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Abstract. Mutualism is an interaction between two or more species,
where species derive a mutual benefit. We study the model of M.R.S.
Kulenovic and M. Nurkanovic [7] by adding one of the most best-
understood mechanism of Allee effect to that system which is called
mate-finding. In this paper, we interpret mate-limitation of Allee effect
between mutualistic species from mathematical and ecological points of
view and stability analysis of the new model.

Keywords: Mutualism · Allee effect · Mate limitation · Lyapunov ·
Global asymptotic

1 Introduction

Mutualism is a positive relationship between two or more species in a commu-
nity that benefits all individuals of those species. It drives evolution and most
organisms are mutualistic in some way. These interactions are essential for life.
One well known example of a mutualistic relationship is oxpecker and zebra.
Oxpeckers land on zebras and eat ticks and other parasites that live on their
skin. The oxpeckers get food and the beasts get pest control. Also, when there
is danger, the oxpeckers fly upward and scream a warning, which helps the sym-
biont. Another one is bacteria and the human. A certain kind of bacteria lives
in the intestines of humans and many other animals. The human cannot digest
all of the food that it eats. The bacteria eats the food that the human cannot
digest and partially digest it, allowing the human to finish the job. The bacteria
benefit by getting food, and the human benefits by being able to digest the food
it eats.

The members of many species cooperate; they get help for hunting or deceiv-
ing predators. They come together to survive negative conditions or in other
way to find sexual reproduction. When there are a few individuals, it looks like
they will take advantage of more welding, however, they will also suffer from a
lack of conspecific. The balance changes if this negativity has more power, that
is, population may extinct at low reproduction. Their fitness will be less when
the population size is getting smaller. This is, in essence, Allee effect.

There are several mechanisms for Allee effects. Well-known mechanisms
include fertilization efficiency in sessile organisms, mate finding in mobile organ-
isms and cooperative breeding. In our model we study the mate limitation factor
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which is the situation that harder to find a (compatible and receptive) mate at
low population size or density. For example; cod, gypsy moth, Glanville fritillary
butterfly, alpine marmot.

The most popular one for mutualism is the interaction between flowering
plants and their pollinators or between fruit-producing plants and seed dis-
persers. Amarasekare [1] studied both obligatory and facultative mutualisms
in which one of the mutualists was non-mobile (such as a plant) and the other
mobile (such as a pollinator or seed disperser), using a metacommunity frame-
work (a set of local communities connected by dispersal). If obligate mutualisms
and only one local community are considered, both species go extinct from any
initial conditions if the colonization rate of the mobile mutualist is low, and a
strong Allee effect arises if it is high. For facultative mutualisms, a strong Allee
effect arises if the fitness reduction in absence of the mutualist drops below a
critical value, otherwise both species coexist from any initial conditions. In a
metacommunity composed of two or more local communities, dispersal of the
mobile mutualist from source communities can rescue sink communities from
extinction and thus maintain regional persistence of both species [8].

Among obligate mutualists, system bistability arises as a direct consequence
of the mutualistic interaction; that is, we have an emergent Allee effect, simply
because neither species can live without the other. Among facultative mutualists,
however, the Allee effect is not emergent, because the decline in fitness when the
second species is absent is incorporated explicitly into the model. Sexual repro-
duction can also be considered a sort of (within-species) obligate mutualism.

A coupled discrete logistic model is used in [2] by R. Lpez-Ruz and D.
Fourner-Prunaret:

xn+1 = μ(yn)xn(1 − xn)
yn+1 = μ(xn)yn(1 − yn)

which is symbiotic interaction between both species provokes that the growth
rate μ(z) is varying with time and must be positive.

In [3] W. Krawcewicz, T.D. Rogers and in [4] H.L. Smith studied a dynamical
model for cooperation between two species, each of which benefits in a symmetric
manner from the other. Such an idealized relationship is expressed through the
family of two-dimensional recursions

xn+1 = xnexp[r(1 − xn) + syn]
yn+1 = ynexp[r(1 − yn) + sxn]

where the parameters r and s are nonnegative.
A simple, autonomous cooperative system is discussed in [5] by K. Yang, X.

Xie and F. Chen,

xn+1 = xnexp[r1
(

K1+a1yn

1+yn

)
− xn]

yn+1 = ynexp[r2
(

K2+a2xn

1+xn

)
− yn]

where ri, Ki, i = 1, 2 are all positive constants.
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In [6] by Cruz Vargas-De-Len, the global stability in continuous time coop-
erative models is studied to describe facultative mutualism. He subjected to the
Lotka-Volterra mutualism model with proportional harvesting

dx
dt = r1x[1 − x

K1
+ b12

y
K1

] − e1x
dy
dt = r2y[1 − y

K2
+ b21

x
K2

] − e2y

where constants e1 and e2 are harvesting efforts on respective populations,
ri, Ki, b12 and b21 (i = 1, 2) are all positive constants, ri are the linear birth
rates, Ki are the carrying capacities, b12 and b21 measure the cooperative effect
of x1 and x2.

M.R.S. Kulenovic and M. Nurkanovic studied the global asymptotic behav-
iour of the following system [7]:

xn+1 = Axn
yn

1+yn

yn+1 = Byn
xn

1+xn

(1)

with parameters A, B > 0 and initial values x0, y0 > 0.
In a modeling setting, the system (1) of nonlinear difference equations rep-

resents the rule by which two discrete, cooperating populations reproduce from
one generation to the next. The phase variables xn and yn denote population
sizes during the n-th generation and the sequence or orbit (xn,yn) , n = 0,1,2,...
depicts how the populations evolve over time. Cooperation between two popu-
lations is reflected by the fact that the transition function for each population
is an increasing function of the other population size.

In this study we add Allee effect to the first component in model (1) and get
a new one:

xn+1 = Axn
yn

1+yn

xn

u+xn

yn+1 = Byn
xn

1+xn

(2)

where u > 0 denotes the Allee effect constant that determines the strength
of Allee effect.

2 Analysis of Model (1)

2.1 Fixed Points and Their Stability

The system

xn+1 = Axn
yn

1+yn

yn+1 = Byn
xn

1+xn

has two fixed points (0, 0) and ( 1
B−1 , 1

A−1 ) that is positive when A > 1 and
B > 1.
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The positive fixed point ( 1
B−1 , 1

A−1 ) is always saddle (Fig. 3). The other fixed
point (0, 0) is always locally asymptotically stable because

J(0, 0) =
(

0 0
0 0

)

Since both eigenvalues are zero (Fig. 1, Fig. 2 and Fig. 3).

2.2 Stability via Lyapunov Function

In order to check the global stability, we use a Lyapunov function of the map

F

(
x
y

)
=

(
Ax y

1+y

By x
1+x

)

Let V (x, y) = xy is the corresponding positive definite Lyapunov function
(Fig. 6). Then

ΔV

(
x
y

)
= V (F

(
x
y

)
) − V (x, y)

ΔV (x, y) = (Ax
y

1 + y
)(By

x

1 + x
) − xy < 0

Since x, y > 0 and if AB ≤ 1 then

ΔV (x, y) = AB
(xy)2

(1 + x)(1 + y)
− xy =

xy(ABxy − 1 − x − y − xy)
(1 + x)(1 + y)

< 0

Since |X| → ∞, V (X) → ∞, then (0, 0) is globally asymptotically stable.

3 Numerical Simulations of Model (1)

3.1 Phase Plane Diagrams

Fig. 1. Phase Plane Diagrams: the first one is the phase diagram with initial point
(0.1,0.1) where A = 0.7, B = 0.4 for which there is no positive fixed point and (0,0) is
globally stable. For the second one, the initial point is (0.1,0.1), A = 3, B= 5, there are
two fixed points: (0,0) and (0.25,0.5), which are stable and saddle respectively
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3.2 Time Series Diagrams

Fig. 2. Time Series Diagrams: the first one is the time series diagram with initial point
(0.1,0.1) where A = 0.7, B=0.4. For the second one, the initial point is (0.1,0.1) again
with A = 3, B=5. In both cases the population go to extinction in time.

3.3 Basin of Attraction

Fig. 3. Basin of Attraction: for the first one A=0.2, B=0.3 and there is no positive
fixed point. For the second one, A=1.5, B=1.5, the positive fixed point is (2,2).

4 Analysis of Model (2)

4.1 Fixed Points and Their Stability

We get the following system by adding the mate limitation Allee effect:

xn+1 = Axn
yn

1+yn

xn

u+xn

yn+1 = Byn
xn

1+xn

Fixed points of this system are (0,0) and ( 1
B−1 , 1−u+Bu

−1+A+u−Bu ).
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The second fixed point is positive when B > 1 and A > 1 + u(B − 1) or
equally B > 1, A > 1 and 0 < u < A−1

B−1 .
(0, 0) is again always locally asymptotically stable because

J(0, 0) =
(

0 0
0 0

)

So both eigenvalues are zero again.
For positive fixed point ( 1

B−1 , 1−u+Bu
−1+A+u−Bu ) Jacobian matrix is,

J =

(
2 + 1

−1+u−Bu
(−1+A+u−Bu)2

A(−1+B)(1+(−1+B)u)

− (−1+B)2(1+(−1+B)u)
B(1−A+(−1+B)u) 1

)

and corresponding eigenvalues are,

λ1 =
√
A

√
B(2+3(−1+B)u)+

√−1+B
√

−4(1+(−1+B)u)3+A(4+(−1+B)u(8−4u+5Bu))

2
√
A

√
B(1+(−1+B)u)

λ2 =
√
A

√
B(2+3(−1+B)u)−√−1+B

√
−4(1+(−1+B)u)3+A(4+(−1+B)u(8−4u+5Bu))

2
√
A

√
B(1+(−1+B)u)

.

Solving inequalities together with B > 1, A > 1 and 0 < u < A−1
B−1 , |λ1| ≤ 1

has infeasible solution while |λ2| ≤ 1 holds true everywhere in the domain. That
means the positive fixed point is saddle point again (Fig. 4, Fig. 5 and Fig. 6).

4.2 Stability via Lyapunov Function

In order to check the global stability of (0,0), we use a Lyapunov function of the
map. Let V (x, y) = xy be the corresponding positive definite Lyapunov function.
If AB < 1, A > 1 and 1 < u then

Δ V
(

x
y

)
= V ( F

(
x
y

)
) - V(x, y)

ΔV (x, y) = ( Ax2y
(1+y)(u+x) )(

Bxy
1+x ) − xy < 0

So (0,0) is globally asymptotically stable.

5 Numerical Simulations of Model (2)

In this section we provide some numerical evidences for the qualitative dynamic
of the Model 2, the phase portraits, time series diagrams, and basin of attractions
by using the codes of [9];
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5.1 Phase Plane Diagrams

Fig. 4. Phase Plane Diagrams: the first one is the phase diagram with initial point
(0.1,0.1) where A = 0.7, B = 0.4 and u = 0.25 for which there is no positive fixed point
and (0,0) is globally stable. For the second one, the initial point is (0.1,0.1), A = 3,
B = 5 and u = 0.1 there are two fixed points: (0,0) and (0.25,0.875), which are stable
and saddle respectively.

5.2 Time Series Diagrams

Fig. 5. Time Series Diagrams: the first one is the time series diagram with initial
point (0.1,0.1) where A = 0.7, B = 0.4, u = 0.25. For the second one, the initial point is
(0.1,0.1) again with A = 3, B = 5, u = 0.1. In both cases the population go to extinction
in time.
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5.3 Basin of Attraction

Fig. 6. Basin of Attraction: for the first one A = 0.2, B = 0.3, u = 0.5. For the second
one, A = 1.5, B = 1.5, u = 0.6 with positive fixed point (2,6.5).

6 Conclusion

In this paper, chaotic dynamic and the stability of the fixed points of a nonlinear
discrete-time cooperation model with Allee Effect have been investigated. Global
stability of the fixed point is investigated by a Lyapunov function. Nevertheless,
identifying complicated, possibly chaotic dynamics in population data, stability
region of the positive fiexed point, and bifurcation of the system have remained.
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