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Abstract. This paper proposes a new inference for the latent Dirichlet
allocation (LDA) [4]. Our proposal is an instance of the stochastic gra-
dient variational Bayes (SGVB) [9,13]. SGVB is a general framework for
devising posterior inferences for Bayesian probabilistic models. Our aim
is to show the effectiveness of SGVB by presenting an example of SGVB-
type inference for LDA, the best-known Bayesian model in text mining.
The inference proposed in this paper is easy to implement from scratch. A
special feature of the proposed inference is that the logistic normal distri-
bution is used to approximate the true posterior. This is counterintuitive,
because we obtain the Dirichlet distribution by taking the functional
derivative when we lower bound the log evidence of LDA after apply-
ing a mean field approximation. However, our experiment showed that
the proposed inference gave a better predictive performance in terms of
test set perplexity than the inference using the Dirichlet distribution for
posterior approximation. While the logistic normal is more complicated
than the Dirichlet, SGVB makes the manipulation of the expectations
with respect to the posterior relatively easy. The proposed inference was
better even than the collapsed Gibbs sampling [6] for not all but many
settings consulted in our experiment. It must be worthwhile future work
to devise a new inference based on SGVB also for other Bayesian models.

Keywords: Text mining · Topic models · variational Bayesian inference

1 Introduction

When we use Bayesian probabilistic models for data mining applications, we
need to infer the posterior distribution. While the Markov Chain Monte Carlo
(MCMC) is undoubtedly important [5,14], this paper focuses on the variational
Bayesian inference (VB). Therefore, we first present an outline of VB.

Let x be a set of the random variables whose values are observed. A proba-
bilistic model for analyzing the observed data x can be specified unambiguously
by its full joint distribution p(x,z,Θ), where z denotes the discrete latent vari-
ables and Θ the continuous ones. In VB, we maximize the log of the evidence
p(x), which is obtained from the full joint distribution by marginalizing z and
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Θ out, i.e., p(x) =
∫ ∑

z p(x,z,Θ)dΘ. However, the maximization of log p(x)
is generally intractable. Therefore, we instead maximize its lower bound:

log p(x)=log
∫ ∑

z

q(z,Θ)
p(x,z,Θ)
q(z,Θ)

dΘ ≥
∫ ∑

z

q(z,Θ) log
p(x,z,Θ)
q(z,Θ)

dΘ. (1)

We have introduced an approximate posterior q(z,Θ) in Eq. (1) to apply Jensen’s
inequality. If we put the true posterior p(z,Θ|x) in place of the approximate
posterior, Jensen’s inequality holds with equality. However, the true posterior is
typically intractable. Therefore, in VB, the inference of the approximate poste-
rior is the main task.

In this paper, we consider the latent Dirichlet allocation (LDA) [4], the best-
known Bayesian model in text mining, as our target. LDA and its extensions have
been applied to solve a wide variety of text mining problems [7,10,12,15,17]. It
is known that the performance of LDA measured in terms of test set perplexity
heavily depends on how the inference is conducted [2]. Therefore, to provide a
new proposal relating to the posterior inference for LDA is highly relevant to
text mining research.

The main contribution of this paper is to propose a new VB-type inference
for LDA. The proposed inference was better than the VB presented in [4] in
terms of test set perplexity in all situations consulted by our experiment. For
brevity, we call the VB presented in [4] standard.1

In the standard VB, the true posterior distribution is approximated by the
Dirichlet distribution. This is because the Dirichlet is obtained analytically by
taking the functional derivative after applying a mean field approximation. It
has been shown experimentally that the standard VB works as well as other
inference methods [2]. In our proposed inference, we apply the same mean field
approximation. However, we do not use the Dirichlet for approximating the true
posterior. Nevertheless, the proposed inference could achieve a better perplexity
than the standard VB in our experiment. Interestingly, our method was better
even than the collapsed Gibbs sampling (CGS) [6] in not all but many situations.

The proposed inference for LDA is based on the stochastic gradient varia-
tional Bayes (SGVB), which has been proposed by the two papers [9,13] almost
simultaneously. SGVB can be regarded as a general framework for obtaining
VB-type inferences for a wide range of Bayesian probabilistic models. Precisely,
SGVB provides a general framework for obtaining a Monte Carlo estimate of
the log-evidence lower bound, i.e., the lower bound of log p(x) in Eq. (1). In
this paper, we utilize SGVB to devise an inference easy to implement for LDA.
We use the logistic normal distribution [1] for approximating the true posterior.
While the logistic normal is more complicated than the Dirichlet, we can obtain
a simple VB-type inference owing to SGVB.

1 Precisely speaking, the VB presented in [4] performs a point estimation for the per-
topic word multinomial distributions. In the VB we call standard here, a Bayesian
inference is performed also for the per-topic word multinomial distributions, not only
for the per-document topic multinomial distributions.
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In the next section, we describe SGVB based on [9], which gives an explana-
tion easy to understand for those familiar with LDA. Our description does not
cover the full generality of SGVB, partly because we focus only on LDA as our
target. We then provide the details of our proposal in Sect. 3. Section 4 presents
the results of an evaluation experiment, where we compared our proposal with
other methods including the standard VB and CGS. Section 5 concludes the
paper with discussion on worthwhile future work.

2 Stochastic Gradient Variational Bayes

The log-evidence lower bound in Eq. (1) can be rewritten as follows:

L(Λ) = Eq(z,Θ|Λ)[log p(x,z,Θ)] − Eq(z,Θ|Λ)[log q(z,Θ|Λ)], (2)

where Λ denotes the parameters of the approximate posterior q(z,Θ|Λ), and
Eq(z,Θ|Λ)[·] denotes the expectation with respect to q(z,Θ|Λ). We assume that
q(z,Θ|Λ) factorizes as q(z|Λz)q(Θ|ΛΘ). Then we can write L(Λ) as

L(Λ) =Eq(z,Θ|Λ)[log p(x,z,Θ)]
− Eq(z|Λz)[log q(z|Λz)] − Eq(Θ|ΛΘ)[log q(Θ|ΛΘ)]. (3)

Our task is to estimate the expectations on the right hand side of Eq. (3).
In this paper, we estimate the log-evidence lower bound of the latent Dirichlet

allocation (LDA) by using the stochastic gradient variational Bayes (SGVB)
[9,13]. SGVB is a general framework for obtaining a Monte Carlo estimate of
the log-evidence lower bound for a wide variety of Bayesian probabilistic models.
Note that SGVB cannot provide an estimate of the expectation with respect to
the distribution for the discrete random variables [11]. However, we can perform
an estimation as in the standard VB for LDA [4] with resect to z.

In SGVB, we can assume that the approximate posterior q(Θ|ΛΘ) depends
on the observed data x. We do not consider this option here and thus do not
explore the full generality of SGVB. However, by making the approximate pos-
terior not dependent on x, we can make the proposed inference simple.

When we apply SGVB, the approximate posterior should meet at least two
requirements. SGVB estimates the expectations for the continuous variables Θ
by the Monte Carlo method. Therefore, the approximate posterior q(Θ|ΛΘ)
should be a distribution from which we can draw samples. This is the first
requirement. Let Θ(l), l = 1, . . . , L be the samples drawn from q(Θ|ΛΘ). Then
L(Λ) in Eq. (3) is estimated as

L̂(Λ) =
1
L

L∑

l=1

{
Eq(z|Λz)[log p(x,z,Θ(l))] − log q(Θ(l)|ΛΘ)

}

− Eq(z|Λz)[log q(z|Λz)]. (4)

In SGVB, we maximize L̂(Λ) in Eq. (4) in place of L(Λ) in Eq. (3). To maximize
L̂(Λ), we need to obtain its derivatives with respect to the relevant variables.
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Therefore, q(Θ|ΛΘ) should be a distribution that makes L̂(Λ) differentiable.
This is the second requirement. As described below, the inference proposed in
this paper for LDA can be regarded as an example of SGVB.

3 Our Proposal

3.1 Lower Bound Estimation

We first describe LDA. Let D, K, and V denote the numbers of documents,
latent topics, and vocabulary words, respectively. The parameters of the per-
document topic multinomial distributions and the parameters of the per-topic
word multinomial distributions are represented as θd = (θd1, . . . , θdK) for d =
1, . . . , D and φk = (φk1, . . . , φkV ) for k = 1, . . . , K, respectively. Then the full
joint distribution of LDA is written as follows:

p(x,z,θ,φ|α, β) =
D∏

d=1

p(xd|zd,φ)p(zd|θd) ·
D∏

d=1

p(θd|α) ·
K∏

k=1

p(φk|β)

=
D∏

d=1

Nd∏

i=1

φzdixdi
θdzdi

·
D∏

d=1

Γ(Kα)
Γ(α)K

K∏

k=1

θα−1
dk ·

K∏

k=1

Γ(V β)
Γ(β)V

V∏

v=1

φβ−1
kv , (5)

where Nd is the length of the dth document. xdi is an observed variable whose
value is the vocabulary word appearing as the ith token of the dth document. zdi

is a latent variable whose value is the topic to which the ith word token of the
dth document is assigned. The notation φzdixdi

is equivalent to φkv when xdi = v
and zdi = k. α and β are the hyperparameters of the symmetric Dirichlet priors
for θd and φk, respectively.

We propose a new inference method for LDA based on SGVB explained in
Sect. 2. However, SGVB is applicable only to the continuous latent variables.
Therefore, in LDA, SGVB works only for the θds and the φks.

With the mean field approximation q(z,θ,φ) ≈ ∏D
d=1

∏Nd

i=1 q(zdi) ·
∏D

d=1 q(θd) · ∏K
k=1 q(φk), the lower bound of log p(x) (cf. Eq. (3)) is obtained

as follows:

L(Λ)

=
D∑

d=1

Nd∑

i=1

Eq(zdi)q(φzdi
)

[
log p(xdi|zdi,φzdi

)
]
+

D∑

d=1

Nd∑

i=1

Eq(zdi)q(θd)

[
log p(zdi|θd)

]

+
D∑

d=1

Eq(θd)

[
log p(θd|α)

]
+

K∑

k=1

Eq(φk)

[
log p(φk|β)

]

−
D∑

d=1

Eq(θd)

[
log q(θd)

] −
K∑

k=1

Eq(φk)

[
log q(φk)

] −
D∑

d=1

Nd∑

i=1

Eq(zdi)

[
log q(zdi)

]
. (6)

In the standard VB [4], we obtain the approximate posteriors by a functional
derivative method after using the mean field approximation given above. The
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result is that the posterior q(θd) for each d and the posterior q(φk) for each k
are a Dirichlet distribution. However, it is one thing that approximate posteriors
can be found analytically by a functional derivative method, and it is a different
thing that such approximate posteriors lead to a good evaluation result in terms
of test set perplexity. Therefore, we can choose a distribution other than the
Dirichlet for approximating the true posterior.

In this paper, we propose to use the logistic normal distribution [1] for approx-
imating the true posterior. We define θdk and φkv with the samples εθ,dk and
εφ,kv from the standard normal distribution N (0, 1) as follows:

θdk ≡ exp(εθ,dkσθ,dk + μθ,dk)
∑K

k′=1 exp(εθ,dk′σθ,dk′ + μθ,dk′)
and

φkv ≡ exp(εφ,kvσφ,kv + μφ,kv)
∑V

v′=1 exp(εφ,kv′σφ,kv′ + μφ,kv′)
. (7)

Note that εσ + μ ∼ N (μ, σ) when ε ∼ N (0, 1). μ and σ in Eq. (7) are the mean
and standard deviation parameters of the logistic normal. Equation (7) gives the
reparameterization trick [9] in our case, where we assume that the covariance
matrix of the logistic normal is diagonal to make the inference simple.

We can draw θd ∼ LogitNorm(μθ,d,σθ,d) and φk ∼ LogitNorm(μφ,k,σφ,k)
efficiently based on Eq. (7). Therefore, the first requirement given in Sect. 2 is
met. For the approximate posterior q(z), we assume as in the standard VB that
we have a different discrete distribution Discrete(γdi) for each word token xdi,
where γdik is the probability that zdi = k holds, i.e., the probability that the ith
token of the dth document is assigned to the kth topic.

However, the algebraic manipulation of the expectation with respect to the
logistic normal distribution is highly complicated. Here SGVB has an advantage,
because it estimates the expectations with respect to approximate posteriors by
the Monte Carlo method. L(Λ) in Eq. (6) is estimated with L samples θ

(l)
d ∼

LogitNorm(μθ,d,σθ,d) and φ
(l)
k ∼ LogitNorm(μφ,k,σφ,k) for l = 1, . . . , L as

L̂(Λ) =
1
L

L∑

l=1

D∑

d=1

Nd∑

i=1

Eq(zdi)

[
log p(xdi|zdi,φ

(l)
zdi

)
]

+
1
L

L∑

l=1

D∑

d=1

Nd∑

i=1

Eq(zdi)

[
log p(zdi|θ(l)

d )
] −

D∑

d=1

Nd∑

i=1

Eq(zdi)

[
log q(zdi)

]

+
1
L

L∑

l=1

D∑

d=1

Eq(θd)

[
log p(θ(l)

d |α) − log q(θ(l)
d )

]

+
1
L

L∑

l=1

K∑

k=1

Eq(φk)

[
log p(φ(l)

k |β) − log q(φ(l)
k )

]
. (8)

We maximize the above estimate, denoted as L̂(Λ), in place of L(Λ) in
Eq. (6).
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Due to the limit of space, we only discuss the first two expectation terms of
the right hand side of Eq. (8). The first term can be rewritten as follows:

1
L

L∑

l=1

D∑

d=1

Nd∑

i=1

Eq(zdi)

[
log p(xdi|zdi,φ

(l)
zdi

)
]

=
1
L

L∑

l=1

D∑

d=1

Nd∑

i=1

K∑

k=1

γdik log φ
(l)
kxdi

=
1
L

L∑

l=1

D∑

d=1

Nd∑

i=1

K∑

k=1

γdik log
{ exp(ε(l)φ,kxdi

σφ,kxdi
+ μφ,kxdi

)
∑V

v′=1 exp(ε(l)φ,kv′σφ,kv′ + μφ,kv′)

}

(cf. Eq. 7)

=
1
L

L∑

l=1

D∑

d=1

Nd∑

i=1

K∑

k=1

γdik(ε(l)φ,kxdi
σφ,kxdi

+ μφ,kxdi
)

− 1
L

L∑

l=1

D∑

d=1

Nd∑

i=1

K∑

k=1

γdik log
{ V∑

v=1

exp
(
ε
(l)
φ,kvσφ,kv + μφ,kv

)
}

, (9)

where we use the definition of φkv in Eq. (7). The summation term on the
last line in Eq. (9) can be upper bounded by using the Taylor expansion [3]:

log
∑

v

exp(ε(l)φ,kvσφ,kv + μφ,kv)≤
∑

vexp(ε(l)φ,kvσφ,kv + μφ,kv)

η
(l)
φ,k

−1+log η
(l)
φ,k, (10)

where we have introduced a new variational parameter η
(l)
φ,k. Consequently, we

can lower bound Eq. (9) as follows:

1
L

L∑

l=1

Eq(z|γ)

[
log p(x|z,φ(l))

] ≥ 1
L

L∑

l=1

D∑

d=1

Nd∑

i=1

K∑

k=1

γdik(ε(l)φ,kxdi
σφ,kxdi

+ μφ,kxdi
)

− 1
L

L∑

l=1

D∑

d=1

Nd∑

i=1

K∑

k=1

γdik

{∑
v exp(ε(l)φ,kvσφ,kv + μφ,kv)

η
(l)
φ,k

+ log η
(l)
φ,k − 1

}

. (11)

Let us define Nkv ≡ ∑D
d=1

∑Nd

i=1 γdikδ(xdi = v), where δ(·) is an indicator
function that evaluates to 1 if the condition in parentheses holds and to 0 oth-
erwise. Nkv means how many tokens of the vth vocabulary word are assigned to
the kth topic in expectation. Further, we define Nk ≡ ∑V

v=1 Nkv. Then Eq. (11)
can be presented more neatly:

1
L

L∑

l=1

D∑

d=1

Nd∑

i=1

Eq(zdi)

[
log p(xdi|zdi,φ

(l)
zdi

)
] ≥

K∑

k=1

V∑

v=1

Nkv(σφ,kv ε̄φ,kv + μφ,kv)

− 1
L

L∑

l=1

K∑

k=1

Nk

{∑
v exp(ε(l)φ,kvσφ,kv + μφ,kv)

η
(l)
φ,k

+ log η
(l)
φ,k − 1

}

, (12)

where we define ε̄φ,kv ≡ 1
L

∑L
l=1 ε

(l)
φ,kv.
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In a similar manner, we can lower bound the second expectation term of the
right hand side in Eq. (8) as follows:

1
L

L∑

l=1

D∑

d=1

Nd∑

i=1

Eq(zdi)

[
log p(zdi|θ(l)

d )
] ≥

D∑

d=1

K∑

k=1

Ndk(σθ,dk ε̄θ,dk + μθ,dk)

− 1
L

L∑

l=1

D∑

d=1

Nd

{∑
k exp(ε(l)θ,dkσθ,dk + μθ,dk)

η
(l)
θ,d

+ log η
(l)
θ,d − 1

}

, (13)

where ηθ,d is a new parameter introduced in a manner similar to Eq. (10). Ndk

is defined as
∑Nd

i=1 γdik. Ndk means how many word tokens of the dth document
are assigned to the kth topic in expectation.

We skip the explanation for other expectation terms in Eq. (8) and only show
the final result. We can lower bound L̂(Λ) as follows:

L̂(Λ) ≥
∑

d,k

(Ndk + α)(σθ,dk ε̄θ,dk + μθ,dk) +
∑

k,v

(Nkv + β)(σφ,kv ε̄φ,kv + μφ,kv)

− 1
L

L∑

l=1

D∑

d=1

(Nd + Kα)
{∑

k exp(ε(l)θ,dkσθ,dk + μθ,dk)

η
(l)
θ,d

+ log η
(l)
θ,d − 1

}

− 1
L

L∑

l=1

K∑

k=1

(Nk + V β)
{∑

v exp(ε(l)φ,kvσφ,kv + μφ,kv)

η
(l)
φ,k

+ log η
(l)
φ,k − 1

}

+
K∑

k=1

V∑

v=1

log σφ,kv +
D∑

d=1

K∑

k=1

log σθ,dk −
D∑

d=1

Nd∑

i=1

K∑

k=1

γdik log γdik

+ D log Γ(Kα) − DK log Γ(α) + K log Γ(V β) − KV log Γ(β), (14)

where the constant term is omitted. We refer to the right hand side of Eq. (14)
by L̃(Λ), where Λ denotes the posterior parameters {μ,σ,η,γ}. In our version
of SGVB for LDA, we maximize L̃(Λ). Note that L̃(Λ) is differentiable with
respect to all relevant variables owing to the parameterization trick in Eq. (7).
Therefore, the second requirement given in Sect. 2 is met.

3.2 Maximization of Lower Bound

We maximize L̃(Λ), i.e., the right hand side of Eq. (14), by differentiating it with
respect to the relevant variables. With respect to η

(l)
θ,d, we obtain the derivative:

∂L̂(Λ)

∂η
(l)
θ,d

=
1
L

(Nd + Kα)
{

1

η
(l)
θ,d

− 1

(η(l)
θ,d)2

K∑

k=1

exp
(
ε
(l)
θ,dkσθ,dk + μθ,dk

)
}

. (15)

The equation ∂L̂(Λ)

∂η
(l)
θ,d

= 0 gives the solution: η
(l)
θ,d =

∑K
k=1 exp(ε(l)θ,dkσθ,dk + μθ,dk).

Similarly, ∂L̂(Λ)

∂η
(l)
φ,k

= 0 gives the solution: η
(l)
φ,k =

∑V
v=1 exp(ε(l)φ,kvσφ,kv + μφ,kv).

Note that each of these solutions appears as the denominator in Eq. (7).
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Further, with respect to μθ,dk, we obtain the derivative:

∂L̂(Λ)
∂μθ,dk

= (Ndk + α) − exp(μθ,dk)
L

(Nd + Kα)
L∑

l=1

exp(ε(l)θ,dkσθ,dk)

η
(l)
θ,d

. (16)

Therefore, exp(μθ,dk) is estimated as Ndk+α
Nd+Kα · L

∑
l exp(ε

(l)
θ,dkσθ,dk)/η

(l)
θ,d

. Based on the

definition of θ
(l)
dk in Eq. (7), we obtain the following update for exp(μθ,dk):

exp(μθ,dk) ← exp(μθ,dk) ·
(

Ndk + α

Nd + Kα

)/(∑
l θ

(l)
dk

L

)

. (17)

Similarly, exp(μφ,kv) is updated as follows:

exp(μφ,kv) ← exp(μφ,kv) ·
(

Nkv + β

Nk + V β

)/(∑
l φ

(l)
kv

L

)

. (18)

We can give an intuitive explanation to the update in Eq. (17). Ndk+α
Nd+Kα is an

estimate of the per-document topic probability based on the word count expec-

tation Ndk. In contrast,
∑

l θ
(l)
dk

L is an estimate of the same probability based on
the logistic normal samples θ

(1)
dk , . . . , θ

(L)
dk . We adjust exp(μθ,dk) based on to what

extent the latter estimate deviates from the former. A similar explanation can
be given to the update in Eq. (18).

For the standard deviation parameters σθ,dk and σφ,kv, we cannot obtain any
closed form update. Therefore, we perform a gradient-based optimization. For
numerical reasons, we change variables as τ = log(σ2). Then the derivatives with
respect to τθ,dk and τφ,kv are obtained as follows:

∂L̂(Λ)
∂τθ,dk

=
1
2

+
1
2

exp
(τθ,dk

2

)∑L
l=1 ε

(l)
θ,dk{(Ndk + α) − (Nd + Kα)θ(l)dk}

L
, (19)

∂L̂(Λ)
∂τφ,kv

=
1
2

+
1
2

exp
(τφ,kv

2

)∑L
l=1 ε

(l)
φ,kv{(Nkv + β) − (Nk + V β)φ(l)

kv}
L

. (20)

With respect to γdik, we obtain the following derivative:

∂L̂(Λ)
∂γdik

=
1
L

L∑

l=1

(ε(l)θ,dkσθ,dk + μθ,dk) +
1
L

L∑

l=1

(ε(l)φ,kxdi
σφ,kxdi

+ μφ,kxdi
)

− 1
L

L∑

l=1

{∑
v exp(ε(l)φ,kvσφ,kv + μφ,kv)

η
(l)
φ,k

+ log η
(l)
φ,k − 1

}
− log γdn,k − 1. (21)

∂L̂(Λ)
∂γdik

= 0 gives the following update:

γdik ∝
( L∏

l=1

θ
(l)
dk

) 1
L

·
( L∏

l=1

φ
(l)
kxdn

) 1
L

. (22)
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Algorithm 1. An SGVB for LDA with logistic normal
1: Split the document set into small batches
2: for each iteration do
3: for each small batch do
4: for each topic k do
5: Draw φ

(l)
k ∼ LogitNorm(μφ,k, σφ,k) for l = 1, . . . , L

6: Update exp(μφ,kv) based on Eq. (18)
7: Update τφ,kv based on the gradient in Eq. (20)
8: end for
9: for each document d do

10: Draw θ
(l)
d ∼ LogitNorm(μθ,d, σθ,d) for l = 1, . . . , L

11: for i = 1, . . . , Nd do
12: Update γdik based on Eq. (22)
13: Update Ndk, Nkv, and Nk

14: end for
15: Update exp(μθ,dk) based on Eq. (17)
16: Update τθ,dk based on the gradient in Eq. (19)
17: end for
18: end for
19: end for

The right hand side of Eq. (22) is the product of the geometric mean of the
sampled per-document topic probabilities θ

(l)
dk and the geometric mean of the

sampled per-topic word probabilities φ
(l)
kxdn

. Interestingly, other inference meth-
ods for LDA also represent the per-token topic probability as the product of the
per-document topic probability and the per-topic word probability [2].

Algorithm 1 gives the pseudocode. As in CVB for LDA [16], we only need to
maintain one copy of γdik for each unique document/word pair. Therefore, we
can reduce the number of iterations of the loop on line 11 from Nd to the number
of different words in the dth document. Consequently, the time complexity of
the proposed inference for each scan of the data is O(MK), where M is the total
number of unique document/word pairs. For updating τθ,dk and τφ,kv based on
the gradients in Eqs. (19) and (20), we use Adam [8] in this paper.

3.3 Estimation Without Sampling

By setting all standard deviation parameters σ to 0, we obtain an estimate of
the log-evidence lower bound without sampling as a degenerated version of our
proposal. In this case, we only update the parameter γdik by

γdik ∝
(

Ndk + α

Nd + Kα

)

·
(

Nkv + β

Nk + V β

)

. (23)

This is almost the same with the update of γdik in CVB0 [2] except that the
contribution of γdik is not subtracted from Ndk, Nkv, and Nk. In the evaluation
experiment presented in the next section, we compared the proposed method
also with this degenerated version to clarify the effect of the sampling.
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Table 1. Specifications of the document sets

# documents (D) # vocabulary words (V ) # word tokens (
∑

d Nd) Average document

length (
∑

d Nd/D)

NYT 99,932 46,263 34,458,469 344.8

MOVIE 27,859 62,408 12,788,477 459.0

NSF 128,818 21,471 14,681,181 114.0

MED 125,490 42,830 17,610,749 140.3

4 Experiment

4.1 Data Sets

In the evaluation experiment, we used the four English document sets in Table 1.
NYT is a part of the NYTimes news articles in “Bag of Words Data Set” of the
UCI Machine Learning Repository.2 We reduced the number of documents to
one third of its original number due to the limit of the main memory. MOVIE is
the set of movie reviews known as “Movie Review Data.”3 NSF is “NSF Research
Award Abstracts 1990–2003 Data Set” of the UCI Machine Learning Repository.
MED is a subset of the paper abstracts of the MEDLINE R©/PUBMED R©, a
database of the U.S. National Library of Medicine.4 For all document sets, we
applied the Porter stemming algorithm and removed highly frequent words and
extremely rare words. The average document lengths, i.e.,

∑
d Nd/D, of NYT

and MOVIE are 344.6 and 459.0, respectively. In contrast, those of NSF and
MED are 114.0 and 140.3, respectively. This difference comes from the fact that
NSF and MED consist of abstracts.

4.2 Evaluation Method

By using the above four data sets, we compared our proposal with the following
three inference methods for LDA: the standard VB [4], CGS [6], and the degen-
erated version described in Sect. 3.3. The evaluation measure is the test set per-
plexity. We ran each of the compared inference methods on the 90 % word tokens
randomly selected from each document and used the estimated parameters for
computing the test set perplexity on the other 10 % word tokens as follows:

perplexity ≡ exp
{

− 1
Ntest

D∑

d=1

∑

i∈Id

log
( K∑

k=1

θdkφkxdi

)}

, (24)

where Id is the set of the indices of the test word tokens in the dth document,
and Ntest is the total number of the test tokens. For K, i.e., the number of topics,
we tested the following three settings: K = 50, 100, and 200.

2 https://archive.ics.uci.edu/ml/datasets.html.
3 http://www.cs.cornell.edu/people/pabo/movie-review-data/polarity html.zip.
4 We used the XML files from medline14n0770.xml to medline14n0774.xml.

https://archive.ics.uci.edu/ml/datasets.html
http://www.cs.cornell.edu/people/pabo/movie-review-data/polarity_html.zip
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4.3 Inference Settings

The proposed inference was run on each data set in the following manner. We
tuned the free parameters on a random training/test split that was prepared only
for validation. On lines 7 and 16 in Algorithm1, τφ,kv and τθ,dk are updated by
using the gradients. For this optimization, we used Adam [8]. The stepsize para-
meter in Adam was chosen from {0.01, 0.001, 0.0001}, though the other para-
meters are used with their default settings. The common initial value of the
parameters τθ,dk and τφ,kv was chosen from {−10.0,−1.0,−0.5}. The sample
size L was one, because larger sample sizes gave comparable or worse results.

Based on the discussion in [2], we tuned the hyperparameters α and β of the
symmetric Dirichlet priors by a grid search. Each of α and β was chosen from
{0.00005, 0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2,
0.3, 0.4, 0.5}. The same grid search was used for the Dirichlet hyperparameters
of the compared methods. The number of small batches in Algorithm 1 was
set to 20. The number of iterations, i.e., how many times we scanned the entire
document set, was chosen as 500. We computed ten test set perplexities based on
the ten different random splits prepared for evaluation. The test set perplexity
in Eq. (24) was computed at the 500th iteration.

4.4 Evaluation Results

Figs. 1 and 2 present the evaluation results. We split the results into two figures,
because the two data sets NYT and MOVIE are widely different from the other
two NSF and MED in their average document lengths. This difference may be
part of the reason why we obtained different evaluation results. The horizontal
axis of the charts in Figs. 1 and 2 gives the three settings for the number of
topics: K = 50, 100, and 200. The vertical axis gives the test set perplexity
averaged over the ten different random splits. The standard deviation of the ten
test set perplexities is presented by the error bar. LNV and DEG are the labels
for our proposal and its degenerated version, respectively. VB and CGS refer to
the standard VB [4] and the collapsed Gibbs sampling [6], respectively.

Fig. 1. Evaluation results in terms of test set perplexity for the two document sets
NYT (left) and MOVIE (right), whose average document lengths are relatively long.
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Figure 1 presents the results for the two data sets NYT and MOVIE, which
consist of relatively long documents. Our proposal LNV led to the best perplexity
for four cases among the six cases given in Fig. 1. When we set K = 50, DEG
could give almost the same test set perplexity with LNV for both of the NYT
and MOVIE data sets. However, the differences were not statistically significant,
because the p-values of the two-tailed t-test were 0.463 and 0.211, respectively.
For the other four cases, LNV could give the best perplexity. The differences
for all these four cases were statistically significant. For example, when we set
K = 100 for the MOVIE data set, the p-value of the two-tailed t-test where we
compare LNV and DEG was 0.00134. It can be said that our proposal worked
effectively for these two document sets.

Figure 2 shows the results for the two data sets NSF and MED, which consist
of relatively short documents. Our proposal LNV could provide the best perplex-
ity for the following three cases: K = 50 for the NSF data set, K = 50 for the
MED data set, and K = 100 for the MED data set. Note that the difference
between LNV and CGS when we set K = 50 for the NSF data set was statisti-
cally significant, because the p-value of the two-tailed t-test was 0.000121. For
the other three cases, CGS gave the best perplexity. For these two data sets, our
proposal worked only when the number of topics was not large.

Note that LNV was superior to VB for all settings presented in Figs. 1 and 2.
This proves empirically that the Dirichlet distribution is not necessarily the best
choice for approximating the true posterior even when we use the same mean
field approximation with the standard VB. In sum, we can draw the following
conclusion. When LNV is available, there may be no reason to use VB, DEG,
or CGS for relatively long documents. Also for relatively short documents, our
proposal may be adopted when the number of latent topics is small.

However, in terms of computation time, LNV has a disadvantage. For exam-
ple, when we set K = 200 for the NYT data set, it took 43 h for finishing 500
iterations with LNV, though it took 14 h with CGS and 23 h with VB. However,
inferences for LDA are generally easy to parallelize, e.g. by using GPU [18,19].
It may be an advantage for parallelization that each sample ε ∼ N (0, 1) in the
proposed method can be drawn independently.

Fig. 2. Evaluation results in terms of test set perplexity for the two document sets
NSF (left) and MED (right), whose average document lengths are relatively short.
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4.5 Effect of Sampling

The degenerated version of our proposal gave a comparable perplexity only for
the limited number of cases in our experiment. When the number of latent top-
ics was large, or when the average document length was short, the degenerated
version led to quite a poor perplexity. Especially in the two charts of Fig. 2, it
seems that the degenerated version exhibits substantial overfitting. Therefore,
sampling is indispensable. Recall that L, i.e., the number of the samples from
the standard normal, was set to 1, because larger numbers of samples did not
improve the test set perplexity. However, a single random sample could work as
a kind of perturbation for the update of the corresponding parameter. Without
this perturbation, the inference tended to get trapped in local minima as shown
in Fig. 2. A single sample can change the course of inference through perturba-
tion. This may be the reason why our proposal gave better perplexities than its
degenerated version in many of the situations consulted in the experiment.

Based on our experience, it is important to optimize the standard deviation
parameters τθ,dk and τφ,kv carefully in order to avoid overfitting. When the
stepsize parameter of Adam was not tuned, the standard deviation parameters
stayed around at their initial values. This made the perplexity almost similar to
that of the degenerated version. In addition, the initial values of τθ,dk and τφ,kv

also needed to be tuned carefully. However, the tuning was not that difficult,
because the optimization was almost always successful when the parameters
τθ,dk and τφ,kv took values widely different from their initial values. Further, we
only needed to test several setting for the combination of the stepsize parameter
in Adam and the common initial value of τθ,dk and τφ,kv. In our experiment, the
stepsize parameter was chosen from {0.01, 0.001, 0.0001}. The common initial
value of the parameters τθ,dk and τφ,kv was chosen from {−10.0,−1.0,−0.5}.
Therefore, at most nine settings were checked. However, the combination of
0.001 for the stepsize parameter and −0.5 for the initial value of τθ,dk and τφ,kv

often worked. Only when this setting did not work, we considered other settings.

5 Conclusion

In this paper, we proposed a new VB-type inference method for LDA. Our
method is based on the stochastic gradient variational Bayes [9,13] and approx-
imates the true posterior with the logistic normal distribution. The proposed
method was better than the standard VB for all situations consulted in the
experiment and was better even than the collapsed Gibbs sampling for not all
but many situations. Further, when deprived of sampling, the inference tended
to get trapped in local minima. Therefore, sampling worked.

While we use the logistic normal distribution in the proposed inference, we
can choose other distributions as long as they meet the two requirements given
in Sect. 2. Further, we can propose a similar inference also for other Bayesian
probabilistic models. One important merit of SGVB is that the expectation
with respect to the approximate posterior for continuous variables is estimated
by the Monte Carlo method. Even when the full joint distribution of the target
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Bayesian model is complicated, SGVB may make the computation relating to
such expectations efficient. Therefore, it is worthwhile future work to provide a
new inference for the existing Bayesian models with the distribution that has
not been considered due to the complication in handling the expectations.
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