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Abstract. Cloud systems allow to run parallel applications using solu-
tions with distributed heterogeneous architecture. Software develop-
ment for heterogeneous distributed environment requires a module-based
design. The components in such module system are connected by means
of telecommunications network enabling message passing. This article
describes an interaction model for components in distributed applica-
tions. The model was designed based on the paradigm of Variable Speed
Hybrid Petri Nets and allows to analyse system performance at vari-
ous tiers: selection of the optimum approach to load balancing between
components; making scaling decisions to enhance performance of cer-
tain modules; fine-tuning the interaction between system components.
The model is not contingent on particular tools a user might employ
to implement a solution; it also provides a monitoring data integration
functionality.

The model contains descriptions of standard messaging patterns
linking components of distributed applications. These patterns include
request-reply and publish-subscribe. Load balancing algorithms for var-
ious schemes of these patterns usage have been developed for a cloud
environment.

Keywords: Cloud services · Messaging patterns · Systems architec-
ture · Petri nets · Messaging middleware · Distributed applications

1 Introduction

Cloud platforms have become a flexible computing environment that can run a
wide range of applications. They allow dynamic allocation and control of het-
erogeneous computing resources, which means computing can be provided as a
service. This enables scaling of active applications within a common network of
data centres located all around the world.
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There are tasks that can be solved on an individual cloud platform. However,
creation of a hybrid cloud computing environment is also relevant [4,5,9,10].
Such environment pools together the resources of private data processing centres
and commercial suppliers of cloud services.

Cloud platforms can solve a host of tasks which are fundamentally different.
At first approximation, we can single out the following three types: 1. handling
many small tasks (e.g., mass calculation); 2. processing large data arrays; 3.
calculation of a single big task, represented be a coherent system of control
commands that changes its state after each new command is introduced. These
types of tasks set out different requirements for load balancing and scaling.
Remarkably, the first type is the only one that allows easy scaling even within a
grid. On the whole, however, cloud environment is impossible to master without
tools enabling interaction between components [12,15–19].

This paper is focused on components of distributed applications that run
on different computing resources united in a single computing network. These
components must function in a continuous and uninterrupted way; moreover,
they require constant interaction and information exchange. As a rule, modular
solutions allow usage of computing resources with adjustable capacity which can
be altered while the task is being solved. Coordination and load balancing are
a major challenge for communication systems that connect modules with each
other. This paper offers a mathematical model allowing formal description of
such systems. The validity of the model is not contingent on particular techno-
logical solutions.

2 Related Work

Petri nets are employed to describe and analyze the features of distributed com-
munication systems.

The use of Generalised Stochastic Petri Nets (GSPN) for messaging mid-
dleware in broker-based architecture was discussed by Fernandes et al. based
on the case of IBM Web Server solution [8]; the major attention was given to
publish-subscribe and message queuing patterns. The Coloured Petri Net (CPN)
was later used by Fahland and Gierds [7] to develop models allowing analysis of
Enterprise Integration Patterns (EIP) described in [14]. Some of these models can
classify as middleware for message passing: Pipes and Filter, Message Router,
Message Translator, Message Endpoint, Recipient List, Aggregator, Request-
Reply, Channel Adapter. However, load balancing and coordination of multiple
sending/receiving nodes were not addressed; neither were the temporal aspects of
message passing. We should note, that most of modern message-passing systems
by default employ Round-Robin to perform load balancing. The technique uti-
lizes the algorithm that partly correlates with the one presented in [21], where
it is used to describe Ethernet packet switching. In this paper, we took into
account the load balancing description model contained in [21]. The approach to
formalization of middleware systems description was mentioned in [22]; the work
offered a transition from the concept ‘API plus informal prose’ to the concept
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‘API plus formal description’. In [22], there was also provided an example of
formal description for Common Object Request Broker Architecture (CORBA).
However, this method described only the behaviour of the system, without regard
to its mathematical dimension. Therefore, it was not supported by the expert
community.

Wester-Ebbinghaus [2] used a web-service to give an example of a full-fledged
programme whose code is based on a Petri nets model. The stability problem in
two particular classes of queuing systems was analysed by Konigsberg [20]; the
analysis involved timed Petri nets, Lyapunov methods, and max-plus algebra.

So, we demonstrated there is a wide range of research works using Petri
nets to design a formalized approach to the architecture of message-passing
software. The task is handled in terms of both the internal structure and an
outside observer which analyzes the system’s components. However, most of
the models of message passing and load balancing limit themselves to one of
the following options: they either examine broker-based architecture (i.e., the
tasks are solved externally), or analyze separate client/server pairs. As a result,
the failure of interacting components remains largely neglected. Moreover, there
is one more issue that is overlooked: the functioning of systems which include
many modules communicating with each other and concurrently running various
message-passing patterns, scaling methods, and balancing strategies.

3 The Interaction Model for Components of Distributed
Application Architecture in a Cloud Environment

This paper describes a model specifying components interaction in a distrib-
uted application architecture in a cloud environment. The model was built
using message-passing patterns allowing to directly link computing nodes. The
patterns used in the model are available in ZeroMQ1 [13,23] and NamoMsg2

systems: request-response, publish-subscribe and pipeline. These solutions are
widely used by large companies to solve a broad variety of calculation tasks:
from high-energy physics (e.g., by European Organization for Nuclear Research,
CERN) to independent business applications [1,6]. Our model is mainly distin-
guished by the opportunity to involve an outside controller. The controller can
allocate additional computing load, invoke or stop service system modules, and
monitor interaction in the service network. Introduction of the controller allowed
a major optimization of the model’s logic.

The model accommodates patterns enabling forwarding of large messages
split into sets of fragments. In essence, we are speaking of data streaming sup-
ported by load balancing functionality. We also examine load balancing for the
cases requiring inversion of control (i.e., when a client needs to maintain connec-
tion to a particular server for an unspecified number of request/reply cycles).

The formal description of the systems in question is generally performed
using Petri nets, whose apparatus provides a rich arsenal of means. To select the
1 http://zeromq.org/.
2 http://nanomsg.org/.

http://zeromq.org/
http://nanomsg.org/
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ones suited for our task, we analyzed typical features of distributed systems: the
same channels are able to pass various types of messages; the time needed for
message passing correlates with the capacity of communication channels between
the nodes; possible data loss while delivering messages; temporal unavailability
of certain components; connection loss between modules according to Brewer’s
conjecture [11]. Petri nets allow to produce a valid formal model reflecting this
particularities. A detailed mechanism of such description is available in Colored
Extended Variable Speed Hybrid Petri Nets (VHPN).

We designed a model based on the principles of formalism and graphical
representation outlined in [3].

Noteworthily, there is a crucial issue that should be resolved prior to the
development of the model: the mark symbol for VSPN must be bound to any
message forwarded within the system, unless explicitly stated otherwise. This
binding is of paramount importance for the case under review.

3.1 The Model of the Architecture Component ‘The Choice
of a Message Receiver’

Let us we consider message sending from a client to one of the equivalent servers.
The examined libraries employ the Round-Robin algorithm to balance the load
between servers at the side of the client. The algorithm for automatic balancing
using Petri nets is given in Fig. 1.

Round Robin Algorithm Targets

Sender

P2

P1

· · ·

Pn

T1

T2

· · ·

Tn

Fig. 1. The algorithm for automatic selection of a receiving node from an array of
servers.
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3.2 Models of the Architecture Component ‘Controlling Message
Passing When Nodes are Tuned Off or Overloaded’

Clouds offering IaaS allow to scale computing resources on running systems.
However, the budgets of end users are not unlimited. Therefore, it is sound to
make an estimate of a distributed system’s capabilities that is, to calculate the
maximum number of server computing nodes available to the end users; and to
analyze the system operation in case of potential shutdown of nodes.

The design of a module incorporated into the client’s load balancing system
for message queuing is shown in Fig. 2. The design provides for a possible shut-
down or failure of a remote server. Here the mark is responsible for the state
of the remote node. If the mark is ‘turned off’, the Round-Robin algorithm will
skip this node when sending a message.

In

On Off

NextNodeOut

Fig. 2. The model for automatic skipping of dysfunctional nodes while sending
messages.

Confirmation of message receipt and processing is an important mechanism
which can be easily modeled using Petri nets (Fig. 3). This can be implemented
by means of inhibitor arcs and a function of time that describes transitions
between sending and receiving nodes. However, such mechanism is not easy to
put into practice.

Here it is the server that must response to message loss or processing failure.
This is the major difference from the model where a server node is excluded
from the sending list by the client itself. As a result, a server’s failure or slow
response due to overload can be communicated to the client by means of only
two strategies of inhibitor arcs behaviour:

– Temporal waiting for confirmation of message receipt by a server node;
– Outside control mechanism that monitors the client’s and the server’s nodes;

it should be capable of initiating the message resend.
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Round Robin Logic

Worker Logic

Sender

Work(t)

IsDone(t)

Incoming Tokens

Outgoing Tokens

Outgoing Messages

2
/

Fig. 3. The model for confirmation of message receipt and successful processing.

The former strategy can result in multiple resending of one and the same
message to all server nodes available. This might be the case, if the server node or
the network are overloaded and cannot promptly notify the client about receipt
and processing. This situation can be critical for the whole system.

The strategy described is implemented in broker-based messaging systems.
Let us examine how it works in RabbitMQ3 broker-based solution [24] which
uses the wide-spread Advanced Message Queuing Protocol, or AMPQ4 [25]. The
client and the server are connected through a broker which forwards the client’s
messages to the server. If we use the receipt confirmation strategy, the broker
subsequently resends the client’s query to each of subscriber servers. The broker
utilizes the Round-Robin balancing algorithm to go over the servers until the
confirmation is received within the timespan set by the client. In other words, if
no confirmation is received in a due time, the message is sent to be processed by
another potential node. The system developer can set the waiting time before
the messages are sent, but this approach reduces the system’s throughput by
more than two orders of magnitude5.

The latter strategy requires an external controller and cannot be used as an
out-of-the-box solution within the message-passing systems under review. The
core features of such controller are described below as a general model, flexible
enough to suit a variety of concrete solutions.

3.3 The Model of External Controller in Message Passing

The peer-to-peer networks provide little practical opportunities for using an out-
side controller. The reasons include their unlimited size and unlimited remoteness
of computing nodes. Cloud platforms are more well-suited for the purpose: they

3 http://www.rabbitmq.com/.
4 http://www.amqp.org/.
5 http://www.rabbitmq.com/confirms.html.

http://www.rabbitmq.com/
http://www.amqp.org/
http://www.rabbitmq.com/confirms.html
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are hosted by particular data processing centres, which allows monitoring of the
nodes’ operation.

Hybrid cloud systems use geographically distributed computing resources and
a network of data processing centres. In such systems, controlling components
can be separated, their parts being bound to certain locations. This branch of
Computer Science requires further study, which should involve laborious efforts
and a large number of versatile resources. For this reason, we will restrict our
analysis to the use of our model for mass message passing. We will not comment
upon such issues as scaling and bidirectional communications analysis.

The choice of a receiving server is best performed by an outside controller
deployed in the cloud. The model thereof is illustrated in Fig. 4. It enables
the choice of an appropriate receiver for each message sent. The controller uses
the Round-Robin algorithm to evaluate load balancing in the whole system.
In the model of the architecture component ‘choice of a message receiver’ (see
Picture 1), each client independently performs the choice of the receiving server. If
the number of servers is limited, such solution may result in an uneven load and a
system failure. The problem is solved, if we use a controller that monitors message
passing from clients to server nodes.

Sender Sender

· · ·

· · · · · ·

· · ·

· · ·

Cloud Controller

Array of Servers

· · · · · ·

Fig. 4. The controller-based model of message passing from clients to a bunch of server
nodes.



Petri Nets for Modelling of Message Passing Middleware in the Cloud 397

This solution has a drawback: the system relying on an outside controller
and the Round-Robin load balancing algorithm will send each message at least
three times as slow as compared to client-side balancing. The external controller
node will need to collect data from each sending node in every case of message
passing.

However, the outside controller opens up new load balancing opportunities.
There are strategies allowing to optimize the number of messages required by
the controller for proper operation, and its impact on the system in general:

– heartbeat tool used to communicate the statistics of the nodes’ functioning;
– external (system-based) and internal utility programmes monitoring the

nodes’ work;
– loading one node to a full capacity before the load is distributed to the next

node.

These external tools can be introduced to the load balancing system as an
extension to the model in Fig. 4.

3.4 The Load Balancing Model for Data Streaming

The model in Fig. 5 contains a mark that is forwarded from the client to the
server. The mark is a positive number, not necessarily an integer, that reflects
the state of the data stream. The load balancing in this model relies on a counter
of the streams transmitted to each server. The data are streamed to the least
loaded server.

The streams balancing system can be also included into the cloud controller
model displayed in Fig. 4. Moreover, the final model can accommodate all the
extensions mentioned above.

Weighted Round Robin Algorithm Targets

· · ·

P1

· · ·

Pn

· · ·

1

Sender

· · ·

min(P )/

min(P )/

min(P )/

Fig. 5. The load balancing model for data streaming.
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3.5 Bidirectional Communication Model

A message exchange dialogue is an important tool of nodes interaction. For
example, the control over a client’s movements is given to a navigator that
is, a particular instance of an external server. Until the client arrives to the
specified point, it notifies the server about every command executed. Such long-
term bilateral communication does not comply with the Round-Robin algorithm
going from one server to another. In this case, the initial task is known to the
first server only. Therefore, it is this server that should track the changes in the
object it interacts with.

The dialogue model between the client and the server is provided in Fig. 6.
Two colors are used:

– EndT the color indicating a message ending the dialogue;
– T the color indicating any other message.

ServerClient

Start

End

Consume(t)

NewMessage

Response

Send(t)

Send(t)

Received

NewMessage

Consumed

ShallStop

< T >

< T >

< T >

< T,EndT >

< T > < T > < T > < T >

< EndT >
< EndT >

< T >

< T, ?EndT >
< T, ?EndT >

Fig. 6. The model of bidirectional communication.

The interaction continues until the server signals the client to exit. Impor-
tantly, the system can include a server activity check. In this case, the interaction
will end, if the server shuts down. However, a correct exit from the dialogue is
only possible at the level of a full-scale system, based on a particular business
logic. For this reason, it cannot be fully presented here.

The model shown in Fig. 7 can be applied to load balancing in long-term
bidirectional communications. It can be deployed at the level of the outside
controller in order to monitor multiple clients

3.6 Publish-Subscribe

The model of message passing to many clients is shown in Fig. 8. Every node in
the system has two options: it is either a subscriber, or does not receive messages.
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Targets
Cloud Controller

Client · · ·

P1

· · ·

Pn

· · ·

StreamEnded

· · ·

StreamEnded

· · · · · ·

min(P )/

min(P )/

min(P )/

Fig. 7. The load balancing model for long-term dialogues.

Publisher
Subscriber

Messages to send

Active

Received Messages

YesNot

Subscribed?

Fig. 8. The model of Publish-Subscribe pattern.

For hybrid cloud systems, it is important to allow message passing to network
segments which are very remote from the publisher or require pre-processing of
messages.

The model including a broker which forwards messages beyond the cloud
system can be easily presented using a publisher with a subscriber which is
retransmitting received messages to peers local to its cloud.

3.7 Remarks

The system’s work can be modeled using the function of time and the function
of message length, provided we know data transmission speed. The system can
be described using several layers corresponding to data transmission channels
distinguished by name or by message type.
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4 Conclusions

We offered a model which allows to describe temporal and quantitative qualities
of the systems examined. These qualities are described in conjunction with logi-
cal ties between both system components and their particular implementations.
We also reviewed the major interaction patterns of modular distributed pro-
grammes executed in a cloud computing environment. The paper demonstrates
the possibilities of combined and separate use of the schemes analysed. Their
relevance and extension prospects have been explained and justified.

The study is based on practical work of service systems development using
communication libraries RabbitMQ and ZeroMQ. The development projects
were carried out at St. Petersburg State University. The work presented here
is a stage in a larger study. Our long-term goal is to design a platform enabling
development of complex dynamic systems deployed in a variety of clouds. The
platform will employ both standard and user- defined messaging and interaction
patterns. Petri nets were used to create a component model of distributed cloud
service systems.
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