
Business Modeling and Requirements in RUP:
A Dependency Analysis of Activities, Tasks

and Work Products

Carina Campos1, José Eduardo Fernandes2(&),
and Ricardo J. Machado3

1 Dept. de Sistemas de Informação, Universidade do Minho,
Guimarães, Portugal

carina.campos13@gmail.com
2 Polytechnic Institute of Bragança, Bragança, Portugal

jef@ipb.pt
3 Centro ALGORITMI, Escola de Engenharia,
Universidade do Minho, Guimarães, Portugal

rmac@dsi.uminho.pt

Abstract. Most artifacts developed during the requirements engineering pro-
cess relate themselves in different ways. In order to understand in detail how
they affect each other during the software development process, it is relevant to
identify their interdependencies. This paper presents a systematization of the
existing interdependencies between the different elements of the Rational Uni-
fied Process (RUP) in the Business Modeling and Requirements disciplines.
This work, which highlights knowledge about the different interdependencies
and traceability of RUP elements, is useful to avoid unconscious decisions
during software the development process and also, to detect potential problems
due to the violation of the existing interdependencies.

Keywords: Requirements engineering � Interdependencies � Traceability �
Artifacts � RUP

1 Introduction

Software systems, one of the most complicated things developed by humankind,
became an essential part of our everyday lives and from which we are completely
dependent on. Their existence is so pervasive that, nowadays, society expects them to
assist us either in critical activities or in our everyday activities, to have high quality, to
provide exciting functionalities, to be reliable, and to be produced at low cost.

Given the increasing demand and complexity of software systems, the software
engineering discipline has accumulated, over the last years, an extensive scientific body
of knowledge related to theories, methods, approaches, and tools needed to construct
software systems [1]. To cope with the growing complexity and diversity of engi-
neering problems, the adoption of systematic and disciplined approaches to deal with
requirements and their problems has become crucial [1]. The study and research about
requirements is extensive in literature, covering diverse areas, such as the design of

© Springer International Publishing Switzerland 2016
O. Gervasi et al. (Eds.): ICCSA 2016, Part V, LNCS 9790, pp. 595–607, 2016.
DOI: 10.1007/978-3-319-42092-9_45



requirements modeling languages [2] or model transformation techniques and code
generation [3]. Recently, Fernandes and Machado [1] addressed the essence, issues,
and techniques for requirements in engineering projects. Requirements engineering, in
the context of the development of a system through an engineering project, embodies a
set of activities that permits eliciting, negotiating, and documenting the functionalities
and the restrictions of that system [1]. As an engineering discipline, is closely related to
the concept of project; it is throughout the project that the engineer applies his technical
and scientific knowledge, to solve the problems and to achieve the objectives which he
is confronted with [1]. In turn, the concept of project is closely related to the concept of
process.

Most individual requirements developed during the requirements engineering
process relate to and affect each other in different ways and thus cannot be treated in
isolation [4, 5]. The fact that the requirements relate to and affect each other makes it
necessary to identify and manage the requirements interdependencies in order to avoid
potentially costly mistakes during the system development.

Requirements interdependencies are not a problem by themselves, but they influ-
ence the number of development activities and decisions made during the software
engineering process [6]. Traceability is the basis for studying the requirements inter-
dependencies during the development process [7] since it allows identifying and jus-
tifying the artifacts that implement the requirements initially formalized.

Software development produces various kinds of artifacts. The artifacts, such as
requirements, do not exist in isolation; instead they relate to and affect each other [8].
During the development of solutions and also during the exploration phase for main-
tenance issues, frequently arises the need to introduce several changes to the project
decisions previously established. These changes should be clearly identified to ensure
the complete identification of the artifacts involved in the changes. To this end, it is
necessary to have knowledge about how the different artifacts relate among them since
it facilitates the identification of the artifacts affected.

RUP is a process that provides the best practices and guidelines for successful
software development [9]. This work, in the context of Business Modeling and
Requirements disciplines of RUP, analyzes and systematizes the traceability and the
interdependencies that may occur between the various elements during software
development projects.

This paper has the following structure: Sect. 2 presents the importance of dealing
with the interdependencies and the traceability during the software development;
Sect. 3 describes the interdependencies and the traceability between the different ele-
ments of the RUP; Sect. 4 presents the conclusions.

2 Interdependencies and Traceability

Requirements traceability is an issue that for long time is investigated and discussed,
such as in [10]. Dahlstedt and Persson [7] refer to traceability as “a basis for addressing
the requirements interdependencies”. According to Genvigir [11] and Zou et al. [12],
traceability is intimately associated to the software production process, specifically to

596 C. Campos et al.



the requirements and to the ability to establish links between these requirements and
other artifacts that satisfy them.

Sánchez et al. [13] mention that the requirements traceability aims to help deter-
mine the impact of changes in the conception phase of software, to support their
integration, preserve the knowledge and assure the quality and correction of the global
system.

Requirements traceability is as a quality factor [6, 14–16]. Actively supporting
traceability in a software development project can help ensuring other qualities of
software, such as adequacy and understandability [15].

On the other hand, neglecting the traceability can lead to less maintainable software
and to failures due to inconsistencies and omissions [15]. Dömges and Pohl [17] refer to
neglecting the traceability or capture insufficient and/or unstructured traces leads to
decrease in system quality, causes revisions, and hence, increases project costs and time.

Aizenbud-Reshef et al. [18] refer that, from the perspective of requirements man-
agement, traceability facilitates the interconnection of requirements to their origins and
reasons. Additionally, it allows capturing the information needed for understanding the
evolution of requirements and for verification of requirements fulfillment. Complete
traceability allows calculate more accurately the costs, as well as to determine lists of
changes, without depending on the programmer knowledge of all the areas that these
changes affect [18]. All these reasons make crucial to implement traceability practices
throughout the software development.

It is essential to identify and manage the interdependencies that occur throughout
the system development in order to, if needed, in any context, to properly consider
related artifacts and as such, to avoid potentially costly mistakes by neglecting either
those relations or eventually relevant artifacts As mentioned earlier, through trace-
ability, it is possible to manage these interdependencies; hence, traceability is funda-
mental to the development process.

Several works further develop traceability practices and theories [19, 20]. Marques
et al. propose a traceability representation language [21] that provides “abstractions to
requirements, artifacts and trace links as well as queries, through which trace links can be
searched, retrieved and filtered”. In addition, they also propose a requirement traceability
process [22] specifying its workflow, actors, responsibilities and inputs/outputs. Rempel
and Mäder [23] review the elements involved in establishing traceability in a develop-
ment project and derive a quality model for the systematic assessment of requirements
traceability. To facilitate traceability in themodel centric paradigm, Badreddin and Sturm
[24] call for representing requirements as first class entities aiming to enable software
developers, modelers, and business analysts to manipulate requirements entities as tex-
tual model and code elements. In this context, they propose a Requirement-Oriented
Modeling and Programming Language (ROMPL). Soonsongtanee and Limpiyakorn [25]
present an approach to enhancing the requirements traceability matrix with UML state
diagrams to describe the traceability states of associated requirements or life-cycle work
products. Regarding requirements interdependencies, Berrocal et al. [26] present a set of
profiles to allow designers to explicitly model interdependencies between elements in
BPMN 2 and UML 2 Use Case diagrams. They also define ATL transformations to
automatically derive these relationships from the business specification to the require-
ments models.

Business Modeling and Requirements in RUP 597



The purpose of dealing, systematically, with requirements interdependencies
improves the decisions made during software development as well as to detect the
potential problems that may arise because of the requirements interdependencies [6].
Managing requirements interdependencies consists in identify, store and maintain
information about how the requirements relate to and affect each other [6].

Maintain traceability of the requirements interdependencies is essential in order to
support various situations and activities in the system development process [7].
Traceability should be included and treated along the development projects, thus
representing, an asset to their success. Knowing the whole story of the artifacts, as well
as their interdependencies, will enable easier identification and management of existing
interdependencies from the early stages of development. Therefore, this knowledge
minimizes problems that may arise during the software development process.

3 Interdependencies and Traceability in RUP

RUP aims to ensure the production of quality software that meets the needs and
expectations of its users in a predictable schedule and cost [9]. RUP guidelines entail
several elements such as activities, tasks, roles and work products. Throughout the
development process, at several moments, RUP elements become interconnected; by
this way, a simple change in an element causes various subsequent adjustments in
others. Therefore, the knowledge of existing interdependencies between the various
elements is particularly useful since it allows easier identification of elements affected
during a change.

As Dahlstedt and Persson [7] refer, is essential to maintain the traceability of
interdependencies since it allows to know, in detail, how the elements relate, as well as
to support various situations and activities in the software development. Through the
traceability of various elements of RUP, it is possible to easier identify and manage the
interdependencies that may occur between elements. For those practitioners that adopt
RUP guidelines, it is useful to understand the interdependencies that may exist between
the various RUP elements.

3.1 Dependency Analysis of Activities and Tasks

RUP is organized in various disciplines and phases. However, the study mentioned in
this paper focuses in two transitions (see Fig. 1): (1) from the Business Modeling
discipline to the Requirements discipline, at Inception phase; (2) from the Inception to
the Elaboration phase, within the Requirements discipline.

To facilitate an overview and analysis of all tasks of RUP (for Business Modeling
and Requirements disciplines), the conduction of an initial RUP review allowed the
construction of information presented in Tables 1 and 2.

These tables show the different tasks of the disciplines of Business Modeling and
Requirements, the activities associated with these tasks, the phase where they are
performed, and the roles responsible for them. Table 1 details the activities, tasks,

598 C. Campos et al.



phases, and roles of the Business Modeling discipline considering both processes of
Classic RUP Lifecycle and Business Modeling Lifecycle.

The column Activities presents the five activities performed in this discipline. The
activities performed in the Classic RUP Lifecycle process are signaled in the table by
an α, the activities performed in the Business Modeling Lifecycle process are signaled
by an β and the activities performed in both processes are signaled in the table by αβ.

Fig. 1. Positioning of the study in the RUP (Based on [27]) (Color figure online)

Table 1. Activities, tasks, phases and roles of the business modeling discipline.

Business Modeling and Requirements in RUP 599



Column Tasks exposes all tasks practiced in the Business Modeling discipline.
Only the tasks with a gray background were studied, since the other stand in phases that
are outside the scope of our study. The intersection of column Activities with the lines
of column Tasks indicates (through an ‘x’) the tasks included in the activities.

Column Phases presents which phases include the different tasks and activities. The
abbreviations B1, B2, B3, B4 and B5 (for the various activities) associate tasks and
their activities to the several phases. Column Role main refers which are the roles
responsible for performing the different tasks. The activities with blue background
(Assess Business Status, Describe Current Business and Develop Domain Model) and
the phase (Inception) refer to the activities and the phase studied in Business Modeling
discipline.

Table 2 presents the activities, tasks, phases, and roles of the Requirements dis-
cipline. Column Activities presents the six activities practiced in this discipline. As
before, in the table, α signals activities performed in the Classic RUP Lifecycle process,
β signals activities executed in the Business Modeling Lifecycle process, and αβ signals
the activities performed in both processes.

Column Tasks exposes all tasks practiced in the Requirements discipline. In this
discipline, all tasks have a gray background since they are in the phases of the scope of
this study and as such, covered by this study. An ‘x’ at the intersection of column
Activities with the lines of column Tasks indicates the tasks practiced in the activities.

Column Phases presents tasks and activities performed in the different phases.
Abbreviations R1, R2, R3, R4, R5 and R6 (for the various activities) associate the tasks
and their activities to phases where they are performed. In the intersections, we use α
for Classic RUP Lifecycle, β for Business Modeling Lifecycle and αβ for both pro-
cesses. The intersections show the process where the tasks and their activities are
performed.

Table 2. Activities, tasks, phases and roles of the Requirements discipline.

600 C. Campos et al.



As in the previous table, the column Role main refers to the roles responsible for
performing the different tasks.

The activities with blue background (Analyze the Problem, Understand Stakeholder
Needs, Define the System, Manage the Scope of the System, Refine the System Def-
inition and Manage Changing Requirements) and the phases (Inception and Elabora-
tion) refer to the activities and the phases studied in Requirements discipline.

The information provided in these tables is useful throughout the software devel-
opment because it allows to perceive how activities, tasks, and roles relate in a par-
ticular discipline and phase.

3.2 Dependency Analysis of Work Products and Tasks

The elaboration of the previous two tables allowed to perceive the tasks and activities
covered in the disciplines and phases considered in this study. Tables 3 and 4 have the
purpose of clarifying the interconnection of all work products of both disciplines to
their respective tasks.

The first column of Table 3 shows all the work products of the Business Modeling
discipline and the second column presents all the tasks. Only the tasks with a gray
background were analyzed because the other tasks are in phases that are not within the
scope our study.

The intersection of these two columns depicts the work products consumed and
produced in the various tasks. These intersections use the terms IN, OUT and I/O: the
term IN is used to refer work products consumed by the associated task; the term OUT
represents the work products produced by the task in question; the term I/O represents
that the work products are both consumed and produced by the task in question.
Besides these terms, the term IN* refers to work products that are an optional entry of
the associated task; these work products are not necessarily consumed in the task. In the
tables, the use of colors facilitate the identification of terms IN, OUT, and I/O: the term
IN is represented by the green color, the term OUT by the red color and the term I/O by
the yellow color.

The first column, Table 4 shows all the work products of the Requirements dis-
cipline and in the second column presents all the tasks. All the tasks of this discipline
were analyzed because all the tasks are in phases that are within the scope our study.
The intersection of these two columns depicts which work products are consumed and
produced in the various associated tasks. These intersections use the terms IN, OUT
and I/O, which were previously defined.

Tables 3 and 4 show the work products produced and consumed by the different
tasks. The information available in these tables allows the identification of existing
interdependencies between tasks and work products that are produced and consumed.

Figures 2 and 3 present two graphical representations that were developed to
enhance the perception of the information contained in the previous tables; i.e., all the
existing interdependencies between the activities and the tasks and work products of a
given phase and discipline. This visualization facilitates the analysis of the existing
interdependencies along the development process, thus allowing for a better under-
standing and management.

Business Modeling and Requirements in RUP 601



Table 3. Work products of the tasks of the Business Modeling discipline.

Table 4. Work products of the tasks of the Requirements discipline.

602 C. Campos et al.



The representation of the Tables 1 and 3. This representation refers to the Business
Modeling discipline in the Inception phase. It presents the five activities belonging to
this discipline. These activities interconnect to their tasks; two of these activities have
no associated tasks because they are outside the scope of this study.

Each task has its associated work products. These work products may be consumed
in the associated task (inputs, graphically represented by arrow green) or may be
produced by that task (outputs, graphically represented by arrow red). The work
products represented in yellow refers to work products belonging to the Business
Modeling discipline.

The work products, represented in orange, despite being work products produced
and consumed in this discipline|phase, do not belong directly to work products defined
by RUP for this discipline. For these work products (in orange), a description below

Fig. 2. Scheme Business Modeling@Inception (Color figure online)

Business Modeling and Requirements in RUP 603



them indicates the discipline and the phase to which they belong; some of those do not
have associated discipline because, in concrete, they do not belong to any.

The representation of the Fig. 2 is based on information gathered in the Tables 2
and 4. This representation refers to the Requirements discipline in the Inception and
Elaboration phases. It presents the six activities belonging to this discipline, as well as
its interconnected tasks. All these activities have associated tasks because all of them

Fig. 3. Scheme Requirements@Inception, Elaboration

604 C. Campos et al.



are within the scope of this study. Each task has its associated work products. These
work products may be consumed in the associated task (inputs, graphically represented
by arrow green) or may be produced by that same task (outputs, graphically represented
by arrow red). The work products represented in yellow refers to work products
belonging to the Requirements discipline.

The colored background areas allow perceiving that two tasks are handled in both
phases, thus verifying that there are interdependencies between the phases. The tables
built facilitate the identification of interdependencies, not only among activities, tasks,
phases and the roles, but also among tasks and work products, of the disciplines under
consideration.

These tables, as well as the graphical representations allow analyzing the trace-
ability of various elements of RUP, as well as easily identifying all the existing
interdependencies between those elements. This becomes particularly useful since it
allows knowing in detail how the various elements of the RUP process are related.

The information provided in these tables and representations, improve the practi-
tioner’s capacity in dealing with the impact of changes and in supporting better
development decisions.

This systematization of the interdependencies is also useful to compare a particular
method/process model with the RUP since it allows knowing in detail how the RUP is
organized. The study of traceability and of the interdependencies between the various
elements of the RUP may be extended to all disciplines and phases that compose this
process. The expansion of the study will allow detailing how the various elements are
related throughout the whole RUP process.

4 Conclusions

RUP is a process that provides best practices and guidelines for successful software
development. However, this does not provide any information that enables for easy
identification of traceability and existing interdependencies between the various ele-
ments that constitute it. Throughout the software development, this can become a
problem since there is no explicit native information on RUP documentation on the
inter-relation of RUP elements.

Our work produced several tables and graphical representations in order to high-
light how the various RUP elements are related. These tables and graphical repre-
sentations allow, from the initial phases of development, an easier identification of the
various interdependencies and the traceability among elements, as well as to provide a
deeper knowledge about the organization of RUP. This is quite advantageous since it is
possible to avoid unconscious decisions during the development process as well as to
detect early potential problems due to the existing interdependencies.

Acknowledgments. This work has been supported by COMPETE: POCI-01-0145-FEDER-
007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope:
UID/CEC/00319/2013.

Business Modeling and Requirements in RUP 605



References

1. Fernandes, J.M., Machado, R.J.: Requirements in Engineering Projects. Springer, Cham
(2016)

2. Ivan, J.: The Design of Requirements Modelling Languages. Springer, Cham (2015)
3. Smialek, M., Nowakowski, W.: From Requirements to Java in a Snap. Springer, Cham

(2015)
4. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Nattoch Dag, J.: An industrial survey

of requirements interdependencies in software product release planning. In: Fifth IEEE
International Symposium on Requirements Engineering, pp. 84–91. IEEE Press (2001)

5. Regnell, B., Paech, B., Aurum, A., Wohlin, C., Dutoit, A., Nattoch Dag, J.: Requirements
mean decisions! – research issues for understanding and supporting decision-making in
requirements engineering. In: First Swedish Conference on Software Engineering Research
and Practice (SERP 2001), pp. 49–52 (2001)

6. Dahlstedt, Å.G., Persson, A.: Requirements Interdependencies – State of the Art and Future
Challenges. In: Aurum, A., Wohlin, C. (eds.) Engineering and Managing Software
Requirements. LNCS, pp. 95–116. Springer, Heidelberg (2005)

7. Dahlstedt, Å.G., Persson, A.: Requirements interdependencies - molding the state of
research into a research agenda. In: Ninth International Workshop on Requirements
Engineering: Foundation for Software Quality, pp. 55–64 (2003)

8. Heindl, M., Biffl, S.: A case study on value-based requirements tracing. In: 10th European
Software Engineering Conference, pp. 60–69. ACM, New York (2005)

9. Kruchten, P.: Tutorial: introduction to the rational unified process. In: 24th International
Conference on Software Engineering (ICSE 2002), pp. 703–703. ACM, New York (2002)

10. Gotel, O.C.Z.: An analysis of the requirements traceability problem. In: 1st International
Conference on Requirements Engineering, pp. 94–101. IEEE Press (1994)

11. Genvigir, E.C.: Um Modelo para Rastreabilidade de Requisitos de Software Baseado em
Generalização de Elos e Atributos. Instituto Nacional de Pesquisas Espaciais (2009)

12. Zou, X., Settimi, R., Cleland-Huang, J.: Improving automated requirements trace retrieval: a
study of term-based enhancement methods. Empirical Softw. Eng. 15(2), 119–146 (2010)

13. Sánchez, P., Alonso, D., Rosique, F., Álvarez, B., Pastor, J.A.: Introducing safety
requirements traceability support in model-driven development of robotic applications. IEEE
Trans. Comput. 60(8), 1059–1071 (2011)

14. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability. IEEE Trans.
Softw. Eng. 27(1), 58–93 (2001)

15. Winkler, S., Pilgrim, J.V.: A survey of traceability in requirements engineering and
model-driven development. Softw. Syst. Model 9(4), 529–565 (2010)

16. Spanoudakis, G., Zisman, A.: Software traceability: a roadmap. In: Chang, S.K. (ed.)
Handbook of Software Engineering and Knowledge Engineering, vol. 3, pp. 395–428.
World Scientific Publishing, Singapore (2005)

17. Dömges, R., Pohl, K.: Adapting traceability environments to project-specific needs.
Commun. ACM 41(12), 54–62 (1998)

18. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceability. IBM
Syst. J. 45(3), 515–526 (2006)

19. Huang, J., Gotel, O., Zisman, A. (eds.): Software and Systems Traceability. Springer,
London (2012)

20. Turban, B.: Tool-Based Requirement Traceability Between Requirement and Design
Artifacts. Springer, Wiesbaden (2013)

606 C. Campos et al.



21. Marques, A., Ramalho, F., Andrade, W.L.: TRL: a traceability representation language. In:
30th Annual ACM Symposium on Applied Computing, pp. 1358–1363. ACM, New York
(2015)

22. Marques, A., Ramalho, F., Andrade, W.L.: Towards a requirements traceability process
centered on the traceability model. In: 30th Annual ACM Symposium on Applied
Computing, pp. 1364–1369. ACM, New York (2015)

23. Rempel, P., Mäder, P.: A quality model for the systematic assessment of requirements
traceability. In: 23rd IEEE International Requirements Engineering Conference (RE),
pp. 176–185. IEEE Press (2015)

24. Badreddin, O., Sturm, A.: Requirement traceability: a model-based approach. In: 4th IEEE
International Model-Driven Requirements Engineering Workshop (MoDRE), pp. 87–91.
IEEE Press (2014)

25. Soonsongtanee, S., Limpiyakorn, Y.: Enhancement of requirements traceability with state
diagrams. In: 2nd International Conference on Computer Engineering and Technology
(ICCET), pp. V2-248–V2-252. IEEE Press (2010)

26. Berrocal, J., Alonso, J.G., Chicote, C.V., Murillo, J.M.: A model-driven approach for
documenting business and requirements interdependencies for architectural decision
making. IEEE Lat. Am. Trans. 12(2), 227–235 (2014)

27. IBM, Rational Method Composer (version 7.1). http://www-03.ibm.com/software/products/
en/rmc

Business Modeling and Requirements in RUP 607

http://www-03.ibm.com/software/products/en/rmc
http://www-03.ibm.com/software/products/en/rmc

	Business Modeling and Requirements in RUP: A Dependency Analysis of Activities, Tasks and Work Products
	Abstract
	1 Introduction
	2 Interdependencies and Traceability
	3 Interdependencies and Traceability in RUP
	3.1 Dependency Analysis of Activities and Tasks
	3.2 Dependency Analysis of Work Products and Tasks

	4 Conclusions
	Acknowledgments
	References


