
Point Placement in an Inexact Model
with Applications

Kishore Kumar V. Kannan, Pijus K. Sarker,
Amangeldy Turdaliev, and Asish Mukhopadhyay(B)

School of Computer Science, University of Windsor, Windsor, ON N9B 3P4, Canada
{varadhak,sarkerp,turdalia,asishm}@uwindsor.ca

Abstract. The point placement problem is to determine the locations
of n distinct points on a line uniquely (up to translation and reflection)
by making the fewest possible pairwise distance queries of an adversary.
A number of deterministic and randomized algorithms are available when
distances are known exactly. In this paper, we discuss the problem in an
inexact model. This is when distances returned by the adversary are
not exact; instead, only upper and lower bounds on the distances are
provided. We propose an algorithm called DGPL for this problem that
is based on a distance geometry approach that Havel [8] used to solve
the molecular conformation problem. Our algorithm does not address the
problems of query choices and their minimization; these remain open. We
have used our DGPL algorithm for the probe location problem in DNA
mapping, where upper and lower bounds on distance between some pairs
of probes are known. Experiments show the superior performance of our
algorithm compared to that of an algorithm by Mumey [9] for the same
problem.

Keywords: Probe location problem · Distance geometry · Point
placement · Bound smoothing · Embed algorithm · Eigenvalue decom-
position

1 Introduction

Retrieving the coordinates of n points P = {p0, p2, . . . , pn−1} from their mutual
distances is a problem that is interesting both from a theoretical as well as a
practical point of view. Young and Householder [10] showed that a necessary and
sufficient condition is that the matrix B = [bij] = [(d2i0 + d2j0 − d2ij)/2] is positive
semi-definite, where dij is the Euclidean distance between pi and pj . The rank of
B also gives the minimum dimension of the Euclidean space in which the point
set P can be embedded.

In another variation of the problem, given a set of mutual distances and an
embedding dimension k, can P be embedded in Euclidean space Ek to realize the
given distances [11]? This problem is strongly NP-complete even when k = 1 and
the distances are restricted to the set {1, 2, 3, 4}. It is, however, possible to solve

c© Springer International Publishing Switzerland 2016
O. Gervasi et al. (Eds.): ICCSA 2016, Part I, LNCS 9786, pp. 84–96, 2016.
DOI: 10.1007/978-3-319-42085-1 7

Point Placement in an Inexact Model with Applications 85

this problem for special classes of graphs and the embedding dimension is 1 [12].
The edges of such graphs join pairs of points for which the distances are known.

We, and other researchers, extensively studied the point placement prob-
lem [2,3,6,13,14], which is to determine an unique (up to translation and reflec-
tion) one-dimensional embedding of n distinct points by making the fewest pos-
sible pairwise distance queries of an adversary. The queries, spread over one or
more rounds, are modeled as a graph whose vertices represent the points and
there is an edge connecting two vertices, if the distance between the correspond-
ing points is queried. The goal is to keep the number of queries linear, with
a constant factor as small as possible. This requires meeting a large number
of constraints on the pairwise distances, making the resulting algorithms very
intricate [15].

The simplest of all, the 3-cycle algorithm, has the following query graph
(Fig. 1).

p0 p1

pn

p3

Fig. 1. Query graph using triangles

If G = (V,E) is a query graph, an assignment l of lengths to the edges of
G is said to be valid if there is a placement of the vertices V on a line such
that the distances between adjacent vertices are consistent with l. Here in this
problem, the distance between a pair of vertices returned by the adversary are
exact. The algorithm designer tries to construct a graph over fixed number of
rounds to minimize the number of edge queries and also make sure that there
is a unique placement of the vertices. The construction of such a graph is the
heart of different algorithms for this problem.

In this paper, we study a one-round version of the point placement problem
in the adversarial model when the query distances returned by the adversary are
not necessarily exact. A formal definition of the problem goes as follows.

Problem Statement: Let P = {p0, p1,, pn−1} be a set of n distinct points
on a line. For a pair of points pi and pj , the query distance D(pi, pj) lies in an
interval [lij , uij], where lij ≤ uij denote the lower and upper bound respectively.
The objective is to find a set of locations of the points in P that are consistent
with the given distance bounds.

The distance bounds are collectively represented by an upper distance matrix,
U , for the upper bounds and a lower distance matrix, L, for the lower bounds.

86 K.K.V. Kannan et al.

The corresponding entries in the upper and lower bound matrices for pairs of
points for which lij = uij , that is, the pairwise distances are exactly known, are
identical. When the distance between a pair of points is unknown, the distance
interval bound is set to [−∞,∞].

For example with three points (n = 3), a possible pair of upper and lower
bound distance matrices are shown below:

U (p0 , p1 , p2) =

⎛
⎝

0 60 ∞
60 0 3
∞ 3 0

⎞
⎠

L(p0 , p1 , p2) =

⎛
⎝

0 60 −∞
60 0 3

−∞ 3 0

⎞
⎠

Thus, l01 = u01 = 60 for the pair of points p0 and p1, whereas l02 = −∞ and
u02 = ∞ for the pair p0 and p2.

Motivation: This study is motivated by a problem from computational biology,
where probe locations are to be mapped on a chromosome, given distance esti-
mates between probe pairs that are obtained from FISH experiments [16–18].
This is known in the literature as the probe location problem.

Overview of Contents: The rest of the paper is organized thus. In the next
section, we show how the point placement problem in the inexact model can
be formulated in the distance geometry framework. Based on this formulation,
we propose an algorithm, called DGPL (short for Distance Geometry based
Probe Location). We follow up with an analysis of some experimental results (1-
dimensional layouts) obtained from an implementation of our DGPL algorithm.
In the third section, we briefly review an algorithm by Mumey [9] for the probe
location problem. In the next section, experimental results are given, comparing
the performance of the DGPL algorithm with that of Mumey’s. In the final
section, we conclude with some observations and directions for further research.

2 The Distance Geometry Approach

The fundamental problem of distance geometry is this: “Given a set of m dis-
tance constraints in the form of lower and upper bounds on a (sparse) set of
pairwise distance measures, and chirality constraints on quadruples of points,
find all possible embeddings of the points in a suitable k-dimensional Euclidean
space” [1,19].

Crippen and Havel’s EMBED algorithm for the molecular conformation prob-
lem is based on a solution to the above fundamental problem. Let dij denote
the distance between a pair of points pi and pj ; then each of the m constraints
above specifies an upper and lower bound on some dij . For our 1-dimensional
point placement problem, chirality constraints do not come into the picture.
Determining a feasible set of locations of the set of points in P is equivalent

Point Placement in an Inexact Model with Applications 87

to finding the coordinates of these locations, with reference to some origin of
coordinates. Thus the approach used for the EMBED algorithm can be directly
adapted to the solution of our problem. Due to the non-availability of an imple-
mentation of the EMBED algorithm, we wrote our own.

Below, we describe the DGPL algorithm, on which our implementation is
based. Before this, the so-called bound-smoothing algorithm used in the EMBED
algorithm deserves some mention. The main underlying idea is to refine distance
bounds into distance limits. Thus if [l′ij , u

′
ij] are the distance limits corresponding

to distance bounds [lij , uij], then [l′ij , u
′
ij] ⊂ [lij , uij]. The distance limits are

defined as follows.
Let lij and uij be the upper and lower distance bounds on dij . Then

l′ij = infe{dij |lij ≤ dij ≤ uij}

and
u′
ij = supe{dij |lij ≤ dij ≤ uij},

where the inf and sup are taken over all possible embeddings e : P ×P → R of
the points in P on a line.

When this is done, assuming that the triangle inequality holds for the triplet
of distances among any three points pi, pj , pk, then these distance limits are
called triangle limits.

In [20], a characterization of the triangle limits was established. It was also
shown how this could be exploited to compute the triangle limits, using a mod-
ified version of Floyd’s shortest path algorithm [15].

2.1 Algorithm DGPL

An input to the DGPL program for a set of n points in its most general form
consists of the following: (a) exact distances between some pairs of points; (b)
finite upper and lower bounds for some other pairs; (c) for the rest of the pairs,
the distance bounds are not specified. However, as we have conceived of DGPL
as a solution to the point placement problem in the inexact model, the input is
assumed to be adversarial and is simulated by generating an initial adversarial
layout of the points. This layout is used by the algorithm to generate input data
of types (a) and (c); however, DGPL will also work if some of the input data are
of type (b).

The DGPL algorithm works in three main phases, as below.

Phase 1: [Synthetic Data Generation] Based on the user-input for n, the algo-
rithm simulates an adversary to create a layout of n points; further, based on the
user-input for the number of pairs for which mutual distances are not known,
the algorithm assigns the distance bounds [−∞,∞] for as many pairs and uses
the layout created to assign suitable distance bounds for the rest of the pairs;
the output from this stage are the lower and upper bound distance matrices,
L and U .

88 K.K.V. Kannan et al.

Phase 2: [Point location or Coordinate generation] A set of coordinates of the
n points, consistent with the bounds in the matrices L and U , are computed,
following the approach in [8] for the molecular conformation problem.

Phase 3: [Layout generation] Finally, a layout of the embedding is generated,
which allows us to verify how good the computed layout is vis-a-vis the adver-
sarial layout.

A more detailed description of the algorithm is given below.

Algorithm 1. DGPL
Data: 1. The size n of P .

2. The number of pairs for which l = −∞ and u = ∞.
3. Embedding dimension

Result: Locations of the n points in P , consistent with the distance bounds
(1) Create a random valid layout of the points pi in P = {p0, p1,, pn−1}.
(2) Create distance bound matrices L and U .

(2.1) Assign −∞ and ∞ respectively to the corresponding values in the L and
U matrices for as many pairs as the the number unknown distances
(user-specified).

(2.2) Assign the distances determined from the layout of Step 1
to the remaining entries of both L and U

(3) Apply a modified version of Floyd’s shortest path algorithm [8] to compute
triangle limit matrices, LL and UL, from the distance bound matrices, L and U .

(4) If all triangle limit intervals have been collapsed to a single value (which is now
the distance between the corresponding pair of points) go to Step 5, else collapse
any remaining pair of triangle limit interval to a randomly chosen value in this
interval and go to Step 3 (this step is called metrization)

(5) Compute matrix B = [bij] = [(d2i0 + d2j0 − d2ij)/2], where dij is the distance
between points pi and pj , 1 ≤ i, j ≤ n − 1 [10].

(6) Compute the eigenvalue decomposition of the matrix B; the product of the
largest eigenvalue with its corresponding normalized eigenvector gives the
one-dimensional coordinates of all the points.

(7) The computed coordinates are plotted on a line, placing p0 at the origin of
coordinates, and are compared with the adversarial layout for the extent of
agreement.

In the next section, we discuss the simulation of DGPL for a small value of n.

2.2 Simulating DGPL

1. Let the input to the program be as follows:
Number of points: 4
Number of unknown distances: 1
Embedding dimension: 1.

Point Placement in an Inexact Model with Applications 89

2. The following random one-dimensional layout of the four points is created:

p0 = 0, p1 = 59, p2 = 48, p3 = 74.

3. The input lower and upper bound distance matrices, L and U , are set to:

L =

⎛
⎜⎜⎝

0 59 48 74
59 0 11 −∞
48 11 0 26
74 −∞ 26 0

⎞
⎟⎟⎠ , U =

⎛
⎜⎜⎝

0 59 48 74
59 0 11 ∞
48 11 0 26
74 ∞ 26 0

⎞
⎟⎟⎠ ,

where the distance d13 between the points p1 and p3 is contained in the interval
[−∞,∞].
4. The lower and upper triangle limit matrices, LL and UL, obtained by bound
smoothing from the lower and upper distance bound matrices are:

LL =

⎛
⎜⎜⎝

0 59 48 74
59 0 11 15
48 11 0 26
74 15 26 0

⎞
⎟⎟⎠ , UL =

⎛
⎜⎜⎝

0 59 48 74
59 0 11 37
48 11 0 26
74 37 26 0

⎞
⎟⎟⎠ .

5. The distance limits are then metrized, as discussed in Step 4 of the DGPL
algorithm, to fixed distances as:

D =

⎛
⎜⎜⎝

0 59 48 74
59 0 11 35
48 11 0 26
74 35 26 0

⎞
⎟⎟⎠ .

6. Relative to the point p0 as the origin of coordinates, the matrix B computes
to:

B =

⎛
⎝

3481 2832 3866
2832 2304 3552
3866 3552 5476

⎞
⎠ .

7. From the eigenvalue decomposition of the matrix B, we obtain the following
coordinate matrix as the product of the square root of largest eigenvalue with
its corresponding normalized eigenvector:

X =

⎛
⎝

58.677
48.828
73.671

⎞
⎠ .

The 1-dimensional embedding of the computed coordinates, after rounding to
integer values, is shown in Fig. 2; the agreement with the adversarial layout is
seen to be near-perfect.

90 K.K.V. Kannan et al.

p0 p2 p1 p3

0 48 59 74

Fig. 2. Final embedding of the four input points

3 Mumey’s Approach to the Probe Location Problem

Mumey [9] considered the problem of mapping probes along a chromosome based
on separation or distance intervals between probe pairs, estimated from fluo-
rescence in-situ hybridization (FISH) experiments. He named this as the probe
location problem. The problem is challenging as the distance intervals are known
only with some confidence level, some may be error-prone and these need to be
identified to find a consistent map. Previous algorithmic approaches based on
seriation [16], simulated annealing [17] and branch and bound algorithm [18],
relying as these did on exhaustive search, could handle inputs of only up to 20
or fewer probes efficiently. However, Mumey’s algorithm claims to be able solve
the problem for up to 100 probes in a matter of few minutes. We briefly review
Mumey’s algorithm next.

From the above discussion it is clear that Mumey’s problem can also be
conveniently cast in the framework of distance geometry. Indeed, we have done
this and the results are discussed in the next section.

3.1 Overview of Mumey’s Algorithm

Let P = {p0, p1,, pn−1} be the list of probes in a chromosome, it being given
that the distance interval between a pair of probes pi and pj lie in an interval
[lij , uij], where lij and uij are respectively the lower and upper bounds on
the distance. The probe location problem is to identify a feasible set of probe
locations {x0, x1,, xn−1} from the given distance intervals such that |xi−xj | ∈
[lij , uij].

The distance bounds on probe pairs leads to a special kind of linear program,
which is a system of difference constraints. A directed graph derived from these
constraints is input to Bellman-Ford’s single source shortest path algorithm.
The shortest paths from the specially-added source vertex to all the destination
vertices is a solution to the system of difference constraints [15].

For the probe location problem, the directed graph in question is called an
edge orientation graph, whose construction is described next.

Edge Orientation Graph. The first step in the construction of an edge ori-
entation graph is to set the orientation of each edge by choosing one placement.
If xi and xj are the positions of probes i and j then one of the following is true:

xj − xi ∈ [lij , uij] (1)
xj − xi ∈ [lij , uij] (2)

Point Placement in an Inexact Model with Applications 91

If (1) holds then xi is to the left of xj whereas if (2) holds, then xj is to the left
of xi. Assume that (1) holds. We can express this equivalently as.

lij ≤ xj − xi ≤ uij

or as:

xj − xi ≤ uij (3)
xi − xj ≤ −lij (4)

Corresponding to the two inequalities above, we have two edges in the edge
orientation graph, one going from xi to xj , with weight uij and the other from
xj to xi with weight −lij .

Similarly, if (2) holds, we can express this equivalently as:

lij ≤ xi − xj ≤ uij

or as:

xi − xj ≤ uij (5)
xj − xi ≤ −lij (6)

with two directed edges in the edge orientation graph of weights uij and −lij
respectively.

When lij = uij for a pair of probes pi and pj , there is exactly one edge
connecting the corresponding nodes in the edge orientation graph, its orientation
determined by the relative linear order of the probes.

Finding Feasible Probe Positions. Once all the edge weights are fixed, a
special source vertex is added whose distance to all other vertices is initialized to
0 and Bellman-Ford’s algorithm is run on this modified edge orientation graph.
If there is no negative cycle in the graph, Bellman-Ford’s algorithm outputs a
set of feasible solutions (x0, x1, ..., xn−1). Otherwise, the algorithm resets the
edge weights by changing the relative order of a probe pair and re-runs the
Bellman-Ford algorithm. These two steps are repeated till a feasible solution is
found.

4 Experimental Results

We implemented both the DGPL algorithm and Mumey’s, discussed in the pre-
vious sections in Python 2.7. The programs were run on a computer with the
following configuration: Intel(R) Xeon(R) CPU, X7460@2.66GHz OS: Ubuntu
12.04.5, Architecture:i686. We used the mathematical package numpy.linAlg to
calculate eigenvalue decompositions and also for solving linear equations; the
package matplotlib.pyplot was used to plot an embedding of final coordinates
obtained from the programs in a space of specified dimensionality.

92 K.K.V. Kannan et al.

The chart below compares the running time of Mumey’s algorithm with that
of DGPL. Each of these algorithms were run on point sets of different sizes, up to
101 points. We also recorded the effect on both algorithms of the number of pairs
of points (probes) for which the distances are not known or are unspecified. In
these cases, we set lij = −∞ and uij = ∞ (Table 1).

Table 1. Performance comparison of Mumey’s and DGPL algorithm

No. of
points

No. of unknown
distances

Mumey’s approach
running time
(hrs:mins:secs)

DGPL algorithm
running time
(hrs:mins:secs)

3 1 0:00:00.000184 0:00:00.001514

10 2 0:00:00.001339 0:00:00.006938

10 5 0:00:00.024560 0:00:00.006816

10 8 0:00:00.060520 0:00:00.017163

20 2 0:00:00.001369 0:00:00.007464

20 5 0:00:00.001336 0:00:00.007743

20 10 0:00:01.164363 0:00:00.007436

40 5 0:00:00.947250 0:00:00.328563

40 8 0:00:07.369925 0:00:00.315001

40 10 0:00:30.857658 0:00:00.312674

80 5 0:00:10.609233 0:00:02.503798

80 10 0:06:15.443501 0:00:02.496285

80 15 5:00:00.000000+ 0:00:02.687672

101 5 0:00:14.256343 0:00:05.020695

101 10 0:10:32.299084 0:00:05.282747

101 15 5:00:00.000000+ 0:00:05.192594

Interestingly, the chart (Fig. 3) shows that Mumey’s approach takes a longer
time when the number of unknown distances increases. Each of these algorithms
were run on point sets of different sizes, up to 100 points.

Clearly, the DGPL algorithm is consistently faster; as we can see from the
graph, irrespective of the number of unknown distances in the fixed number
of points, DGPL’s run-time is linear in the number of points. However, this is
not true of Mumey’s approach. This can be explained by the fact that when a
negative cycle is detected Bellmann-Ford’s algorithm has to be run again. This
is more likely to happen as the number of unknown distances increase. Thus the
running time increases rapidly. Furthermore, after each detection of a negative
cycle, a new distance matrix will have to be plugged into the Bellmann-Ford
algorithm to find the feasible solutions. In addition, the cost of keeping track of
the distances chosen for unknown distance pairs increases with the number of
such pairs.

Point Placement in an Inexact Model with Applications 93

Fig. 3. Time complexity graph Mumey’s vs DGPL algorithm - Increasing number of
unknown distances between fixed number of points

5 Three Dimensional Embedding

The steps applied to generate the coordinates in three-dimensions using the
DGPL program are slightly different from the generation of the coordinates
in one-dimension. The input to DGPL are a set of upper and lower distance
intervals for each pair of points, with three as the embedding dimension. Steps 1
to 5 are the same in this case also. Finally, the eigenvalue decomposition of the

Fig. 4. A sample three-dimensional embedding of 9 points generated by the DGPL
program

94 K.K.V. Kannan et al.

B matrix is obtained and the product of the three largest eigenvalues with their
corresponding normalized eigenvectors yield the three-dimensional coordinates
of all the points. A sample plot of a three-dimensional embedding generated by
DGPL is shown in Fig. 4.

6 Conclusions

Summary of work done: The probe-location problem is an important one in
Computational Genomics. In this paper we have proposed an efficient algo-
rithm for its solution. The novelty of our contribution lies in the use of the dis-
tance geometry framework. The core of this work took the form of experiments.
A representative set of results from these experiments have been presented in an
earlier section. Both Mumey’s algorithm (see Sect. 3) and ours were tested with
different sets of points, ranging in size from 3 to 100, each with a different set
of unknown distances. As the results show, the run-time of Mumey’s algorithm
is highly sensitive to the number of unknown distances, while that of DGPL is
almost impervious to this.

Some interesting conclusions can be drawn from the experiments of the pre-
vious section. For example, with 15 unknown distances for a set 80 points, the
DGPL algorithm shows a vastly superior performance as compared to that of
Mumey, since the latter has to keep track of the distances chosen between each
pair of unknown distances. The results have been shown in a graph with the
coordinates being plotted in one-dimension. This final graph can also be used
as an aid to validate the correctness of the placement of points by verifying all
coordinate values against the initial layout generated by the program.

Future directions: Further work can be done on several fronts. Except for the
point placement problem in one dimension, the challenging problem of finding
lower bounds on the number of pairwise distances needed to embed a set of
points in three and higher dimensions has not been addressed in the surveyed
literature.

In our earlier approaches to the point placement problem, when the basic
point-placement graph (such as the 5-cycle, 5:5 jewel etc.) was not rigid, we
formulated rigidity conditions that were met over two or more rounds of queries.
Now, if the distances returned by the adversary are not exact, there arises the
challenging problem of satisfying the rigidity conditions, using exact lengths
as well as the distance bounds returned by the adversary, over multiple query
rounds.

Another important and useful line of work would be to test the DGPL pro-
gram on NMR (Nuclear Magnetic Resonance) data for macromolecules, particu-
larly protein molecules. The NMR technology is used to obtain pairwise distance
data of the atoms of molecules that are not available in crystalline form. The
process of obtaining coordinates of the atoms from the distance data is well-
known as the molecular conformation problem. This would be a good test of the
robustness of our implementation of the DGPL algorithm.

Point Placement in an Inexact Model with Applications 95

References

1. Blumenthal, L.M.: Theory and Applications of Distance Geometry. Chelsea, New
York (1970)

2. Chin, F.Y.L., Leung, H.C.M., Sung, W.K., Yiu, S.M.: The point placement prob-
lem on a line – improved bounds for pairwise distance queries. In: Giancarlo, R.,
Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 372–382. Springer,
Heidelberg (2007)

3. Damaschke, P.: Point placement on the line by distance data. Discrete Appl. Math.
127(1), 53–62 (2003)

4. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank.
Psychometrika 1(3), 211–218 (1936)

5. Malliavin, T.E., Mucherino, A., Nilges, M.: Distance geometry in structural biol-
ogy: new perspectives. In: Distance Geometry, pp. 329–350. Springer, New York
(2013)

6. Mukhopadhyay, A., Sarker, P.K., Kannan, K.K.V.: Randomized versus determinis-
tic point placement algorithms: an experimental study. In: Gervasi, O., Murgante,
B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan,
B.O. (eds.) ICCSA 2015. LNCS, vol. 9156, pp. 185–196. Springer, Heidelberg (2015)

7. Roy, K., Panigrahi, S.C., Mukhopadhyay, A.: Multiple alignment of structures
using center of proteins. In: Harrison, R., Li, Y., Măndoiu, I. (eds.) ISBRA 2015.
LNCS, vol. 9096, pp. 284–296. Springer, Heidelberg (2015)

8. Havel, T.F.: Distance geometry: theory, algorithms, and chemical applications.
Encycl. Comput. Chem. 120, 723–742 (1998)

9. Mumey, B.: Probe location in the presence of errors: a problem from DNAmapping.
Discrete Appl. Math. 104(1), 187–201 (2000)

10. Young, G., Householder, A.S.: Discussion of a set of points in terms of their mutual
distances. Psychometrika 3(1), 19–22 (1938)

11. Saxe, J.B.: Embeddability of weighted graphs in k-space is strongly NP-hard. In:
17th Allerton Conference on Communication, Control and Computing, pp. 480–489
(1979)

12. Mukhopadhyay, A., Rao, S.V., Pardeshi, S., Gundlapalli, S.: Linear layouts of
weakly triangulated graphs. In: Pal, S.P., Sadakane, K. (eds.) WALCOM 2014.
LNCS, vol. 8344, pp. 322–336. Springer, Heidelberg (2014)

13. Alam, M.S., Mukhopadhyay, A.: More on generalized jewels and the point place-
ment problem. J. Graph Algorithms Appl. 18(1), 133–173 (2014)

14. Alam, M.S., Mukhopadhyay, A.: Three paths to point placement. In: Ganguly, S.,
Krishnamurti, R. (eds.) CALDAM 2015. LNCS, vol. 8959, pp. 33–44. Springer,
Heidelberg (2015)

15. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT
Press and McGraw-Hill Book Company (1989)

16. Buetow, K.H., Chakravarti, A.: Multipoint gene mapping using seriation. i. general
methods. Am. J. Hum. Genet. 41(2), 180 (1987)

17. Pinkerton, B.: Results of a simulated annealing algorithm for fish mapping.
Communicated by Dr. Larry Ruzzo, University of Washington (1993)

96 K.K.V. Kannan et al.

18. Redstone, J., Ruzzo, W.L.: Algorithms for a simple point placement problem. In:
Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767,
pp. 32–43. Springer, Heidelberg (2000)

19. Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation, vol.
74. Research Studies Press Somerset, England (1988)

20. Dress, A.W.M., Havel, T.F.: Shortest-path problems and molecular conformation.
Discrete Appl. Math. 19(1–3), 129–144 (1988)

	Point Placement in an Inexact Model with Applications
	1 Introduction
	2 The Distance Geometry Approach
	2.1 Algorithm DGPL
	2.2 Simulating DGPL

	3 Mumey's Approach to the Probe Location Problem
	3.1 Overview of Mumey's Algorithm

	4 Experimental Results
	5 Three Dimensional Embedding
	6 Conclusions
	References

