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Abstract The support vector machine for linear and nonlinear classification of data
is studied. The notion of generalized support vectormachine for data classifications is
used. The problem of generalized support vectormachine is shown to be equivalent to
the problem of generalized variational inequality and various results for the existence
of solutions are established. Moreover, examples supporting the results are provided.
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1 Support Vector Machine

Support vector machines (SVM) [2, 3, 13, 14, 18] were developed by Vapnik et al.
(1995) and are gaining popularity due to many attractive features. As a very powerful
tool for data classification and regression, it has been used in many fields, such as
text classification [5], facial expression recognition [9], gene analysis [4] and many
others [1, 6–8, 10–12, 17, 19–22]. Recently, it has been used for faults classification
in a water level control system [15]. And a faults classifier based SVM is used to
diagnose the faults for a water level control process [16].
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The classification problems can be restricted to consideration of the two-class
problems without loss of generality. The goal of support vector classification (SVC)
is to separate the two classes by a hyperplane which can also work well on unseen
examples. The method is to find the optimal hyperplane that maximizes the margin
between two classes of data. The set of data is said to be optimally separated by the
hyperplane if it is separated without error and the distance between the closest data
is maximal. Support vector classification can be thought of a process using given
data to find the decision plane which can guarantee good predictive performance on
unseen data.And the process of finding the decision plane is a quadratic programming
process.

In this paper, we study the problems of support vector machine and generalized
support vector machine. We also show the sufficient conditions for the existence
of solutions for problems of generalized support vector machine. We also present
various examples to support these results.

Throughout this paper, by N, R, R
n and R

+
n we denote the set of all natural

numbers, the set of all real numbers, the set of all n-tuples real numbers, the set of
all n-tuples of nonnegative real numbers, respectively.

Also, we consider ‖·‖ and < ·, · > as Euclidean norm and usual inner product
on R

n, respectively, such as, < x, y >= x.y = x1y1 + x2y2 + · · · + xnyn for all x =
(x1, x2, . . . , xn), y = (y1, y2, . . . , yn) in R

n. Furthermore, for any two vectors x, y ∈
R

n, we say that x ≤ y if and only if xi ≤ yi for all i ∈ {1, 2, . . . , n}, where xi and yi
are the components of x and y, respectively.

1.1 Data Classification

Actually, complex real-world applications are always not linearly separable. Kernel
representations offer an alternative solution by projecting the data into a higher
dimensional feature space to increase the computational power of the linear learning
machine.

In order to learn linear or non-linear relations with a linear machine, a set of non-
linear features is selected. This is equivalent to applying a fixed non-linear mapping
function Φ that transforms data in input space X to data in feature space �, in which
the linear machine can be used. For this classification, both spaces X and � need
to be vector spaces, where dimension of these two spaces may or may not be same.
When the given data is linearly separable, we consider Φ as identity operator. For
binary classification of data, we consider the decision function f : R

n → R, where
the input x = (x1, . . . , xn) is assigned to the positive class if, f (x) ≥ 0 and otherwise
to the negative class. The decision function is defined as

f (x) =< w, Φ (x) > +b. (1)



Linear and Nonlinear Classifiers of Data … 379

This means two steps will be built for non-linear machine: first a fixed non-linear
mapping of the data to a feature space, and then a linear machine is used to classify
them in the feature space.

In addition, the vector w is a linear combination of the support vectors in the
training data and can be written as

w =
∑

i

αiΦ (xi) , (2)

where each αi is Lagrange multiplier of the support vectors.
So the decision function can be rewritten as

f (x) = σ

(
∑

i

αi(Φ(xi) · Φ (x)) + b

)
, (3)

where σ is a sign function.
The Kernel K has an associated feature with mapping Φ , and it takes two inputs

and give their similarity in feature space �, that is, K : � × � → R is defined as

K(xi, x) = Φ (xi) · Φ (x) . (4)

Thus, the decision function from (3) becomes

f (x) = σ(
∑

i

αiK(xi, x) + b). (5)

Some useful kernels for real valued vectors are defined below:

(I) Linear kernel
K(xi, x) = xi · x.

(II) Polynomial kernel (of degree p)

K(xi, x) = (xi · x)p or (xi · x + 1)p ,

where p is a tunable parameter.
(III) Radial Basis Function (RBF) kernel

K(xi, x) = exp[−γ ||xi − x||2],

where γ is a hyperparameter (also called kernel bandwidth). The RBF kernel
corresponds to an infinite feature space.

(IV) Sigmoid Kernel
K(xi, x) = tanh (kxi · x + θ) ,

where k is a scalar and θ is the displacement.
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(V) Inverse multi-quadratic kernel

K(xi, x) = (‖xi − x‖2 + γ −2
)−1/2

,

where γ is a hyperparameter (also called kernel bandwidth).

Now, from (1), we define the functional margin of an example (Φ (xi) , yi) with
respect to a hyperplane (w, b) to be the quantity

γi = yi (〈w, Φ (xi)〉 + b) ,

where yi ∈ {−1, 1}. Note that γi > 0 implies correct classification of (xi, yi) . If we
replace functional margin by geometric margin we obtain the equivalent quantity for
the normalized linear function ( 1

‖w‖w, 1
‖w‖b), which thereforemeasures theEuclidean

distances of the points from the decision boundary in the input space.
Actually geometric margin can be written as

γ̃ = 1

‖w‖γ.

To find the hyperplane which has maximal geometric margin for a training set S
means to find maximal γ̃ . For convenience, we let γ = 1, the objective function can
be written as

max
1

‖w‖ .

Of course, there are some constraints for the optimization problem. According to
the definition of margin, we have yi (〈w, Φ (xi)〉 + b) ≥ 1, i = 1, . . . , l. We rewrite
in the equivalent form the objective function with the constraints as

min
1

2
‖w‖2 such that yi (〈w, Φ (xi)〉 + b) ≥ 1, i = 1, . . . , l. (6)

We denote this problem by SVM for data classification.

Example 1 Let’s take the group of points (0, 2), (0,−2), (1, 1) , (1,−1) ,

(−1, 1), (−1,−1) as positive class and the group of points (2, 0), (−2, 0), (2, 1) ,

(2,−1) , (−2, 1) , (−2,−1) as negative class shown in Fig. 1.
By using the mapping function

Φ (x) =
(
x21,

√
2x1x2, x

2
2

)
,

which transforms data from two-dimensional input space to three-dimensional
feature space, that is (1,

√
2, 1), (1,−√

2, 1) and (0, 0, 4) as positive class and
(4, 2

√
2, 1), (4,−2

√
2, 1) and (4, 0, 0) as negative data shown in Fig. 2.
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Fig. 1 The data points given
in Example 1

Fig. 2 The data separation
in three dimensional feature
space

Now by using this data in three dimensional feature space, we consider the fol-
lowing: For positive points, we have

(w1,w2,w3)

⎡

⎣
1√
2
1

⎤

⎦ + b ≥ 1,

(w1,w2,w3)

⎡

⎣
1

−√
2

1

⎤

⎦ + b ≥ 1,

(w1,w2,w3)

⎡

⎣
0
0
4

⎤

⎦ + b ≥ 1,

which implies

w1 + √
2w2 + w3 + b ≥ 1,

w1 − √
2w2 + w3 + b ≥ 1,

4w3 + b ≥ 1.
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For negative points, we have

(w1,w2,w3)

⎡

⎣
4

2
√
2

1

⎤

⎦ + b ≤ −1,

(w1,w2,w3)

⎡

⎣
4

−2
√
2

1

⎤

⎦ + b ≤ −1,

(w1,w2,w3)

⎡

⎣
4
0
0

⎤

⎦ + b ≤ −1,

implying that

4w1 + 2
√
2w2 + w3 + b ≤ −1,

4w1 − 2
√
2w2 + w3 + b ≤ −1,

4w1 + b ≤ −1.

From the equations, we get w = (−0.6667, 0, 0) with ‖w‖ = 0.6667 and shown
in Fig. 3.

Further, if we use Radial Basis Function (RBF) Kernel K(xi, x) = exp[−γ ||xi −
x||2], with γ = 1/3, we get w = (0.0031, 0.0012) which is shown in Fig. 4.

Also if we use Sigmoid Kernel K(xi, x) = tanh (kxi · x + θ) with k = 1/3 and
θ = 2.85, we get w = (0, 0) shown in Fig. 5.

Example 2 Let us look at another example. The positive data be shown as red square
and the negative data be shown as blue circle respectively as shown in Fig. 6.

It is also a non-linear separable problem. Now, if we transfer the original data into
the feature space by using the mapping function Φ (x), we can see that the data in
the feature space is linear separable see Fig. 7.

Fig. 3 The data separation
using Polynomial Kernel of
degree 2



Linear and Nonlinear Classifiers of Data … 383

Fig. 4 The data separation
using Radial Basis Function
(RBF)

Fig. 5 The data separation
using Sigmoid Kernel

Fig. 6 The data points given
in Example 2
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Fig. 7 The data separation
in feature space of
Example 2

Fig. 8 The data separation
of Example 2 using
Polynomial Kernel

Fig. 9 The data separation
of Example 2 using RBF
Kernel

Using Polynomial Kernel with p = 2, we get w = (−0.4898,−0.1633) which is
shown in Fig. 8.

Next if we use Radial Basis Function (RBF) Kernel K(xi, x) = exp[−γ ||xi −
x||2], with γ = 2, we get w = (−0.0016, 0.0014) as shown in Fig. 9.

Example 3 Consider the points (0, 0), (1, 0), (−1, 0) as positive class and points
(2, 0), (3, 0), (−2, 0) , (−3, 0) as negative class see in Fig. 10.
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Fig. 10 The data points
given in Example 3

Fig. 11 Data separation of
Example 3 by using
Polynomial Kernel of
degree 2

Note that, no linear separator exists for this data in the input space. Now, if we
use Φ (x) = (x21,

√
2x1x2, x22), then it transforms two-dimensional data into three-

dimensional feature space, which can be separated by hyperplane H as shown in the
Fig. 11.

2 Generalized Support Vector Machines

Consider a new control function F : R
p → R

p defined as

F (x) = WΦ (x) + B, (7)

where W ∈ R
p×p, B ∈ R

p are parameters and p is the dimension of feature space. In
addition, W contains the wi as a row, where each wi is the linear combination of the
support vectors in the feature space and can be written as

wi =
∑

j

α
(i)
j Φ

(
xj

)
, (8)

where Φ is a mapping that transforms data in input space X to data in feature space
�. From (7), we obtain
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F (x) =

⎡

⎢⎢⎣

∑
j α

(1)
j Φ

(
xj

)

...∑
j α

(p)
j Φ

(
xj

)

⎤

⎥⎥⎦Φ (x) + B

=

⎡

⎢⎢⎣

∑
j α

(1)
j Φ

(
xj

)
Φ (x)

...∑
j α

(p)
j Φ

(
xj

)
Φ (x)

⎤

⎥⎥⎦ + B

=

⎡

⎢⎢⎣

∑
j α

(1)
j K(xj, x)

...∑
j α

(p)
j K(xj, x)

⎤

⎥⎥⎦ + B

=

⎡

⎢⎢⎣

∑
j α

(1)
j

...∑
j α

(p)
j

⎤

⎥⎥⎦K(xj, x) + B,

where K(xj, x) is the kernel having associated feature with mapping Φ.

Define

γ̃ ∗
k = yk (WΦ (xk) + B)

= yk

⎛

⎜⎜⎝

⎡

⎢⎢⎣

∑
j α

(1)
j

...∑
j α

(p)
j

⎤

⎥⎥⎦K(xj, x) + B

⎞

⎟⎟⎠

= yk(ζK(xj, x) + B) ≥ 1 for k = 1, 2, . . . , l,

where yk ∈ {(−1,−1, . . . ,−1) , (1, 1, . . ., 1)} is a p-dimensional vector, K(xj, x) =

Φ (x) Φ (xk) and ζ =

⎡

⎢⎢⎣

∑
j α

(1)
j

...∑
j α

(p)
j

⎤

⎥⎥⎦.

Definition 1 We define a map G : R
p → R

p
+ by

G (wi) = (‖wi‖ , ‖wi‖ , . . . , ‖wi‖) for i = 1, 2, . . . , p, (9)

where wi are the rows of Wp×p for i = 1, 2, . . . , p.

Now, the problem is to find wi ∈ R
p that satisfy

min
wi∈W

G (wi) such that η ≥ 0, (10)

where η = yk
(
ζK(xj, x) + B

) − 1.
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We call this problem as the Generalized Support Vector Machine (GSVM).

Note that, if

⎡

⎢⎢⎣

∑
j α

(1)
j

...∑
j α

(p)
j

⎤

⎥⎥⎦K(xj, x) = −B, then η = −1 and we obtain no solution

of GSVM problem.

Example 4 Consider the data of points for positive and negative class as given in
Example 1. Then by using polynomial Kernel of degree two, we obtain (1,

√
2, 1),

(1,−√
2, 1), (0, 0, 4) the vectors of positive data and (4, 2

√
2, 1), (4,−2

√
2, 1),

(4, 0, 0) the vector negative data in feature space. From positive data points, we have

⎡

⎣
w11 w12 w13

w21 w22 w23

w31 w32 w33

⎤

⎦

⎡

⎣
1√
2
1

⎤

⎦ +
⎡

⎣
b1
b2
b3

⎤

⎦ ≥
⎡

⎣
1
1
1

⎤

⎦ ,

⎡

⎣
w11 w12 w13

w21 w22 w23

w31 w32 w33

⎤

⎦

⎡

⎣
1

−√
2

1

⎤

⎦ +
⎡

⎣
b1
b2
b3

⎤

⎦ ≥
⎡

⎣
1
1
1

⎤

⎦ ,

⎡

⎣
w11 w12 w13

w21 w22 w23

w31 w32 w33

⎤

⎦

⎡

⎣
0
0
4

⎤

⎦ +
⎡

⎣
b1
b2
b3

⎤

⎦ ≥
⎡

⎣
1
1
1

⎤

⎦ ,

which gives

w11 + √
2w12 + w13 + b1 ≥ 1,

w21 + √
2w22 + w23 + b2 ≥ 1,

w31 + √
2w32 + w33 + b3 ≥ 1,

w11 − √
2w12 + w13 + b1 ≥ 1,

w21 − √
2w22 + w23 + b2 ≥ 1,

w31 − √
2w32 + w33 + b3 ≥ 1,

4w13 + b1 ≥ 1,

4w23 + b2 ≥ 1,

4w33 + b3 ≥ 1.
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Also from negative data points,

⎡

⎣
w11 w12 w13

w21 w22 w23

w31 w32 w33

⎤

⎦

⎡

⎣
4

2
√
2

1

⎤

⎦ +
⎡

⎣
b1
b2
b3

⎤

⎦ ≤
⎡

⎣
−1
−1
−1

⎤

⎦ ,

⎡

⎣
w11 w12 w13

w21 w22 w23

w31 w32 w33

⎤

⎦

⎡

⎣
4

−2
√
2

1

⎤

⎦ +
⎡

⎣
b1
b2
b3

⎤

⎦ ≤
⎡

⎣
−1
−1
−1

⎤

⎦ ,

⎡

⎣
w11 w12 w13

w21 w22 w23

w31 w32 w33

⎤

⎦

⎡

⎣
4
0
0

⎤

⎦ +
⎡

⎣
b1
b2
b3

⎤

⎦ ≤
⎡

⎣
−1
−1
−1

⎤

⎦ ,

which gives

4w11 + 2
√
2w12 + w13 + b1 ≤ −1,

4w21 + 2
√
2w22 + w23 + b2 ≤ −1,

4w31 + 2
√
2w32 + w33 + b3 ≤ −1,

4w11 − 2
√
2w12 + w13 + b1 ≤ −1,

4w21 − 2
√
2w22 + w23 + b2 ≤ −1,

4w31 − 2
√
2w32 + w33 + b3 ≤ −1,

4w11 + b1 ≤ −1,

4w12 + b2 ≤ −1,

4w13 + b3 ≤ −1.

By solving these equations, we get

W =
⎡

⎣
−1.39 −0.512 −0.627
0.667 0 −0.667
0.667 0 0

⎤

⎦ and B =
⎡

⎣
3.742
1.047
1.51

⎤

⎦ ,

with smallest norm of wi

min
wi∈W

G (wi) = (0.667, 0.667, 0.667).

Hence we get w = (0.667, 0, 0) that minimize G (wi) for i = 1, 2, 3.
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Fig. 12 Data for situation 1
in Example 5

If we are dealing with the data that can linearly separable, then in the process of
GSVM, map Φ deals as identity operator. The next example we show the situations
for this case.

Example 5 Let us consider the three categories of data:
Situation 1 Suppose that we have data (2, 0) , (0, 2) , (2, 1) as positive class and

data (−1, 0) , (0,−1) , (−1,−1/2) as negative class shown in Fig. 12.
For positive points, we have (2, 0), (0, 2) , (2, 1), so

[
w11 w12

w21 w22

] [
2
0

]
+

[
b1
b2

]
≥

[
1
1

]
,

[
w11 w12

w21 w22

] [
0
2

]
+

[
b1
b2

]
≥

[
1
1

]
,

[
w11 w12

w21 w22

] [
2
1

]
+

[
b1
b2

]
≥

[
1
1

]
,

which implies

[
2w11

2w21

]
+

[
b1
b2

]
≥

[
1
1

]
,

[
2w12

2w22

]
+

[
b1
b2

]
≥

[
1
1

]
,

[
2w11 + w12

2w21 + w22

]
+

[
b1
b2

]
≥

[
1
1

]
.

Again, for the negative points, we have (−1, 0), (0,−1) , (−1,−1/2) and

[
w11 w12

w21 w22

] [−1
0

]
+

[
b1
b2

]
≤

[−1
−1

]
,

[
w11 w12

w21 w22

] [
0

−1

]
+

[
b1
b2

]
≤

[−1
−1

]
,

[
w11 w12

w21 w22

] [ −1
−1/2

]
+

[
b1
b2

]
≤

[−1
−1

]
,
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Fig. 13 The data separation
for situation 2

which gives

[−w11

−w21

]
+

[
b1
b2

]
≤

[−1
−1

]
,

[−w12

−w22

]
+

[
b1
b2

]
≤

[−1
−1

]
,

[−w11 − 1
2w12

−w21 − 1
2w22

]
+

[
b1
b2

]
≤

[
1
1

]
.

From above equations, we get

W =
[ 2

3
2
3

2
3

2
3

]
and B =

[− 1
3− 1
3

]
.

Thus we get

min
wi∈W

G (wi) =
(
2
√
2

3
,
2
√
2

3

)
.

Hence we get w = ( 23 ,
2
3 ) that minimizes G (wi) for i = 1, 2.

Situation 2 We consider the data (1, 0), (0, 1), (1/2, 1) as positive class, data
(−4, 0) , (0,−4) , (−2,−4) as negative class which is shown in Fig. 13.

Now, for positive points of Situation 2, we have (1, 0), (0, 1), (1/2, 1) and

[
w11 w12

w21 w22

] [
1
0

]
+

[
b1
b2

]
≥

[
1
1

]
,

[
w11 w12

w21 w22

] [
0
1

]
+

[
b1
b2

]
≥

[
1
1

]
,

[
w11 w12

w21 w22

] [
1
2
1

]
+

[
b1
b2

]
≥

[
1
1

]
,
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which gives

[
w11

w21

]
+

[
b1
b2

]
≥

[
1
1

]
,

[
w12

w22

]
+

[
b1
b2

]
≥

[
1
1

]
,

[ 1
2w11 + w12
1
2w21 + w22

]
+

[
b1
b2

]
≥

[
1
1

]
.

For negative points for this case, we have

[
w11 w12

w21 w22

] [−4
0

]
+

[
b1
b2

]
≤

[−1
−1

]
,

[
w11 w12

w21 w22

] [
0

−4

]
+

[
b1
b2

]
≤

[−1
−1

]
,

[
w11 w12

w21 w22

] [−2
−4

]
+

[
b1
b2

]
≤

[−1
−1

]
,

which gives

[−4w11

−4w21

]
+

[
b1
b2

]
≤

[−1
−1

]
,

[−4w12

−4w22

]
+

[
b1
b2

]
≤

[−1
−1

]
,

[−2w11 − 4w12

−2w21 − 4w22

]
+

[
b1
b2

]
≤

[−1
−1

]
.

Thus, we obtain that

W =
[ 2

5
2
5

2
5

2
5

]
and B =

[ 3
5
3
5

]
.

Thus we get

min
i∈{1,2} G (wi) =

(
2
√
2

5
,
2
√
2

5

)
.

Hence we get w = ( 25 ,
2
5 ) that minimize G (wi) for i = 1, 2.
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Fig. 14 The data separation
for situation 3

In the next Situation 3, we combine of this two groups of data. Now, we have data
(2, 0) , (0, 2) , (2, 1) , (1, 0), (0, 1), (1/2, 1) as positive class and (−1, 0), (0,−1),
(−1,−1/2), (−4, 0), (0,−4), (−2,−4) as negative class see Fig. 14.

For the positive points of the combination, we have

[
w11 w12

w21 w22

] [
1
0

]
+

[
b1
b2

]
=

[
1
1

]
,

and [
w11 w12

w21 w22

] [
0
1

]
+

[
b1
b2

]
=

[
1
1

]
,

which gives

[
w11

w21

]
+

[
b1
b2

]
=

[
1
1

]
and

[
w12

w22

]
+

[
b1
b2

]
=

[
1
1

]
.

For negative points for this case, we have

[
w11 w12

w21 w22

] [−1
0

]
+

[
b1
b2

]
=

[−1
−1

]
,

and [
w11 w12

w21 w22

] [
0

−1

]
+

[
b1
b2

]
=

[−1
−1

]
,

which gives

[−w11

−w21

]
+

[
b1
b2

]
=

[−1
−1

]
and

[−w12

−w22

]
+

[
b1
b2

]
=

[−1
−1

]
.
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From this, we obtain that

W =
[
1 1
1 1

]
and B =

[
0
0

]
.

Thus we get
min
i∈{1,2} G (wi) = (

√
2,

√
2).

Hence we get w = (1, 1) that minimize G (wi) for i = 1, 2.

The problem of GSVM defined in (10) is equivalent to

find wi ∈ W : 〈
G ′ (wi) , v − wi

〉 ≥ 0 for all v ∈ R
p with η ≥ 0. (11)

Hence the problem of GSVM becomes to the problem of generalized variational
inequality.

Note that it we take G ′ (wi) = wi
‖wi‖ , then from (11), we obtain

find wi ∈ W : 〈wi, v − wi〉 ≥ 0 for all v ∈ R
p with η ≥ 0, (12)

or
find wi ∈ W : 〈wi, v〉 ≥ ‖wi‖2 for all v ∈ R

p with η ≥ 0. (13)

We study the sufficient conditions for the existence of solutions for GSVM prob-
lems.

Proposition 1 Let G : R
p → R

p
+ be a differentiable operator. An element w∗ ∈ R

p

minimizes G if and only if G ′ (w∗) = 0, that is, w∗ ∈ R
p solves GSVM if and only if

G ′ (w∗) = 0.

Proof Let G ′ (w∗) = 0, then for all v ∈ R
p with η = yk

(
ζK(xj, x) + B

) − 1 ≥ 0,

< G ′ (w∗) , v − w∗ > = < 0, v − w∗ > = 0,

and consequently, the inequality

< G ′ (w∗) , v − w∗ > ≥ 0

holds for all v ∈ R
p. Hence w∗ ∈ R

p solves problem of GSVM.
Conversely, assume that w∗ ∈ R

p satisfies

< G ′ (w∗) , v − w∗ > ≥ 0 ∀ v ∈ R
n such that η ≥ 0.
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Taking v = w∗ − G ′ (w∗) in the above inequality implies that

< G ′ (w∗) ,−G ′ (w∗) > ≥ 0,

which further implies
−||G ′(w∗)||2 ≥ 0,

and we get G ′(w∗) = 0. �

Remark 1 Note that ifG ′ (w∗) = 0 at somew∗ ∈ R
p, thenwe obtain w∗

‖w∗‖ = 0which
implies w∗ = 0. Thus it follows from Proposition 2.4 that if G ′ (w∗) = 0 at some
w∗ ∈ R

p, then w∗ = 0 solves GSVM problem.

Remark 2 If w∗ = 0, then from (8), we obtain

∑

j

α
(∗)
j Φ

(
xj

) = 0,

which implies ∑

j

α
(∗)
j Φ

(
xj

)
Φ (x) = 0,

that is ∑

j

α
(∗)
j K

(
xj, x

) = 0. (14)

Since α
(∗)
j > 0 for all j, so we have

K
(
xj, x

) = 0.

Definition 2 Let K be a closed and convex subset of R
n. Then, for every point

x ∈ R
n, there exists a unique nearest point in K , denoted by PK (x), such that

‖x − PK (x)‖ ≤ ‖x − y‖ for all y ∈ K and also note that PK (x) = x if x ∈ K . PK

is called the metric projection of R
n onto K . It is well known that PK : R

n → K is
characterized by the properties:

(i) PK (x) = z for x ∈ R
n if and only if < z − x, y − z > ≥ 0 for all y ∈ R

n;
(ii) For every x, y ∈ R

n, ‖PK (x) − PK (y)‖2 ≤ < x − y,PK (x) − PK (y) >;
(iii) ‖PK (x) − PK (y)‖ ≤ ‖x − y‖, for every x, y ∈ R

n, that is, PK is nonexpansive
map.

Proposition 2 Let G : R
p → R

p
+ be a differentiable operator. An element w∗ ∈ R

p

minimize mapping G defined in (11) if and only if w∗ is the fixed point of map

PR
n+
(
I − ρG ′) : R

p → R
p
+ for any ρ > 0,

http://dx.doi.org/10.1007/978-3-319-42105-6_2
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that is,

w∗ = PR
p
+

(
I − ρG ′) (w∗)

= PR
p
+

(
w∗ − ρG ′ (w∗)) ,

where PR
p
+ is a projection map from R

p to R
p
+ and η = yk

(
ζK(xj, x) + B

) − 1 ≥ 0.

Proof Suppose w∗ ∈ R
p
+ is solution of GSVM. Then for η = yk

(
ζK(xj, x) + B

) −
1 ≥ 0, we have

< G ′ (w∗) ,w − w∗ > ≥ 0 for all w ∈ R
p.

Adding < w∗,w − w∗ > on both sides, we get

< w∗,w − w∗ > + < G ′ (w∗) ,w − w∗ >≥ < w∗,w − w∗ > for all w ∈ R
p,

which further implies that

< w∗ − (
w∗ − G ′ (w∗)) ,w − w∗ > ≥ 0 for all w ∈ R

p,

which is possible only if w∗ = PR
p
+

(
w∗ − ρG ′ (w∗)

)
, that is, w∗ is the fixed point

of G ′.
Conversely, let w∗ = PR

p
+

(
w∗ − ρG ′ (w∗)

)
with η = yk

(
ζK(xj, x) + B

) − 1 ≥
0, then we have

< w∗ − (
w∗ − G ′ (w∗)) ,w − w∗ > ≥ 0 for all w ∈ R

p,

which implies
< G ′ (w∗) ,w − w∗ > ≥ 0 for all w ∈ R

p,

and so w∗ ∈ R
p
+ is the solution of GSVM. �

3 Conclusion

The linear and nonlinear data classifications by using support vector machine and
generalized support vector machine have been studied. We also studied the sufficient
conditions for existence of the solution of generalized support vector machine. Some
examples are shown for supporting these results.
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