
On Optimizing Partitioning Strategies for Faster
Inverted Index Compression

Xingshen Song(B), Kun Jiang, Yu Jiang, and Yuexiang Yang

College of Computer, National University of Defense Technology, Changsha, China
{songxingshen,jiangkun,jiangyu14,yyx}@nudt.edu.cn

Abstract. Inverted index is a key component for search engine to
manage billions of documents and fast respond to users’ queries. While
substantial effort has been made to compromise space occupancy and
decoding speed, what has been overlooked is the encoding speed when
constructing the index. VSEncoding is a powerful encoder that works by
optimally partitioning a list of integers into blocks which are efficiently
compressed by using simple encoders, however, these partitions are found
by using a dynamic programming approach which is obviously inefficient.
In this paper, we introduce compression speed as one criterion to evaluate
compression techniques, and thoroughly analyze performances of differ-
ent partitioning strategies. A linear-time optimization is also proposed,
to enhance VSEncoding with faster compression speed and more flexi-
bility to partition an index. Experiments show that our method offers
a far more better compression speed, while retaining an excellent space
occupancy and decompression speed.

Keywords: Inverted index · Index compression · Optimal partition ·
Approximation algorithm

1 Introduction

Due to its simplicity and flexibility, inverted index gains much popularity among
modern IR systems since 1950s. Especially in large scale search engines, inverted
index is now adopted as their core component to maintain billions of documents
and respond to enormous queries. In its most basic and popular form, an inverted
index is a collection of sorted sequences of integers [10,16,18]. Growing size of
data and stringent query processing efficiency requirement have appealed a large
amount of research, with the aim to compress the space occupancy of the index
and speed up the query processing.

While state-of-the-art encoders do obtain very good space-time trade-offs,
we argue that one important evaluation criterion has been neglected is the com-
pression speed of these methods [10,13,17]. The reason can be attributed to
the fact that index is always preprocessed offline before deployment, and once
being taken into effect, update can be committed in an asynchronous and paral-
lel manner. Therefore index designers usually traverse the sequences more than

c© Springer International Publishing Switzerland 2016
O. Gervasi et al. (Eds.): ICCSA 2016, Part IV, LNCS 9789, pp. 246–260, 2016.
DOI: 10.1007/978-3-319-42089-9 18

Optimizing Partitioning Strategies for Inverted Index 247

once to find the optimal parameters for space-efficiency gains, making index con-
struction speed rather slow. However, timely update for unexpected queries is
becoming more and more stringent in search engine, especially in twitter and
other social network sites. Compression speed should also be an important factor
to evaluate an index compression algorithm. Early techniques like Simple-9 and
Simple-16 [2,3] evaluate all the possible schemes to decide the best partition,
PFOR [9,17,18] splits each sequence into blocks of fixed size (say, 128 integers)
and goes over the whole block to decide the exception ratio and block width. In
a nutshell, compression speed is compromised to achieve better space occupancy
and decoding speed.

Modern encoders are designed to compress lists of integers, that is the input
posting list is split into blocks with fixed or variable lengths to be encoded. Intu-
itively, partitioning posting list aligning to its clustered distribution, can effec-
tively minimize the compressed size while keeping partitions separately accessed.
Works from literature [1,6,13] give another perspective on index compression.
The integer sequence is considered a particular directed acyclic graph (DAG),
the partitioning problem is then treated as optimal path finding problem, unfor-
tunately the DAG is complete with n(n+1)

2 = Θ
(
n2

)
edges, a trivial traversal

may not suffice to obtain an efficient solution for this problem. Scheme from [1]
uses a greedy mechanism to yield a sub-optimal partition with a small amount
of effectiveness exchanged for speed of compression and ease of implementation.
AFOR from [6] computes the block partition by using a series of fixed-sized slid-
ing windows over a block and determines the optimal configuration of frames and
frame lengths of the current window. VSEncoding from [13] finds the optimal
partition by using a dynamic programming approach and is said to be able to
encode groups of integers beating the entropy of the gaps distribution. However,
dynamic programming can be very inefficient since it needs to recalculate all the
edges when a new vertex is added in the current graph, to mitigate this problem
VSEncoding simply restricts the length of the longest block to h, reducing its
time complexity from O(n2) to O(nh), but barely satisfactory in practice.

Recently, Ottaviano overcomes this drawback by introducing a new compres-
sion scheme called Partitioned Elias-Fano Index (PEF) [12], in which a linear-
time approximation algorithm is presented to find a solution at most (1 + ε)
times larger than the optimal one, for any given ε ∈ (0, 1). Its core idea is to
generate a pruned graph Gε in linear time directly without explicitly constructing
the whole graph G which, otherwise, would require quadratic time. Edges with a
heavy weight are dropped according to a predefined pruning policy, reducing the
time and space complexities to linear at the cost of finding slightly suboptimal
partitions. The same idea is also adopted in [7].

In this paper we follow the compression techniques studied in [4,9,15,17].
However, while previous work has focused on improving compression ratio and
speed up decoding, we consider compression speed as one criterion. In particular,
we extensively study various compression schemes on their space-time trade-offs,
and propose our optimization on VSEncoding to achieve a faster compression
speed while keeping its space and decoding-time efficiencies, namely substituting

248 X. Song et al.

an approximation algorithm for the dynamic programming used by VSEncoding
[13] when partitioning the input sequence into blocks, an experiment is also
performed on TREC GOV2 collection to validate the proposed method, results
show that our method significantly improves the compression speed with a slight
loss at index size overhead.

The rest of this paper is organized as follows. Section 2 provides a back-
ground on compression techniques and partitioning strategies; Sect. 3 proposes
our optimization on speeding up partitioning procedure for VSEncoding; Sect. 4
shows our experimental results and analyses of the original methods and their
optimizations; conclusion and future work follow in Sect. 5.

2 Background

2.1 Index Compression

Compressing the index has long been a key issue for researchers to ensure both
the time- and space-efficiency of inverted index, various encoders with different
properties have been put up to settle this problem, and they can be roughly
divided into two classes, namely the integer-oriented encoders and the list-
oriented encoders. The integer-oriented encoders assign an unique codeword to
each integer of the input sequence, then the compression procedure turns into a
mapping or substitution from the integer space to code space. As they compress
integers without considering their neighborings, the integer-oriented encoders are
also called oblivious encoders [4], such as unary code, Elias Gamma/Delta codes
and Golomb/Rice codes. Most integer-oriented encoders are hard to decode since
they need bitwise operations to cross computer word boundaries, so byte/word-
aligned encoders, are proposed to solve this problem, like Variable Byte and
Group Varint, more importantly, they can be further improved by SIMD instruc-
tions of modern CPUs [14,15].

List-oriented encoders are designed to exploit the cluster of neighboring inte-
gers, each time a fixed-sized or variable-sized group of integers is binary packed
with an uniform bit width, providing equivalent compression ratio and faster
decoding speed, the technique used by these encoders is called frame-of-reference
(FOR), or binary packing [8]. Basically, their compression ratios are inferior to
these of the first category as a batch of integers are encoded indiscriminately,
and useless zeros are padded in the codeword to keep word-aligned, however,
when decoded, list-oriented encoders can obtain an entire block while the form-
ers just decode one integer at a time. More importantly, with the help of skip
pointers or skip list, it is possible to step along the codewords compressed by
list-oriented encoders and stop when the required number of blocks has been
bypassed. Examples of these encoders are Simple Family, AFOR and Patched
FOR (PFOR, OptPFOR and FastPFOR).

2.2 Directed Acyclic Graph

One thing to be noted is that list-oriented encoders may cost equivalent time
to compress the input sequence as the integer-oriented encoders even they are

Optimizing Partitioning Strategies for Inverted Index 249

designed to compress a list of integers at the same time. Before compressing,
a partitioning strategy is needed to traverse the whole input list to search for
an optimal partition, in consideration of compression ratio and decoding speed.
Even after that, an uniform bit width has to be chosen to fit every element in
for each block. As for Simple Family, a descriptor is decided after enumerating
all the possible partitioning cases; OptPFOR needs an additional computation
to choose the optimal proportion of exceptions in each block in order to achieve
a better space efficiency. To speed up the compression speed, a proliferation of
partitioning schemes have been seen in the last few years [1,6,12,13].

Fig. 1. Here is a DAG for sequence with 6 integers represented using gap (differences
between them). Optional bit widths range from 3 to 5, each gap is fitted in the tuple
(position, available-bit-width), if the available-bit-widths are more than one, they are
placed in different rows, the number in the edge denotes the cost for this path, the
fixed cost is set to 4.

The common foundation for the abovementioned methods is to recast the
integer sequence S [0, n] to a particular DAG G, each integer is represented by
a vertex, plus a dummy vertex marking the end of the sequence, the graph
G is complete, which means that for any i and j with i < j � n, there
exists an edge connecting vi and vj , denoted as (vi, vj). In fact, the edge is
an exact correspondence of a partition in the sequence S [i, j], the problem
of fully partitioning S is converted to finding a path π in G, for instance,
π = (v0, vi1) (vi1 , vi2) . . .

(
vik−1 , vn

)
with k edges corresponds to the partition

S [0, i1 − 1] S [i1, i2 − 1] . . . S [ik−1, n − 1] of k blocks. The weight of an edge in
the graph is equal to the cost in bits consumed by the partition. Thus, the prob-
lem of optimally partitioning a sequence is reduced to the problem of Single-
Source Shortest Path (SSSP) Labeling, as shown in Fig. 1. An intuitive way to
solve this is to firstly set the cost of each vertex in G to +∞, then an iteration
starts from the left vertex to the rightmost, when it comes to a vertex vj with
0 � j < n, a subproblem of find the optimal path from vj to vn shows up,
assuming the optimal path from v0 to vj has been correctly computed. Each

250 X. Song et al.

edge (vj , v
′) outgoing from vj will be assessed and cost of vertex v′ is updated

if it becomes smaller. As can be seen, the time complexity of this algorithm is
proportional to the number of edges in G.

However, the G transformed from integer sequence S is complete with Θ
(
n2

)

edges, especially some posting lists for popular terms will be quite large, finding
their optimal partitions will be intolerable. Since dynamic programming is ineffi-
cient and greedy mechanism is too coarse, an elaborate approximation algorithm
which reduces the time and space complexities to linear at the cost of finding
slightly suboptimal solutions will be feasible.

3 Optimizing Partitioning Strategy via Pruning DAG

While PEF using Elias-Fano code gets an impressive compression performance,
we are aiming at revitalizing encoders using binary packing with optimizations.
Since Elias-Fano code compresses integer in its complete form which may leads
to poor space efficiency, binary packing uses gapped integer instead will obtain
better compression ratio, it is still an promising method with potential for faster
compression speed.

3.1 VSEncoding

VSEncoding is similar to PFOR, however, it neither applies a fixed-sized block
length nor appends a patch for outliers at the end of blocks. In order to maximize
the compression while retaining simple and fast decompression, VSEncoding
partitions each posting list into blocks of variable length, and binary packs the
integers inside of each block with the number of bits, say b, required to encode
the largest one. Finally the the value of b and the length of the block, k, are
encoded using distinct encoders M1 and M2. The basic form of each block can
be seen as {< ki, bi >: datai}blocki

, datai is the ki integers of blocki using bi

bits each.
Given a sequence S and a vector of partitions, the number of bits required

to encode S can be computed in constant time, this quantity is calculated by
summing up the costs of all the blocks, as the length of each block is variable,
the problem of minimizing bits used relies on the problem of finding the optimal
partitions. Let P denote the vector of m vertexes indicating the boundary of
each block, with P [0] = 1, and P [m] = n. The problem can be represented
as follow:

min
P∈S

m−1∑

i=0

c (P [i] − 1, P [i + 1])

where c (P [i] − 1, P [i + 1]) = |M1 (bi) | + |M2 (ki) | + kibi, namely the cost to
encode i -th block.

VSEncoding adopts a dynamic programming algorithm to obtain the optimal
partitions, each time a subproblem t consists in encoding in the best way all the
integers starting from 0 to t, with a memo to look up when deciding whether to

Optimizing Partitioning Strategies for Inverted Index 251

merge or split current partition. The whole procedure starts by setting t = 0 and
goes down to t = n, which represents the solution to the original problem. In
order to implement a faster algorithm, the block lengths are restrained to some
small constants between 16 and 64, say h, thus the time complexity drops from
O

(
n2

)
to O

(
n log2 h

)
.

To further improve decompression speed and keep the block representations
word aligned, VSEncoding reorganizes the layout of blocks, first the description
parts are stored together in their order (i.e., b0k0, b1k1 . . . , bmkm), then the data
parts are written separately into each group: first the values that have to be
represented with 1 bit, then with 2 bits, and so on. The decompression procedure
is done by binary-unpacking and permuting the data parts into the correct order
according to description parts.

3.2 Optimized Partitioning Strategy

Next we describe our modification to VSEncoding that achieve significant
improvements over its original version in [13]. As mentioned before dynamic
programming used in optimal partitioning costs too much time of index com-
pression, to overcome this problem, we present a new partitioning scheme, which
uses approximation algorithm in place of dynamic programming, thus reducing
the time and space complexities to linear by finding a suboptimal partition. The
partitioning problem can be reduced to SSSP over a DAG G with Θ

(
n2

)
edges,

and its time complexity is proportional to the number of edges, our aim is to
design a pruning strategy removing edges of large costs while retaining edges
which costs no more than (1 + ε) times what the shortest paths do, for any
given ε ∈ (0, 1).

We use c (vi, vj) to denote the cost function of the edge (vi, vj), which is also
the cost of a partition S [i, j − 1], U as the upper bound of cost by representing S
as a single partition, and F as the fixed cost of each partition(e.g. the descriptor).
There is an obvious fact that, given any 0 � i < j < k � n, it is 0 < c (vi, vj) �
c (vi, vk) � . . . � c (vi, vn+1).

By adopting a nontrivial pruning strategy a subgraph Gε of the original G is
produced, in which the shortest path and the suboptimal path which increases
a little are preserved. Any edge (vi, vj) in Gε follows at least one of the following
conditions: (1) there exits a positive integer k such that c (vi, vj) � F (1 + ε)k

<
c (vi, vj+1); (2) j = n+1. These edges of Gε are called ε−maximal edges. As we
have set the upper bound to U , there exists at most log1+ε

U
F possible values for

k, thus for each vertex Gε has at most log1+ε
U
F outgoing ε−maximal edges. [7]

has proved that the shortest path distance on Gε, which is at most (1 + ε) times
larger than the one in G, can be computed in O

(
n log1+ε

U
F

)
time (Fig. 2).

The above procedure is like the trimming scheme for the subset-sum problem
[5], which is to choose a representative for a compact range of its neighbor. In
other words, we are sparsifying the complete graph G by quantizing its edge costs
into classes of cost between (1 + ε)i and (1 + ε)i+1, for each cost class of each
node, only one ε − maximal edge is retained. If to prune G in a more coarse-
grained but faster way, we can further remove edges which span too many vertex,

252 X. Song et al.

Fig. 2. Curves represent outgoing edges from vertex vi, the number under each curve
is the cost of it, postulating the fixed cost is F = 4. Lines below are cost classes with
different k, for each class we can choose one edge as ε − maximal edge. This process
is called sparsification.

intuitively, long edges are more vulnerable and sensitive to outliers, resulting in
high cost and poor efficiency, thus are less likely to be enrolled in optimal par-
titioning. At the very beginning, we set the upper bound U to be the cost of
representing the whole sequence S as a single block, however this is an asymp-
totic upper bound which might never be reached, by refining U to a more com-
pact bound we can further lower the time complexity to linear without losing
the approximation guarantees. Before giving our U we first state the following
proposition to be based on:

Proposition 1. For any 0 � i < j < k � n+1, the weighting function satisfies
c (vi, vk) + c (vk, vj) � c (vi, vj) + F + 1.

It is easy to prove as we split one edge into two shorter edges, the corre-
spondent interval in S is also partitioned. The worst case is the split cuts out
nothing but only adds cost of one descriptor. For any edge (vi, vj) in Gε, we have
c (vi, vj) � U , if c (vi, vj) > U , then they are pruned and replaced by sub-edges
in Gε. These sub-edges can be found in a greedy way, in which the cost of each
edge equals U (optimal ones are probably better), thus the number of edges
cannot be larger than c(vi,vj)−F

U−F
+ 1. Postulating all the sub-edges are the worst

cases which only add costs, the overall cost follows the inequality:

∑

i�k<l�j

c (vk, vl) � c (vi, vj) +
(

c (vi, vj) − F

U − F
+ 1

)
(F + 1) (1)

our ultimate goal is to keep the shortest path distance in Gε no more than
(1 + ε) times the optimal one in G, if (vi, vj) is one edge of the optimal path, we
get the following inequality:

∑

i�k<l�j

c (vk, vl) � (1 + ε) · c (vi, vj) (2)

combining these two we get an inequality for U :

Optimizing Partitioning Strategies for Inverted Index 253

U � F +
F + 1

ε
(3)

One thing to be noted is that, even parameters ε and F are predefined by user,
there is an implicit criterion that for any edge (vi, vj) the cost function must
satisfy, since the correctness of pruning strategy relies on it: ε·c (vi, vj)−F−1 > 0,
which is not mentioned in [12]. Different lower bound of c (vi, vj) determines the
minimum of ε, for instance, if c (vi, vj) � 2 (F + 1), then ε ∈ [0.5, 1). Finally we
can set our U to F + F+1

ε , reducing the time complexity from O
(
n log1+ε

U
F

)

to O
(
n log1+ε

1
ε

)
= O (n), more importantly, the approximation guarantee is

preserved.
Even providing the edge cost can be computed in constant time, we cannot

check every edge of the complete graph G to determine whether it is ε−maximal
or not, since it would take Θ

(
n2

)
time. To construct the pruned graph Gε on the

fly we need to deploy a dynamic data structure that maintains a set of sliding
windows over S denoted by ω0, ω1, . . . , ωlog1+ε

1
ε
, each of them represents a cost

class of F (1 + ε)k, starting from the same vertex vi but covering a different
range of S. For each vertex vi, each sliding window ωj begins to expand its size
from the starting position to the position where the cost is larger than F (1 + ε)j

for the first time, thus we generate all the ε − maximal edges outgoing from vi.
By performing a scan on S for each sliding window, we get and evaluate all the
ε−maximal edges on-the-fly. Thus, the algorithm returns the optimal partition
in O

(
n log1+ε

1
ε

)
time.

4 Experiments

4.1 Experimental Setup

In our experiments, we use the posting lists extracted from the TREC GOV2 col-
lection, which consists of 25.2 million web pages and about 32.8 million terms in
the vocabulary crawled from the gov Internet domain. The uncompressed size of
these web pages is 426 GB. Also, all the terms have the Porter stemmer applied,
and stopwords have been removed, docids are assigned in two ways: according to
the lexicographic order of their URLs or to the order that they appear in the col-
lection, thus we can see how docid reordering influence indexing performance.
Then the docids and term frequencies are extracted from the collection in a
non-interleaved way and applied with compression methods separately. To high-
light the improvements between the original methods and our optimizations, the
compression methods used in experiments are AFOR, VSEncoding via Dynamic
Programming (VSE-DP) and VSEncoding via Optimal Partitioning (VSE-OP),
we do not compare other methods like the Simple Family or PFOR in our bench-
mark as they have been throughly studied in the literature [4,9,11,17].

All the implementations are carried out on an Intel(r) Xeon(r) E5620 proces-
sor running at 2.40 GHz with 128 GB of RAM and 12,288 KB of cache. The
default physical block size is 16 KB, algorithms are implemented using C++
and compiled with GCC 4.8.1 with O3 optimizations. In all our runs, the whole

254 X. Song et al.

inverted index is completely loaded into main memory, in order to warm up
the execution environment, each query set is run 4 times for each experiment,
and the response times only measured for the last run. Our implementations are
available at https://github.com/Sparklexs/myVS.

4.2 Indexing Performance

The performance of indexing is based on the index size and compression speed.
Before comparing the spaces obtained by different methods, we first set the
parameters needed by AFOR, as mentioned before, to keep byte-aligned, we set
the frame length to be (8, 16, 32), these configurations give the best balance
between performance and compression ratio. Offering additional frame lengths
will slightly increase the compression ratio, at the cost of linearly decreasing the
compression speed.

Table 1. Total Size in GB, and corresponding average bits per integer (bpi) for docid
and frequency, compressed by different methods on GOV2

Table 1 shows the index space, it is divided into two classes, the original and
the reordered, the former denotes docids are assigned in the order they appear
and the latter denotes docids are assigned in the lexicographic order of their
URLs. The overall size and bits per integer of docid and frequency are shown
separately. To facilitate reading, we fill docid-related cells with gray, so are the
other tables below. We can observe that VSE-OP gets slightly worse result than
its initial version, since we are focusing on accelerating compression speed, the
partitioning scheme we adopt in VSE-OP is suboptimal, but it is still competi-
tive compared with the optimal one. We can also observe VSEncoding achieves
far more better compression ratio than AFOR, no matter for docid or frequency,
the size of AFOR is nearly 4 times larger than VSEncoding, which demonstrates
that a partitioning strategy, which offers more optional frame lengths, can more
effectively utilize the distribution of integers to compress the sequence. Also note
that docid after reordering is half the size it is ordered by the sequence of appear-
ance, while frequency stays less sensitive to reordering, this can be explained by
the fact that docid is stored in ascending order and reordering by URL further
narrows the gaps between consecutive docids, however the frequency is aligned

https://github.com/Sparklexs/myVS

Optimizing Partitioning Strategies for Inverted Index 255

with docid and stored in an unordered way, thus reordering does not make too
much difference. Also the docids are quite sparse while the frequencies are fairly
concentrated, rendering the docid’s compression ratio twice larger than the fre-
quency’s.

Table 2. Total time elapsed in seconds and performance in million integers per second
(mis) when compressing docid and frequency

Table 2 shows the compression speed of different methods when constructing
index for docid and frequency. Combining with the index size shown in Table 1,
we can find that there is a clear trade-off between compression efficiency and
effectiveness, while index compressed by AFOR is quadruple the size of the ones
compressed by VSEncoding, however, its compression speed is two orders of
magnitude faster than VSEncoding. Due to a lack of attention, the construction
time of experimented methods are rarely mentioned in the literature, we can-
not find their performances on other platforms to compare. In our experiment,
the optimized method outperforms its original version, the average time saved
constitutes nearly 20 % of the time cost by the original. We can notice that the
performance gap between docid and frequency is not very apparent, for that they
contain the same number of integers. Also, the compression methods traverse the
lists in a fixed way, which is irrelevant to the symbols the lists may contain. The
only difference exists is that docid is sparser and larger than frequency, thus lead-
ing to the result that compressing docid is a little more time-consuming than
compressing frequency. One exception is that VSE-OP partitions a list under the
influence of the predefined parameter ε and the upper bound of representing the
list in a single block, we can observe that compression speed between docid and
frequency using VSE-OP is quite different. Another thing to be noted is that
compressing reordered lists cost less time than the original lists both for docid
and frequency.

Table 3 further details the performance of different methods. As is shown,
Table 3 lists the number of partitioning schemes evaluated when traversing the
integer sequences, comparing these different encoders, we can see that the par-
titioning step is crucial for compression speed. The optimized method sharply
reduces the calculation needed to partition a posting list. By pruning edges with
large cost, more than half of the calculation is saved by VSE-OP. We can also

256 X. Song et al.

note that all methods maintain the same calculation in the four columns except
VSE-OP, it is easy to explain by the fact that time complexities of the first two
methods are only relevant to the length of input sequences, while VSE-OP is
relevant to both the length and the upper bound of the sequences. Calculation
of frequency for VSE-OP stays the same after reordering because the changed
integer distribution makes no difference to the upper bound of the sequence.
However calculation for docid is slightly reduced as upper bound of the sequence
is narrowed.

Table 3. Number of evaluated partitions by different methods

4.3 Decompression Performance

In this subsection, we are going to discuss the decompression performance of dif-
ferent methods, before reporting our results on the decompression speed, we first
display the distribution of partition lengths, which can help us in understanding
the differences among these partitioning schemes, and the correlation between
clusters in a collection and partitions produced on it by variant methods.

As is discussed before, AFOR and VSE-DP use a partitioning strategy with
fixed-sized lengths (8, 16, 32 for AFOR, and 1, 2, 4, 6, 8, 16, 32, 64 for VSE-DP),
while VSE-OP uses a more flexible partitioning strategy, its partition lengths
are determined by a series of sliding windows when traversing the sequence. To
show the distribution clearly, we display the first two methods in histograms and
VSE-OP in scatter plots as shown in Figs. 3 and 4.

There is one important proposition we need to declare: there exists a compro-
mise among partition length, compression ratio, compression and decompression
speed. All the codewords that fall into one partition share the same bit width,
thus the smaller the partition length is, the less bits will be wasted, however,
smaller partition lengths also produce more fragmentations in one sequence,
resulting in more CPU cycles and disk I/O needed to write and read these
partitions. Vice versa, larger partition lengths are easier to access but less space-
friendly. In Fig. 3, each bar indicates number of specified lengths used by one or
more methods in pairs, each two adjacent blocks in one bar indicate the different
number before and after reordering for one method, more exactly, the pale color
represents the original and the dark color represents the reordered.

Optimizing Partitioning Strategies for Inverted Index 257

Fig. 3. Distribution of partition lengths produced by AFOR and VSE-DP

Figure 3(a) shows that after reordering these two methods produce more
blocks with small lengths than before, so the compressed size contracts sharply.
However, these methods produce more large lengths on frequency as shown in
Fig. 3(b), resulting an inferior compression ratio than that on docid. When it
comes to decompression speed (which will be listed below in Table 4), larger
partitions imply faster access speed for a list of integers. From Fig. 3, we can
find that AFOR has larger partition length than VSE-DP, so the disk I/O for it
decreases orderly, however this only includes the disk transfer time, their time
complexities on calculation do not change. Overall, these methods do not have
a large variation in terms of partition lengths, which shows that they are able
to adapt to the skewness of a dataset.

Fig. 4. Distribution of partition lengths produced by VSE-OP

Things go quite different for VSE-OP: as shown in Fig. 4, the partition lengths
vary from 0 to larger than 1500 rather than being confined to a small range. In
order to improve the interpretability of the result, we apply log transformation

258 X. Song et al.

to the original graph. As for the docid on the left hand, we can observe that par-
titions shorter than 500 compose the main proportion of the whole distribution,
at the point of 1000, there exists a sharp segmentation, specially for the docid
without reordering, number of such partitions drops to 1. However, reordering
increases the number by almost one order of magnitude. With much more long
partition allocated, VSE-OP still keeps its compression ratio close to VSE-DP,
this illustrates its superiority on choosing partitions while avoiding wasting space
caused by outliers. Also, different from Fig. 3, with quantity of longer partitions
growing, size of VSE-OP after reordering decreases to half of the original as
shown in Table 1, which again confirms that long partitions chosen by VSE-OP
do not add load on space occupancy. Figure 4(b) for frequency shows similar
result with that for docid, the only difference is that reordering does not affect
the distribution as acutely as that in Fig. 4(a), this can be explained by the fact
that reordering has no effect on the value range of frequency sequences.

Table 4. Total time elapsed in seconds and performance in million integers per second
(mis) when decompressing docid and frequency

Table 4 reports the results on decompression speed, again our optimized
method outperforms its original version. The decompression speed are much
faster than the compression speed, however, with more partitions included,
VSEncoding will encounter more skips when decompressing, which slows down
its speed; on the other hand, long partitions also enable decompressing more
integers in bulk. In a nutshell, the speed achieved by VSEncoding, specially
by VSE-OP, is still competitive with AFOR, taking the compression ratio into
account. Restrained by the configuration of our platform, the results in our
experiment are quite different from that in [13], where VSE-DP is said to reach
a speed of 450 ± 20 mis.

5 Conclusion and Future Work

In this paper we introduced and motivated the study of shortening compres-
sion time of inverted index via optimizing partitioning strategies. We first sum-
marized a series of compression techniques which fall into the same category
by treating the partitioning problem as SSSP over a DAG. Then we presented

Optimizing Partitioning Strategies for Inverted Index 259

our optimization on VSEncoding with a better space-time trade-off, namely to
enhance its partitioning procedure with more flexibility and faster speed, while
keeping its compression ratio and decompression speed competitive. At last, an
extensive experimental analysis was given, which showed that our optimization
significantly improve the compression speed as well as the decompression speed,
with a little loss at in space efficiency.

There are still many open problems and opportunities for future research,
since our solution only focus on optimizing VSEncoding, further experiments
will investigate the consequence of optimizing other compression techniques and
design a compression that offers better space-time trade-offs. An interesting
problem would be using SIMD instructions to further accelerate the compression
and decompression speed, also it would be promising to decrease the time com-
plexity of the approximation algorithm adopted to compute optimal partitions.

References

1. Anh, V.N., Moffat, A.: Index compression using fixed binary codewords. In:
Proceedings of the 15th Australasian Database Conference, vol. 27, pp. 61–67.
Australian Computer Society, Inc. (2004)

2. Anh, V.N., Moffat, A.: Inverted index compression using word-aligned binary
codes. Inf. Retr. 8(1), 151–166 (2005)

3. Anh, V.N., Moffat, A.: Index compression using 64-bit words. Softw. Pract. Exp.
40(2), 131–147 (2010)

4. Catena, M., Macdonald, C., Ounis, I.: On inverted index compression for search
engine efficiency. In: de Rijke, M., Kenter, T., de Vries, A.P., Zhai, C.X., de Jong,
F., Radinsky, K., Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 359–371.
Springer, Heidelberg (2014)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

6. Delbru, R., Campinas, S., Samp, K., Tummarello, G.: Adaptive frame of reference
for compressing inverted lists. Technical report, DERI-Digital Enterprise Research
Institute, December 2010

7. Ferragina, P., Nitto, I., Venturini, R.: On optimally partitioning a text to improve
its compression. Algorithmica 61(1), 51–74 (2011)

8. Goldstein, J., Ramakrishnan, R., Shaft, U.: Compressing relations and indexes. In:
Proceedings of 14th International Conference on Data Engineering, pp. 370–379.
IEEE (1998)

9. Lemire, D., Boytsov, L.: Decoding billions of integers per second through vector-
ization. Softw. Pract. Exp. 45(1), 1–29 (2015)

10. Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to Information
Retrieval, vol. 1. Cambridge university press, Cambridge (2008)

11. Ottaviano, G., Tonellotto, N., Venturini, R.: Optimal space-time tradeoffs for
inverted indexes. In: Proceedings of the Eighth ACM International Conference
on Web Search and Data Mining, pp. 47–56. ACM (2015)

12. Ottaviano, G., Venturini, R.: Partitioned elias-fano indexes. In: Proceedingsof the
37th International ACM SIGIR Conference on Research & Development in Infor-
mation Retrieval, pp. 273–282. ACM (2014)

260 X. Song et al.

13. Silvestri, F., Venturini, R.: Vsencoding: efficient coding and fast decoding of integer
lists via dynamic programming. In: Proceedings of the 19th ACM International
Conference on Information and Knowledge Management, pp. 1219–1228. ACM
(2010)

14. Stepanov, A.A., Gangolli, A.R., Rose, D.E., Ernst, R.J., Oberoi, P.S.:SIMD-based
decoding of posting lists. In: Proceedings of the 20th ACM International Confer-
ence on Information and Knowledge Management, pp. 317–326. ACM (2011)

15. Trotman, A.: Compression, SIMD, and postings lists. In: Proceedings of the 2014
Australasian Document Computing Symposium, p. 50. ACM (2014)

16. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Index-
ing Documents and Images. Morgan Kaufmann, San Francisco (1999)

17. Yan, H., Ding, S., Suel, T.: Inverted index compression and query processing with
optimized document ordering. In: Proceedings of the 18th International Conference
on World Wide Web, pp. 401–410. ACM (2009)

18. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv.
(CSUR) 38(2), 6 (2006)

	On Optimizing Partitioning Strategies for Faster Inverted Index Compression
	1 Introduction
	2 Background
	2.1 Index Compression
	2.2 Directed Acyclic Graph

	3 Optimizing Partitioning Strategy via Pruning DAG
	3.1 VSEncoding
	3.2 Optimized Partitioning Strategy

	4 Experiments
	4.1 Experimental Setup
	4.2 Indexing Performance
	4.3 Decompression Performance

	5 Conclusion and Future Work
	References

