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Abstract. Freshwater is considered one of the most important of planet’s
renewable natural resources. In this sense, it is vital to study and evaluate the
water quality in rivers and basins. A study area is Rio Piedras Basin, which is
the main water supplier source of 9 rural communities in Colombia. Never-
theless, these communities do not make a water quality control. Different
research has been conducted to develop water quality detection systems through
supervised learning algorithms. However, these research approaches set aside
the data processing for improve the outcomes of supervised learning algorithms.
This paper presents an improvement of data processing techniques for a water
quality detection system based on supervised learning and data quality tech-
niques for Rio Piedras Basin.
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1 Introduction

Freshwater is considered one of the most important of planet’s renewable natural
resources. In this sense, it is vital to study and evaluate the water quality in lotic
ecosystems, which represent water ecosystems in constant motion and in the same
direction, such as rivers and basins [1]. A problem occurs in Rio Piedras Basin, which
is located on the western slope of the Central Cordillera, west of Popayán (Colombia)
and it is the main water supplier source of 9 rural communities: Huacas, Laureles,
Canelo, Quintana, San Juan, Santa Teresa, Laguna, San Ignacio, and San Isidrio [2, 3].
Nevertheless, these communities do not make a control water quality.

A significant amount of research has been conducted to develop water quality
detection systems, which allow monitoring activities of water quality on different basins
[4–7] and lotic ecosystems [8–10] around the world [5, 11–17], through supervised

© Springer International Publishing Switzerland 2016
O. Gervasi et al. (Eds.): ICCSA 2016, Part IV, LNCS 9789, pp. 665–683, 2016.
DOI: 10.1007/978-3-319-42089-9_47



learning (SL) algorithms. SL tasks predict or classify a new input data from examples
(instances), commonly called training data (composed of attributes and a target vari-
able), through algorithms such as decision trees (DT), Bayesian networks (BN), Arti-
ficial Neural Networks (ANN), K-Nearest Neighbor (K-NN) and Support Vector
Machines (SVM) [18]. However, these research approaches set aside the data quality
verification (i.e. redundant attributes, duplicate instances, imbalanced dataset, etc.).

Therefore, an improvement of data processing techniques for water quality detec-
tion system for Rio Piedras Basin, based on supervised learning techniques, which
considered the issues founded on a data quality verification phase. The remainder of
this paper is organized as follows: Sect. 2 describes the study area description, the data
quality issues addressed and supervised learning algorithms used; Sect. 3 refers the
data processing for water quality detection system proposed; Sect. 4 presents results
and discussion and Sect. 5 relates conclusions and future work.

2 Background

2.1 Study Area Description

The data used in this study were collected quarterly in the Rio Piedras Basin, located in
Cauca department, Colombia (source: 76° 31′ 10′′ west of Greenwich and 2° 21′ 45′′
north latitude, mouth of river: 76° 23′ 45′′ west longitude and 2° 25′ 40′′ north latitude),
by the Environmental Studies Group (ESG) from the University of Cauca, between
2011 and 2013, taking into account the methodology followed in [19]. Captured
samples contain biological (macroinvertebrates) and physicochemical variables, at
three points of the basin: Puente Alto, Puente Carretera and Bocatoma Diviso, in
different precipitation periods: high (October-November), average (June-July) and low
(August September).

Thus, there were captured 10 physicochemical indicators, 5 biological indicators
and 3 precipitation periods. In total, the built dataset consists of 645 records, and 3
values to classify (classes) [17], as set forth in Table 1.

According to the latest work, the three (3) values to classify are denoted by the
numbers 1, 2 and 3, which represent a high water quality (very clean water), good
(slightly polluted water) and Regular (moderately polluted), respectively.

2.2 Dimensionality Reduction

The dimensionality reduction is the transformation of high-dimensional data in a
meaningful representation of smaller dimensions. This reduced representation must
have the minimum number of parameters required for expressing the observed data
properties [20, 21]. The mentioned task is primarily oriented towards two objectives:
instances and attributes reduction techniques.

Attributes Reduction (AR). The attribute reduction decreases the dimension of the
attributes within a dataset [21–24]. AR methods are grouped into two categories:
attribute selection and extraction; the first looks the best subset of features according to
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certain criteria (choice of attributes and/or number of attributes to be selected), dis-
carding redundant, inconsistent and irrelevant attributes, while the second transforms
the high dimension attributes set in a space of smaller dimension [25, 26].

Noteworthy is the importance of AR mechanisms, in optimizing a dataset. How-
ever, when applying techniques for selecting attributes, information loss is generated
[22], which is a problem in small datasets, such as the dataset Rio Las Piedras.
Therefore, this paper chose to use attribute extraction tactics.

At the same time, it was conducted a systematic review of 44 published researches
from 2004 to the present, based on the guidelines set forth in [27], taking as search
sources: IEEE Xplore (35 items), ScienceDirect (9 items), focused in application
domains such as: intruder detection, medicine, biometrics, facial recognition, satellite
images classification, among others, obtaining that the algorithm of Principal Com-
ponent Analysis (PCA) is the most used (33 items), and also overcomes the capabilities
of information viewing and understanding than other extraction techniques. Therefore,
this algorithm is taken as a starting point to reduce attributes that allow a water quality
evaluation task. The explanation of the chosen techniques is presented in Sect. 3.

Instances Reduction. Instances Reduction (IR) decreases the number of irrelevant
instances within a dataset [28–30]. Several authors propose classifications of IR
methods, as is the case of [31], in which group IR techniques: Noise Filters, Con-
densation Algorithms and Prototype Algorithms, while in [32] are classified in:

Table 1. Dataset Rio Las Piedras attributes

Category Attribute Unit of 
measurement Range Class 

Physicochemical 
indicators 

Temperature °C 13.0 - 17.8

High 
Water 
Quality 
(1)

Good 
Water 
Quality
(2)

Low 
Water 
Quality
(3)

Conductivity µs/cm 35.2 - 89.0

Total dissolved solids mg/L 16.5-42.1

Dissolved oxygen mg/L 7.17-8.23

pH mg/L 6.62-8.17

Ammonium mg/L 0.01-0.04

Nitrates mg/L 0.01-0.09

Nitrites mg/L 0.01-0.06

Phosphates mg/L 0.08-0.24

Turbidity mg/L 1.0-9.8

Biological 
indicators 

Class - -

Order - -

Family - -

Taxon - -

Number of individuals - -

Precipitation 
periods

Month - -

Year - -

Sampling point - -
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Wrapper and Filter. Furthermore, in [33–35] ensemble methods as Cascading, stacking,
Bagging, Boosting, Random Forest are used for IR tasks.

To select the appropriate algorithm for the instances extraction, 34 studies pub-
lished from 2006 to the present were reviewed, using as search sources: IEEE Xplore
(12 items), ScienceDirect (10 items), Springer Link (6 items) and Google scholar (6
items) and focusing the search in application areas such as: intruder detection, security,
classifiers building, time series, text recognition, among others. In this review it was
found that the most commonly used techniques are Ensemble and Wrapper with 16 and
12 papers respectively, while “Filter” methods are referenced only 6 times.

It is important to indicate that the Wrapper algorithms tend to be over-trained
(overfitting) due to frequent use of cross-validation as evaluation technique on a single
dataset, which tends to be adjusted to very specific training data features that do not
have no causal relationship with the objective function [36]. Moreover, within the
Ensemble methods, Boosting is the IR technique most often used [34] and it has a
greater capacity of data generalization. Based on the above reasons, this research will
take as its starting point the Boosting algorithm for IR tasks.

2.3 Imbalanced Classes

The classes imbalance problem occurs when the number of class label instances is
greater (majority or negative class “C−”) on the number of instances that have other
labels class (minority or positive class “C+”) [37, 38], and whose unbalance degree can
be measured using IL (Imbalance level) reason [39–41].

In this scenario, the classifiers have a tendency classification to the majority class,
thereby minimizing the classification error and correctly classifying majority class
instances detriment of minority class instances.

To solve the imbalance class problem, there have been two main approaches [38,
42, 43]: the external method (at data level) and the internal method (at classification
algorithms level). The first consists of achieving a balance between classes by elimi-
nating instances of the majority class (sub-sampling) or the inclusion of instances in the
minority class (over-sampling); while the internal method adjusts the classifiers to favor
the class minority. In this comparison the external method is the most versatile (because
they do not require any change in the algorithm and also can be used in different
application domains), the most widely used in the last decade and whose most rep-
resentative algorithm is SMOTE (Synthetic Minority Over-Sampling Technique),
which adds to the minority class examples by creating new instances (which called
synthetic data) obtained from an interpolation process.

2.4 Classifiers for Water Quality Detection

For classifiers selection, there were taken 4 researches as a starting point [18, 44–46], in
which performing a literature review and theoretically evaluate supervised learning
algorithms most commonly used as the case of Decision Trees (DT), Artificial Neural
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Networks (ANN), Bayesian Networks (BN), K-Nearest Neighbor (K-NN) and Support
Vector Machines (SVM) considering metrics as: accuracy, noise tolerance, ability of
explanation, learning speed and classification speed.

3 Mechanism for Detecting Water Quality in Rio Piedras
Basin

The water quality detection system in Rio Piedras Basin, contains various components
to perform a pre-processing data and supervised learning algorithms based on data
mining tool: KNIME® Analytics Platform, all transparent to the end user. In Fig. 1 the
architecture of the proposed mechanism is exposed, which is made up of data pro-
cessing and classification modules. The first module consists of two components for
dimensionality reduction (attributes and instances) to address the redundant values
problem and a component that balances the classes. The second module consists of
some supervised learning algorithms: DT, ANN, BN, K-NN and SVM.

Below, the proposed mechanism components are briefly described:

3.1 Automatic Selection of Principal Components (ASPC)

The Automatic Selection of Principal Component (ASPC) is based on the PCA
algorithm definition, and proposes a new approach to Principal Components
(PC) selection.

First, PCA is a multivariate technique from data exploratory analysis (statistical),
which transforms a large number of attributes, correlated with each other, in a number
of attributes smaller uncorrelated (linearly independent or orthogonal), called principal
components (PC). The main components are a linear combination of the original
attributes, which describe the greatest amount of dataset information and are sorted by
the amount of information that they contain (high to low) [47–49].

Currently, there is no definite rule on the exact number of PC to be used. However,
to select the optimal PC subset, the authors in [50] exhibit various techniques such as:

Fig. 1. Mechanism architecture
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B1-Backward, B1-Forward, B2 and B4; obtaining better results with B4 method. B4
intends to use the PC whose accumulated explained variance exceeds 60 % of the
information.

On the other hand, ASPC is the mechanism, which consists of building data subsets
X0

n�p0 , for p
0 ¼ 1; 2; . . .; p and p ¼ EV (PCA determines eigenvalues (EV) and attri-

butes p within the dataset) with p
0
variables and n observations, from each of the

eigenvalues and their eigenvectors.
From here, data subsets are constructed based on the accumulated

1f g; 1þ 2f g; 1þ 2þ 3f g; . . .; 1þ 2þ 3þmf g PC. Subsequently, each data subset is
evaluated by means of classification accuracy obtained by some supervised learning
techniques: SVM, BN, K-NN, DT and ANN. Finally, it is selected the data subset with
better accuracy and thus the number of PC associated with this.

It is worth noting, for the main components analysis should be observed the
relationship between PC and the initial attributes from the feature matrix taking into
account the correlations sign and magnitude.

3.2 Instances Reduction (IR-E)

The mechanism defined for Instances Reduction (IR-E) takes as a starting point the
model proposed in [34], which is based on the Boosting Classifier definition to create a
model that selects redundant and irrelevant instances within a dataset and is called BIS
(Boosting Instance Selection). This algorithm replaces the classification models for IR
algorithms as: Decremental Reduction Optimization Procedure 3 (Drop3), IB3, Itera-
tive Case Filtering (ICF), Modified Selective Subset (MSS), Reduced Nearest Neighbor
(RNN), Condensed Nearest Neighbor Rule (CNN).

BIS performs a process M times (M is defined a priori) and, in each iteration, a
voting process is executed, which consists of assigning one vote (vi) to each selected
instance (xi) through a particular IR technique randomly chosen. After M iterations, it is
obtained as a result a votes vector V, which records the obtained votes by each instance
and, from the latter, a set of thresholds is built ð;1; ;2; . . .; ;MÞ, with the instances
which obtained most votes. Now, to get the best threshold it is defined a criteria Jð;Þ,
which is represented by an instances subset S; belonging to the training set T, so that
meet the Eq. 1.

h : Sh ¼ xi 2 T : vi [ ; ð1Þ

To asses each Jð;iÞ criteria, the K-NN classifier is trained with the subset S;i where
the quality of each instances subset is selected according to both, the classification
performance and the number of removed instances, as seen in the Eq. 2. In fact, any
classifier can be used (DT, SVM, BN o ANN); Nevertheless, for this research we will
restrict ourselves to use K-NN due to its simplicity, ability to detect wrong results and
high speed learning [18, 44–46],
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J hð Þ ¼ aCþð1� aÞr ð2Þ

Where, C symbolizes the classification performance (precision or AUC), r denotes
the deleted instances percentage and a is the parameter used to distinguish the
importance of each factor.

On the other hand, each threshold assessment involves a K-NN classifier training
with the instances subset that represents it, which implies a high degree of complexity
of assessment process (2Mþ 2) when number of iterations M is high (the maximum
number of possible thresholds is equal to M).

To address the problem, optimal threshold selection called ;o, from an approach
that works on two levels. The first level consists of constructing a subset of thresholds
(h1; h2; . . .; hp) from the set of possible thresholds ð;1; ;2; . . .; ;MÞ for p�M, dis-
carding the repeated or equivalent thresholds latter, because these get similar assess-
ments in terms of performance and classification codes. Thus a degree of less than or
equal complexity (2pþ 2) is achieved.

At the second level it seeks to find a threshold value representing both high voting
values as low values and thus counteract the drawbacks mentioned above. For this, the
arithmetic mean of the thresholds subset resulting from the previous step is determined,
which process is represented by the Eq. 3.

;o ¼ 1
p

Xp

i¼1

hi ð3Þ

3.3 Automatic Optimal Synthetic Data Selection (AOSDS)

AOSDS is based on the over-sampling algorithm SMOTE (Synthetic Minority
Over-Sampling Technique) definition and proposes a strategy to generate the appro-
priate number of synthetic data in such a way that minimizes over-training the
classifier.

SMOTE currently works with binary classes, a majority and a minority class,
denoted as C− and C+ respectively. This algorithm creates synthetic instances or data
for the minority class, by interpolating an instance and its closest K neighbors
belonging to that class. First, K closest neighbors from the minority class are selected
and, subsequently, the synthetic instantiated percentage (denoted by P) is chosen.
Then, to generate a new synthetic data, interpolation between the line connecting each
minority class instance with any (or all) of their closest K neighbors previously selected
is performed. This calculation is made using the Euclidean distance definition and a
replacement or overlay (called overlap) function that assigns a value 0 (if both values
are equal) or a value 1 (in the case they are different). Since SMOTE only applied to
binary classes, this work focused the problem of imbalance dataset Rio Las Piedras on
two classes: Class 1 and 3 (C− and C+ respectively) and ignoring the remaining class
(class 2). However, it is important to mention that class 2 is only ignored in over-
sampling process.
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Although this technique generates new instances that allow balancing classes, so far
not found a method to indicate the optimal number of instances to be created, since a
large number of synthetic instances can over-train the classifier and generate inaccurate
results [42, 51, 52].

The proposed strategy involves determining that the original dataset imbalance
level (IL) meets a minimum classes threshold unbalance. If the dataset meets the
threshold of imbalance, we proceed to apply to the minority class definition SMOTE.
For this case, an imbalance level IL� 3:9 is defined and instances percentage to
oversample (P value) equal to 50, 100, 150 and 200 % will be used, thereby preventing
the ratio C+ instances exceed those of C−. Furthermore, [53] discloses that to achieve a
200 % of oversampling only required two nearest neighbors, enough for the study case.
Therefore, K = 2 is taken as the number of nearest neighbors for SMOTE.

Once applied the over-sampling process for a given P, the behavior of each subset
generated is evaluated and the data subset that gets the best performance is selected. At
the same time, an optimal synthetic data percentage, associated with that dataset, is
defined.

3.4 Classifiers to Water Quality Detection

This component consists of classifiers to perform a water quality detection in Rio
Piedras Basin, which were selected based on the research presented in [18, 44–46]
where theoretically evaluate some classifiers: DT, ANN, BN, K-NN and SVM, con-
sidering metrics as: precision, noise tolerance, explanatory capacity, learning speed and
classification speed. In these researches, is claimed that there is no algorithm that
satisfies all evaluation metrics. Also, depending on the dataset used, the algorithm has a
different behavior (in metrics of model evaluation such as precision). Therefore, it is
necessary to evaluate each of these algorithms in order to obtain a high degree of
precision in predictions and easy interpretations. Additionally, it is important to
mention that to evaluate the proposed mechanism, cross-validation with k = 10 was
used.

4 Experimental Results

ASPC, IR-E and AOSDS methods were evaluated individually and collectively, using
classifiers as SVM, BN, K-NN, C.4.5 (DT) y ANN, applied to the original and pro-
cessed datasets. The experimental process can be seen in more detail in the Fig. 2.

4.1 Attributes Reduction

The results of PCA process on the Rio Las Piedras dataset are shown in Fig. 3. As
shown in Fig. 3(a), 18 principal components (PC) are generated, where first PC rep-
resents 21.2 % of the total information, the second PC explains 15.2 % of the original
variance, the third explains 11.6 %, and so on until PC 18, which represents 0.1 % of
the total information. As discussed above, explained variance data are important to
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know the number of PC that will be used in the analysis. If we take B4 methodology as
a criterion for components selection, it is considered that the optimal number of PC
(reducing the PC amount as much as possible) is 5 components, which variance is
65.2 %. This means that the five (5) first PC represent 65.2 % of the total dataset
information. As shown in Fig. 3(b), the other components explain significantly lower
percentages comparatively to the first five components.

Once applied the PCA process on the dataset, the ASPC proposed mechanism is
applied, which involves as a first step in building a dataset with 1f g; 1þ 2f g;
1þ 2þ 3f g; . . .; 1þ 2þ 3þ � � � 18f g principal components. Subsequently, the classi-

fiers mentioned above are training with each of these datasets, with a 10-fold
cross-validation. Finally, we obtain as a result the data subset that best precision

Fig. 2. Experimental process for Dimension Reduction

(a) Variance  portion explained by PC (b) Accumulated variance

Fig. 3. PCA results on Rio Las Piedras dataset
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obtained and the number of PC associated with this dataset. These results are shown in
Table 2.

As seen, the ASPC mechanism selects the dataset consisting of the first 5 PC as the
best data set, because the latter had the best average precision (89.9 %) among all
dataset formed. The reduction of 13 components obtained by the ASPC method led to
improved classification performance by approximately 6 %.

In practical terms, the problem initially represented in an 18-dimensional cyber-
space has been reduced to a smaller hyperspace (5 dimensions), capturing 65.2 % of
the original variance. This result implies greater and easy data interpretability, process
that, as mentioned above, is performed by analyzing the relationship between PC and
initial attributes.

From these results, it can be assumed that the ASPC method can perform a quite
strong selection of training data without deteriorating the capacity of classifiers.

Now, to compare the ASPC method with the B4 selection method in the Table 3,
the results obtained are reflected.

The ASPC mechanism applied on the Rio Las Piedras dataset was able to reduce
the space to five components. These results corresponded with those obtained with the
B4 method, which suggests that the new dataset is constituted with five components
and whose information amount is within the accumulated variance confidence interval
60 % − 95 %. Moreover, the mechanism increased both the classification process
performance as the model interpretability (fewer attributes).

4.2 Instance Reduction

By applying the IR-E method proposed for instance reduction on a water quality
dataset, the results presented in Table 4 were obtained.

Table 2. ASPC results

Dataset No. attributes Information
representation

Classifiers precision Average
precisionBN SVM C.4.5 K-NN ANN

Not
processed

18 100 % 80.2 % 92.8 % 77.1 % 73.2 % 96.1 % 83.8 %

ASPC 5 65.2 % 91 % 91.4 % 91.4 % 86.9 % 89 % 89.9 %

Table 3. Comparison between ASPC and B4 methods

ASPC B4
No. PC Information

representation
Average
precision

No. PC Information
representation

Average
precision

5 65.2 % 90.1 % 5 65.2 % 90.1 %
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As noted, the IR-E technique achieves to reduce to 309 the instances within the Rio
Piedras dataset. However, IR-E decreased the classifiers precision in 27.7 %, indi-
cating that important dataset instances were removed, thus losing important
information.

4.3 Attributes and Instances Reduction

Under the same context, the Table 5 shows the results product to train classifiers with
the newly acquired dataset after applying jointly reduction techniques presented above.
As noted, the sequential composition of attribute reduction and subsequent instances
reduction is denoted as ASPC + IR-E, while the sequential combination of instances
reduction and subsequent attributes reduction is represented as IR-E + ASPC.

It is interesting that the IR-E + ASPC methods sequence reduced in greater
quantity both, attributes such as number of instances, in comparison with the technique
ASPC + IR-E. The first technique reduced 15 components and 420 instances, while the
second reduced 13 components and 152 instances. However, when a classifier is
trained with the dataset obtained trough ASPC + IR-E a higher precision (73.9 %) is
obtained in comparison when the training process is performed with the dataset
obtained trough IR-E + ASPC method (54.3 %). In addition, it may be noted that the
dataset reduced by IR-E + ASPC is represented by three characteristics that explain
only 41.5 % of the total variance, which is outside the confidence range suggested by
the B4 criterion. This means that this method is not appropriate to reduce the Rio Las
Piedras dataset size.

As a result, we can see that the ASPC + IR-E mechanism is a suitable solution for
reducing the water quality dataset size, which allows classifiers provide a similar
precision to that obtained with the original dataset (no pre-processing). Accordingly,
the IR-E + ASPC method is not appropriate to reduce the dataset size.

Table 4. RI-E results

Dataset No. attributes No. instances No. classes Classifiers precision Average
precisionRB SVM C.4.5 K-NN RNA

Not
processed

18 645 3 80.2 % 92.8 % 77.1 % 73.2 % 96.1 % 83.8 %

IR-E 18 336 3 50.6 % 57.1 % 62.8 % 55.2 % 55.2 % 56.1 %

Table 5. Attribute and instance reduction methods in conjunction results

Reduction
methods

No. attributes No. instances Information Classifier precision Average
precisionBN SVM C.4.5 K-NN ANN

ASPC + IR-E 5 493 65.2 % 72.7 % 73.8 % 76 % 72.7 % 74.2 % 73.9 %

IR-E + ASPC 3 225 41.5 % 44.7 % 41 % 60.9 % 65.7 % 59.1 % 54.3 %
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4.4 Average Classifiers Training Time

It is noteworthy that another way to evaluate the algorithms performance (efficiency) is
by reducing classifiers runtime in dataset processing task. This measure is important
when the task of training a classifier for detecting water quality is related to a highly
complex scenario (large amounts of data) or a decision support system that requires to
define a contingency action in relatively short times.

For this analysis, the arithmetic average time that each classifiers takes to process a
dataset is calculated. For this case study, the datasets would be the no pre-processing or
original Rio Las Piedras dataset and processed or reduced Rio Las Piedras dataset. In
Fig. 4 these results are summarized.

In a first step, it is observed that the ASPC technique, in addition to reduce the
number of dataset attributes (13), reduces the classifiers training time in 228 ms in
comparison with the training time for the original dataset. This indicates that the
existence of redundant features in the dataset influences the performance of classifiers.

Following the same behavior, it is observed that the IR-E technique reduce the
dataset in 309 instance and the classifiers training time in 226 ms. The result suggests
that by minimizing the amount of redundant instances and noise, it is possible to reduce
the time necessary to training the classifiers (computational cost).

Now, in the case of reduction methods combined ASPC + IR-E and IR-E + ASPC
applied on the Rio Las Piedras dataset, we have that in both cases is greatly reduced the
time for training the classifiers (244 ms and 257 ms respectively). Additionally, it is
noted that the approach ASPC + IR-E allows a classification process significantly
faster than individual methods and even the combined method IR-E + ASPC.

Fig. 4. Average classifiers training
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These results are to be expected, because such mechanisms remove both datasets
characteristics (instances and attributes), which represent a computational cost reduc-
tion in data mining tasks (classification and/or grouping).

As a result, the proposed strategy gets similar precision values to the original
dataset and greatly reduces classifiers training time, making this proposal the most
appropriate to reduce the dataset size for water quality detection.

4.5 Class Balance

To evaluate the proposed mechanism, a classifiers cross-validation was used with
k = 10: SVM, BN, K-NN, C.4.5(DT) and ANN. On this approach, an imbalanced
dataset Rio Las Piedras version (Table 6) and over-sampled datasets with 50 %,
100 %, 150 % and 200 % of synthetic instances (Table 7), was evaluated. As indicated
above, the majority and minority class are denoted as C− and C+ respectively.

The performance of each of these classifiers is obtained in terms of ROC metrics
(Receiver Operating Characteristic) and F-Measure (measures in %), considered to
evaluate both the original and the over-sampled datasets with different amounts of
synthetic instances (50 %, 100 %, 150 % and 200 %). The results are shown in
Table 7.

Table 6. Imbalanced dataset description

No. classes No. instances No. instances C− No. instances C+ IL

3 493 307 54 5.6

Table 7. Classifiers performance behavior over C− and C+ classes

Class/Dataset SVM ANN C.4.5 BN K-NN

Original F-M ROC F-M ROC F-M ROC F-M ROC F-M ROC

C− 87.4 % 77.8 % 86.8 % 78 % 88 % 75.6 % 86.6 % 76.5 % 80 % 75.8 %

C+ 0 66.3 % 0 62 % 0 60.8 % 0 60 % 9 % 51.5 %

SMOTE-50

C− 84 % 74.4 % 84.8 % 76 % 84.7 % 76 % 83 % 73.6 % 78 % 72.8 %

C+ 0 60 % 0 62 % 18.6 % 66 % 0 62.5 % 43.6 % 60.8 %

SMOTE-100

C− 81 % 71.7 % 80.8 % 75 % 84.6 % 81 % 80 % 73 % 75 % 71 %

C+ 0 60 % 0 67.7 % 51.6 % 79 % 0 64.8 % 41 % 64 %

SMOTE-150

C− 78 % 69 % 76 % 64 % 84.5 % 82 % 72 % 73.5 % 74 % 72.5 %

C+ 0 61.4 % 21 % 68 % 59.5 % 79.8 % 29 % 68.5 % 47.7 % 66.5 %

SMOTE-200

C− 69 % 75.7 % 72 % 72.6 % 79 % 80.7 % 67.7 % 72.5 % 73 % 72 %

C+ 0 72 % 21.5 68.6 60 % 81 % 40.6 69 % 53 % 67.7 %
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As indicated in the above table, to train the C.4.5 classifier with the original Rio las
Piedras dataset (IL ¼ 5:6), instances belonging to the negative class tend to be cor-
rectly classified (M-F = 88 % y ROC = 75.6 %), while those belonging to the positive
class tend to be classified incorrectly (M-F = 0 y ROC = 60.8 %). This is because the
classification methods tend to favor the negative class.

Similarly, increasing the number of positive class instances with synthetic data, the
classification performance of the latter improves, obtaining the best results when
synthetic data at 150 % and 200 % are generated, with F-M = 59.5 %, and ROC =
79.8 % and F-M = 60 %, ROC = 81 % respectively. Although there is no significant
difference in these results, and considering that what is sought in class balance process
is that the classification process can correctly predict C+ instances without affecting
significantly the C− instances detections, the best classification results are obtained
when C+ is balanced with 150 % of synthetic instances. This oversampling level
improvement performance metrics F-Measure and ROC in C+ class at 59.5 % and
19 % respectively, without affecting the C− class detection, moreover, affects only in
3.5 % the F-Measure and increasing the ROC value by 6.4 %.

Now, the K-NN measures shown in Table 7 exposes clearly the same behavior of
the previous classifier (C.4.5), where the C+ class is oversampling at 150 % of syn-
thetic instances and this allows the classifier to discriminate it better and detect it
correctly (F-Measure and ROC metrics increase their performance to 38.7 % and 15
respectively), at the expense of 6 % of precision and 3.3 % of ROC area reduction for
C− class. Meanwhile, when C+ class is oversampled with a sampling level of 200 %,
F-Measure and ROC metrics improves at 5.3 % and 1.2 % with respect to the previous
process, further reducing the performance of C− classification.

On the other hand, the SVM classifier got for each C+ class a value of
F-Measure = 0. Otherwise it occurs in the C− class, where good results are obtained.
From here, we can say that SVM classifier is very sensitive to the class imbalance
problem, because this algorithm has its separation hyper-plane very close to the
minority class, resulting in a low or null performance for examples of this class,
compared to those of the majority class [54].

Like the BN, the ANN are more difficult to profit in the metrics when the dataset is
oversampled with a percentage of less than 150 % synthetic instances. In fact, like the
previous cases, the best results for all cases are obtained when the dataset is over-
sampled with this value (150 %), and can be seen as the best balance between the
number of true and false positives.

From these results, we can see how in spite of balance the dataset trough SMOTE
technique, the percentage of correctly classified instances by SVM, BN and ANN
algorithms does not significantly increase, and is even lower than the results obtained
when classifiers are trained directly with imbalanced dataset (original). Therefore, the
fact of using synthetic samples generated trough SMOTE represents a gain in the
discriminant capacity of classes, but not equal in all classifiers.

In this vein, the experimental results showed that oversample the imbalanced
dataset with levels of 150 % and 200 % improves the detection of classifiers in C+
class without significantly impairing the detection of the C− class. In addition, it is
observed that by using a level of imbalance or another, the same results are obtained
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approximately. However, to create too many synthetic instances produces overtraining,
which affects the ability to detect the minority class.

From the foregoing, it is considered that the best level of synthetic instances
oversampling is 150 %, and the SMOTE algorithm is considered as a practical method
for generating synthetic instances. However, we must be especially careful in the
number of generated instances, as it can make poor results in C− class prediction.

Based on the considerations submitted, in the Table 8 balanced dataset (with 150 %
of synthetic instances) is described.

As shown in the above table, to oversample the dataset with 150 % of synthetic
instances increase in 54 the examples of Rio Las Piedras dataset.

4.6 Classification Module

This section presents the classifiers evaluation (DT, ANN, BN, K-NN, SVM) and
results analysis, applied on the dataset described in the Table 1 and on the processed
dataset after applying the dimensionality reduction and balancing classes approach
(Table 8).

As mentioned above, the performance of each of these classifiers is obtained in
terms of some metrics as: precision, recall, F-Measures and ROC, considered to
evaluate both the original as the processed dataset (proposed mechanism). The results
are presented in Fig. 5.

In the case of the original dataset, the ANN and C.4.5 algorithms obtained the best
results among all evaluated classifiers, incorrectly classifying a smaller instances
proportion, compared to the other methods, which can be checked with the obtained
precision (C.4.5 = 83 % and RNA = 76 %, compared to SVM = 62.6 %,
K-NN = 70.1 % and BN = 65 %).

Additionally, it is important to mention that the C.4.5 classifier gets the highest
proportion of true positives than other techniques because it has a higher recall (83 %),
while other algorithms obtained a recall value not more than 70 % for the case of SVM,
BN and K-NN. Regarding to F-Measure, the C.4.5 and ANN followed the same
behavior, as they obtain the best values (83.3 % and 76.3 % respectively) among all
the evaluated techniques. These results suggest that C.4.5 and ANN supervised algo-
rithms have a best behavior for working with this dataset.

Similarly, the five supervised learning algorithms are trained with the processed
dataset (Table 8), as shown in Fig. 5. This graph shows that for all classification
models, the number of incorrectly classified instances was reduced, except for C.4.5,
where remained approximately constant. This behavior is reflected in the increased

Table 8. Overview of processed dataset

Dataset No. attributes No. instances No. classes

Río Las Piedras 5 547 3
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precision of classifiers: BN (72.7 %), SVM (73.8 %) and K- NN (72.7 %) with the
exception of ANN which failed to increase its accuracy (74.2 %).

However, the true positives proportion in relation to false positives is high, since
the recall values exceed 72 % (SVM = 82.2 %, ANN = 81.7 %, BN = 81.3 %,
K-NN = 72.4 % and C.4.5 = 83.6 %). The mentioned results let us to identify that the
5 evaluated models have a good confidence since the number of false positives is low
and the number of relevant instances classified is high, as can be contrasted through
F-Measure values (SVM = 77.3 %, ANN = 77.2 %, BN = 76.6 %, K-NN = 72.6 %
and C.4.5 = 78.8 %).

5 Conclusions and Future Works

In the previous sections, mechanisms for datasets dimensionality reduction and water
quality detection were proposed. From the results achieved, it can be inferred that the
proposed mechanism (ASPC + IR-E) is an appropriate solution for pre-processing
water quality datasets, in order to reduce their size, which allows classifiers to provide a
similar precision to that obtained with the original dataset (no pre-processing). Simi-
larly, the execution times to classifiers training tasks were reduced.

Additionally, the evaluated classification algorithms present good results. However,
ANN and C.4.5 algorithms obtained the highest precision values, classifying fewer
instances wrong and also kept the same behavior in all experiments. Therefore, these
supervised learning models are chosen as the base classifiers to detect water quality in
Rio Piedras Basin, taking into account the dataset characteristics associated with this
domain.

Fig. 5. Result of classifiers evaluation: SVM, ANN, K-NN, BN and C.4.5 applied to Rio Las
Piedras original and processed datasets
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As future work, it is intended to deploy the proposed mechanisms in a production
environment; address other dataset problems, such as missing values and outliers; and
use a similar methodology to generate a water quality prediction, in order to get the
ability to construct an early warning system for lotic ecosystems.
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