
A Public Bug Database of GitHub Projects
and Its Application in Bug Prediction
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Abstract. Detecting defects in software systems is an evergreen topic,
since there is no real world software without bugs. Many different bug
locating algorithms have been presented recently that can help to detect
hidden and newly occurred bugs in software. Papers trying to predict the
faulty source code elements or code segments in the system always use
experience from the past. In most of the cases these studies construct
a database for their own purposes and do not make the gathered data
publicly available. Public datasets are rare; however, a well constructed
dataset could serve as a benchmark test input. Furthermore, open-source
software development is rapidly increasing that also gives an opportunity
to work with public data.

In this study we selected 15 Java projects from GitHub to construct
a public bug database from. We matched the already known and fixed
bugs with the corresponding source code elements (classes and files) and
calculated a wide set of product metrics on these elements. After creating
the desired bug database, we investigated whether the built database is
usable for bug prediction. We used 13 machine learning algorithms to
address this research question and finally we achieved F-measure values
between 0.7 and 0.8. Beside the F-measure values we calculated the bug
coverage ratio on every project for every machine learning algorithm. We
obtained very high and promising bug coverage values (up to 100 %).
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1 Introduction

Software systems are likely to fail occasionally that is obviously unwanted both
for the end users and for the software developers. Keeping the software quality
at high-level is more important than ever, since customers define the reputation
of the used subject system. Open-source software development paved its way,
and has become a corner stone in the domain of evaluating research ideas and
techniques dealing with computer science [19]. These publicly available systems
gather a huge amount of historical data stored for example in version control
systems or bug tracking systems. Researches have been using the opportunity
given by these public information sets for a long time to prove the power of
their approaches [1,14,24]. In spite of this fact, only a few publicly available
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bug databases are presented to take role as a basis for further investigations.
Many authors do not make the corpus used in their studies public, thus the
experiments are not repeatable [12].

Our study tries to endorse the use of public databases for addressing different
research questions such as bug prediction related ones by showing the power of
our automatically generated bug database in bug prediction domain. We have
developed a toolchain that automatically gathers different information about
publicly available projects to build a bug database. We selected 15 Java projects
from different domains to ensure the generality of the constructed database. The
characteristics of these open-source projects were extracted from GitHub1 that
hosts millions of projects and using a static source code analyzer tool called
SourceMeter.2 We analyzed 15 projects with more than 3.5 million lines of
code, and more than 114 thousand of commits in total. From the analyzed com-
mit set we detected almost 6 thousand commits that referenced at least one
bug (inducing a bug fix intention) according to the SZZ algorithm [22]. We used
release versions of the systems and created bug databases for six-months-long
intervals approximately.

To show the usefulness of the contained information we experimented with 13
machine learning algorithms and achieved quiet good results. For class level, the
best algorithms resulted in higher than 0.7 F-measure values. For file level we
achieved similar values, however a little lower ones. Almost full bug coverage
can be reached by using these models by tagging only 30 % of the source code
elements as buggy. We defined two research questions, which are the following:

RQ 1: Is the constructed database usable for bug prediction? Which algo-
rithms or algorithm families perform the best in bug prediction?
RQ 2: Which machine learning algorithms or algorithm families perform the
best in bug coverage?

The remainder of the paper is organized as follows. Section 2 enumerates the
most important research papers dealing with public and private bug databases,
and bug prediction techniques. In Sect. 3, we propose our approach and show
how the database is constructed, and what kind of data entries are stored in
the dataset. Section 5 presents the power of the constructed database by eval-
uating different results of the applied machine learning algorithms. Finally, we
summarize and conclude the paper.

2 Related Work

Publishing databases as public resources for the scientific community is not a
new idea [13,24]. Many papers have dealt with bug databases and used some
kind of bug prediction approaches as demonstrations [9]. Notwithstanding the

1 https://github.com.
2 https://www.sourcemeter.com.

https://github.com
https://www.sourcemeter.com
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numerous studies dealing with bug prediction, the number of publicly available
bug databases are incredibly low and neglected. Researchers often use a database
created for their own purposes but these datasets are not published for the
community.

Many research studies deal with bug prediction and they use a database cre-
ated for specific purposes. We tried to create a database that is publicly avail-
able and general enough to test different bug prediction methods [3,15,17,20].
We gathered a wide range of software product metrics to characterize the known
bugs, amongst others the classic object-oriented metrics [4,23].

In our research work, we only found four publicly available bug databases.
These four datasets mainly operate with classic C&K [4] metrics and contain
accumulated information about bugs at a pre-release or post-release time. Gran-
ularity is usually file level or class level that means the database contains bug
characteristics for files or classes, consequently bug prediction is limited to this
granularity. None of these databases consist data obtained from GitHub, they
mostly gathered them from Bugzilla and Jira. We conducted an experiment
using GitHub as the source of information (both for version control and for bug
tracking).

Out of these databases Terapromise is the most up to date and has also a
coding rule violation [18] database. Based on the capability of the tool we used
for static source code analysis, we gathered C&K metrics, rule violations, and
software code clone related metrics such as number of clone instances located in
the given source code elements.

The Bug prediction dataset [6] contains data extracted from 5 Java projects
by using inFusion and Moose to calculate the classic C&K metrics for class level.
The source of information was mainly CVS, SVN, Bugzilla and Jira from which
the number of pre- and post-release defects were calculated.

The Zimmermann Eclipse [24] database is still publicly available, however
the last extension/modification was applied on March 25, 2010. Zimmermann
et al. gathered complexity metrics and metrics describing the structure of the
built AST for file level to detect pre- and post-release defects. The dataset is
created by using the public information stored in Bugzilla.

Bugcatchers [10] operates with bad smells (solely), and found that coding
rule violations have a small but significant effect on the occurrence of faults at
file level. Bugcatchers used Bugzilla and Jira as the sources of information.

Many other papers used bug databases to extract some additional data, but
these databases have never been published. Such databases amongst others are
the following: IBugs [5], Mozilla [9], and Eclipse [2].

In this paper, we present an approach that uses GitHub, and collects a wide
set of metrics for approximately six-months-long time intervals. This database
is suitable for bug prediction purposes, and can be easily extended to involve
more open-source projects.
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3 Approach

In this section we briefly summarize our previous work [8] that also dealt with
bug databases, however in the approach some major differences are present.
We will highlight the hot spots where the two approaches differ from each
other. In our previous work, first we downloaded the data from GitHub, then we
processed the raw data to obtain statistical measurements on the projects. At
this point we selected the relevant software versions to be analyzed by the static
source code analyzer. After the source code analysis, we performed the database
building that results in a dataset that stores entries in pairs such that a source
code element that used to have at least one bug in it is present with the source
code metrics calculated before the bug(s) was/were fixed (buggy state) and with
the state when the bugs were already fixed. In this process, for each issue, we
determined the following important source code versions:

– the last version that contains the untouched bug (the version before the first
commit that references the issue),

– the first version that contains the fixed source code (the version after the last
commit that references the issue),

– the versions that also contain the bug (versions after the issue reported and
before the first fix was made).

We detected the references between the commits and the bugs by using the
SZZ algorithm [22]. GitHub also provides the linkage between issues and com-
mits. These links are determined from the message of the commits. With the
use of these links, we accumulated the bug related source code elements (faulty
classes) on issue level. A source code element is bug related, if it was modified in
a commit that references the issue. Then we marked the buggy source code ele-
ments in the versions listed above. The database was constructed from the last
version that contains the untouched bug and from the first version that contains
the fixed source code as mentioned above.

In this current study, we followed another approach that rather follows the
usual methods described in Sect. 2 [6,13,24]. Let us consider a few bugs that
were later fixed (consider Fig. 1). There are 3 versions of the system: A, B, and
C, and we have 3 bugs in the software. We fixed bug A before version B that
means bug A is present in the system in version A. The same is true for bug B,
however bug B was finally fixed after version B, thus bug B appears also in the
output of version B. At this point bug A is already fixed that causes it not to
appear in version B. Bug C is similar to bug A.

Since the faulty elements are determined from the viewpoint of reported
issues, and the issues are independent from the selected release versions, this
means that the bug information is scattered in time. If a bug was reported after
a specific release version and fixed before the subsequent selected version then
the bug does not appear in either of the databases. To solve this issue, a common
solution is to aggregate the bug information to the selected release versions. For
every issue, we determined the preceding release version and marked the buggy
source code elements.
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Fig. 1. The relationship between the bugs and release versions (Color figure online)

In addition to the previous list, we determined

– the versions that partially contain the bug (versions after the first fix and
before the last fix).

For the construction of the database we used the so-called traditional app-
roach that means we collected release versions with approximately six-months-
long time intervals for every project. We used six-month-long intervals since
enough bugs and versions are present for such long time interval. Based on
the age of a project, the number of selected release versions could differ for
each project. We selected the release versions manually from the list of releases
located on the projects GitHub pages. It is a common practice that projects use
the release tag on a newly branched (from master) version of the source code.
Since we use only the master branch as the main source of information, we had to
perform a mapping when the hash id of the selected release is not representing a
commit located in the master. Developers usually branch from master and then
tag the branched version as release version, so our mapping algorithm detects
when (time stamp) the release tag was applied on a version and searches for the
last commit in the master branch that was made right before this time stamp.

We created a database for each of the release versions. Since bug tracking
was not always used from the beginning of the projects, we could not assign
any bug information to some of these earlier release versions. Also, the changing
developer activity could result in lack of bug reports and consequently bug fixing
commits are rare. All of these factors play roles in that the created databases
vary in the number of bugs.

Similarly as in our earlier study, we computed some process metrics on file
level from the data gathered from GitHub. This extra information is based on
the actions performed on files by the developers. This means that if a file was not
modified since it was uploaded with the initial commit then these extra metrics
are zero. To avoid the misleading rows, we removed these files from the final
database.

4 Chosen Projects and the Created Databases

To select projects for the database construction, we examined many projects on
GitHub. The main aspects were similar as in our previous paper. We chose 15
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Table 1. The selected projects

Project Domain kLOC NC NBR Class File DB files

Android Universal I. L.a Android library 13 996 89 639 478 12

ANTLR v4b Language processing 85 3, 276 111 2, 353 2, 029 10

Elasticsearchc Search engine 677 13, 778 2, 108 54, 562 23, 252 24

jUnitd Test framework 36 2, 053 74 5, 432 2, 266 16

MapDBe Database engine 83 1, 345 175 2, 740 962 12

mcMMOf Game 42 4, 552 657 1, 393 1, 348 12

Mission Control T.g Monitoring platform 204 975 37 6, 091 1, 904 6

Neo4jh Database engine 648 32, 883 439 32, 156 18, 306 18

Nettyi Networking framework 282 6, 780 1, 039 11, 528 8, 349 18

OrientDBj Database engine 380 10, 197 174 11, 643 9, 475 12

Oryxk Machine learning 47 363 36 2, 157 1, 400 8

Titanl Database engine 119 3, 830 121 5, 312 3, 713 12

Eclipse p. for Ceylonm IDE 165 6, 847 666 4, 512 2, 129 1

Hazelcastn Computing platform 515 16, 854 2, 354 25, 130 14, 791 18

Broadleaf Commerceo E-commerce framework 283 9, 292 652 17, 433 14, 703 22

Total 3, 579 114, 021 8, 732 183, 078 105, 105 210
ahttps://github.com/nostra13/Android-Universal-Image-Loader
bhttps://github.com/antlr/antlr4
chttps://github.com/elasticsearch/elasticsearch
dhttps://github.com/junit-team/junit
ehttps://github.com/jankotek/MapDB
fhttps://github.com/mcMMO-Dev/mcMMO
ghttps://github.com/nasa/mct
hhttps://github.com/neo4j/neo4j
ihttps://github.com/netty/netty
jhttps://github.com/orientechnologies/orientdb
khttps://github.com/cloudera/oryx
lhttps://github.com/thinkaurelius/titan
mhttps://github.com/ceylon/ceylon-ide-eclipse
nhttps://github.com/hazelcast/hazelcast
ohttps://github.com/BroadleafCommerce/BroadleafCommerce

projects as data source. The selected software systems are listed in Table 1,
together with some statistics. The first column contains the name of the projects
with links to the GitHub repository in the footnote. The next column is the main
domain of these systems. We can see that there is a large variance between the
projects regarding the domain that strengthens the generality of the constructed
database. The next three columns is the thousand Lines of Code, the Number
of Commits and the Number of Bug Reports, respectively, on the master branch
measured in May of 2015.

We constructed separate databases for class and file level. These databases are
in CSV form (comma separated values). The first row in the CSV files contains
header information such as unique identifier, source code position, source name,
metric names, rule violation groups and number of bugs. The data in the rest
of the lines follows this order. Each line represents a source code element (class,
file). In total we selected 105 release versions for the 15 projects and created 210
database files for six-months-long intervals. The last three columns in Table 1
present the number of entries constructed for each project.

Figure 2 depicts the above mentioned entry numbers on a bar chart. Some
projects have an outstanding number of class and file entries, however we are

https://github.com/nostra13/Android-Universal-Image-Loader
https://github.com/antlr/antlr4
https://github.com/elasticsearch/elasticsearch
https://github.com/junit-team/junit
https://github.com/jankotek/MapDB
https://github.com/mcMMO-Dev/mcMMO
https://github.com/nasa/mct
https://github.com/neo4j/neo4j
https://github.com/netty/netty
https://github.com/orientechnologies/orientdb
https://github.com/cloudera/oryx
https://github.com/thinkaurelius/titan
https://github.com/ceylon/ceylon-ide-eclipse
https://github.com/hazelcast/hazelcast
https://github.com/BroadleafCommerce/BroadleafCommerce
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going to present results on every project one-by-one by evaluating the best
machine learning algorithms for different release versions. Out of the total
183,078 class level entries, Elasticsearch has 54,562 in 12 databases that is not
surprising if we consider the size of the project (677 kLOC). However, Neo4J
has the most commits (twice as much as the second project which is Hazelcast),
it has considerably less bug reports that results in a smaller database. In gen-
eral, the bigger the project and the more bug reports a project has the bigger
database it results in.

Fig. 2. Number of entries distribution (Color figure online)

5 Evaluation

In this section we give exhaustive answers for the research questions by present-
ing our final results and achievements we made.

RQ 1: Is the constructed database usable for bug prediction? Which algo-
rithms or algorithm families perform the best in bug prediction?

We evaluated our database by applying machine learning algorithms for all
of the constructed data sets. The bug information in our database is present as
number of bugs. To apply machine learning (classification), first we grouped
the source code elements into two classes based on the occurrence of bugs
in them. Instances with non-zero bug cardinality form a class (defective ele-
ments) and instances with zero bug number constitute the second separate class
(non-defective elements).



632 Z. Tóth et al.

If we look at the ratio between the number of defective and the number of
non-defective elements, we may notice that there are way more non-defective
elements in a software version than defective. Considering that we are planning
to apply machine learning algorithms, it could distort the results, because the
non-buggy instances get more emphasis. To deal with this issue, we applied
random under sampling method to equalize the learning corpus [11,21]. We
randomly selected elements from the non-buggy class to match the size of the
buggy category. This way we got a training set with the same number of positive
and negative instances. We repeated this kind of learning 10 times and calculated
an average. For the training, we used 10-fold cross validation and compared the
results based on precision, recall, and F-measure metrics where these metrics are
defined in the following way:

precision =
TP

TP + FP

recall =
TP

TP + FN

F −measure = 2 · precision · recall
precision + recall

where TP (True Positive) is the number of classes/files that were predicted
as faulty and observed as faulty, FP (False Positive) is the number of class-
es/files that were predicted as faulty but observed as not faulty, FN (False
Negative) is the number of classes/files that were predicted as non-faulty but
observed as faulty. We carried out the training with the popular machine learn-
ing library called Weka.3 It contains algorithms from different categories, for
instance Bayesian methods, support vector machines, and decision trees.

We used the following algorithms:

– NaiveBayes
– NaiveBayesMultinomial
– Logistic
– SGD
– SimpleLogistic
– SMO
– VotedPerceptron [7]
– DecisionTable
– OneR
– PART
– J48 (C4.5) [16]
– RandomForest
– RandomTree

3 http://www.cs.waikato.ac.nz/ml/weka/.

http://www.cs.waikato.ac.nz/ml/weka/
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We analyzed software versions with six-month intervals from 15 projects. In
total, we selected 105 release versions. 80 of these versions contain bug informa-
tion due to the reasons mentioned in Sect. 3. 5 of the 80 versions contain too
few buggy elements to apply machine learning. We ended up with 75 suitable
versions for the training on class level. On file level, we got only 72, because in
one buggy file there could be more than one buggy class, thus the size of the
training set for a specific version could differ based on the granularity of the
database.

Class Level. First we investigated whether the class level databases are suitable
for bug prediction purposes. Presenting the results for 15 projects (105 release
versions) using all 13 machine learning algorithms would end up in a giant table
that human eyes could not process, or at least can not focus on the most relevant
parts. Consequently, we only present the best algorithms here to make it more
easy to overview and find the best ones. Furthermore, for each project we selected
the interval which has the most database entries to ensure the suitable size of
the training corpus. Then, we used 10-fold cross-validation for that interval as
described earlier. We chose the algorithms simply by calculating the averages
on F-measure values and considered the best 5 algorithms. Table 2 presents the
F-measure values for these 5 algorithms at class level.

As one can observe, values can be highly different by projects which can be
caused by various reasons (size of the constructed dataset). For instance, let us
consider the Android Universal Image Loader and Broadleaf Commerce projects.

Table 2. F-measures at class level

Project SGD SimpleLogistic SMO PART RandomForest

Android Universal I. L. 0.6258 0.5794 0.5435 0.6188 0.7474

ANTLR v4 0.7586 0.7234 0.7379 0.7104 0.8066

Elasticsearch 0.7197 0.7304 0.7070 0.7171 0.7755

jUnit 0.7506 0.7649 0.7560 0.7262 0.7939

MapDB 0.7352 0.7667 0.7332 0.7421 0.7773

mcMMO 0.7192 0.6987 0.7203 0.6958 0.7418

Mission Control T. 0.7819 0.7355 0.7863 0.6862 0.8161

Neo4j 0.6911 0.7156 0.6835 0.6731 0.6767

Netty 0.7295 0.7437 0.7066 0.7521 0.7937

OrientDB 0.7485 0.7359 0.7310 0.7194 0.7823

Oryx 0.8012 0.7842 0.8109 0.7754 0.8059

Titan 0.7540 0.7558 0.7632 0.7301 0.7830

Eclipse p. for Ceylon 0.6891 0.7078 0.6876 0.7283 0.7503

Hazelcast 0.7128 0.7189 0.6965 0.7267 0.7659

Broadleaf Commerce 0.8019 0.8084 0.8081 0.7813 0.8210
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The Android project is the smallest one in size, Broadleaf is one of the middle-
sized projects. Android has 639 class level entries in total (6 DB files), however
Broadleaf has 17,433 entries (11 DB files) that is more suitable for being a
training corpus. Nevertheless, if we take a closer look on the results we can see
that the best F-measure values occurred also in small projects such as in Oryx
or MCT, ergo we cannot generalize this conjecture to be true; however, further
investigations should to be done to prove that. Tree-, function- and rule-based
models performed the best in this scenario. F-measure values are up to 0.8210
that is a promising result. Before answering the first research question let us
investigate the results at file level as well.

File Level. File level is different in some aspects from class level. For example,
a completely distinct set of metrics (and also fewer) are calculated for file level
entries. The best file level machine learning results are shown in Table 3. At
first sight one can see that the results are in a wider range than in the case
of class level. RandomForest has the highest F-measure values in case of files
too. Furthermore, another tree based algorithm (J48) also performs nicely in
this case. Two function-based (Logistic and SimpleLogistic) and one rule-based
algorithm are in the top. Considering these results we can answer our research
question.

Table 3. F-measures at file level

Project Logistic SimpleLogistic PART J48 RandomForest

Android Universal I. L. 0.5983 0.6230 0.6632 0.6215 0.6214

ANTLR v4 0.7638 0.7941 0.7443 0.8267 0.7645

Elasticsearch 0.6303 0.6280 0.6718 0.7025 0.7169

jUnit 0.6950 0.6530 0.6142 0.6613 0.6591

MapDB 0.7466 0.7337 0.7702 0.7790 0.8158

mcMMO 0.6864 0.6717 0.6583 0.6509 0.6951

Mission Control T. 0.7039 0.6700 0.6287 0.6573 0.7049

Neo4j 0.6621 0.7154 0.6766 0.6504 0.7150

Netty 0.6483 0.6549 0.6646 0.6823 0.7120

OrientDB 0.6868 0.6772 0.7157 0.7182 0.7234

Oryx 0.5537 0.5687 0.6500 0.6569 0.7331

Titan 0.6590 0.6813 0.6595 0.6407 0.6919

Eclipse p. for Ceylon 0.6664 0.6403 0.7141 0.7026 0.6837

Hazelcast 0.6883 0.6980 0.6742 0.6790 0.6946

Broadleaf Commerce 0.7244 0.7206 0.7736 0.7797 0.7875
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Answering RQ 1: Considering F-measure values for the chosen releases we
can state that such databases are suitable for bug prediction by using machine
learning algorithms to build prediction models. In bug prediction domain the
RandomForest performed best in addition to function and rule based machine
learning algorithms thus one should consider these first to build prediction
models using our databases.

After having insight in the bug prediction results, another question is put in
words since the algorithms could perform better if they mark more classes/files
buggy. It is an important aspect to see how many bugs are covered by the marked
classes/files and what proportion of classes/files were marked as buggy.

RQ 2: Which machine learning algorithms or algorithm families perform the
best in bug coverage?

Contrary to the investigation for the previous research question, in this con-
text we cannot perform the same evaluation since we used random under sam-
pling to equalize the number of buggy and non-buggy source code elements for
the learning corpus, thus not all entries are included in the evaluation. For bug
coverage we use the previously built 10 models (for the equalized training sets -
with random under sampling) and evaluate it on the whole training set (without
random under sampling). During the evaluation we use majority voting for an
element (if more than five models predict the element as faulty then we tag it
as faulty otherwise we tag it as non-faulty).

Tables 4 and 5 show bug coverage values (ratio of covered bugs) and the
ratio of how many classes or files have been tagged as faulty to obtain the bug
coverage. Trees are performing best if considering only the bug coverage, however
they tagged more than 31 % of the source code elements as buggy in average.
NaiveBayes is the other end of the story, since it has the lowest average of bug
coverage, but tags the smallest amount of entries as buggy. Same results occurred
at file level but here we present some other algorithms (not the best five) to show
the differences in machine learning algorithms. We can state that our database
is useful for finding bugs in software with high bug coverage.

Since we are in lack of space to introduce wide tables here we present our
whole set of results as online appendix together with the full bug database at
the following URL:
http://www.inf.u-szeged.hu/∼ferenc/papers/GitHubBugDataSet/

We can now answer our second research question.

Answering RQ 2: Tree based machine learning algorithms performed best
in this scenario, with the highest bug coverage ratio. At class level circa 31%
of the elements were tagged as buggy, but the F-measure values are still high
(higher than 0.71). For file level the values are lower but in total the results
are very similar to class level.

http://www.inf.u-szeged.hu/~ferenc/papers/GitHubBugDataSet/
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Table 4. Bug coverage at class level

Project NaiveBayes PART J48 RandomForest RandomTree

Android Universal I. L. 0.71 (0.21) 1.00 (0.39) 1.00 (0.47) 1.00 (0.42) 1.00 (0.42)

ANTLR v4 0.93 (0.20) 1.00 (0.35) 1.00 (0.26) 1.00 (0.27) 1.00 (0.27)

Elasticsearch 0.86 (0.14) 1.00 (0.33) 1.00 (0.32) 1.00 (0.32) 1.00 (0.32)

jUnit 0.82 (0.15) 1.00 (0.26) 1.00 (0.29) 1.00 (0.27) 1.00 (0.24)

MapDB 1.00 (0.25) 1.00 (0.29) 1.00 (0.21) 1.00 (0.26) 1.00 (0.26)

mcMMO 0.72 (0.18) 1.00 (0.40) 1.00 (0.39) 1.00 (0.41) 1.00 (0.36)

Mission Control T. 0.80 (0.21) 1.00 (0.22) 1.00 (0.32) 1.00 (0.18) 1.00 (0.17)

Neo4j 1.00 (0.14) 1.00 (0.34) 1.00 (0.27) 1.00 (0.36) 1.00 (0.39)

Netty 0.82 (0.18) 0.98 (0.34) 0.98 (0.32) 0.98 (0.35) 0.98 (0.33)

OrientDB 0.83 (0.18) 1.00 (0.31) 1.00 (0.32) 1.00 (0.31) 1.00 (0.33)

Oryx 0.92 (0.26) 1.00 (0.30) 0.93 (0.25) 1.00 (0.28) 1.00 (0.30)

Titan 0.66 (0.11) 0.94 (0.29) 0.94 (0.29) 0.94 (0.29) 0.94 (0.32)

Eclipse p. for Ceylon 0.79 (0.14) 1.00 (0.34) 0.98 (0.27) 1.00 (0.32) 1.00 (0.36)

Hazelcast 0.85 (0.14) 0.99 (0.32) 0.99 (0.31) 1.00 (0.31) 1.00 (0.32)

Broadleaf Commerce 0.60 (0.19) 1.00 (0.30) 0.94 (0.29) 1.00 (0.28) 1.00 (0.31)

Average 0.82 (0.18) 0.99 (0.32) 0.99 (0.31) 1.00 (0.31) 1.00 (0.31)

Table 5. Bug coverage at file level

Project RandomForest DecisionTable SGD Logistic NaiveBayes

Android Universal I. L. 1.00 (0.46) 1.00 (0.68) 0.46 (0.10) 0.81 (0.27) 0.81 (0.33)

ANTLR v4 1.00 (0.32) 0.91 (0.30) 0.91 (0.20) 0.91 (0.24) 0.82 (0.18)

Elasticsearch 1.00 (0.39) 0.94 (0.35) 0.82 (0.19) 0.83 (0.24) 0.73 (0.16)

jUnit 1.00 (0.44) 0.94 (0.30) 0.83 (0.25) 0.83 (0.31) 0.89 (0.20)

MapDB 1.00 (0.33) 1.00 (0.36) 0.93 (0.19) 0.97 (0.28) 0.90 (0.25)

mcMMO 1.00 (0.42) 0.93 (0.44) 0.81 (0.27) 0.82 (0.29) 0.75 (0.21)

Mission Control T. 1.00 (0.25) 1.00 (0.38) 1.00 (0.24) 1.00 (0.24) 1.00 (0.19)

Neo4j 1.00 (0.30) 1.00 (0.38) 1.00 (0.24) 1.00 (0.25) 0.80 (0.12)

Netty 1.00 (0.44) 0.99 (0.60) 0.85 (0.34) 0.88 (0.36) 0.73 (0.14)

OrientDB 1.00 (0.41) 0.97 (0.49) 0.95 (0.42) 0.92 (0.38) 0.79 (0.14)

Oryx 1.00 (0.43) 1.00 (0.66) 0.64 (0.17) 0.73 (0.32) 0.36 (0.09)

Titan 1.00 (0.37) 1.00 (0.45) 1.00 (0.64) 0.89 (0.38) 0.72 (0.11)

Eclipse p. for Ceylon 1.00 (0.39) 1.00 (0.42) 0.76 (0.21) 0.83 (0.25) 0.65 (0.11)

Hazelcast 1.00 (0.38) 0.95 (0.37) 0.87 (0.21) 0.89 (0.28) 0.80 (0.12)

Broadleaf Commerce 1.00 (0.33) 0.88 (0.34) 0.78 (0.21) 0.80 (0.24) 0.69 (0.14)

Average 1.00 (0.38) 0.97 (0.43) 0.84 (0.26) 0.87 (0.29) 0.76 (0.17)

6 Conclusion and Future Work

In this paper we proposed an approach for creating bug databases for selected
release versions in an automatic way using the popular source code hosting
system named GitHub. We gathered 15 Java projects from different domains to
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fulfill the need of generality. After constructing six-months-long release intervals
we gathered bugs and the corresponding source code elements and organized
them into databases.

We applied 13 machine learning algorithms on them to investigate whether
the database is usable for bug prediction purposes. We experienced quite good
results for tree based algorithms (Random Forest, J48, Random Tree) with
respect of F-measure values and bug coverage ratios.

In the future, we are planning to make our tool open-source, thus anybody
can use or even improve our method. We plan to do more experiments with
our models on other projects. We will try to identify (with statistical methods)
connection between the usefulness of the database and other descriptors such as
size of the projects or amount of the reported bugs.
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638 Z. Tóth et al.

10. Hall, T., Zhang, M., Bowes, D., Sun, Y.: Some code smells have a significant but
small effect on faults. ACM Trans. Softw. Eng. Methodol. (TOSEM) 23(4), 33
(2014)

11. He, H., Garcia, E., et al.: Learning from imbalanced data. IEEE Trans. Knowl.
Data Eng. 21(9), 1263–1284 (2009)

12. Kamei, Y., Shihab, E.: Defect prediction: Accomplishments and future challenges
13. Menzies, T., Caglayan, B., He, Z., Kocaguneli, E., Krall, J., Peters, F., Turhan,

B.: The promise repository of empirical software engineering data, June 2012
14. Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures.

In: Proceedings of the 28th International Conference on Software Engineering, pp.
452–461. ACM (2006)

15. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Automating algorithms for the identi-
fication of fault-prone files. In: Proceedings of the 2007 International Symposium
on Software Testing and Analysis, pp. 219–227. ACM (2007)

16. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,
San Mateo (1993)
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