
Assessment of the Code Refactoring Dataset
Regarding the Maintainability of Methods

István Kádár, Péter Hegedűs(B), Rudolf Ferenc, and Tibor Gyimóthy

University of Szeged, Szeged, Hungary
{ikadar,hpeter,ferenc,gyimothy}@inf.u-szeged.hu

Abstract. Code refactoring has a solid theoretical background while
being used in development practice at the same time. However, previ-
ous works found controversial results on the nature of code refactoring
activities in practice. Both their application context and impact on code
quality needs further examination.

Our paper encourages the investigation of code refactorings in prac-
tice by providing an excessive open dataset of source code metrics and
applied refactorings through several releases of 7 open-source systems.
We already demonstrated the practical value of the dataset by analyzing
the quality attributes of the refactored source code classes and the values
of source code metrics improved by those refactorings.

In this paper, we have gone one step deeper and explored the effect
of code refactorings at the level of methods. We found that similarly to
class level, lower maintainability indeed triggers more code refactorings
in practice at the level of methods and these refactorings significantly
decrease size, coupling and clone metrics.

Keywords: Code refactoring · Software maintainability · Empirical
study · Refactoring dataset

1 Introduction

Source code refactoring is a very powerful technique to improve the internal
quality of software systems. Since its introduction by Fowler [6] it become more
and more popular and nowadays IT practitioners think of it as an essential part
of the development processes. Despite the high acceptance of refactoring tech-
niques by the software industry, there are some aspects that software companies
should take into consideration which may affect the practical application of such
techniques; for example, time constraint, cost effectiveness, or return on invest-
ment. Due to this shift of priorities between industry and research, we should
also explore how developers tend to use refactoring in practice and not just focus
on the theoretical concepts of code refactoring. There are evidences in the liter-
ature [21] that engineers are aware of code smells, but are not very concerned
with their impact as refactoring activity is not focused on them. But as Fowler
et al. suggested, code smells should be the primary technique for identifying

c© Springer International Publishing Switzerland 2016
O. Gervasi et al. (Eds.): ICCSA 2016, Part IV, LNCS 9789, pp. 610–624, 2016.
DOI: 10.1007/978-3-319-42089-9 43

Assessment of the Code Refactoring Dataset 611

refactoring opportunities in the code and a lot of research effort [4,5] has been
put into examining them. A similar contradictory result by Bavota et al. [2]
suggests that only 7 % of the refactoring operations actually remove the code
smells from the affected class.

All these seemingly negative results only indicate that although some con-
cepts might be very effective in theory, they may not be applied in industry due
to practical reasons. So to be able to elaborate new techniques and methods
that better suit the practitioners’ needs we should further examine how they
apply refactorings. To help addressing this goal, we proposed a publicly avail-
able refactoring dataset [11] that we assembled using the RefFinder [12] tool for
refactoring extraction and the SourceMeter1 static source code analyzer tool for
source code metric calculation. The dataset consists of refactoring and source
code metrics for 37 releases of 7 open-source Java systems. Every refactoring
is bound to the source code elements at the level of methods and classes on
which the refactoring was performed. We also store exact version and line infor-
mation in the dataset that supports reproducibility. Additionally to the source
code metrics, the dataset includes the relative maintainability indices of source
code elements, calculated by the QualityGate2 tool, an implementation of the
ColumbusQM quality model [1]. This makes it possible to directly analyze the
connection between source code maintainability and code refactoring.

Our first results in utilizing the proposed dataset [11] showed that classes with
poor maintainability are subject to more refactorings in practice than classes
with higher technical quality. Considering metrics, number of clone instances,
complexity, coupling, and size metrics have improved, although comment related
metrics decreased. In this paper, we focus on a similar empirical investigation,
but not at class level, but at the level of individual methods. The literature lacks
such studies on the evolution of methods in systems due to refactorings, which
we can examine now by using the proposed dataset.

With the help of the assembled dataset, in this paper we examine the con-
nection between refactorings and practical maintainability of the code by inves-
tigating the following research questions:

RQ1. Are methods with lower maintainability subject to more refactorings in
practice?

RQ2. Which quality attributes (source code metrics) are affected the most by
refactoring methods and to what extent?

By applying statistical methods on the refactoring data contained in our
dataset we found that lower maintainability indeed triggers more code refac-
torings in practice at the level of methods and these refactorings significantly
decrease code lines, coupling, and clone metrics.

The rest of the paper is organized as follows. In Sect. 2 we summarize the
empirical works in connection with code refactorings. In Sect. 3 the process of
assembling the refactoring dataset and its utilization in this paper is described.
1 http://www.sourcemeter.com/.
2 http://www.quality-gate.com/.

http://www.sourcemeter.com/
http://www.quality-gate.com/

612 I. Kádár et al.

We present the results of our empirical investigations in Sect. 4. Last, we describe
the threats to the validity of our research in Sect. 5 and conclude the paper in
Sect. 6.

2 Related Work

In this section we present some relevant works that investigate the relationship
between practical refactoring activities and software quality similarly to us. Lot
of the below mentioned papers also use the RefFinder tool [12,22] to find refac-
torings in software systems.

Murgia et al. [17] investigated if highly coupled classes are more likely to
be targeted by refactorings than less coupled ones. Classes with high fan-out
(and relatively low fan-in) metric was frequently targeted by refactorings, which
indicates that developers may prefer to refactor classes with high outgoing rather
than high incoming coupling.

Kataoka et al. [10] also examined the coupling metrics and showed that those
are quite effective in quantifying the impact of refactoring and helped them to
choose the appropriate refactoring types to apply on the source code.

In contrast to the above two works, we did not apply a particular set of
metrics to assess the effect of refactorings, but rather performed statistical tests
to find those metrics that change significantly upon refactorings and analyzed
the way they changed. We could identify that not only coupling, but size and
clone metrics also play an important role when doing code refactoring.

Measuring clones and studying how refactoring affects them is also a very
popular research topic. The dataset we proposed also includes clone metrics,
so code clone related refactoring examinations can also be performed. Choi
et al. found [3] that merged code clone token sequences and differences in token
sequence lengths vary for each refactoring pattern. They also showed that extract
method and replace method with method object refactorings are the most pop-
ular choices of the developers performing clone refactoring.

An automated approach presented by Wang et al. [23] recommends clones
for refactoring. The built decision tree-based classifier helps the developers to
determine if a clone is worth the effort to be refactored or not. The approach
achieves a precision of around 80 %, and similarly good precision is achieved
in cross-project evaluation. By recommending which clones are appropriate for
refactoring, the approach allows better resource allocation for refactoring itself
after obtaining clone detection results.

Bavota et al. [2] investigated the relationship between code smells and refac-
toring activities. They mined the evolution history of 2 open-source Java projects
and found that refactoring operations are mainly focused on code components
for which quality metrics do not suggest there might be a need for refactoring
operations. Contrary to their work, by considering maintainability instead of
code smells, we found significant, but not very strong connection with refac-
toring activities. Bavota et al. also propose a refactoring dataset with 15,008
refactoring operations, but it contains file level data only without precise line

Assessment of the Code Refactoring Dataset 613

information. Our open dataset contains method level information as well and
refactoring instances are completely traceable.

The approach presented by Hoque et al. [9] investigates the refactoring activ-
ity as part of the software engineering process and not its effect on code quality.
The authors found that it is not always true that there are more refactoring
activities before major project release dates than after. The authors were able
to confirm that software developers perform different types of refactoring oper-
ations on test code and production code, specific developers are responsible for
refactorings in the project and refactoring edits are not very well tested.

In another work [7] an automatic reviewing tool was developed with the
purpose of helping the code review activities by determining which changes in
the change set are the results of refactorings. Correctly performed refactorings,
by definition, preserve the behavior of the program so cannot introduce bugs.
Thus, spending effort on reviewing refactored changes is undesirable because it
is more likely that one finds bugs in non-refactoring changes.

The paper by Parsai et al. [20] proposes to adopt mutation testing as a means
to verify if the behavior of the test code is preserved after refactoring. Their
experiments indicate that mutation testing is suitable for identifying changes on
the external behavior of a refactored test and can also be used to detect those
parts of the test that was refactored improperly.

An extensive survey on the field of software refactoring is created by Mens
and Tourwe [15]. Among others, refactoring activities, specific techniques and
formalisms that are used for supporting these activities, important issues that
need to be taken into account when building refactoring tools and the effect of
refactoring on the software process were taken into consideration in this paper.
One activity in the refactoring process is identifying where to apply refactorings.
According to the survey, one of the most widespread approach to detect program
parts that require refactoring is the identification of bad smells (especially code
clones), which decrease maintainability. Our study identifies similar things in
practice, because we found that methods with poor maintainability are subject
to higher number of refactorings during their lifetime.

Similarly to us, Murphy-Hill et al. [18] empirically investigated how develop-
ers refactor in practice. They found that refactoring tools are rarely used: 11 %
by Eclipse developers and 9 % by Mylyn developers. Unlike in this work, we do
not focus on how refactorings are introduced (i.e. manually or using a tool), but
on their effect on source code.

3 Approach

In order to support the further researches on source code refactorings we built a
dataset of source code metrics and the applied refactorings between the releases
of the investigated projects. Utilizing the data set, we investigated the effect of
refactorings applied on the methods of the programs on their various metrics
and quality properties.

614 I. Kádár et al.

3.1 Dataset Construction

The basic methodology of the construction of the dataset is described in our
previous paper [11], here we emphasize the method-level specific details. The
prepared dataset contains data of release versions of 7 open-source Java systems
available on GitHub. Table 1 provides details about the projects, their names,
URLs, number of analyzed releases and the covered time interval by the releases.

Table 1. The systems included in the refactoring dataset

System Github URL # Rel. Time interval

antlr4 https://github.com/antlr/antlr4 5 21/01/13–22/01/15

junit https://github.com/junit-team/junit 8 13/04/12–28/12/14

mapdb https://github.com/jankotek/MapDB 6 01/04/13–20/06/15

mcMMO https://github.com/mcMMO-Dev/mcMMO 5 24/06/12–29/03/14

mct https://github.com/nasa/mct 3 30/06/12–27/09/13

oryx https://github.com/cloudera/oryx 4 11/11/13–10/06/15

titan https://github.com/thinkaurelius/titan 6 07/09/12–13/02/15

These projects were found ideal for our research purposes because of the
adequate number of release versions and the amount of the code modifications
between two adjacent releases. We selected 3 to 8 releases of each project. When
selecting the releases to include in the data set, we considered the amount of
code modifications between two adjacent releases of a project. As long as there
is not enough code modification between two adjacent releases, the number of
revealed refactorings is rather low, which can mislead statistic or machine learn-
ing algorithms. On the other hand, in order to support researches in this topic
there should be a large enough number of releases which allows the investi-
gation of the change of refactoring numbers and source code metrics in time.
We found that about a half-year time interval between two releases provides
sufficient amount of code modifications which proves to be appropriate for our
research goals. Thus, in case of every project, we dropped those release versions
that were too close to each other in time.

For every selected release version of every project, class and method level
metrics and the number of refactorings grouped by refactoring types (e.g. extract
method, remove parameter) are available in the dataset. The refactoring types
are different in class and method level: there are 23 refactoring types on class
level, and 19 on method level. For a complete list of method and class-level
refactorings refer to Table 6 in the appendix. In Table 2 we provide an overview
of the total number of classes, methods, and refactorings contained in the dataset.

To reveal refactorings between two adjacent release versions we used the
RefFinder refactoring reconstruction tool [12]. We note that according to its
authors the precision of the tool is 79 % [22]. RefFinder is implemented as an
Eclipse plug-in and is able to reveal refactorings between two Eclipse projects.

https://github.com/antlr/antlr4
https://github.com/junit-team/junit
https://github.com/jankotek/MapDB
https://github.com/mcMMO-Dev/mcMMO
https://github.com/nasa/mct
https://github.com/cloudera/oryx
https://github.com/thinkaurelius/titan

Assessment of the Code Refactoring Dataset 615

Table 2. Total number of classes, methods, and refactorings in the dataset

System # Classes # Methods # Refactorings

antlr4 622 5,280 248

junit 1,267 4,124 553

mapdb 850 6,180 2,973

mcMMO 505 4,767 62

mct 2,175 11,765 763

oryx 551 2,592 121

titan 2,429 14,214 3,152

Total 8,399 48,922 7,872

In order to avoid the manual importation of every release of every project into
Eclipse and starting the analysis by hand, we extended RefFinder with batch
execution support that enables the automatic analysis of all the specified releases.
We also implemented an export feature which writes the found refactorings and
all of their attributes into CSV files for each refactoring type which makes the
later analysis of the refactorings with external tools possible.

To set up the dataset we mapped all of the refactorings to those methods
that were affected by them and then counted their numbers. More specifically, if
any of the attributes of a refactoring referred to a method, the refactoring was
counted to that method. The reference to a method by a refactoring attribute is
defined by method name, and because in Java a method name does not specify
the method unambiguously, by source code position too. However, we realized
that source code positions in refactoring attributes cannot be always determined
precisely by RefFinder and the abstract syntax tree of Eclipse, thus there can
be roughness in the mapping of refactorings to methods. In the dataset, for
every release version, the accounted refactoring numbers indicate how many
refactorings of various types were performed that affected the considered method
between the current release and the previous one.

Besides code refactoring numbers, the dataset contains more than 50 types of
static source code metrics for every method (and class) of the considered projects
which were calculated using the SourceMeter static code analysis tool. Beyond
these metrics we added the so-called relative maintainability index (RMI) which
was measured by QualityGate SourceAudit for each method (and class) of the
systems. RMI, similarly to the well-known maintainability index [19], reflects
the maintainability of a code element, but it is calculated using dynamic thresh-
olds from a benchmark database, not by a fixed formula. Thus, RMI expresses
the maintainability of a code element compared to the maintainability of other
elements in the system. The technical details of the RMI can be found in our
earlier work [8].

The assembled dataset is published on the tera-PROMISE repository [16]:
http://openscience.us/repo/refactoring/refact.html.

http://openscience.us/repo/refactoring/refact.html

616 I. Kádár et al.

3.2 Data Analysis Methodology

To answer our research questions we utilized the constructed dataset in the
following way. For RQ1, we did a correlation analysis between the RMI values
of methods and the number of refactorings affecting these methods. In more
detail, we took the maintainability indices of methods of revision xi and the
refactoring numbers of revision xi+1. This way we investigated whether poor
quality methods are targets of more refactoring operations or not. We performed
Spearman rank correlation analysis because we cannot assume anything about
the distribution of the maintainability indices nor the number of refactorings.

To answer RQ2, first we calculated the differences of the static metric values
of two consecutive releases. Negative values in differences are indicating improve-
ment, because lower metric values (e.g. lower complexity or coupling) are better
in most of the cases. We performed a Mann-Whitney U test to determine whether
there is a significant difference among the metric decreases in the refactored and
non-refactored methods, which indicates which are those metrics that are changed
significantly upon refactoring. To investigate the volume of the changes in metric
values, we calculated the Cliff’s delta (δ) effect size measure as well.

4 Results

In this section we summarize the assessment results on the connection between
refactoring activity and maintainability of methods. First, we describe the results
of the analysis on the maintainability of refactored methods to answer RQ1.
Afterwards, we present the findings on the effect of refactorings on method-level
source code metrics to answer RQ2.

4.1 The Maintainability of Refactored Methods

To answer RQ1, we performed a correlation analysis between the number of
refactorings affecting the methods of the subject systems and their maintain-
ability indices in the previous release (as described in Sect. 3). Figure 1 depicts
the Spearman correlation coefficients between the RMI values in release xi and
the number of refactorings affecting the corresponding methods in release xi+1.
For the sake of easy comparison with our previous results on classes [11] we
included the class-level maintainability correlations as well.

As can be seen, all the values are negative. Although the coefficients are
not particularly high, they are consistently negative and significant at the level
of 0.05. The negative values simply mean an inverse proportionality, namely
that the worse the maintainability of a method or class is (the lower its RMI
value) the more refactorings touch it (the higher the number of refactorings
affecting it). There are less correlation coefficients than releases for some systems
because we were unable to calculate them when RefFinder found no refactorings
between two releases, which happened a couple of times. Table 3 summarizes
the mean correlation coefficients both for method and class-level, their deviation

Assessment of the Code Refactoring Dataset 617

Fig. 1. Correlation of maintainability and refactorings in classes and methods

Table 3. Average Spearman correlation coefficients between RMI and number of refac-
torings at method and class level

System Method level Class level

Mean corr. Deviation Intervals Mean corr. Deviation Intervals

antlr4 −0.096 0.018 4 −0.183 0.052 4

junit −0.086 0.014 6 −0.146 0.076 4

mapdb −0.163 0.014 5 −0.283 0.048 5

mcMMO −0.183 0.144 4 −0.124 0.040 3

mct −0.089 0.069 2 −0.156 0.054 2

oryx −0.103 0.025 3 −0.121 0.063 3

titan −0.134 0.081 5 −0.314 0.106 4

618 I. Kádár et al.

and the number of evaluated intervals between releases. It can be noticed that
the correlation coefficients and the deviations are somewhat larger in the case
of classes, but the differences are negligible.

Answer to RQ1: Based on the findings on our dataset we can conclude that
methods with poor maintainability are subject to higher number of refactorings
during their lifetime compared to those with better maintainability.

4.2 The Effect of Refactorings on Method-Level
Source Code Metrics

We found that refactorings affect poorly maintainable code more (i.e. methods),
so the question arises whether applying refactorings really improves the internal
quality of the code? Furthermore, what are the method level source code metrics
that show the highest improvement (i.e. decrease significantly) upon refactoring?

According to the process described in Sect. 3, we first calculated the met-
ric value differences for every method between the adjacent releases. Then, we
grouped these metric difference values into two groups: in the first group we
put the metric differences of methods affected by at least one refactoring, and
in the second group the metric differences of non-refactored methods. Finally,
we analyzed which method level metrics show significant differences between the
values of the two groups with the help of the Mann-Whitney U test [14].

Table 4. The results of the Mann-Whitney U Test (p-values) for method-level metrics

System name CC LLOC NOS NOI

antlr4 0.049 0.000 0.002 0.001

junit 0.058 0.923 0.667 0.403

mapdb 0.010 0.003 0.965 0.002

mcMMO 0.815 0.824 0.516 0.251

mct 0.703 0.924 0.547 0.660

oryx 0.654 0.555 0.306 1.000

titan 0.601 0.016 0.003 0.000

Out of 50+ source code metrics, the ones listed in Table 4 had the lowest
p-values, meaning that the differences in the metric value changes for refac-
tored and non-refactored methods are the most significant for these metrics. We
observed that the Number of Outgoing Invocations (NOI), which can be con-
sidered as a coupling metric indeed decreases significantly upon refactoring in
accordance with the previous findings of other studies [10,17].

But besides NOI, we found a significant decrease in size metrics as well,
namely in the case of Logical Lines of Code (LLOC) and Number of Statements
(NOS). These can be explained by the fact that typical refactorings, like extract
method and pull up method, often have a side effect of reducing the amount

Assessment of the Code Refactoring Dataset 619

of source code. This phenomena is clearly observable on these pure size related
metrics.

While this finding is not really surprising, the fact that McCabe’s cyclomatic
complexity [13] did not show a significant correlation with the number of refac-
torings applied on methods is just the opposite of what we were expecting. Our
perception was that using better code structures will lead to less complex code,
but we could not confirm this hypothesis. It is an even more interesting find-
ing in the light of our previous results [11] on the effect of refactorings on the
Weighted Method Complexity (WMC) metric of classes, which shows a signifi-
cant reduction upon refactorings. However, this is not a contradiction. Consider
the Extract method refactoring for example. In this case duplicated methods in
the child classes are extracted and put into their parent class, leading to the
removal of the method from several classes and inserting it to their parent. On
one hand, this yields to reduction in the average WMC metric as the complexity
of child classes decrease, while only the complexity of their parent class increases.
On the other hand, at method level the average McCabe’s complexity values do
not change. So the above results might indicate that refactoring operations tend
to decrease complexity at class-level, but not really at the level of methods.

It is interesting that the Clone Coverage (CC) metric also decreased, thus
refactoring activity seems to remove copy-paste code parts in practice. This
phenomena is similar to the code size reduction, e.g. by extracting common
code snippets into a method reduces the copy-pasted code parts, too.

Table 5. Cliff δ effect size measures for method-level metrics

System name CC LLOC NOS NOI

antlr4 0.70 0.63 0.48 0.71

junit −0.68 0.01 −0.08 0.14

mapdb −0.34 0.27 0.00 0.28

mcMMO 0.10 0.05 0.17 0.27

mct −0.15 −0.03 −0.18 −0.15

oryx −0.18 −0.14 0.31 −0.02

titan −0.09 0.16 0.21 0.33

Average −0.09 0.14 0.13 0.22

To quantify the magnitude of the differences between the metric value
decreases of the refactored and non-refactored methods, we calculated the Cliff’s
delta (δ) effect size measure. The detailed results are presented in Table 5. Cliff’s
δ measures how often the values in one distribution are larger than the values
in a second distribution. It ranges from −1 to 1 and is linearly related to the
Mann-Whitney U statistic, however it captures the direction of the difference
in its sign as well. Simply speaking, if Cliff’s δ is a positive number, the metric
value differences (thus the metric value decreases) are higher in the refactored
methods, while negative value means that the metric value differences are higher

620 I. Kádár et al.

in the non-refactored methods. The closer the δ is to |1|, the more values are
larger in one group than the values in the other group. Generally, the Cliff’s δ
values are quite hectic; however, the average δ values are positive for every met-
ric except for CC. While in case of LLOC, NOS and NOI the majority of values
are positive, only two projects have positive δ values for CC. This might suggest
that cloned code is decreased by other targeted changes that are not refactor-
ings, while refactorings often have a side effect to remove code clones as well
(e.g. extract method). However, this phenomenon needs further investigation.

Fig. 2. Boxplot of the LLOC metric decreases in the refactored and non-refactored
methods

To have a better overview of the above explained phenomena, we visualized
the average size metric differences for the refactored and non-refactored methods
in Fig. 2. This boxplot clearly shows that the maximum, minimum, and average
numbers of code line reduction are far smaller in case of methods that are not
refactored than in the case of refactored methods. While the median of LLOC
decrease is 2 in case of non-refactored methods, it is two times larger (around 4)
for refactored methods. Based on these findings, we can now conclude RQ2.

Answer to RQ2: We found that size (LLOC, NOS), coupling (NOI), and clone
(CC) related metrics decrease the most in refactored methods. Regarding the
volumes of the differences, we can say that for these metrics the average Cliff’s δ
values are mostly positive suggesting a small to medium effect size on the metric
decreases in the refactored methods compared to the non-refactored ones.

5 Threats to Validity, Limitations

In this section, we summarize the limitations and threats to validity of our study.
First of all, we note that RefFinder, the tool we used to mine refactorings from

the selected projects, is not perfect. According to its authors the precision of the

Assessment of the Code Refactoring Dataset 621

tool is 79 % [22], which means there might be false positive refactorings included
in our dataset. Moreover, we have no data about recall at all; however, it is fairly
possible that RefFinder does not find all of the refactorings no matter whether
they were committed intentionally by the developers or not. To mitigate this
threat we already started to manually validate our entire dataset and eliminate
false positive instances.

Another threat occurs during the construction of the dataset when the
found refactoring instances are mapped to the methods that they affect. As we
described in Sect. 3.1, if any of the attributes of a refactoring matches with the
name of a method and its source code position, the refactoring will be mapped
to that method. Nevertheless, we noticed that the source code positions in refac-
toring attributes determined by RefFinder using Eclipse AST are inaccurate
sometimes, which implies that in case of method overloading, where name does
not necessarily identify the method, there might be roughness in the mapping
and therefore in the final dataset. However, the number of such mappings is very
low.

The key attribute in the dataset is the fully qualified name of the method
with parameter descriptions. If a method is renamed between two consecutive
releases we do not track it and its metrics, and handle it as a new method in the
next release.

Finally, another threat to our results is that we investigated only seven Java
systems which may not represents correctly the general characteristic of all of
the software systems considering refactoring activities in practice. Therefore, we
are plan to continuously extend the number of systems in our dataset.

6 Conclusions and Future Work

In this paper, we used our previously proposed public dataset, which is indented
to assist the research of refactoring activities in practice, to investigate the rela-
tionship between maintainability and refactoring activities, and we also assessed
how refactorings affect different source code metrics at the level of individual
methods. The dataset contains fine-grained refactoring information and more
than 50 types of source code metrics for 37 releases of 7 open-source systems at
class and method levels.

We found that methods with poor maintainability are subject to more refac-
torings in practice than methods with higher technical quality. Considering con-
crete metrics, the clone coverage, size metrics and number of outgoing invo-
cations decreased the most intensively in the methods subjected to frequent
refactorings. This might indicate that doing code refactoring in practice indeed
mitigates unwanted code characteristics such as clones, size, or coupling, and
result in more maintainable software systems.

As a future work we plan to manually validate the whole dataset to get
more meaningful results. We also plan to reveal more complex phenomena in
connection with practical refactorings, especially the relationship between bugs
and refactoring activities.

622 I. Kádár et al.

Acknowledgment. This work was partially supported by the European Union
project “REPARA – Reengineering and Enabling Performance And poweR of Appli-
cations”, project number: 609666.

Appendix

Table 6. The type of refactorings extracted by RefFinder at class and method level

Refactoring type Class level Method level

Add parameter � �
Consolidate conditional expression � �
Consolidate duplicate conditional fragments � �
Extract method � �
Inline temporary variable � �
Introduce assertion � �
Introduce explaining variable � �
Remove assignment to parameters � �
Remove parameter � �
Rename method � �
Replace magic number with constant � �
Replace method with method object � �
Inline method � �
Introduce null object � �
Remove control flag � �
Replace exception with test � �
Replace nested condition with guard clauses � �
Hide method � �
Replace temporary variable with query � �
Move field �
Extract superclass �
Extract interface �
Introduce local extension �

References

1. Bakota, T., Hegedűs, P., Körtvélyesi, P., Ferenc, R., Gyimóthy, T.: A probabilistic
software quality model. In: Proceedings of the 27th IEEE International Conference
on Software Maintenance (ICSM), pp. 243–252, September 2011

2. Bavota, G., De Lucia, A., Di Penta, M., Oliveto, R., Palomba, F.: An experimental
investigation on the innate relationship between quality and refactoring. J. Syst.
Softw. 107, 1–14 (2015)

Assessment of the Code Refactoring Dataset 623

3. Choi, E., Yoshida, N., Inoue, K.: An investigation into the characteristics of merged
code clones during software evolution. IEICE Trans. Inf. Syst. 97(5), 1244–1253
(2014)

4. van Emden, E., Moonen, L.: Java quality assurance by detecting code smells. In:
Proceedings of the 9th Working Conference on Reverse Engineering, pp. 97–106
(2002)

5. Fontana, F.A., Spinelli, S.: Impact of refactoring on quality code evaluation. In:
Proceedings of the 4th Workshop on Refactoring Tools, WRT 2011, pp. 37–40.
ACM, New York (2011). http://doi.acm.org/10.1145/1984732.1984741

6. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc., Boston (1999)

7. Ge, X., Sarkar, S., Murphy-Hill, E.: Towards refactoring-aware code review. In:
Proceedings of the 7th International Workshop on Cooperative and Human Aspects
of Software Engineering, CHASE 2014, pp. 99–102. ACM, New York (2014)

8. Hegedűs, P., Bakota, T., Ladányi, G., Faragó, C., Ferenc, R.: A drill-down app-
roach for measuring maintainability at source code element level. Electron. Com-
mun. EASST 60, 20–29 (2013). http://journal.ub.tu-berlin.de/eceasst/article/
download/852/846

9. Hoque, M.I., Ranga, V.N., Pedditi, A.R., Srinath, R., Rana, M.A.A., Islam, M.E.,
Somani, A.: An empirical study on refactoring activity. ACM Computing Research
Repository abs/1412.6359 (2014)

10. Kataoka, Y., Imai, T., Andou, H., Fukaya, T.: A quantitative evaluation of main-
tainability enhancement by refactoring. In: Proceedings of the International Con-
ference on Software Maintenance, pp. 576–585 (2002)

11. Kádár, I., Hegedűs, P., Ferenc, R., Gyimóthy, T.: A code refactoring dataset
and its assessment regarding software maintainability. In: Proceedings of the 23rd
IEEE International Conference on Software Analysis, Evolution, and Reengineer-
ing. IEEE Computer Society (2016, to appear)

12. Kim, M., Gee, M., Loh, A., Rachatasumrit, N.: Ref-Finder: a refactoring recon-
struction tool based on logic query templates. In: Proceedings of the 18th ACM
SIGSOFT International Symposium on Foundations of Software Engineering (FSE
2010), pp. 371–372 (2010)

13. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 2, 308–320 (1976)
14. McKnight, P.E., Najab, J.: Mann-Whitney U Test. Corsini Encyclopedia of Psy-

chology. Wiley, New York (2010)
15. Mens, T., Tourwe, T.: A survey of software refactoring. IEEE Trans. Softw. Eng.

30(2), 126–139 (2004)
16. Menzies, T., Krishna, R., Pryor, D.: The Promise Repository of Empirical Software

Engineering Data (2015). http://openscience.us/repo
17. Murgia, A., Tonelli, R., Marchesi, M., Concas, G., Counsell, S., McFall, J., Swift,

S.: Refactoring and its relationship with fan-in and fan-out: an empirical study.
In: Proceedings of the 16th European Conference on Software Maintenance and
Reengineering (CSMR), pp. 63–72, March 2012

18. Murphy-Hill, E., Parnin, C., Black, A.P.: How we refactor, and how we know it.
IEEE Trans. Softw. Eng. 38(1), 5–18 (2012)

19. Oman, P., Hagemeister, J.: Metrics for assessing a software system’s maintainabil-
ity. In: Proceedings of the International Conference on Software Maintenance, pp.
337–344. IEEE Computer Society Press (1992)

20. Parsai, A., Murgia, A., Soetens, Q.D., Demeyer, S.: Mutation testing as a safety
net for test code refactoring. CoRR abs/1506.07330 (2015)

http://doi.acm.org/10.1145/1984732.1984741
http://journal.ub.tu-berlin.de/eceasst/article/download/852/846
http://journal.ub.tu-berlin.de/eceasst/article/download/852/846
http://openscience.us/repo

624 I. Kádár et al.

21. Peters, R., Zaidman, A.: Evaluating the lifespan of code smells using software
repository mining. In: Proceedings of the 16th European Conference on Software
Maintenance and Reengineering (CSMR), pp. 411–416, March 2012

22. Prete, K., Rachatasumrit, N., Sudan, N., Kim, M.: Template-based reconstruction
of complex refactorings. In: IEEE International Conference on Software Mainte-
nance (ICSM), pp. 1–10, September 2010

23. Wang, W., Godfrey, M.W.: Recommending clones for refactoring using design, con-
text, and history. In: 2014 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 331–340. IEEE (2014)

	Assessment of the Code Refactoring Dataset Regarding the Maintainability of Methods
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Dataset Construction
	3.2 Data Analysis Methodology

	4 Results
	4.1 The Maintainability of Refactored Methods
	4.2 The Effect of Refactorings on Method-Level Source Code Metrics

	5 Threats to Validity, Limitations
	6 Conclusions and Future Work
	References

