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Abstract. In this paper, we investigate the following discrete-time map:

xn+1 = φ(yn),

yn+1 = ψ(xn).

We introduce a novel method to determine the stability of the given
two-dimensional map by using a one-dimensional map. A cobweb-like
diagram is also introduced in order to analyze the stability of the system.
We show that the stability of a fixed point in cobweb diagram implies
the stability in phase diagram for the given system.

In addition, an application of the system to a non-hyperbolic fixed
point is also given.
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1 Introduction

In this paper, we investigate the dynamics of a nonlinear planar map. One of the
main goals of this work is to analyze the stability of the following planar map
by using a cobweb-like diagram.

xn+1 = φ(yn),
yn+1 = ψ(xn).

(1)

A cobweb, or Verhulst diagram is a visual method used in the dynamical systems
to investigate the qualitative behavior of one-dimensional maps. Using a cobweb
diagram, it is possible to analyze the long term status of an initial condition
under repeated application of a map. Use of cobweb diagram can be found in
Devaney (1989); Elaydi (2000).

Cobweb diagram is usually used for one-dimensional discrete dynamical sys-
tems; however, in this paper, we propose a novel method with cobweb diagram
to investigate the dynamics of the two-dimensional discrete system (1), assuming
φ−1 exists.
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For convenience, we will take φ = f−1 and ψ = g. Hence, we have the
following system:

xn+1 = f−1(yn),
yn+1 = g(xn).

(�)

In this section, we give a lemma for a root finding algorithm which allows us
to determine the stability of the given system by using cobweb-like diagram. In
Sect. 2, we give a theorem for the stability condition of system (�) and apply the
cobweb-like diagram in order to determine the stability.

The general two dimensional autonomous discrete system is given by

xn+1 = α(xn, yn),
yn+1 = β(xn, yn),

(2)

whose isocline equations are

x = α(x, y),
y = β(x, y).

(3)

It is easy to see that the isocline equations do not uniquely determine the
dynamics of systems. A simple example for that is the following system which has
the same isoclines as system (2) does but they have different dynamics simply
because they have different eigenvalues of the Jacobian matrices:

xn+1 =
1
2
(xn + α(xn, yn)),

yn+1 = β(xn, yn).
(4)

In contrary, for system (�), since xn+1 and yn+1 depend only on yn and xn,
respectively, there is a unique representation of the isoclines and they deter-
mine the dynamics uniquely. We investigate the dynamics of the system, just by
focusing on the isoclines which are y = f(x) and y = g(x)

System (�) might find many applications in engineering, game theory, and
particularly competition models in economics and biology.

1.1 A Root Finding Algorithm

In this section, we give a lemma for finding the intersection points of two curves.
However, we will use the lemma not for finding the intersection points but to
construct the cobweb diagram and investigate the stability of the system in a
rectangular region.

Lemma 1. Let f : A → B = f(A) and g : C → D = g(C) be continuous
functions, where A ⊂ C and D ⊂ B. Assume that f(x̄) = g(x̄) = ȳ for some x̄
and one of the following four conditions is satisfied:

(1)

{
f(x) < g(x) < ȳ, if x < x̄,

ȳ < g(x) < f(x), if x > x̄.
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(2)

{
ȳ < g(x) < f(x), if x < x̄,

f(x) < g(x) < ȳ, if x > x̄.

(3)

{
f(x) < g(2x̄ − x) < ȳ, if x < x̄,

ȳ < g(2x̄ − x) < f(x), if x > x̄.

(4)

{
ȳ < g(2x̄ − x) < f(x), if x < x̄,

f(x) < g(2x̄ − x) < ȳ, if x > x̄.

Then, for any x0 ∈ C, (f−1 ◦ g)n(x0) → x̄ as n → ∞, provided f−1 exists.

Proof. For each of the conditions, we can consider the theorem separately. We
will prove the theorem only for Condition (1). By using similar approach, one
can show the statement for the other conditions.

Assume that Condition (1) is satisfied. We will show that, for any x0 ∈ C,

(f−1 ◦ g)n(x0) → x̄ as n → ∞.

Since f : A → B = f(A) is invertible, it must be strictly monotone on A
(either strictly increasing or strictly decreasing). However, it cannot be decreas-
ing, because f(x) < f(x̄) = ȳ when x < x̄. Hence, f is strictly increasing on A.
Therefore, f−1 : B → A is also strictly increasing.

Now take any x0 > x̄. By assumption, we have ȳ < g(x0) < f(x0). Since
f−1 is strictly increasing, we obtain f−1(ȳ) < f−1(g(x0)) < f−1(f(x0)) or
x̄ < (f−1 ◦ g)(x0) < x0.

Let us call x1 = (f−1 ◦ g)(x0) and apply the same procedure to x1 to obtain
x2 = (f−1 ◦ g)2(x0). Applying the same procedure over and over, we obtain

x̄ < . . . < x3 < x2 < x1 < x0.

By Monotone Convergence Theorem, the limit of the sequence (f−1 ◦g)n(x0)
exists. Let F = f−1 ◦ g, lim Fn(x0) = L, and consider the following difference
equation:

xn+1 = F (xn) (5)

The only fixed point of the equation is x̄, since the only solution of the equation
F (x∗) = x∗ is x∗ = x̄.

Then, by continuity of F , we have the following:

L = lim Fn+1(x0) = F (lim Fn(x0)) = F (L).

Hence the limit must be x̄ which is the only fixed point of Eq. (5).
The case when x0 < x̄ can be done similarly. Therefore, lim Fn(x0) → x̄ for

any x0 ∈ C if Condition (1) holds.

Remark 1. Note that, in Lemma 1, the functions f and g are not necessarily
differentiable.

Remark 2. For the special case when A = B = C = D = R, we give a simplified
version of the lemma in Appendix whose proof is very similar.

Figure 1 shows the case for Condition 1 of Lemma 1 and how the algorithm
works to find the intersection point of the two curves y = f(x) and y = g(x).
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Fig. 1. Root Finding Algorithm

2 Stability of System (�)

In this section, we analyze the stability of the system (�). We first investigate the
dynamics of the system in a rectangular region and give the stability condition.

2.1 Dynamics of System (�) in a Rectangular Region

Theorem 1. Consider the discrete dynamical system

xn+1 = f−1(yn),
yn+1 = g(xn),

(�)

where f : A → B = f(A) and g : C → D = g(C) are continuous functions,
with A ⊂ C and D ⊂ B. Let (x̄, ȳ) be a fixed point of system (�) and one of the
following conditions be satisfied:

(1)

{
f(x) < g(x) < ȳ, if x < x̄,

ȳ < g(x) < f(x), if x > x̄.

(2)

{
ȳ < g(x) < f(x), if x < x̄,

f(x) < g(x) < ȳ, if x > x̄.

(3)

{
f(x) < g(2x̄ − x) < ȳ, if x < x̄,

ȳ < g(2x̄ − x) < f(x), if x > x̄.

(4)

{
ȳ < g(2x̄ − x) < f(x), if x < x̄,

f(x) < g(2x̄ − x) < ȳ, if x > x̄.
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Then (x̄, ȳ) is asymptotically stable fixed point on the rectangular region
C × B.

Proof. Let one of the four conditions given in the theorem be satisfied. Then,
by Theorem 1, (f−1 ◦ g)n(x0) → x̄ as n → ∞, where x0 ∈ C.

Now, let F = f−1 ◦ g and start with the point (x0, y0) ∈ C × B. Then, for
the x-components of the orbit, we have

x0 → x1 → F (x0) → F (x1) → F 2(x0) → F 2(x1) → F 3(x0) → F 3(x1) → · · ·
Therefore, x2 = F (x0), x4 = F 2(x0), and in general x2n = Fn(x0); whereas
x3 = F (x1), x5 = F 2(x1), and in general x2n+1 = Fn(x1). Hence, by Theo-
rem 1, x2n = Fn(x0) → x̄ as n → ∞. Since x1 ∈ A ⊂ C, by using the same
theorem, we obtain x2n+1 = Fn(x1) → x̄ as n → ∞. Therefore, xn → x̄ as
n → ∞.

Since g is continuous, we have lim yn+1 = lim g(xn) = g(lim xn) = g(x̄) = ȳ,
which proves that (x̄, ȳ) is an attracting fixed point.

We have

x0 → x1 → x2 → · · · → x̄ and y0 → y1 → y2 → · · · → ȳ.

By Theorem 3, since x̄ ∈ C and ȳ ∈ B are attracting points, they are stable.

Remark 3. For system (�), Theorem 1 works also for the non-hyperbolic case.
Since the trace of the Jacobian matrix is always zero, the case when determinant
of the Jacobian matrix at the fixed point equals 1 is the borderline where the
Neimark-Sacker bifurcation might occur. For this critical case, for which λ1,2 =
±i, we can analyze the stability by applying Theorem1. Geometrically, this is
the case when the slopes of the tangent lines to the isoclines at the fixed point,
say m1 and m2, have the property m1 = −m2. Note that, since λ4 = 1, this is
not necessarily a Neimark-Sacker bifurcation (Kuznetsov 1995).

Remark 4. Note that, in Theorem 1, the functions f and g are not necessarily
differentiable.

Remark 5. For the special case when A = B = C = D = R, the fixed point is
globally asymptotically stable. We have a simplified version of the above theorem
in Appendix.

2.2 Stability of System (�) with Cobweb Diagram

In the theory of Discrete Dynamical Systems, we usually use cobweb diagram in
order to understand the dynamics of one-dimensional maps.

To apply the cobweb diagram for the two dimensional system (�), we take
function y = f(x) instead of the diagonal line y = x and apply the same proce-
dure as we do in the usual cobweb diagram. Starting with x0, we have

(x0, 0) → (x0, g(x0)) → ((f−1 ◦ g)(x0), g(x0)) → ((f−1 ◦ g)(x0), g((f−1 ◦ g)(x0))) → · · ·
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By Theorem 1 and the visual representation of the above sequence we can
conclude that, for system (�), the stability on cobweb diagram implies the sta-
bility on phase diagram. In fact, the above sequence itself is one of the orbits of
the system if we start at (x0, g(x0)).

Remark 6. Theorem 1 gives the stability condition for system (�) by using The-
orem 1 and Theorem 1 allows us to use the cobweb diagram. However, cobweb
diagram can also be used for the system (1). One can confirm that by follow-
ing the orbit starting with (x0, 0). For this case, the iteration might lead to
significant different future behavior including chaos.

Example 1. Consider the discrete system (�) with f : [− 1
2 , 2) → [−2, 8), f(x) =

4x and g : [−1, 2) → [−1, 8), g(x) = x3. Hence, we have

xn+1 =
1
4
yn,

yn+1 = x3
n.

(6)

Both f and g are continuous on their domains. The only fixed point in the given
region is (0, 0). It is clear that the first condition of Theorem1 holds. Therefore,
(0, 0) is asymptotically stable on the region [−1, 2)× [−2, 8). Figure 2 represents
the cobweb diagram and the phase diagram for the system.
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(a) Cobweb diagram

1.0 0.5 0.5 1.0 1.5 2.0
x
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8

y

x, y

(b) Phase Diagram

Fig. 2. Stability with cobweb diagram for the 2-dimensional map in Example 1

Example 2. Consider the following discrete-time system:

xn+1 = arctan yn,

yn+1 = −1
3
(xn + sinxn).

(7)

(0, 0) is a fixed point. We have f : (−π
2 , π

2 ) → R, f(x) = tanx and g : R → R,
g(x) = − 1

3 (x + sin x) and the functions are continuous. Since

0 <
1
3
(x + sin x) <

2x

3
< x < tan x
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for x > 0, the third condition of Theorem1 is satisfied. Therefore, the fixed point
(0, 0) is globally asymptotically stable on R

2.

Main Theorem 2. Consider the two-dimensional map

xn+1 = f−1(yn),
yn+1 = g(xn).

(�)

and the following one-dimensional map

xn+1 = F (xn), (8)

where f : A → B = f(A) and g : C → D = g(C) are continuous functions, with
A ⊂ C, D ⊂ B, and F = f−1 ◦ g. Let (x̄, ȳ) be a fixed point of system (�).

Then, x̄ is a fixed point of system (8) and x̄ of system (8) is asymptotically
stable if and only if (x̄, ȳ) of system (�) is asymptotically stable.

Remark 7. Theorem 2 is the direct conclusion of Lemma 1 and Theorem 1. In
order to analyze the stability of system (�), we simply take difference Eq. (8)
and investigate the stability which is much easier.

Example 3. Consider the 2-dimensional map with one parameter

xn+1 = −k arctan yn,

yn+1 = xne−xn ,
(9)

where k > 0. For k = 1, fixed point (0, 0) is non-hyperbolic with λ1,2 = ±i.
Applying Theorem2, we have one-dimensional map xn+1 = −k arctan(xne−xn)
and the fixed point x∗ = 0 of this map is globally asymptotically stable when
k ≤ 1. Therefore the fixed point (x∗, y∗) = (0, 0) of two-dimensional system (9)
is also globally asymptotically stable when k ≤ 1. Figure 3 displays the phase
diagram of system (9) before (k < 1) and after (k > 1) the bifurcation.

(a) k = 0.938 < 1 (b) k = 1 (c) k = 1.047 > 1

Fig. 3. System in Example 3

Details about types of bifurcation can be found in Elaydi (2008); Kuznetsov
(1995).
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3 Conclusions

We gave an analytical method to analyze the stability of 2-dimensional discrete
time systems of the form (�). Stability condition was defined in a rectangular
region. By using geometric approach, we can easily determine the stability of
the system. Even for the non-hyperbolic case, the condition for stability is valid.
Note that the stability conditions in the rectangular region does not tell anything
about the case when the initial point is outside the region. As a further study,
we will investigate more general systems and basin of attractions of fixed points.
Also, we will study the case where f−1 does not necessarily exist. Although this
case is geometrically clear, it needs further work.

We will also study the local and global stable/unstable manifolds of the
system which requires solving some functional equations.

Another issue to be investigated is converting discrete systems to system (�).
The main question is which systems are appropriate for that.

A Related Lemmas/Theorems

Theorem 3. Let z be an attracting fixed point of a continuous map f : I → R,
where I is an interval. Then z is stable.

Proof of the theorem can be found in Elaydi (2008).

Lemma 2. Let f : R → R and g : R → R are continuous functions and f(x̄) =
g(x̄) = ȳ for some x̄ ∈ R. Assume that one of the following conditions is satisfied
for all real α > 0:

(1) f(x̄ − α) < g(x̄ − α) < ȳ < g(x̄ + α) < f(x̄ + α)
(2) f(x̄ + α) < g(x̄ + α) < ȳ < g(x̄ − α) < f(x̄ − α)
(3) f(x̄ − α) < g(x̄ + α) < ȳ < g(x̄ − α) < f(x̄ + α)
(4) f(x̄ + α) < g(x̄ − α) < ȳ < g(x̄ + α) < f(x̄ − α)

Then, for any x0, (f−1 ◦ g)n(x0) → x̄ as n → ∞, provided f−1 exists.

Theorem 4. Given the discrete dynamical system

xn+1 = f−1(yn),
yn+1 = g(xn),

(�)

where f, g : R → R are continuous functions. Assume that (x̄, ȳ) is a fixed point
of system (�) and one of the following conditions is satisfied for all real α > 0:

(1) f(x̄ − α) < g(x̄ − α) < ȳ < g(x̄ + α) < f(x̄ + α)
(2) f(x̄ + α) < g(x̄ + α) < ȳ < g(x̄ − α) < f(x̄ − α)
(3) f(x̄ − α) < g(x̄ + α) < ȳ < g(x̄ − α) < f(x̄ + α)
(4) f(x̄ + α) < g(x̄ − α) < ȳ < g(x̄ + α) < f(x̄ − α)

Then (x̄, ȳ) is globally asymptotically stable on R
2.
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