
Computational Verification of Network
Programs for Several OpenFlow Switches in Coq

Hiroaki Date and Noriaki Yoshiura(B)

Department of Information and Computer Sciences, Saitama University,
255, Shimo-ookubo, Sakura-ku, Saitama, Japan

yoshiura@fmx.ics.saitama-u.ac.jp

Abstract. OpenFlow is a network technology that enables to control
network equipment centrally, to realize complicated forwarding of pack-
ets and to change network topologies flexibly. In OpenFlow networks,
network equipment is separated into OpenFlow switches and OpenFlow
controllers. OpenFlow switches do not have controllers that usual net-
work equipment has. OpenFlow controllers control OpenFlow switches.
OpenFlow controllers are configured by programs. Therefore, network
configurations are realized by software. This kind of software can be cre-
ated by several kinds of programming languages. NetCore is one of them.
The verification method of NetCore programs has been introduced. This
method uses Coq, which is a formal proof management system. This
method, however, deals with only networks that consist of one Open-
Flow switch. This paper proposes a methodology that verifies networks
that consist of several OpenFlow switches.

1 Introduction

Large scale networks consist of many Layer 2 or Layer 3 network switches. Each
of the network switches requires to be configured by network operators. Modifi-
cation of network topologies or configurations requires modification of configu-
rations of all network equipment. This modification takes much cost for network
operations. Moreover, operations of different kinds of network equipment are
harder than operations of the same kind of network equipment. One of the aims
of OpenFlow is to simplify operations of much network equipment. OpenFlow
is a network technology that enables to control network equipment centrally,
to realize complicated forwarding of packets and to change network topolo-
gies flexibly [5]. In OpenFlow networks, network equipment is separated into
OpenFlow switches and OpenFlow controllers. Exactly, OpenFlow is a protocol
between OpenFlow switches and OpenFlow controllers. OpenFlow switches do
not have controllers that usual network equipment has. OpenFlow controllers
control OpenFlow switches. OpenFlow controllers are configured by programs.
Therefore, network configurations are realized by software. OpenFlow is one of
software defined networks (SDNs).

Network switches in OpenFlow forward packets like Layer 2 or Layer 3
switches, but the way of forwarding packets is not configured in network switches.
c© Springer International Publishing Switzerland 2016
O. Gervasi et al. (Eds.): ICCSA 2016, Part II, LNCS 9787, pp. 223–238, 2016.
DOI: 10.1007/978-3-319-42108-7 17

224 H. Date and N. Yoshiura

The way of forwarding packets is decided by OpenFlow controllers as follows;
OpenFlow switches send messages to OpenFlow controllers after receiving pack-
ets. The messages include the information of the packets that are received by
the OpenFlow switches. The information includes source and destination IP
addresses, source and destination port numbers, protocol number and so on
After receiving the messages, OpenFlow controllers send messages to OpenFlow
switches. The messages include the instructions of forwarding the packets. Open-
Flow switches forward the packets according to the instructions in the messages.
In OpenFlow, the instructions are called flow entries. After receiving the flow
entries, OpenFlow switches keep the flow entries in itself. OpenFlow switches
receive the same kind of packets (for example, the packets that have the same
destination IP addresses) and forward the packets according to the flow entries
without sending the messages to OpenFlow controllers. Therefore, OpenFlow
switches do not have controllers in itself and the way of forwarding packets is
not configured in OpenFlow switches. Flow entries are kept in a predefined time
or as long as possible. After the time is expired or when cache memory for flow
entries is full, the flow entries are erased. Modification of network configuration
requires modification of the configuration of OpenFlow controllers without mod-
ification of OpenFlow switches. Even if a network consists of network switches
that are manufactured in different companies, modification of configurations of
OpenFlow controllers is enough to modify the network configuration in the case
that the network switches can deal with OpenFlow protocol.

There is several hardware of OpenFlow controllers, but some software enables
usual PCs to be used as OpenFlow controllers. The examples of such software
are Trema [18], NetCore [6] and so on. NetCore is a programming language that
can be used in functional programming language Haskell [17]. This feature is
preferable for program verification and some researches use Coq for NetCore
program verification. Coq is an interactive theorem prover and a formal proof
management system [16]. If Coq proves that a program satisfies the properties
that should be satisfied by the program, Coq reduces the cost of checking pro-
grams and guarantees the correctness of programs better than software testing.
There are several researches that use Coq to verify software [2,10]; one is to use
Coq to guarantee programs by typing [12]. In the classical program verification
approach, a programs and their specifications are described separately and the
verification procedure proves that the programs satisfy their specifications. Coq
enables to create and verify programs simultaneously. In this case, specifications
are expressed as types [9].

There are also several kinds of researches that verify OpenFlow programs:
testing method [4,14,15], model checking [1,7,8], and proof system [11,13]. There
are also several researches that use Coq to verify the programs in NetCore.
Suppose that pg is a NetCore program, P is the precondition of pg and Q is
the postcondition of pg. To verify the program pg, Coq proves a Hoare logic
formula {P}pg{Q}, which represents that if P is satisfied before the program pg
is executed, Q is satisfied after the program pg is executed. The previous research
[11] verifies Hoare logic formulas by two steps; the first step is to calculate
the minimum precondition that satisfies the postcondition Q after executing

Computational Verification of Network Programs 225

the program pg. The second step is to check whether P implies the minimum
precondition. The previous research verified NAT (Network Address Translation)
in NetCore programs but dealt with only network topologies that consist of one
network switch.

This paper proposes a methodology that verifies programs for network topolo-
gies that consist of several network switches. Especially, this paper verifies that
NetCore programs do not generate looping packets in the networks. First, to
realize this verification, this paper tries verifying a whole of a program for sev-
eral network switches. However, this paper cannot verify a whole of a program
because of shortage of memory and execution time. Therefore, this paper ver-
ifies a program for each network switch by Coq and manually checks that a
whole program for a network does not generate looping packets by using the
result of verification in Coq. As a result, this paper proposes the methodology
of verification of programs and shows that the methodology is efficient.

This paper is organized as follows; Sect. 2 explains NetCore and Coq.
Section 3 explains the methodology of verification. Section 4 shows the exam-
ple of using the methodology that is proposed in this paper. Section 5 discusses
the proposed methodology. Section 6 concludes this paper.

2 Preliminary

2.1 NetCore

This section explains NetCore programs. NetCore is a declarative programming
language and the programmers describe only the way of forwarding packets.
For example, let me set up the program for an OpenFlow controller so that an
OpenFlow switch sends packets that are received from network interface “Port
2”, to network interface “Port 1” and drops all other packets. First, the following
program of NetCore is created.

Definition pg1 := WILD /=> FWD 1.

This program sends all packets to “Port 1”. The following explains the syntax of
Netcore briefly; “Definition pg1 :=” defines the program “pg1”, the left side of
“/=>” is a condition and the right side of “/=>” is an action. “WILD” represents
true, that is to say “WILD” represents all packets. “FWD 1” represents sending
packets to “Port 1”. This program is not enough because the program does not
specify the condition of forwarding packets. The following program restricts the
packets that are forwarded.

Definition pg2 := RESTRICT pg1 BY PORT=2.

This program sends only packets that are received by “Port 2”, to “Port 1”.
“RESTRICT x BY y” represents that the packets that satisfy the condition
“y” is applied to program “x”. “PORT=2” represents the condition that the
packets are received by “Port 2”. The program “pg2” realizes that an OpenFlow

226 H. Date and N. Yoshiura

switch sends packets that are received by network interface “Port 2”, to network
interface “Port 1” and drops all other packets. NetCore can represent many kinds
of conditions and processes for packets. For example, NetCore can describe static
NAT, firewalls and so on.

2.2 Coq

This subsection explains how NetCore programs are verified by Coq. This ver-
ification is based on Hoare logic [3]. A Hoare logic formula is the following
description

{P}pg{Q}
where P is a precondition, pg is a NetCore program and Q is a postcondition. The
Hoare logic formula represents that if the packets that arrive at an OpenFlow
switch satisfy a precondition P, a post condition Q is satisfied after a program
pg is applied to the packets. Verification of programs is to check whether Hoare
logic formulas are satisfied. The previous researches proposed the method of
checking a Hoare logic formula {P}pg{Q}. The method first deduces the weak-
est precondition so that a postcondition is satisfied after a program pg is applied
to packets; in the following, wp(pg,Q) is defined to be the weakest precondi-
tion. Next, the method checks whether P satisfies wp(pg,Q) to check whether
{P}pg{Q}. The following shows the verification of pg2 by using Coq.

Lemma verification: |-[PORT=2] pg2 [PORT=1].
Proof. checker. Qed.

In this description, “Lemma verification” means that Coq checks whether a
proof “verification” holds or not. |-[PORT=2] pg2 [PORT=1] represents a Hoare
logic formula {a packet arrives at Port 2}pg2{the packet departs from Port 1}.
Concretely, “checker”, which is a function for verification, verifies that this Hoare
logic formula holds. The function “checker” calculates wp(pg,Q) and checks
whether P implies wp(pg,Q). In this case, “Qed” shows that the Hoare logic
formula holds. This paper uses the same method that is proposed by the previous
research.

3 Methodology of Verification

This section explains the methodology that is proposed in this paper. For expla-
nation, this section uses a network topology in Fig. 1. This section creates pro-
grams for the network topology and verifies that the programs do not generate
looping packets. This section generates two programs: one program that does not
generate looping packets and the other program that generates looping packets.
AppendixA is a program that does not generate looping packets and AppendixB
is a program that generates looping packets.

First, this paper tries to prove that the program in AppendixA does not
generate looping packets; that is to say, this paper tries to prove a Hoare logic

Computational Verification of Network Programs 227

Fig. 1. Network topology

formula {P}pg{Q} where P is a precondition, Q is a postcondition and pg is the
program in AppendixA. However, the program in AppendixA is too large to
prove the Hoare logic formula. In fact, this paper cannot prove the Hoare logic
formula by Coq because it lacks memories and takes much time.

Nowadays, CPUs become powerful and memory size of PCs become large,
but the program in AppendixA is still large for verification by Coq. Those who
have the ability of using Coq may prove the Hoare logic formula in the current
PCs. However, many people cannot obtain this ability and it is important to
prove the Hoare logic formula without high abilities of Coq and Hoare logic.
Therefore, this paper proposes the methodology that enables those who are not
familiar with Coq or Hoare logic to verify programs by Coq.

The overview of the methodology is as follows; suppose that the methodology
checks that a program satisfies a property Prop at a network that consists of
several network switches.

1. To create the properties that each switch should satisfy so that the program
satisfies the property Prop.

2. To check that each switch satisfies the properties by Coq.
3. To prove that the program satisfies the property Prop by using the results

that each switch satisfies the properties.

The point of this methodology is the first step, which is to create the properties
for each switch. The first step separates the property Prop into several small
properties for each switch. However, this separation cannot be accomplished
automatically. In this paper, this separation is accomplished manually.

228 H. Date and N. Yoshiura

4 Verification

The section proves that the program in Appendix A does not generate looping
packets by using the methodology that is proposed in this paper. The proof
requires the description of network topologies in Coq. The Fig. 2 is a description
of the network topology in Coq. There are several researches that deal with
the descriptions of network topologies. The description in Fig. 2 is based on the
previous research [11].

Fig. 2. Network topology

Computational Verification of Network Programs 229

Fig. 3. Function

In “Def topo” in Fig. 2, “ports” represents the network interfaces for each
network switch. “num links” represents the number of connections. Each of
the network switches in Fig. 1 has three network interfaces and the network
topology has three connections. “switch topo” and “switch topo’” shows the
connections among switches. Concretely, “switch topo” and “switch topo’”
are functions that map a switch number and a port number to the other switch
number and the other port that are connected with the switch number and
the port number. The function “s to s’” in Fig. 3 shows connection between
switches.

The function “s to s’” receives a network topology, two pairs of a switch
number and a port number as the first, second and third arguments. If the two
pairs of the switch number and the port number are connected in the network
topology, the function outputs true. Otherwise, the function outputs false.

By using this description, this paper checks whether both programs of
Appendices A and B satisfy the property, which is loop free. This paper uses
a PC that has Ubuntu 14.04 LTS as OS, Core i5-6600K as CPU and 8 GB mem-
ory. This paper uses Coq several times for several proofs and to execute each
proof takes less than five seconds.

4.1 Overview of Verification

This paper verifies the programs according to the methodology that is proposed
in this paper. First, this paper tries to verify that the program in AppendixA
does not generate looping packets. According to the methodology, the property
that looping packets are not generated is separated into several properties that
are satisfied by each switch. This paper focuses on three kinds of packets whose
destinations are 10.0.0.1, 10.0.0.2 and the others. This paper uses Coq to check
how each switch deals with these kinds of packets. The results of using Coq
are used to verify that looping packets are not generated in the program in
AppendixA.

Figure 4 shows the proofs of Coq for the program in Appendix A. Figure 4
includes the proof results of thirteen lemmas. Each lemma represents a property
of each switch. For example, Lemma tst1 represents that the packets that are
received by Port 3 of Switch 1 and whose destination is 10.0.0.2 are forwarded to

230 H. Date and N. Yoshiura

Fig. 4. Proof of the program in Appendix A

Computational Verification of Network Programs 231

Port 1 of Switch 1. Lemma tst1’ represents that the packets that are received
by Port 1 or Port 2 of Switch 2 and whose destination is 10.0.0.2 are forwarded to
Port 3 of Switch 2, and Lemma tst6 represents that the packets that are received
by Port 3 of Switch 3 and whose destination is 10.0.0.2 are forwarded to Port
2 of Switch 3. These three lemmas, which are proved by Coq, are related with
the packets whose destination is 10.0.0.2. These lemmas imply that the packets
arrive at the network N2. As a result, the packets whose destinations are 10.0.0.2
do not loop in the network topology. Figure 4 includes several lemmas, which are
proved by Coq, for the packets whose destination are 10.0.0.1 and the others.
As the case of the packets whose destinations are 10.0.0.2, these lemmas imply
that the packets whose destination are 10.0.0.1 and the others do not loop in
the network topology.

Figure 5 shows the proofs of Coq for the program in Appendix B. Since this
program generates looping packets, the lemmas in Fig. 5 show that the packet
whose destination is 10.0.0.2 loop in the network topology.

Fig. 5. Proof of the program in Appendix B

5 Discussion

The verification that is described in the previous section shows that one program
creates looping packets and the other does not create looping packets. Actually

232 H. Date and N. Yoshiura

this paper would like to verify a whole of all programs. However, the function
“checker” does not terminate to verify the whole of all programs because the
verification is short of memory of the PC and takes much time. Therefore, this
paper verifies a behavior of each switch and those who try to verify programs
use the results of the verification for each switch to prove manually that the a
program does not generate looping packets.

The network topology has three network switches and there are three desti-
nations of packets; the first is N1, the second is N2 and the third is outbound.
All switches may deal with all destination packets. Therefore, this paper requires
three proofs for each of three switches and totally requires nine proofs to verify
that a program does not generate looping packets. Since this paper deals with the
simple network topology, nine proofs are enough for the verification. However,
verifications in complicated network topologies require many proofs for many
network switches. Moreover, those who try to verify programs must deal with
many proofs. Therefore, the methodology that is proposed in this paper is hard
to use for complicated network topologies.

6 Conclusion

This paper proposed the methodology that verifies the programs that are
described in NetCore. In this methodology, manual proof and Coq verify the
programs. The future works are to develop the method to verify the programs
automatically and to improve the proposed methodology to deal with compli-
cated network topologies.

A Appendix (Program that Does Not Generate Looping
Packets)

(* s1 *)

(* s1_p1 *)

Definition pg101 := WILD /= > FWD 1.

Definition pg102 := RESTRICT pg101 BY (PORT=3 AND NWDST=167772162).

(* s1_p2 *)

Definition pg103 := WILD /= > FWD 2.

Definition pg104 := RESTRICT pg103 BY (PORT=3 AND (NOT NWDST=167772162)).

(* s1_p3 *)

Definition pg105 := PORT =1 /= > FWD 3.

Definition pg106 := PORT =2 /= > FWD 3.

Computational Verification of Network Programs 233

Definition pg107 := RESTRICT (pg105 PAR pg106) BY

(NWDST=167772161 AND NOT PORT =3).

(* s1_behave *)

Definition pg100 := RESTRICT (pg102 PAR pg104 PAR pg107) BY SWITCH =1.

(* s2_p1 *)

Definition pg201 := WILD /= > FWD 1.

Definition pg202 := RESTRICT pg201 BY (PORT=3 AND (NOT NWDST=167772161)).

(* s2_p2 *)

Definition pg203 := WILD /= > FWD 2.

Definition pg204 := RESTRICT pg203 BY (PORT =3 AND NWDST=167772161).

(* s2_p3 *)

Definition pg205 := PORT =1 /= > FWD 3.

Definition pg206 := PORT =2 /= > FWD 3.

Definition pg207 := RESTRICT (pg205 PAR pg206) BY

(NWDST =167772162 AND NOT PORT =3).

(* s2_drop *)

(* s2_behave *)

Definition pg200 := RESTRICT (pg202 PAR pg204 PAR pg207) BY SWITCH =2.

(* s3_p1 *)

Definition pg301 := WILD /= > FWD 1.

Definition pg302 := RESTRICT pg301 BY (PORT =3 AND NWDST=167772161).

(* s3_p2 *)

Definition pg303 := WILD /= > FWD 2.

Definition pg304 := RESTRICT pg303 BY (PORT =3 AND NWDST=167772162).

(* s3_p3 *)

Definition pg305 := WILD /= > FWD 3.

Definition pg306 := RESTRICT pg305 BY ((PORT =1 OR PORT=2) AND

NOT PORT =3 AND NOT NWDST =167772161 AND

NOT NWDST =167772162).

(* s3_behave *)

Definition pg300 := RESTRICT (pg302 PAR pg304 PAR pg306) BY SWITCH =3.

234 H. Date and N. Yoshiura

Require Import List.

Require Import Bool.

Require Import Arith.

Require Import WP.

Record topo : Type :=

{

ports : nat -> list Word16.t ;

num_links : nat ;

switch_topo : location -> option location ;

switch_topo ’: location -> option location

}.

Require Import List.

Import ListNotations.

Close Scope Z_scope.

Definition def_topo : topo :=

{| ports := fun sw = >

match sw with

| 1 = > [Word16.repr 1; Word16.repr 2; Word16.repr 3]

| 2 = > [Word16.repr 1; Word16.repr 2; Word16.repr 3]

| 3 = > [Word16.repr 1; Word16.repr 2; Word16.repr 3]

| _ = > nil

end ;

num_links := 3;

switch_topo := fun loc = >

match loc with

| Build_locatio n 1 x = >

if Word16.eq x (Word16.repr 1)

then Some (Build_location 2 (Word16.repr 2))

else if Word16.eq x (Word16.repr 2)

then Some (Build_location 3 (Word16.repr 1))

else None

| Build_location 2 x = >

if Word16.eq x (Word16.repr 1)

then Some (Build_location 3 (Word16.repr 2))

else None

| _ = > None

end ;

switch_topo ’ := fun loc = >

match loc with

| Build_lo cation 2 x = >

if Word16.eq x (Word16.repr 2)

then Some (Build_location 1 (Word16.repr 1))

else None

| Build_lo cation 3 x = >

if Word16.eq x (Word16.repr 1)

then Some (Build_location 1 (Word16.repr 2))

else if Word16. eq x (Word16.repr 2)

then Some (Build_location 2 (Word16.repr 1))

Computational Verification of Network Programs 235

else None

| _ = > None

end |}.

Definition loc_eq (loc1 loc2 : location): bool :=

match loc1 , loc2 with

| Bu ild_location sw1 pt1 ,

Build_location sw2 pt2 = > beq_nat sw1 sw2 && Word16.eq pt1 pt2

end.

Definition s_to_s’ (ver_topo:topo)(loc_from loc_to:location):bool:=

match (ver_topo.(switch_topo) loc_from) with

| Some loc’ => loc_eq loc’ loc_to

| _ =>

match (ver_topo.(switch_topo’) loc_from) with

| Some loc’ = > loc_eq loc’ loc_to

| _ = > false

end

end.

Definition sw_pt (n : nat)(m : BinNums.Z): location :=

Build_location n (Word16.repr m).

B Appendix (Program that Generates Looping Packets)

(* s1_p1 *)

Definition pg101 := WILD /= > FWD 1.

Definition pg102 := RESTRICT pg101 BY ((PORT=2 OR PORT=3) AND

NOT PORT=1 AND NWDST=167772162).

(* s1_p2 *)

Definition pg103 := WILD /= > FWD 2.

Definition pg104 := RESTRICT pg103 BY (PORT =3 AND NOT NWDST=167772162).

(* s1_p3 *)

Definition pg105 := WILD /= > FWD 3.

Definition pg106 := RESTRICT pg105 BY ((PORT=1 OR PORT=2) AND NOT PORT=3

AND NWDST=167772161).

(* s1_behave *)

Definition pg100 := RESTRICT (pg102 PAR pg104 PAR pg106) BY SWITCH =1.

(* s2_p1 *)

Definition pg201 := WILD /= > FWD 1.

236 H. Date and N. Yoshiura

Definition pg202 := RESTRICT pg201 BY ((PORT=2 OR PORT =3) AND

NOT PORT=1).

(* s2_behave *)

Definition pg200 := RESTRICT pg202 BY SWITCH =2.

(* s3_p1 *)

Definition pg301 := WILD /= > FWD 1.

Definition pg302 := RESTRICT pg301 BY ((PORT =2 OR PORT=3) AND NOT PORT=1

AND (NWDST=167772161 OR NWDST=167772162)).

(* s3_p3 *)

Definition pg303 := WILD /= > FWD 3.

Definition pg304 := RESTRICT pg303 BY PORT =1.

(* s3_behave *)

Definition pg300 := RESTRICT (pg302 PAR pg304) BY SWITCH =3.

Record topo : Type :=

{

ports : nat -> list Word16.t ;

num_links : nat ;

switch_topo : location -> option location ;

switch_topo ’: location -> option location

}.

Definition def_topo : topo :=

{| ports := fun sw = >

match sw with

| 1 = > [Word16.repr 1; Word16.repr 2; Word16.repr 3]

| 2 = > [Word16.repr 1; Word16.repr 2; Word16.repr 3]

| 3 = > [Word16.repr 1; Word16.repr 2; Word16.repr 3]

| _ = > nil

end ;

num_links := 3;

switch_topo := fun loc = >

match loc with

| Build_locatio n 1 x = >

if Word16.eq x (Word16.repr 1)

then Some (Build_location 2 (Word16.repr 2))

else if Word16.eq x (Word16.repr 2)

then Some (Build_locati on 3 (Word16.repr 1))

else None

| Build_locatio n 2 x = >

if Word16.eq x (Word16.repr 1)

then Some (Build_location 3 (Word16.repr 2))

else None

| _ = > None

Computational Verification of Network Programs 237

end ;

switch_topo ’ := fun loc = >

match loc with

| Build_lo cation 2 x = >

if Word16.eq x (Word16.repr 2)

then Some (Bui ld_location 1 (Word16.repr 1))

else None

| Build_lo cation 3 x = >

if Word16.eq x (Word16.repr 1)

then Some (Bui ld_location 1 (Word16.repr 2))

else if Word16.eq x (Word16.repr 2)

then Some (Build_location 2 (Word16.repr 1))

else None

| _ = > None

end |}.

Definition loc_eq (loc1 loc2 : location): bool :=

match loc1 , loc2 with

| Bu ild_location sw1 pt1 ,

Build_location sw2 pt2 = > beq_nat sw1 sw2 && Word16.eq pt1 pt2

end.

Definition s_to_s’ (ver_topo:topo)(loc_from loc_to:location):bool :=

match (ver_topo.(switch_topo) loc_from) with

| Some loc’ = > loc_eq loc’ loc_to

| _ =>

match (ver_topo.(switch_topo’) loc_from) with

| Some loc’ = > loc_eq loc’ loc_to

| _ = > false

end

end.

Open Scope Z_scope.

Definition sw_pt (n : nat)(m : BinNums.Z): location :=

Build_location n (Word16.repr m).

References

1. Canini, M., Venzano, D., Pereš́ıni, P., Kostić, D., Rexford, J.: A NICE way to
test openflow applications. In: Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation (2012)

2. Garcia, R., Tanter, É., Wolff, R., Aldrich, J.: Foundations of typestate-oriented
programming. ACM Trans. Program. Lang. Syst. 36(4), 1–44 (2014)

3. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(19), 576–580 (1969)

4. Kuzniar, M., Peresini, P., Canini, M., Venzano, D., Kostic, D.: A SOFT way for
openflow switch interoperability testing. In: Proceedings of the 8th International
Conference on Emerging Networking Experiments and Technologies, pp. 265–276
(2012)

238 H. Date and N. Yoshiura

5. McKeown, N., Anderson, T., Balakrishnan, H., Parulker, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: OpenFlow: enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)

6. Monsanto, C., Foster, N., Harrison, R., Walker, D.: A compiler and runtime sys-
tem for network programming languages. In: Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
217–230 (2012)

7. Majumdar, R., Tetali, S.D., Wang, Z.: Kuai: a model checker for software-defined
networks. In: Proceedings of the 14th Conference on Formal Methods in Computer-
Aided Design, pp. 163–170 (2014)

8. Sethi, D., Narayana, S., Malik, S.: Abstractions for model checking SDN controllers.
In: Formal Methods in Computer-Aided Design, pp. 145–148 (2013)

9. Sheard, T., Stump, A., Weirich, S.: Language-based verification will change the
world. In: Proceedings of the FSE/SDP Workshop on the Future of Sofware Engi-
neering Research, pp. 343–348 (2010)

10. Siek, J., Taha, W.: Gradual typing for functional languages. In: Proceedings of the
Scheme and Functional Programming Workshop, pp. 81–92, September 2006

11. Stewart, G.: Computational verification of network programs in Coq. In: Gonthier,
G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 33–49. Springer, Heidelberg
(2013)

12. Tanter, É., Tabareau, N.: Gradual certified programming in Coq. In: Proceedings
of the 11th Symposium on Dynamic Languages, pp. 26–40 (2015)

13. Ball, T., Bjørner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv, M., Schapira,
M., Valadarsky, A.: VeriCon: towards verifying controller programs in software-
defined networks. SIGPLAN Not. 49(6), 282–293 (2014). PLDI 2014

14. Wu, Y., Haeberlen, A., Zhou, W., Loo, B.T.: Answering why-not queries in
software-defined networks with negative provenance. In: Proceedings of the Twelfth
ACM Workshop on Hot Topics in Networks, pp. 1–7 (2013)

15. Wundsam, A., Levin, D., Seetharaman, S., Feldmann, A.: OFRewind: enabling
record and replay troubleshooting for networks. In: Proceedings of the USENIX
Annual Technical Conference (2011)

16. The Coq Proof Assistant. https://coq.inria.fr
17. Haskell. https://www.haskell.org
18. NEC: “Trema Openflow Controller”. http://trema.github.com/trema/

https://coq.inria.fr
https://www.haskell.org
http://trema.github.com/trema/

	Computational Verification of Network Programs for Several OpenFlow Switches in Coq
	1 Introduction
	2 Preliminary
	2.1 NetCore
	2.2 Coq

	3 Methodology of Verification
	4 Verification
	4.1 Overview of Verification

	5 Discussion
	6 Conclusion
	A Appendix (Program that Does Not Generate Looping Packets)
	B Appendix (Program that Generates Looping Packets)
	References

