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Abstract. Quality damage in databases can be measured by seizing
extant inconsistency, i.e., by quantifying the amount of violation of
integrity constraints. A repair is an update that reduces inconsistency
and hence improves data quality. Repair checking finds out if a given
update is a repair or not. Repair checking can be done by checking if
the undo of the update increases the amount of integrity or not. To do
so, sound measure-based integrity checking methods can be used. To
do so well, the used methods should also be complete. Repair check-
ing by integrity checking is an attractive alternative to conventional
repair checking approaches. However, the completeness of measure-based
integrity checking may be a problem, in general. We build on concepts,
techniques and results as presented in the first author’s previous work.

1 Introduction

Repair checking (abbr. RCh) is the problem to find out if a given update
repairs violations of database integrity [1,5,6,20]. Conventional RCh evaluates
the integrity of each constraint brute-force. Alternatively, we propose to compute
RCh by measure-based integrity checking (abbr. ICh) [8,11,12].

The main conceptual difference between brute-force and measure-based RCh:
the latter is inconsistency-tolerant, i.e., it accepts reductions of integrity viola-
tions that may not totally eliminate inconsistency. As opposed to that, brute-
force RCh disqualifies each update that does not yield total consistency. The
main technical difference: measure-based RCh can be implemented by simpli-
fied ICh [7], while brute-force RCh evaluates all constraints brute-force. The
main practical difference: If implemented by simplified ICh which exploits the
incrementality of updates, measure-based RCh is more efficient.

The two main pillars of our approach are inconsistency-tolerant ICh [9,15]
and inconsistency measures [4,16,17,19]. Both have been combined to measure-
based ICh in [8,14], which we now propose to use for RCh. Obviously, RCh is
related to repairing, i.e., the problem to eliminate inconsistency from a data-
base D such that consistent parts of D are preserved [10,22]. Repairing may be
in need of RCh, as broached in [6,20]. Yet, repairs can be processed as goals
to be solved, e.g., as view update requests to be satisfied, as done in [12,15].
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By combining integrity-preserving update methods with measure-based ICh,
inconsistency-tolerant repairing can be achieved, as described in [10].

In fact, those methods usually do not check if repairs are minimal, as required
by consistent query answering (CQA) [2,5], because most of the repairs computed
by the mentioned methods are minimal already. On the other hand, if an arbi-
trarily given update needs to be checked to be or not to be a repair, then the
satisfaction of some minimality criterion is indispensable.

Our main contributions: a measure-based inconsistency-tolerant generaliza-
tion of repairs, of their minimality, and of RCh, as well as an implementation of
RCh by measure-based ICh. Proofs of all results are available in the full paper.

2 Key Concepts

As in [7–14], we use common database research terminology and formalisms. See
[10] also for definitions of cases and causes of integrity violations, inconsistency
measures, measures ι, |ι|, ζ, |ζ|, κ, |κ| based on cases or causes, and measure-based
inconsistency-tolerant integrity checking methods. Let D, IC, U , μ always stand
for a database, an integrity theory, an update, and, resp., an inconsistency mea-
sure. We may use “;” for delimiting clauses in sets, instead of “,”.

In Subsect. 2.1, we define measure-based repairs. In Subsect. 2.2, we char-
acterize repair checking of updates U as a function, which is decomposed into
checking if U reduces inconsistency, and if it does, then checking if U is also
minimal, in some sense.

2.1 Repairs

Measure-based repairs generalize total repairs: they do not insist that all incon-
sistency is eliminated. Thus, a measure-based repair is an update U of a database
that is inconsistent with its constraints, such that the updated database becomes
less inconsistent, and there is no subset of U that could achieve the same or a
larger amount of inconsistency reduction. Below, we define total and measure-
based repairs as inconsistency reductions that are minimal.

Definition 1 (total and measure-based repair).

(a) U is a total inconsistency reduction of (D, IC) if μ(DU , IC) = 0.
(b) U is a total repair of (D, IC) if U is a total inconsistency reduction of (D, IC),

and there is no proper subset U ′ of U with that property.
(c) U is a μ-based inconsistency reduction of (D, IC) if μ(DU , IC) < μ(D, IC).
(d) U is a μ-based repair of (D, IC) if U is a μ-based inconsistency reduction,

and there is no proper subset U ′ of U such that μ(DU ′
, IC) ≤ μ(DU , IC).

Clearly, total repairs do not depend on any inconsistency measure, as opposed
to inconsistency reductions and measure-based repairs. In the literature, total
repairs are defined without recurring explicitly on any measure, by requiring
that each constraint in IC is satisfied in DU . However, minimality needs to be
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measured, and indeed, there are several alternative, non-equivalent definitions
of the minimality of total repairs. Yet, subset minimality as in Definition 1a is
the one most often referred to.

Obviously, each total and each μ-based repair is a total and, resp., μ-based
inconsistency reduction, but not vice-versa.

The following example features an update U that satisfies μ(DU , IC) <
μ(D, IC) as in Definition 1c, but not the minimality condition of 1d. Typically,
updates of that kind contain elements that do not contribute to the reduction of
inconsistency. Example 1 also features an update of D that is a measure-based
repair of (D, IC).

Example 1. Let D = {p, q, r}, IC = {← q}, U = {delete q, insert s}. It is easy
to verify that, for each measure μ ∈ {ι, |ι|, ζ, |ζ|, κ, |κ|}, μ(DU , IC) < μ(D, IC)
holds, i.e., U is a μ-based inconsistency reduction. However, U is not a μ-based
repair of (D, IC), since its subset U ′ = {delete q} clearly is a μ-based repair of
(D, IC) that yields the same amount of inconsistency reduction in a minimal
way, since μ(DU ′

, IC) = μ(DU , IC) holds.

In fact, the minimality condition of measure-based repairs in Definition 1d
should not be weakened so as to simply require that there is no proper subset
U ′ of U such that μ(DU ′

, IC) < μ(D, IC), as illustrated by Example 2.

Example 2. Let μ ∈ {ι, |ι|, ζ, |ζ|, κ, |κ|}. Further, let D = {p, q, r, s}, IC =
{← q, ← r, ← s}, U = {delete r, delete s}, and U ′ = {delete r}. Clearly,
U and U ′ are μ-based repairs such that DU = {p, q} and DU ′

= {p, q, s}.
Moreover, U ′ is a proper subset of U and μ(DU ′

, IC) < μ(D, IC). However, also
μ(DU , IC) < μ(DU ′

, IC) holds, i.e., U reduces inconsistency more than U ′, i.e.,
U ′ is not preferable to U .

The following corollaries of Definition 1 interrelate measure-based repairs,
total repairs and inconsistency reductions.

Corollary 1. For each measure μ and each inconsistent pair (D, IC), each total
repair of (D, IC) is a μ-based repair.

Corollary 2. If U is a total inconsistency reduction of (D, IC), then some
subset of U is a total repair of (D, IC).

Corollary 3. Each singleton update U such that μ(DU , IC) < μ(D, IC) is a
μ-based repair of (D, IC).

Corollary 3 devises an iteration of updates for iterated repairs by singleton
updates. For example, let {I1, I2, . . . , In} be the set of violated basic cases in
(D, IC). Then, for μ ∈ {ζ, |ζ|}, a total elimination of inconsistency in (D, IC)
can be achieved by iteratively applying singleton μ-based repairs U1, U2,. . . ,Un

such that, for U0 = ∅, Ui eliminates the violation of Ii in DUi−1, 1 ≤ i ≤ n, until
all violations in (D, IC) are gone in DUn. If some Ui also eliminates the violation
of Ij (j > i), then Uj = ∅.
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Example 3a and b illustrate that, for two measures μ, μ′, a μ-based repair U
is not necessarily a μ′-based repair, since μ and μ′ may measure the effect of U
differently.

Example 3. Let D = {p, q, r} and IC = {← q, ← s}.

(a) Let Ua = {delete q, insert s}. Clearly, Ua is a μ-based repair of (D, IC) for
each μ that assigns a higher weight of inconsistency to the violation of ← q
than to the violation of ← s. However, Ua is not a |ι|-based repair of (D, IC)
(|ι| counts the violated constraints in IC), since |ι|(DUa, IC) = |ι|(D, IC) = 1.

(b) Let Ub = {insert o}, and μ be the measure that counts the facts in D that
contribute to some integrity violation and then divides that count by the
cardinality of D. Since μ(DUb, IC) = 1/4 and μ(D, IC) = 1/3, Ub is a μ-
based repair, by Corollary 3. However, for each μ′ ∈ {ι, |ι|, ζ, |ζ|, κ, |κ|}, Ub is
clearly not a μ′-based repair of (D, IC), since μ′(D, IC) = μ′(DUb, IC) = 1.

2.2 Repair Checking

We distinguish between total and measure-based repair checking. The total repair
checking problem is to find out if an update U is a total repair of (D, IC). Hence,
each total repair checking method can be described as a function rct that maps
triples (D, IC, U) to {yes, no}. Similarly, the μ-based repair checking problem
is to find out if U is a μ-based repair of (D, IC). Hence, each μ-based repair
checking method can be described as a function rcm that maps triples (D, IC, U)
to {yes, no}.

By Definition 1, repair checking of an update U proceeds in two phases. First,
to check if U reduces inconsistency totally (1a) or if U is an inconsistency reduc-
tion (1c). We call this phase the inconsistency reduction check. If U has passed
the inconsistency reduction check, the second phase of repair checking is to check
if U is minimal, in the sense of Definition 1b and d, respectively. We call this
phase the minimality check. The soundness and completeness of repair checking
methods is defined as follows.

Definition 2 (soundness and completeness of measure-based repair checking
methods). Let μ be an inconsistency measure, and rc a function that maps
triples (D, IC, U) to {yes, no}. rc is called a sound, resp., complete, μ-based
repair checking method if (*), resp., (**) holds, for each triple (D, IC, U).

(∗) rc(D, IC, U) = yes ⇒ U is a μ-based repair
(∗∗) U is a μ-based repair ⇒ rc(D, IC, U) = yes

In words, rc is sound if its output rc(D, IC, U) = yes correctly identifies U
as a μ-based repair of (D, IC), and complete if each μ-based repair U of (D, IC)
is checked correctly by rc. Soundness and completeness of total repair checking
is defined analogously: ignore μ and replace each occurrence of “μ-based” by
“total” in Definition 3.

Corollary 4, below, is going to be useful for valuating results in Sect. 3.
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Corollary 4.

(a) If U is not a μ-based repair of (D, IC), then each sound μ-based repair
checking method rc outputs ir(D, IC, U) = no.

(b) If a complete repair checking method rc outputs rc(D, IC, U) = no, then U
is not a μ-based repair of (D, IC).

According to the first of the two phases of repair checking as identified
above, the following definition characterizes sound and complete measure-based
inconsistency reduction checking. (Analogously, total integrity reduction check-
ing could be defined.)

Definition 3 (measure-based inconsistency reduction checking). Let μ be an
inconsistency measure, and ir a function that maps triples (D, IC, U) to
{yes, no}. ir is called a sound, resp., complete, μ-based inconsistency reduc-
tion checking method if (*), resp., (**) holds, for each triple (D, IC, U).

(∗) ir(D, IC, U) = yes ⇒ μ(DU , IC) < μ(D, IC)

(∗∗) μ(DU , IC) < μ(D, IC) ⇒ ir(D, IC, U) = yes

In words, ir is sound if ir(D, IC, U) = yes correctly indicates that U reduces
the inconsistency of (D, IC) measured by μ, and complete if each U that reduces
inconsistency is checked correctly by rc.

Next, we define the soundness and completeness of the second phase of
measure-based repair checking, viz. measure-based minimality checking, accord-
ing to Definition 1d.

Definition 4 (measure-based minimality checking).
Let μ be an inconsistency measure, and mc a function that maps triples

(D, IC, U) to {yes, no}. mc is called a sound, resp., complete, μ-based minimal-
ity checking method if (*), resp., (**) holds, for each triple (D, IC, U) such that
U is an μ-based inconsistency reduction.

(∗) mc(D, IC, U) = yes ⇒ for each U ′ � U , μ(DU ′
, IC) � μ(DU , IC)

(∗∗) for each U ′ � U , μ(DU ′
, IC) � μ(DU , IC) ⇒ mc(D, IC, U) = yes

In words, mc is sound if mc(D, IC, U) = yes correctly indicates that U is a
minimal inconsistency reduction, according to Definition 1d, and mc is complete
if the minimality of each μ-based repair of (D, IC) is checked correctly by rc.

The following result is a straightforward consequence of Definitions 3, 4 and 5.
It effectively says that repair checking can be realized by inconsistency reduction
checking, followed by minimality checking, if needed. (Minimality checking is of
course not needed if the output of the inconsistency reduction check is negative.)

Theorem 1. Let μ be an inconsistency measure, ir a sound (resp., complete)
μ-based inconsistency reduction method, mc a sound (resp., complete) μ-based
minimality checking method, and rc a function that maps triples (D, IC, U) to
{yes, no}. rc is a sound (resp., complete) μ-based repair checking method if it
is defined by the following equivalence.

rc(D, IC, U) = yes ⇔ ir(D, IC, U) = yes and mc(D, IC, U) = yes
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In Sect. 3, we are going to see how each of the two phases of measure-based
repair checking can be implemented by measure-based integrity checking.

3 The Main Results

In Subsect. 3.1, we show that inconsistency reduction can be computed by
integrity checking. In Subsect. 3.2, we show that also minimality can be veri-
fied by integrity checking. This leads to the main result in Subsect. 3.3, that
repair checking can be computed by integrity checking.

3.1 Inconsistency Reduction Checking by Integrity Checking

We are going to show that inconsistency reduction checking, i.e. ir(D, IC, U),
can be computed by ic(DU , IC, U), where U is the update that undoes U , as
formalized below. We denote consecutive updates U , U ′ of D and then DU by
DUU ′

. Hence, DUU = D.

Definition 5. Let U denote the undo of U : for each element of the form insert X
or deleteY in U ,U contains deleteX or, resp., insert Y, and nothing else.

The following lemmata serve to identify a way to check inconsistency
reduction by a complete integrity checking method. Lemma 1 says that complete
measure-based inconsistency reduction checking of an update can be realized
by measure-based integrity checking of its undo. Lemma2 says that soundness
of inconsistency reduction checking can be obtained by an additional integrity
check of the update itself. Lemma 3 says that sound and complete inconsistency
reduction checking is realizable by checking the undo for integrity preservation
alone, in case the used integrity checking method is complete and the range of
the measure on which it is based is totally ordered.

Checking inconsistency reduction by integrity checking is more efficient than
by evaluating each constraint in IC brute-force against DU , inasmuch as integrity
checking simplifies the constraints to be checked by number and complexity [7].

Lemma 1. Let ic be a sound μ-based integrity checking method, and ir a
function that maps triples (D, IC, U) to {yes, no}. ir is a complete μ-based
inconsistency reduction checking method if ir is defined by the following
equivalence.

ir(D, IC, U) = yes ⇔ ic(DU , IC, U) = no

An immediate consequence of Lemma 1 is that each update that does not
reduce inconsistency is detected by checking the undo for integrity preservation
with a complete integrity checking method.

The following lemma states that U reduces inconsistency if and only if the
output of checking the integrity of U is negative and the output of checking the
integrity of U is positive; if the outcome for U was positive, U is not a repair,
by Lemma 1.
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Lemma 2. Let ic be a sound and complete μ-based integrity checking method,
and ir a function that maps triples (D, IC, U) to {yes, no}. ir is a sound and
complete μ-based inconsistency reduction checking method if ir is defined by
the following equivalence.

ir(D, IC, U) = yes ⇔ ic(DiU , IC, U) = no and ic(D, IC, U) = yes

Lemma 3, below, sharpens the equivalence of Lemma 2: it states that, if the
range of the measure μ is totally ordered, then ir(D, IC, U) can be computed by
applying any sound and complete μ-based integrity checking to (DU , IC, U).

Lemma 3. Let μ be an inconsistency measure with a totally ordered range,
ic a sound and complete μ-based integrity checking method, and ir a function
that maps triples (D, IC, U) to {yes, no}. Then, ir is a sound and complete μ-
based inconsistency reduction checking method if ir is defined by the following
equivalence.

ir(D, IC, U) = yes ⇔ ic(DU , IC, U) = no

The following example shows that incomplete integrity checking is deficient
for inconsistency reduction checking, i.e., Lemmata 2 and 3 cannot be weakened
by dropping the completeness requirement of integrity checking.

Example 4. Let D = {p← q; p← r; q}, IC = {← p}, U = {insert r}, ic be the
well-known integrity checking method in [18], and inconsistency be measured
by ι. It is shown in [15] that ic is a sound but incomplete ι-based integrity
checking method. It is easy to see that ic(DU , IC, U) = no, although we have
that ι(DUU , IC) = ι(D, IC) = ι(DU , IC), i.e., U is not a repair of (D, IC).

The next example illustrates that Lemma 3 cannot be weakened by waiving
the total order requirement of the range of μ.

Example 5. The range of κ (the measure that maps (D, IC) to the set of causes of
violations of IC in D) is partially but not totally ordered by the subset-or-equal
relationship. Now, let ic be Decker’s extension of Nicolas’ well-known method
to deductive databases. ic is a sound and complete κ-based method for definite
propositional databases and constraints. For D = {p ← q; r ← s; q}, IC=
{← p, ← r} and U = {delete q, insert s}, it is easy to see that U = {insert
q, delete s}, κ(D, IC) = {q}, DU = {p ← q; r ← s; s}, κ(DU , IC) = {s}, and
ic(D, IC, U) = ic(DU , IC, U) = no.

Hence, by Lemma 2, ic(D, IC, U) = no correctly indicates that U is not a
κ-based repair of (D, IC). Yet, Lemma 3 cannot be used to obtain that result,
since the range of κ is not totally ordered. Indeed, waiving that requirement
in Lemma 3 would lead to the wrong conclusion that U was an κ-based repair.
If, instead of κ, |κ| would be used, for which ic is sound but incomplete, we’d
have |κ|(D, IC) = |κ|(DU , IC) = 1. By Lemma 1, we could define two complete
inconsistency reduction methods, based on κ or, resp., |κ|, via the output of
ic, both of which however would not be sound, since they both would wrongly
indicate that U was a repair of (D, IC).
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3.2 Minimality Checking by Integrity Checking

By Lemmata 4 and 5, we show that also the minimality check of measure-based
repairs can be accomplished by integrity checking.

Lemma 4. For each inconsistency measure μ, each sound μ-based integrity
checking method ic, each database D, each integrity theory IC, and each μ-
based inconsistency reduction U of (D, IC), the following holds.

(a) U is not a μ-based repair of (D, IC) if there is U ′ � U such that
ic(DU , IC, U

′′
) = yes, where U ′′ = U \ U ′. If, additionally, ic is complete,

then
(b) U is not a μ-based repair of (D, IC) iff there is U ′ � U such that

ic(DU , IC, U
′′
) = yes, where U ′′ = U \ U ′.

The contrapositive of Lemma 4 is the following corollary, which provides
a way to check the minimality of a measure-based inconsistency reduction by
measure-based integrity checking, without the necessity of computing measures.

Corollary 5. For each inconsistency measure μ, each sound μ-based integrity
checking method ic, each database D, each integrity theory IC, and each μ-
based inconsistency reduction U of (D, IC), the following holds.

(a) U is a μ-based repair of (D, IC) only if, for each U ′ � U , ic(DU , IC, U
′′
) =

no, where U ′′ = U \ U ′. If, additionally, ic is complete, then
(b) U is a μ-based repair of (D, IC) if and only if, for each U ′ � U ,

ic(DU , IC, U
′′
) = no, where U ′′ = U \ U ′.

Corollary 5 enables us to define sound and complete minimality checking
methods on the basis of complete and, resp., sound integrity checking methods,
as follows.

Lemma 5. Let μ be an inconsistency measure, ic a sound μ-based integrity
checking method, and mc a function that maps triples (D, IC, U) to {yes, no}.
mc is a complete μ-based minimality checking method if mc is defined by the
following equivalence.

mc(D, IC, U) = yes ⇔ for each U ′ � U , ic(DU , IC, U
′′
) = no,

where U ′′ = U \ U ′.

If, additionally, ic is a complete μ-based integrity checking method, then mc
also is a sound minimality checking method.

3.3 The Main Theorems

Lemmata 1, 2, 3 and 5 provide handles for unfolding Theorem1 into the main
results of this paper, as stated in Theorems 2, 3 and 4, below. Essentially, each of
these results states that measure-based repair checking can be done by integrity
checking, without having to compute the measures. Theorem2 is the weakest
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of the three, in that it only devises a way to see that a given update U is not
a repair (cf. Corollary 3). By requiring that the used integrity checking method
is not just sound but also complete, each of Theorems 2 and 3 devises a sound
and complete way to check if U is or is not a repair. The difference between the
two results is that Theorem 3 additionally requires that the range of the used
inconsistency measure is totally ordered, but in turn requires one run of integrity
checking less than Theorem 2.

Theorem 2. Let ic be a sound μ-based integrity checking method, and rc a
function that maps triples (D, IC, U) to {yes, no}. rc is a complete μ-based
repair checking method if rc is defined by the following quivalence.

rc(D, IC, U) = yes ⇔ ic(DU , IC, U) = no, and for each U ′ � U ,
ic(DU , IC, U

′′
) = no, where U ′′ = U \ U ′.

Theorem 3. Let μ be an inconsistency measure, ic a sound and complete μ-
based integrity checking method, and rc a function that maps triples (D, IC, U)
to {yes, no}. rc is a sound and complete μ-based repair checking method if rc
is defined by the following equivalence.

ir(D, IC, U) = yes ⇔ ic(DU , IC, U) = no, ic(D, IC, U) = yes, and for each
U ′ � U , ic(DU , IC, U

′′
) = no, where U ′′ = U \ U ′.

Theorem 4. Let μ be an inconsistency measure with a totally ordered range,
ic a sound and complete μ-based integrity checking method, and rc a function
that maps triples (D, IC, U) to {yes, no}. rc is a sound and complete μ-based
repair checking method if rc is defined by the following equivalence.

rc(D, IC, U) = yes ⇔ ic(DU , IC, U) = no, and for each U ′ � U ,
ic(DU , IC, U

′′
) = no, where U ′′ = U \ U ′.

4 Computing Repair Checking

In Subsect. 4.1, we outline how to compute total repair checking. In Subsects. 4.1
and 4.3, we do the same for measure-based repair checking. The approach in Sub-
sect. 4.1 is “naive”; it computes inconsistency measures. The one in Subsect. 4.3
uses measure-based integrity checking; we call it “repair checking by (measure-
based) integrity checking”. For comparing the three, note that the approaches
in Subsects. 4.1 and 4.3 are inconsistency-tolerant, and therefore much more
realistic than total repair checking. Moreover, we are going to see that measure-
based repair checking tends to be far less costly than both naive and total repair
checking.

4.1 Computing Total Repair Checking

After describing the computation of total repair checking, we assess its cost.
Then, we describe how total repairs can be computed from a given inconsistency
reduction.
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4.1.1 Two Phases for Computing Total Repair Checking
By Definitions 1a and b, total repair checking may verify or falsify, for triples
(D, IC, U), that (DU , IC) is consistent, and that U is minimal, in two phases.

Phase 1 (inconsistency reduction check):
Check if U is a total inconsistency reduction of (D, IC), by querying each I ∈ IC
against DU . If some I is not satisfied in DU , then U is not a total inconsistency
reduction and hence not a total repair of (D, IC). If each I ∈ IC is satisfied in
DU , then U is a total inconsistency reduction, hence proceed to Phase 2.

Phase 2 (minimality check):
For each U ′ � U , check if U ′ is a total inconsistency reduction of (D, IC), by
querying each I ∈ IC against DU ′

. If each I is satisfied in DU ′
, then U ′ is a total

inconsistency reduction of (D, IC). Hence, U is not a total repair of (D, IC). If
some I is not satisfied in DU ′

, then U ′ is not a total inconsistency reduction of
(D, IC). If no proper subset U ′ of U is an inconsistency reduction of (D, IC),
then U is a total repair of (D, IC).

4.1.2 The Cost of Total Repair Checking
We now assess the cost of computing Phases 1 and 2. Let n be the cardinality of
U and m = 2n. Thus, there are m subsets U1,. . . ,Um of U ; one of them empty.
Hence, easily up to m−1 brute-force integrity checks of (DUi, IC) (i = 1,. . . ,m-1)
are needed for deciding if U (or any of its proper non-empty subsets) is a total
repair of (D, IC). If k is the cardinality of IC, then that amounts to k × (m − 1)
evaluations of arbitrarily complex constraints in IC.

4.1.3 A Third Phase for Computing Total Repairs
If, in Phase 1, U turns out to be an inconsistency reduction of (D, IC), and in
Phase 2, U turns out to not be a total repair of (D, IC), then, by Corollary 2, at
least one total repair of (D, IC) can be found in a third phase, as follows.

Phase 3 (identify total repairs):
Let U = {U ′ | U is inconsistency reduction of (D, IC) detected in Phase 2,
U ′ � U}. The subset-minimal elements in U are total repairs of (D, IC).

Phases 1–3 can also be presented uniformly, as follows: For each U ′ ⊆ U ,
check if U ′ is a total inconsistency reduction of (D, IC), by querying each I
in IC against DU ′

. U ′ is a total inconsistency reduction of (D, IC) if and only
if each I is satisfied in DU ′

. Let U be the set of subsets of U that are a total
inconsistency reduction of (D, IC). If U is empty, neither U nor any of its subsets
is a total repair of (D, IC). Otherwise, each subset-minimal set in U is a total
repair of (D, IC).

4.2 Computing Naive Repair Checking

In this subsection, we first describe a naive way of computing total repair
checking. Then, we assess the cost of that computation. Last, we describe how
measure-based repairs can be computed from a given inconsistency reduction.
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4.2.1 Two Phases for Computing Naive Repair Checking
According to Definition 1d, measure-based repair checking can be implemented
naively in two phases: inconsistency reduction checking and minimality checking.

Phase 1: To check if U is a μ-based inconsistency reduction of (D, IC), i.e., to
check μ(DU , IC) < μ(D, IC), the values of μ(D, IC) and μ(DU , IC) can be com-
puted and then compared. By that comparison, U is or is not an inconsistency
reduction.

Phase 2: To check if a μ-based inconsistency reduction U of (D, IC) is mini-
mal, the measure μ(DU ′

, IC) of each proper non-empty subset U ′ of U has to
be computed and compared to μ(D, IC), as already computed in Phase 1. If
μ(DU ′

, IC) ≤ μ(DU , IC) does not hold for any such U ′, then U is a μ-based
repair of (D, IC). If, for some such U ′, μ(DU ′

, IC) ≤ μ(DU , IC) holds, then (U ′

is an μ-based inconsistency reduction of (D, IC), and) U is not a μ-based repair
of (D, IC).

The part of the description of Phase 2 between (. . . ) does not contribute
to the decision if U is a total repair of (D, IC) or not, but is of interest in the
context of an additional third phase, as addressed in Subsubsect. 4.2.3.

4.2.2 The Cost of Naive Measure-Based Repair Checking
Clearly, μ(DU ′

, IC) has to be computed for each subset U ′ of U : for subsets { }
and U in Phase 1, and for proper non-empty subsets in Phase 2. For |U | =n,
that amounts to the computation of 2n measures, one for each subset U ′ of U .
The cost of the computation of measures obviously depends on the definition
of μ. To compute μ(D, IC) for any of the measures ι, |ι|, ζ, |ζ|, κ, |κ| involves the
evaluation of each I in IC against D, for ζ, |ζ|, κ, |κ| also an analysis of the proof
tree, for determining the violated cases or the causes of integrity violation. Thus,
the order of magnitude of evaluating constraints for naive measure-based repair
checking is about the same as for total repair checking. However, depending on
the specific measure to be computed, the total cost of computing naive repair
checking may easily be higher than that of total repair checking.

4.2.3 A Third Phase for Computing Measure-Based Repairs
If U turns out in Phase 1 to be an inconsistency reduction and in Phase 2 to be
not an μ-based repair of (D, IC), then, analogously to Subsubsect. 4.2.3, at least
one such repair can be identified, as in the following third phase.

Phase 3 (identify total repairs): Let U = {U ′ | U is inconsistency reduction
of (D, IC) detected in Phase 2, U ′ � U}. The subset-minimal elements in U are
total repairs of (D, IC).

4.3 Computing Repair Checking by Integrity Checking

A computation of measure-based repair checking is suggested by Theorems 2, 3
and 4. According to Theorem 2, the output rc(D, IC, U) = no, obtained by a
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measure-based integrity checking method that is only sound but not complete,
indicates that U is not a μ-based repair. For U to be a μ-based repair, the output
rc(D, IC, U) = yes, computed according to Theorem2, is only necessary, but not
sufficient. Necessary and sufficient conditions to identify updates as repairs are
given by Theorems 3 and 4, which require that a sound and complete μ-based
integrity checking method is used.

We are going to assess measure-based repair checking according to Theorem 3,
again by the two phases of inconsistency reduction and minimality checking.
Note, however, that the cost of measure-based repair checking by Theorem 4 is
lower than as by Theorem 3, since the totally ordered range of μ, as required in
Theorem 4, enables a less costly inconsistency reduction checking phase.

Phase 1: To check if U is a μ-based inconsistency reduction of (D, IC), compute
ic(DU , IC, U) and ic(D, IC, U) according to the equivalence in Lemma 2. Thus,
at most 2 runs of ic are needed.

Phase 2: To check if U is minimal according to Definition 1d, it suffices, by
Lemma 5, to check if ic(DU , IC, U

′′
) = no, for each U ′ � U such that U ′ 
= ∅,

where U” = U \ U ′. Thus, if n is the size of U , at most 2n − 2 runs of ic are
needed.

So, for Phases 1 and 2, maximally 2n runs of ic are needed. Thus, the actual
cost of repair checking by integrity checking depends on ic. If a sound and
complete method for simplified integrity checking is available, then running such
a method tends to be much less costly than brute-force integrity checking, as
employed for total repair checking and for naive measure-based repair checking.

Recall from Subsect. 4.1 that the cost of total repair checking was k×(m−1)
unsimplified constraint evaluations, where m = 2n and k is the cardinality of
IC. For ease of comparison, suppose that all constraints in IC are expressed
by a single constraint formula I (the conjunction of all constraints). Then, for
total repair checking, we’d have in the order of m-1 evaluations of I against DUi

(1 ≤ i ≤ m − 1), where Ui is one of the non-empty subsets of U . Compared to
that, m−2 runs of a simplified form of I for simplified repair checking obviously
tends to be significantly more advantageous.

5 Related Work

Related work on integrity checking [7,8,11,12,14,15,18], inconsistency measur-
ing [4,8,11,12,14,16,17,19] and repairing [6,9–12,20,22] has been duly refer-
enced already. Maybe more relevant is the work on brute-force repair checking
[1,3,5,6,20,21], as already addressed in previous sections, particularly in Sect. 4.

Work on conventional repairing and repair checking has always focused on
complexity issues in relation with CQA. As opposed to that, our alternative to
CQA in [13], is not hung up in the complexity nexus between CQA, repairing
and repair checking.

The discussion of complexity issues related to CQA focuses grosso modo on
certain classes of constraints, e.g., those expressed as conjunctive queries over flat
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relational databases. The related complexity classes are amorphously treated,
e.g., conjunctive queries have polynomial-time complexity. However, such an
undifferentiated treatment misses the point of where cost issues of integrity
checking may hurt most.

For example, in a relational database with very large extensions of p, q, r,
the evaluation of the conjunctive constraint I = ← p(x, y), q(y, z), r(x, y, z) may
be considered prohibitively costly, although I falls into a relatively “harmless”
complexity class. However, for repair candidate U that consists of the inser-
tion of r(a, b, c), our approach to repair checking does not have to evaluate I
brute-force. Rather, for most integrity checking methods that are amenable to
our way of repair checking, it suffices to evaluate the simplified instance ←
p(a, b), q(b, c), r(a, b, c), by simple look-ups. This shows that our proposal is sig-
nificantly different from related work on repair checking.

6 Conclusion

Deploying inconsistency-measure-based ICh, we have elaborated a non-standard
approach to RCh, that compares favorably to conventional brute-force RCh.

Measure-based RCh does not need to compute measures, nor does it have
to know which constraints are violated, nor why or how they are violated. Nor
does brute-force RCh. However, the latter does check each constraint brute-
force, and gives up upon the least bit of remaining consistency impairment.
As opposed to that, measure-based RCh is inconsistency-tolerant, permits mea-
sured comparisons of the quality increase of repair alternatives, and is less costly
since its integrity checks are simplified. In general, however, sound repair check-
ing by integrity checking requires a complete measure-based integrity checking
method. Although most known measure-based integrity checking methods are
incomplete, there are significant classes of databases, integrity theories, updates
and inconsistency measures for which the completeness of integrity checking can
be guaranteed, or relaxed while preserving the soundness of measure-based repair
checking. Ongoing work is concerned with identifying such classes.
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