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Abstract. Modern scientific and business applications often require fast
provisioning of an infrastructure tailored to particular application needs.
In turn, actual physical infrastructure contains resources that might
be underutilized by applications if allocated in dedicated mode (e.g.,
a process does not utilize provided CPU or network connection fully).
Traditional virtualization technologies can solve the problem partially,
however, overheads on bootstrapping a virtual infrastructure for each
application and sharing physical resources might be significant. In this
paper we propose and evaluate an approach to create and configure dedi-
cated computing environment tailored to the needs of particular applica-
tions, which is based on light-weight virtualization also known as contain-
ers. We investigate available capabilities to model and create dynamic
container-based virtual infrastructures sharing a common set of physical
resources, and evaluate their performance on a set of test applications
with different requirements.
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1 Introduction

Constant development of computer hardware and software together with the
development of computing methods and algorithms stimulates new ways of
bringing together software and hardware, matching application requirements and
resources, thus mapping programs to computing infrastructures. Virtualization
technologies started a new era of tailoring computing environment to the needs
of users and applications. However, flexibility of full- and para-virtualization
approaches is hold back by some limitations causing extra overheads, resource
consumption and lack of dynamics. Container-based virtualization, a new gen-
eration of virtualization techniques, can give better answers to create a flexible
and dynamic distributed computing infrastructure with small overhead.

Containers as a way to create a dedicated environment for running appli-
cations have been around for years. However, the boost of new interest to
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them started when new technologies and tools to orchestrate their operations
appeared. One of the most commonly used tool to manage container infrastruc-
tures is Docker [8].

Traditional hypervisor-based virtualization is still widely used to deploy and
run applications on a wide range of platforms, however, it suffers from a number
of restrictions:

– Significant overheads while running fully-virtualized guest operating systems,
in particular, overheads to boot up virtual machine instances

– Lack of flexibility to allocate resources to particular processes
– Downfalls of application performance due to virtualization overheads, hyper-

visor mediation etc.

While hypervisor-based virtualization provides flexibility in building variety
of environments, e.g. allowing to simulate and run completely different archi-
tectures and operating systems on top of each other, container-based or operat-
ing system-level virtualization is restricted by using the same core components
within host and containers, in particular operating system kernel. Nevertheless,
the variety of supported platforms is often not required, but low overheads and
dynamics are needed.

Container-based virtualization, also referred as operating-system level or
light-weight virtualization, follows a different paradigm compared to hypervisor
virtualization. Containers are based on the host operating systems itself rather
than on hypervisor. Containers do not virtualize hardware, which would require
virtualized operating system images on each guest OS. Instead, containers vir-
tualize OS by sharing the host OS kernel and other resources between original
host environment and environments run in containers. Thus, containers provide
an isolated and controlled environment that provides everything an applica-
tion might need for execution without extra overheads caused by virtualizing
hardware.

In this paper, we evaluate the capabilities obtained while using the OS-level
virtualization technology to build a computational environment with config-
urable computation (CPU, memory) and network (latency, bandwidth) char-
acteristics. Such configuration enables flexible partitioning of available physical
resources between a number of concurrent applications utilizing a single physical
infrastructure. Depending on application requirements and priorities of execu-
tion each application can get a customized virtual environment with as much
resources as it needs or is allowed to use.

Our main interest is to use container-based computing infrastructures for par-
allel high-performance computing applications: parallel programs that consist of
a number of processes running on computing nodes and communicating during
the execution. Using containers as computing nodes can help us to control and
share available computing and networking resources between concurrent paral-
lel applications. Thus, applications with complementary requirements (e.g. fast
CPU-slow network + slow CPU-fast network) can co-exist on a single physical
node or a VM without affecting each other much.
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The approach that we propose is complementary to the traditional queue-
based batch processing used in HPC systems. Applications would not have to
wait in the queue until worker nodes become fully free and available. Instead,
the scheduler can control fraction of resources allocated for each application
thus enabling immediate execution for applications with requirements fitting still
available fraction of resources. In addition, flexible quality of service (QoS) and
service-level agreement (SLA) policies can be built on top of such infrastructure:
applications might be ready to get smaller amount of resources right away rather
than wait in line to acquire more resources.

The paper is structured as follows: Sect. 2 gives an overview of related work
in the area of container management software. Section 3 takes a closer look at
comparison or containers and virtual machines for building distributed com-
puting infrastructures. Section 4 presents and approach to simulate and predict
actual application requirements that can be used for configuring container-based
DCI created for particular application. Section 5 presents an experimental eval-
uation of building container-based computing environment for a number of test
applications. Section 6 discusses the results and Sect. 7 concludes the paper.

2 Related Work

Containers are an easy way to generate large amounts of compute units, and
robust monitoring, management, and orchestration are needed to cope with con-
tainer crowds, where containers can be mislocated or left running forgotten.

There are a number of available tools and technologies that provide means
to manage containers, maintain their lifecycle, orchestrate and monitor their
execution.

One of the most popular tools for managing containers is Docker [8]. Docker
introduced the concept of the container image. The Docker container image is
a straightforward way to package an application and all its dependencies so
that it can be executed on any modern Linux servers supporting Docker. Such
portability is very important for distributed infrastructures that can be based
on various platforms and versions of operating systems. In addition, Docker has
tools for container deployment and orchestration, including Docker Machine,
Docker Compose, and Docker Swarm. Docker Machine provides means to easily
deploy Docker Engines local computer, on cloud providers, and in data centers.
Docker Swarm is a native clustering solution for Docker containers. It pools
together several Docker Engines into a single virtual host. Docker Compose
is a way of defining and running multi-container distributed applications with
Docker.

Kubernetes (originally by Google, now is a part of the Cloud Native Com-
puting Foundation) is an open-source platform for automating deployment, scal-
ing, and operations of application containers across clusters of hosts, providing
container-centric infrastructure [11]. Kubernetes defines a set of building blocks
(“primitives”) which collectively provide mechanisms for deploying, maintaining,
and scaling applications. These primitives are designed to be loosely coupled and
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extensible so that the infrastructure can meet a wide variety of different work-
loads. The extensibility is provided in large part by the Kubernetes API, which
is used by internal components as well as extensions and containers running on
Kubernetes.

Apache Mesos can be used to deploy and manage application containers in
large-scale clustered environments. It abstracts CPU, memory, storage, and other
compute resources away from machines (physical or virtual), enabling fault-
tolerant and elastic distributed systems to easily be built and run effectively [9].
At a high level Mesos is a cluster management platform that combines servers
into a shared pool from which applications or frameworks like Hadoop, Jenkins,
Cassandra, ElasticSearch, and others can draw. Mesos allows developers to con-
ceptualize their applications as jobs and tasks. In combination with a job system
like Marathon, it takes care of scheduling and running jobs and tasks. Marathon
is a Mesos framework for long-running services such as web applications, long
computations and so on [10].

CoreOS is a Linux distribution designed to make large multiple-machine
deployments secure, consistent, and reliable. Instead of installing packages via
yum or apt, CoreOS uses Linux containers to manage services at a higher level of
abstraction. A single service’s code and all dependencies are packaged within a
container that can be run on one or many CoreOS machines [13]. It uses “fleet”
for cluster management and “etcd” for service discovery and keeping configura-
tion up to date across the cluster.

3 Deploying and Running Applications in DCIs:
Containers vs Virtual Machines

Container virtualization allows to virtualize physical servers at the level of oper-
ating system kernel. OS virtualization layer provides insulation and security of
resources between different containers. Virtualization layer makes each container
similar to a physical server. Each container maintains therein an application and
workload. The main advantages of container virtualization are the following:

– Containers are maintained on the level of physical servers. Lack of virtualized
hardware, the use of real equipment and direct access to drivers allows to
achieve high performance.

– Each container can be scaled to the resources of a physical server.
– Virtualization on the OS level allows to achieve the highest density among the

other available virtualization solutions. You can create and launch hundreds
of containers on a single physical server.

– Containers use a single OS, making their support and update very simple.
Applications may also be deployed in a separate environment.

In addition to the light-weight virtualization benefits, containers provide flex-
ible and convenient ways to package and distribute software. The older ways
to package, deploy and distribute applications were installing them directly on
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Fig. 1. Concurrent applications on container cluster

every machine with the help of operating system package managers, or creating
a separate virtual machine for a particular software deployment that could be
rather heavy-weight and non-portable.

Containers are based on operating-system-level virtualization rather than
hardware virtualization, nevertheless they are still well isolated from each other
and from the host. Containters have their own filesystems, they cannot see and
influence each others processes, and their computational and network resource
usage can be bounded. The latter brings us the possibility to create fully defined
and controlled container-based clusters, configured to the needs of particular
users and applications (Fig. 1).

Containers are not coupled to particular underlying infrastructure of filesys-
tem; they are easy to build and portable across different types of operating
systems in data centers or in clouds.

Containers are light-weight and fast; normally there is one-to-one relation
between an application and a container image which enables composing a com-
puting environment in a loosely coupled manner, built from individual blocks
that can be easily created at build/release time rather than deployment time.

An important feature of containers for our research is the application-centric
management that raises the level of abstraction from running an OS on virtual
hardware to running an application on an OS using logical resources configured
according to application requirements.

4 Simulating Container-Based Distributed Computing
Infrastructure

Conducting offline simulations is often needed to preliminary assess the cor-
rectness and adequacy of the applications that interact with the network, in
particular to evaluate performance of network-related algorithms. Moreover, the
ability to perform reproducible experiments is necessary in the development of
software. This is especially important when large-scale network applications are
concerned since real network environment is dynamic, and application behavior
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needs to be checked in advance in variety of conditions. The simulation tools like
ns [7] and OMNet++ [14] allow to perform simulations and evaluate the effi-
ciency and scalability of algorithms or protocols without running them in real
networks.

Experimentation with real programs, however, is mainly focused on the mea-
surement of makespan, CPU usage, memory usage, network performance, etc.
One of the complex examples is an application running on multiple nodes over
a network. Using the Internet in this case is not encouraged because there will
be no exact repetition of the experiment conditions, and many parameters can
not be controlled. In addition, network applications may interact with different
hosts, but a change in the network topology and its parameters on this real test-
bed is time consuming and can be error prone. On the other hand, the topology
of choice in accordance with the specific tasks may speed up the task and show
a great performance. However, the transition to a different type of tasks would
require changing the entire network topology.

Here we consider an approach to create a virtual testbed, having virtual
links between nodes, that allows us to create a variety of network topologies.
The created nodes may have different restrictions, e.g. the limitation on the
memory or the data transfer speed between nodes. Furthermore, it is possible
to simulate the conditions of poor communication between two or more nodes,
to limit the bandwidth to add delay when transmitting packets, to change the
error ratio, i.e. the ratio of the number of incorrectly received bits (1, instead of
0 and vice versa) to the total number of bits transmitted in transmission data
between nodes.

When we talk about the emulation of the network we usually refer to the
ability to control artificially created environment for effective interaction with
real computer networks and real-time traffic. We should note that already in 1996
David Tennenhouse et al. proposed an idea of software-centric networks, called
Active Networks, but then it was not widely acknowledged [2]. Recently similar
projects such as OpenVSwitch [16], Mininet [1] and others appeared; together
with the container virtualization technologies they can perform various tasks,
like simulating many nodes with connections of controlled quality, simulated
latency, packet loss etc., even within a single node.

While reviewing the existing software, we paid attention to the following
points:

1. Virtualization of nodes. The ability to simulate multiple independent sites
that are running on a single physical machine can be achieved through a
variety of virtualization techniques, e.g., QEMU, VirtualBox, VMware, that
deliver maximum isolation between nodes, but achieve this due to the inten-
sive use of memory, hard drive, and processor capacity. Paravirtualization
reduces the load on the I/O subsystem. Various container virtualization tech-
nologies, along with the namespaces, creates the illusion of running many
nodes with different network characteristics between each of them on the
same machine with a totally negligible overhead.



Distributed Computing Infrastructure Based on Dynamic Container Clusters 269

2. Network emulation. In addition to simulating a connection, the ability to
model deterioration of network quality is needed, for example to emulate
packet loss, latency, BER (the number of bits inverted with respect to the
original) and so on.

3. In addition, a graphical interface is preferable, at least in the form of a web-
client, because it allows us to not keep in mind the whole network topology,
it is easy to change network settings and to visualize the results.

We have checked a number of tools that can be used for the purposes of
simulating distributed computing infrastructure:

– User-mode Linux (UML) [15]: virtualization solution that allows you to run
processes isolated from the rest of the operating system in the user space. In
addition, it is possible to run network services. Important difference of UML
from other solutions is that it allows you to run Linux kernel version different
from the version on the host. Currently, this technology is integrated into the
Linux kernel, but the development is slow, in addition, the performance is
lower than other available solutions.

– Manage Large Networks (MLN) [12]: means of virtual machine management,
working with Xen, VMware and User-mode Linux. In addition, the MLN was
able to work with Amazon EC instances, but the development of the software
was frozen in 2009.

– Marionnet [18]: software for network virtualization. It allows users to define,
configure and run complex simulated networks. It is also possible to com-
bine real and virtual networks. Unfortunately, Marionnet is also based on the
User-mode Linux, so we cannot consider this technology new and evolving.
Moreover, for the management of network properties it uses VDE (Virtual
Distributed Ethernet), which does not support bandwidth limitation mecha-
nisms, delays and other things.

– Integrated Multiprotocol Network Emulator / Simulator - IMUNES [3]: frame-
work on the basis of today’s popular products like Docker and Open VSwitch,
which allows you to create nodes, connections between them, and fine-tune the
network properties. It is possible to emulate the delay in data transmission,
damage to transport packets, limit the bandwidth, etc. This product also has
a graphical user interface that simplifies the creation of topology and access
to running nodes.

5 Building and Evaluating Container-Based Distributed
Computing Environment

We have implemented a prototype of container-based distributed computing
infrastructure on the cloud resources provided by Microsoft Azure. To build the
infrastructure we used a set of 8 virtual machines residing in different regions (5
machines in East US; 3 machines in North Europe) with the following charac-
teristics (see Fig. 2):
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Fig. 2. Resources of experimental testbed in MS Azure

– Instance type: A1
– Cores: 1
– Memory: 1.75 GB

Current prototype implementation does not use any specific container man-
agement tools and relies only on Docker and a custom python-based toolkit
developed to configure and execute containers for parallel applications (with
OpenMPI deployed and configured) and control resource usage with help of a
separately maintained database (see Fig. 3).

Fig. 3. Schematic view of the system

Figure 4 shows sequence diagrams illustrating the functionality of the system
to manage resources and created container clusters.

We used several programs from NAS Parallel Benchmarks (NPB) suite as the
applications with various requirements to the underlying infrastructure. NPB is
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Fig. 4. Sequence diagrams of system’s functionality (left: server-resources communica-
tion; right: server-database communication)

a small set of programs designed to help evaluate the performance of paral-
lel computers and clusters. The benchmarks are derived from computational
fluid dynamics (CFD) applications and consist of five kernels and three pseudo-
applications. Moreover, the benchmark suite contains benchmarks for unstruc-
tured adaptive mesh, parallel I/O, multi-zone applications, and computational
grids [17]. In our experiments we used MG, FT, and CG kernels:

– MG - Multi-Grid on a sequence of meshes, long- and short-distance commu-
nication, memory intensive

– FT - discrete 3D fast Fourier Transform, all-to-all communication
– CG - Conjugate Gradient, irregular memory access and communication

The aims of the experiments were the following:

– Investigate performance of parallel applications on the prototype of distributed
container-based infrastructure

– Check how performance of applications with different requirements on
cpu/memory/network varies depending on infrastructure configuration

– Evaluate possibilities of concurrent execution of parallel applications, mini-
mizing their influence on each other

The first set of experiments was performed to evaluate the resource saturation
point for an application: the point when adding more memory (or available
cpu, or network bandwith) would not increase application performance anymore.
Sample results are presented in Fig. 5. We can see that after some point the
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performance of applications does not increase with increasing the amount of
allocated resources per application. Namely, the left plot demonstrates that for
the application (FT class S) the performance stops increasing after increasing
available bandwidth between the nodes more than 900 Kbit/s; the right plot
shows that the amount of available memory is crucial for the application to
start (FT class A, the application does not start with less than 70 MB of memory
available) but does not influence the performance when amount of memory is
increased.

Fig. 5. Experimental results: saturation of resource requirements for FT kernel. (Color
figure online)

The results presented in Fig. 6 illustrate details of application performance
for a particular configuration of computing infrastructure.

Fig. 6. Experimental results. Left: mem 256 MB, net 100 Kb/s; Right: mem 512 MB,
net 1024 Kb/s. (Color figure online)

Next, we have evaluated sequential and concurrent execution of two different
application kernels, MG and FT, to ensure that concurrent execution of both
applications will not affect their performance in case container clusters are config-
ured to meet the individual requirement of the applications. Figure 7 illustrates
observed differences in initialization and benchmark time of MG and FT kernels
in a particular virtual hardware configuration (512 MB memory, 120 Kbit/s net-
work) for sequential and concurrent execution. Here sequential execution means
allocation of the whole set of resources to each of the applications and executing



Distributed Computing Infrastructure Based on Dynamic Container Clusters 273

them one by one; concurrent execution means execution of both kernels simul-
taneously in separate containers with given limitations. Figure 8 shows experi-
mental comparison of shared and concurrent execution, where shared execution
means running both MG and FT kernels in a single container simultaneously.
We can observe that in this case kernels can compete for shared resources which
results in overall performance degradation.

Fig. 7. Experimental evaluation of separate and concurrent execution: difference in init
and benchmark time; mem 512 MB, net 120 Kb/s. (Color figure online)

Fig. 8. Experimental comparison of shared (left) and concurrent (right) execution:
mem 100 MB, lan 120 Kb/s. (Color figure online)

In order to confirm results gained on Amazon cluster, a bunch of tests were
made on a local machine with IMUNES software. A star topology was generated
with 8 nodes, all nodes were created from the same Dockerfile so they were com-
pletely identical. As IMUNES uses Docker and OpenVSwitch, network capacity
was easy to configure. FT class A was used with different memory limitations
but it wasn’t possible to make test fail due to memory constraint as it was on
a cluster. However the amount of memory available indeed doesn’t influence the
time when we allocate more than 80 mb per node. Overall, we cannot completely
rely on results gained in a simulated testbed but we can at least understand how
applications can scale (see Fig. 9).
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Fig. 9. Experimental results of simulation with IMUNES framework (Color figure
online)

6 Discussion

The presented work continues the developments presented in [6]; this approach
can be used as an enabling part of the virtual supercomputer concept [4,5] to
ensure proper and efficient distribution of resources between several applica-
tions. Knowing the application demands in advance we can create appropriate
infrastructure configuration giving just as much resources as needed to each par-
ticular instance of a virtual supercomputer running a particular application. Here
we use containers as an enabling part of the computing infrastructure. In such
a way, free resources can be controlled and granted to concurrent applications
without negative effect on other executions.

7 Conclusions and Future Work

In this paper we proposed and evaluated usage of concurrently running container
clusters that are created based on application requirements and have minimal
effect on each other by resource allocation control. We demonstrated a proof-
of-concept prototype running on Microsoft Azure cloud resources and showed
experimental evaluation of its performance on a set of NAS benchmarks based
on real application kernels.

Our future work will be to look more closely into container cluster man-
agement and orchestration software (e.g. Docker Swarm, Kubernetes, or Mesos)
to delegate the functionality of maintaining the cluster to these tools so that
we could concentrate on mechanisms of application requirements evaluation and
concurrent execution of applications on distributed container resources.
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