlet problem consists in finding a function u harmonic in the
open unit disk, and equal to f on T, in the sense that

lim
r→1

u(reiθ) = f(eiθ),

when f is continuous at the point eiθ.

As is well known, see for instance [101, Theorem 9.14, p. 180], the problem
is solvable, its solution is unique and is given by the formula

u(z) = Re
1

2π

∫ 2π

0

eit + z

eit − z
f(eit)dt, z ∈ D. (9.4.1)

As an application, solve the following exercise (see [148, pp. 355–356]).
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Exercise 9.4.2. Compute the solution of the Dirichlet problem when

f(eit) =

{
1, t ∈ [0, π),

−1, t ∈ [π, 2π).

More challenging is the case when one considers the punctured unit disk
D\{0}. Indeed, D\{0} is not simply-connected, as is seen for instance by computing∫

|z|=1/2

dz

z
.

Therefore not every function harmonic in D \ {0} has a harmonic conjugate there.
These points are illustrated in the following exercise, taken from [148, pp. 356–357].

Exercise 9.4.3. Find all functions u harmonic in 0 < |z| < 1, continuous on
0 < |z| ≤ 1, and vanishing on the unit circle.

9.5 Solutions

Solution of Exercise 9.1.2. The first two examples are clear since

ex cos y = Re ez and cosx cosh y = Re cos z.

See (1.2.17) if needed for the latter. The third exercise will follow from the general
claim in Exercise 9.1.5, but it is also a good exercise to check directly that ln(x2+
y2) is harmonic in R2 \ {(0, 0)}. See in that respect the discussion after the proof
of Exercise 9.1.5. �

Solution of Exercise 9.1.3. Consider the function

g(z) =
∂u

∂x
(x, y)− i

∂u

∂y
(x, y),

so that

Re g(z)
def.
= U(x, y) =

∂u

∂x
(x, y) and Im g(z)

def.
= V (x, y) = −∂u

∂y
(x, y).

We have
∂U

∂x
=

∂V

∂y

since u is assumed harmonic. Since u has continuous partial derivatives of order
2, we have

∂2u

∂x∂y
=

∂2u

∂y∂x
,
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and in particular

∂U

∂y
= −∂V

∂x
=

∂2u

∂x∂y
.

Therefore U and V satisfy the Cauchy–Riemann equations in Ω. They are
moreover differentiable in Ω (as functions of (x, y)) since u has continuous partial
derivatives of order 2. Therefore, the Cauchy–Riemann equations imply that g
is C-differentiable in Ω. Since Ω is convex, g has a primitive in Ω, say f(z) =
U1(x, y) + iV1(x, y), and

f ′(z) =
∂U1

∂x
(x, y)− i

∂U1

∂y
(x, y).

Therefore, U1 is equal to u, up to a constant. Choosing this constant to be 0, the
corresponding f is the real part of u in Ω. �

Solution of Exercise 9.1.4. Since u2 is harmonic in Ω2, the function

g(z) =
∂u2

∂x
(x, y)− i

∂u2

∂y
(x, y)

is analytic there. Let (x0, y0) ∈ Ω2, let z0 = x0 + iy0, and let W be a convex open
neighborhood of g(z0) in Ω1. There exists an open neighborhood of (x0, y0) in Ω2

such that g(V ) ⊂ W . In W , the function u1 is the real part of an analytic function,
say f . So the function f ◦ g is analytic in V , and its real part

U(x, y) = Re(f(g(z)) = u1

(
∂u2

∂x
(x, y),−∂u2

∂y
(x, y)

)
is harmonic in V . Since all such V cover all of Ω2, the function (9.1.1) is harmonic
in Ω2. �

Solution of Exercise 9.1.5. In any convex open subset U of Ω the function f has
an analytic logarithm: There exists a function g analytic in U and such that

f(z) = eg(z), z ∈ U.

Taking absolute value on both sides of the above equality we get

|f(z)| = eRe g(z).

Thus the function

ln |f(z)| = Re g(z)

is harmonic in U since the real part of g is harmonic there. This ends the proof
since every point of Ω has a convex open neighborhood in Ω. �
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Note that the claim in the preceding exercise can also be proved directly: Let
f = u+ iv be analytic in Ω, and let T (x, y) = ln(u2 + v2). We have

Tx = 2
uux + vvx
u2 + v2

,

and so

Txx = 2
u2
x + uuxx + v2x + vvxx

u2 + v2
− 2

(uux + vvx)
2

(u2 + v2)2

= 2
u2
x + uuxx + v2x + vvxx

u2 + v2
− 2

u2u2
x + v2v2x + 2uvuxvx

(u2 + v2)2
.

Similarly,

Tyy = 2
u2
y + uuyy + v2y + vvyy

u2 + v2
− 2

(uuy + vvy)
2

(u2 + v2)2

= 2
u2
y + uuyy + v2y + vvyy

u2 + v2
− 2

u2u2
y + v2v2y + 2uvuyvy

(u2 + v2)2
.

Taking into account that Δu = Δv = 0 and that, thanks to the Cauchy–Riemann
equations,

uxvx + uyvy = 0,

we obtain that ΔT = 0.

Solution of Exercise 9.1.6. A natural way is to first check that Δu = 0 and then
to solve the Cauchy–Riemann equations. We will proceed in a different way. Recall
that

cosh(iz) =
exp(iz) + exp(−iz)

2
= cos z.

Thus

u(x, y) =
sin( z+z

2 )

cos( z+z
2 ) + cosh( z−z

2i )

=
sin( z+z

2 )

cos( z+z
2 ) + cos( z−z

2 )

=
sin z

2 cos
z
2 + sin z

2 cos
z
2

cos z
2 cos

z
2 − sin z

2 sin
z
2 + cos z

2 cos
z
2 + sin z

2 sin
z
2

=
sin z

2 cos
z
2 + sin z

2 cos
z
2

2 cos z
2 cos

z
2

=
sin z

2

2 cos z
2

+
sin z

2

2 cos z
2

= Re tan
(z
2

)
.
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Here we used that sin(z) = sin(z) and similarly for cos z since the coefficients of
the Maclaurin series of cos z and sin z are real, and thus

tan(z) = tan(z). �

Solution of Exercise 9.1.8. Using (9.1.3), we have

u(x, y) =
sinx

cosx+ cosh y

= 2Re
sin(z/2)

cos(z/2) + cosh(z/2i)

= 2Re
sin(z/2)

cos(z/2) + cos(z/2)

= Re tan(z/2). �

Solution of Exercise 9.1.9. It suffices to check the formula for F (z) = zn. Since

zn = (x+ iy)n

=
∑
k,

2k≤n

(−1)k
(

n
2k

)
x2kyn−2k + i

∑
k,

2k+1≤n

(−1)k
(

n
2k + 1

)
x2k+1yn−2k−1,

we have to prove that

zn = 2
∑
k,

2k≤n

(−1)k
(

n
2k

)
(z/2)2k(z/2i)n−2k,

that is,

zn = 2
∑
k,

2k≤n

(−1)k
(

n
2k

)
zn

2n(−1)k
,

that is, we have to prove that

2n−1 =
∑
k,

2k≤n

(
n
2k

)
. (9.5.1)

But from

0n = (1 − 1)n

=

⎛⎜⎜⎝∑
k,

2k≤n

1n−2k(−1)2k
(

n
2k

)⎞⎟⎟⎠+

⎛⎜⎜⎝ ∑
k,

2k+1≤n

1n−2k−1(−1)2k−1

(
n

2k + 1

)⎞⎟⎟⎠
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we obtain ∑
k,

2k≤n

(
n
2k

)
=

∑
k,

2k+1≤n

(
n

2k + 1

)
.

On the other hand,

2n = (1 + 1)n =
∑
k,

2k≤n

(
n
2k

)
+

∑
k,

2k+1≤n

(
n

2k + 1

)
.

Hence, ∑
k,

2k≤n

(
n
2k

)
=

∑
k,

2k+1≤n

(
n

2k + 1

)
=

2n

2
= 2n−1.

Thus, (9.5.1) holds and this concludes the proof. �

Solution of Exercise 9.1.10. From the hypothesis on u and v these functions are
differentiable in Ω, and so the function F (z) = u(x, y) + iv(x, y) is analytic in Ω.
Its derivative

F ′(z) =
∂u

∂x
(x, y)− i

∂u

∂y
(x, y) =

∂u

∂x
(x, y) + i

∂v

∂x
(x, y)

is analytic. The function F does not vanish in Ω since u2+v2 
= 0 there, and hence

the function
F ′

F
is analytic in Ω and so its real part is harmonic. We have

Re
F ′

F
=

u
∂u

∂x
+

∂v

∂x
v

u2 + v2
,

and this ends the proof. �

One can build a number of exercises based on the same principle. Take F =
u+ iv analytic in Ω and compute (for instance)

Re
F ′′

F
, Re

F

F ′ , Im
F ′

F ′′ , . . . .

In the computations, note that

F ′′(z) =
∂2u

∂x2
− i

∂2u

∂x∂y
,

as follows from formula (4.2.6), since the real part of F ′ is ∂u
∂x .
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Solution of Exercise 9.1.11. The function

g(z) =
∂u

∂x
(x, y)− i

∂u

∂y
(x, y), (x, y) ∈ Ω,

is analytic in Ω and vanishes identically in B(z0, r). Therefore it vanishes identi-
cally in Ω. It follows that

∂u

∂x
(x, y) =

∂u

∂y
(x, y) = 0, ∀(x, y) ∈ Ω.

Thus u is constant in Ω, and therefore is identically equal to 0 there since it
vanishes at z0. �

Solution of Exercise 9.2.1. We show that U + iV is analytic in Ω. We have

U(x, y) + iV (x, y) = (au(x, y)− bv(x, y)) + i(bu(x, y) + av(x, y))

= (a+ ib)u(x, y) + (ai− b)v(x, y)

= (a+ ib)u(x, y) + i(a+ ib)v(x, y)

= (a+ ib)(u(x, y) + iv(x, y)),

which ends the proof since by assumption the function f(z) = u(x, y) + iv(x, y) is
analytic in Ω. �

Solution of Exercise 9.2.2. It is enough to check that the function F (z)=U(x, y)+
iV (x, y) is analytic in Ω. By hypothesis, the function f(z) = u(x, y) + iv(x, y) is
analytic in Ω. One has

U(x, y) + iV (x, y) = eu(x,y)
2−v(x,y)2 cos 2u(x, y)v(x, y)

+ ieu(x,y)
2−v(x,y)2 sin 2u(x, y)v(x, y)

= eu(x,y)
2−v(x,y)2 (cos 2u(x, y)v(x, y) + i sin 2u(x, y)v(x, y))

= eu(x,y)
2−v(x,y)2e2iu(x,y)v(x,y)

= eu(x,y)
2−v(x,y)2+2iu(x,y)v(x,y)

= e(u(x,y)+iv(x,y))2 = ef(z)
2

,

and so F is analytic in Ω. �

Another (and much longer) proof is by direct computations.

Solution of Exercise 9.2.3. It is enough to verify that the pair of functions

∂u

∂x
and − ∂u

∂y

satisfy the Cauchy–Riemann equations. The first Cauchy–Riemann equation fol-
lows from Δu = 0, and the second from the possibility to interchange partial
derivatives with respect to x and y in view of the assumed smoothness of u. �
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Solution of Exercise 9.2.5. (a) Assume by contradiction that there is a harmonic
conjugate v. Then, the function

f(z) = ln(x2 + y2) + iv(x, y)

is analytic in C \ {0}. Using formula (4.2.6), we see that its derivative is equal to

f ′(z) =
2x

x2 + y2
− i

2y

x2 + y2
=

2

z
.

Thus

0 =

∫
|ζ|=1

f ′(ζ)dζ =

∫
|ζ|=1

2dζ

ζ
= 4πi,

which cannot be.

(b) Let θ ∈ (−π, π) be defined by (1.1.19). Then, v = 2θ is such that f(z) =
2 ln z. �

Solution of Exercise 9.2.8. We know that u has partial derivatives of all orders,
and so U makes sense. That U is harmonic follows from

ΔU = Δ

(
∂n+mu

∂xn∂ym

)
=

∂n+m(Δu)

∂xn∂ym
= 0.

We note also the following. If m is even: m = 2p for some p ∈ N, then the
harmonicity of u (see (9.5.3) below if needed) implies that

U(x, y) = (−1)p
∂n+2pu

∂xn+2p
.

Similarly, if m is odd, m = 2p+ 1, then

U(x, y) = (−1)p
∂n+2p+1u

∂xn+2p∂y
.

In the first case,
U(x, y) = Re(−1)pf (n+2p)(z),

while in the second case,

U(x, y) = Re i(−1)pf (n+2p+1)(z),

since, in view of formula (4.2.6),

f (�)(z) =
∂�u

∂x�
(x, y)− i

∂�u

∂x�−1∂y
(x, y), � ∈ N.

When the set Ω is connected, V = Im f (n+2p)(z) or V = Im i(−1)pf (n+2p+1)(z)
(depending on whether m is even or odd) is, up to a real constant, the harmonic
conjugate of U . When Ω is not connected, a different constant has to be added to
V on every connected component of Ω. �
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Solution of Exercise 9.2.9. We know that

Re z2 = x2 − y2 and Re−iz2 = 2xy,

and hence

Re f ′(z) = Re(1− 3i)z2.

Thus

f(z) =
1− 3i

3
z3 + f(0). �

Solution of Exercise 9.2.10. We will find directly an analytic function f with real
part u. This will prove directly that u is indeed harmonic. This method is fine
only if you know ahead that the given function u is harmonic!

We replace the trigonometric and hyperbolic functions by their values in
terms of the exponential functions and get to

u(x, y) = y

(
eiy + e−iy

2

)(
ex − e−x

2

)
+ x

(
eiy − e−iy

2i

)(
ex + e−x

2

)
=

y

4

(
ex+iy + ex−iy − eiy−x − e−x−iy

)
+

x

4i

(
ex+iy + eiy−x − e−iy+x − e−iy−x

)
=

y

4

(
ez + ez − e−z − e−z

)
+

x

4i

(
ez + e−z − ez − e−z

)
= ez

x+ iy

4i
+ ez

iy − x

4i
− e−z x+ iy

4i
+ e−z iy − x

4i

=
1

4i

(
(zez − ze−z)− (zez − ze−z)

)
.

Hence,

u(x, y) = Re
1

2i
(zez − ze−z) = Re

1

i
(z sinh z).

The harmonic conjugate of u is given by

v(x, y) = Im
1

i
(z sinh z).

Another way is to use the formula for the harmonic conjugate

v(x, y) =

∫ y

0

∂u

∂x
(x, t)dt −

∫ x

0

∂u

∂y
(s, 0)ds. (9.5.2)

�
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Solution of Exercise 9.2.11. We compute
∂v

∂x
and show that the second Cauchy–

Riemann equation holds. We have:

∂v

∂x
(x, y) =

∫ y

0

∂2u

∂x2
(x, t)dt− ∂u

∂y
(x, 0)

= −
∫ y

0

∂2u

∂y2
(x, t)dt − ∂u

∂y
(x, 0)

=
∂u

∂y
(x, 0)− ∂u

∂y
(x, y)− ∂u

∂y
(x, 0)

= −∂u

∂y
(x, y).

To go from the first line to the second, we used that u is harmonic and hence

∂2u

∂x2
(x, y) = −∂2u

∂y2
(x, y). (9.5.3)

�

Solution of Exercise 9.2.12. The function (9.2.3) is analytic in the simply-con-
nected set Ω. Therefore the integral of g around any closed path in Ω vanishes.
Let Cx,y be a path connecting (x0, y0) to (x, y), with parametrization γ(t) =
x(t) + iy(t), t ∈ [a, b]. The integral

f(z) =

∫
Cx,y

g(ζ)dζ

is independent of the specific choice of Cx,y and depends only on (x0, y0) and
(x, y). Note that f is analytic in Ω. Furthermore

f(z)− f(z0) =

∫ b

a

(
∂u

∂x
(x(t), y(t)) − i

∂u

∂y
(x(t), y(t))

)
(x′(t) + iy′(t))dt.

Taking real and imaginary part we obtain

Re f(x, y)− Re f(x0, y0) =

∫ b

a

(
∂u

∂x
(x(t), y(t))x′(t) +

∂u

∂y
(x(t), y(t))y′(t)

)
dt,

Im f(x, y)− Im f(x0, y0) =

∫ b

a

(
∂u

∂x
(x(t), y(t))y′(t)− ∂u

∂y
(x(t), y(t))x′(t)

)
dt.

Since
du(x(t), y(t))

dt
=

∂u

∂x
(x(t), y(t))x′(t) +

∂u

∂y
(x(t), y(t))y′(t),

the first equation leads to Re f(x, y) = u(x, y), up to a constant. It follows that
Im f is a harmonic conjugate of u, and the above formula for Im f is just (9.3.3).

�
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Solution of Exercise 9.2.13. From (9.2.6) we get

f (2)(ρ) +
1

ρ
f (1)(ρ) = 0,

which readily leads to
f(ρ) = A ln ρ+B,

while in the second case, we have

f(θ) = Aθ +B,

where, in both cases, A and B are arbitrary constants. �

Solution of Exercise 9.2.14. The first Cauchy–Riemann equation in polar coordi-
nates gives (see (9.2.5))

θ cos θ + (ln r + 1) sin θ =
1

r

∂v

∂θ
,

and hence
v(r, θ) = r(θ sin θ + cos θ − (ln r + 1) cos θ) + k(r).

The unknown k(r) is obtained using the second Cauchy–Riemann equation:

θ sin θ + cos θ − (2 + ln r) cos θ + k′(r) = θ sin θ − cos θ − ln r cos θ.

It follows that k(r) is a constant, say k.

We note that

u+ iv = rθeiθ − ir ln reiθ = −iz ln z. �

Solution of Exercise 9.3.1. We have the formulas

(u2)x = 2uxu,

(u2)xx = 2(ux)
2 + 2uxxu,

(u2)y = 2uyu,

(u2)yy = 2(uy)
2 + 2uyyu.

Thus
Δ(u2) = 2

(
u2
x + u2

y

)
+ 2uΔu.

From Δu = Δ(u2) = 0 we obtain

u2
x + u2

y = 0.

Hence ux = uy = 0 and u is constant (on the connected components of its
domain of definition). �
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In the preceding exercise, one can replace u2 by ϕ(u) where ϕ(t) is any
function of class C2 (that is, with continuous second derivative), and whose second
derivative is non-zero, at the possible exception of a finite number of points (this
latter can also be relaxed). Indeed,

(ϕ(u))x = uxϕ
′(u),

(ϕ(u))xx = (ux)
2ϕ′′(u) + uxxϕ

′(u),
(ϕ(u))y = uyϕ

′(u),

(ϕ(u))yy = (uy)
2ϕ′′(u) + uyyϕ

′(u).

Hence
Δϕ(u) = ϕ′(u)Δu+

(
u2
x + u2

y

)
ϕ′′(u).

If ϕ(u) and u are both harmonic, we get that(
u2
x + u2

y

)
ϕ′′(u) = 0,

and hence the result if ϕ′′ vanishes at most at a finite number of points. �

Solution of Exercise 9.3.2. The function f(z) = u(x, y) + iv(x, y) is entire and so
is the function F (z) = f(z)3. We have

ReF (z) = u(x, y)3 − 3u(x, y)v(x, y)2.

Consider the entire function G(z) = e−F (z). Its modulus is

|G(z)| = e−ReF (z) ≤ 1 since ReF (z) ≥ 0.

By Liouville’s theorem G is constant. Thus

G′(z) = −3f ′(z)f2(z)G(z) ≡ 0.

Thus f ′(z)f(z)2 ≡ 0. Since the zeros of F are isolated, we get that f ′(z) = 0 first
at those points where f(z) 
= 0 and then on all of C by continuity of f ′. Hence
f(z) is a constant and so are u and v. �

Solution of Exercise 9.3.3. We assume that u is bounded from above. The case
where u is bounded from below is treated in the same way after replacing u by
−u.

Since u is harmonic in the whole plane, it has a harmonic conjugate v on R2,
given for instance by formula (9.5.2). Assume that there is M such that

u(x, y) ≤ M, ∀(x, y) ∈ R2.

The function
H(z) = exp(u(x, y) + iv(x, y)−M)
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is entire. It is bounded in the complex plane since

|H(z)| = eu(x,y)−M ≤ 1.

By Liouville’s theorem, H is constant and it follows that its modulus is constant.
Taking the logarithm of H(z) we obtain that u is constant. �

Solution of Exercise 9.3.4. The function G(z) = 1− ∂u
∂x +i∂u∂y is entire and satisfies

ReG(z) ≥ 1.

The function 1/G is thus entire and bounded by 1 in modulus since

1

|G(z)|2 =
1

(1 − ∂u
∂x )

2 + (∂u∂y )
2
.

By Liouville’s theorem, the function 1/G is constant and so is G. It follows that
∂u
∂x is equal to a constant, say A. Thus

u(x, y) = Ax+B(y).

Since B(y) is harmonic, we have B(y) = By + C for some real constants B and
C. Thus

u(x, y) = Ax+By + C.

Moreover, A ≤ 0 since ∂u
∂x ≤ 0. �

Solution of Exercise 9.3.5. The function ∂u
∂x is also harmonic in the plane and thus

has a harmonic conjugate, say t(x, y), such that

f(z) =
∂u

∂x
+ it(x, y)

is entire. We have that |f(z)| ≥ 5 since ∂u
∂x ≥ 5. So the function f does not vanish in

the complex plane, and 1/f is bounded in modulus by 1/5. By Liouville’s theorem,
1/f , and hence f , is constant. Thus ∂u

∂x is a constant, and we have

u(x, y) = Ax+B(y),

with A ≥ 5. Since Δu = 0, it follows that B(y) = By + C for some arbitrary real
constants B and C. �

Solution of Exercise 9.3.6. Let |f | =
√
u2 + v2 be the modulus of f . Then a direct

computation shows that

∂|f |
∂x

=
uux + vvx

|f | ,

∂2|f |
∂x2

=
u2
x + v2x + uuxx + vvxx

|f | − (uux + vvx)
2

|f |3 ,
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and similarly for the second derivative of |f | with respect to y,

∂2|f |
∂y2

=
u2
y + v2y + uuyy + vvyy

|f | − (uuy + vvy)
2

|f |3 . (9.5.4)

Since Δu = Δv = 0, adding (9.5.4) and the equation preceding (9.5.4) leads to:

Δ|f | =
|f |2(u2

x + u2
y + v2x + v2y)− (uux + vvx)

2 − (uuy + vvy)
2

|f |3 .

Furthermore, the formula for the derivative and the Cauchy–Riemann equations
lead to

u2
x + u2

y + v2x + v2y = 2|f ′|2 and |ff ′|2 = (uux + vvx)
2 + (uuy + vvy)

2,

and hence the formula for Δ|f |. �

Note that f(z) = z leads to (9.3.1).

Solution of Exercise 9.3.7. (1) We define for r ∈ (0, R) the function

F (r) =
1

2π

∫ 2π

0

u(x0 + r cos t, y0 + r sin t)dt.

We have

F ′(r) =
1

2π

∫ 2π

0

(
cos t

∂u

∂x
(x0 + r cos t, y0 + r sin t)

+ sin t
∂u

∂y
(x0 + r cos t, y0 + r sin t)

)
dt

=

∫
T

P (x, y)dx +Q(x, y)dy,

with

P (x, y) = − 1

2π

∂u

∂y
(x0 + rx, y0 + ry) and Q(x, y) =

1

2π

∂u

∂x
(x0 + rx, y0 + ry).

Using Green’s theorem, we have that

F ′(r) =
1

2π

∫
D

(Δu)(x0 + rx, y0 + ry)dxdy ≥ 0.

Thus

u(x0, y0) = F (0) ≤ F (r) =
1

2π

∫ 2π

0

u(x0 + r cos t, y0 + r sin t)dt.
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We note that this last equation can be rewritten as∫ 2π

0

(u(x0, y0)− u(x0 + r cos t, y0 + r sin t))dt ≤ 0. (9.5.5)

(2) Let u be a subharmonic function in an open connected set Ω, and let
(x0, y0) be a local maximum of u. Thus, there exists R > 0 such that, for all
r ∈ (0, R) and all t ∈ [0, 2π],

u(x0, y0) ≥ u(x0 + r cos t, y0 + r sin t).

Together with (9.5.5), this leads to

u(x0, y0) = u(x0 + r cos t, y0 + r sin t), ∀r ∈ (0, R) and t ∈ [0, 2π].

If now u is bounded in Ω, the preceding argument shows that the set of points
where the maximum is attained is open. But the set where it is not attained is
also open; since Ω is connected and the first set is not empty, u is a constant. �

Solution of Exercise 9.3.8. Consider r such that B(z0, R) ⊂ D. Since |f(z)2| is
subharmonic (see formula (9.3.3)), it follows from the preceding exercise that

|f(z0)2| ≤
1

2π

∫ 2π

0

|f(x0 + r cos t, y0 + r sin t)2|dt.

Therefore, for r0 < R,

r20
2
|f(z0)2| =

∫ r0

0

|f(z0)2|rdr ≤ 1

2π

∫ r0

0

(∫ 2π

0

|f(x0 + r cos t, y0 + r sin t)2|dt
)
rdr

=
1

2π

∫∫
B(z0,r0)

|f(z)|2dxdy

≤ ‖f‖2B,

where we have used the formula for the change of variable in the double integral
to go from the first to the second line. �

Remark 9.5.1. The preceding proof holds for more general domains. In the case
of the disk, another proof would go as follows: Let f(z) =

∑∞
n=0 anz

n. Then

‖f‖2B =

∞∑
n=0

|an|2
n+ 1

,
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and therefore

|f(z0)| ≤
∞∑
n=0

|an||z0|n

=

∞∑
n=0

|an|√
n+ 1

√
n+ 1|z0|n

≤
( ∞∑

n=0

|an|2
n+ 1

)1/2( ∞∑
n=0

(n+ 1)|z0|2n
)1/2

=
1

1− |z0|2
‖f‖B,

where we have used the Cauchy–Schwarz inequality and the equality

∞∑
n=0

(n+ 1)|z0|2n =
1

(1 − |z0|2)2
.

Definition 9.5.2. The space of functions analytic in the open unit disk for which
‖f‖B is finite is a Hilbert space called the Bergman space.

The inequality (9.3.7) expresses that the Bergman space is a reproducing
kernel Hilbert space; its reproducing kernel is 1

(1−zw)2 .

Solution of Exercise 9.3.9. In case (a) we have

ux(x, y) = 2xϕ′(x2 − y2),

uxx(x, y) = 2ϕ′(x2 − y2) + 4x2ϕ′′(x2 − y2),

uy(x, y) = −2yϕ′(x2 − y2),

uyy(x, y) = −2ϕ′(x2 − y2) + 4y2ϕ′′(x2 − y2).

Thus
Δu = 4(x2 + y2)ϕ′′(x2 − y2),

and so ϕ(t) = At+B for some real constants A and B and so

u(x, y) = A(x2 − y2) +B.

In case (b),

ux(x, y) = − y

x2
ϕ′(y/x),

uxx(x, y) =
2y

x3
ϕ′(y/x) +

y2

x4
ϕ′′(y/x),

uy(x, y) =
1

x
ϕ′(y/x),

uyy(x, y) =
1

x2
ϕ′′(y/x).
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Thus

Δu = 0 ⇐⇒ 2y

x
ϕ′(y/x) + ((y/x)2 + 1)ϕ′′(y/x) = 0.

Thus

2tϕ′(t) + (t2 + 1)ϕ′′(t) = 0,

that is

ϕ(t) = A arctan t+B. �

Solution of Exercise 9.3.10. Recall that Δ = 4∂z∂z, where the operators ∂z and
∂z have been defined in (4.2.15). We have

∂z(zf) = f + z∂zf,

and therefore

∂2
z2(zf) = 2∂zf + z∂2

z2f.

So, taking into account that

Δf = 4∂z∂zf = 0,

we have

∂z(∂
2
z2(zf)) = 0,

and in particular Δ2f = 0, and so also Δ2 Re f = 0. �

Solution of Exercise 9.4.2. Using formula (9.4.1) we have

u(z) = Re

(
1

2π

∫ π

0

eit + z

eit − z
dt− 1

2π

∫ 2π

π

eit + z

eit − z
dt

)
= Re

(
1

2π

∫ π

0

(
1 + 2

∞∑
n=1

zne−int

)
dt

− 1

2π

∫ 2π

π

(
1 + 2

∞∑
n=1

zne−int

)
dt

)

=
1

π
Re

( ∞∑
n=1

zn
(∫ π

0

e−intdt−
∫ 2π

π

e−intdt

))

=
2

π
Re

∞∑
n=1

zn
(−1)n − 1

−in

=

∞∑
p=0

4r2p+1 sin(2p+ 1)θ

(2p+ 1)π
. �
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Solution of Exercise 9.4.3. Let u be a solution. It will have a harmonic conjugate
if and only if equality (9.2.2)∫

C

−∂u

∂y
dx+

∂u

∂x
dy = 0

holds for all closed curve C in Ω. The integral (9.2.2) depends only on the homology
class of the curve, and needs to be checked only for the circle of radius 1/2. Set

H =

∫
|z|=1/2

−∂u

∂y
dx+

∂u

∂x
dy = 0,

where by |z| = 1/2 we mean the curve

γ(t) =
eit

2
, t ∈ [0, 2π].

Since∫
|z|=1/2

−∂ ln(x2 + y2)

dy
dx+

∂ ln(x2 + y2)

dx
dy =

∫
|z|=1/2

− 2y

x2 + y2
dx+

2x

x2 + y2
dy

= 4π,

Theorem 9.2.7 insures that the function

U(x, y) = u(x, y)− H

4π
ln(x2 + y2) (9.5.6)

has a harmonic conjugate in D \ {0}. The function u satisfies the boundary condi-
tion on the unit circle if and only if U does, and so the problem is reduced to the
case where a harmonic conjugate exists. Let V be a harmonic conjugate of U . The
function F (z) = U(x, y) + iV (x, y) is analytic in 0 < |z| < 1 and therefore has a
Laurent expansion of the form

F (z) =

∞∑
n=0

anz
n +

∞∑
n=1

bn
zn

,

where the series
∞∑

n=0

anz
n

converges in |z| < 1, and the series

∞∑
n=1

bn
zn
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converges in C\{0}, and is in particular continuous on the unit circle. The function
U is continuous in 0 < |z| ≤ 1 if and only if

Re
∞∑

n=0

anz
n

is continuous in 0 < |z| ≤ 1. Writing U(eit) ≡ 0 leads to

Re

{ ∞∑
n=0

ane
int +

∞∑
n=1

bne
−int

}
≡ 0.

It follows that Re a0 = 0 and

an = −bn, n = 1, 2, . . . .

Solutions u(x, y) are therefore of the form

H

4π
ln(x2 + y2) + Re

{
h(z)− h(1/z)

}
,

where h is an arbitrary entire function, and H is an arbitrary real number. �



Chapter 10

Conformal Mappings

Riemann’s mapping theorem asserts that a simply-connected domain different
from C is conformally equivalent to the open unit disk: There exists an analytic
bijection from Ω onto D (that the inverse is itself analytic is automatic; see Exercise
10.2.4). In this chapter we closely follow Chapters 5 and 6 of [45] and present some
related exercises. The chapter is smaller than the previous ones, but is certainly of
key importance in the theory of analytic functions. To quote [195, p. 1], Riemann’s
theorem is one of those results one would like to present in a one-semester intro-
ductory course in complex variables, but often does not for lack of sufficient time.
The proof requires also some topology, which is not always known by students of
a first complex variable course.

10.1 Uniform convergence on compact sets

The proof of Riemann’s theorem is not constructive, and uses deep properties of
the topology of the space of functions analytic in an open set. We review here
some of these properties. The solutions of the following two questions will not be
given here.

Question 10.1.1. Let Ω be an open connected subset of C. Show that there exists an
increasing sequence (Kn)n∈N of compact subsets of Ω with the following property:
Given any compact subset K of Ω, there exists N ∈ N such that

K ⊂
N⋃

n=1

Kn.

Question 10.1.2. Let Ω and (Kn)n∈N be as in the previous exercise. Show that (see

D. Alpay, A Complex Analysis Problem Book, 
DOI 10.1007/978-3-319-42181-0_10 

443© Springer International Publishing AG 2016
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[45, (3.3), p. 149])

d(f, g) =

∞∑
n=1

1

2n
min(1, max

z∈Kn

|f(z)− g(z)|) (10.1.1)

defines a metric on the space A(Ω) of functions analytic in Ω.

Convergence of a sequence in the metric (10.1.1) is equivalent to uniform
convergence on every compact subspace of Ω. The space A(Ω) endowed with this
metric has a key property: A subset of A(Ω) is compact if and only if it is both
closed and bounded. Locally convex Hausdorff barreled topological vector spaces
for which this property holds are called Montel spaces. See, e.g., [214, Definition
34.2, p. 356]. We also refer to [CAPB2], where some of these definitions and con-
cepts are reviewed. Bounded here does not mean boundedness with respect to the
metric, but boundedness in a topological vector space. Recall:

Definition 10.1.3. Let V denote a topological vector space on the complex numbers
or on the real numbers. The set U ⊂ V is called bounded if for every neighborhood
W of the origin there exists λ > 0 such that

U ⊂ λW.

The above characterization of compact sets is the key in the proof of Rie-
mann’s theorem. We refer to [109] for a thorough study of the metric spaces where
(sequential) compactness is equivalent to being closed and bounded.

10.2 One-to-oneness

It is an important fact that an analytic function is one-to-one in a neighborhood
of a point where its derivative does not vanish. For the following exercise, see [148,
p. 372].

Exercise 10.2.1. Let f be analytic in a convex open set Ω and assume that Re f ′(z)
> 0 in Ω. Show that f is one-to-one in Ω.

Note that an analytic function which is one-to-one on an open set Ω is said
to be univalent in that set. As a corollary of this exercise we get the following very
important result. For the converse statement, namely that when f ′(z0) = 0 there
is no neighborhood of z0 in which the function is one-to-one, see Exercise 7.3.8.

Theorem 10.2.2. An analytic function is univalent in a neighborhood of any point
where its derivative does not vanish.

Indeed, if f ′(z0) 
= 0, then at least one of the numbers Re f ′(z0) and Im f ′(z0)
is not zero. Without loss of generality we may assume that Re f ′(z0) > 0 (otherwise
replace f by −f or ±if depending on the case). By continuity, Re f ′(z) > 0 in
an open disk around z0. We can then apply the precedent result since a disk is in
particular convex.
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Exercise 10.2.3. Give a solution of Exercise 5.2.9 using Exercise 10.2.1.

We note the following:

f ′(z) = 1 +

∞∑
n=2

nanz
n−1,

and in particular

|f ′(z)| ≥ 1−
∣∣∣∣∣
∞∑

n=2

nanz
n−1

∣∣∣∣∣
≥ 1−

∞∑
n=2

n|an||z|n−1

≥ 1−
∞∑

n=2

n|an| > 0, ∀z ∈ D.

Thus, by Theorem 10.2.2, f is one-to-one in a neighborhood of every point in D.
This is a local result. We want a direct solution of a global result: f is one-to-one
in D.

Exercise 10.2.4. Assume that the analytic function f is one-to-one in Ω. Show
that the formula (see, e.g., [42, p. 180])

g(z) =
1

2πi

∫
γ

sf ′(s)
f(s)− z

ds, (10.2.1)

where γ is a closed simple contour, defines the inverse of f inside γ.

Formula (10.2.1) shows in particular that f−1 is analytic.

We now consider the case where the derivative vanishes at a given point. It is
no loss of generality to assume that the function itself also vanishes at that point.

Exercise 10.2.5. Let f be analytic in the open subset Ω and assume that z0 ∈ Ω
is a zero of order N of f . Show that there is a function g which is analytic and
one-to-one in some open neighborhood U ⊂ Ω of z0 and such that

f(z) = g(z)N , z ∈ U. (10.2.2)

With the preceding exercises at hand we can state the following key result,
called the open mapping theorem (see also Exercise 7.4.9).

Theorem 10.2.6. Let Ω be an open subset of C and let f be analytic in Ω. Then,
f(Ω) is an open subset of C.
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Proof. Take first a point ω ∈ Ω where f ′(ω) 
= 0. By Exercise 10.2.4 the function
f is one-to-one in an open neighborhood U of ω, with analytic inverse. The inverse
h of f ,

h : f(U) −→ U,

is in particular continuous, and therefore

f(U) = h−1(U) ⊂ f(Ω)

is an open neighborhood of f(ω) which lies inside f(Ω). If f ′(ω) = 0, we first
remark that for any N ∈ N the map z �→ zN maps open balls into open balls, and
therefore open sets into open sets. Write f in the form (10.2.2). There is an open
neighborhood U of ω where g(z) is one-to-one. By the above argument, g(U) is
open, and so is f(U) = g(U)N . �

Exercise 10.2.7. In the notation and hypothesis of Exercise 6.1.9, show that the
set Ω0 contains uncountably many points.

We conclude this section with an important fact on univalent functions, which
comes into play in the proof of Riemann’s mapping theorem. See [45, Proposition
2.2, p. 147, p. 191].

Exercise 10.2.8. Let Ω be open and connected, and let (sn)n∈N be a sequence of
functions univalent in Ω, which converge uniformly on compact subsets of Ω. The
limit is then either a constant or univalent.

10.3 Conformal mappings

Simply-connected sets have already been characterized in a number of ways. Geo-
metrically, Riemann’s mapping theorem expresses the following characterization:

Definition 10.3.1. A connected open subset Ω of C which is different from C is
simply-connected if it is conformally equivalent to the open unit disk.

Question 10.3.2. Show that any open disk is conformally equivalent to any open
half-plane.

We recall that the Blaschke factors (1.1.44), possibly multiplied by a constant
of modulus 1,

ϕ(z) = c
z − a

1− az

are the only conformal mappings from the open unit disk onto itself. Taking into
account this fact allows to solve the following exercise.
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Exercise 10.3.3.

(1) Show that the conformal maps from the open upper half-plane C+ onto itself
are exactly the Moebius maps which can be written in the form

ϕ(z) =
az + b

cz + d
,

where a, b, c, d are real and such that ad− bc = 1.

(2) Show that any two points in C+ can be related by such a conformal map.

The proof of Riemann’s mapping theorem (see for instance H. Cartan’s [45])
uses the fact that a connected open subset Ω of the complex plane is simply con-
nected if and only if every non-vanishing function analytic in Ω admits an analytic
logarithm. The proof can be divided into three steps (and here, we follow [45]):

(a) Reduce to the case where Ω ⊂ D and 0 ∈ Ω.

(b) Show that the existence of a conformal map is equivalent to the solution of
a maximum problem.

(c) Show that the maximum problem has a solution.

Steps (a) and (b) use, each once only once, the assumed existence of an
analytic logarithm. Step (c) uses topology tools which are somewhat beyond the
scope of the present book. The content of the following question is Step (b).

Question 10.3.4. Let Ω be an open subset of D, containing the origin, and with the
property that every non vanishing function analytic in Ω has an analytic logarithm.
Let M denote the set of univalent functions from Ω into D such that f(0) = 0.
Show that the range of f is D if and only if

|f ′(0)| = max
g∈M

|g′(0)|.

Hints: One direction is relatively easy, and uses the Schwarz lemma. For the other
direction, proceed by contradiction, and use Theorem 5.7.6 (see [45]).

Question 10.3.5. Show that tan z is a conformal map from the strip

L1 = {(x, y) ;x ∈ (−π/4, π/4) and y ∈ R}

onto the open unit disk.

Exercise 10.3.6. Find a conformal map between the open right half-plane and the
quarter-plane

{(x, y) ; 0 < x < |y|} .
Exercise 10.3.7. Let D denote the open unit disk and C+ denote the open upper
half-plane. Show that the map

ϕ(z) =
z − i(z2 + 1)

z + i(z2 + 1)

is a conformal mapping from D+ = D∩C+ onto D. What happens on the boundary?
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Exercise 10.3.8 (see [75, Exercice 35.33, p. 329]). Let α ∈ (0, π/2) and define

Dα =

{
z ∈ C ; |z ± i cotα| < 1

sinα

}
.

Show that the map

c(z) =

(
1+z
1−z

) π
2α − 1(

1+z
1−z

) π
2α

+ 1

is conformal from Dα onto D, and that its inverse is given by

c−1(z) =

(
1+z
1−z

) 2α
π − 1(

1+z
1−z

) 2α
π

+ 1

.

The following exercise can be found for instance in [53, p. 203], [168, Exercise
2, p. 196], and [18, § 10.4.4, pp. 308–311]. We follow the solution of that latter
reference. In the statement the function

√
1− s4 is defined via (4.4.9).

Exercise 10.3.9. Show that the map

z �→ c(z) =

∫
[0,z]

ds√
1− s4

(10.3.1)

is conformal from D onto a square.

Hint. Following [18, § 10.4.4, pp. 308–311] we suggest to solve the exercise along
the steps below:

Step 1: Show that the map c extends continuously to the closed unit disk,
and that (see [18, p. 310])

c(eiθ) = M + ei
3π
4

∫ θ

0

du√
2 sin(2u)

, θ ∈
[
0,

π

4

]
. (10.3.2)

for some constant M > 0.

Step 2: Show that the image of the unit circle is the boundary of a square.
Exercise 3.5.7 plays an important role in this step. It is also useful to note that

c(iz) = ic(z), z ∈ D. (10.3.3)

Step 3: Compute 1
2πi

∫
|z|=1

c′(z)
c(z) dz.
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10.4 Solutions

Solution of Exercise 10.2.1. Let z1 and z2 be in Ω. Since Ω is convex, the closed
interval

[z1, z2] = {z1 + t(z2 − z1) ; t ∈ [0, 1]} ⊂ Ω.

By the fundamental theorem of calculus for analytic functions,

f(z2)− f(z1) =

∫
[z1,z2]

f ′(z)dz

= (z2 − z1)

∫ 1

0

f ′(z1 + t(z2 − z1))dt

= (z2 − z1)

{
Re

(∫ 1

0

f ′(z1 + t(z2 − z1))dt

)
+i Im

(∫ 1

0

f ′(z1 + t(z2 − z1))dt

)}
.

(10.4.1)

Since Re f ′(z) > 0 in Ω we have

Re

(∫ 1

0

f ′(z1 + t(z2 − z1))dt

)
> 0. (10.4.2)

It follows from (10.4.2) that

f(z2)− f(z1) = (z2 − z1)

{
Re

(∫ 1

0

f ′(z1 + t(z2 − z1))dt

)
+ i Im

(∫ 1

0

f ′(z1 + t(z2 − z1))dt

)}
that f(z1) 
= f(z2) if z1 
= z2. �

Solution of Exercise 10.2.3. We have, for z ∈ D,

Re f ′(z) = 1− Re

∞∑
n=2

nanz
n−1 ≥ 1−

∣∣∣∣∣
∞∑

n=2

nanz
n−1

∣∣∣∣∣ ≥ 1−
∞∑
n=2

n|an| > 0.

It suffices then to apply the previous exercise. �

Solution of Exercise 10.2.4. We have, for z0 inside γ,

g(f(z0)) =
1

2πi

∫
γ

sf ′(s)
f(s)− f(z0)

s− z0

1

s− z0
ds

=

⎛⎜⎜⎝ sf ′(s)
f(s)− f(z0)

s− z0

⎞⎟⎟⎠
s=z0

= z0. �
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Solution of Exercise 10.2.5. By definition of a zero of order N we can write in
some neighborhood W ⊂ Ω of z0,

f(z) = (z − z0)
Nh(z),

where h is analytic in W and does not vanish there. We can always assume W to
be convex (for instance, W may be chosen to be an open disk with center z0 and
small enough radius). Then, the function h has an analytic logarithm in W , and
therefore also an analytic root of order N : There is a function h0 analytic in W
and such that

h(z) = h0(z)
N , z ∈ W.

We therefore have f(z) = ((z − z0)h0(z))
N , z ∈ W . The function g(z) = (z −

z0)h0(z) is analytic in W . It is one-to-one in a neighborhood U ⊂ W of z0 since

g′(z)|z=z0 = ((z − z0)h
′
0(z) + h0(z)) |z=z0 = h0(z0) 
= 0. �

The following solution is taken from [10, pp. 4–5].

Solution of Exercise 10.2.7. We use the notation of Exercises 4.1.13 and 6.1.9. We
know from Exercise 6.1.9 that there is a point μ ∈ Ω such that

|a(μ)| = |b(μ)| 
= 0.

The map

σ(z) =
b(z)

a(z)

is analytic in the open set Ω \ Z(a). The image σ(Ω \ Z(a)) is an open set, and
therefore there exists an r > 0 such that

B(σ(μ), r) ⊂ σ(Ω \ Z(a)).

The image σ(Ω \ Z(a)) contains in particular an arc of a circle, and the claim
follows. �

Solution of Exercise 10.2.8. We first remark that the limit function s is indeed
analytic, since the convergence is uniform on compact subsets of Ω. Assume that
s is not a constant, but that there are two points a1 and a2 in Ω such that

s(a1) = s(a2)
def.
= c.

The function s(z)− c has isolated zeroes (since it is not a constant), and therefore
we can find two closed neighborhoods

Bc(a1, ρ1) = {z ∈ Ω ; |z − a1| ≤ ρ1}

and
Bc(a2, ρ2) = {z ∈ Ω ; |z − a2| ≤ ρ1} ,
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with ρ1 and ρ2 strictly positive, such that

Bc(a1, ρ1) ∩Bc(a2, ρ2) = ∅,

and such that
s(z)− c 
= 0,

both in Bc(a1, ρ1) \ {a1} and in Bc(a2, ρ2) \ {a2}. Set

m� = min
|a�−z|=ρ�

|s(z)− c|, � = 1, 2.

We have that m1 > 0 and m2 > 0. Furthermore, since the neighborhoods
Bc(a1, ρ1) and Bc(a2, ρ2) are compact, there exists N ∈ N such that

n ≥ N =⇒ ∀z ∈ Bc(a1, ρ1) ∪Bc(a2, ρ2), |sn(z)− s(z)| < m�, � = 1, 2.

Thus, for all z ∈ Bc(a�, ρ�), � = 1, 2, we have

|sn(z)− s(z)| < m� ≤ |s(z)− c|.

From Rouché’s theorem (see Exercise 7.4.1), we have that sn(z) − c vanishes
in Bc(a�, ρ�) for � = 1, 2, contradicting the fact that the sn are univalent since
Bc(a1, ρ1) ∩Bc(a2, ρ2) = ∅. �

Solution of Exercise 10.3.3.

(1) The map ϕ(z) = 1+iz
1−iz sends conformally C+ onto D. It follows that the con-

formal maps of C+ onto itself are, in terms of matrices, of the form(
i 1
−i 1

)−1(
k ku
u 1

)(
i 1
−i 1

)
=

1

2i

(
i(k(1− u) + (1− u)) k(1 + u)− (1 + u)
−k(1− u) + (1− u) i(k(1 + u) + (1 + u)).

)
with k ∈ T and u ∈ D. Let k = eiθ with θ ∈ R. Dividing the entries of the above
matrix by ei

θ
2

√
1− |u|2 we obtain the matrix

1√
1− |u|2

(
Re ei

θ
2 (1 − u)) Im(ei

θ
2 (1 + u))

− Im(ei
θ
2 (1 − u)) Re(ei

θ
2 (1 + u))

)
, (10.4.3)

which is of the required form. Conversely for any ϕ(z) = az+b
cz+d where a, b, c, d are

real and such that ad− bc = 1 we have

Imϕ(z) =
Im z

|cz + d|2

and so ϕ sends C+ onto itself.

(2) The result is a direct consequence of Exercise 2.3.5. �
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Remark 10.4.1. When u = 0 the matrix (10.4.3) becomes(
cos( θ2 ) sin( θ2 )
− sin( θ2 ) cos( θ2 )

)
.

Solution of Exercise 10.3.6. The open right half-plane Cr consists of the complex
numbers z = reit with r > 0 and t ∈ (−π

2 ,
π
2 ). The map

√
z =

√
rei

t
2 is a conformal

map from Cr onto the quarter-plane, with inverse map z2. �

Solution of Exercise 10.3.7. The map G(z) =
1− z

1 + z
is conformal from the open

right half-plane Cr = {z = x+ iy ∈ C ; x > 0} onto D. It is therefore enough to
check that G−1 ◦ϕ is conformal from D+ onto the right half-plane. But G−1(z) =
1− z

1 + z
and so

G−1 ◦ ϕ(z) = i
z2 + 1

z
.

Let us write

ψ(z) = i
z2 + 1

z
= i

(
z +

1

z

)
. (10.4.4)

We now proceed in a number of steps.

Step 1: ψ is one-to-one from D+ onto its range.

Indeed, assume that ψ(z1) = ψ(z2). Then, in view of (10.4.4),

z1 − z2 +
1

z1
− 1

z2
= 0,

that is

(z1 − z2)(1−
1

z1z2
) = 0.

Thus z1 = z2 or z1 =
1

z2
. Since we assume that both z1 and z2 belong to D+ we

have z1 = z2.

Step 2: The range of ψ is inside Cr.

Indeed, with z = x+ iy,

ψ(z) = i

(
(x+ iy) +

x− iy

x2 + y2

)
= y

(
1

x2 + y2
− 1

)
+ i

(
x

x2 + y2
+ x

)
.

But for z ∈ D+ we have

y > 0 and
1

x2 + y2
> 1,
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and so

y

(
1

x2 + y2
− 1

)
> 0,

that is Reψ(z) > 0.

Step 3: ψ is onto Cr.

Indeed, for w such that Rew > 0 consider the equation ψ(z) = w. We have

z2 + izw + 1 = 0,

and thus the product of the two roots of this second degree equation is equal to 1.
Since, in view of the previous step,

0 < Rew = y

(
1

x2 + y2
− 1

)
,

we see that one of them is in D+. �

Solution of Exercise 10.3.8. We proceed in a number of steps:

(1) The map

z �→ ψ(z) =
1 + z

1− z

is conformal from D onto the open right half-plane, with inverse ψ−1(z) =
z−1
z+1 .

This follows from
1 + z

1− z
+

1 + z

1− z
= 2

1− |z|2
|1− z|2 .

(2) Let z = reit with r > 0 and t ∈ (−π, π). The map

z �→ pα(z) = z
π
2α = r

π
2α ei

π
2α t (10.4.5)

is conformal from the domain

Cr,α = {z ∈ C ; 0 < x < (tanα)|y|}

onto the open right half-plane.

This is because z ∈ Cr,α if and only if it is of the form z = reiθ , where θ ∈ (−α, α).
Under the map (10.4.5) the angle has now range (−π

2 ,
π
2 ).

(3) The map ψ−1(z) = z−1
z+1 is conformal from Cr,α onto Dα.

We note that the boundary of Cr,α consists of the two rays re±iα, with r ∈ [0,∞).
We first check that this boundary is sent onto the boundary of Dα. We consider
the ray reiα. The other one is treated in the same way. Let therefore

x+ iy =
reiα − 1

reiα + 1
=

r2 − 1

r2 + 1 + 2r cosα
+ i

2r sinα

r2 + 1 + 2r cosα
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be in the image of this ray under ψ−1. We have

y + cotα =
1

sinα

2r + (1 + r2) cosα

r2 + 1 + 2r cosα
.

Thus

|x+ iy + i cotα|2 =

(
r2 − 1

r2 + 1 + 2r cosα

)2

+
1

sin2 α

(
2r + (1 + r2) cosα

r2 + 1 + 2r cosα

)2

=
(r2 − 1)2 sin2 α+ (r2 + 1)2 cos2 α+ 4r2 + 4r(r2 + 1) cosα

(sin2 α)(r2 + 1 + 2r cosα)2

=
1

sin2 α
,

and similarly when α is replaced by −α. Since the image of z = 1 under ψ−1 is
z = 0 we conclude that ψ−1 is conformal from Cr,α onto Dα. The claim on the
inverse of c follows from the fact that c = ψ−1 ◦ pα ◦ ψ (where pα is defined by
(10.4.5)). �

Solution of Exercise 10.3.9.

Step 1: Let α0, α1, α2, . . . be defined by

1√
1− z

=

∞∑
n=0

αnz
n, z ∈ D.

For z ∈ D we have

c(z) =

∫
[0,z]

ds√
1− s4

=

∫ 1

0

z√
1− z4t4

dt

=

∞∑
n=0

αnz
4n+1

∫ 1

0

t4ndt

(where one can use, for instance, the dominated convergence theorem to inter-
change the sum and the integral)

=

∞∑
n=0

αnz
4n+1

n+ 1
, z ∈ D.

The coefficients α0, α1, . . . satisfy (3.5.9), and so this last expression defines a
function analytic in D (namely, c(z)) and continuous in the closed unit disk D. By
Exercise 3.5.7, we have for θ ∈ [0, 2π]

c(eiθ) = M + i

∫ θ

0

( ∞∑
n=0

αne
i(4n+1)u

)
du, where M =

∞∑
n=0

αn

n+ 1
.
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To conclude the first step we show that

i

∞∑
n=0

αne
i(4n+1)u =

ei
3π
4√

2 sin(2u)
, u ∈

(
0,

π

4

)
. (10.4.6)

To that purpose, let t ∈ (0, 1). By Theorem 3.5.1 the sum
∑∞

n=0 αnt
ne4inu con-

verges for u ∈ (0, π
4 ). By Theorem 3.5.4, and for such u, we have:

ieiu lim
t→1

t∈(0,1)

∞∑
n=0

αnt
ne4inu = ieiu

∞∑
n=0

αne
4inu.

On the other hand,

i

∞∑
n=0

αnt
nei(4n+1)u =

ieiu√
1− t4e4iu

.

Consider the polar decomposition

ieiu√
1− t4e4iu

= ρt(u)e
iθt(u),

with θt(u) ∈ (0, π
4 ). We have

ρt(u) =
1

|
√
1− t4e4iu|

=
1

4
√
1 + t8 − 2t4 cos(4u)

−→ 1
4
√
2− 2 cos(4u)

=
1√

2 sin(2u)
.

as t → 1. Moreover,

ρt(u)
2e2iθt(u) =

−e2iu

1− t4e4iu
→ −i

2 sin(2u)
,

as t → 1, and so limt→1 2θt(u) =
3π
2 .

Step 2: It follows from (10.3.2) that c maps [0, π4 ] into a closed interval. On
the other hand, the formula (10.3.3)

c(iz) =

∫
[0,iz]

ds√
1− s4

=

∫ 1

0

izdt√
1− (iz)4

= ic(z), z ∈ D,

still holds on the boundary using radial limits since lim r→1
r∈(0,1)

c(reiθ) exists for

θ ∈ [0, 2π] \
{
0, π2 ,

3π
2 , 2π

}
, and shows that the image of [π4 ,

π
2 ] is an interval of the
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same length, rotated by π/2 in the trigonometric sense. The same holds for the
other two quadrants, and the image of the unit circle is a square.

Step 3: Let w ∈ D and let r ∈ (|w|, 1). By Exercise 7.3.5

1

2πi

∫
|z|=r

c′(z)
c(z)− w

dz

is equal to the number of solutions of the equation c(z) = w inB(0, r). The function

w �→ 1
2πi

∫
|z|=r

c′(z)
c(z)−wdz takes integer values and is continuous. It is constant on

open connected sets, and so equal to its value at w = 0. On the other hand, by
the dominated convergence theorem

lim
r→1

∫
|z|=r

c′(z)
c(z)

dz =

∫
|z|=1

c′(z)
c(z)

dz.

To conclude, note that, by definition of the winding number,

1

2πi

∫
|z|=1

c′(z)
c(z)

dz = 1. �

Remark 10.4.2. A variation of the preceding arguments will show that the appli-
cation

c(z) =

∫
[0,z]

ds

(1− sn)
2
n

maps conformally the open unit disk onto the interior of a regular polygon with
n sides, the length of the side being equal to

2π

n

Γ
(
1− 2

n

)(
Γ
(
1− 1

n

))2 =
1

n
21−

4
n

(
Γ
(
1
2 − 1

n

))2
Γ
(
1− 2

n

) . (10.4.7)

See [168, Exercise 4, p. 196], [195, Example 5.1, p. 48].

Using Legendre’s duplication formula (see, e.g., [53, p. 212], [146, (1.2.3) p. 3])

√
πΓ(2z) = 22z−1Γ(z)Γ

(
z +

1

2

)
(10.4.8)

it is readily seen that both expressions in (10.4.7) coincide. Indeed, it is equivalent
to prove that

√
πΓ

(
1− 2

n

)
= 2−

2
nΓ

(
1

2
− 1

n

)
Γ

(
1− 1

n

)
, (10.4.9)

which is (10.4.8) with z = 1
2 − 1

n .

Remark 10.4.3. We will not discuss here the Schwarz–Christoffel formula (see,
e.g., [168, Chapter 5, § 6, p. 189], [195, p. 42]), which allows to build conformal
maps onto certain polygons.



Chapter 11

A Taste of Linear System
Theory and Signal Processing

In the present chapter, we briefly discuss some links between the theory of analytic
functions and the theory of linear systems. We refer to the books [89], [117], [170],
[171], [178] for more information. The reader should be aware that more recent
advances in linear system theory, in the setting of several complex variables, non-
commuting variables, or stochastic setting, to name a few, require much more
involved tools. Still it is necessary to master the elementary setting outlined here
before going to these more advanced areas.

We recall that we denote by L2(R) and L2(−F, F ) the Lebesgue spaces of
functions measurable and square summable with respect to the Lebesgue measure,
on R and on (−F, F ) respectively.

11.1 Continuous signals

A continuous signal of finite energy is modeled by a continuous complex-valued
function f defined on the real line, and its energy will be by definition∫

R

|f(t)|2dt.

The integral is a Riemann integral, but the fact that we consider f with this norm
forces us to consider measurable functions and the Lebesgue space L2(R). See
Chapter 17 for a brief review of these notions.

The spectrum of the signal f is by definition its inverse Fourier transform
(13.5.3):

f̌(u) =
1

2π

∫
R

eiutf(t)dt,

D. Alpay, A Complex Analysis Problem Book, 
DOI 10.1007/978-3-319-42181-0_11 
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so that

f(t) =

∫
R

e−ituf̌(u)du.

The above expression is the decomposition of f along frequencies (technically,
it would be better to have 2πu rather than u for frequencies, but we will stick
to the present definition of the Fourier transform). We are interested in signals
which have spectrum with finite support. It then follows that the signal itself is
the restriction on the real line of an entire function. If the spectrum has support
in the closed interval [−F, F ], the signal can be written as

f(t) =
1

2F

∫
[−F,F ]

e−itum(u)du, (11.1.1)

wherem ∈ L2(−F, F ) denotes the spectrum. The representation (11.1.1) expresses
that the signal f is built from frequencies in a bounded domain (that is, f is a
band limited signal). This is a characteristic of physical systems. The factor 1

2F is
a normalization to have nicer formulas in the sequel. We recognize with (11.1.1) a
function similar to the ones appearing in Exercises 3.4.13 and 4.2.14. In particular,
f is the restriction to the real line of the entire function

f(z) =
1

2F

∫
[−F,F ]

e−izum(u)du, z ∈ C.

Besides being entire, this function has a special property:

Exercise 11.1.1. Show that there exists K > 0 such that

|f(z)| ≤ KeF |z|, ∀z ∈ C. (11.1.2)

Entire functions which admit a bound of the form (11.1.2) are called of
exponential type, and the smallest F in (11.1.2) is the exponential type of the
function. That every entire function which admits a bound of the form (11.1.2)
can be written as (11.1.1) with m ∈ L1(−F, F ) is a deep result, called the Paley–
Wiener theorem. See for instance [71, § 3.3, p. 158], [72, §2.2, p. 28]. Here we
restrict

m ∈ L2(−F, F ) ⊂ L1(−F, F )

because we want an underlying Hilbert space structure.

To summarize, physical considerations in modeling signals (having a band
limited spectrum) make it natural to consider a very special class of entire functions
(entire functions of exponential type).

11.2 Sampling

Since the function f in (11.1.1) has an analytic extension to the whole complex
plane, one can ask the question of reconstructing f from a discrete set of values.
From an engineering point of view this is an important issue. The surprising answer
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to this question is a result called the sampling theorem, which we present in this
section; see Theorem 11.2.1. The sampling theorem has a long history, and we
refer to the paper [159] for a historical account. We mention that a version of
the sampling theorem already appears in the 1915 paper [220] of E.T. Whittaker.
We refer to the papers of Claude Shannon [196], [197]. This last paper refers in
particular to the 1935 book [221, Ch. IV] of J.M. Whittaker for an earlier version
of the sampling theorem. See also [26, p. 258].

We note that there is no need of analytic functions to prove the sampling
theorem. On the other hand, the result is somewhat of a mystery to students who
have no background in analytic functions.

We consider L2(−F, F ) with the normalized inner product (17.7.3)

〈m,n〉 = 1

2F

∫
(−F,F )

m(t)n(t)dt.

Theorem 11.2.1. Let m ∈ L2(−F, F ), with F ∈ (0,∞), and let f be defined by
(11.1.1)

f(t) =
1

2F

∫
(−F,F )

e−itum(u)du.

Then

f(t) =
∑
n∈Z

f
(πn
F

) sin(Ft− nπ)

Ft− nπ
, (11.2.1)

where the limit is pointwise, and uniformly on compact subsets of C (with t ∈ C).
Finally ∫

R

|f(t)|2dt = π

F

∑
n∈Z

∣∣∣f (πn
F

)∣∣∣2 . (11.2.2)

For instance consider the choice F = 2 and

m(u) =

{
1, u ∈ [−1, 1],

0, u ∈ [−2, 2] \ [−1, 1].

Then

f(t) =
sin t

2t
and (11.2.2) becomes

1

4

∫
R

(
sin t

t

)2

dt =
π

2

∑
n∈Z

∣∣∣f (πn
2

)∣∣∣2
=

π

2

(
1

4
+ 2

∑
k∈N0

∣∣1
2

sin( (2k+1)π
2 )

(2k+1)π
2

∣∣2)

=
π

2

(
1

4
+ 2

∑
k∈N0

1

(2k + 1)2π2

)
.
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Using Exercise 5.3.3, this leads to (6.7.1)

∞∑
k=0

1

(2k + 1)2
=

π2

8
.

Exercise 11.2.2. Give a direct proof of (6.7.1) taking into account (1.3.14).

To prove Theorem 11.2.1 we use the expansion of an L2(−F, F ) function
along an orthogonal basis. To characterize functions which admit a representation
(11.1.1) is a more delicate matter, and uses the Phragmén–Lindelöf principle (we
will not recall its definition here). See [72, p. 28] for more information.

Exercise 11.2.3. The space HF of functions of the form

f(z) =
1

2F

∫
(−F,F )

m(u)e−izudu, m ∈ L2(−F, F ), (11.2.3)

with norm
‖f‖HF = ‖m‖L2(−F,F ) (11.2.4)

is the reproducing kernel Hilbert space of entire functions with reproducing kernel

KF (z, w) =
sin(Fz − Fw)

Fz − Fw
, z, w ∈ C.

In view of the isometry property (13.5.2) of the Fourier transform, we see
that the space HF defined in the preceding exercise is in fact, up to a unitary
constant, isometrically included in L2(R, dx). More precisely, we have

f(t) =
m̂(t)

2F
,

and so

‖f‖2L2(R,dx)
=

2π

2F
‖m‖2L2(−F,F ).

Thus

‖f‖2HF
= ‖m‖2L2(−F,F )

=
2F

2π
‖f‖2L2(R,dx)

.

Exercise 11.2.4. Prove formula (11.2.1).

11.3 Time-invariant causal linear systems

A linear continuous operator T ,

u ∈ L2(R) �→ Tu ∈ L2(R)

from L2(R) into itself, is called a linear system when one views the elements of
L2(R) as signals with finite energy. The function u is then called the input signal
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and the function Tu is called the output signal. The (linear) system is called
dissipative if the norm of the operator is less than or equal to 1:

∀u ∈ L2(R), ‖Tu‖L2(R) ≤ ‖u‖L2(R).

It will be called causal if the following property holds for every t ∈ R: If the
input function u has support (−∞, t), then the output function has also support
in (−∞, t).

We are in particular interested in operators which have a kernel representa-
tion in the form

Tf(t) =

∫
R

k(t, s)f(s)ds, (11.3.1)

or as convolution operators

Tf(t) =

∫
R

k(t− s)f(s)ds, (11.3.2)

when the kernel k(t, s) is required to depend only on the difference t− s.

Not every continuous linear operator from L2(R) admits such a representa-
tion. To ensure such a representation for every continuous operator, one has to
restrict the domain to a set of test functions and extend the range to the dual
space of distributions. Continuity is then understood with respect to the topology
of the Schwartz space and of its dual, and Schwartz’ kernel theorem insures then
a counterpart of (11.3.1) with a distribution k(t, s). This is a fascinating line of
research (see [109], [110] for instance for the background of the kernel theorem,
and Zemanian’s book [227] for applications to the theory of linear systems). Here
we are interested in a simpler kind of linear systems, namely systems y = Tu
given by

(L(y))(z) = h(z)(L(u))(z)

where L denotes the Laplace transform. Such systems are time-invariant and char-
acterized by a convolution in continuous time.

Exercise 11.3.1. Let (A,B,C,D) ∈ CN×N × CN×p × Cq×N × Cq×p, and consider
the equations

x′(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t), t ≥ 0
(11.3.3)

where the functions x, u and y are respectively CN -valued, Cp-valued and Cq-
valued. Assume that x(0) = 0 and that the Laplace transform L(u) has a positive
axis of convergence. Show that the function L(y) has a positive axis of convergence
and that

(L(y))(z) = h(z)(L(u))(z), (11.3.4)

where
h(z) = D + C(zIN − A)−1B. (11.3.5)
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The equations (11.3.4) are called state space equations, and the vector x(t)
is called the state at time t. The expression (11.3.5) is called a realization of the
rational matrix-valued function h. See Chapter 11 for more on this notion.

11.4 Discrete signals and systems

A discrete signal will be a sequence (un)n∈N0 of complex numbers, indexed by N0

(or sometimes by Z). Its z-transform is the power series

u(z) =

∞∑
n=0

unz
n.

The energy of the signal is its �2 norm

‖u‖�2 =

√√√√( ∞∑
n=0

|un|2
)
,

and we see that the space of signals of finite energy is nothing else than the Hardy
spaceH2(D). See Definition 5.6.11 for the latter. It is therefore reasonable to think
that function theory inH2(D) should have implications, and applications, in signal
theory.

A bounded linear system will be a linear bounded operator from �2 into itself.
It translates into a linear bounded operator T from H2(D) into itself. The linear
system will be called dissipative if it is moreover a contraction

‖Tu‖H2(D) ≤ ‖u‖H2(D), ∀u ∈ H2(D).

An important class of linear systems is defined by multiplication operators: The
input sequence (un)n∈N0 and the output sequence (yn)n∈N0 are related by

y(z) = h(z)u(z), (11.4.1)

where h(z) =
∑∞

n=0 hnz
n is convergent in D. Therefore, (yn)n∈N0 is the convolution

of (hn)n∈N0 and (un)n∈N0 . See (4.4.14) for the latter. The function h is called the
transfer function of the system, and its Taylor coefficients at the origin are called
the impulse response.

Not every h will lead to a bounded operator. We have:

Theorem 11.4.1. The relation (11.4.1) defines a bounded linear operator from
H2(D) into itself if and only if h is analytic and bounded in the open unit disk.
It defines a dissipative linear operator from H2(D) into itself if and only if h is
analytic and contractive in the open unit disk.
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The proof of Theorem 11.4.1 relies on the characterization (5.6.7) of the
space H2(D). If s is analytic and contractive in the open unit disk, then for every
f ∈ H2(D) and every r ∈ (0, 1)

|s(reit)f(reit)|2 ≤ |f(reit)|2,

and thus ∫ 2π

0

|s(reit)f(reit)|2dt ≤
∫ 2π

0

|f(reit)|2dt.

It follows that ‖sf‖H2(D) ≤ ‖f‖H2(D). We refer for instance to [6] for a proof of
the converse statement.

Functions analytic and contractive (in modulus) in the open unit disk played
an important role in Section 6.4 and were called there Schur functions.

The preceding discussion focused on scalar-valued signals and systems, but
one can also consider the matrix-valued case. Then for a sequence (un)n∈N0 of CN

vectors, the series

∞∑
n=0

unz
n =

∞∑
n=0

⎛⎜⎜⎜⎝
un1

un2

...
unN

⎞⎟⎟⎟⎠ zn

with

un =

⎛⎜⎜⎜⎝
un1

un2

...
unN

⎞⎟⎟⎟⎠
is a column vector with each entry being a scalar power series. The radius of
convergence of this series is by definition the smallest of the radiuses of convergence
of the N power series

∞∑
n=0

unjz
n, j = 1, . . . , N.

See also Exercise 12.2.4.

11.5 The Schur algorithm

In Section 6.5 we have first met the recursion (6.5.7)

f0(z) = f(z),

fn+1(z) =

⎧⎪⎨⎪⎩
fn(z)− fn(0)

z(1− fn(0)fn(z))
, z ∈ D \ {0} ,

f ′
n(0), z = 0,

n = 0, 1, . . .
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where f is analytic and contractive in the open unit disk. The coefficients ρn =
fn(0) are called the Schur coefficients, or reflection coefficients of the function f .

The Schur algorithm allows to solve in an iterative way classical interpolation
problems such as:

Problem 11.5.1 (The Carathéodory–Fejér interpolation problem). Given numbers
a0, . . . , aN , find all (if any) Schur functions f such that

f (n)(0)

n!
= an, n = 0, . . . , N.

Problem 11.5.2 (The Nevanlinna–Pick interpolation problem). Given N pairs of
numbers (z1, w1), . . . , (zN , wN ) in D2, find all (if any) Schur functions f such that

f(zn) = wn, n = 1, . . . , N.

Exercise 11.5.3. Let f ∈ S. Then, show that the Schur algorithm applied to f ends
after a finite number of times (N ≥ 0) if and only if f is a finite Blaschke product,
or a unitary constant (this being the case when N = 0).

For instance, if

f(z) =
z − a

1− za

z − b

1− zb
,

then

f1(z) =
z − c

1− zc
,

where c is given by (1.1.47),

c =
(1− |a|2)b + (1− |b|2)a

1− |ab|2 ,

and
f2(z) ≡ 1.

Indeed, we have for z 
= 0,

f1(z) =
1

z

z − a

1− za

z − b

1− zb
− ab

1− ab
z − a

1− za

z − b

1− zb

=
1

z

(z − a)(z − b)− ab(1− za)(1− zb)

(1− za)(1− zb)− ab(z − a)(z − b)

=
1

z

z2(1− |ab|2)− z(a+ b− ab(a+ b))

1− |ab|2 − z(a+ b) + ab(z(a+ b) + ab)

=
z − c

1− cz
,
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and

f2(z) =
1

z

z − c

1− zc
+ c

1 + c
z − c

1− zc

=
1

z

z(1− |c|2)
1− |c|2 ≡ 1.

Theorem 11.5.4. Let f(z) =
∑∞

n=0 fnz
n be a power series converging in a neigh-

borhood of the origin. Then, f is analytic and contractive in the open unit disk if
and only if either:

(a) Applying the Schur algorithm to f , we have

|fn(0)| < 1, ∀n ∈ N0,

or

(b) f(0) has modulus 1 (and then f is a unitary constant), or the numbers fn(0)
are strictly contractive up to a finite rank, say N0, and fN0+1(z) is a unitary
constant.

In view of the following question, we recall the notation (2.3.4)

TM (z) =
az + b

cz + d
,

where

M =

(
a b
c d

)
.

Question 11.5.5. Let us assume that the Schur function f in the recursion (6.5.7)
is such that

|fn(0)| < 1, n = 0, 1, . . . , N.

Then, setting

ρn = fn(0), n = 0, 1, . . . , N,

and using the notation (2.3.4) show that

f(z) = TMN (z)(fN+1(z)) (11.5.1)

where

MN (z) =

�

N∏
n=0

(
1 ρn
ρn 1

)(
z 0
0 1

)
. (11.5.2)

Assume that |ρn| < 1, n = 0, 1, . . .. The infinite product limN→∞ MN (z)
diverges for every point z, with the possible exception of z = 1. A related infinite
product, which plays a key role in the theory, converges on the unit circle:
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Exercise 11.5.6. Assume that |ρn| < 1, n = 0, 1, . . ., and that, moreover

∞∑
n=0

|ρn| < ∞.

Then, for every z of modulus 1, the limit

lim
N→∞

MN (z)

(
z−N−1 0

0 1

)
exists.

The following result gives four equivalent characterizations of Schur func-
tions. The first one is on the level of a first complex variable course, while the
second, third and fourth characterizations require (easy) functional analysis tools.
These last three characterizations are much more conducive to defining counter-
parts of Schur functions for the extensions of linear system theory mentioned in
the introduction of the chapter.

Theorem 11.5.7. Let f be a function defined in the open unit disk. The following
are equivalent:

(1) f is analytic and contractive in the open unit disk.

(2) The kernel

kf (z, w) =
1− f(z)f(w)

1− zw

is positive definite in the open unit disk.

(3) There exist a Hilbert space H and a coisometric operator matrix(
A B
C D

)
: H⊕ C −→ H⊕ C,

such that

f(z) = D + zC(IH − zA)−1B.

(4) The Taylor coefficients of f are of the form

fn =

{
D, n = 0,

CAn−1B, n = 1, 2, . . . ,

where A,B,C,D are as in (3).
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11.6 Solutions

Solution of Exercise 11.1.1. Let

f(z) =
1

2F

∫
[−F,F ]

e−izum(u)du.

Using (1.2.5) we have
|eizt| ≤ e|z|F .

Therefore, using the Cauchy–Schwarz inequality (16.1.5), we have

|f(z)| ≤ e|z|F

2F

∫
(−F,F )

|m(u)|du

≤ e|z|F

2F

(∫
(−F,F )

|m(u)|2du
)1/2(∫

(−F,F )

1du

)1/2

= Ke|z|F

with

K =

∫
(−F,F )

|m(u)|2du)1/2
√
2F

< ∞,

since m ∈ L2(−F, F ). �

Solution of Exercise 11.2.2. We have

∞∑
n=1

1

n2
=

∞∑
k=1

1

(2k)2
+

∞∑
k=0

1

(2k + 1)2

=
1

4

∞∑
n=1

1

n2
+

∞∑
k=0

1

(2k + 1)2
.

Taking into account (1.3.14) we have

∞∑
k=0

1

(2k + 1)2
=

π2

6
− 1

4

π2

6
=

π2

8
. �

Solution of Exercise 11.2.3. From the estimate in the previous exercise we see that
the integral (11.2.3) is well defined for every z ∈ C. The function is entire. For
continuous m this follows from the same arguments as for Exercise 4.4.19. As
explained after the proof of that exercise for the interval (0, 1), the statement is
still true for functions m ∈ L2(−F, F ).

Let now f ∈ HF be such that f(z) ≡ 0. Then, the choice z = πn
F gives∫

(−F,F )

m(u)e
−πinu

F du = 0, ∀n ∈ Z.
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But the functions

fn(u) = e
πinu

F , n ∈ Z, (11.6.1)

form an orthonormal basis of L2(−F, F ) (see Exercise 17.7.5). It follows thatm ≡ 0
(as an element of L2(−F, F )). Therefore (11.2.4) indeed defines a norm, and HF

is a Hilbert space since L2(−F, F ) is a Hilbert space. Let for z, w ∈ C,

KF (z, w) =
1

2F

∫
(−F,F )

e−iwueizudu =
sin(Fz − Fw)

Fz − Fw
.

Then for f ∈ HF and w ∈ C we have that

f(w) =
1

2F

∫
(−F,F )

m(u)e−iwtdt = 〈f(·),KF (·, w)〉HF . �

Solution of Exercise 11.2.4. Take m ∈ L2(−F, F ). Then

m(u) =
∑
n∈Z

(
1

2F

∫
(−F,F )

m(s)e−
iπsn
F ds

)
e

iπun
F

where the limit is in the norm of L2(−F, F ). By Parseval’s equality, this sum
becomes

f(·) =
∑
n∈Z

f
(πn
F

)
KF

(
·, πn

F

)
, (11.6.2)

where the equality is in the norm of HF . Let z ∈ C and ez(u) = eizu. Using the
continuity of the inner product or Parseval equality we have with fn as in (11.6.1)

〈m, ez〉L2(−F,F ) =
∑
n∈Z

〈m, fn〉L2(−F,F )〈fn, ez〉L2(−F,F ).

In other words

f(z) =
∑
n∈Z

f
(πn
F

)
KF

(
z,

πn

F

)
, z ∈ C. (11.6.3)

Here the convergence is pointwise, and uniform on bounded sets since the kernel
is bounded on bounded sets. �

Equation (11.6.3) can also be obtained directly from (11.6.2) since conver-
gence in norm implies pointwise convergence in a reproducing kernel Hilbert space
(see Exercise 16.3.13).

Solution of Exercise 11.3.3. It suffices to apply the Laplace transform on both
sides of the state space equations. �

Note that the transfer function is analytic at infinity. In the discrete case,
the transfer function is analytic at the origin. See Exercise 12.2.4.
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Solution of Exercise 11.5.3. Suppose that f is not a unitary constant and that the
Schur algorithm ends after a finite number of steps. Then, there is an N ∈ N0 such
that

fn(0) ∈ D, n = 0, 1, 2, . . . , N,

and fN+1(z) is a unitary constant. Formula (11.5.2) leads to

f(z) = TMN (z)(fN+1).

For |z| = 1, the Moebius transform with matrix(
1 ρn
ρn 1

)(
z 0
0 1

)
sends the unit circle onto itself, and so does TMn(z). Therefore, the function f is
unitary on the unit circle. It follows from Exercise 6.3.4 that f is a finite Blaschke
product, that is

f(z) = czL
M∏
n=1

bwn(z), (11.6.4)

where |c| = 1, L,M ∈ N0 and the factors bwn are defined by (1.1.44), with wn 
= 0.

Conversely, assume that f is a finite Blaschke product. We show that applying
the Schur algorithm to f we obtain a finite Blaschke product with one less factor.
If L > 0 in (11.6.4) this is clear. Assume now L = 0, and set

p(z) = c
M∏
n=1

(z − wn) and q(z) =
M∏
n=1

(1− wnz). (11.6.5)

We have

f1(z) =
q(0)

q(0)

(
c
p(z)q(0)− p(0)q(z)

z

)
q(z)q(0)− p(z)p(0)

= c

(
p(z)− p(0)q(z)

z

)
q(z)− p(z)p(0)

.

The coefficient of the power zM in the polynomial p(z)− p(0)q(z) is equal to

c

(
1−

M∏
n=1

(−wn)

M∏
n=1

(−wn)

)
= c

(
1−

M∏
n=1

|wn|2
)


= 0.

Thus the polynomial p(z)− p(0)q(z) has degree M . It vanishes at the origin, and
so the function

p(z)− p(0)q(z)

z
, z 
= 0,



470 Chapter 11. A Taste of Linear System Theory and Signal Processing

defines a polynomial of degree M − 1 (with value at the origin equal to p′(0) −
p(0)q′(0)). The coefficient of the power zM in the polynomial q(z) is equal to∏M

n=1(−wn). Therefore, the coefficient of the power zM in the polynomial

q(z)− p(z)p(0)

is equal to
M∏
n=1

(−wn)− cp(0) = 0.

Therefore,

deg(q(z)− p(z)p(0)) ≤ M − 1.

We want to show that deg f1 = M − 1. Since f1 is unitary on the unit circle, it
will then follow that f1 is also a finite Blaschke product (see Exercise 6.3.4), but
with one less factor.

To check that deg f1 = M − 1, we will show that the polynomials

p(z)− p(0)q(z)

z
and q(z)− p(z)p(0)

have no common zeros. Since q(z)−p(z)p(0) has value 1−|p(0)|2 > 0 at the origin,
it is enough to check that the polynomials

p(z)− p(0)q(z) and q(z)− p(z)p(0)

have no common zeros. If z0 ∈ C is such that

p(z0) = p(0)q(z0) and q(z0) = p(z0)p(0), (11.6.6)

we obtain

p(z0)(1− |p(0)|2) = 0,

and hence p(z0) = 0, and hence, by (11.6.6), we also have q(z0) = 0. But this
is not possible since, by (11.6.5), p and q have no common zero. It follows that
deg f1 = M − 1. �

Solution of Exercise 11.5.6. Set

Sn(z) =

(
zn 0
0 1

)(
1 ρn
ρn 1

)(
z−n 0
0 1

)
.

We have (
z 0
0 1

)
MN (z)

(
z−N−1 0

0 1

)
=

�

N∏
n=0

Sn(z). (11.6.7)
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Furthermore,

Sn(z) =

(
1 0
0 1

)
+

(
0 znρn

z−nρn 0

)
= I2 +An(z),

with

An(z) =

(
0 znρn

z−nρn 0

)
.

With
‖A‖∞ = max

i,j=1,2
|aij |

we have, for |z| = 1,
‖An(z)‖∞ = ρn.

Therefore ∞∑
n=0

‖An(z)‖∞

converges for every point on the unit circle. Since all norms are equivalent in
C2×2 (see (16.1.2) for the definition of equivalent norms), we have that the infinite
product (11.6.7) also converges in view of Theorem 3.7.3, �



Chapter 12

Rational Functions

Complex-valued rational functions are by definition functions which are meromor-
phic on the Riemann sphere, or equivalently, which are quotient of polynomials.
They form thus a class of a priori very simple objects, where the notions of de-
gree, zeros, poles, and factorization are quite obvious. An important place where
rational functions appear besides pure mathematics is linear system theory. They
are then transfer functions of certain classes of linear systems. Even in the scalar
case, some problems for rational functions are far from obvious, as is illustrated
by the following multipoint interpolation problem (see [12] and Section 12.3):

Given complex numbers w1, . . . , wN , a1, . . . , aN and b, describe the set of all
rational functions r(z) with no poles at the points w1, . . . , wN and such that

N∑
n=1

anr(wn) = b. (12.0.1)

A Cp×q-valued function R will be called rational if each of its entries is
rational, or, equivalently, if it can be written in one of the forms

P (z)

p(z)
, P1(z)

−1P2(z), or P3(z)P4(z)
−1,

where P, P2 and P3 are Cp×q-valued polynomials, p is a scalar non-identically van-
ishing polynomial, and P1 and P4 are respectively Cp×p-valued and Cq×q-valued
polynomials with non-identically vanishing determinant. The exercises presented
in this chapter pertain mainly to the theory of matrix-valued rational functions,
and in particular to the above questions. The situation is much more involved
than in the scalar case. For instance, what are the correct definitions of degree,
zero, pole, and factorization? The literature is vast, and we refer in particular to
[130] for a thorough survey of the main definitions, properties, and applications of
matrix-valued rational functions.

D. Alpay, A Complex Analysis Problem Book, 
DOI 10.1007/978-3-319-42181-0_12 
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12.1 First properties

Recall that a function f is said to be meromorphic in an open set Ω if its singular
points in Ω, if any, are poles. Equivalently, f is a quotient of two functions analytic
in Ω (the proof is trivial when there are a finite number of poles, and otherwise
involves an infinite product to factor out the poles of f). We will say that f is
meromorphic in the extended complex plane P if moreover, the point ∞ is also
a pole or a removable singularity of f , that is, if z = 0 is a pole or a removable
singularity of the function f(1/z).

Exercise 12.1.1. Let ϕ be a (non-trivial) Moebius map. Then, f is rational if and
only if f ◦ ϕ is rational.

Exercise 12.1.2. A function f is meromorphic in P if and only if it is rational,
that is, if and only if it is a quotient of two polynomials.

The following theorem gathers various equivalent characterizations of a
matrix-valued rational function with no pole at the origin. Some of the various
equivalences are proved as exercises in the sequel. In the statement, R0 denotes
the backward-shift operator; see (4.2.26).

Theorem 12.1.3. Let r be Cp×q-valued function, analytic in a neighborhood of the
origin, and with power series expansion r(z) = a0 + a1z + · · · there. Then the
following are equivalent:

(1) r is a rational function (or more precisely, r is the restriction to the given
neighborhood of a rational function).

(2) r can be written in the form

r(z) = D + zC(I − zA)−1B, (12.1.1)

where D = r(0) and A,B,C are matrices of appropriate dimensions.

(3) There exist matrices A,B,C of appropriate dimensions such that

an = CAn−1B, n = 1, 2, . . . .

(4) The linear span of the functions R0rc, R
2
0rc, . . . is finite-dimensional, when c

runs through Cq.

Equation (12.1.1) is called a realization of the rational function r, and already
appeared in the previous chapter; see (11.3.5) there. One also denotes a realization
by the block matrix (

A B
C D

)
. (12.1.2)

Such realizations have numerous applications in fields such as the theory of linear
systems and optimal control. See [30], [68], [132].
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We note that an expression of the form (12.1.1) is highly non-unique. If
(12.1.2) is a realization of the (say, Cp×q-valued) rational function r, so is(

T 0
0 Ip

)(
A B
C D

)(
T−1 0
0 Iq

)
for any invertible matrix T . When the size of A is minimal, this is the only degree
of freedom.

In Exercise 12.1.5, which gives a characterization of a rational function with
no pole at the origin, we do not assume a priori that the power series a0+a1z+ · · ·
has a strictly positive radius of convergence. One part of the proof uses item (3)
in the previous theorem and the Cayley–Hamilton theorem, see for instance [143,
Theorem 3.1, p. 561] for the case of matrices with entries in a commutative ring.
We recall this theorem just before the statement of the exercise. The other part
of the proof involves elementary results in the theory of difference equations, and
we refer the reader to the book [73] for more information on the subject.

Theorem 12.1.4 (Cayley–Hamilton). Let A ∈ CM×M , and let p(z) = det(zIM−A).
Then p is a monic polynomial of degree M (that is, with coefficient of zM equal
to 1) which satisfies p(A) = 0.

The polynomial p in the Cayley–Hamilton theorem is called the characteristic
polynomial.

Exercise 12.1.5. Let a0, a1, . . . be a sequence of matrices in Cp×q. Then there exists
a rational function with power series expansion

r(z) = a0 + a1z + · · ·

at the origin if and only there exist M ∈ N and complex numbers c0, . . . , cM−1

such that

aM+n + cM−1aM+n−1 + · · ·+ c0an = 0, n = 0, 1, . . . . (12.1.3)

In the previous exercise, one can ask what happens if one is given only a
finite sequence of matrices, say a0, . . . , aN . There is always a rational function
which answers the question, namely the matrix-polynomial p(z) = a0+a1z+ · · ·+
aNzN , but one may ask for the set of all solutions under additional constraints,
for instance being contractive in the open unit disk, or having a real positive part
there.

Rational functions form a field, which is denoted by C(X). The next “sim-
plest” field of analytic functions is the field of elliptic functions; see Section 13.1.
For the time being we just recall:

Theorem 12.1.6. Let f be a meromorphic function such that

f(z + 1) = f(z + i), ∀z ∈ C where f is defined.
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Let ℘ be the Weierstrass function (defined below by (13.1.3)). Then, there are two
rational functions r1 and r2 such that

f(z) = r1(℘(z)) + ℘′(z)r2(℘(z)). (12.1.4)

12.2 Realizations of rational functions

As a corollary of the proof of Exercise 12.1.2 we have the partial fraction represen-
tation of a rational function (see for instance [168, p. 116]): A function is rational
if and only if it is of the form

f(z) =

N∑
n=1

kn∑
j=1

Aj

(z − zn)j
+ p(z), (12.2.5)

where p is a polynomial (corresponding to the pole at infinity) and where the Aj

are complex numbers, with Akn 
= 0 when there are finite poles. The order of the
pole zn is by definition kn. From this result one gets (after the change of variable
z �→ 1/z) the second item, in the scalar case, of Theorem 12.1.3. We note that
(12.1.1) is called a realization centered at the origin, while (12.2.6) is called a
realization centered at infinity.

Exercise 12.2.1. Show that a function r analytic at ∞ is rational if and only if it
can be written as

r(z) = D + C(zIN −A)−1B, (12.2.6)

where D = r(∞), N ∈ N, C is a row vector with N components, B is a column
vector with N components and A is an N ×N matrix..

Hint for Exercise 12.2.1. First prove that, for any w ∈ C, the function 1
z−w admits

a realization. Next, for r1 and r2 two rational functions analytic at infinity, with
realizations

rj(z) = Dj + Cj(zINj −Aj)
−1Bj , j = 1, 2,

prove the following two formulas:

r1(z)r2(z) = D + C(zIN −A)−1B, (12.2.7)

where N = N1 +N2, D = D1D2 and

C =
(
C1 D1C2

)
, B =

(
B1D2

B2

)
and A =

(
A1 B1C2

0 A2

)
,

and
r1(z) + r2(z) = D + C(zIN −A)−1B, (12.2.8)

where N = N1 +N2, D = D1 +D2 and

C =
(
C1 C2

)
, B =

(
B1

B2

)
and A =

(
A1 0
0 A2

)
.

Conclude by using the partial fraction expansion of r.
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A maybe easier proof of the realization theorem, still using (12.2.5) is based
on the formula given in Exercise 12.2.2 below. We leave to the student to work
out the details of the modified proof. Before stating Exercise 12.2.2 we recall that
a Jordan cell is an n× n matrix of the form

J(w) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w 1 0 0 0 · · ·
0 w 1 0 0 · · ·
0 0 w 1 0 · · ·
...
...

...
0 · · · 0 0 w 1
0 0 · · · 0 0 w

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (12.2.9)

where w ∈ C (for N = 1 one sets J(w) = w). For completeness, we also recall that
any N ×N matrix with complex entries is similar to a block matrix with Jordan
cells as block entries.

Exercise 12.2.2. Let w ∈ C. Show that

1

(z − w)n
= C(zIn − J(w))−1B, (12.2.10)

where J(w) is given by (12.2.9) and

C =
(
1 0 · · · 0 0

)
, and B =

⎛⎜⎜⎜⎜⎜⎝
0
0
...
0
1

⎞⎟⎟⎟⎟⎟⎠ .

We now present another realization of a rational function, called the backward
shift realization, and which plays an important role in linear system theory. See
for instance [94].

Exercise 12.2.3. Let r be a Cp×q-valued rational function, and let α be a point of
analyticity of r (meaning that r is analytic in some open neighborhood of α).

(1) Show that the linear span M of the functions

z �→ Rn
αrc, n = 1, 2, . . . , c ∈ Cq,

is finite-dimensional, say of dimension N .

(2) Define operators (
A B
C D

)
:

(
M
Cq

)
−→

(
M
Cp

)
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by
Af = Rαf, Bc = Rαrc, Cf = f(α), Dc = r(α)c.

Show that

r(z) = r(α) + (z − α)C(IM − (z − α)A)−1B. (12.2.11)

When the rational function r is analytic in a neighborhood of the origin, one
can put α = 0 in (12.2.11), and one then looks at realization of the form (12.1.1),
that is,

r(z) = D + zC(IN − zA)−1B. (12.2.12)

When A is invertible, one can rewrite (12.2.12) as

r(z) = D − CA−1B − CA−1(zIN −A−1)−1A−1B,

which is of the form (12.2.6).

Formula (12.2.12) gives links with the theory of linear systems (see Chapter
11 for more information on these) and the notion of state space equations. The
equations in the next exercise are called state space equations. They define a
special, but very important, class of not necessarily bounded linear systems. The
vector xn in the equation (12.2.13) is called the state of the system at time n.

Exercise 12.2.4. Let (A,B,C,D) ∈ CN×N × CN×p × Cq×N × Cq×p, and consider
the equations

xn+1 = Axn +Bun,

yn = Cxn +Dun, n = 0, 1, . . .
(12.2.13)

where, for n = 0, 1, . . .,

xn ∈ CN , un ∈ Cp and yn ∈ Cq.

Assume that x0 = 0. Assume that the series u(z) has a positive radius of conver-
gence. Show that the series y(z) has a positive radius of convergence and that

y(z) = h(z)u(z), (12.2.14)

where
h(z) = D + zC(IN − zA)−1B.

When are the entries of h in H2(D)?

Exercise 12.2.5. Let w ∈ D and let bw be the associated Blaschke factor (1.1.44):

bw(z) =
z − w

1− zw
.

Find a realization of bw of the form (12.2.12). Find a realization of bw1bw2 · · · bwN

where w1, w2, . . . , wN ∈ D.
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More generally, and as suggested by our colleague Prof. Izchak Lewkowicz:

Exercise 12.2.6. Let N ∈ N, w ∈ D and let bw be the associated Blaschke factor
(1.1.44). Find a realization of bw(z

N ),

bw(z
N ) =

zN − w

1− zNw
.

Exercise 12.2.7. Let r(z) = D+C(zIN−A)−1B be a realization of the Cp×p-valued
rational function r, assumed analytic and invertible at infinity. Show that

r(z)−1 = D−1 −D−1C(zIN −A×)−1BD−1

is a realization of r−1 with

A× = A−BD−1C.

Motivated by electrical engineering applications, it is of interest to relate the
properties of the matrix (

A B
C D

)
and of the associated rational function r. See for instance the discussion after
the proof of Exercise 12.2.5. We also mention the positive real lemma, which has
numerous applications in electrical engineering (see for instance [76]):

Theorem 12.2.8 (The positive real lemma). Let r be a rational Cp×p-valued func-
tion analytic in a neighborhood of infinity, and let r(z) = D+C(zIN −A)−1B be
a minimal realization of r. Then, the following are equivalent:

(a) Re r(iy) ≥ 0, ∀y ∈ R such that r(iy) exists,

and

(b) There exists an invertible Hermitian matrix H such that(
H 0
0 Ip

)(
A B
C D

)
+

(
A B
C D

)∗(
H 0
0 Ip

)
≥ 0.

12.3 Multipoint interpolation

The purpose of this section is to present a decomposition theorems for rational
functions, and the implication to a family of interpolation problems, called multi-
point interpolation problems. The section is based on [12].

Exercise 12.3.1. Let p be a polynomial of degree N , and let r be a rational function
analytic in neighborhoods of the zeros of p. Show that there exist uniquely deter-
mined rational functions r1, . . . , rN , analytic in a neighborhood of the origin and
such that

r(z) =

N∑
j=1

zj−1rj(p(z)). (12.3.1)
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Hint. Assume first that the zeros of p are simple. The solution involves then a
Vandermonde determinant. In the case of non simple zeroes one uses a generalized
Vandermonde determinant. The hypothesis that the zeros of p are not poles of r
can be removed, but makes some arguments easier.

Exercise 12.3.2. Given N pairwise different points w1, . . . , wN and numbers
a1, . . . , aN not all equal to 0, and c ∈ C, find all rational functions r analytic
in neighborhoods of w1, . . . , wN and such that

N∑
n=1

anr(wn) = c. (12.3.2)

Hint. Use the decomposition (12.3.1) with p(z) =
∏N

n=1(z − wn).

Problem 12.3.3. Let p be a polynomial of degree N . Let α and β be such that
the roots w1(α), . . . , wN (α) and w1(β), . . . , wN (β) of the equations p(z) = α and
p(z) = β are all distinct (wu(α) 
= wv(β) for u, v = 1, . . . , N), and define

(
R(p)

α f
)
(z) =

f(z)

p(z)− α
−

N∑
u=1

f(wu(α))

p′(wu(α))(z − wu(α))
, (12.3.3)

for a function analytic in neighborhood of the points w1(α), . . . , wN (α), and simi-

larly for R
(p)
β . Then the resolvent equation

R(p)
α −R

(p)
β = (α− β)R(p)

α R
(p)
β

holds.

Exercise 12.3.4. Let f(z) = 1
p(z)−λ , and let α 
= λ. Then,

(R(p)
α f)(z) = − 1

α− λ
f(z). (12.3.4)

12.4 Solutions

Solution of Exercise 12.1.1. The result holds because the composition of a poly-
nomial with a Moebius map is a rational function, and since the inverse of an
invertible Moebius map is a Moebius map. �

Solution of Exercise 12.1.2. In the proof of Exercise 7.1.9 (Weierstrass’ theorem),
the entire functions f1, . . . , fN are now polynomials since the points zj are poles
of f . The function f0 is also a polynomial since it is the principal part of f(1/z)
at the origin, and f(1/z) has (at most) a pole at the origin. It follows that f is
rational. The converse statement is clear. �
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Solution of Exercise 12.1.5. Since r is rational it admits a realization and there
are matrices A,B,C such that an = CAn−1B for n = 1, 2, . . .. Let p(z) = zM +
cM−1z

M−1 + · · ·+ c1A+ c0 denote the characteristic polynomial of the matrix A.
We have

AM + cM−1A
M−1 + · · ·+ c1A+ c0IM = 0,

and thus, for n = 1, 2, . . .

AM+n−1 + cM−1A
M+n−2 + · · ·+ c1A+ c0A

n−1 = 0. (12.4.5)

Multiplying this equation on the left by C and on the right by B we obtain (12.1.3).

Conversely, any solution of the difference equation (12.1.3) corresponds to a
series f(z) =

∑∞
n=0 anz

n with a positive radius of convergence. Equation (12.1.3)
leads to

c0
f(z)− a0

z
+ c1

f(z)− a0 − a1z

z2
+ · · ·+

+ cM−1
f(z)− a0 − · · · − aM−1z

M−1

zM
+

f(z)− a0 − · · · − aMzM

zM+1
= 0,

from which we get that f is rational. �

The proofs of the following exercises involve matrix computations, which are
elementary, but to which most second (or even third year students) have not been
exposed.

Solution of Exercise 12.2.1. We follow the steps given in the hint, and proceed in
a number of steps.

Step 1: The function 1
z−w admits a realization centered at infinity.

Indeed, it suffices to take N = 1 and

A = w, C = B = 1, and D = 0.

Step 2: We prove (12.2.7):

With the notation after the statement of the exercise we have

r1(z)r2(z) = (D1 + C1(zIN1 −A1)
−1B1)(D2 + C2(zIN2 −A2)

−1B2)

= D1D2 + C1(zIN1 −A1)
−1B1D2

+D1C2(zIN2 −A2)
−1B2

+ C1(zIN1 −A1)
−1B1C2(zIN2 −A2)

−1B2

= D1D2 +
(
C1 D1C2

)
X

(
B1D2

B2

)
,
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where

X =

(
(zIN1 −A1)

−1 (zIN1 −A1)
−1B1C2(zIN2 −A2)

−1

0 (zIN2 −A2)
−1

)
.

Computing(
zIN1 −A1 −B1C2

0 zIN2 −A2

)
×
(
(zIN1 −A1)

−1 (zIN1 −A1)
−1B1C2(zIN2 −A2)

−1

0 (zIN2 −A2)
−1

)
= IN1+N2 ,

we conclude the proof. Note that the proof is for matrix-valued functions.

Step 3: We prove (12.2.8):

Since (12.2.7) has been proved for matrix-valued functions, (12.2.8) is seen to be
a special case of (12.2.7) by writing

r1(z) + r2(z) =
(
r1(z) Ip

)( Iq
r2(z)

)
where r1 and r2 are Cp×q-valued.

Step 4: The result follows then from the partial fraction expansion (12.2.5).

Indeed, there is no polynomial term p(z) in (12.2.5) since we assume analyticity at
infinity. It suffices to apply the preceding steps to obtain a realization for each term
of the form 1

(z−zn)j
and hence, to obtain a realization for the sum (12.2.5). �

Solution of Exercise 12.2.2. Let J denote the matrix

J = J(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 1 0 · · ·
...
...

...
0 · · · 0 0 0 1
0 0 · · · 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus

J(w) = wIn + J.
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Note that J is nilpotent: Jn = 0n×n. Therefore

(zIn − J(w))−1 = ((z − w)In − J)−1

= (z − w)−1

(
In − J

z − w

)−1

= (z − w)−1

(
In +

J

z − w
+

J2

(z − w)2
+ · · ·+ Jn−1

(z − w)n−1

)
.

The entry in the right upper corner of this matrix is 1
(z−w)n , and the realization

(12.2.10) follows. �

It follows from the previous exercise that every term of the form 1
(z−w)n

admits a realization. Using (12.2.5) and (12.2.8) we obtain the realization theorem
for all rational functions analytic at infinity.

Solution of Exercise 12.2.3.

(1) The first claim follows from the partial fraction decomposition and from the
formula7 (

Rn
α

(
1

(· − w)u

))
(z) = −

u−1∑
v=0

(α− w)u−1−v

(z − w)u−v
. (12.4.6)

(2) By construction the operator A sends M into itself and the operator B
sends Cq into M. Let now h ∈ M and let z ∈ C such that (IM − (z − α)A) is
invertible. Here we view z as a parameter, and we denote by λ the variable on
which depend the functions in M. Set

g = (IM − (z − α)A)−1h.

Thus

h = (IM − (z − α)A)g,

that is, pointwise,

h(λ) = g(λ)− (z − α)
g(λ) − g(α)

λ− α
.

Thus

h(z) = g(z)− (z − α)
g(z)− g(α)

z − α

= g(α)

= C(IM − (z − α)A)−1g.

We obtain the realization by applying the above to h = Bc �
7of course it is much quicker to rewrite the left side of (12.4.6) as Rn

α
1

(z−w)u
.
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Remark 12.4.1. The point evaluation formula

g(α) = C(IM − (z − α)A)−1g (12.4.7)

plays an important role in the theory of reproducing kernel spaces.

Solution of Exercise 12.2.4. We divide the proof into two steps.

Step 1: The (vector-valued) power series

x(z) =
∞∑

n=0

xnz
n

has a strictly positive radius of convergence.

A priori x(z) may converge only at the origin. We have

x(z)− x(0)

z
=

∞∑
n=0

xn+1z
n.

It therefore follows from the first equation in (12.2.13) that

x(z)− x(0)

z
= Ax(z) +Bu(z),

and so

x(z) = x(0) + z(IN − zA)−1Bu(z). (12.4.8)

This formula for x(z) shows that it has a strictly positive radius of convergence
since u(z) has a strictly positive radius of convergence.

Step 2: Assume x(0) = 0. The series y(z) is given by (12.2.14):

Indeed, the second equation in (12.2.13) leads to

∞∑
n=0

ynz
n = C

∞∑
n=0

xnz
n +D

∞∑
n=0

unz
n.

Taking into account (12.4.8) we obtain

y(z) = zC(IN − zA)−1Bu(z) +Du(z) = h(z)u(z),

with h(z) = D + zC(IN − zA)−1B. This matrix-valued function will have its
entries in H2(D) if and only if all its entries have no poles in the closed unit disk.
A sufficient, but in general not necessary, condition will be that the spectrum of
A is in the open unit disk. �
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Solution of Exercise 12.2.5. We write

bw(z) =
z − w

1− zw

= −w +
z − w

1− zw
+ w

= −w +
z(1− |w|2)
1− zw

.

So, a realization of bw is given by(
A B
C D

)
=

(
w

√
1− |w|2√

1− |w|2 −w

)
. (12.4.9)

For two points, formula (12.2.7) gives the realization

(
A B
C D

)
=

⎛⎜⎜⎝
w1

√
1− |w1|2

√
1− |w2|2 | −w2

√
1− |w1|2

0 w2 |
√
1− |w2|2

−− −− −− −−√
1− |w1|2 −w1

√
1− |w2|2 | w1w2

⎞⎟⎟⎠ .

(12.4.10)
We leave it to the interested student to develop the formula for N > 2. �

We note that the realizations (12.4.9) and (12.4.10) are unitary. This is no
coincidence. Any rational function analytic at the origin, without poles in the open
unit disk and unitary on the unit circle admits a unitary realization centered at
the origin. See [100], and see also [11] for the case of poles inside the disk.

Solution of Exercise 12.2.6. We first assume w 
= 0. Then, bw(z
N ) is analytic at

infinity, and bw(∞) = −1/w. We consider the realization of the type (12.2.6). Let
z0, . . . , zN−1 be the roots of order N of 1/w. The zj are simple poles of bw(z

N),
with residues computed by formula (7.3.2),

Res(bw(z
N), zj) =

zNj − w

−NzN−1
j w

=
1
w − w

−N
zj (since zNj = 1/w)

= −1− |w|2
Nw

zj , j = 0, . . . , N − 1

and thus

bw(z
N ) = − 1

w
− 1− |w|2

N

N−1∑
j=0

zj
z − zj

= D + C(zIN −A)−1B,
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with D = − 1
w , and as possible choice of A,B and C the matrices

A =

⎛⎜⎜⎜⎜⎜⎝
z0 0 0 · · · 0
0 z1 0 · · · 0
...

...
...

0 · · · 0 0
0 0 · · · 0 zN−1

⎞⎟⎟⎟⎟⎟⎠ ∈ CN×N , B =

⎛⎜⎜⎜⎝
1
1
...
1

⎞⎟⎟⎟⎠ ∈ CN×1,

and

C = −1− |w|2
Nw

(
z0 z1 · · · zN−1

)
∈ CN×N .

Since the zj 
= 0, we can look for a realization of the form (12.2.12). We obtain

bw(z
N ) = − 1

w
− 1− |w|2

Nw

N−1∑
j=0

zj
z − zj

= − 1

w
+

1− |w|2
Nw

N−1∑
j=0

1

1− z
zj

= − 1

w
+

1− |w|2
w

+
1− |w|2
Nw

N−1∑
j=0

(
1

1− z
zj

− 1

)

= −w + z
1− |w|2
Nw

N−1∑
j=0

1

zj

1

1− z
zj

,

which is of the form (12.2.12), with now D = −w, and as possible choice of A,B
and C the matrices

A =

⎛⎜⎜⎜⎜⎜⎝
z−1
0 0 0 · · · 0
0 z−1

1 0 · · · 0
...

...
...

0 · · · 0 0
0 0 · · · 0 z−1

N−1

⎞⎟⎟⎟⎟⎟⎠ ∈ CN×N , B =

⎛⎜⎜⎜⎝
1
1
...
1

⎞⎟⎟⎟⎠ ∈ CN×1,

and

C =
1− |w|2
Nw

(
z−1
0 z−1

1 · · · z−1
N−1

)
∈ CN×N .

Finally, the case w = 0 is obtained by setting w = 0 and replacing z by 1/z in
(12.2.10). �

Solution of Exercise 12.2.7. We assume that r is Cp×p-valued. We have

(D + C(zIN −A)−1B)(D−1 −D−1C(zIN −A×)−1BD−1)

= Ip − C(zIN − A×)−1BD−1

+ C(zIN −A)−1BD−1

− C(zIN −A)−1BD−1C(zIN −A×)−1BD−1.
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Taking into account that

BD−1C = A−A× = (zIN −A×)− (zIN −A), (12.4.11)

we have

C(zIN −A)−1BD−1C(zIN −A×)−1BD−1

= C(zIN −A)−1
{
(zIN −A×)− (zIN −A)

}
(zIN −A×)−1BD−1

= C(zIN −A)−1BD−1 − C(zIN −A×)−1BD−1.

Substituting this formula in the formula above (12.4.11) we obtain the result. �

The previous exercise can also be solved using the following well-known result:

Proposition 12.4.2. Let U and V be two matrices, respectively in Cp×q and Cq×p.
Then, Ip − UV is invertible if and only if Iq − V U is invertible, and one has

(Ip − UV )−1 = Ip + U(Iq − V U)−1V. (12.4.12)

It suffices to write

r(z) = D(Ip + zD−1C(IN − zA)−1B)

and apply formula (12.4.12) to

U = −zD−1C and V = (IN − zA)−1B.

As for (12.4.12) it is proved in the following way: Assume first that Iq − V U is
invertible. We have

(Ip − UV )(Ip + U(Iq − V U)−1V ) = Ip − UV + U(Iq − V U)−1V

− UV U(Iq − V U)−1V.

But

−UV U(Iq−V U)−1V = (U(Iq−V U)−U)(Iq−V U)−1V = UV −U(Iq−V U)−1V,

and hence
(Ip − UV )(Ip + U(Iq − V U)−1V ) = Ip.

This concludes the proof of (12.4.12) since the claim is symmetric in U and V .

Solution of Exercise 12.3.1. We will only consider the case where the zeros of p
are simple, and write p(z) =

∏N
k=1(z − zk), with zk 
= z� for k 
= �. We first show

that (12.3.1), if it exists, is unique. To that purpose, assume that we have

0 ≡
N∑
j=1

zj−1rj(p(z)), (12.4.13)
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and plug in this expression z = zk for k = 1, . . . , N . We obtain

0 =

N∑
j=1

zj−1
k rj(0), k = 1, . . . , N,

that is

(
r1(0) r2(0) · · · rN (0)

)
⎛⎜⎜⎜⎜⎜⎝

1 1 · · · 1
z1 z2 · · · zN
z21 z22 · · · z2N
...

...
...

zN−1
1 zN−1

2 · · · zN−1
N

⎞⎟⎟⎟⎟⎟⎠ =
(
0 0 · · · 0

)
.

The Vandermonde matrix⎛⎜⎜⎜⎜⎜⎝
1 1 · · · 1
z1 z2 · · · zN
z21 z22 · · · z2N
...

...
...

zN−1
1 zN−1

2 · · · zN−1
N

⎞⎟⎟⎟⎟⎟⎠
is invertible, and so r1(0) = r2(0) = · · · = rN (0) = 0. Writing rj(z) = zsj(z) for
j = 1, . . ., we have from (12.4.13)

0 ≡
N∑
j=1

zj−1sj(p(z)), (12.4.14)

and the same argument shows that

s1(0) = · · · = sN (0) = 0.

Iterating we get that the functions r1, r2, . . . , rN vanish identically.

To prove existence we do not use the analyticity hypothesis of the given func-
tion r at the zeros of p, and take advantage of the partial fraction decomposition
(12.2.5) of a rational function, and prove that the decomposition holds for poly-
nomials, for functions of the form 1

z−a (a ∈ C), and that if two functions admit a
decomposition (12.3.1) so do their sum and their product. More precisely, for the
monomial zj with j < N , the decomposition (12.3.1) is trivial: rj ≡ 1 and rk ≡ 0
for k ∈ {0, . . . , N} \ {j}. For the monomial zN , the division

zN = aNp(z) + aN−1z
N−1 + · · ·+ a0

leads to the decomposition (12.3.1) with

rj(z) = aj , j = 2, . . . , N and r1(z) = aNz.
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For the rational function 1
z−a we write

1

z − a
=

1

p(z)− p(a)

p(z)− p(a)

z − a
=

N−1∑
j=0

ca,jz
j 1

p(z)− p(a)
,

where the numbers ca,0, . . . , ca,N−1 are defined by

p(z)− p(a)

z − a
=

N−1∑
j=0

ca,jz
j.

Hence rj(z) =
ca,j

z−p(a) for j = 1, . . . , N .

That the sum of two functions admitting a decomposition (12.3.1) also admits
such a decomposition is trivial. For the case of the product it is enough to consider
two functions of the form

r(z) = zutu(p(z)) and s(z) = zvsv(p(z)),

where u, v ∈ {0, . . . , N − 1} and tu and sv are rational. But,

r(z)s(z) = zu+vtu(p(z))sv(p(z)).

Let

zu+v =

N−1∑
j=0

zjrj(p(z))

be the corresponding decomposition of zu+v (which is very simple when u+v < N).
We obtain

r(p(z))s(p(z)) =

N−1∑
j=0

zj (rj(p(z))tu(p(z))sv(p(z))) .

The proof for a general rational function analytic in neighborhoods of the zeros of
p follows from combining these various results. �

Solution of Exercise 12.3.2. Let r be a solution, which we write in the form
(12.3.1) with p(z) =

∏N
n=1(z − wn). Condition (12.3.2) gives

N∑
n=1

anr(wn) =
N∑

n=1

an

⎛⎝ N∑
j=1

wj−1
n rj(0)

⎞⎠
=

N∑
j=1

(
N∑

n=1

anw
j−1
n

)
rj(0)

=

N∑
j=1

ξjrj(0),
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where we have set

ξj =

N∑
n=1

anw
j−1
n , j = 1, . . . , N.

The multipoint interpolation condition (12.3.1) reduces thus to a one point, but
tangential interpolation condition

ξ∗R(0) = c, where ξ =

⎛⎜⎝ ξ1
...
ξN

⎞⎟⎠ and R(z) =

⎛⎜⎝ r1(z)
...

rN (z)

⎞⎟⎠ .

Let (assuming ξ 
= 0)

P =
ξξ∗

ξ∗ξ
.

We leave to the reader to check that a CN -valued rational function R satisfies
ξ∗R(0) = c if and only if it can be written as

R(z) = cξ + (IN − P + zP )G(z),

where G is an arbitrary CN -valued rational function without a pole at the origin.
The description of the set of functions r follows. �

Solution of Exercise 12.3.4. We have

(R(p)
α f)(z) =

1

(p(z)− λ)(p(z)− α)
−

N∑
u=1

1

p(wu(α)) − λ

p′(wu(α))(z − wu(α))

=
1

α− λ

(
1

p(z)− α
− 1

p(z)− λ

)
−

N∑
u=1

1

(p(wu(α))︸ ︷︷ ︸
= α

−λ)p′(wu(α))(z − wu(α))

=
1

α− λ

1

p(z)− α
− 1

α− λ

1

p(z)− λ
− 1

α− λ

N∑
u=1

1

p′(wu(α))(z − wu(α))︸ ︷︷ ︸
= 1

p(z)−α

= − 1

α− λ
f(z). �



Chapter 13

Special Functions and
Transforms

In this short chapter we present some exercises on elliptic functions and on the
Mellin transform. We also briefly discuss some aspects of the Fourier transform
pertaining to the Bargmann transform.

13.1 Elliptic functions

The first exercise is taken from the book of Choquet on topology [46, p. 315],
[47, p. 299]. The purpose of the exercise is to build a meromorphic bi-periodic
function on C (thus it has a lattice of periods). Such functions are called elliptic.
For more on elliptic functions expressed as infinite products, see for instance [167,
pp. 286–290]. See also Exercise 7.2.15.

Exercise 13.1.1. Let k ∈ C with |k| > 1.

(a) Show that the infinite product

P (z) =

∞∏
�=1

(
1 +

z

k�

)
converges for all z 
= −k�, � = 1, 2, . . ..

(b) Show that

P (kz) = (1 + z)P (z).

(c) Set S(z) = P (z)P (1/z)(1 + z). Show that S(kz) = kzS(z).

D. Alpay, A Complex Analysis Problem Book, 
DOI 10.1007/978-3-319-42181-0_13 

491© Springer International Publishing AG 2016



492 Chapter 13. Special Functions and Transforms

(d) Let a1, . . . , an, b1, . . . , bn be distinct points in C such that

a1 · · · an = b1 · · · bn, (13.1.1)

and let M(z) =
S(a1z) · · ·S(anz)
S(b1z) · · ·S(bnz)

. Show that M(kz) = M(z).

(e) Set G(z) = M(ez). What can be said about G?

Remark 13.1.2. An additive analog of (13.1.1) comes into play in Exercise 13.3.3.
See equation (13.3.2) there.

Exercise 13.1.3. Using Exercise 3.6.2, show that the function

℘(z) =
1

z2
+

∑
p,q∈Z

(p,q) 
=(0,0)

1

(z − (p+ iq))2
− 1

(p+ iq)2

is analytic in C \ Z+ iZ.

The function ℘ is called the Weierstrass function (associated to the lattice
C \ Z+ iZ). It has only poles and satisfies

℘(z + 1) = ℘(z + i) = ℘(z),

and hence is an elliptic function. It follows as a consequence of Exercise 7.2.15
that the function ℘ satisfies a differential equation of the form

(℘′)2 = g0℘
3 + g1℘

2 + g2℘+ g3

for complex numbers g0, g1, g2 and g3 such that g0 
= 0.

The function ℘ is closely related to the function ϑ appearing in Exercise
13.2.1. See [162, p. 25].

Question 13.1.4.

(1) Find the decomposition (12.1.4) for f(z) = ℘′′(z).
(2) Compare the decompositions (12.1.4) for a general elliptic function and its

derivative.

In contrast with the case of rational functions we have:

Question 13.1.5. Show that the composition of two (non-trivial) elliptic functions
is not elliptic.

13.2 The ϑ function

Exercise 13.2.1. Let τ ∈ C be such that Im τ > 0. Show that the function

ϑ(z, τ) =
∑
n∈Z

eiπn
2τ+2πinz



13.3. An application to periodic entire functions 493

is entire (as a function of z), and that it satisfies

ϑ(z + 1, τ) = ϑ(z, τ), (13.2.1)

ϑ(z + τ, τ) = e−iπτ−2πizϑ(z, τ). (13.2.2)

Show that

ϑ

(
1 + τ

2
, τ

)
= 0. (13.2.3)

The function ϑ is called the theta function with characteristic τ . See [162]
for a thorough study of these functions and of their applications.

In Exercise 13.2.2 we now show that 1+τ
2 is the only zero of ϑ modulo Z+τZ.

Exercise 13.2.2. Show that the zeros of the function

ϑ(z, τ) =
∑
n∈Z

ein
2τ+2πinz

are
1 + τ

2
+m+ τn, n,m ∈ Z.

13.3 An application to periodic entire functions

Exercise 13.3.1. Let f be an entire function and assume that

f(z + 1) = f(z).

Show that there is a function g analytic in C \ {0} such that

f(z) = g(e2πiz).

Show that there exist complex numbers cn, n ∈ Z such that

f(z) =
∑
n∈Z

cne
2πinz ,

where the convergence is uniform on every closed strip inside every closed hori-
zontal strip.

Exercise 13.3.2. Let τ ∈ C be such that Im τ > 0. Apply the previous result to find
all entire functions f such that, for some pre-assigned complex numbers a and b,

f(z + 1) = f(z),

f(z + τ) = eaz+bf(z).
(13.3.1)

See [162, pp. 2–3].
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Exercise 13.3.3. Let f be a non-identically vanishing entire function satisfying the
conditions (13.3.1), and let a1, . . . , aN , b1, . . . , bN be complex numbers such that

N∑
n=1

an =

N∑
n=1

bn. (13.3.2)

Show that the function

q(z) =

N∏
n=1

f(z − an)

f(z − bn)

is elliptic.

13.4 The Γ function and the Mellin transform

The Mellin transform is defined by the formula

(M(f))(z) =

∫ ∞

0

tz−1f(t)dt (13.4.1)

for appropriate functions f defined on (0,∞), and where for t > 0 and z ∈ C

we set
tz = ez ln t.

We refer to [50, Chapitre II] for more information. The case f(t) = e−t leads to
the important Gamma function (see (3.1.11)

Γ(z) =

∫ ∞

0

tz−1e−tdt.

In the following exercise, the convergence of the integral (3.1.11) is stud-
ied. In Exercise 13.4.2 we will see that the function Γ defined in the following
exercise is in fact analytic in Re z > 0 (and in fact by analytic continuation, in
C \ {0,−1,−2, . . .}.
Exercise 13.4.1. Show that the integral (3.1.11) converges for every z such that
Re z > 0. Show that, for real x > 0, it holds that

Γ(x+ 1) = xΓ(x). (13.4.2)

We now turn to a proof of the analyticity of the Gamma function (see (3.1.11)
and the previous exercise).

Exercise 13.4.2. Show that the Γ function

Γ(z) =

∫ ∞

0

tz−1e−tdt

is analytic in Re z > 0.
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Hint. Consider compact sets of the form

K = {(x, y) ; m ≤ x ≤ M and −R ≤ y ≤ R} ,

with m > 0 and R > 0. Show that the series of functions

Γn(z) =

∫ n

1/n

tz−1e−tdt, n = 1, 2, . . . ,

converges uniformly on K to Γ.

Exercise 13.4.3. Let Γ denote the Gamma function defined by (3.1.11). Show that

Γ(z) = lim
n→∞

n!nz

z(z + 1) · · · (z + n)
, Re z > 0. (13.4.3)

Hint (See for instance [23, Exercise 2.6.2, p. 119].). Apply the dominated conver-
gence theorem (see Theorem 17.5.2) to the series of functions

fn(t) = 1[0,n](t)

(
1− t

n

)n

tz−1,

where we have denoted by 1[0,n](t) the indicator function of the interval [0, n]:

1[0,n](t) =

{
1, if t ∈ [0, n],

0, otherwise.

Exercise 13.4.4 (see [50, pp. 49–50]).

(a) Show that the Mellin transform of e−t2 is equal to 1
2Γ(z/2).

(b) Show that the Mellin transforms of cos t and sin t are respectively

Γ(z) cos
πz

2
and Γ(z) sin

πz

2
, with Re z ∈ (0, 1).

In the following exercise implicit is the hypothesis that there exist real num-
bers c1 and c2 such that

∫∞
0 ucj−1|fj(u)|du < ∞ for j = 1, 2.

Exercise 13.4.5. Let f1 and f2 be functions with Mellin transforms F1 and F2

respectively.

(1) Show that the Mellin transform of the function∫ ∞

0

f1(u)f2(t/u)
du

u
(13.4.4)

is F1F2.

(2) compute (13.4.4) when f1(u) = f2(u) = e−u.
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13.5 The Fourier transform

The Fourier transform is defined by

f̂(λ) =

∫
R

e−iλxf(x)dx, (13.5.1)

first for functions in L1(R, dx). In general f̂ will not belong to L2(R, dx). The
Fourier transform maps the Schwartz space of rapidly vanishing smooth functions
onto itself in an isometric way up to a multiplicative constant, and extends, up to
a multiplicative constant, to an isometry from L2(R, dx) onto itself:

‖f‖L2(R,dx) =
1√
2π

‖f̂‖L2(R,dx). (13.5.2)

Note that f̂ is not, in general, a function but rather an equivalence class of func-
tions. Furthermore, the Fourier transform of an arbitrary element f ∈ L2(R, dx)
is not given directly by formula (13.5.1) (which will not make sense in general),
but is defined in terms of limits. Its inverse is given by the formula

f̌(x) =
1

2π

∫
R

eiλxf(λ)dλ, (13.5.3)

and we have

‖f‖L2(R,dx) =
1√
2π

‖f̌‖L2(R,dx). (13.5.4)

As an illustration of the preceding inversion formula, consider the function
g(x) = 1

x2+1 . Its Fourier transform was computed to be h(λ) = πe−|λ|. See (8.6.10).
Thus, from (13.5.3),

ȟ(x) =
1

2π

∫
R

eiλxh(λ)dλ

=
1

2

{∫ ∞

0

e−λeiλxdλ+

∫ 0

−∞
eλeiλxdλ

}
=

1

2

{
−1

ix− 1
+

1

ix+ 1

}
= g(x).

We follow [206, pp. 42–43] for the next exercise.

Exercise 13.5.1. For R > 0, consider the closed contour

γR = γ1,R + γ2,R + γ3,R + γ4,R,

defined as follows:
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(i) γ1,R is the interval [−R,R].

(ii) γ2,R is the interval [R,R+ iy].

(iii) γ3,R is the interval [R+ iy,−R+ iy].

(iv) γ4,R is the interval [−R+ iy,−R].

(1) By computing the integral of the function e−z2

along this rectangle and using
the value of the Gaussian integral (5.2.6), show that, for y ∈ R,∫

R

e−t2e−2itydt =
√
πe−y2

. (13.5.5)

(2) Using (13.5.5) compute the even moments (5.2.7).

We now discuss some aspects of the theory of Hermite functions. More ex-
ercises and details can be found in [CAPB2]. By making the change of variables
z �→

√
2z and t �→

√
2t, and a normalization we first rewrite (5.6.4) as

e2tz−t2 =
∞∑
n=0

Hn(z)

n!
tn. (13.5.6)

We have

Hn(z) = (−1)nez
2
(
e−z2

)(n)
, (13.5.7)

as is seen by writing e2tz−t2 = ez
2

e−(t−z)2 and considering the Taylor expansion
centered at t = 0 of the function t �→ e−(t−z)2 .

Question 13.5.2. Prove that∫
R

e−u2

Hn(u)Hm(u)du =
√
π2nn!δn,m. (13.5.8)

Hint. Denoting by αnm the left side of (13.5.8) compute, using (13.5.6), the gen-
erating function

∞∑
n,m=0

αnmznwn.

The functions η0, η1, . . . with

ηn(z) =
e

z2

2

4
√
π2n/2

√
n!
, n = 0, 1, . . . (13.5.9)

are called the Hermite functions. They belong to the Schwartz space, and form an
orthonormal basis of L2(R, dx).

The map which to ηn associates the function zn√
n!

extends to a unitary oper-

ator from L2(R, dx) onto the Fock space. It is called the Bargmann transform.
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Question 13.5.3. The Bargmann transform can be written as

F (z) =
1
4
√
π

∫
R

e{− 1
2 (z

2+u2)+
√
2zu}f(u)du.

We conclude by mentioning that

η̂n = (−i)nηn, n = 0, 1, . . . .

13.6 Solutions

Solution of Exercise 13.1.1. Since |k| > 1 the series with general term z/kn is
absolutely convergent for any z ∈ C. Thus, by Theorem 3.7.1, the infinite prod-
uct converges for every z not equal to −kn, n = 1, 2, . . . (and the corresponding
function, extended to be 0 at these points, is entire).

To prove (b) we write

P (kz) =

∞∏
n=1

(
1 +

kz

kn

)
=

∞∏
n=1

(
1 +

z

kn−1

)
=

∞∏
n=0

(
1 +

z

kn

)
= (1 + z)P (z).

We now turn to (c). From (b) we have P (k/z) = (1 + 1/z)P (1/z), and
replacing z by kz in the above expression,

P (1/z) =

(
1 +

1

kz

)
P (1/kz) and hence P (1/kz) =

kz

1 + kz
P (1/z).

Thus

S(kz) = P (kz)P (1/kz)(1 + kz)

= (1 + z)P (z)P (1/z)
kz

1+ kz
(1 + kz)

= (1 + z)P (z)P (1/z)kz

= kzS(z).

(d) Using (c) we have

M(kz) =
S(a1kz) · · ·S(ankz)
S(b1kz) · · ·S(bnkz)

=
ka1zS(a1z) · · · kanzS(anz)
kb1zS(b1z) · · · kbnzS(bnz)

= M(z)
a1 · · · an
b1 · · · bn

= M(z)

since we assumed a1 · · · an = b1 · · · bn.
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(e) Let ω ∈ C be such that k = expω. Since |k| > 1 the numbers ω and 2πi are
linearly independent over Z. We cannot find m and n such that mω + 2πin = 0.
Indeed, if there are such m and n, then emω = e−2πin = 1 and so km = 1
contradicting the assumption |k| > 1. Moreover, we have

G(z +mω + n2πi) = M(ez+mω+n2πi) = M(ez+mω) = M(kmez) = M(ez) = G(z)

where we used (d) with ez in place of z. Thus, G(z) is bi-periodic since ω and 2π
are linearly independent over Z. �

Solution of Exercise 13.1.3. It follows from the proof of Exercise 3.6.2 that the
convergence of the family of functions is uniform on compact sets, and therefore
the limit is analytic. �

Solution of Exercise 13.2.1. Let L > 0. We have, with z = x+ iy,

|eiπn2τ+2πinz | = e−πn2 Im τ · e−2πny ≤ e−πn2 Im τ · e2π|n|L

for |y| ≤ L. We now show that the series converge uniformly in every band of the
form | Im z| ≤ L, L > 0. For L fixed, there exists n0 ∈ N such that

|n| ≥ n0 −→ |2πL
n

| ≤ π Im τ

2
.

Thus for |n| ≥ n0 we have

|eiπn2τ+2πinz| = e−πn2 Im τ · e−2πny ≤ e−
n2π Im τ

2 .

Therefore the series converge uniformly on each band of the asserted form, and ϑ
is an entire function of z.

(13.2.1) follows from the periodicity of the exponentials e2πinz . Equality
(13.2.2) is proved as follows:

ϑ(z + τ, τ) =
∑
n∈Z

eiπn
2τ+2iπn(z+τ)

=
∑
n∈Z

eiπτ(n
2+2n)+2πinz , and, completing the square,

=
∑
n∈Z

eiπτ(n+1)2+2πinz−iπτ

= e−iπτ−2πiz ·
∑
n∈Z

eiπτ(n+1)2+2πi(n+1)z

= e−iπτ−2πizϑ(z, τ).
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We now prove (13.2.3). Using (13.2.2) with z = 1−τ
2 we obtain

ϑ

(
1 + τ

2
, τ

)
= ϑ

(
1− τ

2
+ τ, τ

)
= e−iπτ−2πi 1−τ

2 ϑ

(
1− τ

2
, τ

)
= e−iπϑ

(
1− τ

2
, τ

)
, and, using (13.2.1),

= −ϑ

(
1− τ

2
− 1, τ

)
= −ϑ

(
1 + τ

2
, τ

)
,

and hence the result since ϑ is an even function of z. �

Solution of Exercise 13.2.2. We already know from Exercise 13.2.1 that ϑ vanishes
at the point 1+τ

2 , and hence, because of (13.2.1) and (13.2.2) at all the points

1 + τ

2
+m+ τn, m, n ∈ Z.

The entire function ϑ(z, τ) may vanish a priori for some points on the paral-
lelogram with nodes 0, 1, τ and 1+ τ . By making a small translation by a complex
number a, we obtain a parallelogram Pa, with nodes a, 1+a, τ+a, 1+τ+a, which
still contains 1+τ

2 , but on which ϑ does not vanish. We have∫
Pa

ϑ′(z, τ)
ϑ(z, τ)

dz =

∫
[a,1+a]

ϑ′(z, τ)
ϑ(z, τ)

dz +

∫
[1+a,1+τ+a]

ϑ′(z, τ)
ϑ(z, τ)

dz

+

∫
[1+a+τ,a+τ ]

ϑ′(z, τ)
ϑ(z, τ)

dz +

∫
[a+τ,a]

ϑ′(z, τ)
ϑ(z, τ)

dz

(13.6.1)

since ϑ has period 1 with respect to z (see (13.2.1)), the function ϑ′
ϑ is also periodic

with period 1 with respect to z and we have∫
[a+τ,a]

ϑ′(z, τ)
ϑ(z, τ)

dz =

∫
[1+a,1+τ+a]

ϑ′(z, τ)
ϑ(z, τ)

dz = −
∫
[1+a+τ,1+a]

ϑ′(z, τ)
ϑ(z, τ)

dz.

Thus the second and fourth integrals on the right side of (13.6.1) cancel each other.
We now compare the first and the third integral, taking into account (13.2.2). Using
for instance the property (4.2.3) of the logarithmic derivative, (13.2.2) leads to

ϑ′(z + τ, τ)

ϑ(z + τ, τ)
=

ϑ′(z, τ)
ϑ(z, τ)

− 2πi.
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It follows that∫
[1+a+τ,a+τ ]

ϑ′(z, τ)
ϑ(z, τ)

dz =

∫
[1+a,a]

ϑ′(z + τ, τ)

ϑ(z + τ, τ)
dz

=

∫
[1+a,a]

(
ϑ′(z, τ)
ϑ(z, τ)

− 2πi

)
dz

= −
∫
[a,1+a]

ϑ′(z, τ)
ϑ(z, τ)

dz + 2πi.

Thus the first and the third integral in (13.6.1) sum up to 2πi, and so

1

2πi

∫
Pa

ϑ′(z, τ)
ϑ(z, τ)

dz = 1.

Since ϑ is entire, it follows from (7.3.5) that 1+τ
2 is the only zero of ϑ in Pa, and

hence the result. �

Solution of Exercise 13.3.1. We define a function g in C \ (−∞, 0] by

g(ζ) = f

(
ln ρ+ iθ

2πi

)
, with ζ = ρeiθ, θ ∈ (−π, π).

For ζ = e2πiz and z in the strip |x| < 1/2 we have

g(e2πiz) = f(z).

The function g is analytic in C\ (−∞, 0]. Take x < 0 to be a point on the negative
axis. We have

lim
ζ→x

Im ζ>0

g(ζ) = f

(
lnx+ iπ

2πi

)
,

and

lim
ζ→x

Im ζ<0

g(ζ) = f

(
lnx− iπ

2πi

)
.

The fact that f is periodic with period 1 leads to the continuity of g on (−∞, 0).
Using Morera’s theorem we conclude that g is analytic in C \ {0}, and therefore
has a Laurent expansion, which converges uniformly in every ring of the form
r < |ζ| < R (r and R are strictly positive numbers such that r < R):

g(ζ) =
∑
n∈Z

cnζ
n.

Thus,

f(z) = g(e2πiz) =
∑
n∈Z

cne
2πinz ,

where by analytic continuation, z is arbitrary in C, and where the convergence is
uniform in every closed horizontal strip. �
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For more on the subject, see for instance [42, Exercise 11.10, p. 365], [75, Ex-
ercice 34.10, p. 307], [193, pp. 106–107]. As an application of the previous exercise,
prove the following result (see [193, (2.23-12) and (2.23-13), p. 108]):

1

tanπz
=

{
−i(1 + 2

∑∞
n=1 e

2πinz), Im z > 0,

i(1 + 2
∑∞

n=1 e
−2πinz), Im z < 0.

Solution of Exercise 13.3.2. We follow [162, pp. 3-4]. In view of Exercise 13.3.1 we
look for f , not identically vanishing, and of the form

f(z) =
∑
n∈Z

cn(τ)e
2πinz . (13.6.2)

The condition
f(z + τ) = eaz+bf(z)

leads to ∑
n∈Z

cn(τ)e
2πin(z+τ) = eaz+b

∑
n∈Z

cn(τ)e
2πinz .

Replacing z by z + 1 in this expression we obtain (since we assume f 
≡ 0)

ea = 1,

that is, a = 2πik0 for some k0 ∈ Z. Comparing the coefficient of e2πinz we have

cn(τ) = cn−k0(τ)e
−2πinτ eb = cn−k0(τ)e

b+2πn Im τe−2πinRe τ .

When k0 > 0, the coefficients cn(τ) go exponentially fast in modulus to infinity,
and the series (13.6.2) diverges. We leave it to the student to consider the cases
k0 = 0 and k0 < 0. �

Solution of Exercise 13.3.3. The function q is meromorphic in the plane since it
is the quotient of two entire functions. Since f has period 1, all the functions
f(z − an) and f(z − bn) have also period 1, and so has the function q. We now
show, using the second equality in (13.3.1), that q has also period τ . We have

q(z + τ) =
N∏

n=1

f(z + τ − an)

f(z + τ − bn)

=

N∏
n=1

ea(z−an)+bf(z − an)

ea(z−bn)+bf(z − bn)

=
eaNz−a(

∑N
n=1 an)+Nb

eaNz−a(
∑N

n=1 bn)+Nb
q(z)

= q(z),

in view of (13.3.2). �
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The student will recognize in (13.3.2) a condition similar to (13.1.1) in Ex-
ercise 13.1.1.

Solution of Exercise 13.4.1. Let z = x+ iy. We have

|tz−1| = |e{(z−1) ln t}| = e(x−1) ln t = tx−1.

The integral
∫ 1

0
tx−1dt converges for x > 0, and so the integral

∫ 1

0
tz−1e−tdt con-

verges absolutely for Re z > 0. As for the convergence at infinity of the integral
(3.1.11) ∫ ∞

0

tx−1e−tdt,

we proceed as follows (the same argument will be used later in the solution of
Exercise 13.4.2): Write

tx−1e−t = e{((x−1) ln t
t −1)t}.

For a given x > 0, there exists M > 0 such that

t ≥ M =⇒
∣∣∣∣(x− 1)

ln t

t

∣∣∣∣ ≤ 1

2
.

Then,

(x − 1)
ln t

t
− 1 ≤

∣∣∣∣(x− 1)
ln t

t

∣∣∣∣− 1 ≤ −1

2
,

and we have ∫ ∞

M

tx−1e−tdt ≤
∫ ∞

M

e−
t
2 dt < ∞.

Finally, equation (13.4.2) is proved by integration by parts. �

Solution of Exercise 13.4.2. We follow the method given in the hint after the ex-
ercise. By Theorem 6.2.3 each of the functions Γn is analytic in Re z > 1. Further-
more, for z ∈ K we have∣∣∣∣∫ ∞

n

tz−1e−tdt

∣∣∣∣ ≤ ∫ ∞

n

e(M−1) ln t−tdt =

∫ ∞

n

e(
(M−1) ln t

t −1)tdt.

For a given M there exists n0 such that

t ≥ n0 =⇒ 0 <
(M − 1) ln t

t
<

1

2
,

and therefore, for n ≥ n0,∣∣∣∣∫ ∞

n

tz−1e−tdt

∣∣∣∣ ≤ ∫ ∞

n

e−
t
2 dt → 0, as n → ∞.
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Similarly, still for z = x+ iy ∈ K, we have∣∣∣∣∣
∫ 1/n

0

tz−1e−tdt

∣∣∣∣∣ ≤
∫ 1/n

0

e(x−1) ln tdt

=

∫ 1/n

0

tx−1dt

=
1

xnx
≤ 1

m · nm
.

It follows that, for n ≥ n0,

|Γ(z)− Γn(z)| ≤
∫ ∞

n

e−
t
2 dt+

1

m · nm

uniformly in K (and in fact uniformly in the band m ≤ x ≤ M), and so Γ is
analytic as the uniform limit on compact sets of analytic functions. �

Solution of Exercise 13.4.3. We follow [23, p. 119]. In view of (1.2.6), we have
that, for every t ∈ [0,∞),

lim
n→∞ fn(t) = e−ttz−1.

Moreover, in view of item (a) in Exercise 3.2.6,

|fn(t)| ≤
(
1− t

n

)n

tx−1 ≤ e−ttx−1.

The dominated convergence theorem (see Theorem 17.5.2) leads to

lim
n→∞

∫ ∞

0

fn(t)dt =

∫ ∞

0

( lim
n→∞ fn(t))dt

=

∫ ∞

0

e−ttz−1dt

= Γ(z).

It remains to show that∫ n

0

(
1− t

n

)n

tz−1dt =
n!nz

z(z + 1) · · · (z + n)
.
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As suggested in [23] this is done by repeated integration by parts. Indeed, we have∫ n

0

(
1− t

n

)n

tz−1dt =
n

n

∫ n

0

(
1− t

n

)n−1
tz

z
dt

=
n(n− 1)

n2

∫ n

0

(
1− t

n

)n−2
tz+1

z(z + 1)
dt

...

=
n(n− 1) · · · 2

nn−1

∫ n

0

tz+(n−1)

z(z + 1) · · · (z + n− 1)
dt

=
n!

nn

nz+n

z(z + 1) · · · (z + n− 1)(z + n)

=
n!nz

z(z + 1) · · · (z + n)
. �

Solution of Exercise 13.4.4. (a) The first equality follows directly from the change
of variable t =

√
u. Indeed,∫ ∞

0

e−t2tz−1dt =

∫ ∞

0

e−uu
z−1
2

du

2
√
u
=

Γ( z2 )

2
.

(b) The other two integrals are computed using Cauchy’s theorem as follows.
Consider the function of the complex variable s defined by

f(s) = eis+(z−1) ln s,

where ln s is the principal branch of the logarithm in C \ (−∞, 0], that is

ln s = ln ρ+ iθ,

where s = ρeiθ with θ ∈ (−π, π). We consider the closed path consisting of the
following four parts:

(i) The interval [r, R], with 0 < r < R < ∞.

(ii) The arc of circle CR parametrized by

γR(u) = Reiu, u ∈
[
0,

π

2

]
.

(iii) The interval [iR, ir].

(iv) The arc of circle cr parametrized by

γr(u) = reiu, u ∈
[π
2
, 0
]
.
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By Cauchy’s theorem, the integral of f on this closed path is equal to 0. On the
other hand, ∫

[r,R]

f(s)ds =

∫ R

r

eittz−1dt →
∫ ∞

0

eittz−1dt,

as r → 0 and R → ∞, and, with the parametrization γ(t) = it, with t ∈ [R, r],∫
[iR,ir]

f(s)ds =

∫ r

R

e−t+(z−1)(ln t+i π
2 )idt

= −ei(z−1)π
2

∫ R

r

e−ttz−1idt

= −e−iπ2 eiz
π
2

∫ R

r

e−ttz−1idt

→ −eiz
π
2 Γ(z)

as r → 0 and R → ∞. We now show that

lim
r→0

∫
cr

f(s)ds = 0 and lim
R→∞

∫
CR

f(s)ds = 0. (13.6.3)

The first of these limits is computed as follows:∣∣∣∣∫
cr

f(s)ds

∣∣∣∣ =
∣∣∣∣∣−
∫ π/2

0

eire
iu+(z−1)(ln r+iu)rieiudu

∣∣∣∣∣
≤ e| Im z|π2

∫ π/2

0

e−r sinurxdu

≤ π

2
rxe| Im z|π2

→ 0,

(13.6.4)

as r → 0. In the computation we have used that, with z = x+ iy,

|e(z−1)(ln r+iu)| · r = e(x−1) ln r−yu · r ≤ rxe| Im z|π2 ,

since e−yu ≤ e|y|u ≤ e| Im z|π2 . In computing the limit (13.6.4) we have used that
x > 0. To show that the second limit goes to 0 we make use of the fact that x < 1.
Making use of (5.9.5) and of (13.6.4) with R instead of r we have∣∣∣∣∫

cR

f(s)ds

∣∣∣∣ ≤ e| Im z|π2 ·Rx · π
R

−→ 0,

as R → ∞ since x < 1. Therefore we have∫ ∞

0

eittz−1dt = eiz
π
2 Γ(z).
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Take first z = x real. Comparing the real and imaginary parts of this equality we
obtain the asserted formulas for x > 0. They extend to complex z with x ∈ (0, 1)
by analytic extension. �

Solution of Exercise 13.4.5.

(1) To compute the integral∫ ∞

0

tz−1

(∫ ∞

0

f1(u)f2(t/u)
du

u

)
dt

we make the change of variable (u, t) �→ (u, uv). The Jacobian matrix (see (4.2.7))
is equal to

J(u, v) =

(
1 0
v u

)
.

and detJ(u, v) = u. Thus, by the theorem on change of variables for double
integrals, we can write:∫ ∞

0

tz−1

(∫ ∞

0

f1(u)f2(t/u)
du

u

)
dt =

∫ ∞

0

∫ ∞

0

uz−1vz−1u
dudv

u

=

(∫ ∞

0

uz−1f1(u)du

)(∫ ∞

0

vz−1f2(v)dv

)
,

where the various interchanges of integrals are done using the dominated conver-
gence theorem.

(2) In the case f1(u) = f2(u) = e−u we have:∫ ∞

0

f1(u)f2(t/u)
du

u
=

∫ ∞

0

e−u− t
u
du

u

=

∫ ∞

0

e−
√
t(v+ 1

v )
dv

v
(with the change of variable u =

√
tv)

=

∫ ∞

−∞
e−2

√
t cosh ada (with the change of variable v = ea)

= 2K0(2
√
t),

with

K0(x) =

∫ ∞

0

e−x cosh ada. (13.6.5)

�
Remark 13.6.1. The function K0 defined in (13.6.5) is the K Bessel function of
order 0. See, e.g., [50, p. 7 and p. 50]. We have∫ ∞

0

tz−12K0(2
√
t)dt = (Γ(z))2. (13.6.6)
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Setting z = n+ 1 in the previous expression gives∫ ∞

0

tn2K0(2
√
t)dt = (n!)2. (13.6.7)

This fact is used in [13, 16] to study (and in particular give a geometric character-
ization of the elements of) the reproducing kernel Hilbert space with reproducing
kernel ∞∑

n=0

znwn

(n!)2
.

Solution of Exercise 13.5.1.

(1) For y = 0, (13.5.5) is the value of the Gaussian integral, which we assume
known. See the discussion after (5.2.6). The integral under consideration is an
even function of y, and we take y > 0. We give to ΓR the positive orientation.
We then have the following parametrizations for the components of ΓR (we do not
stress the dependence on y in the notation):

γ1,R(t) = t, t ∈ [−R,R],

γ2,R(t) = R+ it, t ∈ [0, y],

γ3,R(t) = −t+ iy, t ∈ [−R,R],

γ4,R(t) = −R+ i(y − t), t ∈ [0, y].

Since e−z2

is defined by a power series centered at the origin, and converging in
all of C, it has a primitive in C and we can write∫

ΓR

e−z2

dz = 0, ∀R > 0,

that is,∫
γ1,R

e−z2

dz+

∫
γ2,R

e−z2

dz+

∫
γ3,R

e−z2

dz+

∫
γ4,R

e−z2

dz = 0, ∀R > 0. (13.6.8)

We have ∣∣∣∣∣
∫
γ2,R

e−z2

dz

∣∣∣∣∣ =
∣∣∣∣∫ y

0

e−(R2+2Rti−t2)idt

∣∣∣∣
≤
∫ y

0

e−R2+t2dt

= e−R2

∫ y

0

et
2

dt −→ 0 as R −→ ∞.

Similarly,

lim
R→∞

∫
γ4,R

e−z2

dz = 0.
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Therefore letting R → ∞ in (13.6.8) and using the value of the Gaussian integral
we obtain

e−y2

∫
R

e−t2dt = e−y2√
π =

∫
R

e−t2e−2itydt. (13.6.9)

See for instance [206, p. 43].

(2) Using the dominated convergence theorem and the power series expansion
of e−2ity we rewrite (13.6.9) as

√
π

( ∞∑
u=0

(−1)u
y2u

u!

)
=

∞∑
n=0

(−2iy)n

n!

(∫
R

e−t2tndt

)
.

The odd moments vanish. Setting n = 2u in the equality above and comparing
the coefficient of y2u we obtain the even moments:

√
π
(−1)u

u!
=

(−1)u(−2)2u

(2u)!

(∫
R

e−t2t2udt

)
, u = 0, 1, . . .

and hence ∫
R

e−t2t2udt =
√
π
(2u)!

u!22u
. (13.6.10)

�
Remark 13.6.2. The right side of (13.6.10) can be rewritten as

√
π
(2u− 1)!!

2u

where n!! = n(n− 2)(n− 3) · · · .
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Chapter 14

Some Useful Theorems

In this chapter we collect a number of results from real analysis, which are useful
to solve the exercises. The results presented are along one main theme: How to
interchange two operations in analysis (for instance order of integration in a dou-
ble integral, integration of a function depending on a parameter and derivation
with respect to this parameter,. . . ). Most, if not all, of the results, can be proved
by elementary methods, but are also special cases of general theorems from the
theory of integration (such as the dominated convergence theorem, Fubini’s the-
orem,. . . ). Some aspects of this theory are reviewed in Chapter 17. Finally, note
that we consider complex-valued functions. The results are easily derived in the
complex case from their real counterparts. In fact, they are sometimes still valid
for functions and sequences with values in a Banach space or a Banach algebra,
but a discussion of this latter point is far outside the framework of this book.

14.1 Differentiable functions of two real variables

We here recall the definition of a differentiable function of two real variables. The
case of functions with domain and range inside Banach spaces is given in Section
16.1. See Definition 16.1.13.

Definition 14.1.1. A real-valued function t(x, y) defined in a neighborhood of the
point (x0, y0) ∈ R2 is said to be differentiable at (x0, y0) if there exist real numbers
a and b such that

lim
x→x0,
y→y0

t(x, y)− t(x0, y0)− a(x− x0)− b(y − y0)√
(x − x0)2 + (y − y0)2

= 0. (14.1.1)

It is well known that a necessary (but in no way sufficient) condition for
differentiability at the point (x0, y0) is that t has first-order partial derivatives at
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this point. The numbers a and b are unique and equal to

a =
∂t

∂x
(x0, y0) and b =

∂t

∂y
(x0, y0)

Differentiability can be written in an equivalent way as follows: The function
t admits first-order partial derivatives at the point (x0, y0) and there exists a
function E(x, y) such that

t(x, y) = t(x0, y0) + (x− x0)
∂t

∂x
(x0, y0) + (y − y0)

∂t

∂y
(x0, y0)

+
√
(x− x0)2 + (y − y0)2E(x, y)

(14.1.2)

and

lim
x→x0,
y→y0

E(x, y) = 0.

The function E(x, y) is uniquely defined, and is equal to

E(x, y) =
t(x, y)− t(x0, y0)− (x− x0)

∂t
∂x (x0, y0)− (y − y0)

∂t
∂y (x0, y0)√

(x− x0)2 + (y − y0)2
. (14.1.3)

Condition (14.1.2) is often more convenient that (14.1.1) to work with.

The following classical counter-example shows that continuity of the function
and existence of partial derivatives at a given point do not imply differentiability
at that point.

Example 14.1.2. Let

t(x, y) =

⎧⎨⎩
xy√

x2 + y2
, if (x, y) 
= (0, 0),

0, if (x, y) = (0, 0).

Then, t is continuous at the point (0, 0), but is not differentiable there.

Discussion. The continuity at the origin follows from the inequality

|t(x, y)| ≤

(
x2 + y2

2

)
√
x2 + y2

=

√
x2 + y2

2
, (x, y) 
= (0, 0).

The partial derivatives at the origin exist and are equal to 0, as follows from

t(x, 0)− t(0, 0)

x
≡ 0 and

t(0, y)− t(0, 0)

y
≡ 0.
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On the other hand, t is not differentiable at the origin since

t(x, y)− t(0, 0)− tx(0, 0)x− ty(0, 0)y√
x2 + y2

=
xy

x2 + y2
.

This last expression vanishes for x or y equal to 0, and is equal to 1/2 for x = y.
Therefore, it has no limit as (x, y) → (0, 0).

In Example 14.1.2 the partial derivatives are not continuous at the point
(0, 0). A sufficient condition for differentiability is given in the next theorem:

Theorem 14.1.3. Assume that the function t admits partial derivatives in a neigh-
borhood of (x0, y0) and that they are continuous at the point (x0, y0). Then, t is
differentiable at the point (x0, y0).

See for instance [45, p. 67] for a discussion.

14.2 Cauchy’s multiplication theorem

The following result is due to Cauchy. It is also called the Cauchy multiplication
theorem. Equality (14.2.2) can be obtained under weaker notations; these are then
results due to Mertens and Abel; see [112, p. 199]. First some notation: For a
sequence a = (an)n∈N0 we set

‖(an)‖1 =

∞∑
n=0

|an|.

Furthermore, if b = (bn)n∈N0 is another sequence, the convolution, or the Cauchy
product, of the sequences a and b is the sequence defined by

(a ∗ b)n =

n∑
m=0

ambn−m.

The convolution of two sequences has appeared a number of times in the book, in
particular in the setting of discrete signals, see Section 11.4.

Theorem 14.2.1. Let a = (an)n∈N0 and b = (bn)n∈N0 be two sequences of numbers
such that ‖a‖1 and ‖b‖1 are both finite. Then

‖a ∗ b‖1 ≤ ‖a‖1 · ‖b‖1, (14.2.1)

and
∞∑

n=0

(
n∑

p=0

apbn−p

)
=

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
. (14.2.2)
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Proof. Inequality (14.2.1) follows from (14.2.2) since

|cn| ≤
n∑

j=0

|aj | · |bn−j |,

and hence, for N ∈ N0,

N∑
n=0

|cn| ≤
N∑

n=0

n∑
j=0

|aj | · |bn−j| =
N∑
j=0

|aj |

⎛⎝ N∑
n=j

|bn−j |

⎞⎠
≤

N∑
j=0

|aj |

⎛⎝ ∞∑
n=j

|bn−j |

⎞⎠
=

⎛⎝ N∑
j=0

|aj |

⎞⎠( ∞∑
n=0

|bn|
)

≤

⎛⎝ ∞∑
j=0

|aj|

⎞⎠( ∞∑
n=0

|bn|
)
.

(14.2.3)

It follows in particular that the series (cn)n∈N0 converges absolutely. To compute
its sum, we will first assume that

∑∞
n=0 an 
= 0; by replacing an by

an∑∞
p=0 ap

,

we may consider the case where

∞∑
n=0

an = 1.

Set cn =
∑n

p=0 apbn−p. Then

c0 + · · ·+ cn =

n∑
j=0

j∑
p=0

apbj−p

=

n∑
p=0

ap

n∑
j=p

bj−p

=

n∑
p=0

ap

n−p∑
j=0

bj

=

n∑
p=0

apBn−p

= a0Bn + a1Bn−1 + · · ·+ anB0,

(14.2.4)

where

Bp =

p∑
j=0

bj , p = 0, 1, . . . , n.
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We have

|Bp| ≤
∞∑
j=0

|bj |, ∀p ∈ N0.

Let B =
∑∞

j=0 bj, and fix a n0 ∈ N. We have, for n ≥ n0,

c0 + · · ·+ cn −B = a0Bn + a1Bn−1 + · · ·+ anB0 −
( ∞∑

m=0

am

)
B (14.2.5)

=

n0∑
j=0

aj(Bn−j −B) +

n∑
j=n0+1

ajBn−j − B

⎛⎝ ∞∑
j=n0+1

aj

⎞⎠ .

Given ε > 0 choose n0 such that

∞∑
j=n0+1

|aj | < ε

and
n ≥ n0 =⇒ |Bn −B| < ε.

Let M be such that |Bn| ≤ M for all n ∈ N0, and take n ≥ 2n0. Then n− j ≥ n0

in (14.2.5), and we obtain

|c0 + · · ·+ cn −B| ≤ ε

⎛⎝ ∞∑
j=0

|aj |

⎞⎠+ (M + |B|)ε,

and hence the result.

Assume now that
∑∞

j=0 aj = 0. We want to show that

∞∑
j=0

cj = 0.

We replace a0 by a0 + η for some η 
= 0. We denote by c′ the convolution of this
modified sequence and of b. We have now

c′0 = (a0 + η)b0,

c′1 = (a0 + η)b1 + a1b0,

...

By (14.2.3) the series c, and hence the series c′, converges absolutely. Furthermore,

∞∑
n=0

c′n = η

( ∞∑
n=0

bn

)
+

∞∑
n=0

cn.
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From the first part of the proof we have

∞∑
n=0

c′n = ηB.

Therefore
∑∞

n=0 cn = 0, that is, (14.2.2) also holds in the present case. �

14.3 Summable families

Let J denote some set. Recall that a family (aj)j∈J of complex numbers indexed
by j ∈ J is called summable if there exists a complex number L such that for
every ε > 0 there exists a finite subset J0 ⊂ J with the following property: For
any finite subset J1 ⊃ J0, ∣∣∣∣∣∣L−

∑
j∈J1

aj

∣∣∣∣∣∣ < ε.

In the present book, the concept of summable family is of importance in particular
in the definition of the Weierstrass function ℘. See Exercises 3.6.2 and 13.1.3.

Typically, the set of indices is equal to J = N2
0. In this case we have:

Theorem 14.3.1. Let (a�,k)�,k∈N2
0
be a sequence indexed by N2

0, and assume that

∞∑
�=0

( ∞∑
k=0

|a�,k|
)

< ∞.

Then
∞∑
k=0

( ∞∑
�=0

|a�,k|
)

< ∞,

and the family (a�,k)(�,k)∈N2
0
is summable. Moreover, its limit can be computed

using any ordering of the indices. In particular,

L =
∞∑
�=0

( ∞∑
k=0

a�,k

)
=

∞∑
k=0

( ∞∑
�=0

a�,k

)
. (14.3.1)

This result can be used to prove that the function

ez =
∞∑
n=0

zn

n!

satisfies (1.2.4):
ez1+z2 = ez1ez2 , z1, z2 ∈ C.
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Indeed, define

a�,k =

⎧⎪⎨⎪⎩
z�1
�!

zk−�
2

(k − �)!
, if k ≥ �,

0, otherwise.

This family satisfies the condition of the theorem since

∞∑
�=0

{ ∞∑
k=0

|a�k|
}

=

∞∑
�=0

|z1|�
�!

{ ∞∑
k=�

|z2|k−�

(k − �)!

}

=

∞∑
�=0

|z1|�
�!

{ ∞∑
k=0

|z2|k
k!

}

=

∞∑
�=0

|z1|�
�!

e|z2|

= e|z1|e|z2| < ∞.

The same computation without the absolute values leads to

∞∑
�=0

{ ∞∑
k=0

a�k

}
= ez1ez2 .

On the other hand,

∞∑
k=0

{ ∞∑
�=0

a�k

}
=

∞∑
k=0

{
k∑

�=0

z�1
�!

zk−�
2

(k − �)!

}

=
∞∑
k=0

1

k!

{
k∑

�=0

z�1z
k−�
2

k!

�!(k − �)!

}

=

∞∑
k=0

(z1 + z2)
k

k!

= ez1+z2 ,

and hence ez1ez2 = ez1+z2 .

The example (see [63, p. 97])

a�k =

⎧⎨⎩
1

�2 − k2
, if � 
= k,

0 if � = k,

where � and k belong to N0, illustrates what can happen when less stringent
hypotheses are set on the family. We check that

∞∑
�=0

( ∞∑
k=0

a�k

)
= −

∞∑
k=0

( ∞∑
�=0

a�k

)

= 0.
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As proposed in [63, p. 97], we first show that

∞∑
k=1

a�k =
−3

4�2
(14.3.2)

for � ≥ 1. Indeed, writing

1

�2 − k2
=

1

2�

{
1

�+ k
+

1

�− k

}
,

for any integers N, � such that N > �, we have8

N∑
k=1

a�k =
1

2�

{
−1

�
− 1

2�
+

N+�∑
k=N−�+1

1

k

}
. (14.3.3)

We first consider the case N = �+ 1; (14.3.3) becomes

�+1∑
k=1

a�k =
1

2�

{
−1

�
− 1

2�
+

2�+1∑
k=2

1

k

}
. (14.3.4)

To prove (14.3.4) we write:

�+1∑
k=1

a�k =

�+1∑
k=1

1

2�

(
1

�− k
+

1

�+ k

)
=

1

2�

{
1

�
− 1

�
+

1

�+ 1
+

1

�− 1
+

1

�+ 2
+

1

�− 2
+ · · ·+

+ · · ·+ 1

2�− 3
+

1

3
+

1

2�− 2
+

1

2
+

+
1

2�− 1
+

1

1
+

1

2�
− 1

2�
+

1

2�+ 1
+

1

−1

}
=

1

2�

{
−1

�
− 1

2�
+

2�+1∑
k=2

1

k

}
,

where the canceling terms 1
2� −

1
2� and 1

� − 1
� are added since a�� = 0 and since

the sum begins at k = 1. Note also that the terms 1
1 and 1

−1 cancel each other.

8For instance, for � = 5 and N = 8 we have

8∑
k=1

a5,k =
1

10

{
1

4
+

1

6
+

1

3
+

1

7
+

1

2
+

1

8

+1 +
1

9
− 1 +

1

11
− 1

2
+

1

12
− 1

3
+

1

13

}
,

and the sum in brackets is equal to: −1/5− 1/10 +
∑13

k=4 1/k.
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For a given � we now prove (14.3.3) for all N > � by induction as follows.
Assuming the formula true at rank N we have at rank N + 1:

1

2�

{
−1

�
− 1

2�
+

N+1+�∑
k=N+1−�+1

1

k

}
=

1

2�

{
−1

�
− 1

2�
+

N+�+1∑
k=N−�+2

1

k

}

=
1

2�

{
−1

�
− 1

2�
+

N+�∑
k=N−�+1

1

k

}

+
1

2�

{
− 1

N + 1− �
+

1

N + 1 + �

}
.

Using the induction hypothesis at rank N this last sum is equal to:

N∑
k=1

a�k +
1

�2 − (N + 1)2
=

N+1∑
k=1

a�k,

which proves the induction hypothesis at rank N + 1.

Letting N → ∞ we obtain (14.3.2). Thus,

∞∑
�=0

( ∞∑
k=0

a�k

)
=

∞∑
k=0

a0k +

∞∑
�=1

{
a�0 +

∞∑
k=1

a�k

}

= −π2

6
+

∞∑
�=1

(
1

�2
− 3

4�2

)
= −π2

6
+

1

4

π2

6
< 0.

The result follows since ak� = −a�k.

Other counterexamples may be found in [115, pp. 124–127]. For instance (see
[115, 7.25, p. 125]), the family

a�k =

⎧⎪⎪⎨⎪⎪⎩
1, if � = k,

− 1

2k−�
, if � < k,

0, if � > k,

where �, p ∈ N0, is such that the series

∞∑
k=0

a�k

converges for every � ∈ N0, and the series

∞∑
�=0

a�k
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converges for every k ∈ N0. Furthermore, both the series

∞∑
�=0

∞∑
k=0

a�k and
∞∑
k=0

∞∑
�=0

a�k

converge, but we have:

∞∑
�=0

∞∑
k=0

a�k = 2 and
∞∑
k=0

∞∑
�=0

a�k = 0.

14.4 Weierstrass’ theorem

In this section we present theorems on interchanging limit and integral. The first
result is quite easy to prove. The second, albeit a particular case of the first, seems
more useful and is called the Weierstrass theorem.

Theorem 14.4.1. Let (fn)n∈N0 be a sequence of functions continuous on a finite
closed interval [a, b] and converging uniformly to a function f . Then

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

( lim
n→∞ fn(x))dx.

We note that, in view of the uniform convergence, limn→∞ fn is continuous on
[a, b] and so the integral on the right side exists. Since a uniform limit of Riemann
integrable functions is still Riemann integrable, continuity may be weakened to
Riemann integrability in the above theorem. A counterpart of Theorem 14.4.1
without uniform convergence is not possible since the pointwise limit of continuous
functions need not be Riemann integrable (but see Theorem 17.1.3 below and the
related discussion there). One has then to resort to Lebesgue integration. See
Chapter 17. See also the discussion after the following theorem.

Theorem 14.4.2. Let [a, b] ⊂ R, and let (fn)n∈N0 be a sequence of continuous func-
tions from [a, b] into C. Assume that there exists a sequence of numbers (Mn)n∈N0

such that

max
[a,b]

|fn(x)| ≤ Mn, and
∞∑
n=0

Mn < ∞. (14.4.1)

Then ∫ b

a

(
∞∑
n=0

fn(x))dx =
∞∑

n=0

∫ b

a

fn(x)dx. (14.4.2)

The hypothesis insures that the function

x �→
∞∑

n=0

fn(x) (14.4.3)
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is continuous, as a uniform limit of functions continuous on the interval [a, b]. In
particular the integral on the left-hand side of (14.4.2) makes sense. As in The-
orem 14.4.1 the functions fn may be assumed Riemann integrable. The function
x �→

∑∞
n=0 fn(x) is Riemann integrable, and Theorem 14.4.2 still holds. The func-

tion (14.4.3) is in fact Lebesgue integrable. If one leaves the realm of the Riemann
integral and goes to the setting of measurable functions and of the Lebesgue inte-
gral, much more general theorems hold; in particular Theorems 14.4.1 and 14.4.2
are special cases of the Lebesgue dominated convergence theorem; see Theorems
17.5.2 and 17.5.4 respectively.

14.5 Weak forms of Fubini’s theorem

Fubini’s theorem, that is, interchanging order of integration in double integrals,
appears in particular when one proves analyticity using Morera’s theorem. The
general result involves measure theory. We here give two versions of this theorem,
both set in the framework of continuous (rather than measurable) functions.

Theorem 14.5.1. Let f(t, s) be a complex-valued function continuous for t, s ∈
[a, b]× [c, d]. Then

∫ b

a

(∫ d

c

f(t, s)ds

)
dt =

∫ d

c

(∫ b

a

f(t, s)dt

)
ds.

Either integral then coincides with the double integral∫∫
[a,b]×[c,d]

f(t, s)dtds,

see any course on advanced calculus for a definition of the latter.

As a corollary we have the following result, which is used in particular in the
proof of Theorem 6.2.3.

Theorem 14.5.2. Let Ω be an open connected set, and let F (z, s) be a function
continuous in (z, s) ∈ Ω× [c, d]. Let γ : [a, b] �→ Ω be a path in Ω. Then

∫
γ

(∫ d

c

F (z, s)ds

)
dz =

∫ d

c

(∫
γ

F (z, s)dz

)
ds. (14.5.1)

Theorem 14.5.1 cannot be used to study for instance the Gamma function
(3.1.11). For such cases, we will need the following result (see also the Majorant
criterion in [188, p. 48], which can be easily obtained from Theorem 14.5.3)):
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Theorem 14.5.3. Let f(t, s) be a continuous function on R× R, and assume that∫
R

(∫
R

|f(t, s)|ds
)
dt < ∞. (14.5.2)

Then, ∫
R

(∫
R

|f(t, s)|dt
)
ds < ∞,

and the double integral
∫∫

R2 f(t, s)dtds converges and can be computed as∫∫
R2

f(t, s)dtds =

∫
R

(∫
R

f(t, s)ds

)
dt =

∫
R

(∫
R

f(t, s)dt

)
ds.

14.6 Interchanging integration and derivation

Interchanging integration and derivation occurs in particular when studying func-
tions defined by integrals. We mention two useful results.

Theorem 14.6.1. Let f(t, s) be a continuous function on [a, b] × (c, d) and as-
sume that ∂f

∂s exists and is continuous on [a, b]× (c, d). Then, the function g(s) =∫ b

a
f(t, s)dt is differentiable with respect to s and

g′(s) =
∫ b

a

∂f

∂s
(t, s)dt.

See for instance [63, (8.22.2) p. 179].

The case where [a, b] in the previous Theorem is replaced by [0,∞) (or more
generally, by a non compact interval) is more involved. A proof of the following
theorem uses the dominated convergence theorem (see Theorem 17.5.2 for the
latter).

Theorem 14.6.2. Let f(t, s) be a continuous function on [a,∞)×(c, d) and assume
that ∂f

∂s exists and is continuous on [0,∞)× (c, d). Let s0 ∈ (c, d) and let (hn)n∈N

be a sequence of numbers with limit 0 and such that s0 + hn ∈ (c, d) for all n ∈ N.
Assume that there is a function g(t) such that∣∣∣∣f(t, s0 + hn)− f(t, s0)

hn

∣∣∣∣ ≤ g(t), n = 1, 2, . . . , and

∫ ∞

0

g(t)dt < ∞.

Then, the function g(s) =
∫∞
0

f(t, s)dt is differentiable with respect to s at the
point s0 and

g′(s0) =
∫ ∞

0

∂f

∂s
(t, s0)dt.
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14.7 Interchanging sum or products and limit

The following result, due to Tannery (see [120, Appendix] for a discussion and
applications), is useful for instance to prove that

lim
N→∞

(
1 +

z

N

)N
= ez, z ∈ C. (14.7.1)

It is also used in Exercise 3.7.16.

Theorem 14.7.1. Let (cnN )n,N=1,... be a doubly indexed sequence of complex num-
bers with the following properties:

(1) for every N ∈ N, the limit

lim
N→∞

cnN
def.
= cn

exists, and

(2) there is a sequence (dn)n=1,... of positive numbers such that

|cnN | ≤ dn and

∞∑
n=1

dn < ∞.

Then, it holds that

lim
N→∞

∞∑
n=1

cnN =

∞∑
n=1

cn.

A direct proof of this fact is done as follows. Fix ε > 0. We first note that
the series

∑∞
n=1 cn is absolutely convergent since

lim
N→∞

|cnN | = | lim
N→∞

cnN | = |cn| ≤ dn, n = 1, 2, . . . .

Since |cnN | ≤ dn, there exists n0 such that, for all N ∈ N,

n ≥ n0 =⇒
∞∑

n=n0

|cnN | ≤ ε.

The important point is that n0 does not depend onN . Since
∑∞

n=1 |cn| is absolutely
convergent, we can suppose that n0 is also chosen such that

∞∑
n=n0+1

|cn| ≤ ε.

We now write

∞∑
n=1

cnN −
∞∑
n=1

cn =

n0∑
n=1

(cnN − cn) +

∞∑
n=n0+1

cnN −
∞∑

n=n0+1

cn,
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and choose N0 such that, for all n ∈ {1, . . . , n0},

N ≥ N0 =⇒ |cnN − cn| ≤ ε.

Thus for N ≥ N0, we have∣∣∣∣∣
∞∑
n=1

cnN −
∞∑

n=1

cn

∣∣∣∣∣ ≤ (n0 + 2)ε,

and this concludes the proof. For a related discussion, see for instance [112, pp.
198–199] and [53, pp. 207–209]. We can also view this theorem as a consequence
of the dominated convergence theorem (see Theorem 17.5.2), with the measure

μ {n} = 1, n = 1, 2, . . . .

In the case of (14.7.1) we have (see [112, p. 200])

c0N = 1 and cnN = zn
∏n−1

�=1 (1− �
N )

n!
, n = 1, 2, . . . ,

(note that cnN = 0 for n ≥ N), and the conditions of the theorem are readily seen
to hold, with

cn =
zn

n!
and dn =

(2|z|)n
n!

.

We denote by ln(1 + z) the function analytic in the open unit disk which takes
value 1 at the origin and such that

exp (ln(1 + z)) = 1 + z, z ∈ D.

See Exercises 4.4.13 and 6.3.1 for the latter. Using the bounds

|z|
2

≤ | ln(1 + z)| ≤ 3|z|
2

, for |z| ≤ 1/2,

(see [5, p. 192] and Exercise 4.4.13), we deduce easily the following result from
Theorem 14.7.1.

Theorem 14.7.2. Let (anN )n,N=1,... be a doubly indexed sequence of complex num-
bers, with the following properties: For every N ∈ N it holds that:

(1)

∞∑
n=1

|anN | < +∞,

and

(2) the limit

lim
N→∞

anN
def.
= an

exists, and
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(3) there exists a sequence of positive numbers dn such that

|anN | ≤ dn and

∞∑
n=1

dn < ∞.

Then, the product
∏∞

n=1(1 + an) converges absolutely, and we have

lim
N→∞

∞∏
n=1

(1 + anN ) =
∞∏
n=1

(1 + an).

Proof. Using the estimates (4.4.18), we see that one of the series

∞∑
n=1

ln(1 + anN ) and

∞∑
n=1

anN ,

converges absolutely if and only if the other converges absolutely, and similarly
for the series ∞∑

n=1

ln(1 + an) and

∞∑
n=1

an.

Using Theorem 14.7.1 we see that

lim
N→∞

∞∑
n=1

ln(1 + anN ) =

∞∑
n=1

ln(1 + an).

The result follows since∏∞
n=1(1 + anN )∏∞
n=1(1 + an)

= exp

{ ∞∑
n=1

ln(1 + anN )−
∞∑

n=1

ln(1 + an)

}
. �



Chapter 15

Some Topology

Topology intervenes in complex variables at various levels. First of all analytic
functions are defined in open sets. Connectedness plays a key role in the proof of
the uniqueness theorem for analytic functions. The space of functions analytic in
an open set is endowed with the topology of uniform convergence on compact sets.
This makes this set a metrizable space, and its underlying structure stresses the
role of compactness, and plays a key role in the proof of Riemann’s theorem on
conformal equivalence of open simply-connected sets (different from C itself) with
the open unit disk

15.1 Point topology

Definition 15.1.1. Let E be a non-empty set. A family O ⊂ P(E) is called a
topology if:

1. ∅ and E belong to O.

2. O is closed under finite intersection.

3. O is closed under arbitrary union.

A space E endowed with a topology is called a topological space, and the
elements of O are called open. A set F ⊂ E is called closed if E \ F is open. A
subset A ⊂ E is a topological space when endowed with its induced topology

OA = {A ∩O ; O ∈ O} .

Every subfamily M ⊂ P(E) generates a topology O(M) with the property that
it is contained in any other topology containing M. More precisely,

O(M) =
⋂

M⊂O,
O topology

O.

D. Alpay, A Complex Analysis Problem Book, 
DOI 10.1007/978-3-319-42181-0_15

529© Springer International Publishing AG 2016
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Of special importance are the notions of Hausdorff, compact, connected, and of
arc-connected spaces and sets. A topological space (E,O) is called Hausdorff if for
every pair of different points x1, x2 ∈ E there exist non-intersecting open sets O1

and O2 such that x1 ∈ O1 and x2 ∈ O2. It is called compact if it is Hausdorff and
if every open covering of E admits a finite sub-covering. It is called sequentially
compact if every infinite sequence of points admits a convergent subsequence. In
general, sequential compactness is not related to compactness (for a counterex-
ample, see [205, pp. 125–126]), but the two notions are equivalent in the case of
metric spaces; see Definition 15.1.4 below. The topological space (E,O) is called
connected if it cannot be written in a non-trivial way as a union of two open sets.
A subset A of a topological space is said to be connected if it is connected for its
induced topology OA.

A function f from a topological space (E1,O1) into a topological space
(E2,O2) is continuous if

∀O2 ⊂ O2, f−1(O2) ∈ O1.

An important fact used in Section 15.6 is:

Theorem 15.1.2. The continuous image of a connected set is connected.

The following application of the previous theorem is taken, together with its
solution, from [38, Exercise 18.9, p. 127].

Exercise 15.1.3. Describe the connected subsets of R and show that there is no
continuous function f such that

f(Q) ⊂ R \Q,

f(R \Q) ⊂ Q.
(15.1.1)

Hint. The result is striking for Q, but the rational numbers could be replaced by
any countable subset of the real numbers, and the proof would be the same.

We also recall:

Definition 15.1.4. A metric on a space E is a map

d : E × E −→ [0,∞)

with the following properties: For all x, y, z ∈ E it holds that:

(a) d(x, y) = 0 ⇐⇒ x = y.

(b) d(x, y) = d(y, x).

(c) d(x, y) ≤ d(x, z) + d(z, y).

A pair (E, d) where d is a metric is called a metric space.

Inequality (c) is called the triangle inequality.
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Exercise 15.1.5. Let ‖ · ‖R3 denote the Euclidean norm in R3,

‖(u, v, w)‖R3 =
√
u2 + v2 + w2, (u, v, w) ∈ R3.

Show that the function

d(z, w) = ‖ϕ−1(z)− ϕ−1(w)‖R3 (15.1.2)

=

⎧⎪⎪⎨⎪⎪⎩
2|z−w|√

1+|z|2
√

1+|w|2 , z, w ∈ C,

2|w|√
1+|w|2 , z = ∞ and w ∈ C,

0, z = w = ∞,

(15.1.3)

where ϕ is defined by (2.1.2) and (2.1.3), is a metric on the Riemann sphere.

Hilbert and Banach spaces are important cases of metric spaces. The space
of functions analytic in an open set Ω with the topology of uniform convergence
on compact sets is a metric space which is not a Banach space; see Section 10.1.

A metric defines a topology in a natural way, namely the topology generated
by the sets

B(x, ρ) = {y ∈ E, d(x, y) < ρ} .

Exercise 15.1.6. Let R with the (usual) topology defined by the absolute value. Show
that open sets are countable unions of disjoint intervals.

Exercise 15.1.7 (see [190, p. 7]). Let [−∞,+∞] denote the real line to which have
been added two points denoted by ±∞ (and which do not belong to R). Define a
set O to be open if it is empty or if it is a (not necessarily disjoint) union of sets
of the following forms:

(i) O open in R.

(ii) {−∞} ∪ (−∞, a) where a ∈ R.

(iii) {+∞} ∪ (b,∞).

Show that this defines a topology. Is [−∞,∞] Hausdorff with this topology?

The absolute value defines a metric on R, and hence a topology. The interval
[0, 1] is endowed with the induced topology. The space E is called arc-connected
if for every two points a and b in E there is a continuous map

γ : [0, 1] −→ E

such that γ(0) = a and γ(1) = b.

Exercise 15.1.8. The set C \ {0} is arc-connected.



532 Chapter 15. Some Topology

15.2 Compact spaces

We first recall the following fact:

Theorem 15.2.1. Let f be a continuous map from a compact space E into a Haus-
dorff space F . Then, f(E) is compact in the induced topology.

Exercise 15.2.2. Show that the space [−∞,∞] defined in Exercise 15.1.7 is compact
with the topology defined there.

The following exercise deals with the Cantor set. See [23, p. 79].

Exercise 15.2.3. Let

U0 =

(
1

3
,
2

3

)
,

and for n ≥ 1,

Un =
⋃

(ε1,...,εn)∈{0,2}n

(
3−n−1 +

n∑
k=1

εk
3k

, 2 · 3−n−1 +

n∑
k=1

εk
3k

)
.

Let
C = [0, 1] \

⋃
n∈N0

Un.

Show that C is compact, not countable, but that the total length of the Un is equal
to 1.

We have recalled in Section 10.1 that the space A(Ω) of functions analytic in
an open connected set Ω, endowed with uniform convergence on compact subsets,
is a metric space. A family F in A(Ω) is called normal if from every infinite
sequence one can extract a convergence subsequence. One does not require that
the limit belongs to F . The limit always belongs to F if and only if F is sequentially
compact.

15.3 Compactification

We have seen that [−∞,∞] endowed with the topology defined in Exercise 15.1.7
(which contains the natural topology of R) is compact. When we consider the
Riemann sphere, we get a compactification of the complex plane by adding one
point. More generally, given a locally compact space (X, T ), add an element ω not

belonging to X , and let X̂ = X ∪{ω}. In the application in this book, X = C and
T is the usual topology of the plane, and ω, the point at infinity, is denoted by ∞.

Let T̂ ⊂ P(X̂) be defined as follows:

A ∈ T̂ ⇐⇒

⎧⎪⎨⎪⎩
A ∈ T , or,

A = X̂ \K, where K ⊂ X is compact, or,

A = X̂.
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Theorem 15.3.1. The family of sets T̂ defines a Hausdorff topology on X̂, and X̂
endowed with this topology is compact. Furthermore, the identity is bi-continuous
from (X, T ) onto X ⊂ X̂.

The reader can find for instance in [39, Corollaire, p. IX.21] a necessary and

sufficient condition for X̂ to be metrizable: X̂ is metrizable if and only if X is
metrizable and countable at infinity.

For this section, see also [2, Exercice 17, p. 51].

15.4 Plane topology

We now specialize some of the previous definitions in the setting of the plane.

Definition 15.4.1. Let z0 ∈ C and r > 0. The set

B(z0, r) = {z ∈ C : |z − z0| < r} (15.4.1)

is called the open disk with center z0 and radius r.

The set
B(z0, r) = {z ∈ C : |z − z0| ≤ r} (15.4.2)

is called the closed disk with center z0 and radius r.

Definition 15.4.2. A subset Ω of the complex plane is said to be open if the following
condition holds:

∀z ∈ Ω, ∃r > 0 such that B(z, r) ⊂ Ω.

In particular, every open disk is open in the sense of Definition 15.4.2.

The set
C \ (−∞, 0]

is open, but the set
C \ (−∞, 0) (15.4.3)

is not. A set will be closed if its complement is open. Another and more direct
characterization can be given in terms of limits. Of course there are sets which are
neither open nor closed, for instance C \ [−1, 0).

Definition 15.4.3. A subset V of the complex plane is called a neighborhood of the
point z0 ∈ C if there is r > 0 such that

B(z0, r) ⊂ V.

Neighborhoods of infinity are defined as follows:
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Definition 15.4.4. A subset of the complex plane is called a neighborhood of infinity
if it contains a set of the form

{z; |z| > R}

for some R > 0.

A set Ω ∈ C will be said to be bounded if

Ω ⊂ B(0, R)

for some R > 0. Neighborhoods of infinity are example of sets which are not
bounded.

The distance of a point z to a set A is defined to be

d(z, A) = inf
a∈A

|z − a|,

and the closure of the set A is

A = {x ∈ C , such that d(x,A) = 0} .

The boundary of the set A is

∂A = A ∩ (C \A).

In C, sets which are both closed and bounded have a special property: They
are compact.

The notion of a simply-connected set plays an important role in solving
global problems in complex variables. Star-shaped sets and convex sets form two
very important examples of simply-connected sets, and will be sufficient for most
applications.

Definition 15.4.5. A subset Ω of the complex plane is called star-shaped if there is
a point z0 ∈ Ω with the property

∀z ∈ Ω, [z0, z] ⊂ Ω.

For z1 and z2 in R2 we denote by [z1, z2] the interval with endpoints z1 and z2:

[z1, z2] = {z1 + t(z2 − z1) ; t ∈ [0, 1]} .

Definition 15.4.6. A subset Ω of the complex plane is called convex if

∀z, w ∈ Ω, [z, w] ⊂ Ω.
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A convex set is in particular star-shaped. One can take any point z0 ∈ Ω in
Definition 15.4.5. This example also shows that z0 is in general not unique. The
set Ω = C \ (−∞, 0] is an important example of a star-shaped set which is not
convex. In this case one can take z0 = x0 for any x0 > 0.

Another important result is Jordan’s curve theorem. Take a circle in the
plane. It is geometrically clear that it divides the plane into two open parts, one
bounded (the unit disk), and one unbounded. Jordan’s curve theorem asserts that
this result is true for any closed simple curve. See for instance [95, p. 68], [118,
Chapter 3].

Lemma 15.4.7. An arc-connected subset of R2 is connected. For open sets of R2

the two notions are equivalent.

For a counterexample when the set is not open, take for instance the graph
of the function sin(1/x) together with the closed interval with end points (0,−1)
and (0, 1).

15.5 Some points of algebraic topology

Algebraic topology pops up in the theory of one complex variable as soon as one
wants to make precise how two contours are close to each other. Two fundamental
notions are used, homotopy and homology.

To characterize simply-connected domains in terms of homology or homotopy,
one needs to be able to compute homology or homotopy groups of an open subset
of the complex plane.

Let Ω be a domain which is not simply-connected. Then, not every analytic
function will have a primitive in Ω, and not every non-vanishing analytic function
will have an analytic logarithm. It is important to know a minimal (in a sense to
be made precise) set of closed curves for which the conditions∫

C

f(z)dz = 0 (resp.)

∫
C

f ′(z)
f(z)

dz = 0

ensure the existence of a primitive in Ω, or respectively, of an analytic logarithm
for a given function f .

A case of importance is the disk with p holes, defined as follows (see for
instance [102, § 5.6, p. 45]): Consider p+ 1 Jordan curves C0, . . . , Cp, and assume
that the interiors of C1, . . . , Cp do not intersect, and are all in the interior of C0.
The homology group of this set is generated by Jordan curves, say D1, . . . , Dp

such that Ci ⊂ Di for i = 1, . . . , p, and Di ∩Dj = ∅ for i 
= j, while the homotopy
group is the free group with p generators (see, e.g., [102, p. 96]).
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15.6 A proof of the fundamental theorem of algebra

The following proof of the fundamental theorem of algebra was given to the author
as an exam problem in the winter of 1974–1975 in the classe de mathématiques
spéciales by Professor Maurice Crestey at the Lycée Louis-le-Grand, in Paris. The
topological facts used in the solution have been reviewed in Section 15.1. In view
of the identification between the complex numbers and R2 we denote the points of
R2 by the letters z, z1, z2, . . .. We also note that here the derivative of a polynomial
is defined algebraically via (zn)′ = nzn−1 for n ≥ 1 and not using the notion of
C-differentiability.

(1) Let z0, . . . , zN be a finite set of points in R2. Prove that R2 \ {z0, . . . , zN} is
arc-connected.

(2) Let f be a continuous function from R2 into itself such that, for some R0 ≥ 0,

∀R > R0, ∃ r > 0 such that: |z| > r =⇒ |f(z)| > R. (15.6.1)

Show that the image of a closed set under f is a closed set. Show that every
non-constant polynomial satisfies (15.6.1).

(3) Let Q ∈ C[X ] be a non-constant polynomial with Q′(0) = 0:

Q(X) = q0 + q2X
2 + · · ·+ qNXN ,

and define

ρ =
1

1 +
∑N

k=2 k|qk|
. (15.6.2)

Define a sequence of complex numbers by:

u0 = 0, u1 = Q(u0), . . . , u�+1 = Q(u�), . . . . (15.6.3)

Show that
|q0| ≤ ρ2 =⇒ |u�| ≤ ρ, ∀� ≥ 0. (15.6.4)

Assuming |q0| ≤ ρ2, show that (u�)�∈N0 is a Cauchy sequence and that its
limit u satisfies

u = Q(u).

(4) Let P ∈ C[X ] be a non-constant polynomial. Let z0 ∈ C be such that
P ′(z0) 
= 0. Show that for w close enough to P (z0) the equation P (z0+z) = w
admits at least one solution.

(5) Let
A = Ran P, and B = {P (z), z ∈ C, P ′(z) 
= 0} .

Using the topological properties of A and B, show that A = C. In particular
0 ∈ A, and the equation P (z) = 0 has at least one solution. It follows
then from the factor theorem (see Exercise 1.5.2) that P has n roots, where
n = degP .
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Solution. (1) Take two points w1 and w2 in R2 \ {z0, . . . , zN}, and consider the
interval [w1, w2]. If none of the points zj belongs to this interval, we take this
interval to join w1 and w2. Let now j0 be such that zj0 belongs to [w1, w2]. There
exists ε > 0 such that the closed disk with center zj0 and radius ε contains no
other points zk, k 
= j0. We replace the intersection

[w1, w2] ∩ {|z − zj0 | ≤ ε} (15.6.5)

by one of the half-circles of the circle |z − zj0 | = ε which join the endpoints of
(15.6.5). Repeating this construction for all the points zj ∈ [w1, w2] we construct
a continuous curve which lies in R2 \ {z0, . . . , zN}, and connects w1 and w2.

(2) We first recall the following: R2 is a complete metric space, and in a
complete metric space, a set is closed if and only if it is complete; see [47, Corollaire,
p. 83]. Let E be a closed subset of R2, and let (zn)n∈N be a sequence of elements
in E such that (f(zn))n∈N is a Cauchy sequence in f(E). In particular (f(zn))n∈N

converges to a point in R2 and thus is bounded:

M = sup
n∈N

|f(zn)| < ∞.

Apply (15.6.1) to R = max(R0,M + 1). There exists r > 0 such that

|z| > r =⇒ |f(z)| > M + 1,

and in particular all |zn| ≤ r since supn∈N |f(zn)| = M . Therefore the sequence
(zn)n∈N has a converging subsequence, say (znk

)k∈N, which converges to a point,
say w. Since E is closed, w ∈ E. Since f is continuous,

lim
k→∞

f(znk
) = f(w) ∈ f(E).

Since the sequence (f(zn))n∈N converges, its limit is equal to the limit of any of
its subsequence, and so

lim
n→∞ f(zn) = f(w) ∈ f(E),

and so f(E) is closed. Let now

p(z) = p0 + · · ·+ pNzN

be a non-constant polynomial, with pN 
= 0. For z 
= 0 we have

p(z) = pNzN (1 + r(z))

where

r(z) =
1

pN

( p0
zN

+
p1

zN−1
+ · · ·+ pN−1

z

)
.
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Let r0 be such that
|z| > r0 =⇒ |r(z)| < 1/2,

and let R0 be defined by

r0 =

(
2R0

|pN |

) 1
N

. (15.6.6)

For |z| > r0 we have

|p(z)| > |pN | · |z|N
2

,

from which (15.6.1) follows with R0 as in (15.6.6) and

r =

(
2R

|pN |

) 1
N

.

(3) We prove (15.6.4) by induction. For � = 0 the result is clear. Assume that
the assumption holds at rank �. Then

|u�+1| ≤ |q0|+
N∑

k=2

|u�|k|qk|

≤ ρ2 +

N∑
k=2

ρk|qk| (since |q0| ≤ ρ2 and |u�| ≤ ρ)

= ρ2

{
1 +

N∑
k=2

ρk−2|qk|
}

≤ ρ2

{
1 +

N∑
k=2

|qk|
}

(since |ρ| < 1)

≤ ρ2

{
1 +

N∑
k=2

k|qk|
}

= ρ.

Hence
|u�+1| ≤ ρ.

Assuming that |q0| ≤ ρ2, we now show that (u�)�∈N0 is a Cauchy sequence.
We first remark that, for k ≥ 2,∣∣∣∣∣∣

k−1∑
j=0

uj
�u

k−1−j
�−1

∣∣∣∣∣∣ ≤ kρk−1 ≤ kρ. (15.6.7)

We have

|u�+1 − u�| = |Q(u�)−Q(u�−1)| =
∣∣∣∣∣

N∑
k=2

qk(u
k
� − uk

�−1)

∣∣∣∣∣ .
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But we have

|uk
� − uk

�−1| = |u� − u�−1| ·

∣∣∣∣∣∣
k−1∑
j=0

uj
�u

k−1−j
�−1

∣∣∣∣∣∣ ≤ |u� − u�−1| · kρ,

where we have used (15.6.7). Thus, with

K = ρ

{
N∑

k=2

k|qk|
}

=

∑N
k=2 k|qk|

1 +
∑N

k=2 k|qk|
< 1,

we have

|u�+1 − u�| =
∣∣∣∣∣
N∑

k=2

qk(u
k
� − uk

�−1)

∣∣∣∣∣ ≤ K|u� − u�−1|. (15.6.8)

Since Q is not a constant, we have K 
= 0 and (u�)�∈N0 is a Cauchy sequence.
Indeed, it follows from (15.6.8) that

|u�+1 − u�| ≤ K�+1|u1 − u0|, � = 0, 1, . . .

and, for �,m ∈ N0,

|u�+m+1 − u�| ≤
m+�∑
k=�

|uk+1 − uk|

≤ (K�+m+1 + · · ·+K�+1)|u1 − u0|

≤ K�|u1 − u0|
1−K

.

Let u = lim�→∞ u�. Since Q is a continuous function we have

lim
�→∞

Q(u�) = Q(u),

and hence u = Q(u) in view of (15.6.3).

(4) The equation P (z0 + z) = w can be rewritten as

Q(z) = z

where the polynomial Q defined by

Q(z) =
w + zP ′(z0)− P (z0 + z)

P ′(z0)

is such that Q′(0) = 0. Let

Q(z) = q0(w) + z2q2 + · · ·+ zNqN ,
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where N is the degree of P . Note that

q0(w) =
w − P (z0)

P ′(z0)
,

and that the coefficients q2, . . . , qn do not depend on w. Let ρ be defined as in
(15.6.2). For w close enough to P (z0) we have

|q0(w)| ≤ ρ2,

and hence, by (3), the equation Q(z) = z has a solution. Thus, for such w, the
equation P (z0 + z) = w has also a solution.

(5) We first assume that the equation P ′(z) = 0 has solutions. These form a
finite set, say z0, . . . , zM . The set

C \ {P (z0), . . . , P (zM )}

is open, as the complement of a finite set. By (1), it is arc-connected, and therefore
connected. In view of (2), the set A = Ran P is closed, and hence C \ A is open.
In view of (4), the set

B = A \ {P (z0), . . . , P (zM )}

is open. We have

C \ {P (z0), . . . , P (zM )} = (C \A) ∪ (A \ {P (z0), . . . , P (zM )}).

Since C \ {P (z0), . . . , P (zM )} is connected, we have that

A = C or A = {P (z0), . . . , P (zM )} .

This last possibility is excluded since A is connected (recall that the continuous
image of a connected set is connected). Thus A = C.

Assume now that the equation P ′(z) = 0 has no solution. The set A is then
closed thanks to (2) and open thanks to (4). Since A 
= ∅ and since C is connected,
we have that A = C. �
Remark 15.6.1. Rather than assuming in the last stage of the proof that P ′(z) = 0
has no solution we can proceed by induction. Since every polynomial of degree 29

has a root and is the derivative of a polynomial of degree 3, we get that every
polynomial of degree 3 has roots. By induction we get that since every polynomial
of degree n has a root and is the derivative of a polynomial of degree n+1, every
polynomial of degree n+ 1 has a root. So every polynomial has a root.

We remark that the first claim in the problem is a special case of the following
result (see [42, Theorem 1.24, p. 27]):

9We could also begin with polynomials of degree 3 or 4.



15.7. Solutions 541

Theorem 15.6.2. Let Ω be an open connected subset of C and let A ⊂ Ω without
limit points in Ω. Then, Ω \A is connected.

Remark 15.6.3. It is interesting to compare the analytic tools used in the above
proof and the ones used in Question 1.5.1.

15.7 Solutions

Solution of Exercise 15.1.3. We follow [38, p. 228], and proceed by contradiction.
In view of (15.1.1) the image f(R) is not reduced to a point. It is connected. Since
connected subsets of R are intervals, and f(R) has more than one point, f(R) is
an interval not reduced to a point, and hence is not countable. By (15.1.1), f(R)
is countable, and hence we obtain a contradiction. �

Solution of Exercise 15.1.5. The map ϕ is one-to-one and onto between C ∪ {∞}
and R3, and therefore

d(z, w) = 0 ⇐⇒ ϕ−1(z) = ϕ−1(w) ⇐⇒ z = w.

Furthermore,

d(z, w) = ‖ϕ−1(z)− ϕ−1(w)‖R3 = ‖ϕ−1(w) − ϕ−1(z)‖R3 = d(w, z)

and, for z1, z2, z2 ∈ S2, we have

d(z1, z3) = ‖ϕ−1(z1)− ϕ−1(z3)‖R3

≤ ‖ϕ−1(z1)− ϕ−1(z2)‖R3 + ‖ϕ−1(z2)− ϕ−1(z3)‖R3

= d(z1, z2) + d(z2, z3).

Therefore d defines a metric. We show that it is given by (15.1.3). Let z = a+ ib
and w = c+ id be the cartesian forms of z and w. We have for z, w ∈ C:

d(z, w)2 =

(
2a

1 + |z|2 − 2c

1 + |w|2

)2

+

(
2b

1 + |z|2 − 2d

1 + |w|2

)2

+

(
− 2

1 + |z|2 +
2

1 + |w|2

)2 (
since |z|2−1

|z|2+1 = 1− 2
1+|z|2

)
= 4

{
a2 + b2 + 1

(1 + |z|2)2 +
c2 + d2 + 1

(1 + |w|2)2 − 2ac+ 2bd

(1 + |z|2)(1 + |w|2)

− 2

(1 + |z|2)(1 + |w|2)

}
= 4

{
1

1 + |z|2 +
1

1 + |w|2 − 2ac+ 2bd

(1 + |z|2)(1 + |w|2) −
2

(1 + |z|2)(1 + |w|2)

}
=

4|z − w|2
(1 + |z|2)(1 + |w|2) ,
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which is formula (15.1.2) for complex numbers z and w. The case where z or w is
the point at infinity is treated in the same way. �

Solution of Exercise 15.1.6. Let O be an open subset of the real line. Every x ∈ O
is contained in an open interval contained in O:

∀x ∈ O, ∃εx > 0, (x− εx, x+ εx) ⊂ O.

We define an equivalence class in O as follows: x and y will be said to be equivalent
if they are in a common open interval which is included in O. We have indeed an
equivalence relation, and each equivalence class is an open interval. O is the union
of the equivalent classes. Since two equivalent classes do not intersect, we can
associate to each of them a different rational number, and so the union is at most
countable. �

Solution of Exercise 15.1.7. We show that the topology is Hausdorff. Take two
points a and b in [−∞,∞] with a 
= b. If both a and b are in R, they are included
in two disjoint intervals of R, open in the usual topology of R. These intervals are
also open in the topology of [−∞,∞]. Assume now that a = −∞ and b ∈ R. Let
c, d, e be real numbers such that c < d < b < e. Then

−∞ ∈ {−∞} ∪ (−∞, c) and b ∈ (d, e),

and therefore −∞ and b are in disjoint open subsets of [−∞,∞]. The case of a real
point and ∞ is treated in the same way. Assume now that a = −∞ and b = ∞
and let c ∈ R. Then

−∞ ∈ {−∞} ∪ (−∞, c) and ∞ ∈ {∞} ∪ (c,∞),

and so a and b are in disjoint open subsets of [−∞,∞]. �

In Exercise 15.2.2 we show that [−∞,∞] endowed with the topology O is a
compact space.

Solution of Exercise 15.1.8. Take two given different points z1 and z2 in C \ {0}.
If the origin does not belong to the interval [z1, z2], the two points are connected
by [z1, z2]. Suppose now that 0 ∈ [z1, z2]. Take any triangle with one side equal
to [z1, z2], and let z3 be its third vertex. The path built from the intervals [z1, z3]
and [z3, z2] lies in C \ {0}, and so the set is arc-connected. �

Solution of Exercise 15.2.2. Let (Oj)j∈J be an open covering of [−∞,∞], indexed
by the set J . There are indices j1 and j2 such that −∞ ∈ Oj1 and ∞ ∈ Oj2 . If
[−∞,∞] = Oj1 ∪Oj2 , we have already a finite sub-covering of [−∞,∞]. Assume
now that Oj1 ∪ Oj2 � [−∞,∞]. The set Oj1 contains a set of the form {−∞} ∪
(−∞, a1), while the set Oj2 contains a set of the form {∞} ∪ (a2,∞). We have
a1 ≤ a2 since Oj1 ∪ Oj2 � [−∞,∞]. Let c and d be real numbers such that
c < a1 ≤ a2 < d. The set [c, d] is compact in R, and (Oj \ {−∞,∞})j∈J is a
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covering of [c, d] made of open sets of R. There is therefore a finite sub-cover of
[c, d],

[c, d] ⊂
N⋃

n=3

(Ojn \ {−∞,∞}).

and therefore, as a subset of [−∞,∞],

[c, d] ⊂
N⋃

n=3

Ojn .

Thus
⋃N

n=3 Ojn together with Oj1 and Oj2 gives a finite sub-cover of [−∞,∞].
Therefore, [−∞,∞] is compact. �

Solution of Exercise 15.2.3. Each of the sets Un is open and so is the union
⋃

n∈N0

Un.

Therefore R \
⋃

n∈N0
Un is closed in R and so is

C = [0, 1] ∩
⋃

n∈N0

Un.

Since [0, 1] is compact it follows that C is also compact (since it is closed and
bounded in R, or, if you prefer, since it is a closed subset of a compact).

Each Un is itself the disjoint union of 2n open intervals, each of Lebesgue
measure 2/3n+1. It follows that

∞∑
n=0

λ(Un) =
∞∑
n=0

2n

3n+1
= 1.

Hence, C has Lebesgue measure 0. We will leave it to the student to check that
C is the set of points in [0, 1] which have a triadic expansion containing only 0’s
and 2’s. For instance,

1

3
=

∞∑
n=2

2

3n+1
∈ C. �

We refer to [38, Ch. 23] for a discussion of the Cantor set.

Remark 15.7.1. The exercise shows in fact that the Cantor set C has measure 0.
It is also of the first category, meaning that it is a countable union of nowhere
dense sets. In general the two notions, being of measure zero and being of first
category, are quite different. See Remark 17.1.2.



Chapter 16

Some Functional Analysis
Essentials

In the previous chapters we have tried to illustrate via various exercises some
connections between the theory of functions of a complex variable and functional
analysis. In the present chapter we review some of the notions which have been
used.

16.1 Hilbert and Banach spaces

Let V be a vector space on C. We recall that a norm is a map from V into [0,∞),
often denoted by a symbol such as ‖ · ‖V , and with the following properties:

(a) For every u ∈ V and λ ∈ C,

‖λu‖V = |λ| · ‖u‖V .

(b) For every u, v ∈ V ,

‖u+ v‖V ≤ ‖u‖V + ‖v‖V (triangle inequality).

(c) Let u ∈ V . Then
‖u‖V = 0 ⇐⇒ u = 0.

A norm defines a metric via the formula

d(u, v) = ‖u− v‖V . (16.1.1)

The space V is called a Banach space if it is complete in the corresponding topol-
ogy. In the above definition, one can replace the complex numbers by the real
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numbers and consider a vector space over the real numbers. The simplest Banach
space over R is certainly R itself, endowed with norm the absolute value. Similarly,
the simplest Banach space over the complex numbers is C itself, still with norm
the absolute value. The following example is a classical exercise in calculus classes,
and we will skip its proof.

Question 16.1.1. The space of complex-valued continuous functions defined on [0, 1]
with the supremum norm

‖x‖∞ = max
t∈[0,1]

|x(t)|

is a Banach space.

The space in the next exercise is denoted by H∞. It corresponds to the limit
case p = ∞ in (5.6.9).

Exercise 16.1.2. The space of functions analytic in the open unit disk with the
supremum norm

‖f‖∞ = sup
z∈D

|f(z)|

is a Banach space.

Two norms ‖ · ‖1 and ‖ · ‖2 on a vector space V are called equivalent if there
exist two strictly positive numbers m and M such that

m‖v‖1 ≤ ‖v‖2 ≤ M‖v‖1, ∀v ∈ V. (16.1.2)

We use in a number of places in this book the fact that all norms are equivalent
in a finite-dimensional vector space. See for instance the proof of Exercise 11.5.6.

An inner product on V is a map [·, ·] from V × V into C with the following
properties:

(a) For every u, v, w ∈ V and λ, μ ∈ C,

[λu + μv,w] = λ[u,w] + μ[v, w].

(b) For every u, v ∈ V ,

[u, v] = [v, u].

(c) For every u ∈ V ,

[u, u] ≥ 0, (16.1.3)

and

(d) There is equality in (16.1.3) if and only if u = 0.
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In other words, [·, ·] is a non-degenerate positive sesquilinear form. If only
conditions (a), (b) and (c) are in force, the sesquilinear form is called a degenerate
inner product. For instance, for a non-negative matrix M ∈ Cp×p, the map

[c, d] = d∗Mc (16.1.4)

defines an inner product on Cp if and only if M is strictly positive. Otherwise,
(16.1.4) defines a degenerate inner product. Recall the Cauchy–Schwarz inequality

|[u, v]| ≤
√
[u, u] ·

√
[v, v], ∀u, v ∈ V, (16.1.5)

which holds for any possibly degenerate inner product. See Remark 16.3.3 for a
quick proof. See Exercise 16.3.4 for an example.

Given a (non-degenerate) inner product [·, ·], the map

‖u‖ =
√
[u, u]

defines a norm on V , and hence a metric via the formula (16.1.1). This metric
induces in turn a topology on V .

Definition 16.1.3. The vector space V endowed with the inner product [·, ·] is called
a pre-Hilbert space. It is called a Hilbert space if it is complete when endowed with
the topology induced by the associated norm.

Exercise 16.1.4. Show that the set of complex-valued continuous functions contin-
uous on [0, 1] endowed with the inner product

[x, y] =

∫ 1

0

x(t)y(t)dt (16.1.6)

is a pre-Hilbert space. Show that it is not complete.

One application of integration theory will be to have an explicit description
of the completion of the pre-Hilbert space appearing in Exercise 16.1.4.

Question 16.1.5. Show that the space �2 of square summable sequences z=(zn)n∈N0

endowed with the inner product

〈z,w〉�2 =

∞∑
n=0

znwn

is a Hilbert space.

We have already encountered in this work important examples of Hilbert
spaces, whose elements are functions analytic in some open subset of the complex
plane. For instance, the Hardy space (see Definition 5.6.11), the Fock space (see
Definition 5.6.13), and the Bergman space (see Definition 9.5.2).
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Two elements u and v in a pre-Hilbert space are called orthogonal if

[u, v] = 0,

and two sets in a pre-Hilbert space are called orthogonal if every element of the
first set is orthogonal to every element of the second set.

Let X be a subset (and in particular, X is not necessarily a linear space) of
the Hilbert space H. We denote by X⊥ the set of elements orthogonal to all the
elements of H,

X⊥ = {h ∈ H ; [x, h] = 0 ∀x ∈ X} .
We note that X⊥ is a closed subspace of H. A key fact in the geometry of Hilbert
spaces is:

Theorem 16.1.6. Let M ⊂ H be a closed subspace of the Hilbert space H. Then,
every element h ∈ H can be written in a unique way as

h = m+ n,

where m ∈ M and n ∈ M⊥.

A linear map (the term linear operator is also used in this context) T from
the Hilbert space H1 into the Hilbert space H2 is said to be continuous if it is
continuous with respect to the topologies induced by the respective norms of H1

and H2. Continuity is equivalent to the existence of a K > 0 such that

‖Th1‖H2 ≤ K‖h1‖H1 , ∀h1 ∈ H1. (16.1.7)

This last condition means that the operator T is bounded. The smallest K in
(16.1.7) is called the norm of the operator. The Fourier transform, which is an
important example of a bounded operator (between appropriate spaces), has been
presented in Section 13.5.

We will denote by L(H1,H2) the space of continuous linear operators from
the Hilbert space H1 into the Hilbert space H2, and set L(H) = L(H,H).

Theorem 16.1.7.

(a) Let T ∈ L(H2,H3) and U ∈ L(H1,H2). Then

TU ∈ L(H1,H3) and ‖TU‖ ≤ ‖T ‖ · ‖U‖.

(b) Let T ∈ L(H,H). Then, for every n ∈ N,

‖T n‖ ≤ ‖T ‖n.

Question 16.1.8. Show that the backward-shift operator

T (z0, z1, z2, . . .) = (z1, z2, . . .)

is bounded from �2 into itself.
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In the next question, see [189, Exercice 14, p. 70] for a hint on how to show
that the Cesàro operator is bounded. For a proof that its norm is equal to 2, see
[201, Theorem 1, p. 154].

Question 16.1.9. Show that the Cesàro operator defined in (7.2.10)(∑n
j=0 aj

n+ 1

)
n∈N0

is bounded from �2 into itself, and that its norm is equal to 2.

When the Hilbert space is finite-dimensional, say of dimensionN , an operator
T is really a matrix and the eigenvalues are exactly the numbers z for which T−zI
is not invertible. For arbitrary Hilbert spaces one has the following definition:

Definition 16.1.10. Let H be a Hilbert space, and let T be a (not necessarily
continuous) linear operator from H into itself. The spectrum of T is the set of
numbers for which T − zIH is not boundedly invertible. The resolvent set of T is
the complement of the spectrum.

The resolvent set is denoted by ρ(T ) and the spectrum by σ(T ). We have for
continuous operators:

Exercise 16.1.11. Let (H, [·, ·]H) be a Hilbert space, and let T be a linear continuous
operator from H into itself. Then σ(T ) 
= ∅.

Bounded linear operator with values in C have an important characterization,
described in the following theorem.

Theorem 16.1.12 (Riesz’ representation theorem). Let (H,[·,·]H) be a Hilbert space.
For every g ∈ H, the map

h �→ [h, g]H (16.1.8)

is continuous, and conversely every linear map ϕ from the Hilbert space H into C

is of the form (16.1.8) for a uniquely defined hϕ ∈ H. Furthermore

‖ϕ‖ = ‖hϕ‖H.

In this expression, ‖ϕ‖ denotes the operator norm of ϕ, that is

‖ϕ‖ = sup
h∈H
h 
=0

|ϕ(h)|
‖h‖H

.

We conclude with the definition of differentiable functions.



550 Chapter 16. Some Functional Analysis Essentials

Definition 16.1.13. Let B1 and B2 be two Banach spaces, with respective norms
‖ · ‖1 and ‖ · ‖2, and let Ω be an open subset of B1. The function f from Ω into B2

is differentiable at the point b1 ∈ B1 if there exists a bounded linear operator dfb1
from B1 into B2 (called the differential of f at b1), such that

lim
h→0

‖f(b1 + h)− f(b1)− dfb1(h)‖2
‖h‖1

= 0. (16.1.9)

Remark 16.1.14. When B1 = B2 = C the differential is a complex number, while
it is (identified with a) matrix in R2×2 when B1 = B2 = R2. See (4.2.4) for the first
case and (14.1.1) applied to the real and imaginary parts of the given function for
the second case. In that last case, the function is C-differentiable if and only if this
matrix is of the form (1.1.2), that is, if and only if it corresponds to a complex
number.

16.2 Countably normed spaces

The set of functions analytic in an (say connected) open set Ω is a countably
normed space, when endowed with the family of norms

‖f‖n = max
z∈Kn

|f(z)|,

where (Kn)n∈N is an increasing family of compact sets, such that Kn ⊂
◦

Kn+1 (the
interior of Kn+1) and whose union is Ω.

Exercise 16.2.1. Let V be a vector space on R or C, endowed with a countable
number of norms ‖ · ‖n, n = 1, 2, . . ., such that

‖x‖1 ≤ ‖x‖2 ≤ · · · ≤ ‖x‖n ≤ ‖x‖n+1 ≤ · · · , ∀x ∈ V .

(a) Describe the smallest topology for which all these norms are continuous.

(b) Let T be this topology. Show that (V , T ) is metrizable, with the metric

d(x, y) =
∞∑

n=1

1

2n
‖x− y‖n

1 + ‖x− y‖n
, x, y ∈ V .

16.3 Reproducing kernel Hilbert spaces

We begin with a definition:

Definition 16.3.1. A matrix A ∈ Cn×n is called non-negative (or positive) if

c∗Ac ≥ 0, ∀c ∈ Cn. (16.3.1)
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In other words, if A = (a�,j)�,j=1,...,n it is required that

n∑
�,j=1

c�cja�,j ≥ 0. (16.3.2)

In particular, c∗Ac = c∗A∗c, and the polarization identity

d∗Bc =
1

4

3∑
k=0

ik(c+ ikd)∗B(c+ ikd), B ∈ Cn×n, (16.3.3)

with B = A − A∗ implies that a positive matrix is Hermitian: A = A∗. The
polarization identity is proved by a direct and simple computation as follows:

1

4

3∑
k=0

ik(c+ ikd)∗B(c+ ikd) =
1

4

3∑
k=0

(ikc∗ + d∗)B(c+ ikd)

= d∗Bc+

∑3
k=0 i

k

4
c∗Bc+

∑3
k=0 i

2k

4
c∗Bd

+

∑3
k=0 i

k

4
d∗Bd

= d∗Bc.

We will use the notation
A ≥ 0

to say that a matrix is positive.

The following result is well known:

Proposition 16.3.2. Let A ∈ Cn×n. The following are equivalent:

(1) A ≥ 0.

(2) A = A∗ and all its eigenvalues (which are real since A is assumed Hermitian)
are positive or equal to 0.

(3) A admits a positive square root

A = B2, where B ∈ Cn×n and B ≥ 0.

(4) A admits a factorization
A = C∗C (16.3.4)

for some matrix C ∈ Cp×n.

Remark 16.3.3. The determinant of a positive matrix is greater or equal to 0.
This allows to give a quick proof of the Cauchy–Schwarz inequality. Indeed, in the
notation of (16.1.5), let λ, μ ∈ C. The inequality

[λu+ μv, λu + μv] ≥ 0
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can be rewritten as (
λ μ

)([u, u] [v, u]
[u, v] [v, v]

)(
λ
μ

)
≥ 0.

Since this inequality holds for all λ, μ ∈ C, the matrix(
[u, u] [v, u]
[u, v] [v, v]

)
≥ 0.

Computing its determinant leads to the Cauchy–Schwarz inequality.

Exercise 16.3.4. Let A ∈ Cn×n be a positive matrix. Show that (see [185, Exercice
8.4.11, 1◦fc, p. 303]; the author took the result from an exercises sheet from his
student times at the Lycée Louis-le-Grand)

(c∗A2c)2 ≤ (c∗Ac)(c∗A3c), c ∈ Cn. (16.3.5)

Hint. Consider Cn endowed with the inner product

[c, d]A = d∗Ac, c, d ∈ Cn.

Remark 16.3.5. Inequality (16.3.5) is trivial for diagonal matrices, and can also be
proved using the diagonalization of a positive matrix (that is, the spectral theorem
for such matrices). The spectral theorem for Hermitian operators in Hilbert space
allows to extend (16.3.5) to the Hilbert space setting. The reader might want to
prove the following inequality, which is due to Heinz (in a slightly weaker form;
see [116, p. 421]) and Kato (see [134]), and contains (16.3.5) as a (very) special
case. The results of Heinz and Kato are in the setting of unbounded operators.

Question 16.3.6. Let C,D,Q be Cn×n and such that C and D are positive and

‖Qc‖ ≤ ‖Dc‖, and ‖Q∗c‖ ≤ ‖Cc‖, ∀c ∈ Cn.

Then,

|c∗Qd|2 ≤ (c∗D2tc)(d∗C2−2td), c, d ∈ Cn and t ∈ [0, 1]. (16.3.6)

See also [54, p. 655] for a discussion. Inequality (16.3.5) corresponds to the
choices c = d, C = D = Q = A2 and t = 1/4 (see the previous proposition for the
notion of positive square root of a positive matrix).

Given two positive matrices A and B in Cn×n, the notation A ≤ B means
that the matrix B −A is positive.

Exercise 16.3.7. Let A be a positive matrix. Show that A2 ≤ A if and only if A is
a contraction.

The product of two positive matrices need not be Hermitian, let alone posi-
tive. But there are two important operations which preserve positivity.
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Exercise 16.3.8.

(1) Let A = (a�,j)�,j=1,...,n and B = (b�,j)�,j=1,...,n be two positive matrices in
Cn×n. Then the matrix defined by

(A ·B)�,j = a�,jb�,j , �, j = 1, . . . , n,

is positive.

(2) Let A ∈ Cp×p and B ∈ Cq×q be two positive matrices of possibly different
sizes. Then, the matrix A⊗B ∈ Cpq×pq defined by

A⊗B =

⎛⎜⎜⎜⎝
a11B a12B · · · a1pB
a21B a22B · · · a2pB
...

...
ap1B ap2B · · · appB

⎞⎟⎟⎟⎠
is positive.

The matrix A · B is called the Schur (or Hadamard) product of A and B,
while A⊗B is their tensor product.

The following exercise is inspired by the notion of Markov product of two
positive definite functions appearing in Marek Bozejko’s paper [41].

Exercise 16.3.9. Let A,B ∈ Cn×n be positive contractions. Then the matrix(
A AB
BA B

)
(16.3.7)

is positive.

A Hilbert space H of functions defined on a set Ω is called a reproducing
kernel Hilbert space if, for every w ∈ Ω, the linear functional

f �→ f(w)

is continuous. By the Riesz representation theorem (see Theorem 16.1.12), there
exists a uniquely determined element kw ∈ H such that

[f, kw] = f(w).

The function kw is called the reproducing kernel of H. It is a function defined on
Ω and we will use the notation

kw(z) = k(z, w).
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Exercise 16.3.10. Show that the reproducing kernel has the following properties:

(a) For every z, w ∈ Ω,
k(z, w) = k(w, z).

(b) For every N ∈ N, every c1, . . . , cN ∈ C and every w1, . . . , wN ∈ Ω,

N∑
�,j=1

cjc�k(w�, wj) ≥ 0. (16.3.8)

Equivalent to (16.3.8) is to say that, for every N ∈ N, all the N×N matrices
with (�, j) entry k(w�, wj) are positive.

Definition 16.3.11. A function defined on a set Ω and for which (16.3.8) holds for all
possible choices of N, c1, . . . , cN , w1, . . . , wN is called a positive definite kernel. We
will also say positive definite function. When Ω is a subset of the complex numbers,
the function f(z) is called positive definite if the associated kernel f(z − w) is
positive definite.

It is easy to check that the sum of two positive definite kernels is still positive
definite. It is a bit more difficult to show that the product of two positive definite
kernels is still positive definite. One uses then the result presented in Exercise
16.3.8.

Exercise 16.3.12.

(a) Show that the function cos z is positive definite on C.

(b) Show that the function (3.7.11)

∞∏
n=1

cos

(
t

ρn

)
is positive definite on R.

Question 16.3.13. In a reproducing kernel Hilbert space, convergence in norm im-
plies pointwise convergence.

Bochner’s theorem characterizes positive definite functions on the real line.
It has far-reaching generalizations due to L. Schwartz and R. Minlos. We refer the
student to [110] for these. See also Remark 17.9.2.

Theorem 16.3.14 (Bochner’s theorem). A function f defined on the real line and
continuous at the origin is positive definite if and only if it is of the form

f(t) =

∫
R

eitxdμ(x),

where dμ is a positive measure on the real line such that μ(R) < ∞.

See Exercise 8.2.1 for an illustration.
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There is a one-to-one correspondence between positive definite kernels on the
set Ω and reproducing kernel Hilbert spaces of functions in Ω. This fundamental
result originates with the works of Moore and Aronszajn. See [24].

Elements of a reproducing kernel Hilbert space can be characterized as fol-
lows:

Theorem 16.3.15. Let H(K) be a reproducing kernel Hilbert space of functions
defined in a set Ω, with reproducing kernel K(z, w). The function f belongs to
H(K) if and only if there exists a number M > 0 such that the kernel

K(z, w)− f(z)f(w)

M2

is positive definite in Ω. The smallest such M is equal to the norm of f in H(K).

With this result, we propose the following exercise:

Exercise 16.3.16. Let |v| < 1 and let bv(z) =
z−v
1−vz , the associated Blaschke factor

(1.1.44). Define, for f analytic in the open unit disk,

(Tv(f))(z) =

√
1− |v|2
1− vz

f(bv(z)). (16.3.9)

Prove that Tv(f) belongs to the Hardy space H2(D) when f does.

We refer to Exercise 2.3.9 for a characterization of the Moebius transforms
which map D into itself. We send the reader to [14] for more on the above exercise
and its relations to multiscale systems.

Finally we mention the connections between the analyticity of the kernel and
of the elements of the associated reproducing kernel Hilbert space.

Theorem 16.3.17. Let Ω be an open subset of C and let K(z, w) be positive definite
in Ω. Assume that for every w ∈ Ω, the function z �→ K(z, w) is analytic in Ω.
Then, the elements of H(K) are analytic in Ω.

We mention that any reproducing kernel Hilbert space of functions analytic
in Ω ⊂ C can be given a new inner product for which point evaluations are not
bounded for w in a dense subset of Ω. See [65], and [15] for an illustration in the
case of the Hardy space.

16.4 Solutions

Solution of Exercise 16.1.2. We will not prove that ‖ · ‖∞ indeed defines a norm,
and focus on the completeness of the space. Let (fn)n∈N be a Cauchy sequence
with respect to the norm ‖ · ‖∞:

∀ε > 0, ∃N ∈ N, n,m ≥ N =⇒ sup
z∈D

|fn(z)− fm(z)| < ε. (16.4.1)
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In particular, for every r ∈ (0, 1) we have that

∀ε > 0, ∃N ∈ N, n,m ≥ N =⇒ max
|z|≤r

|fn(z)− fm(z)| < ε.

It follows that for every z ∈ D, the pointwise limit f(z) = limn→∞ fn(z) exists
and that the limit function is analytic in D (recall that a series of functions which
converges uniformly on compact sets is analytic). Take ε = 1 and let m → ∞ in
(16.4.1). We have that

sup
z∈D

|fn(z)− f(z)| ≤ 1,

and so

sup
z∈D

|f(z)| ≤ 1 + ‖f‖∞,

and the limit f ∈ H∞. With ε arbitrary, letting m → ∞ in (16.4.1) we finally
obtain that

lim
n→∞ ‖f − fn‖∞ = 0,

and so H∞ is complete. �

Solution of Exercise 16.1.4. We leave the proof that (16.1.6) is an inner product
to the reader. Consider the function

x(t) =

{
1, t ∈ [0, 1/2),

0, t ∈ [1/2, 1].

It is easily approximated by continuous functions in the inner product induced by
(16.1.6). Take for instance the functions

xn(t) =

⎧⎪⎨⎪⎩
1, t ∈ [0, 1/2),

−nt+ 1 + n
2 , t ∈ [1/2, 1/2+ 1/n],

0, t ∈ [1/2 + 1/n, 1],

for n = 2, 3, . . .. Then ∫ 1

0

(x(t) − xn(t))
2dt =

1

3n
→ 0

as n → ∞, but x is not continuous. �

The real question is the following: Consider the set of, say real-valued, func-
tions R[0, 1] which are Riemann integrable on [0, 1] and say that x, y ∈ R[0, 1] are
equivalent, x ∼ y, if ∫ 1

0

(x(t) − y(t))2dt = 0.
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That R[0, 1]/ ∼ endowed with (16.1.4) is a pre-Hilbert space is quite clear, but the
question is to show that is not complete. This can be seen, in a somewhat indirect
way, as follows (we refer the reader to Chapter 17 for some of the facts used in
the discussion). We know that a Riemann integrable function (say, on [0, 1]) is
Lebesgue integrable with respect to the Lebesgue measure on [0, 1]. So we have a
natural isometric inclusion from R[0, 1]/ ∼ into L2[0, 1]. Since R[0, 1]/ ∼ contains
continuous functions and since these are dense in L2[0, 1] (see Theorem 17.8.1),
we obtain that the closure of R[0, 1]/ ∼ is L2[0, 1]. The inclusion is strict since
there are functions which are Lebesgue integrable, but not Riemann integrable.

Solution of Exercise 16.1.11. We assume that T is such that σ(T ) = ∅ and proceed
in a number of steps to obtain a contradiction.

Step 1: Let z ∈ C and let u ∈ C be such that

|u− z| · ‖(T − uIH)−1‖H ≤ 1

2
.

Then,

‖(T − uIH)−1 − (T − zIH)−1‖H ≤ 2|u− z| · ‖(T − uIH)−2‖H.

This comes from the resolvent identity

(T − zIH)−1 − (T − wIH)−1 = (z − w)(T − zIH)−1(T − wIH)−1,

since

(T − uIH)−1 − (T − zIH)−1 = (u− z)(T − uIH)−1(T − zIH)−1

= (u− z)(T − uIH)−2(IH + (u − z)(T − uIH)−1)−1.

Step 2: For every h ∈ H the function

z �→ xh(z) = [(T − zIH)−1h, h]H

is entire, and its derivative is given by the formula

x′
h(z) = [(T − zIH)−2h, h]H.

Indeed, we have

xh(z)− xh(w)

z − w
=

[(T − zIH)−1h, h]H − [(T − wIH)−1h, h]H
z − w

=
[((T − zIH)−1 − (T − wIH)−1)h, h]H

z − w

= [(T − zIH)−1(T − wIH)−1h, h]H,
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where we have used the resolvent identity. Therefore

xh(z)− xh(w)

z − w
− [(T − zIH)−2h, h]H

= [(T − zIH)−1(T − wIH)−1 − (T − zIH)−2)h, h]H,

and we conclude by using the inequality proved in Step 1.

Step 3: The function xh is bounded.

We first note that, for |z| > ‖T ‖ we have

(zIH − T )−1 =
1

z
(IH − T

z
)−1

=
1

z

∞∑
n=0

T n

zn

so that, for |z| ≥ 2‖T ‖, we have

‖(zIH − T )−1‖H ≤ 1

|z|

∞∑
n=0

‖T ‖n
|z|n

=
1

|z| − ‖T ‖H

≤ 1

‖T ‖H
.

The function xh is also bounded by continuity in |z| ≤ 2‖T ‖. So xh is constant by
Liouville’s theorem. Since it goes to 0 at infinity, it would be identically equal to
0, and we obtain a contradiction with the premise of the proof. �

Solution of Exercise 16.2.1. We follow [109].

(a) A basis of open neighborhoods of the origin is given by the sets of the
form

m⋂
i=1

{x ; ‖x‖ni < εi} , (16.4.2)

where m varies in N, n1, . . . , nm ∈ N, and ε1, . . . , εm are all strictly positive num-
bers. We remark that any such neighborhood contains the set

{x ; ‖x‖n0 < ε0} ,

where M = max {n1, . . . , nm} and ε = min {ε1, . . . , εm}.
(b) We set, for r > 0,

Bd(0, r) = {x ∈ V ; d(0, x) < r} .
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In view of the preceding remark, it is enough to show that

(i) for every M ∈ N and ε > 0 there exists r > 0 such that

Bd(0, r) ⊂ {x ; ‖x‖M < ε} ,

and

(ii) that, conversely, for every r > 0 there exists M and ε as above such that

{x ; ‖x‖M < ε} ⊂ Bd(0, r). (16.4.3)

We first prove (i): Let us take r such that r2M < 1. The condition

∞∑
n=1

1

2n
‖x‖n

1 + ‖x‖n
< r

implies in particular that
1

2M
‖x‖M

1 + ‖x‖M
< r,

or equivalently

‖x‖M <
r2M

1− r2M
.

This last expression will be less than ε as soon as

r2M <
ε

1 + ε
.

We now prove (ii). Consider a ball Bd(0, r). Since the distance is bounded
by 1, it is enough to consider the case r < 1. Let M ∈ N be such that

∞∑
n=M+1

1

2n
<

r

2
.

Since the norms are increasing and since the function u �→ u
1+u is increasing, we

moreover have that

M∑
n=1

1

2n
‖x‖n

1 + ‖x‖n
≤ ‖x‖M

1 + ‖x‖M
×
(
1

2
+ · · ·+ 1

2M

)
.

Choose ε > 0 such that

ε

1 + ε
×
(
1

2
+ · · ·+ 1

2M

)
<

r

2
.

Then, for ‖x‖M < ε we have that

‖x‖M
1 + ‖x‖M

×
(
1

2
+ · · ·+ 1

2M

)
<

r

2
.

For such ε, (16.4.3) is in force. �
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Solution of Exercise 16.3.4. The sesquilinear form [c, d]A defines a (possibly de-
generate) inner product, and the Cauchy–Schwarz inequality holds there:

|[c, d]A|2 ≤ [c, c]A · [d, d]A, c, d ∈ Cn.

The result is obtained by setting d = Ac in this inequality �

Solution of Exercise 16.3.7. Write now A = U∗DU , where U is unitary and D is
a diagonal matrix with entries the eigenvalues of A. Then A2 ≤ A holds if and
only if D2 ≤ D holds, that is if and only if every eigenvalue, say λ, of A satisfies
λ2 ≤ λ. This last condition holds if and only if λ ∈ [0, 1]. The result follows. �

Solution of Exercise 16.3.8. By linearity, it is enough to prove the claims for rank
1 positive matrices since every non-negative matrix A ∈ Cn×n can be written as
a sum of such matrices:

A =

N∑
j=1

uju
∗
j , uj ∈ Cn.

We begin with (1). Let thus A = aa∗ and B = bb∗ where a, b ∈ Cn. We write

a =

⎛⎜⎜⎜⎝
a1
a2
...
an

⎞⎟⎟⎟⎠ and b =

⎛⎜⎜⎜⎝
b1
b2
...
bn

⎞⎟⎟⎟⎠ .

Then

(aa∗)�,k = a�ak and (bb∗)�,k = b�bk, �, k = 1, . . . , n,

and so

((aa∗) · (bb∗))�,k = a�b�akbk, �, k = 1, . . . , n.

It follows that (aa∗) · (bb∗) = cc∗, with

c =

⎛⎜⎜⎜⎝
a1b1
a2b2
...

anbn

⎞⎟⎟⎟⎠ .

We now turn to (2). We now take a ∈ Cp and b ∈ Cq. We show that

aa∗ ⊗ bb∗ = (a⊗ b)(a⊗ b)∗ (16.4.4)
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from which the positivity of aa∗ ⊗ bb∗ will follow. To prove (16.4.4) we note

(aa∗)⊗ (bb∗) =

⎛⎜⎜⎜⎝
a1a1bb

∗ a1a2bb
∗ · · · a1apbb

∗

a2a1bb
∗ a2a2bb

∗ · · · a2apbb
∗

...
...

...
...

apa1bb
∗ apa2bb

∗ · · · apapbb
∗

⎞⎟⎟⎟⎠
=
(
(a⊗ b)(a1b

∗) (a⊗ b)(a2b
∗) · · · (a⊗ b)(apb

∗)
)

= (a⊗ b)(a⊗ b)∗. �

Solution of Exercise 16.3.9. Writing(
A AB
BA B

)
=

(
In A
0 In

)(
A−ABA 0

0 B

)(
In 0
A In

)
,

and since B ≥ 0, we see that (16.3.7) is positive if and only if A−ABA ≥ 0. But
B ≤ In and so

ABA ≤ A2 ≤ A,

where we have used the fact that A is also a contraction and Exercise 16.3.7 to
obtain the second inequality. Hence A−ABA ≥ 0. �

Solution of Exercise 16.3.10. (a) For every z, w ∈ Ω we have

[kw, kz ] = kw(z) = k(z, w) and [kz , kw] = kz(w) = k(w, z)

and
[kw, kz] = [kz , kw].

The result follows.

(b) Let f =
∑N

j=1 cjkwj . We have [f, f ] ≥ 0. Therefore,

0 ≤ [f, f ]

=
N∑

�,j=1

[cjkwj , c�kw�
]

=

N∑
�,j=1

cjc�k(w�, wj). �

Solution of Exercise 16.3.12. It suffices to write

cos(z − w) = (cos z)(cosw) + (sin z)(sinw)

and to notice that both the kernels

(cos z)(cosw) and (sin z)(sinw)

are positive definite in C. �
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Solution of Exercise 16.3.16. We follow [14], and divide the proof into a number
of steps:

Step 1: The formula

1− bv(z)bv(w)

1− zw
=

1− |v|2
(1− zv)(1− wv)

(16.4.5)

holds, where z, w are in the domain of definition of bv.

This is just formula (1.1.51).

Step 2: A function f defined in D is analytic there and belongs to H2(D),
with ‖f‖H2(D) ≤ 1, if and only if the kernel

1

1− zw
− f(z)f(w) (16.4.6)

is positive definite in D.

This follows from Theorem 16.3.15 since H2(D) is the reproducing kernel Hilbert
space with reproducing kernel 1

1−zw .

Step 3: Compute

Δ(z, w) =
1

1− zw
− (Tvf)(z)(Tvf(w))

for z, w ∈ D.

Using (16.4.5) we can write:

Δ(z, w) =
1− |v|2

(1 − bv(z)bv(w))(1− zv)(1− wv)

− 1− |v|2
(1 − zv)(1 − wv)

f(bv(z))f(bv(w))

=
1− |v|2

(1 − zv)(1 − wv)

×
{

1

1− bv(z)bv(w)
− f(bv(z))f(bv(w))

}
.

The kernel
1

1− bv(z)bv(w)
− f(bv(z)f(bv(w))

is positive definite in D since the kernel (16.4.6) is positive definite there. It follows
that Δ(z, w) is positive definite in the open unit disk. By Step 2 the function Tv(f)
belongs to H2(D) and has norm less than or equal to 1. Hence the operator Tv is
a contraction from H2(D) into itself. �



Chapter 17

A Brief Survey of Integration

In this chapter we briefly review some notions and results related to integration.
We in particular discuss the following topics:

1. Algebras and σ-algebras.

2. Measurable functions.

3. Measures.

4. The main convergence theorems.

5. Complete measures.

Although we use in this book integration theory only on the real line, we have
chosen to present the essentials of the general theory. We recommend to the in-
terested student the books of Rudin [190] and of Folland [85] for a complete, but
relatively short, discussion of integration. The industrious might want to look at
the series of books of Bourbaki on integration.

17.1 Introduction

Students who begin to learn complex analysis usually have only a knowledge of the
Riemann integral, and not of the general theory of integration. This is certainly
good enough to define large families of functions via integrals (see for instance
Exercises 4.4.19 and 4.4.20). But Riemann integrable functions do not have nice
properties with respect to limits, as is illustrated in the following exercise.

Exercise 17.1.1. Give an example of a uniformly bounded sequence of functions
(fn)n∈N which are Riemann integrable on the interval [0, 1], which converge point-
wise, but whose pointwise limit is not Riemann integrable.

Remark 17.1.2. In fact, a pointwise limit of continuous functions of a real variable
(that is, a Baire function of class 1) need not be Riemann integrable either. We refer
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563© Springer International Publishing AG 2016
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to [105, p. 40], [136, Theorem 23.18, p. 185], [174, Theorem 7.3, p. 32 and Theorem
7.4, p. 33] for a characterization of pointwise limits of continuous functions. In the
setting of a Polish space, the result, due to Hahn, states that the set of pointwise
convergence is a Fσδ set. A proof, in the setting of metric spaces, can be found
in [142, pp. 63–67]. In the case of domain of definition equal to R, and when the
functions are continuous on a dense set of points, these are the functions whose set
of points of discontinuity is of first category. Recall that this means that the set is a
countable union of nowhere dense sets (that is, of sets whose closure has an empty
interior). On the other hand, a function, say defined and bounded on a compact
interval, is Riemann integrable if and only if its set of points of discontinuity has
Lebesgue measure 0 (see, e.g., [174, Theorem 7.5, p. 33]).

It is therefore difficult to have a general theorem which allows interchanging
limit and integration for Riemann integrable functions. As explained in the papers
[151], [169], maybe the first example of such a result is Arzelà’s bounded (or
dominated) convergence theorem, appearing in [25], and which reads as follows
(see [106, p. 144], [151, Theorem A, p. 970]):

Theorem 17.1.3. Let f1, f2, . . . be a uniformly bounded sequence of Riemann inte-
grable functions on the interval [a, b], converging pointwise to the function f , and
assume that f is also Riemann integrable. Then,

lim
n→∞

∫ b

a

|f(t)− fn(t)|dt = 0. (17.1.1)

We refer to [151] for a proof, and also mention the papers [106], [210] for
related discussions and results.

Another, and easier, such result is Weierstrass’ theorem (see Theorem 14.4.1),
but the hypothesis of uniform convergence in that theorem is very strong (one can
also consider only Riemann integrable functions; see [106, Theorem 1]). Further-
more, Weierstrass’ theorem concerns only continuous functions with compact sup-
port. A number of interesting examples, such as the Gamma function, are defined
in terms of integrals of continuous functions on an infinite interval.

The above discussion gives a first motivation to go beyond the Riemann inte-
gral. Another, and related, motivation is as follows. The space of, say continuous,
complex-valued functions defined on a compact interval [a, b], and endowed with
the metric

d(f, g) =

(∫ b

a

|f(t)− g(t)|2dt
)1/2

(17.1.2)

is not complete. See Exercise 16.1.4, and the discussion after the proof of this
exercise. From the general theory of metric spaces we know that it is isometrically
included in a complete metric space, unique up to an isometry of metric spaces.
For the problems at hand in signal processing and in the theory of linear systems,
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this abstract completion is not too useful. It is more appropriate to consider the
Lebesgue spaces L2(a, b). The construction of these spaces is one of the keystones
of the integration theory which we review briefly in this chapter. For engineers,
the Lebesgue space L2(R, dx) plays a fundamental role, and models the space
of signals with finite energy. These are of course not the only motivation and
advantages of modern integration theory. A third, and very important, motivation
to introduce measure theory in the study of analytic functions, is the study of
boundary behaviour of a function. For instance, and this is quite beyond the
scope of the present book, a function (say f) which is analytic and bounded in
the open unit disk admits almost everywhere radial (and in fact non-tangential)
boundary values. For radial limit, this means that, at the possible exception of a
subset of [0, 2π] of Lebesgue measure zero, the limit

lim
r�1

f(reiθ)

exists.

Another very important fact, not touched upon here, is Riesz’ theorem on
the dual of the space of continuous functions on a locally compact Hausdorff space.
The space C0[0, 1], endowed with the maximum norm

‖x‖∞ = max
t∈[0,1]

|x(t)|

is a Banach space, and it is a natural question to ask what is its dual, that is, to
describe the set of its linear continuous functionals. For instance

ϕ(x) = x(0), and ϕ(x) =

∫ 1

0

x(t)xϕ(t)dt

where xϕ ∈ C0[0, 1] are such functionals. But the description of all functionals
requires measure theory. See for instance [189, Théorème 6.19, p. 126]. See also [85,
pp. 57–58] for a discussion of the advantages of Lebesgue’s theory of integration.

17.2 σ-algebras and measures

Definition 17.2.1. Let E be a (non-empty) set. A family A ⊂ P(E) is called an
algebra if it satisfies the following:

1. The empty set ∅ belongs to A.

2. A is closed under complementation: If A ∈ A then E \A ∈ A.

3. A is closed under finite union: If (An)
N
n=1 is a sequence of elements of A,

then
N⋃

n=1

An ∈ A.
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It is called a σ-algebra if it is closed under countable union: If (An)n∈N is a sequence
of sets belonging to A, then ⋃

n∈N

An ∈ A.

A key feature in the definition of a σ-algebra is that one considers countable
unions, and not arbitrary unions. Recall that, in the definition of a topology,
arbitrary unions come into play. See Definition 15.1.1. A couple (E,A) where A
is a σ-algebra of subsets of E is called a measurable space.

Question 17.2.2.

(a) The intersection of any family of σ-algebras is a σ-algebra.

(b) Any subset F ⊂ P(E) generates a σ-algebra σ(F) which contains F and is
minimal in the following sense: If A is another σ-algebra which contains F ,
then, σ(F) ⊂ A.

When in the previous exercise E is a topological space and one takes for F
the family O of open sets, the σ-algebra generated by O is called the σ-algebra of
Borel sets of E.

Exercise 17.2.3. Let R be endowed with its usual topology (defined by the absolute
value). Show that Q is a Borel set.

Definition 17.2.4. Let (E1,A1) and (E2,A2) be two measurable spaces. A function
f from E1 into E2 is called measurable if

∀A ∈ A2, f−1(A) ∈ A1.

Question 17.2.5. Assume in Definition 17.2.4 that E2 is a topological space with
topology O2, and that A2 is the associated σ-algebra of Borel sets. Show that a
function f from E1 into E2 is measurable if and only if

∀O ∈ O2, f−1(O) ∈ A1.

In real analysis, a pointwise limit does not keep any reasonable property
of functions (and in particular, and as already noted, does not keep Riemann
integrability). A key fact which links the definition of a σ-algebra and sequences
of measurable functions is presented in the following exercise.

Question 17.2.6. Let [−∞,∞] and its topology be as in Exercise 15.1.7. Let (fn)n∈N

be a sequence of measurable functions from (E1,A1) with values in [−∞,∞], and
assume that the pointwise limit

lim
n→∞ fn(x)

exists in [−∞,∞] for every x. Then, the function limn→∞ fn is measurable.
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Similar results hold for sup, inf, lim inf and lim sup.

Question 17.2.7. Let (E,A) be a measurable set, and let A1, . . . , AN be measurable
sets which are pairwise disjoint and such that

E =
N⋃
j=1

Aj .

(a) Let f1, . . . , fN ∈ C. Show that the function

f(x) =

N∑
j=1

fj1Aj (17.2.1)

is measurable from E into the complex numbers.

(b) Assume now that the numbers fj are real or equal to ±∞. Show that the
function (17.2.1) is measurable from E into the topological space [−∞,∞]

Functions of the form (17.2.1) are called simple functions. A key result that
allows us to proceed is the following (see [189, Théorème 1.17, p. 15]): A measurable
function with values in [0,∞] is the increasing limit of measurable functions of
the form (17.2.1). See the discussion after the definition (17.3.2) of the Lebesgue
integral.

Exercise 17.2.8. Show that the Dirichlet function

ϕ(x) =

{
1, if x ∈ Q,

0, if x ∈ R \Q,
(17.2.2)

is a measurable simple function.

17.3 Positive measures and integrals

Given an algebra A, a pre-measure (see [85, p. 30]) is a function from A into [0,∞]
with the following properties:

1. There exists an element A ∈ A such that μ(A) < ∞.

2. For any countable union A1, A2, . . . of pairwise disjoint elements of A such
that ∞⋃

n=1

An ∈ A,

we have

μ

( ∞⋃
n=1

An

)
=

∞∑
n=1

μ(An).
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A positive measure on a σ-algebra A is a map

μ : A −→ [0,∞]

with the following properties:

1. There exists an element A ∈ A such that μ(A) < ∞.

2. For any countable union A1, A2, . . . of pairwise disjoint elements of A we have

μ

( ∞⋃
n=1

An

)
=

∞∑
n=1

μ(An).

The measure is called a Borel measure if A is the sigma-algebra generated
by a topology. A triple (E,A, μ) where (E,A) is a measurable space and μ is a
positive measure on A is called a measured space. All measures considered in this
chapter are positive, and we will use the term measure for positive measure in the
remaining of the chapter.

Question 17.3.1. Let (E,A, μ) be a measured space, and let (An)n∈N be a decreasing
sequence of measurable sets. Assume that μ(A1) < ∞. Show that

lim
n→∞μ(An) = μ

( ∞⋂
n=1

An

)
.

Is the claim still true if we do not assume that μ(A1) < ∞?

The integral of a function of the form (17.2.1) is defined by∫
E

fdμ
def.
=

N∑
j=1

fjμ(Aj). (17.3.1)

The representation (17.2.1) is not unique, but it is easy to see that the right side
of (17.3.1) does not depend on the given representation of f .

Exercise 17.3.2. Consider the Dirichlet function (17.2.2) restricted to [0, 1]. Show
that it is a measurable simple function and compute its integral.

The integral
∫
E fdμ is defined to be∫

E

fdμ = sup
s≤f

s simple

∫
E

sdμ. (17.3.2)

An important fact is that, given any measurable function from (E,A) into [0,∞],
there exists an increasing sequence of simple functions (fn)n∈N which converges
pointwise to f . It is in particular used to show that the integral is additive, and
to prove the version of the monotone convergence theorem for series of functions
(see Theorem 17.5.3 below for the latter). See for instance [190, p. 22].



569

Exercise 17.3.3. Let (E,A, dμ) be a measured space, and let f be a measurable
function with values in [0,∞], such that

∫
E
fdμ = 0. Show that the set of points

where f is strictly positive is measurable and has measure equal to 0.

17.4 Functions with values in [−∞,∞]

Let f be a measurable function from the measured space (E,A, dμ) into [−∞,∞].
Then, |f | is also measurable, and, by the previous section, one can define∫

E

|f |dμ ∈ [0,∞].

In the case of functions with values in [−∞,∞], one restricts oneself to functions
for which ∫

E

|f |dμ < ∞,

and one defines ∫
E

fdμ
def.
=

1

2

{∫
E

(|f |+ f)dμ−
∫
E

(|f | − f)dμ

}
.

17.5 The main theorems

Theorem 17.5.1 (The monotone convergence theorem). Let (E,A, dμ) be a mea-
sured space, and let (Fn)n∈N be an increasing family of measurable functions with
values in [0,∞]. Then

lim
n→∞

∫
E

Fn(x)dμ(x) =

∫
E

( lim
n→∞Fn(x))dμ(x). (17.5.1)

Theorem 17.5.2 (The dominated convergence theorem). Let (E,A, dμ) be a mea-
sured space, and let (Fn)n∈N be a family of measurable functions with values in
[−∞,∞] such that:

(a) The limit
F (x) = lim

n→∞Fn(x)

exists for all x ∈ E.

(b) There exists a measurable function G such that

|Fn(x)| ≤ G(x), ∀x ∈ E,

and ∫
E

G(x)dμ(x) < ∞.

17. .5 The main theorems
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Then, F is integrable and

lim
n→∞

∫
E

Fn(x)dμ(x) =

∫
E

F (x)dμ(x). (17.5.2)

These two theorems have been used in the text for a number of exercises. See
for instance Exercises 3.5.7, 4.2.16 and 5.6.14. They allow us to simplify proofs
even in the case of continuous functions. See for instance Exercise 17.6.3 below.
It is often convenient to present them in terms of series of functions rather than
sequences of functions. One then has:

Theorem 17.5.3 (The monotone convergence theorem for series). Let (E,A, dμ) be
a measured space, and let (fn)n∈N be a series of measurable functions with values
in [0,∞]. Then

∞∑
n=1

∫
E

fn(x)dμ(x) =

∫
E

( ∞∑
n=1

fn(x)

)
dμ(x). (17.5.3)

Theorem 17.5.4 (The dominated convergence theorem for series). Let (E,A, dμ)
be a measured space, and let (fn)n∈N be a family of measurable functions with
values in [−∞,∞] such that there exists a measurable function g such that

∞∑
n=1

|fn(x)| ≤ g(x), ∀x ∈ E,

and ∫
E

g(x)dμ(x) < ∞.

Then, f =
∑∞

n=1 fn is integrable and∫
E

f(x)dμ(x) =

∫
E

( ∞∑
n=1

fn(x)

)
dμ(x). (17.5.4)

We conclude this section with the following exercise, pertaining to infinite-
dimensional analysis. See also the remark after the solution. We note that, in the

notation of the exercise, the function f(a) = e−
‖a‖2

2 is positive definite since

f(a− b) = e−
‖a‖2

2 e〈a,b〉e−
‖b‖2

2 , a, b ∈ �2,R.

Exercise 17.5.5. Consider the space �2,R of sequences a = (an)n∈N of real numbers
such that ‖a‖2 =

∑∞
n=1 a

2
n < ∞. Show that there is no positive Borel measure P

on �2,R such that

e−
‖a‖2

2 =

∫
�2,R

ei〈a,b〉dP (b), (17.5.5)

where 〈a, b〉 denotes the inner product in �2,R.
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17.6 Carathéodory’s theorem and
the Lebesgue measure

We now discuss the following problem: Let E be a set, and suppose that we are
given a family of elements F of P(E), and an additive function μ on F . Can we
extend μ to a measure on the σ-algebra generated by F . For instance, is there a
Borel measure on R such that

μ(a, b) = b− a (17.6.1)

for all finite open intervals (a, b)? Cases of importance are when F is an algebra,
or when E is an infinite product of spaces and F is the algebra of cylinders. In
case of an algebra, the main theorem is as follows (see for instance [212, Théorème
fondamental, p. 27], and for a more general statement, [85, Theorem 1.14, p. 31]).

Theorem 17.6.1. Assume that the measure μ on the algebra A is σ-finite. Then,
there is a unique extension of μ to the σ-algebra generated by A.

The existence of a unique measure, called the Lebesgue measure, satisfying
(17.6.1) follows from the previous result.

Theorem 17.6.2. Let f be Riemann-integrable on the interval [a, b]. Then, f is
Lebesgue integrable and the two integrals coincide.

We will use the notation L2[a, b], or L2(a, b), for the Lebesgue space of square
integrable functions with respect to the Lebesgue measure.

As we have already pointed out, measure and integration theory allow us to
simplify proofs of results already in the case of a Riemann integrable function. As
an example, we have:

Exercise 17.6.3. Let f be a continuous function on R such that the (generalized)
Riemann integral ∫

R

|f(t)|dt < ∞.

Show that the function

F (x) =

∫
R

e−ixtf(t)dt

is continuous on R.

The function F is the Fourier transform of f . See Section 13.5.

17.7 Completion of measures

Let (E,A, dμ) be a measured space, and let f be a measurable function defined
on E and with values in [0,∞]. Assume that∫

E

f(x)dμ(x) = 0.

17.7. Completion of measures



572 Chapter 17. A Brief Survey of Integration

This equality is equivalent to the fact that the set of points where f(x) > 0 or is
equal to +∞ has measure 0 (see Exercise 17.3.3), but it does not imply that f is
equal to the zero function. One says that the set of points where f does not vanish
is negligible. More generally, a (possibly non-measurable) subset X of E is called
negligible if there exists a measurable set A such that

X ⊂ A and μ(A) = 0.

The measure is said to be complete if all negligible sets are measurable. Clearly,
every countable set is negligible for the Lebesgue measure on the real line, but
there are also negligible sets which are not countable, as is illustrated by the next
question.

Question 17.7.1. The Cantor set (see Exercise 15.2.3) is negligible for the Lebesgue
measure.

Theorem 17.7.2. Let (E,A, dμ) be a measured space. The family A∗ of subsets U
of E for which there exist A,B ∈ A such that

A ⊂ U ⊂ B, μ(B −A) = 0

is a σ-algebra. The formula
μ∗(U) = μ(A)

defines a complete measure which extends μ.

Let (E,A, dμ) be a measured space. Two measurable functions f and g are
said to be equivalent if they differ on a set of measure 0. We note that the monotone
convergence theorem and the dominated convergence theorem have also versions
in which instead of functions one considers equivalence classes of functions. We
leave to the reader the formulation of these results.

Given two equivalent measurable functions f and g we have∫
E

|f(x)|2dμ(x) =
∫
E

|g(x)|2dμ(x)

where the integral is possibly equal to +∞. We denote by f̃ the equivalence class
of the function f .

Definition 17.7.3. The space L2(E,A, dμ) is the space of equivalence classes of
measurable functions such that

‖f̃‖22
def.
=

∫
E

|f(x)|2dμ(x) < ∞, f ∈ f̃ . (17.7.1)

Theorem 17.7.4. The space L2(E,A, dμ) endowed with the sesquilinear form

〈f̃ , g̃〉 =
∫
E

f(x)g(x)dμ(x)

is a Hilbert space.
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Question 17.7.5. Show that the functions

fn(t) = e
−iπtn

F , n ∈ Z, (17.7.2)

form an orthonormal basis of L2(−F, F ), with the normalized inner product

〈f, g〉 = 1

2F

∫
(−F,F )

f(t)g(t)dt. (17.7.3)

17.8 Density results

The following theorem implies that the closure of the continuous functions on a
compact interval [a, b] of the real line, endowed with the norm (17.1.2), is indeed
the space L2[a, b]. See also the discussion after the proof of Exercise 16.1.4 in the
preceding chapter.

Theorem 17.8.1 (see [189, Théorème 3.14, p. 66]). Let E be a locally compact
Hausdorff space, let A be a σ-algebra of E which contains the Borel sets of E,
and let μ be a positive Borel measure on A. Then, the continuous functions with
compact support are dense in L2(E,A, dμ).

Quite often it is important to consider rational functions rather than contin-
uous functions. This is illustrated in the following exercise (recall that T denotes
the unit circle).

Exercise 17.8.2. Let dμ be a positive and finite Borel measure on [0, 2π]. Assume
that f ∈ L2([0, 2π], dμ) is such that∫ 2π

0

f(t)dμ(t)

eit − z
= 0, ∀z ∈ C \ T.

Show that f = 0.

Similarly, but we will not present the proof here, if dμ is a positive Borel
measure on the real line such that (5.5.20) holds:∫

R

dμ(t)

t2 + 1
< ∞,

then the linear span of the functions of the form 1
z−w , where w spans C \ R, is

dense in L2(dμ).

17.9 Solutions

For the convenience of the reader we recall the definition of a Riemann integrable
function. Let [a, b] be a compact interval. The function f bounded on [a, b] is said

to be Riemann integrable with integral I
def.
=
∫ b

a f(t)dt if for every ε > 0 there

17.9. Solutions
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exists δ > 0 with the following property: For every subdivision

a = a0 < a1 < a2 < a3 < · · · < an−1 < an = b with max
k=1,...,n

|ak − ak−1| < δ,

and any choice of numbers ξk ∈ [ak−1, ak] (with k = 1, . . . , n),∣∣∣∣∣I −
n∑

k=1

f(ξk)(ak − ak−1)

∣∣∣∣∣ < ε.

The expression
n∑

k=1

f(ξk)(ak − ak−1)

is called a Riemann sum.

Solution of Exercise 17.1.1. We consider the Dirichlet function (see (17.2.2)) re-
stricted to [0, 1]. It is well known, and easily seen by computing Riemann sums,
that this function is not integrable in the sense of Riemann. Indeed, for any sub-
division 0 = a0 < a1 < a2 < · · · < an−1 < an = 1 the choice of rational ξk leads
to

n∑
k=1

f(ξk)(ak − ak−1) = 1,

while the choice of irrational ξk leads to

n∑
k=1

f(ξk)(ak − ak−1) = 0.

On the other hand, let (qn)n∈N be an enumeration of the rational numbers in [0, 1],
and let

ϕN (x) =

{
1, if x ∈ {q1, . . . , qN} ,
0, otherwise.

Each ϕN is Riemann integrable and we have

lim
N→∞

ϕN (x) = ϕ(x), x ∈ [0, 1]. �

Remark 17.9.1. The above example already appears in [106], where the reader
can also find an example of a sequence of Riemann integrable functions, with
a pointwise limit which is Riemann integrable, but for which limit and integral
cannot be interchanged.

Solution of Exercise 17.2.3. Remark first that any singleton is closed, and hence
measurable. Let now {qn, n ∈ N} be a bijection between N and Q. Since

Q =

∞⋃
n=1

{qn} ,

it follows that Q is measurable. �
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We remark that the set Q is neither closed nor open in R.

Solution of Exercise 17.2.8. We have

ϕ(x) = 1R\Q(x) = 1 · 1R\Q(x) + 0 · 1R\Q(x),

and hence ϕ is a measurable step function since Q (and hence R \Q) is measurable
in view of Exercise 17.2.3. �

Solution of Exercise 17.3.2. We first note that every singleton has Lebesgue mea-
sure zero since, for x ∈ R,

{x} =

∞⋂
n=1

(
x− 1

n
, x+

1

n

)
.

In particular every countable set has Lebesgue measure zero, and so

μ([0, 1] ∩Q) = 0.

Therefore we have
μ([0, 1] ∩ (R \Q)) = 1,

and the integral is equal to 1. �

Solution of Exercise 17.3.3. For n ∈ N let

En =

{
x ∈ E ; f(x) ∈

[
1

n
,∞
]}

.

The set En is measurable. Furthermore, we claim that μ(En) = 0. Indeed, assume
that μ(En) 
= 0 (and in particular the case μ(En) = ∞ is not excluded). There
exists M > 0 such that μ(En) ≥ M . Thus

0 =

∫
E

f(x)dμ(x) ≥ 1

n

∫
E

1Endμ(x) ≥
μ(En)

n
≥ M

n
> 0,

which is impossible.

The set of points where f(x) 
= 0 is
⋃

n∈N En and hence has measure 0 since

μ(
⋃
n∈N

En) ≤
∞∑

n=1

μ(En) = 0. �

Solution of Exercise 17.5.5. We first note the following. The space �2,R is a Hilbert
space, and for every a ∈ �2,R the function b �→ ei〈a,b〉 is continuous, and hence is
measurable with respect to the Borel sigma-algebra. In particular, the integral on
the right side of (17.5.5) will make sense as soon as P is a finite Borel measure.
We proceed by contradiction to prove that no such measure exists. Assume that
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P exists such that (17.5.5) holds. Setting a = 0 in (17.5.5) we see that P is
a probability measure. Let, for n ∈ N, e(n) denote the element of �2,R with all
entries equal to 0, besides the nth one, equal to 1, and set a = e(n) in (17.5.5). We
have

e−
1
2 =

∫
�2,R

ei〈e
(n),b〉dP (b) =

∫
�2,R

eibndP (b).

For every b = (bn)n∈N ∈ �2,R,

lim
n→∞ bn = 0.

Since |eibn | ≤ 1, the dominated convergence theorem with fn(b) = eibn and f(b) =
g(b) ≡ 1 leads to

e−
1
2 =

∫
�2,R

ei〈e
(n),b〉dP (b)

= lim
n→∞

∫
�2,R

ei〈e
(n),b〉dP (b)

=

∫
�2,R

lim
n→∞ ei〈e

(n),b〉dP (b)

=

∫
�2,R

dP (b) = 1,

since such a P would be a probability measure. We thus obtain a contradiction. �

Remark 17.9.2. Let S denote the set of sequences of real numbers (an)n∈N such
that ∞∑

n=1

n2pa2pn < ∞, p = 0, 1, 2, . . . .

Then, S is a nuclear Fréchet space, with dual the space S ′ of real sequences such
that ∞∑

n=1

n2pa−2p
n < ∞

for some p ∈ N0. The Bochner–Minlos theorem asserts that there is a Borel mea-
sure on S ′ such that

e−
‖a‖2

2 =

∫
S ′

ei〈b,a〉dP (b),

where the brackets denote the duality between S and its dual. The argument in
the proof of the preceding exercise cannot be applied since

lim
n→∞〈b, e(n)〉 
−→ 0

in general for b ∈ S ′. See for instance [122, Appendix A].
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Solution of Exercise 17.6.3. Let x ∈ R and let (xn)n∈N be a sequence of real num-
bers such that limn→∞ xn = x. Set

fn(t) = e−ixntf(t), n ∈ N,

and
g(t) = |f(t)|.

The functions fn and g belong to L1(R, dx) and we have

lim
n→∞ fn(t) = e−ixtf(t), ∀t ∈ R.

Furthermore
|fn(t)| ≤ g(t), ∀t ∈ R.

The dominated convergence theorem allows us to conclude that

lim
n→∞F (xn) = lim

n→∞

∫
R

fn(t)dt =

∫
R

( lim
n→∞ fn(t))dt = F (x),

and F is continuous at the point x. �

Solution of Exercise 17.8.2. We first remark that for every z ∈ C \T the function

t �→ 1

eit − z

is bounded, ∣∣∣∣ 1

eit − z

∣∣∣∣ ≤
{

1
1−|z| , if |z| < 1,

1
|z|−1 , if |z| > 1,

and hence belongs to L2([0, 2π], dμ). Let z be in the open unit disk. Using the
dominated convergence theorem for series with

fn(t) = znf(t)e−i(n+1)t, n = 0, 1, . . . ,

and

g(t) =
|f(t)|
1− |z| ,

we have ∫ 2π

0

f(t)dμ(t)

eit − z
=

∫ 2π

0

f(t)e−itdμ(t)

1− e−itz

=

∫ 2π

0

f(t)e−it

( ∞∑
n=0

(e−itz)n

)
dμ(t)

=

∞∑
n=0

zn
∫ 2π

0

f(t)e−i(n+1)tdμ(t).
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This power series is identically equal to 0 in D, and therefore∫ 2π

0

f(t)e−i(n+1)tdμ(t), n = 0, 1, . . . .

Take now |z| > 1. Another application of the dominated convergence theorem for
series of functions gives:∫ 2π

0

f(t)dμ(t)

eit − z
=

1

z

∫ 2π

0

f(t)dμ(t)

z−1eit − 1

= −1

z

∫ 2π

0

f(t)(
∞∑

n=0

(eitz−1)n)dμ(t)

= −
∞∑
n=0

z−n−1

∫ 2π

0

f(t)eintdμ(t).

This power series is in fact a Laurent expansion in |z| > 1 and identically equal
to 0 there, and therefore∫ 2π

0

f(t)eintdμ(t), n = 0, 1, . . . .

It follows that f is orthogonal to all trigonometric polynomials. Since every contin-
uous function on [0, 2π] (with same values at 0 and 2π) can be approximated in the
supremum norm by trigonometric polynomials (see for instance [189, Théorème
4.25, p. 87]), it follows that f is orthogonal to all continuous functions. By Theorem
17.8.1, we have f = 0, μ-a.e. �
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[25] C. Arzelà. Sulla integrazione per serie.Atti Acc. Linecei Rend., Rome, 1:532–
537, 596–599, 1885.

[26] R.B. Ash. Information theory. Dover Publications Inc., New York, 1990.
Corrected reprint of the 1965 original.

[27] M. Audin. Un cours sur les fonctions spéciales.
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[107] R. Goulfier.Mathématiques. Exercices d’oral 1974–1975 avec corrigés. Bréal,
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[217] J. Vauthier. Algèbre et analyse. Exercices corrigés. Grand Oral de Polytech-
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analytic continuation, 48

analytic function, 151, 166

analytic square root, 238, 239, 291, 299

Apollonius circle, 69

arc, 209

arc length line integral, 211

area computation, 231

backward-shift operator, 221, 548

Bernoulli numbers, 344

Bernoulli’s lemma, 117

Bessel function, 168

biharmonic functions, 424

Blaschke factor, 19, 71

Blaschke product, 120, 303

Bohr’s inequality, 225

Borel sets, 566

Borel’s theorem, 233

bounds

for the function 1− cos z, 121

for the function ln(1 + z), 526

for Weierstrass factors, 120

Brouwer’s theorem, 156, 351

Cantor set, 532, 543, 572

Cartan’s theorem, 303

cartesian form, 79

Catalan constant, 308

Catalan numbers, 96

Cauchy multiplication theorem, 515

Cauchy product, 169, 515

Cauchy–Goursat theorem, 217

Cauchy–Riemann equations, 16, 158

in polar coordinates, 421

Cauchy–Schwarz inequality, 95, 547

Cesàro operator, 345

characteristic polynomial, 475

closed contour, 211

closed Jordan curve, 211

completing the square, 17, 63, 86

complex number

absolute value, 13

conjugate, 12

formula for the argument, 16

modulus, 13

polar representation, 13

purely imaginary, 12

roots of order n, 14, 15

concatenation, 210

confinement lemma, 30

conformal, 159

conjugate harmonic, 419

continuous arc, 209

continuous logarithm, 156, 178

continuous square root, 155, 156, 177

contour (closed), 211

convolution, 5, 169, 462, 515

and power series, 105

example, 197

operator, 461

cross-ratio, 72

curve, 209

decimation operator, 300

derivative

formula, 158

logarithmic derivative, 157

Dirichlet integral, 218, 256

Dirichlet problem, 424

downsampling operator, 300
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elliptic function, 112, 491, 494

field, 475

entire function, 160, 162, 173, 231, 235,
306, 460

of exponential type, 458

epicycloid, 80

essential singularity, 338

Euler products, 119

Euler’s Gamma function, 98

exactity relation, 349

example

function with analytic square root but
no analytic logarithm, 236, 239

exponential function

calculus definition, 22

complex, 22

extended complex plane, 65

factor theorem, 31, 536

Fibonacci numbers, 170

finite Blaschke product, 19

fixed point, 351

Fourier series, 339

Fresnel integral, 215

Fubini’s theorem, 523

function

Carathéodory, 174

defined by an integral, 340

Hermite, 497

logarithm, 160

measurable, 566

of Dirichlet, 574

Riemann integrable, 573

with analytic square root but no
analytic logarithm, 236, 239

fundamental theorem of algebra

proof using Liouville’s theorem, 308

topological proof, 536

Gamma function, 494

Legendre’s duplication formula, 456

Gaussian integral, 216

computation using the residue
theorem, 392

Hadamard product, 553

Hankel matrix, 394

Hardy space, 221, 231, 462

Helly’s theorem, 224

Herglotz representation theorem

disk case, 174, 224

half-plane case, 227

Hermite functions, 497

Hermite polynomials, 230

holomorphic function, 151

hyperbolic functions, 24

impulse response, 5

index, 212

infinite product, 70, 113, 307

for sin z and cos z, 121

for sinh z and cosh z, 121

inner product, 546

degenerate, 547

integration by parts, 215

interpolation problem, 295

interval, 534

isolated singularity, 337

Jacobian matrix, 158, 279

Jordan cell, 477

Jordan curve, 209

Jordan’s curve theorem, 535

Jordan’s lemma, 213, 259

Laplacian, 163

(in polar coordinates), 422

Laurent expansion, 338

of a function defined by an integral,
340

Lebesgue measure, 571

Legendre’s duplication formula, 456

line integral

arc length, 211

Liouville’s theorem, 25, 308

application (spectrum of a bounded
operator), 558

application to the fundamental
theorem of algebra, 308

first, 310

logarithm, 160



Index 595

Looman–Menchoff theorem, 165

matrix

positive, 550

measure, 568

Borel, 568

complete, 572

meromorphic function, 474

monic polynomial, 222

monodromy theorem, 156

Morera’s theorem, 300

natural boundary, 104, 298

Newton’s binomial formula, 28, 35, 50

Newton–Leibniz formula, 214

norm, 545

equivalent, 546

normal family, 532

one-to-oneness, 231

lack of, near a multiple zero, 348

open mapping theorem, 445

operator

bounded, 548

continuous, 548

norm, 548

Ornstein–Uhlenbeck process, 384

partial fraction expansion, 349

path, 209

Pick class, 388

Pick’s inequality, 302

piecewise smooth arc, 210

point at infinity, 532

polarization identity, 551

pole, 338

polynomial

characteristic, 475

positive definite function

definition, 554

example, 384

positive definite kernel

definition, 554

example, 41, 394, 554

positive matrix, 550

positive real lemma, 479

power series

of arcsin, 291

decimation, 300

of (1 + z)α, 168

product, 169

radius of convergence, 103

primitive, 214, 535

projective line, 68

Raabe’s convergence test, 104

radius of convergence

formula, 102

special cases, 103

rational function

realization, 474

partial fraction representation, 476

unitary on the unit circle, 299

realization

of a Blaschke factor, 485

of a product and of a sum, 476

of the function (z − w)−n, 477

of the inverse function, 479

reflection coefficients, 464

removable singularity, 337, 338

reproducing kernel Hilbert space, 231,
232, 439

residue

at a finite point, 345

at infinity, 347

formula, 345

resolvent identity, 221

resolvent set, 549

Riemann sum, 574

Riemann’s Hebbarkeitssatz, 302, 337

Riesz’ representation theorem, 549

roots of unity, 74

exercise, 23

Rouché’s theorem, 351

sampling theorem, 459

Schur algorithm, 304

Schur coefficients

definition, 464

example, 464
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Schur function, 2, 303, 463

Schur product, 553

Schwarz reflection principle, 300

Schwarz’ lemma, 301

set

compact, 530

connected, 530

negligible, 572

sequentially compact, 530

simply-connected, 67, 214, 446

star-shaped, 67

signal

band limited, 458

energy, 5

simple functions, 567

space

Banach, 545

Bergman, 439

Fock, 232

Hausdorff, 530

Hilbert, 547

Lebesgue L2[a, b], 571

measurable, 566

measured, 568

metric, 530

Montel, 444

topological, 529

spectrum, 549

star-shaped, 235, 534

state space equations, 478

stationary second-order process, 174

stereographic

metric, 66

projection, 66

Stirling’s formula, 126

Stolz angle, 111

subharmonic function, 232, 423

theorem

Arzelà’s bounded (or dominated)
convergence, 564

Bochner, 554

Cartan, 303

dominated convergence, 569

Fubini, 523

fundamental theorem of algebra, 308

monotone convergence, 569

open mapping, 445

Paley–Wiener, 458

Riemann’s, on removable singularities,
337

Tannery, 525

Weierstrass, 340

theta function, 493

topology, 529

transfer function, 5, 462

transform

Fourier, 496, 571

inverse Fourier, 457

triangle inequality

in C, 19

for metric spaces, 530

trigonometric

functions, 24

moment, 204

univalent function, 444

Weierstrass

factor, 120

function, 365, 492

product theorem, 120

sigma function, 122

theorem, 340, 480

winding number, 212
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