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Abstract In this paper we consider algebras of functions that are constant on the sets
of a partition. We describe the crossed product algebras of the mentioned algebras
withZ.We show that the function algebra is isomorphic to the algebra of all functions
on some set. We also describe the commutant of the function algebra and finish by
giving an example of piece-wise constant functions on a real line.
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1 Introduction

An important direction of investigation for any class of non-commutative algebras
and rings, is the description of commutative subalgebras and commutative subrings.
This is because such a description allows one to relate representation theory, non-
commutative properties, graded structures, ideals and subalgebras, homological and
other properties of non-commutative algebras to spectral theory, duality, algebraic
geometry and topology naturally associated with commutative algebras. In represen-
tation theory, for example, semi-direct products or crossed products play a central

J. Richter · S. Silvestrov
Division of Applied Mathematics, School of Education,
Culture and Communication, Mälardalen University, Box 883, 721 23 Västerås, Sweden
e-mail: johan.richter@mdh.se

S. Silvestrov
e-mail: sergei.silvestrov@mdh.se

V. Ssembatya · A.B. Tumwesigye (B)
Department of Mathematics, College of Natural Sciences, Makerere University,
Box 7062, Kampala, Uganda
e-mail: alexbt@cns.mak.ac.ug

V. Ssembatya
e-mail: vas@cns.mak.ac.ug

© Springer International Publishing Switzerland 2016
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role in the construction and classification of representations using the method of
induced representations. When a non-commutative algebra is given, one looks for
a subalgebra such that its representations can be studied and classified more easily
and such that the whole algebra can be decomposed as a crossed product of this
subalgebra by a suitable action.

When one has found a way to present a non-commutative algebra as a crossed
product of a commutative subalgebra by some action on it, then it is important to
know whether the subalgebra is maximal commutative, or if not, to find a maximal
commutative subalgebra containing the given subalgebra. This maximality of a com-
mutative subalgebra and related properties of the action are intimately related to the
description and classification of representations of the non-commutative algebra.

Some work has been done in this direction [2, 4, 6] where the interplay between
topological dynamics of the action on one had and the algebraic property of the
commutative subalgebra in the C∗−crossed product algebra C(X) � Z being max-
imal commutative on the other hand are considered. In [4], an explicit description
of the (unique) maximal commutative subalgebra containing a subalgebra A of C

X

is given. In [3], properties of commutative subrings and ideals in non-commutative
algebraic crossed products by arbitrary groups are investigated and a description of
the commutant of the base coefficient subring in the crossed product ring is given.
More results on commutants in crossed products and dynamical systems can be found
in [1, 5] and the references therein.

In this article, we take a slightly different approach.We consider algebras of func-
tions that are constant on the sets of a partition, describe the crossed product algebras
of the mentioned algebras with Z and show that the function algebra is isomorphic
to the algebra of all functions on some set. We also describe the commutant of the
function algebra and finish by giving an example of piece-wise constant functions
on a real line.

2 Definitions and a Preliminary Result

Let A be any commutative algebra. Using the notation in [4], we let ψ : A → A be
any algebra automorphism on A and define

A �ψ Z := { f : Z → A : f (n) = 0 except for a finite number of n}.

It can be proved thatA �ψ Z is an associative C−algebra with respect to point-wise
addition, scalar multiplication and multiplication defined by twisted convolution, ∗
as follows;

( f ∗ g)(n) =
∑

k∈Z

f (k).ψk(g(n − k)),

where ψk denotes the k−fold composition of ψ with itself for positive k and we use
the obvious definition for k ≤ 0.
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Definition 1 A �ψ Z as described above is called the crossed product algebra of
A and Z under ψ.

A useful and convenient way of working withA �ψ Z, is to write elements f, g ∈
A �ψ Z in the form f = ∑

n∈Z
fnδn and g = ∑

n∈Z
gmδm where fn = f (n), gm =

g(m) and

δn(k) =
{
1, if k = n,

0, if k �= n.

Then addition and scalar multiplication are canonically defined andmultiplication
is determined by the relation

( fnδ
n) ∗ (gmδm) = fnψ

n(gm)δn+m, (1)

where m, n ∈ Z and fn, gm ∈ A.

Definition 2 By the commutant A′ of A in A �ψ Z we mean

A′ := { f ∈ A �ψ Z : f g = g f for every g ∈ A}.

It has been proven [4] that the commutant A′ is commutative and thus, is the
unique maximal commutative subalgebra containing A. For any f, g ∈ A �ψ Z,

that is, f = ∑
n∈Z

fnδn and g = ∑
m∈Z

gmδm, then f g = g f if and only if

∀r :
∑

n∈Z

fnφ
n(gr−m) =

∑

m∈Z

gmφm( fr−m).

Now let X be any set and A an algebra of complex valued functions on X . Let
σ : X → X be any bijection such thatA is invariant under σ and σ−1, that is for every
h ∈ A, h ◦ σ ∈ A and h ◦ σ−1 ∈ A. Then (X, σ ) is a discrete dynamical system and
σ induces an automorphism σ̃ : A → A defined by,

σ̃ ( f ) = f ◦ σ−1.

Our goal is to describe the commutant ofA in the crossed product algebraA �σ̃ Z

for the case where A is the algebra of functions that are constant on the sets of a
partition. First we have the following results.

Definition 3 For any nonzero n ∈ Z, we set

SepnA(X) = {x ∈ X | ∃h ∈ A : h(x) �= σ̃ n(h)(x)}. (2)

The following theorem has been proven in [4].

Theorem 1 The unique maximal commutative subalgebra of A �σ̃ Z that contains
A is precisely the set of elements
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A′ =
{

∑

n∈Z

fnδ
n | for all n ∈ Z : fn|SepnA(X) ≡ 0

}
. (3)

We observe that since σ̃ ( f ) = f ◦ σ−1, then

σ̃ 2( f ) = σ̃ ( f ◦ σ−1) = ( f ◦ σ−1) ◦ σ−1 = f ◦ σ−2,

and hence for every n ∈ Z, σ̃ n( f ) = f ◦ σ−n. Therefore, by taking X = R andA as
the algebra of constant functions on X we have: for every x ∈ X and every h ∈ A,

σ̃ n(h)(x) := h ◦ σ−n(x) = h(σ−n(x)) = h(x),

since h is a constant function. It follows that in this case SepnA(X) = ∅. Therefore
in this case, A′ = A �σ̃ Z.

3 Algebra of Piece-Wise Constant Functions

Let X be any set, J a countable set and P = {X j : j ∈ J } be a partition of X; that
is X = ∪r∈J Xr where Xr �= ∅ and Xr ∩ Xr ′ = ∅ if r �= r ′.

LetA be the algebra of piece-wise constant complex-valued functions on X. That
is

A = {h ∈ C
X : for every j ∈ J : h(X j ) = {c j }}.

Let σ : X → X be a bijection on X. The lemma below gives the necessary and
sufficient conditions for (X, σ ) to be a dynamical system.

Lemma 1 The following are equivalent.

1. The algebra A is invariant under σ and σ−1.
2. For every i ∈ J there exists j ∈ J such that σ(Xi ) = X j .

Proof We recall that the algebra A is invariant under σ if and only if for every
h ∈ A, h ◦ σ ∈ A.

Obviously, if for every i ∈ J there exists a unique j ∈ J such that σ(Xi ) = X j ,

then
(h ◦ σ)(Xi ) = h(σ (Xi )) = h(X j ) = {c j }.

Thus h ◦ σ ∈ A.
Conversely, suppose A is invariant under σ but 2. does not hold. Let x1, x2 ∈

X j and Xr , Xr ′ ∈ P such that σ(x1) ∈ Xr and σ(x2) ∈ Xr ′ . Let h : X → C be the
function defined by

h(x) =
{
1 if x ∈ Xr ,

0 otherwise.
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Then h ∈ A. But h ◦ σ(x1) = 1 and h ◦ σ(x2) = 0. Thus h /∈ A, which contradicts
the assumption. ��

The following lemma asserts that any bijection σ2 : X → X that preserves the
structure of a partition essentially produces the same algebra of functions.

Lemma 2 Let P1 = {X j : j ∈ J } and P2 = {Y j : j ∈ J } be partitions of the sets
X and Y respectively, and let

AX = {h ∈ C
X : for every j ∈ J : h(X j ) = {c j }},

and
AY = {h ∈ C

Y : for every j ∈ J : h(Y j ) = {d j }}.

Then AX is isomorphic to AY .

Proof Choose points xi ∈ X and yi ∈ Y such that xi ∈ Xi if and only if yi ∈ Yi ∀ i ∈
J and let μ : AX → AY be a function defined by

μ( f )(y) = f (xi ) if y ∈ Y j , ∀ j ∈ J. (4)

It is enough to prove that μ is an algebra isomorphism.

• Let f, g ∈ AX and let α, β ∈ C. Then if y ∈ Y, then y ∈ Yi for some i ∈ J, there-
fore,

μ(α f + βg)(y) = (α f + βg)(xi )

= α f (xi ) + βg(xi )

= αμ( f )(y) + βμ(g)(y)

= [αμ( f ) + βμ(g)](y).

Therefore μ is linear since y was arbitrary.
• For every f, g ∈ AX and y ∈ Y (y ∈ Yi ),

μ( f g)(y) = ( f g)(xi )

= f (xi )g(xi )

= μ( f )(y)μ(g)(y)

= [μ( f )μ(g)](y).

Thus μ is a multiplicative homomorphism.
• Now, suppose f, g ∈ AX such that f �= g. Then there exists i ∈ J such that

f (xi ) �= g(xi ), xi ∈ Xi . Therefore, if y ∈ Yi ,

μ( f )(y) = f (xi ) �= g(xi ) = μ(g)y.
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Therefore μ is injective.
• Finally, suppose h ∈ AY and let f ∈ AX be defined by f (x) = h(yi ). If y ∈ Y,

then y ∈ Yi for some i ∈ J, and hence,

h(y) = h(yi ) = f (x) = f (xi ) = μ( f )(y).

It follows that μ is onto and hence an algebra isomorphism.
��

Theorem 2 Let P1 = {X j : j ∈ J } and P2 = {Y j : j ∈ J } be partitions of two sets
X and Y andAX andAY be algebras of functions that are constant on the sets of the
partitionsP1 andP2 respectively. Let σ1 : X → X and σ2 : Y → Y be bijections such
thatAX is invariant under σ1 (and σ−1

1 ) andAY is invariant under σ2 (and σ−1
2 ) and

that σ1(Xi ) = X j whenever σ2(Yi ) = Y j for all i, j ∈ J . Suppose σ̃1 : AX → AX is
the automorphism on AX induced by σ1, and σ̃2 : AY → AY is the automorphism
on AY induced by σ2. Then

σ̃2 ◦ μ = μ ◦ σ̃1. (5)

where μ is given by (4). Moreover, for every n ∈ Z,

σ̃2
n ◦ μ = μ ◦ σ̃1

n
. (6)

Proof Let y ∈ X such that y ∈ Yi for some i ∈ J. Then for every f ∈ A,

(σ̃2 ◦ μ)( f )(y) = (μ f ) ◦ σ−1
2 (y)

= (μ f )(σ−1
2 (y))

= f (σ−1
1 (xi ))

= ( f ◦ σ−1
1 )(xi )

= μ( f ◦ σ−1
1 )(y)

= μ[σ̃1( f )](y)
= [μ ◦ σ̃1]( f )(y).

Since y is arbitrary, we have

(σ̃2◦)( f )μ = μ ◦ σ̃1( f )

for every f ∈ A. And since f is arbitrary,

σ̃2 ◦ μ = μ ◦ σ̃1.

Now from (5), we have

σ̃2
2 ◦ μ = σ̃2 ◦ (σ̃2 ◦ μ) = σ̃2 ◦ (μ ◦ σ̃1) = (σ̃2 ◦ μ) ◦ σ̃1 = (μ ◦ σ̃1) ◦ σ̃1 = μ ◦ σ̃1

2.
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Therefore the relation (6) holds for n = 2.
Now suppose the relation (6) holds for k. Then:

σ̃2
k+1 ◦ μ = σ̃2 ◦ (σ̃2

k ◦ μ) = σ̃2 ◦ (μ ◦ σ̃1
k) = (σ̃2 ◦ μ) ◦ σ̃1

k = (μ ◦ σ̃1) ◦ σ̃1
k = μ ◦ σ̃1

k+1.

Therefore, from the induction principle,

σ̃2
n ◦ μ = μ ◦ σ̃1

n
. �

Remark 1 FromTheorem2 above, we get two nice results. The first is that ifP1 = P2

are partitions of X and σ1, σ2 : X → X are bijections on X which preserve the
structure of the partition, they will give rise to the same automorphism. That is,
suppose P1 = {X j : j ∈ J } is a partition of X and σ1, σ2 : X → X are bijections
on X such that, if σ1(Xi ) = X j , then σ2(Xi ) = X j , for all i, j ∈ J. Let σ̃ : A → A

be the automorphism on induced by σ, that is, for every h ∈ A,

σ̃ (h) = h ◦ σ−1.

Then for every f ∈ A,

σ̃1( f ) = σ̃2( f ).

This is given by the fact that if P1 = P2, then in (5), we can take μ = id.

The second is the following important theorem.

Theorem 3 Let P1 = {X j : j ∈ J } and P2 = {Y j : j ∈ J } be partitions of two sets
X and Y andAX andAY be algebras of functions that are constant on the sets of the
partitionsP1 andP2 respectively. Let σ1 : X → X and σ2 : Y → Y be bijections such
thatAX is invariant under σ1 (and σ−1

1 ) andAY is invariant under σ2 (and σ−1
2 ) and

that σ1(Xi ) = X j whenever σ2(Yi ) = Y j for all i, j ∈ J . Suppose σ̃1 : AX → AX is
the automorphism on AX induced by σ1, and σ̃2 : AY → AY is the automorphism
on AY induced by σ2. Then the crossed product algebras A �σ̃1 Z and A �σ̃2 Z are
isomorphic.

Proof Weneed to construct the an isomorphismbetween the crossedproduct algebras
AX �σ̃1 Z and AY �σ̃1 Z. Using the notation in [4], we let f := ∑

n∈Z
fnδn be an

element in AX �σ̃1 Z. Define a function μ : AX �σ̃1 Z → AY �σ̃2 Z be defined by

μ̃

(
∑

n∈Z

fnδ
n
1

)
=

∑

n∈Z

μ( fn)δ
n
2 , (7)

where μ is defined in (4). Then, since μ is an algebra isomorphism, it is enough
to prove that μ̃ is multiplicative. To this end, we let f := ∑

n∈Z
fnδn1 and g :=∑

m∈Z
gmδm1 be arbitrary elements inAX �σ̃1 Z, thenwe prove that μ̃ ismultiplicative

on the generators fnδn1 and gmδm1 respectively. Using (1) we have
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μ̃(( fnδ
n
1 ) ∗ (gmδm1 )) = μ̃( fn σ̃1

n
(gm)δn+m

1 )

= μ( fn σ̃1
n
(gm))δn+m

2

= [μ( fn)μ(σ̃1
n
( fm))]δn+m

2

= μ( fn)σ̃2
n
(μ( fm))δn+m

2 by (6)

= μ̃( fnδ
n
2 ) ∗ μ̃( fmδm2 ).

Therefore μ̃ is multiplicative on the generators fnδn and since μ is linear, it is
multiplicative on the elements f = ∑

n∈Z
fnδn ∈ AX �σ̃ Z. ��

Remark 2 In Lemma 1 we proved the necessary and sufficient condition on a bijec-
tion σ : X → X such that the algebraAX is invariant under σ, that is, for every i ∈ J
there exists j ∈ J such that σ(Xi ) = X j where the Xi form a partition for X. From
this, it can be shown thatA is isomorphic toC

J ,where byC
J we denote the space of

complex sequences indexed by J. This can be done by constructing an isomorphism
between AX and C

J via σ as follows.
Let τ : J → J be a map such that τ(i) = j is equivalent to σ(Xi ) = X j for all

i, j ∈ J. Then τ is a bijection that plays the same role as σ2 in Lemma 2. Therefore,
using the same Lemma, we deduce that the algebra A is isomorphic to C

J . In Theo-
rem 3, we have shown amethod of constructing an isomorphism between the crossed
product algebras AX �σ̃1 Z and AY �σ̃2 Z, when AX and AY are isomorphic. It fol-
lows that the crossed product algebra AX �σ̃1 Z is isomorphic to C

J
�τ̃ Z, where τ̃

follows the same definition as σ̃ .

In the next section we describe the commutant of our algebra AX in the crossed
product algebra AX �σ̃ Z.

3.1 Maximal Commutative Subalgebra

We take the same partition P = ∪ j∈J X j and a bijection σ : X → X such that for all
i ∈ J, there exists j ∈ J such that σ(Xi ) = X j . For k ∈ Z>0, let

Ck := {
x ∈ X | k is the smallest positive integer such that x, σ k(x) ∈ X j (8)

for some j ∈ J } .

According to Theorem1, the uniquemaximal commutative subalgebra ofA �σ̃ Z

that contains A is precisely the set of elements

A′ =
{

∑

n∈Z

fnδ
n | for all n ∈ Z : fn|SepnA(X) ≡ 0

}
, (9)
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where SepnA(X) is given by (2). We have the following theorem which gives the
description of SepnA(X) in this case and is crucial in the description if the maximal
commutative subalgebra.

Theorem 4 Let σ : X → X be a bijection on X as given above, σ̃ : AX → AX be
the automorphism onAX induced by σ and Ck be given by (8). Then for every n ∈ Z,

SepnA(X) =
⎧
⎨

⎩
⋃

k�n

Ck ∪ C∞

⎫
⎬

⎭ , (10)

where
C∞ = {X j ∈ P : σ k(X j ) �= X j ∀k ≥ 1}.

Proof 1. If n ≡ 0 (mod k) and x ∈ X j ∈ Ck , the we can write n = mk for some
m ∈ Z. Then, since σ k(X j ) = X j it follows that σ−k(X j ) = X j and therefore
for every h ∈ A,

σ̃ n(h)(x) = σ̃mk(h)(x) = (h ◦ σ−mk)(x) = h(σ−mk(x)) = h(x),

since x and σ−mk(x) ∈ X j for all m ∈ Z.

2. If n �≡ 0 (mod k), we can write n = mk + j where m, j ∈ Z with 1 ≤ j < k.
It follows that for every x ∈ X j ∈ Ck,

σ̃ n(h)(x) = σ̃mk+ j (h)(x)

= (h ◦ σ−mk+ j )(x)

= h(σ−mk+ j (x))

= σ̃ j (h)(x).

But k is the smallest integer such that σ k(X j ) = X j . Therefore since j < k,

σ̃ j (h)(x) �= h(x).

Hence

SepnA(X) = {x ∈ X | ∃ h ∈ A : h(x) �= σ̃ n(h)(x)}

=
{{∪ j : X j /∈Ck X j

}
if n ≡ 0 (mod k),{∪ j : X j∈Ck X j

}
if n �≡ 0 (mod k),

and if x ∈ C∞, then obviously x ∈ SepnA for every n ≥ 1, or simply

SepnA(R) =
⋃

k�n

Ck ∪ C∞.
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From the above theorem, the description of the maximal commutative subalgebra
in A �σ̃ Z can be done as follows.

Theorem 5 Let AX be the algebra of piece-wise constant functions f : X → C,
σ : X → X any bijection on X, σ̃ : AX → AX the automorphism onAX induced by
σ and Ck be as described above. Then the unique maximal commutative subalgebra
of AX �σ̃ Z that contains AX is given by

A′ =
⎧
⎨

⎩
∑

n∈Z : k|n

⎛

⎝
∑

jn∈J

a jnχX jn

⎞

⎠ δn

⎫
⎬

⎭ .

Proof From (9) we have that the uniquemaximal commutative subalgebra ofAX �σ̃

Z that contains AX is precisely the set of elements

A′ =
{

∑

n∈Z

fnδ
n | for all n ∈ Z : fn|SepnA(X) ≡ 0

}
,

and from (2),
SepnA(R) =

⋃

k�n

Ck . (11)

Combining the two results and using the definition of hn ∈ AX as

hn =
∑

jn∈J

a jnχX jn
,

we get

A′ =
⎧
⎨

⎩
∑

n∈Z : k|n

⎛

⎝
∑

jn∈J

a jnχX jn

⎞

⎠ δn

⎫
⎬

⎭ .

��
It can be observed from the results in Theorem 4 that it is possible to have

SepnA(X) = X for all n ∈ Z. For example, suppose J is infinite and let σ : X → X
be a bijection such that σ(X j ) = X j+1 for every j ∈ J. Then it is easily seen that in
in this case SepnA(X) = X. However, this is not possible if J is finite since in this
case σ acts like a permutation on a finite group. In the following section, we treat one
such a case. We let X = R and AX be the algebra of piece-wise constant functions
on R with N fixed jump points, where N ≥ 1 is an integer. In order to work in the
setting described before, we treat jump points as intervals of zero length. Then R is
partitioned into 2N + 1 sub-intervals.
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4 Algebra of Piece-Wise Constant Functions on the Real
Line with N Fixed Jump Points

LetA be the algebra of piece-wise constant functions f : R → Rwith Nfixed jumps
at points t1, t2, . . . , tN . Partition R into N + 1 intervals I0, I1, . . . , IN where Iα =
]tα, tα+1[ with t0 = −∞ and tN+1 = ∞. By looking at jump points as intervals of
zero length, we canwriteR = ∪Iα where Iα is as described above for α = 0, 1, . . . N
and Iα = {tα} if α > N . Then for every h ∈ A we have

h(x) =
2N∑

α=0

aαχIα (x), (12)

where χIα is the characteristic function of Iα. As in the preceding section, we let
σ : R → R be any bijection on R and let σ̃ : A → A be the automorphism on A

induced by σ . Then we have the following lemma which gives the necessary and
sufficient conditions for (R, σ ) to be a discrete dynamical system.

Lemma 3 The algebra A is invariant under both σ and σ−1 if and only if the
following conditions hold.

1. σ (and σ−1) maps the each jump point tk, k = 1, . . . , N onto another jump point.
2. σ maps every interval Iα, α = 0, 1, . . . N bijectively onto any of the other inter-

vals I0, I1 . . . IN .

Proof Obviously, if the two conditions hold, then A is invariant under σ . So we
suppose that A is invariant under σ and prove that the two conditions must hold.

1. Suppose σ(tk) = t0 /∈ {t1, t2, . . . , tN } for some k ∈ {1, 2, . . . , N }. Then, since σ

is onto, there exists x0 ∈ R such that σ(x0) = tk, that is, there exists a non jump
point that is mapped onto a jump point. We show that this is not possible.
Let

h(x) =
{
1 if x = tk,

0 otherwise.

Then h ∈ A. But

h ◦ σ(x) =
{
1 if σ(x) = tk,

0 otherwise,
=

{
1 if x = x0,

0 otherwise.

Therefore h ◦ σ /∈ A which is a contradiction, implying that σ does not map a
non jump point onto a jump point, proving the first condition.
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2. Consider the bijection σ : R → R defined by

σ(x) =

⎧
⎪⎨

⎪⎩

x if x �= t
′
k or t

′′
k ,

t
′′
k if x = t

′
k,

t
′
k if x = t

′′
k ,

(13)

where t
′
k ∈ Ik and t

′′
k ∈ Ik+1 for some k ∈ {1, 2, . . . , N }. Then σ is a bijection that

permutes the jump points. Let h ∈ A. Then using (12) and for the σ in Eq. (13)
above, we have:

σ(x) =

⎧
⎪⎨

⎪⎩

h(x) if x �= t
′
k or t

′′
k ,

ak+1 if x = t
′
k,

ak if x = t
′′
k .

Therefore, h ◦ σ has jumps at points t1, . . . , tN , t
′
k, t

′′
k implying that h ◦ σ /∈ A.

��
The following theorem gives the description of SepnA(R) for any n ∈ Z.

Theorem 6 LetA be an algebra of piece-wise constant functions with N fixed jumps
at points t1, . . . , tN , σ : R → R be any bijection on R such thatA is invariant under
σ and let σ̃ : A → A be the automorphism on A induced by σ . Let

Ck := {
x ∈ R | k is the smallest positive integer such that x, σ k(x) ∈ Iα (14)

for some α = 0, . . . 2N } .

Then for every n ∈ Z,

SepnA(R) =
⋃

k�n

Ck . (15)

Proof See Theorem 4 and observe that C∞ = ∅ in this case. ��
Example 1 LetA be the algebra of piece-wise constant functions with 4−fixed jump
points at t1, t2, t3, t4. PartitionR into five subintervals I0, . . . , I4 where Iα =]tα, tα+1[
with t0 = −∞ and t5 = ∞.

Let σ : R → R be a bijection such that σ(I0) = I1, σ (I1) = I2, σ (I2) = I0,
σ (I3) = I4 and σ(I4) = I3. It follows that σ 3(I0) = I0, σ 3(I1) = I1 and σ 3(I2) =
I2. But σ j (Iα) �= Iα for α = 0, 1, 2 and 1 ≤ j < 3.

Also σ 2(I3) = I3, σ 2(I4) = I4 but σ j (Iα) �= Iα if j �≡ 0 (mod 2)with α = 3, 4.
Therefore:

SepnA(R) = {x ∈ R | ∃ h ∈ A : h(x) �= σ̃ n(h)(x)}
= R \ {{I3 ∪ I4} ∪ {tk : σ 2(tk) = tk, k = 1, 2, 3, 4}} if n ≡ 0 (mod 2)

= {I0 ∪ I1 ∪ I2} ∪ {tk : σ 2(tk) �= tk, k = 1, 2, 3, 4} if n ≡ 0 (mod 2),
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and

SepnA(R) = {x ∈ R | ∃ h ∈ A : h(x) �= σ̃ n(h)(x)}
= R \ {I0 ∪ {I1 ∪ I2} ∪ {tk : σ 3(tk) = tk, k = 1, 2, 3, 4}} if n ≡ 0 (mod 3)

= {I3 ∪ I4} ∪ {tk : σ 3(tk) �= tk, k = 1, 2, 3, 4} if n ≡ 0 (mod 3).

From these results we have the following theorem.

Theorem 7 Let A be the algebra of piece-wise constant functions f : R → R with
N fixed jumps at points t1, t2, . . . , tN . PartitionR into N + 1 intervals I0, I1, . . . , IN
where Iα =]tα, tα+1[with t0 = −∞ and tN+1 = ∞ and IM = {tα} for N + 1 � M �
2N. Let σ : R → R be any bijection on R such that A is invariant under σ and let
σ̃ : A → A be the automorphism on A induced by σ . Let

Ck := {
x ∈ R | k is the smallest positive integer such that x, σ k(x) ∈ Iα (16)

for some α = 0, . . . 2N } .

Then the unique maximal commutative subalgebra of A �σ̃ Z that contains A is
given by

A′ =
⎧
⎨

⎩
∑

n∈Z : k|n

(
2N∑

αn=0

aαnχIαn

)
δn

⎫
⎬

⎭ .

Proof From (9)we have that the uniquemaximal commutative subalgebra ofA �σ̃ Z

that contains A is precisely the set of elements

A′ =
{

∑

n∈Z

fnδ
n | for all n ∈ Z : fn|SepnA(X) ≡ 0

}
,

and from (11),
SepnA(R) =

⋃

k�n

Ck .

Combining the two results and using the definition of hn ∈ A as

hn =
2N∑

αn=0

aαnχIαn ,

we get

A′ =
⎧
⎨

⎩
∑

n∈Z : k|n

(
2N∑

αn=0

aαnχIαn

)
δn

⎫
⎬

⎭ .

��
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5 Some Examples

In this section we give some examples of how our results hold for well known simple
cases. We treat two cases of piece-wise constant functions on the real line; those with
one fixed jump point and those with two fixed jump points.

5.1 Piece-Wise Constant Functions with One Jump Point

Let A be the collection of all piece-wise constant functions on the real line with one
fixed jump point t0. Following the methods in the previous section R is partitioned
into three intervals I0 = (−∞, t0), I1 = (t0,∞) and I2 = {t0}. Then we can write
h ∈ A as

h =
2∑

α=0

aαχIα = a0χI0 + a1χI1 + a2χI2 . (17)

Let σ : R → R be any bijection onR and let σ̃ be the automorphism onA induced
by σ . Note that by the first part of Lemma 3, invariance of the algebraA implies that
σ(t0) = t0. It follows therefore that σ(I0) = I0 or σ(I0) = I1. We treat these two
cases below.

5.1.1 σ(I0) = I0

In this case (and by bijectivity of σ ), we have that σ(I1) = I1 and since σ(t0) = t0,
then for every x ∈ R, h ∈ A and n ∈ Z

σ̃ nh(x) := h ◦ σ−n(x) = h(x),

since x and σ−n(x) will lie in the same interval. Therefore, all intervals Iα, α =
0, 1, 2 belong to C1 and hence

SepnA(R) =
⋃

k�n

Ck = ∅.

Therefore, the maximal commutative subalgebra will be given by

A′ =
{

∑

n∈Z

fnδ
n | for all n ∈ Z : fn|SepnA(X) ≡ 0

}

= A �σ̃ Z.
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5.1.2 σ(I0) = I1

In this case (and by bijectivity of σ ), we have that σ(I1) = I0 and since σ(t0) = t0,
then for every x ∈ R, h ∈ A and n ∈ Z such that 2 | n we have

σ̃ nh(x) := h ◦ σ−n(x) = h(x),

since x and σ−n(x) will lie in the same interval. And for odd n, σ̃ n(h)(x) = h(x) if
and only if x = t0. Therefore, we have,

C1 = {Iα | σ(Iα) = Iα} = I2,

and
C2 = {Iα | σ 2(Iα) = Iα} = I0 ∪ I1.

Therefore,

SepnA(R) =
⋃

k�n

Ck =
{
C2 if k = 1,

∅ if k = 2.

Therefore, the maximal commutative subalgebra will be given by

A′ =
⎧
⎨

⎩
∑

n∈Z : k|n

(
2∑

αn=0

aαnχIαn

)
δn

⎫
⎬

⎭

=
⎧
⎨

⎩
∑

n∈Z : 2|n

(
2∑

α=0

aαnχIα

)
δn

⎫
⎬

⎭

=
{

∑

m∈Z

(a0,mχI0 + a1,mχI1 + a2,mχI2)δ
2m +

∑

m∈Z

(
a2,mχI2

)
δ2m+1

}
.

5.2 Piece-Wise Constant Functions with Two Jump Points

Let A be the collection of all piece-wise constant functions on the real line with
two fixed jump points at t0 and t1. Following the methods in the previous section R

is partitioned into intervals I0 =] − ∞, t0[, I1 =]t0, t1[ I2 =]t1,∞[, I3 = {t0}
and I4 = {t1}. Then we can write h ∈ A as

h =
4∑

α=0

aαχIα . (18)
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Let σ : R → R be any bijection onR and let σ̃ be the automorphism onA induced
by σ . Note that by the first part of Lemma 3, invariance of the algebraA implies that
σ(t0) = t0 (and σ(t1) = t1) or σ(t0) = t1 (in which case σ(t1) = t0). Below we give
a description for the maximal commutative subalgebra ofA �σ̃ Z for different types
of σ.

5.2.1 σ(Iα) = Iα for all α = 0, . . . , 4

This case is similar to the one in Sect. 5.1.1 in the sense that, for every x ∈ R, h ∈ A

and n ∈ Z

σ̃ nh(x) := h ◦ σ−n(x) = h(x),

since x and σ−n(x) will lie in the same interval. Therefore, all intervals Iα, α =
0, . . . , 4 belong to C1 and hence

SepnA(R) =
⋃

k�n

Ck = ∅.

Therefore, the maximal commutative subalgebra will be given by

A′ =
{

∑

n∈Z

fnδ
n | for all n ∈ Z : fn|SepnA(X) ≡ 0

}

= A �σ̃ Z.

5.2.2 σ(I0) = I1, σ (I1) = I0 and σ(Iα) = Iα, α = 2, 3, 4

In this case (and by bijectivity of σ ), we have that σ(I1) = I0 and therefore for every
x ∈ R, h ∈ A and n ∈ Z such that 2 | n we have

σ̃ nh(x) := h ◦ σ−n(x) = h(x),

since x and σ−n(x) will lie in the same interval. And for odd n, σ̃ n(h)(x) = h(x) if
and only if x ∈ I2 ∪ I3 ∪ I4. Therefore, we have,

C1 = {Iα | σ(Iα) = Iα} = I2 ∪ I3 ∪ I4,

and
C2 = {Iα | σ 2(Iα) = Iα} = I0 ∪ I1.

Therefore,
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SepnA(R) =
⋃

k�n

Ck =
{
C2 if k = 1,

∅ if k = 2.

It follows that for n ∈ Z such that 2 | n, the maximal commutative subalgebra
will be given by

A′
1 =

⎧
⎨

⎩
∑

n∈Z : k|n

(
2N∑

αn=0

aαnχIαn

)
δn

⎫
⎬

⎭

=
⎧
⎨

⎩
∑

n∈Z : 2|n

(
2N∑

αn=0

aαnχIαn

)
δn

⎫
⎬

⎭

=
∑

m∈Z

(
4∑

α=0

aα,mχIα

)
δ2m .

And for odd n, we have

A′
2 =

∑

n

(a2,mχI2 + a3,mχI3 + a4,mχI4)δ
n.

Therefore, the commutant A′ is given by:

A =
{

∑

m∈Z

(
4∑

α=0

aα,mχIα

)
δ2m +

∑

m∈Z

(a2,mχI2 + a3,mχI3 + a4,mχI4)δ
2m+1

}
.

Similar results can be obtained for the following cases

1. σ(I0) = I1, σ (I1) = I0, σ (I3) = I4, σ (I4) = I3 and σ(I2) = I2.
2. σ(I0) = I2, σ (I2) = I0 and σ(Iα) = Iα, α = 1, 3, 4.
3. σ(I0) = I2, σ (I2) = I0, σ (I3) = I4 σ(I4) = I3 and σ(I1) = I1.
4. σ(I1) = I2, σ (I2) = I1 and σ(Iα) = Iα α = 0, 3, 4.
5. σ(I1) = I2, σ (I2) = I1, σ (I3) = I4, σ (I4) = I3 and σ(I0) = I0.

Since in all these cases, σ 2(Iα) = Iα, α = 0, . . . , 4.

5.2.3 σ(I0) = I1, σ (I1) = I2, σ (I2) = I0 and σ(Iα) = Iα, α = 3, 4

In this case, using similar methods we have,

C1 = {Iα | σ(Iα) = Iα} = ∪I3 ∪ I4, C2 = ∅,
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and
C3 = {Iα | σ 3(Iα) = Iα} = I0 ∪ I1 ∪ I2.

Therefore,

SepnA(R) =
⋃

k�n

Ck =
{
C3 if k �= 3,

∅ if k = 3.

It follows that for n ∈ Z such that 3 | n, the maximal commutative subalgebra
will be given by

A′
1 =

⎧
⎨

⎩
∑

n∈Z : k|n

(
2N∑

αn=0

aαnχIαn

)
δn

⎫
⎬

⎭

=
⎧
⎨

⎩
∑

n∈Z : 3|n

(
4∑

α=0

aαnχIα

)
δn

⎫
⎬

⎭

=
∑

m∈Z

(
4∑

α=0

aα,mχIα

)
δ3m .

If 3 � n, then

A′
2 =

∑

n

(a3,nχI3 + a4,nχI4)δ
n.

Therefore:

A′ =
{

∑

m∈Z

(
4∑

α=0

aα,mχIα

)
δ3m +

∑

n

(a3,nχI3 + a4,nχI4)δ
n

}
.

5.2.4 σ(I0) = I1, σ (I1) = I2, σ (I2) = I0 and σ(I3) = I4, σ (I4) = I3

In this case, using similar methods we have,

C1 = ∅, C2 = I3 ∪ I4,

and
C3 = {Iα | σ 3(Iα) = Iα} = I0 ∪ I1 ∪ I2.

Therefore,

SepnA(R) =
⋃

k�n

Ck =

⎧
⎪⎨

⎪⎩

R \ C3 if k = 3,

R \ C2 if k = 2,

R if k = 1.
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It follows that for n ∈ Z such that 3 | n, the maximal commutative subalgebra
will be given by

A′
1 =

⎧
⎨

⎩
∑

n∈Z : k|n

(
2N∑

αn=0

aαnχIαn

)
δn

⎫
⎬

⎭

=
⎧
⎨

⎩
∑

n∈Z : 3|n

(
2N∑

αn=0

aαnχIαn

)
δn

⎫
⎬

⎭

=
∑

m∈Z

(
a0,mχI0 + a1,mχI1 + a2,mχI2

)
δ3m .

If 2 | n, then
A′

2 =
∑

m∈Z

(a3,mχI3 + a4,mχI4)δ
2m,

and for all other values of n, A′ = A. Hence:

A′ =
{

∑

m∈Z

(
a0,mχI0 + a1,mχI1 + a2,mχI2

)
δ3m +

∑

m∈Z

(a3,mχI3 + a4,mχI4)δ
2m

}
.
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