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Abstract In this paper, we study the existence of common fixed points of family
of multivalued mappings satisfying generalized F-contractive conditions in ordered
metric spaces. These results establish some of the general common fixed point the-
orems for family of multivalued maps.
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1 Introduction and Preliminaries

Markin [16] initiated the study of fixed points for multivalued nonexpansive and
contractive maps. Later, a useful and interesting fixed point theory for such maps
was developed. Later, a rich and interesting fixed point theory for such multival-
ued maps was developed; see, for instance [6, 7, 9–11, 14, 15, 18–20, 23]. The
theory of multivalued maps has various applications in convex optimization, dynam-
ical systems, commutative algebra, differential equations and economics. Recently,
Wardowski [25] introduced a new contraction called F-contraction and proved a
fixed point result as a generalization of the Banach contraction principle. Abbas et
al. [3] obtained common fixed point results by employed the F-contraction condi-
tion. Further in this direction, Abbas et al. [4] introduced a notion of generalized
F-contraction mapping and employed there results to obtain a fixed point of a gener-
alized nonexpansivemappings on star shaped subsets of normed linear spaces.Minak
et al. [17] proved some fixed point results for Ciric type generalized F-contractions
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on complete metric spaces. Recently, [5] established some fixed point results for
multivalued F-contraction maps on complete metrics spaces.

The aim of this paper is to prove common fixed points theorems for family of
multivalued generalized F-contraction mappings without using any commutativity
condition in partially ordered metric space. These results extend and unify various
comparable results in the literature [12, 13, 21, 22].

We begin with some basic known definitions and results which will be used in the
sequel. Throughout this article, N, R

+, R denote the set of natural numbers, the set
of positive real numbers and the set of real numbers, respectively.

Let � be the collection of all mappings F : R
+ → R that satisfy the following

conditions:

(F1) F is strictly increasing, that is, for all a, b ∈ R
+ such that a < b implies that

F(a) < F(b).
(F2) For every sequence {an} of positive real numbers, lim

n→∞ an = 0 and lim
n→∞

F (an) = −∞ are equivalent.
(F3) There exists λ ∈ (0, 1) such that lim

a→0+
aλF(λ) = 0.

Definition 20.1 ([25]) Let (X, d) be ametric space and F ∈ �. Amapping f : X →
X is said to be an F-contraction on X if there exists τ > 0 such that d( f x, f y) > 0
implies that

τ + F (d( f x, f y)) ≤ F (d(x, y))

for all x, y ∈ X .

Wardowski [25] gave the following result.

Theorem 20.1 Let (X, d) be a complete metric space and mapping f : X → X be
and F−contraction. Then there exists a unique x in X such that x = f x. Moreover,
for any x0 ∈ X, the iterative sequence xn+1 = f (xn) converges to x.

Kannan [12] has proved a fixed point theorem for a single valued self mapping T of
a metric space X satisfying the property

d(T x, T y) ≤ h{d(x, T x) + d(y, T y)}

for all x, y in X and for a fixed where h ∈ [0, 1
2 ).

Ciric [8] considered a mapping T : X → X satisfying the following contractive
condition:

d(T x, T y) ≤ q max{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)},

where q ∈ [0, 1). He proved the existence of a fixed point when X is a T -orbitally
complete metric space.

Latif and Beg [13] extendedmappings considered byKannan tomultivaluedmap-
pings and introduced the notion of a K -multivalued mapping. Rus [21] coined the
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term R-multivalued mapping, which is a generalization of a K -multivalued map-
ping (see also, [2]). Abbas and Rhoades [1] studied common fixed point problems
for multivalued mappings and introduced the notion of generalized R-multivalued
mappings which in turn generalizes R-multivalued mappings.

Let (X, d) be a metric space. Denote by P(X) be the family of all nonempty
subsets of X , and by Pcl (X) the family of all nonempty closed subsets of X.

A point x in X is called fixed point of a multivalued mapping T : X → Pcl(X)

provided x ∈ T x . The collection of all fixed point of T is denoted by Fix(T ).

Recall that, a map T : X → Pcl (X) is said to be upper semicontinuous, if for
xn ∈ X and yn ∈ T xn with xn → x0 and yn → y0, implies y0 ∈ T x0 (see [24]).

Definition 20.2 Let X be a nonempty set. Then (X, d,�) is called partially ordered
metric space if and only if d is a metric on a partially ordered set (X,�).

We define Δ1,Δ2 ⊆ X × X as follows:

Δ1 = {(x, y) ∈ X × X � x � y},
Δ2 = {(x, y) ∈ X × X � x ≺ y}.

Definition 20.3 A subset Γ of a partially ordered set X is said to be well-ordered if
every two elements of Γ are comparable.

2 Common Fixed Point Theorems

In this section, we obtain common fixed point theorems for family of multivalued
mappings. We begin with the following result.

Theorem 20.2 Let (X, d,�) be an ordered complete metric space and {Ti }mi=1 :
X → Pcl(X) be family of multivalued mappings. Suppose that for every (x, y) ∈ Δ1

and ux ∈ Ti (x), there exists uy ∈ Ti+1(y) for i ∈ {1, 2, . . . ,m} (with Tm+1 = T1 by
convention) such that, (ux , uy) ∈ Δ2 implies

τ + F
(
d(ux , uy)

) ≤ F(M(x, y; ux , uy)), (1)

where τ is a positive real number and

M(x, y; ux , uy) = max

{
d(x, y), d(x, ux ), d(y, uy),

d
(
x, uy

) + d (y, ux )

2

}
.

Then the following statements hold:

(i) Fi x(Ti ) 	= ∅ for any i ∈ {1, 2, . . . ,m} if and only if Fi x(T1) = Fix(T2) =
· · · = Fix(Tm) 	= ∅.
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(ii) Fi x(T1) = Fix(T2) = · · · = Fix(Tm) 	= ∅ provided that any one Ti for i ∈
{1, 2, . . . ,m} is upper semicontinuous.

(iii) ∩m
i=1Fix(Ti ) is well-ordered if and only if ∩m

i=1Fix(Ti ) is singleton set.

Proof To prove (i), let x∗ ∈ Tk(x∗) for any k ∈ {1, 2, . . . ,m}. Assume that x∗ /∈
Tk+1 (x∗) , then there exists an x ∈ Tk+1 (x∗) with (x∗, x) ∈ Δ2 such that

τ + F
(
d(x∗, x)

) ≤ F(M(x∗, x∗; x∗, x)),

where

M(x∗, x∗; x∗, x) = max

{
d(x∗, x∗), d(x∗, x∗), d(x, x∗),

d(x∗, x) + d(x∗, x∗)
2

}

= d(x, x∗),

implies that
τ + F

(
d(x∗, x)

) ≤ F(d(x∗, x)),

a contradiction as τ > 0. Thus x∗ = x . Thus x∗ ∈ Tk+1 (x∗) and so Fix(Tk) ⊆
Fix(Tk+1). Similarly, we obtain that Fix(Tk+1) ⊆ Fix(Tk+2) and continuing this
way, we get Fix(T1) = Fix(T2) = · · · = Fix(Tk). The converse is straightforward.

To prove (ii), suppose that x0 is an arbitrary point of X. If x0 ∈ Tk0 (x0) for any
k0 ∈ {1, 2, . . . ,m}, then by using (i), the proof is finished. So we assume that x0 /∈
Tk0 (x0) for any k0 ∈ {1, 2, . . . ,m}. Now for i ∈ {1, 2, . . . ,m}, if x1 ∈ Ti (x0), then
there exists x2 ∈ Ti+1(x1) with (x1, x2) ∈ Δ2 such that

τ + F (d(x1, x2)) ≤ F(M(x0, x1; x1, x2)),

where

M(x0, x1; x1, x2) = max

{
d(x0, x1), d(x0, x1), d(x1, x2),

d(x0, x2) + d(x1, x1)

2

}

= max

{
d(x0, x1), d(x1, x2),

d(x0, x2)

2

}

= max{d(x0, x1), d(x1, x2)}.

Now, if M(x0, x1; x1, x2) = d(x1, x2) then

τ + F (d(x1, x2)) ≤ F(d(x1, x2)),

a contradiction as τ > 0. Therefore M(x0, x1; x1, x2) = d(x0, x1) and we have

τ + F (d(x1, x2)) ≤ F (d(x0, x1)) .

Next for this x2 ∈ Ti+1 (x1) , there exists x3 ∈ Ti+2(x2) with (x2, x3) ∈ Δ2 such that
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τ + F (d(x2, x3)) ≤ F(M(x1, x2; x2, x3)),

where

M(x1, x2; x2, x3) = max

{
d(x1, x2), d(x1, x2), d(x2, x3),

d(x1, x3) + d(x2, x2)

2

}

= max{d(x1, x2), d(x2, x3)}.

Now, if M(x1, x2; x2, x3) = d(x2, x3) then

τ + F (d(x2, x3)) ≤ F(d(x2, x3)),

a contradiction as τ > 0. Therefore M(x1, x2; x2, x3) = d(x1, x2) and we have

τ + F (d(x2, x3)) ≤ F (d(x1, x2)) .

Continuing this process, for x2n ∈ Ti (x2n−1), there exist x2n+1 ∈ Ti+1 (x2n) with
(x2n, x2n+1) ∈ Δ2 such that

τ + F (d(x2n, x2n+1)) ≤ F (M(x2n−1, x2n; x2n, x2n+1)) ,

where

M(x2n−1, x2n; x2n, x2n+1) = max

{
d(x2n−1, x2n), d(x2n−1, x2n), d(x2n, x2n+1),

d(x2n−1, x2n+1) + d(x2n, x2n)

2

}

=
{
d(x2n−1, x2n), d(x2n, x2n+1),

d(x2n−1, x2n+1)

2

}

≤ d(x2n−1, x2n),

that is,
τ + F (d(x2n, x2n+1)) ≤ F (d(x2n−1, x2n)) .

Similarly, for x2n+1 ∈ Ti+1(x2n), there exist x2n+2 ∈ Ti+2 (x2n+1) such that for
(x2n+1, x2n+2) ∈ Δ2 implies

τ + F (d(x2n+1, x2n+2)) ≤ F (d(x2n, x2n+1)) .

Hence, we obtain a sequence {xn} in X such that for xn ∈ Ti (xn−1), there exist
xn+1 ∈ Ti+1 (xn) with (xn, xn+1) ∈ Δ2 such that

τ + F (d(xn, xn+1)) ≤ F (d(xn−1, xn)) .
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Therefore

F (d(xn, xn+1)) ≤ F (d(xn−1, xn)) − τ ≤ F (d(xn−2, xn−1)) − 2τ

≤ · · · ≤ F (d(x0, x1)) − nτ. (2)

From (2), we obtain lim
n→∞ F (d(xn, xn+1)) = −∞ that together with (F2) gives

lim
n→∞ d(xn, xn+1) = 0.

From (F3), there exists λ ∈ (0, 1) such that

lim
n→∞[d(xn, xn+1)]λF (d(xn, xn+1)) = 0.

From (2), we have

[d(xn, xn+1)]λF (d(xn, xn+1)) − [d(xn, xn+1)]λF (d(x0, xn+1))

≤ −nτ [d(xn, xn+1)]λ ≤ 0.

On taking limit as n → ∞ we obtain

lim
n→∞ n[d(xn, xn+1)]λ = 0.

Hence lim
n→∞ n

1
λ d(xn, xn+1) = 0 and there exists n1 ∈ N such that n

1
λ d(xn, xn+1) ≤

1 for all n ≥ n1. So we have

d(xn, xn+1) ≤ 1

n1/λ

for all n ≥ n1. Now consider m, n ∈ N such that m > n ≥ n1, we have

d (xn, xm) ≤ d (xn, xn+1) + d (xn+1, xn+2) + · · · + d (xm−1, xm)

≤
∞∑

i=n

1

i1/λ
.

By the convergence of the series
∑∞

i=1
1

i1/λ ,we get d (xn, xm) → 0 as n,m → ∞.
Therefore {xn} is a Cauchy sequence in X. Since X is complete, there exists an
element x∗ ∈ X such that xn → x∗ as n → ∞.

Now, if Ti is upper semicontinuous for any i ∈ {1, 2, . . . ,m}, then as x2n ∈ X,

x2n+1 ∈ Ti (x2n) with x2n → x∗ and x2n+1 → x∗ as n → ∞ implies that x∗ ∈
Ti (x∗) . Thus from (i), we get x∗ ∈ T1 (x∗) = T2 (x∗) = · · · = Tm (x∗).

Finally to prove (iii), suppose the set ∩m
i=1Fix (Ti ) is a well-ordered. We are to

show that∩m
i=1Fix (Ti ) is singleton. Assume on contrary that there exist u and v such
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that u, v ∈ ∩m
i=1Fix (Ti ) but u 	= v. As (u, v) ∈ Δ2, so for (ux , vy) ∈ Δ2 implies

τ + F (d(u, v)) ≤ F(M(u, v; u, v))

= F

(
max

{
d(u, v), d(u, u), d(v, v),

d (u, v) + d (v, u)

2

})

= F (d (u, v)) ,

a contradiction as τ > 0. Hence u = v. Conversely, if∩m
i=1Fix (Ti ) is singleton, then

it follows that ∩m
i=1Fix (Ti ) is a well-ordered. �

The following corollary extends and generalizes Theorem4.1 of [13] andTheorem
3.4 of [21] for two maps in ordered metric spaces.

Corollary 20.1 Let (X, d,�) be an ordered complete metric space and T1, T2 :
X → Pcl(X) be two multivalued mappings. Suppose that for every (x, y) ∈ Δ1 and
ux ∈ Ti (x), there exists uy ∈ Tj (y) for i, j ∈ {1, 2} with i 	= j such that, (ux , uy) ∈
Δ2 implies

τ + F
(
d(ux , uy)

) ≤ F(M(x, y; ux , uy)), (3)

where τ is a positive real number and

M(x, y; ux , uy) = max

{
d(x, y), d(x, ux ), d(y, uy),

d
(
x, uy

) + d (y, ux )

2

}
.

Then the following statements hold:

(1) Fix(Ti ) 	= ∅ for any i ∈ {1, 2} if and only if Fi x(T1) = Fix(T2) 	= ∅.

(2) Fix(T1) = Fix(T2) 	= ∅ provided that T1 or T2 is upper semicontinuous.
(3) Fix(T1) ∩ Fix(T2) is well-ordered if and only if Fi x(T1) ∩ Fix(T2) is singleton

set.

Example 20.1 Let X = {xn = n(n+1)
2 : n ∈ {1, 2, 3, . . .}} endowwith usual order≤ .

Let

Δ1 = {(x, y) : x ≤ y where x, y ∈ X} and
Δ2 = {(x, y) : x < y where x, y ∈ X}.

Define T1, T2 : X → Pcl(X) as follows:

T1 (x) = {x1} f or x ∈ X,

T2 (x) =
{ {x1} , x = x1

{x1, xn−1} , x = xn, f or n > 1.
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Take F (α) = ln α + α, α > 0 and τ = 1. For a Euclidean metric d on X, and(
ux , uy

) ∈ Δ2, we consider the following cases:

(i) If x = x1, y = xm, for m > 1, then for ux = x1 ∈ T1 (x) , there exists uy =
xm−1 ∈ T2 (y) , such that

d(ux , uy)e
d(ux ,uy)−M(x,y;ux ,uy) ≤ d(ux , uy)e

d(ux ,uy)−d(x,y)

= m2 − m − 2

2
e−m

<
m2 + m − 2

2
e−1

= e−1d (x, y)

≤ e−1M
(
x, y; ux , uy

)
.

(ii) If x = xn, y = xn+1 with n > 1, then for ux = x1 ∈ T1 (x) , there exists uy =
xn−1 ∈ T2 (y) , such that

d(ux , uy)e
d(ux ,uy)−M(x,y;ux ,uy) ≤ d(ux , uy)e

d(ux ,uy)−[ d(x,uy)+d(y,ux )

2 ]

= n2 − n − 2

2
e

−3n−2
2

<
n2 + 4n

2
e−1

= e−1

[
d

(
x, uy

) + d (y, ux )

2

]

≤ e−1M
(
x, y; ux , uy

)
.

(iii) When x = xn, y = xm withm > n > 1, then for ux = x1 ∈ T1 (x) , there exists
uy = xn−1 ∈ T2 (y) , such that

d(ux , uy)e
d(ux ,uy)−M(x,y;ux ,uy) ≤ d(ux , uy)e

d(ux ,uy)−d(x,ux )

= n2 − n − 2

2
e−n

<
n2 + n − 2

2
e−1

= e−1d (x, ux )

≤ e−1M
(
x, y; ux , uy

)
.

Now we show that for x, y ∈ X , ux ∈ T2 (x); there exists uy ∈ T1 (y) such that(
ux , uy

) ∈ Δ2 and (3) of Corollary 20.1 is satisfied. For this, we consider the fol-
lowing cases:
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(i) If x = xn, y = x1 with n > 1, we have for ux = xn−1 ∈ T2 (x) , there exists
uy = x1 ∈ T1 (y) , such that

d(ux , uy)e
d(ux ,uy)−M(x,y;ux ,uy) ≤ d(ux , uy)e

d(ux ,uy)−d(x,y)

= n2 − n − 2

2
e−n

<
n2 + n − 2

2
e−1

= e−1d (x, y)

≤ e−1M
(
x, y; ux , uy

)
.

(ii) In case x = xn, y = xm with m > n > 1, then for ux = xn−1 ∈ T2 (x) , there
exists uy = x1 ∈ T2 (y) , such that

d(ux , uy)e
d(ux ,uy)−M(x,y;ux ,uy) ≤ d(ux , uy)e

d(ux ,uy)−d(y,uy)

= n2 − n − 2

2
en

2−n−m2−m

<
m2 + m − 2

2
e−1

= e−1d
(
y, uy

)

≤ e−1M
(
x, y; ux , uy

)
.

Hence all the conditions of Corollary 20.1 are satisfied. Moreover, x1 = 1 is the
unique common fixed point of T1 and T2 with Fix(T1) = Fix(T2).

The following result generalizes Theorem 3.4 of [21] and Theorem 3.4 of [22].

Theorem 20.3 Let (X, d,�) be an ordered complete metric space and {Ti }mi=1 :
X → Pcl(X) be family of multivalued mappings. Suppose that for every (x, y) ∈ Δ1

and ux ∈ Ti (x), there exists uy ∈ Ti+1(y) for i ∈ {1, 2, . . . ,m} (with Tm+1 = T1 by
convention) such that, (ux , uy) ∈ Δ2 implies

τ + F
(
d(ux , uy)

) ≤ F(M2(x, y; ux , uy)), (4)

where τ is a positive real number and

M2(x, y; ux , uy) = αd(x, y) + βd(x, ux ) + γ d(y, uy) + δ1d
(
x, uy

) + δ2d (y, ux ) ,

and α, β, γ, δ1, δ2 ≥ 0, δ1 ≤ δ2 with α + β + γ + δ1 + δ2 ≤ 1. Then the following
statements hold:

(I) Fi x(Ti ) 	= ∅ for any i ∈ {1, 2, . . . ,m} if and only if Fi x(T1) = Fix(T2) =
· · · = Fix(Tm) 	= ∅.
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(II) Fi x(T1) = Fix(T2) = · · · = Fix(Tm) 	= ∅ provided that any one Ti for i ∈
{1, 2, . . . ,m} is upper semicontinuous.

(III) ∩m
i=1Fix(Ti ) is well-ordered if and only if ∩m

i=1Fix(Ti ) is singleton set.

Proof To prove (I), let x∗ ∈ Tk(x∗) for any k ∈ {1, 2, . . . ,m}. Assume that x∗ /∈
Tk+1 (x∗) , then there exists an x ∈ Tk+1 (x∗) with (x∗, x) ∈ Δ2 such that

τ + F
(
d(x∗, x)

) ≤ F(M2(x
∗, x∗; x∗, x)),

where

M2(x
∗, x∗; x∗, x) = αd(x∗, x∗) + βd(x∗, x∗) + γ d(x, x∗)

+ δ1d(x∗, x) + δ2d(x∗, x∗)
= (γ + δ1)d(x, x∗),

implies that

τ + F
(
d(x∗, x)

) ≤ F((γ + δ1)d(x∗, x))
≤ F(d(x∗, x)),

a contradiction as τ > 0. Thus x∗ = x . Thus x∗ ∈ Tk+1 (x∗) and so Fix(Tk) ⊆
Fix(Tk+1). Similarly, we obtain that Fix(Tk+1) ⊆ Fix(Tk+2) and continuing this
way, we get Fix(T1) = Fix(T2) = · · · = Fix(Tk). The converse is straightforward.

To prove (II), suppose that x0 is an arbitrary point of X. If x0 ∈ Tk0 (x0) for
any k0 ∈ {1, 2, . . . ,m}, then by using (I), the proof is finishes. So we assume that
x0 /∈ Tk0 (x0) for any k0 ∈ {1, 2, . . . ,m}. Now for i ∈ {1, 2, . . . ,m}, if x1 ∈ Ti (x0),
then there exists x2 ∈ Ti+1(x1) with (x1, x2) ∈ Δ2 such that

τ + F (d(x1, x2)) ≤ F(M2(x0, x1; x1, x2)),

where

M2(x0, x1; x1, x2) = αd(x0, x1) + βd(x0, x1) + γ d(x1, x2)

+ δ1d(x0, x2) + δ2d(x1, x1)

≤ (α + β + δ1)d(x0, x1) + (γ + δ1)d(x1, x2).

Now, if d(x0, x1) ≤ d(x1, x2), then we have

τ + F (d(x1, x2)) ≤ F((α + β + γ + 2δ1)d(x1, x2))

≤ F(d(x1, x2)),

a contradiction. Therefore

τ + F (d(x1, x2)) ≤ F (d(x0, x1)) .
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Next for this x2 ∈ Ti+1 (x1) , there exists x3 ∈ Ti+2(x2) with (x2, x3) ∈ Δ2 such that

τ + F (d(x2, x3)) ≤ F(M2(x1, x2; x2, x3)),

where

M2(x1, x2; x2, x3) = αd(x1, x2) + βd(x1, x2) + γ d(x2, x3)

+ δ1d(x1, x3) + δ2d(x2, x2)

≤ (α + β + δ1)d(x1, x2) + (γ + δ1)d(x2, x3).

Now, if d(x1, x2) ≤ d(x2, x3) then

τ + F (d(x2, x3)) ≤ F((α + β + γ + 2δ1)d(x2, x3))

≤ F (d (x2, x3)) ,

a contradiction as τ > 0. Therefore

τ + F (d(x2, x3)) ≤ F (d(x1, x2)) .

Continuing this process, for x2n ∈ Ti (x2n−1), there exist x2n+1 ∈ Ti+1 (x2n) with
(x2n, x2n+1) ∈ Δ2 such that

τ + F (d(x2n, x2n+1)) ≤ F (M2(x2n−1, x2n; x2n, x2n+1)) ,

where

M2(x2n−1, x2n; x2n, x2n+1) = αd(x2n−1, x2n) + βd(x2n−1, x2n) + γ d(x2n, x2n+1)

+ δ1d(x2n−1, x2n+1) + δ2d(x2n, x2n)

≤ (α + β + δ1) d(x2n−1, x2n) + (γ + δ1) d(x2n, x2n+1)

≤ d(x2n−1, x2n),

that is,
τ + F (d(x2n, x2n+1)) ≤ F (d(x2n−1, x2n)) .

Similarly, for x2n+1 ∈ Ti+1(x2n), there exist x2n+2 ∈ Ti+2 (x2n+1) such that for
(x2n+1, x2n+2) ∈ Δ2 implies

τ + F (d(x2n+1, x2n+2)) ≤ F (d(x2n, x2n+1)) .

Hence, we obtain a sequence {xn} in X such that for xn ∈ Ti (xn−1), there exist
xn+1 ∈ Ti+1 (xn) with (xn, xn+1) ∈ Δ2 such that

τ + F (d(xn, xn+1)) ≤ F (d(xn−1, xn)) .
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Therefore

F (d(xn, xn+1)) ≤ F (d(xn−1, xn)) − τ ≤ F (d(xn−2, xn−1)) − 2τ

≤ · · · ≤ F (d(x0, x1)) − nτ. (5)

From (4), we obtain lim
n→∞ F (d(xn, xn+1)) = −∞ that together with (F2) gives

lim
n→∞ d(xn, xn+1) = 0.

Follows the arguments those in proof of Theorem 20.2, {xn} is a Cauchy sequence
in X. Since X is complete, there exists an element x∗ ∈ X such that xn → x∗ as
n → ∞.

Now, if Ti is upper semicontinuous for any i ∈ {1, 2, . . . ,m}, then as x2n ∈ X,

x2n+1 ∈ Ti (x2n) with x2n → x∗ and x2n+1 → x∗ as n → ∞ implies that x∗ ∈
Ti (x∗) . Thus from (I), we get x∗ ∈ T1 (x∗) = T2 (x∗) = · · · = Tm (x∗).

Finally to prove (III), suppose the set ∩m
i=1Fix (Ti ) is a well-ordered. We are to

show that∩m
i=1Fix (Ti ) is singleton. Assume on contrary that there exist u and v such

that u, v ∈ ∩m
i=1Fix (Ti ) but u 	= v. As (u, v) ∈ Δ2, so for (ux , vy) ∈ Δ2 implies

τ + F (d(u, v)) ≤ F(M2(u, v; u, v)),

where

M2(u, v; u, v) = αd(u, v) + βd(u, u) + γ d(v, v)

+ δ1d (u, v) + δ2d (v, u)

= (α + δ1 + δ2) d (x, y) ,

that is,

τ + F (d(u, v)) ≤ F ((α + δ1 + δ2) d (x, y))

≤ F (d (u, v)) ,

a contradiction as τ > 0. Hence u = v. Conversely, if∩m
i=1Fix (Ti ) is singleton, then

it follows that ∩m
i=1Fix (Ti ) is a well-ordered. �

The following corollary extends Theorem 3.1 of [21], in the case of family of
mappings in ordered metric space.

Corollary 20.2 Let (X, d,�) be an ordered complete metric space and {Ti }mi=1 :
X → Pcl(X) be family of multivalued mappings. Suppose that for every (x, y) ∈ Δ1

and ux ∈ Ti (x), there exists uy ∈ Ti+1(y) for i ∈ {1, 2, . . . ,m} (with Tm+1 = T1 by
convention) such that, (ux , uy) ∈ Δ2 implies

τ + F
(
d(ux , uy)

) ≤ F(αd (x, y) + βd(x, ux ) + γ d(y, uy)]), (6)
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where τ is a positive real number and α, β, γ ≥ 0 with α, β, γ ≤ 1. Then the con-
clusions obtained in Theorem 20.3 remains true.

The following corollary extends Theorem 4.1 of [13].

Corollary 20.3 Let (X, d,�) be an ordered complete metric space and {Ti }mi=1 :
X → Pcl(X) be family of multivalued mappings. Suppose that for every (x, y) ∈ Δ1

and ux ∈ Ti (x), there exists uy ∈ Ti+1(y) for i ∈ {1, 2, . . . ,m} (with Tm+1 = T1 by
convention) such that, (ux , uy) ∈ Δ2 implies

τ + F
(
d(ux , uy)

) ≤ F(h[d(x, ux ) + d(y, uy)]), (7)

where τ is a positive real number and h ∈ [0, 1
2 ]. Then the conclusions obtained in

Theorem 20.3 remain true.

Corollary 20.4 Let (X, d,�) be an ordered complete metric space and {Ti }mi=1 :
X → Pcl(X) be family of multivalued mappings. Suppose that for every (x, y) ∈ Δ1

and ux ∈ Ti (x), there exists uy ∈ Ti+1(y) for i ∈ {1, 2, . . . ,m} (with Tm+1 = T1 by
convention) such that, (ux , uy) ∈ Δ2 implies

τ + F
(
d(ux , uy)

) ≤ F(d(x, y)), (8)

where τ is a positive real number. Then the conclusions obtained in Theorem 20.3
remain true.

The above corollary extends Theorem 4.1 of [13].

3 Conclusion

Recently many results appeared in the literature giving the problems related to the
common fixed point for multivalued maps. In this paper we obtained the results for
existence of common fixed points of family of maps that satisfying generalized F-
contractions in ordered structured metric spaces. We presented some examples to
show the validity of established results.
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