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Abstract. A discrete-time density dependent model is studied by
Sophia et al. in [3]. In this paper, we use this model and try to develop
it by adding Allee and Refuge effects. With Allee Effect the intraspecific
cooperation, with Refuge Effect environment heterogeneity are taken into
account. We make the stability analysis of the resulting models together
with some numerical simulations.
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1 Introduction

For discrete time one dimensional population modelling, there are two types: linear
and nonlinear. First is linear model in which growth rate can be about birth, death,
immigration, emigration rate and it is independent from the density. These models
are in the form: xn+1 = rxn, where r is growth rate and it is constant.

The second one is nonlinear model in which growth is dependent to density.
A population model is said to be density dependent if the per-capita growth
rate of the population changes according to the density. The general form is
xn+1 = f(xn)xn. The classical approach suggests that f, namely fitness function
(per-capita growth rate), should be chosen as a decreasing function because of
intraspecific competition and capacity constraint.

When host parasitoid interaction is considered, parasitoid density heavily
depends on host population and generally can not live without their host.
So, adding density dependence to the host population makes the model more real-
istic. To be density dependent, in the absence of parasitoid the host population
should be in the form of nonlinear one dimensional model.

An insect parasitoid is an organism whose larvae develops in or on its host
(insect), damages to it and kills it eventually. They are smaller than host and spe-
cialized in their choices. Since they usually target certain groups, in the absence
of their target group they can not survive. Using these biological properties, host-
parasitoid interaction can be modelled mathematically as the following form:

Ht+1 = bHtf(Ht, Pt)
Pt+1 = cHt[1 − f(Ht, Pt)]

(1)
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In this system of equation Ht denotes the number or density of host (prey)
species, Pt denotes the density (number) of parasitoid (predator) at time t. Time
period can be in terms of hours, days, months or years. b > 0 is the parameter of
reproduction rate of host, c > 0 is the parameter denoting average number of egg
(larvae) released by parasitoid on a single host. f(Ht, Pt) stands for probability
of not to be parasitized and 1 − f(Ht, Pt) is the probability of being parasitized
at time t.

In 1980, Wang [1] asked a remarkable question: “Does the ordering of density
dependence and parasitism in the host life cycle have a significant effect on the
dynamics of the interaction?” May et al. tried to answer this question giving three
different model types according to the order and make numerical simulations of
these models in [2].

2 The Model

May et al. [2] concluded that the sequence of density dependence and host para-
sitoid interaction have a marked effect on the population dynamics by examining
three different host-parasitoid model. Another conclusion is that the most fre-
quent choice will be between Model2 and Model3.

For the case given as Model3, parasitism acts first, followed by the density
dependence but only on the survivors from parasitism (i.e. Htf(Pt)) and the
model type is:

Ht+1 = Htg(Ht, f(Pt))f(Pt)
Pt+1 = Ht[1 − f(Pt)]

(2)

Letting f(Pt) = e−bPt and g(Ht, f(Pt)) = λ
1+kHte−bPt

and adding β multiplier
to the second equation one can get:

Ht+1 = λHt

1+kHte−bPt
e−bPt

Pt+1 = βHt[1 − e−bPt ]
(3)

Sophia et al. use this model in [3] and make the stability analysis. In model
(3) note that the host population in the absence of the parasitoid is modeled by
Beverton-Holt equation λH

1+kH . Beverton-Holt Model is obtained if a decreasing
rational function is used as fitness (density function). β > 0 is the parameter
denoting average number of egg (larvae) released by parasitoid on a single host.
All parameters are positive.

2.1 Stability Analysis of Model (3)

Theorem 1. For the system (3)
(i) if λ < 1 the only fixed point is (0,0)which is locally asymptotically stable.
(ii) if 1 < λ < 1 + k

βb there are two fixed points: (0,0) is unstable and (λ−1
k ,0) is

locally asymptotically stable.
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(iii) if λ > 1+ k
βb there are three non-negative fixed points which are (0,0),(λ−1

k ,0)
and coexistence fixed point (H∗,P ∗) which can not be found explicitly.
(iv) if λ = 1, (0,0) coincides with (λ−1

k ,0) and it is unstable.
(v) if λ = 1 + k

βb then (λ−1
k ,0) is unstable.

Proof. (i), (ii) and (iii) can be written from [3].
(iv) If λ = 1 the eigenvalues are λ1 = 1 and λ2 = 0.
We can use Center Manifold Theorem [4]. This theorem can be applied for the
fixed point (0, 0). Since our fixed point is (0, 0) let H=x, P=y.

First let us write our system in the following way:

xn+1 = A xn + f(xn, yn)
yn+1 = B yn + g(xn, yn)

In this case A=1, B=0 and the remaining parts are f and g. Our eigenvectors
are unit vectors so the h function can be in the form:

h(x) = c1x
2 + c2x

3 + O(x4).

The following functional equation will be solved n order to find c1 and c2:

h[Ax + f(x, h(x))] − Bh(x) − g(x, h(x)) = 0

In our case

f(x, y) = x(1−by+ b2y2

2 )

(1+kx(1−by+ b2y2
2 ))

− x

g(x, y) = βx(by − ( b2y2

2 )
(4)

The result is c1=0 and c2=0.
Plugging these values, now we are interested in the new equation:

P (x) = x − kx2 + k2x3 − k3z4 + O(z5)

Since P ′(0) = 1 and P ′′(0) = −2k �= 0, we conclude that (0, 0) is semistable
(unstable) if λ = 1 (Fig. 1)

(v) if λ = 1 + k
βb then the eigenvalues λ1 < 1 and λ2 = 1.

To use Center Manifold Theorem let x = H − (λ−1
k ) and y = P .

The corresponding Jacobian Matrix is

J∗ =
( 1

λ
b−λb
λk

0 (−1+λ)bβ
k

)

We can rewrite our system of equations:

xt+1 = 1
λxt + b−λb

λk yt + f(xt, yt)
yt+1 = (−1+λ)bβ

k yt + g(xt, yt)
(5)

Following theorem will be used to find the h function.
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Fig. 1. The map P on the center manifold y = h(x)with k=2

Theorem 2. (Invariant Manifolds Theorem) [9], see also [10,11] Suppose that
F ∈ C2. Then there exist C2 stable W s and unstable Wu manifolds tangent to
Es and Eu, respectively, at X = 0 and C1 center manifold W c tangent to Ec at
X = 0. Moreover, the manifolds W c, W s, and Wu are all invariant.

Since invariant manifold is tangent to the corresponding eigenspace by
Theorem 2, let us assume that the map h takes the form

h(y) =
−b

k
y + c1y

2 + c2y
3 + O(y4).

Solving the functional equation:

1
λ

h(y) +
b − λb

λk
y + f(h(y), y) = h(y + g(h(y), y))

we get

c1 = −2λb3β−b2k+λb2k)
2(−1+λ)k2

c2 = −3λ2b5β2+λ2b4βk
(−1+λ)2k3

(6)

The new equation is:

P (y) = y − b2βy2

k
+

(
b3β

2k
− bβ

(
2λb3β − b2k + λb2k

)
2(−1 + λ)k2

)
y3

+

(
b2β

(
2λb3β − b2k + λb2k

)
4(−1 + λ)k2

+
λ2bβ

(
3b5β2 + b4βk

)
(−1 + λ)2k3

)
y4 + O[y]5

P ′(0) = 1 and P ′′(0) = −2k �= 0. So, the fixed point (λ−1
k , 0) when λ > 1

and (−1+λ)bβ
k = 1 is semistable (unstable) (Fig. 2).
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Fig. 2. The map P on the center manifold x = h(y) with λ = 3, k = 2, b = 0.5, β = 2

2.2 Numerical Simulations for the Model 3

In this section numerical values are given to the parameters λ, b, k and β.
According to these values coexistence fixed points are obtained approximately.
And their stability behavior are investigated for these parameter values.

The coexistence fixed point can not be found explicitly. However it can be
written as (λy−1

ky , logy
−b ) for 0 < y < 1 where y = e−bP ∗

. And it exists if λ > 1+ k
βb .

So, the following parameters are chosen in order to satisfy this condition.
For the parameters λ = 3, b = 0.4, k = 0.2, β = 0.3 the system will be

discussed. (0, 0) fixed point always exists. Since λ > 1 the other fixed point
(λ−1

k , 0) will be taken into consideration, but it is unstable. Finally, there will
be coexistence point (H∗, P ∗) when λ = ebP + kP

β(1−e−bP )
. Although we can not

solve it directly, using numerical approximation we get fixed point (H∗, P ∗) ≈
(9.06, 0.43) which is locally stable (Fig. 3).

Fig. 3. Plane diagrams and time series diagrams with the parameters λ = 3, b = 0.4,
k = 0.2, β = 0.3 (Color figure online)

Next, the system will be discussed for the parameters λ = 5, b = 0.7, k = 0.2,
β = 0.3 (0, 0) and (λ−1

k , 0) are again unstable. For these parameter values, the
coexistence fixed point is (H∗, P ∗) ≈ (8.22, 1.73) which is unstable (Fig. 4).
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Fig. 4. Plane diagrams and time series diagrams with the parameters λ = 5, b = 0.7,
k = 0.2, β = 0.3 (Color figure online)

3 The Model with Allee Effect

Allee Effect is a causal relationship between the number of individuals in a pop-
ulation and their overall individual fitness [5]. Here just a simple idea works:
“The more the merrier” [6]. The classical approach focuses on the intra specific
competition. Because of the limited capacity and resources, if the population is
small then each individual can get much more amount of resources. But the clas-
sical idea is lacking the term cooperation and the cost of rarity. If the population
is too small, individuals have some difficulties on hunting, protecting themselves,
foraging and even finding mates to reproduction. These difficulties are caused
by lack of cooperation and can be thought as the cost of rarity [7].

Although there are many functions differ greatly in their ability to describe
demographic Allee effects, for the Allee effect due to the mate limitation
I(x) = sx

1+sx , where s is an individual’s searching efficiency, is used. When Mate
Limitation Allee Effect is added to the host population in the model we get:

Ht+1 = λHt

1+kHte−bPt
e−bPt sHt

1+sHt

Pt+1 = βHt[1 − e−bPt ]
(7)

3.1 Stability Analysis of Model (7)

Theorem 3. The system (7) has
(i) (0, 0) as non-negative fixed point for all values of parameters and always
locally asymptotically stable.

(ii) two extra non-negative fixed points (−k−s+λs−
√

−4ks+(k+s−λs)2

2ks , 0) and

(−k−s+λs+
√

−4ks+(k+s−λs)2

2ks , 0) if λ > 1, s ≥ 2
√

λk2

(−1+λ)4 + k+λk
(−1+λ)2 . The first one

is unstable for all parameter values while the second one is locally asymptotically

stable if b <
√

ks
β2 , 2

√
k
s + k+s

s < λ < b2β2+bβk+bβs+ks
bβs .

(iii) two extra positive fixed points (coexistence type) which can not be found
explicitly but can be written as:
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(−s−kl+λsl−
√

−4ksl+(s+kl−λsl)2

2ksl , logl
−b ) and (−s−kl+λsl+

√
−4ksl+(s+kl−λsl)2

2ksl , logl
−b )

where l = e−bP ∗
, if λ > 2

√
k
s + k+s

s , 2
√

λks3

(k−λs)4 + ks+λs2

(k−λs)2 < l < 1

Proof. Consider the system (7). The fixed points of this system are the solutions
of the following equations:

H = λH
1+kHe−bP e−bP sH

1+sH

P = βH[1 − e−bP ]
(8)

(i) (0, 0) is a solution obviously. At this point the jacobian matrix is:
(

0 0
0 0

)
.

So it is stable [12].
(ii) Now for H �= 0 (8) can be written:

1 = λ
1+kHe−bP e−bP sH

1+sH

P = βH[1 − e−bP ]
(9)

By letting P = 0, we find the other fixed points.

(−k−s+λs−
√

−4ks+(k+s−λs)2

2ks , 0), (−k−s+λs+
√

−4ks+(k+s−λs)2

2ks , 0) are other solu-
tions. Both of them are positive for the parameter values k > 0, λ > 1,
s ≥ 2

√
λk2

(−1+λ)4 + k+λk
(−1+λ)2

By plugging (−k−s+λs−
√

−4ks+(k+s−λs)2

2ks , 0) to the matrix J we get:

J∗ =

⎛
⎝1 +

√
−4ks+(k+s−λs)2

λs

b
(

−k+s−λs+
√

−4ks+(k+s−λs)2
)

2λks

0 − bβ
(

k+s−λs+
√

−4ks+(k+s−λs)2
)

2ks

⎞
⎠

The corresponding eigenvalues are λ1 = − bβ
(

k+s−λs+
√

−4ks+(k+s−λs)2
)

2ks and

λ2 = 1 +
√

−4ks+(k+s−λs)2

λs .

λ2 > 1 for every values of parameters, so (−k−s+λs−
√

−4ks+(k+s−λs)2

2ks , 0) is
unstable.

By plugging the other fixed point (−k−s+λs+
√

−4ks+(k+s−λs)2

2ks , 0) to the J we
get:

J ∗ ∗ =

⎛
⎝1 −

√
−4ks+(k+s−λs)2

λs − b
(

k+(−1+λ)s+
√

−4ks+(k+s−λs)2
)

2λks

0
bβ
(

−k+(−1+λ)s+
√

−4ks+(k+s−λs)2
)

2ks

⎞
⎠

λ1 = 1 −
√

−4ks+(k+s−λs)2

λs and λ2 =
bβ
(

−k+(−1+λ)s+
√

−4ks+(k+s−λs)2
)

2ks .

|λ1, 2| < 1 if s > 0, k > 0, β > 0, 0 < b <
√

ks
β2 , 2

√
k
s + k+s

s < λ <

b2β2+bβk+bβs+ks
bβs
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(iii) Finally, if H �= 0 and P �= 0 letting l = e−bP ∗
,

(−s−kl+λsl−
√

−4ksl+(s+kl−λsl)2

2ksl , logl
−b ) and

(−s−kl+λsl+
√

−4ksl+(s+kl−λsl)2

2ksl , logl
−b ) are fixed points.

To be positive s > 0, k > 0, λ > 2
√

k
s + k+s

s , 2
√

λks3

(k−λs)4 + ks+λs2

(k−λs)2 < l < 1

3.2 Numerical Simulations for the Model 7

For the parameters λ = 3, b = 0.4, k = 0.2, β = 0.3, s=5 the system will
be discussed. These parameters are chosen because for these values the only
stable fixed point is one of the coexistence cases. When we solve this system
approximation methods there exists different non-zero results according to the
given neighbourhood of the solution. Some of them are (9.69687,−1.35339 ×
10−15), (0.103126, 2.19998 × 10−18) and (8.93, 0.35). The first two are in fact
corresponds to (H, 0), because of solving it with approximation method it gives
these results with an error.

H = −k−s+λs−
√

−4ks+(k+s−λs)2

2ks = 0.103

H = −k−s+λs+
√

−4ks+(k+s−λs)2

2ks = 9.7
(10)

The positive fixed point, that is approximately (8.93, 0.35), is locally asymp-
totically stable for these parameter values (Fig. 5).

Fig. 5. Plane diagrams and time series diagrams with the parameters λ = 3, b = 0.4,
k = 0.2, β = 0.3, s=5 (Color figure online)

Next, the system behavior will be discussed for λ = 5, b = 0.7, k = 0.2,
β = 0.3, s=5. (H, 0) cases are unstable as well as the coexistence case (8.11,
1.69) is unstable again this time (Fig. 6).

4 The Model with Host Refuge

Refuge Effect is another mechanism that makes the model more realistic. When
we are talking about competitive, prey- predator or host-parasitoid models, a
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Fig. 6. Plane diagrams and time series diagrams with the parameters λ = 5, b = 0.7,
k = 0.2, β = 0.3, s=5 (Color figure online)

simple question arises: “Are there some individuals protecting themselves from
the damage given by other species by sheltering ?” If the answer is yes, then
Refuge Effect should be added to the model. Refuge effect refers to the reality
that a proportion of the prey, host or the competitors can have the state of
being safe or sheltered from pursuit, danger, or difficulty. The environment is
not perfectly uniform and heterogeneity of the environment is the main cause
of the Refuge Effect. Part of the argument is that refuges serve as sites for
maintaining vulnerable species that might otherwise become extinct. Such sites
also indirectly benefit the exploiting species since a constant spillover of victims
into the unprotected areas guarantees a constant food source [8].

Now, if the refuge effect is added to the model that part of the host (insect)
population may be less exposed and thus less vulnerable to attack. The refuge
effect is added to the model (7) as a proportion to make it simpler. A fraction
1 − d within the host refuge the resulting model is:

Ht+1 = (1 − d) λHt

1+kHt
+ d λHt

1+kHte−bPt
e−bPt

Pt+1 = βdHt[1 − e−bPt ]
(11)

4.1 Stability Analysis of Model (11)

Theorem 4. The system (11) has
(i) (0, 0) as non-negative fixed point for all values of parameters which is locally
asymptotically stable if λ < 1.
(ii) (λ−1

k , 0) as a non-negative locally asymptotically stable fixed point if 1 <

λ < 1 + k
βb

(iii) (−k+ky−λky−
√

4k2y(−1+λ−λd+λdy)+(−k−ky+λky)2

2k2y , logy
−b ) as the coexistence

fixed point where y = e−bP ∗

Proof: (i), (ii) It is obvious that when P = 0 (in the absence of parasitoid the
refuge effect is not meaningful. When there is no parasitoid there will be no
refuge as well. As a result the model will show the same properties with the
model 7.
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(iii) The refuge effect has meaning and importance only in the coexistence
case. Letting again y = e−bP ∗

, one can find the coexistence fixed points.

(−k+ky−λky−
√

4k2y(−1+λ−λd+λdy)+(−k−ky+λky)2

2k2y , logy
−b ) is positive in the con-

dition λ > 1
1−d+dy in addition to positive parameters with 0 < y < 1 and

0 < d < 1.
On the other hand, under the condition positive parameters and 0 < y < 1

and 0 < d < 1, (−k+ky−λky+
√

4k2y(−1+λ−λd+λdy)+(−k−ky+λky)2

2k2y , logy
−b ) can not

be positive.

4.2 Numerical Simulations for the Model 11

For the parameters λ = 10, b = 0.4, k = 0.2, β = 0.3, d = 0.2 the system will
be investigated. Here, λ is chosen bigger than the other numerical simulations
because the coexistence fixed point condition (λ > 1

1−d+dy ) is difficult to hold
otherwise. According to these parameter values there will be coexistence point
(H∗, P ∗) ≈ (44.84, 0.37) which is locally stable sink (not spiral this time) (Fig. 7).

Fig. 7. Plane diagrams and time series diagrams with the parameters λ = 10, b = 0.4,
k = 0.2, β = 0.3, d = 0.2 (Color figure online)

Next giving values λ = 10, b = 0.7, k = 0.2, β = 0.3, d = 0.2 the system will
be discussed. Here, (H∗, P ∗) ≈ (42.78, 1.88) which is locally stable (spiral this
time) (Fig. 8).

5 Discussion

In this paper a discrete-time density dependent host parasitoid model is ana-
lyzed. Classical approach of density dependence brings intraspecific competition
to the model. Because all the resources are limited, there should be capacity
constraint and a decreasing growth rate function. On the other hand, when pop-
ulation is already small then limited resources is not a problem anymore but
the problem is the individuals will have difficulties on hunting, protecting them-
selves, foraging and even finding mates to reproduction. We add mate limitation
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Fig. 8. Plane diagrams and time series diagrams with the parameters λ = 10, b = 0.7,
k = 0.2, β = 0.3, d = 0.2 (Color figure online)

Allee effect to the model and analyze it in this work. Moreover, since homo-
geneous environment assumption is not realistic, Refuge effect is added. The
further work may be about adding both effects at the same time.

With this work, we conclude that (0, 0) is stable for model (3) when growth
rate is small (λ < 1) while for model (7) it is locally asymptotically stable for
all parameter values. In this model if the population of host is small enough at
the moment, then it will go to extinction even if the growth rate λ is big. Indeed
this situation is caused by the strong Allee Effect. Note that some authors make
a distinction between strong Allee effect and weak Allee effect: a strong Allee
effect refers to a population that exhibits a critical size or density below which
population declines to extinction and above which it survives. Here, when the
host population is small, it goes to 0 eventually. As a result parasitoids become
extinct, too. That is why (0, 0) is locally stable whatever the parameter values
are.

For Both Model (3) and (7), under some conditions on parameters, hosts
population can be positive when parasitoid population is 0. For this situation
growth rate is neither big nor small indeed there will be survivor insects but their
number is not enough to feed their parasitoids. Again for both models coexistence
cases are possible but the stability changes according to the parameters.

Finally for model 11, since no parasitoid means no refuge we can simply use
model 3 for both local and global stability when there is no parasitoid. That is
why without doing any extra calculations we use the same results with model 3.

Otherwise mathematically we can show that there is coexistence case. But
finding it numerically with approximation methods is difficult because of the
condition λ > 1

1−d+dy that is needed to be positive. We should choose bigger
λ values than the other models in order to be satisfied this condition. It is
biologically meaningful because already some proportion of the host population
can not be attacked because of the refuge effect, if in addition to this, growth rate
is small then for parasitoid it is difficult to find host to feed on them. When there
is coexistence case, since some host sheltered from the pursuit of parasitoid, we
will have bigger host population in the fixed point.
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