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      Nanoformulations for Pharmacological siRNA 
Delivery in Cancer                     

     Byunghee     Yoo      and     Zdravka     Medarova    

1           Introduction 

 The phenomenon of gene silencing by double-stranded RNA, known as small 
interfering RNA (siRNA), was discovered in the nematode worm (  Caenorhabditis 
elegans   ) in 1998 [ 1 ]. The application of siRNA for posttranscriptional gene silenc-
ing was validated in mammalian cells in 2001 [ 2 ] and mice in 2002 [ 3 ]. Since then, 
 RNA interference (RNAi)   has attracted great interest because of its potential to 
knock down specifi c genes that regulate protein expression in diverse human dis-
eases. Because of its higher specifi city, lower systemic toxicity, and fl exibility for 
target gene selection, siRNA-mediated  RNAi   has advantages as a therapeutic 
approach over conventional chemical inhibitors. 

 RNAi is an endogenous pathway for posttranscriptional gene silencing. It can be 
activated by dsRNAs, which include  small interfering RNAs (siRNA)  ,  short-hairpin 
RNAs (shRNA)  ,  long noncoding RNAs (lncRNA)  , and  microRNAs (miRNA)  . siRNA 
of 21–23 nucleotides consists of a passenger (sense) strand and a guide (antisense) 
strand. The sequence of the guide strand is designed to perfectly match the target  mes-
senger RNA (mRNA)   to avoid erroneous gene silencing and is modifi ed at the 5’-end 
with linkers when it needs further conjugation with nanoparticles. In principle, siRNA 
is exogenous and synthesized to target specifi c mRNA and initiate RNAi when it is 
delivered in the cytosol. First, siRNA is processed by Dicer (an RNase III endonucle-
ase) and subsequently interacts with Argonaute-2, a multifunctional protein (Ago2) 
that is incorporated into a multiprotein complex known as the  RNA-induced silencing 
complex (RISC)     . During this process, the passenger (sense) strand of siRNA is 
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released and degraded, whereas the guide (antisense) strand binds to Ago2 and guides 
 RISC   to its complementary target mRNA. The complex of siRNA-RISC cleaves the 
target mRNA to silence gene expression and repress translation of mRNA. Importantly, 
the role of the RISC is catalytic and the complex is recycled (Fig.  1 ) [ 4 ].

  Fig. 1    Mechanism of RNA interference. Long dsRNA introduced into the cytoplasm is processed 
by the enzyme Dicer into 22-nt pieces with 2-nt single-stranded overhangs on the 3′ ends. The 
structure of synthetic siRNA mimics that of Dicer products. The siRNA guide strand is loaded into 
the RNA-induced silencing complex (RISC), and the passenger strand is cleaved by Argonaute-2 
(Ago2). The activated RISC–guide-strand complex identifi es and cleaves mRNA that is comple-
mentary to the guide strand, preventing translation and thereby silencing gene expression. 
Reproduced with permission from Ref. [ 4 ]       

 

B. Yoo and Z. Medarova



173

   Despite its promise, siRNA has not realized its potential as a therapeutic because 
of obstacles related to its delivery in vivo. After intravascular administration, siRNA 
is susceptible to degradation by  RNase A-type nucleases   or is aggregated by serum 
proteins in the plasma, and is rapidly eliminated by the kidneys, resulting in very 
short intravascular circulating half-lives in the range of seconds to minutes [ 5 ]. 
After entering the circulation, siRNA has to pass across vascular endothelial walls 
and diffuse through the  extracellular matrix (ECM)   in the interstitium. This repre-
sents a signifi cant delivery hurdle since the  ECM   forms a dense network structure 
consisting of polysaccharides and fi brous proteins that accommodate macrophages. 
Finally, siRNA delivery is limited by the negatively charged membranes of target 
cells mainly because the negative charges on the phosphodiester backbone and the 
large molecular weight of siRNA (~13 kDa) hinder uptake by mammalian cells. In 
addition, siRNA could induce an innate immune response that is mediated by  type 
I interferon and proinfl ammatory cytokines  , further limiting the feasibility of deliv-
ering unmodifi ed naked siRNA  in vivo [ 6 ,  7 ]. 

 To overcome these obstacles, a wide range of nano-sized delivery vehicles (nano-
drugs) has been investigated. The  nano-delivery agents   can be classifi ed into three 
types: lipid-based, polymer-based, and inorganic nanodrugs. Considering the obstacles 
listed above, an optimal nanodrug should be equipped with the physicochemical prop-
erties of protecting siRNA from degradation, elongating blood circulation, localizing in 
desired loci in the body, facilitating the cellular uptake, and releasing siRNA within the 
cytosol to initiate the RNAi process. Also,  nanodrugs   are expected to satisfy require-
ments related to their physiological safety, including lack of immunogenicity, nonco-
agulation with serum proteins, and low nonspecifi c uptake by normal tissues or cells. 

 To accommodate the requirements for effi cient siRNA delivery, nanodrugs are 
mainly optimized in terms of surface charge and particle size. The outer surface of 
nanodrugs is usually charged with cations (positive charges) for enhanced uptake by 
cell membranes. However, cationic surface charges increase the chances of aggre-
gate formation of negatively charged plasma proteins that are entrapped in the pul-
monary capillary bed or taken up by the mononuclear phagocyte system. The 
introduction of  polyethylene glycol (PEG)   on the surface can neutralize the surface 
charge and impart a “stealth function” that avoids the interactions with plasma pro-
teins, resulting in the elongation of intravascular circulation time and faster diffusion 
in the extracellular matrix [ 8 ]. In contrast, PEGylation interferes with spontaneous 
cellular uptake through opsonization and requires an additional moiety for receptor-
mediated endocytosis. With respect to nanoparticle size, nanodrugs are limited by 
the requirement that the size of nanodrugs should be bigger than the pore size of the 
glomerular fi ltering system (>7 nm) to avoid renal clearance. It is also benefi cial to 
keep the size smaller than 100 nm because the discontinuous endothelia in solid 
tumors are also found in some other organs including liver, spleen, and bone marrow, 
where nanoparticles bigger than 100 nm in diameter are entrapped [ 9 – 12 ]. 

 The conventional size of  nanodrugs   is adjusted in the range of 10–100 nm in diam-
eter to allow delivery to tissues through the  enhanced permeation and retention (EPR)      
effect. This is particularly relevant for solid tumors with leaky vasculature [ 9 ,  13 ,  14 ]. 
Even in poorly permeable tumors, nanodrugs smaller than 50 nm can penetrate the 
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capillary endothelium, whereas micellar nanodrugs of 70 nm are retained in the vascu-
lature [ 15 ]. Based on these observations, the optimal size of nanodrugs can be narrowed 
to 10–50 nm, especially when the goal is passive delivery for cancer treatment. 

 In this review, we will focus on the formulation of nanodrugs for pharmacologi-
cal siRNA delivery according to the categories classifi ed above: lipid-based, 
polymer- based, and inorganic nanodrugs.  

2     Polymeric Nanoparticles 

  Polymer-based nanoparticles   have numerous advantages as a template for siRNA 
nanodrugs including thermodynamic stability, high drug loading effi ciency, high 
cellular uptake, adjustable drug release rate, and the feasibility of surface modifi ca-
tion. However,  polymeric nanodrugs   have potential issues originating from the 
properties of synthetic or natural polymers, such as biodegradability, biocompatibil-
ity, toxicity, and immunogenicity. 

  Polyethyleneimine (PEI)   is one of the most commonly used polymers. PEI-based 
nanoparticles show high cellular uptake due to their cationic surface charges. PEI 
exhibits very different compatibility profi les depending on its incorporation of spe-
cifi c molecular structures and the choice of branched (obtained from acid-catalyzed 
polymerization of aziridine) vs. linear forms (obtained via polyisoxazoline precur-
sors) [ 16 ,  17 ]. With an acceptable biocompatibility profi le, nanodrugs formulated 
with linear PEI show no signifi cant increase of proinfl ammatory cytokines or 
hepatic enzymes after systemic administration [ 18 ,  19 ]. Branched  PEI   is recognized 
as more toxic than linear  PEI,   activating infl ammatory responses and susceptible to 
macrophage uptake and rapid clearance. Chemical modifi cation can improve the 
toxicity profi le of branched PEI. PEGylation of branched PEI prevented the induc-
tion of mutations and oxidative DNA damage (8-OH-dG) in FE1 lung epithelial 
cells, whereas alkylation showed low toxicity and enhanced knockdown effi ciency 
due to stabilization of encapsulated siRNA [ 16 ,  20 ,  21 ]. 

 In addition to  PEGylation and alkylation  , PEI has been complexed with lipids, 
polymers, surfactants, and inorganic materials to enhance the properties of nano-
drugs [ 22 – 27 ]. For example, low-molecular-weight polyamine (PEI600) was utilized 
for the synthesis of nanoparticles by reacting with C 15  epoxide-terminated lipids at a 
14:1 molar ratio, and formulating the nanoparticles with C 14 PEG 2000 . The resulting 
nanodrugs formed multilamellar vesicles rather than the periodic aqueous compart-
ments containing siRNA that make up stable nucleic-acid lipid particle formulations. 
The resulting nanodrugs had a diameter between 35 and 60 nm, and were delivered 
into endothelial cells without any target moieties. The surface charge of 7C1 nano-
drugs was electrically neutral at pH 7.4 (in the blood stream), but its p K  a  was 5.0. 
Unlike lipid and lipidoid-based nanodrugs, 7C1 nanodrugs showed high specifi city 
of transfection to endothelial cells  in vivo even at low doses, and did not signifi -
cantly reduce gene expression in nontargeted cells, such as hepatocytes, peritoneal 
immune cells, pulmonary epithelial cells, or pulmonary immune cells (Fig.  2 ) [ 27 ].
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   Co-delivery of two siRNAs  and paclitaxel   was investigated by employing a 
two- amphiphilic polymer system of polyethyleneimine-block-poly[(1,4-
butanediol)-diacrylate-β-5-hydroxyamylamine] (PEI-PDHA) and polyehtylene
glycol-block-poly[(1,4-butanediol)-diacrylate-β-5- hydroxyamylamine] (PEG-
PDHA) by self-assembly. PDHA is acid responsive and releases drugs in an 
acidic environment. Two siRNAs and paclitaxel were encapsulated in polymeric 
particles to form PEI-PDHA/PEG- PDHA/PTX/siSna/siTwi (PPSTs)   complex 
nanodrugs. The size of PPSTs nanodrugs (80–140 nm) was small enough to 
expect passive targeting through EPR effects. PPSTs nanodrugs were adminis-
tered intravenously, and the accumulation of two siRNAs  and paclitaxel   was 
confi rmed in metastatic 4 T1 breast tumors in a mouse model. The administra-
tion of dual siRNAs resulted in suppression of breast cancer by preventing can-
cer cell migration and invasion and the effect was more signifi cant than the 
administration of single siRNA [ 28 ]. 

 An abundance of  polymers   has been explored for the delivery of anticancer 
therapeutics, Some examples include  poly(lactide-co-glycolide) (PLGA)  ,  polylac-
tide (PLA)  ,  polyglycolide, polycaprolactone (PCL)  , and poly(D,L-lactide). These 
polymers have also been chemically modifi ed with lipids, other polymers, surfac-
tants, and inorganic materials to improve the physicochemical properties and opti-
mize the formulations for siRNA delivery [ 29 – 34 ]. For the treatment of  bladder 
cancer  , for example, PLGA nanoparticles were modifi ed with positively charged 
mucoadhesive polysaccharide chitosan chains (2.5 or 20 kDa) to enhance transuro-
thelial penetration and delivery of survivin siRNA. Surface modifi cation of PLGA 
nanoparticles with short chain chitosan (NP-siSUR-2.5, 137 ± 51 nm) increased the 
release of siRNA by ten times compared to long chain chitosan (NP-siSUR-20, 
130 ± 56 nm). Nanodrugs were delivered using passive targeting, since no targeting 
moieties were incorporated into the design. The higher molecular weight (long 
chain) chitosan entangled and trapped the negatively charged siRNA more tightly 

  Fig. 2    Preparation of 
polymeric nanoparticles 
with low molecular weight. 
( a ) 7C1 synthesis scheme. 
( b ) 7C1 formulation 
scheme. 7C1 nanoparticles 
were mixed with 
C14PEG2000 and siRNA 
in a high-throughput 
microfl uidic chamber. 
Reproduced with 
permission from Ref. [ 27 ]       
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than the lower molecular weight (short chain) chitosan [ 34 ,  35 ]. This result implies 
that the balanced surface charge should be optimized for enhanced cellular uptake 
and siRNA release into the cytosol. 

 The formulation of nanoparticles using natural polymers has also been explored 
for the delivery of siRNAs. Representative natural polymers are chitosan, hyal-
uronic acids, sodium alginate, gelatin, and polypeptides [ 36 – 41 ].  Glycol chitosan      
was chemically modifi ed with 5β-cholanic acid to form a hydrophobic core where 
doxorubicin (Dox) was encapsulated in self-assembling nanoparticles. Also, siRNA 
was conjugated to a thiolated glycol chitosan via a cleavable disulfi de for release in 
the reductive intracellular environment. Interestingly, Dox-encapsulated CNPs 
(290 ± 4.5 nm) or Bcl-2 siRNA-encapsulated CNPs (301 ± 9.3 nm) exhibited similar 
physicochemical properties, including size, surface properties, and pH sensitive 
behavior, regardless of the different physical features of  Dox and Bcl-2 siRNA  . 
Also, the two different nanodrugs showed similar patterns of  in vivo biodistribution 
and pharmacokinetics in PC3 tumor bearing mice, and mediated a dose-dependent 
therapeutic effect following sequential administration [ 41 ]. 

  Dendrimers      represent another common formulation for siRNA delivery. The 
most widely used dendrimers consist of polyamidoamine (PAMAM, Starburst™), 
poly(propylenemine) (PPI or DAB, Astramol™), and PEG polyester dendrons, and 
are functionalized with a –NH 2  (for oligonucleotide delivery), a –COOH (for den-
drimer platinates), and an –OH (for dendrimer-derived magnetic resonance imaging 
contrast agents). The size of dendrimers can be regulated by stepwise growth and 
adjustable branching patterns. Their hydrodynamic diameter is well defi ned accord-
ing to the degree of generations, such as generation 3 (G3, 3.1 nm), generation 4 
(G4, 4.0 nm), and generation 5 (G5, 5.3 nm). The surface functional groups allow 
for the adjustment of surface charges and permit functionalization with siRNA, tar-
geting probes and surface coating materials [ 42 – 47 ]. However, dendrimers, espe-
cially cationic dendrimers, suffer from low biocompatibility and toxicity limiting 
their clinical translation [ 48 ,  49 ]. 

 Dendrimer-inspired nanodrugs were developed by combining PAMAM or 
poly(propylenimine) dendrimers of increasing generations with alkyl epoxides 
of various carbon chain lengths. In this scenario, the positively charged den-
drimer core entrapped negatively charged siRNAs for Tie2 gene knockdown in 
immortal and primary endothelial cells. 1,2-dimyristoyl-sn-glycero-3-
phosphoethanolamine-N- mPEG 2000  and cholesterol were incorporated with the 
dendrimers to generate nanodrugs with sizes in the range of 50–100 nm. Contrary 
to low molecular weight PEI-based polymer that was capable of targeting both 
lung endothelial cells and epithelial lung tumors, this formulation of Tie2 siRNA 
nanodrugs was specifi cally taken up by lung endothelial cells and not by epithe-
lial lung tumor cells, whereas the integration of cholesterol improved gene 
knockdown effi ciency. However, this formulation was not completely free from 
off-target effects in the endothelial cells of other organs because some knock-
down was still observed at high doses [ 47 ].  
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3      Lipid-Based Nanoparticles   

 Lipid based nanodrugs include liposomes, solid lipid nanoparticles,  stable nucleic 
acid-lipid nanoparticles (SNALPs)     , and lipoid nanoparticles.  Liposomes   are the 
most popular and extensively investigated lipid-based nanoparticles and are 
employed to deliver a variety of payloads, such as anti-cancer drugs, oligonucle-
otides, DNAs, RNAs, antigens, and proteins. The advantages of  liposomes   for 
siRNA delivery include the prevention of degradation, accumulation in tumor tis-
sues by passive targeting, feasibility in surface modifi cation for active targeting, and 
high biocompatibility for systemic delivery in animals and humans. Described in 
“ polymeric nanodrugs  ,” liposomes are coated with  polyethylene glycol (PEG)   to 
avoid rapid clearance by the  reticuloendothelial system (RES)   in liver, spleen, lungs, 
and bone marrow for a longer circulation half-life. Also, liposomes are formulated 
with polymers, lipidoids, inorganic materials, and polypeptides to improve physico-
chemical properties for effi cient siRNA delivery [ 50 – 55 ]. 

  Layer-by-layer (LbL) nanoparticles      are prepared by sequential deposition of 
oppositely charged polymers on top of nanoparticles to build a highly stable mul-
tilayer fi lm. This permits precise control at the nanometer-scale level to adapt a 
range of polycationic materials with siRNA loading and releasing, fi lm stability, 
transfection effi ciency, and cytotoxicity. LbL nanodrugs were developed for co-
delivery of MRP1 siRNA and anticancer therapeutics by stacking siRNA-loaded 
LbL fi lms atop of a doxorubicin-loaded liposome with an exterior negatively 
charged phospholipid membrane.  Cationic poly- L -arginine   was deposited in the 
inner most layer to reverse the surface charge of the liposome from negative to 
positive which can drive negative siRNA molecules to form an outer shell in the 
LbL fi lm layer. The size of the nanodrugs was determined to be approximately 
120 nm in diameter with a zeta potential of 55 mV and the hydrodynamic diam-
eter increased by 5 nm with the addition of each layer. The number of siRNA 
molecules per nanoparticle was determined to be 3500. The LbL nanodrugs were 
fi nalized with a hyaluronic acid (2000 kDa) coat for prolonged circulations with 
a serum half-life of up to 28 h [ 55 ]. 

 In addition to liposomes, solid lipid-based nanodrugs were also developed for 
systemic siRNA delivery with the benefi t of using biodegradable and nontoxic 
lipids that form solid nanoparticles at a physiological body temperature. These 
nanodrugs include “ stable nucleic acid-lipid particles (SNALPs)  ” and “ solid-
lipid nanoparticles (SLNs)  .” SNALPs consist of a lipid bilayer containing a mix-
ture of cationic and fusogenic lipids that enable the cellular uptake and endosomal 
release of siRNA. SLNs are composed of cholesteryl ester, triglyceride, choles-
terol, dioleyl phosphatidyl ethanolamine (DOPE), and 3-β-[ N -( N ′, N ′-dimethy-
lamino ethane)carbamoyl]-cholesterol (DC-cholesterol). The formulations of 
SNALPs and SLNs are also modifi ed with PEG groups, lipids, surfactants, poly-
mers, and human serum proteins, and are adjusted for the purpose of siRNA 
delivery [ 53 ,  56 – 62 ]. 
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  Lipidoid nanoparticles   are lipid-like delivery molecules conjugated with cholesterol 
and formulated with PEG-coated lipids for delivery of siRNAs [ 63 – 66 ]. For the deliv-
ery of osteogenic  Plekho1  siRNA, lipid nanoparticles (size: <90 nm) were formulated 
to encapsulate siRNAs by use of DPPC, C16 celarmide-PEG2000, and cholesterol, 
and modifi ed with the osteoblast-specifi c aptamer CH6 on the surface. The siRNA 
encapsulating lipid nanoparticles showed  in vitro  osteoblast   selective uptake via mac-
ropinocytosis, and down-regulated  in vivo osteoblast-specifi c  Plekho1  gene expres-
sion, which resulted in promoted bone formation, improved bone microstructure, 
increased bone mass, and enhanced mechanical properties in both osteopenic and 
healthy rodents (Fig.  3 ) [ 62 ].

4         Inorganic Nanoparticles   

 Inorganic nanoparticles can be classifi ed as metallic nanoparticles and nonmetallic 
nanoparticles. Metallic (or metal-hybridized) nanoparticles include gold [ 67 – 70 ], 
silver [ 71 ], copper [ 72 ], manganese oxide [ 73 ], and iron oxide [ 74 ,  75 ], as well as 
quantum dots [ 76 – 78 ]. Nonmetallic nanoparticles include silica (silicate) and cal-
cium phosphate (hydroxyapatite) [ 79 – 84 ]. These inorganic nanoparticles can be 

  Fig. 3    Preparation of aptamer-functionalized lipid nanoparticles. LNPs are fi rst prepared by spon-
taneous vesicle formation after a lipid/ethanol solution is slowly injected into siRNA buffer solu-
tion, followed by dialysis. The 3′ thiol and 2′- O -methyl-modifi ed CH6 aptamer are then activated 
followed by conjugation to DSPE-PEG2000-Mal to form CH6-PEG2000-DSPE. Finally, CH6- 
PEG2000- DSPE in the form of micelles is inserted into the surface of LNPs. Reproduced with 
permission from Ref. [ 62 ]       
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modifi ed with PEG groups, polymers, lipids, and surfactants for the enhancement of 
drug loading, blood circulation time, and specifi city to the target biomarkers. 

  Magnetic nanoparticles (MNs)   have been used for the purpose of contrast enhance-
ment in  magnetic resonance imaging (MRI)   and have also been employed for the 
delivery of siRNAs. In terms of diagnostic capability and delivery of siRNA therapeu-
tics, MNs are considered a principle template for theranostic imaging. For the investi-
gation of drug resistance in glioma against DNA-methylating agents, amine-derivatized 
dextran coated MN was loaded with siRNA for silencing  O 6 - methylguanine methyl-
transferase (MGMT)  , which reverses the anti-glioma effects of DNA methylating 
anticancer drugs. The MNs were also conjugated with a chloride ion specifi c peptide, 
 Chlorotoxin  , for effective uptake by glioma cells. By suppressing MGMT gene 
expression in an intracranial glioma model, the therapeutic effects of Temozolomide 
(DNA-alkylating anti-glioma agent) were signifi cantly increased (Fig.  4 ) [ 74 ].

   Nanodrugs loaded with siRNA are taken up by cells through endocytic pathways, 
and are prone to entrapment within subcellular compartments, which requires an 
increased dosage of siRNA.  Polycationic nanodrugs   can enhance the cellular uptake 
and facilitate the escape of siRNA from endosomes by taking advantage of the “pro-
ton sponge effect” [ 85 ], but can also cause cytotoxicity. For the optimal delivery of 
siRNA into the cytosol,  nanoparticle-stabilized nanocapsules (NPSCs)   were designed 
based on supramolecular guanidine–carboxylate interactions between the  arginine-
functionalized gold nanoparticles (Arg-AuNPs)   of the shell and the hydrophobic fatty 
acid “oil” components in the core. NPSCs were successfully shown to be effective 
siRNA delivery vehicles into the cytosol by their ability to silence green fl uorescent 
protein (deGFP) and polo-like kinase (siPLK1) with concomitant cytotoxicity [ 86 ]. 

 Mature  dendritic cells (DCs)   can capture tumor antigens and induce potent 
antigen- specifi c antitumor immunity in tumor-draining lymph nodes by presenting 
the antigens to T cells and secreting proinfl ammatory cytokines that enhance T cell 
activation. Activation of STAT3 in DCs inhibits the expression of numerous 
 immunostimulatory molecules triggered by TLR ligands that regulate T cell activa-
tion. For the suppression of STAT3, amine-modifi ed quantum dots were conjugated 
with STAT3 siRNAs and encapsulated in a PLGA matrix. After intratumoral injec-
tion, STAT3 mRNA expression was downregulated by up to 73 % and the amount of 
proinfl ammatory cytokines increased signifi cantly [ 87 ]. 

Cy5.5

CTX

iron oxide
core

siRNA

crosslinked
dextran coat

  Fig. 4    Schematic structure 
of a nanodrug for targeted 
delivery of siRNA. 
Reproduced with 
permission from Ref. [ 74 ]       
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  Porous silicon nanoparticles (pSiNPs)   are actively investigated as nanoparticle- based 
drug delivery vehicles and have advantages in terms of biocompatibility, biodegradabil-
ity, and high payload capacity [ 88 ,  89 ]. The pore sizes of  pSiNPs   can be controlled and 
provide criteria to classify SiNPs, such as micropores (smaller than 2 nm) through mes-
opores (between 2 and 50 nm), and macropores (larger than 50 nm) [ 90 ]. pSiNPs loaded 
with MRP1-siRNA showed effi cient cellular uptake by T98G glioblastoma cells (even 
after a 30 min incubation) and successfully downregulated MRP1 mRNA (40 %) and 
protein (30 %) [ 91 ]. 

 The delivery effi ciency of silicon particles inside the body is affected by the 
size, shape, and surface physical and chemical properties of the nanoparticles. 
Discoidal silicon particles are more effectively taken up by tumor cells than spheri-
cal or cylindrical silicon particles. In addition, systemic administration of the dis-
coidal SiNPs does not cause acute or subacute toxicity in wild-type mice [ 92 ,  93 ]. 
 Polycation- functionalized porous silicon (PCPS)   was prepared for the delivery 
siRNA. PCPS was fabricated by oxidizing the surface of the porous silicon to 
introduce a hydroxyl group that was used to conjugate arginine and PEI through a 
linker (3-aminopropyl- triethoxysilane). Loading of STAT3 siRNA was achieved 
through electrostatic interaction between the positively charged Arg-PEI on PCPS 
and the negatively charged siRNA. After uptake by breast tumor cells, STAT3 
siRNA was released in the process of PCPS degradation to induce a signifi cant 
91 % knockdown of the target gene [ 94 ].  

5     Future Outlook 

 RNA interference (RNAi) holds great potential as a therapeutic strategy for the 
treatment of many diseases, including cancers. RNA interference can be accom-
plished by two routes: the “chop-up” or “zip-up” route. In the zip-up mechanism, 
unnatural synthetic RNA oligonucleotides are employed to form a thermodynami-
cally and physicochemically stable complex with target RNAs, which are not able 
to participate in the gene translation process. Following the chop-up mechanism, 
siRNAs are synthesized by the use of natural RNA building blocks and are utilized 
for the interference of target gene expression by binding the target gene to form a 
partial duplex in the sequence that is prone to RISC digestion. Therefore, siRNAs 
consist of natural RNA bases and are easily degraded by nucleases in sera. The role 
of nanoparticles is to protect siRNAs during circulation in blood vessels and diffu-
sion in interstitium, to safely deliver siRNAs to the desired loci, and to release 
siRNA for silencing target mRNAs. So far, a wide range of organic, inorganic, and 
hybrid materials have been investigated for the purpose of siRNA delivery to the 
desired loci  in vivo. The key challenge, however, is to translate the application of 
pharmacologic siRNAs into the clinic. This capability can have a transformative 
impact on healthcare because siRNAs provide incomparable specifi city, including 
the capability to target single-nucleotide mutations. 
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 In addition to their high level of specifi city, siRNAs also have a broad applicability. 
Theoretically, we can target any genes using a modular strategy. This is important 
because practically every disease is infl uenced by genetic predisposition, including 
diseases that are caused directly by environmental factors. So far, a very limited num-
ber of therapeutic siRNAs have been evaluated in clinical trials for the treatment of 
diverse diseases, such as diabetic macular edema, immunotherapy of melanoma, 
myeloid leukemia, metastatic solid tumors, and liver cancer. Twenty clinical studies 
have been completed already and eight clinical studies are planned for the evaluation 
of siRNA in patients (clinicaltrials.gov). Considering the increasing number of pre-
clinical investigations, it is reasonable to expect that the near future will see many more 
siRNA-based pharmacologic agents tested as monotherapies or combination therapies. 
However, before siRNAs can fully realize their potential in a clinical setting, it is 
imperative to develop optimized nanodrug platforms that are both safe and effi cient.     
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