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      Nanoparticles as a Technology Platform 
for Biomedical Imaging                     

     Jeff     W.  M.     Bulte      and     Michel     M.  J.     Modo    

        Imaging   and  therapeutic   delivery is increasingly relying on  nanoparticles   as a key 
technology platform. This common technology interface affords new opportunities 
to combine the diagnosis and treatment into a “unifi ed” one-step theranostic 
approach. Nanoparticles are now emerging as a main innovation driver in develop-
ing novel imaging applications, especially in nanomedicine. 

1     Origins of Nanoparticles in  Biomedical Imaging         

 The use of  nanoparticles dates   back to ancient history with clay minerals providing 
color in pottery [ 1 ], with gold and silver particles being incorporated in opulent 
ceramics by Mesopotamians [ 2 ]. The word “tattoo” comes from the Polynesian word 
“tatau,” where the Pacifi c Islanders have used nanoparticles for thousands of years 
to mark one’s genealogy, societal hierarchy, and personal achievements. These visual 
properties of  nanoparticles   were also documented by Michael Faraday, who was 
experimenting with different metal particles and their effects on light [ 3 ]. These 
nanoparticles are natural products from organic (e.g., polysaccharides), as well as 
inorganic elements (iron oxides). These specifi c applications revealed their unique 
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properties that led to detailed investigations to more systematically produce particles 
exhibiting the desired characteristics. 

 A major characteristic of  particles   of <100 nm is their ability to form colloids (i.e., 
lack of sedimentation when suspended in a liquid phase) [ 4 ]. To account for size, 
 nanoparticles   were initially termed ultrafi ne particles (1–100 nm in size) to contrast 
these with fi ne (100–2500 nm) and coarse particles (2500–10,000 nm). The term 
 nano  is derived from the Greek language, meaning “dwarf.” It was only added in the 
1990s to provide further emphasis on size as being a key characteristic that distin-
guishes these ultrafi ne particles from larger ones. This is refl ected in the defi nition of 
the International Union of Pure and Applied Chemistry (IUPAC), which determines 
a size between 1 and 100 nm as the key characteristic, although under certain circum-
stances  particles      larger than 100 nm can also behave like nanoparticles [ 5 ]. 

  Nanoparticles   have a long-standing tradition in biomedical  imaging  . The fi rst 
contrast agent was used in 1905 for X-ray imaging by Walter Cannon. For this, 
naturally occurring high-density metal salts, notably bismuth- or barium-based 
nanoparticles, were mixed with food to noninvasively visualize the mechanics of the 
digestive tract [ 6 ]. The generation of novel radioactive particles was a by-product of 
the nuclear arms’  development   that in 1946 was declassifi ed as part of the Atomic 
Energy Act for the civilian development of radioactive-based therapies and imaging 
[ 7 ]. Imaging of   198 Au colloids   was subsequently used to investigate its organ distri-
bution, revealing an accumulation in the kidneys, spleen, and liver [ 8 ]. This pro-
vided the fi rst imaging of the  reticuloendothelial system (RES)  . The fi rst specifi c 
nanoparticle preparations for electron microscopy consisted of natural horse spleen 
ferritin that afforded the specifi c detection of antigen [ 9 ]. With the development of 
 liposomes   in the 1960s, a new era was heralded in  nanoparticle   design in which 
controlled delivery of pharmaceutical compounds [ 10 ,  11 ] and the incorporation of 
imaging agents, such as  131 I-labeled albumin, became feasible [ 12 ]. 

 The 1970s saw a rapid expansion of the use of nanoparticles with their fi rst use 
for biomedical  imaging   of myocardial  perfusion      using  single-photon emission 
tomography (SPECT)   [ 13 ], as well as adaptation to other imaging modalities, such 
as near-infrared (NIR) optical imaging [ 14 ]. The rapid adaptation of computer 
tomography (CT) in hospitals and the requirement of contrast material, such as 
iodine [ 15 ], further stimulated nanoparticle research with evidence of their major 
impact in diagnostic radiology. The emergence of  positron emission tomography 
(PET)   was dependent on the generation of new radioligands that did not provide 
anatomical images per se, but were geared towards  molecular   targets [ 16 ]. One of 
the fi rst such developments visualized staphylococcal abscesses using  99 MTC- 
technetium liposomes [ 17 ]. In contrast to CT and  PET  , the emergence of magnetic 
resonance  imaging   (MRI)    was not dependent on contrast materials or tracer agents, 
as the magnetic relaxation properties of  1 H provided the signal for image construc-
tion. Nevertheless, in the late 1970s, it was discovered that small metallic  particles      
can infl uence this relaxation rate [ 18 ] and could be used to image the liver and 
spleen [ 19 ], as well as specifi c antigens [ 20 ]. In the mid-1990s, magnetic 
  nanoparticles   were approved by the FDA and have seen a plethora of uses in MRI 
[ 21 ], including clinical cell tracking [ 22 ].  
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2     The Emergence of a Synergy Between  Therapeutics   
and  Imaging   

 These developments provided not only the foundation for the rapid development of 
nanoparticle-based clinical  imaging      during the 1990s, but also new tools for basic 
scientists. Indeed, it marked the emergence of an interdisciplinary fi eld, where 
physicists were driving the advances in image acquisition, biochemists were engi-
neering new imaging agents, and biologists/clinicians were exploiting new frontiers 
of what could be visualized in living subjects [ 23 ]. Easy access routes of administra-
tion through ingestion or intravenous delivery suffi ced for most imaging require-
ments, such as the gastrointestinal tract and the  RES  . However, this afforded a 
limited penetration into tissue (and cells), where many pathological targets are 
found, especially in the brain where we have the blood-brain barrier and access 
through other methods is very limited. The pharmaceutical sciences faced a similar 
issue in terms of delivery of drugs and hence novel means were sought that could 
cross the vascular wall and permeate into tissues [ 24 ], as well as approaches to 
block uptake by the RES in order to prolong nanoparticle blood half-life, which is 
necessary for specifi c antigen-based  targeting   applications. 

Originally, Paul Ehrlich conceived of this approach as a “ magic bullet”   that will 
only affect those cells that are targeted [ 25 ].  Liposomes   developed in the 1960s 
suited this  nanoscopic   vision, but apart of the development of polymeric  nanoparti-
cles   little progress was seen in the development of nanoparticles for drug delivery 
until the 1990s, when several developments overcame fundamental challenges [ 24 ]. 
Foremost of all, a signifi cant obstacle for targeting of nanocarriers (i.e., material car-
rying drug for delivery), such as nanoparticles, was escaping the rapid uptake through 
the  RES  . A size of <200 nm facilitated retention in the bloodstream, but was insuf-
fi cient to provide adequate circulating time for extravasation into target tissues. Non-
covalent attachment or amalgamation of polyethylene glycol (PEG), so-called 
 PEGylation   [ 26 ], and its widespread adaptation were the fi rst major advances in 
targeting by creating a “stealth” mode for molecules to evade the host’s immune 
system and afforded the prolonged circulation of  nanoparticles   [ 27 ]. Active (e.g., 
antibodies) and passive (e.g., enhanced permeability retention) targeting approaches 
provided the second component to ensure that nanoparticles accumulate in a desired 
location [ 28 ]. Nanoparticles provide key characteristics for drug delivery, notably 
improved bioavailability through aqueous solubility (i.e., forming a colloid), 
increased blood circulation time, and potential for tissue and cell targeting [ 29 ]. 

 These advances in delivering therapeutics using nanoparticles cumulated in the 
realization that engineered  nanocarriers   could carry not only therapeutic drugs, but 
also contrast agents that would afford a localization and potential monitoring of such 
delivery [ 30 ]. This conceptual advance of therapeutics and diagnosis led to the for-
mulation of the portmanteau word theranostic at the start of the new millennium [ 31 , 
 32 ]. As with most nanoparticle drug delivery and imaging systems,  macrophages   
constituted the fi rst easy target [ 33 ], due to their natural properties to rapidly phago-
cytose particulate material. Further synergies also became apparent in that certain 
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drugs could be tagged with a radioligand [ 34 ,  35 ] and nanoparticles based on 
 elements, such as gold [ 36 ,  37 ], could provide a core technology platform for creat-
ing multicomponent, multimodal, and multifunctional agents [ 38 ]. Increasingly 
complex possibilities are emerging with multiple  imaging   moieties, stealth and tar-
geting functionalities, as well as  multiple   timed release of therapeutic drugs [ 39 ,  40 ].  

3     An Outlook on Challenges and Future Opportunities 

 One of the most signifi cant advances has been the rapid development of optical and 
ultrasound  nanoparticles   [ 41 ]. Especially the introduction of quantum dots, as well 
as the use of near-infrared probes and highly sensitive detectors, have now enabled 
 imaging   of deeply seated tissue structures [ 42 ], allowing clinical optical imaging 
[ 43 ]. The availability of calcium-sensitive agents, for instance, allows an in vivo 
imaging approach that bridges the gap between conventional single-cell electro-
physiological recording and macroscopic activity recording, such as functional 
 MRI   [ 44 ]. Light-sensitive  theranostic nanoparticles      can also be used to monitor 
reaching a treatment site, with a specifi c light wavelength triggering the release of 
drug in just this area, hence providing a very targeted treatment [ 45 ]. These 
approaches further lend inspiration to the development of probes for other modali-
ties, such as MRI, that currently still dominate the clinical arena. However, optical 
imaging is currently seeing a more rapid development of nanoparticles than any 
other biomedical imaging modality. The shift beyond near infrared reduces tissue 
light scatter and greater organ coverage will eventually dominate  biomedical imag-
ing   in smaller species to drive a deeper understanding of biology. Still, it remains 
unclear if optical imaging can indeed deliver on whole-organ imaging in larger spe-
cies, such as primates and humans. Modalities, such as MRI and  SPECT  , might 
hence still remain the dominating nanoparticle-based clinical  imaging   techniques. 

 Further challenges to clinical applications are the growing considerations for 
toxic side effects of nanoparticles, the so-called nanotoxicity [ 46 ]. Many of the 
constituent parts of nanoparticles do not exhibit  toxicity   in their bulk form, but due 
to the emergent properties at the nanoscale (e.g., increased cell membrane perme-
ation), cytotoxic effects can become apparent [ 47 ]. However, there is also support to 
indicate that the nanosize by itself is insuffi cient to determine toxicity and that a 
more detailed general consideration of particle toxicity is needed [ 48 ,  49 ]. The com-
bination of  nanoparticles   with biologicals, such as stem cells, further raises con-
cerns as to their potential to induce unwanted side effects that might only become 
apparent over time [ 50 ,  51 ]. An unanswered question remains if materials should be 
biodegradable and cleared over time or if biological inertness is more desirable [ 52 ]. 
Indeed, these issues raise concern regarding a premature clinical translation and 
what framework of evidence is needed to ensure safety [ 53 ]. Beyond the regulatory 
framework, the potential for scale-up and cost-effi cient production at an industrial 
scale will also require further investment and might refi ne quality control proce-
dures, especially in relation to monitoring potential adverse effects [ 54 ]. 
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 To conclude,  nanoparticles   are hence a powerful technology platform that affords 
the integration of  imaging   and drug delivery. Their increasing sophistication deliv-
ers exciting new opportunities to disentangle complex biological questions at the 
systems level [ 55 ], but also constitutes a major step forward to the concept of a 
“ magic bullet,”   where a drug can be delivered to a very focused area, and potentially 
even to specifi c single cells [ 56 ]. With the increasing number and versatility of 
probes for the various imaging modalities, the future for  biomedical imaging   prom-
ises to be exciting [ 57 ]. These multimodal and -functional nanoparticles are also 
likely to be the catalyst for an eventual unifi cation of diagnostic medicine and imag-
ing based on more specifi c and sensitive tissue- and fl uid-based biomarkers that 
improve early disease detection and classifi cation.     
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