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Abstract. The method for construction of analytical expressions for
electric and magnetic fields for some set of the distributions of the charge
density is described. These expressions are used for symbolic computa-
tion of the corresponding electric and magnetic fields generated by the
beam during the evolution in accelerators. Here we focus on the use of the
matrix form for Lie algebraic methods for calculating the beam dynamics
in the presence of self-field of the beam. In particular, the corresponding
calculations are based on the predictor-corrector method. The suggested
approach allows not only to carry out numerical experiments, but also
to provide accurate analytical analysis of the impact of different effects
with the use of ready-made modules in accordance with the concept of
Virtual Accelerator Laboratory. To simulate the large number of particle
distributed resources for computations are used. Pros and cons of using
described approach on hybrid systems are discussed. In particular, the
investigation of overall performance of the predictor-corrector method is
made.

1 Introduction

It is not necessary to say how popular and important accelerators are presently.
There are a lot of facilities all over the world created for different purposes. The
number of various software packages based on different approaches is even bigger
that the accelerators we have. It is better to give a brief survey of methods that
are used today to calculate the dynamics of beam with space charge.

High intensive beams are interesting from both side – the theoretical and
practical point of view. More particles we have, more information about the beam
we will get. On the other hand, intensive beams play a great role in medicine,
when needed to irradiate only diseased cells, but not the healthy ones. But it is
obvious that with intensity different effects of the beam that can not be denied
occur. On of this is the forces of the self field of the particles. In the works [1–4]
pay attention on the impact of space charge forces especially in the case that it
can lead to the so called the filamentation effect or to the Halo (e.g. see Fig. 1).
And for that purposes it is important to consider the space charge forces.
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Fig. 1. (a) Filamentation, (b) Halo

The method which is commonly used [5–7] is Particle-in-Cell method (PIC).
The methods popularity caused its conceptual simplicity, the relative ease at
which simulations may be implemented. Often, PIC simulations are implemented
from first-principles (without the need for an approximate equation of state).
However, these simulations often are computationally expensive with restrictive
time step and mesh spacing limitations [8].

The Fortran-based environment COSY INFINITY [9] is also well known and
used. The main use of the code lies in the field of nonlinear dynamics, where
it is used for the computation of perturbation expansions of Poincare maps to
high orders as well as their analysis based on normal forms and other methods.

Another approach is given by Alex Dragt and his team. In [10] is said that
Lie algebraic methods may be used for particle tracking around or through a
lattice and for analysis of linear and nonlinear lattice properties. When used for
tracking, they are both exactly symplectic and extremely fast. Tracking can be
performed element by element, lump by lump, or any mixture of the two. (A
lump is a set of elements combined together and treated by a single transfer
map.)

In addition to single-particle tracking, Lie algebraic methods may also be
used to determine how particle phase-space distribution functions evolve under
transport through both linear and nonlinear elements. These methods are useful
for the self-consistent treatment of space-charge effects and for the study of how
moments and emittances evolve.

MARYLIE [11] is a FORTRAN program for beam transport and tracking
based on a Lie algebraic formulation of charged particle trajectory calculations.
This software is useful for the design and evaluation of both linear transport
systems and circulating storage rings. The program is able to compute transfer
maps and trace rays through single or multiple beamline elements for the full
six-dimensional phase space without the use of numerical integration or tradi-
tional matrix methods. The effects of high-order aberrations are computed as an
integral part of the Lie algebra approach. All non-linearities, including chromatic
effects, through third order are included [12].

The number of methods and software is not restricted by these once. There
are TRANSPORT, BEAMBEAM3D, IMPACT-Z, IMPACT-T, MAD [13] and
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some others. But in all these methods the trajectory of one particle is calculated.
And in case of intensive beams the number of particles to count is bigger then
1 billion. Though, the computer resources allow us to calculate large amount
of data, the practice shows that it is better to have a parallel algorithm at the
beginning than a good machine. That was our goal to make the algorithm that
can be parallelized easily.

2 Lie Algebra in Accelerator Physics

The approach about which we will speak is very similar to the one on what
MARYLIE is based. The evolution operator for dynamic systems is used in
theoretical physics for a long time. This operator can be written in general form
as Lie operator (see, for example, [10]):

dM(U(t), t|t0)
dt

= L(U(t), t) ◦ M(U(t), t|t0),M(t0|t0) = Id ∀ t0 ∈ [T, t0]. (1)

These operators define the Lie transformations M(U(t), t|t0), generated by
an infinitesimal Lie operator L(U(t), t) (the vector field of the dynamical sys-
tem), where U(t) is a vector of control functions (for simplicity, we will omit
the argument of U(t)). Note that the Eq. (1) generally has the form of a nonau-
tonomous linear operator equation. The equality 1 in the integral form has the
following form

M(t|t0) = Id +

t∫

t0

L(τ) ◦ M(t|τ)dτ. (2)

The general solution can be written in the form of a chronological series of
Volterra [14]

M(t|t0) = Id +
∞∑

k=1

t∫

t0

τ1∫

t0

. . .

τk−1∫

t0

L(τk) ◦ L(τk−1) ◦ . . . ◦ L(τ1) dτk . . . dτ1. (3)

or using the Magnus presentation [15] this equality can be written as

M(t|t0) = expW(t|t0;L). (4)

Here W(t|t0;L) – a new vector field, generated by the “old” vector field L.
In Ref. [14] analytical expressions (for step-by-step calculations) for the new
operator are presented W(t|t0;L) using “nested” series
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W(t|t0) =

t∫

t0

V(τ)dτ + α1

t∫

t0

⎧⎨
⎩L(τ),

τ∫

t0

L(τ ′)

⎫⎬
⎭ dτ+

+ α2
1

t∫

t0

⎧⎨
⎩L(τ),

τ∫

t0

⎧⎨
⎩L(τ ′),

τ ′∫

t0

L(τ ′′)dτ ′′

⎫⎬
⎭ dτ ′

⎫⎬
⎭ dτ+

+ α1α2

t∫

t0

⎧⎨
⎩

⎧⎨
⎩L(τ),

τ∫

t0

L(τ ′)dτ ′

⎫⎬
⎭ ,

τ∫

t0

L(τ ′)dτ ′

⎫⎬
⎭ dτ + . . . (5)

In the work [14] the necessary conditions for the convergence of the cor-
responding series as well as the convergence rate are described. Thus, these
relations allow us to find correct solutions of nonlinear operator equations in
the form of convergent series (under some relatively simple assumptions). How-
ever, the operator form for practical solutions cannot be used in computations,
so we have to choose some functional basis (in our case we use the well-known
Poincare-Witt basis), which can provide appropriate solutions in the form of the
following equality:

M(t|t0) ◦ X0 =
∞∑

k=1

M
[1k](t|t0)X [k]

0 , X0 = X(t0), (6)

where X, X0 are vectors of current and initial phase coordinates of a particle,
M

[1k](t|t0), k ≥ 1 are matrices (two dimensional arrays) responsible for the non-
linearity of k-th order in the solution of the equation of evolution. Thus, the task
of investigating the evolution of a nonlinear system is reduced to the computation
of the matrices M

[1k](t|t0) up to the necessary order of nonlinearity with the
corresponding estimates of accuracy [14]. So in the absence of effect of space-
charge, we can compute corresponding matrices in the nonlinear approximation
step by step up to the desired order of nonlinearity. However, taking the space
charge into account, the matrices M

[1k](t|t0) can be computed using the method
of successive approximations, if necessary [14,16].

It should be noted, that the knowledge of the matrix M
[1k] up to the required

order of nonlinearity allows to calculate the dynamics of the beam as an ensemble
of particles with the given accuracy. Indeed, the equality (6) allows to describe
the particle beam using various forms of its description. Let’s consider an ensem-
ble of particles M0 consisting of N particles at some initial time. Then the beam
evolution may be described by different methods:

– with the help of a matrix phase states beam M
N
0 =

{
X1

0,X
2
0, . . . ,X

N
0

}
,

– an envelopes matrix σ0,
– or a particle distribution function f(X, 0) = f0(X), Xk

0 ∈ M0, ∀k = 1, N .
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All these methods of particle beam description can be considered a base for
forming information objects that characterize the state of the beam at the initial
and current moments. About two last methods we will speak later.

On the next step we should introduce information objects that are responsible
for evolution of the initial state. In our approach we use the matrices M

[1k],
∀k ≥ 1. These matrices can be calculated according to the Lie formalism [10,14].
We should note that the group property for the evolution operator allows us to
calculate the operator successively (step-by-step) for each control element of the
lattice (here we refer to the control elements, such as dipoles, multipole lenses,
free spaces and etc.) and for the accelerator system in the whole.

Moreover, the map that describes the impact of a control element can in turn
be represented as a series of maps that reflect the impact of electromagnetic fields
[10] up to nonlinearities of necessary order. These properties of the evolution
operator and its consequent effect on control systems allows us to introduce
information objects, each of which is responsible for mapping generated by a
particular control element as a set of particular units in the defined sequence.
So, for each control element (multipoles, drifts and etc.) we can calculate the
necessary matrices M

[1k] and then to construct these matrices for some lattices
using some concatenation procedure (see, e.g. [17]).

Naturally, beside the corresponding objects, we have a set of mathematical
rules with which they act on the data objects, characterizing the state of the
beam in the initial or current moments. However, these objects themselves con-
sist of a set of virtual subagents (for example, responsible for the fringing fields
or some other characteristics of control fields).

In other words, we have an additional internal subset of subagents [18]
designed to study the effects of additional characteristics of the transport system
on beam behaviour. It should be noted that these objects themselves do not have
autonomy from the physical point of view. Introduction of such objects is jus-
tified by the fact that their use provides the necessary degree of flexibility and
performance from a computational point of view. Thus, physical objects that
are responsible for the impact on the ensemble of particles are in turn divided
into a set of subagents, which are responsible for certain properties, but do not
have an independent physical interpretation. An assembly of these sub-objects
helps to secure the necessary variability and implement the optimization of con-
trol system as a whole. In other words we can change the necessary subagent
without distortion of physical sense and computational sequence. Moreover, you
must also monitor the state of the beam itself (values of beam envelopes, polar-
ization, etc.), because these characteristics are very important for realization of
the optimal working regime. Besides, we should carry out necessary additional
computational procedures to analyze the impact of the effects of control errors
on the beam characteristics. These additional computing can be also realized
using additional subagents. All necessary properties of agents and subagents
should be divided on physical properties (derived from physical characteristics
of a primary physical object) and information properties in according to general
concept of forming of information agents.



Simulation of Space Charge Dynamics 289

3 Self-consistent Particle Dynamics with Space Charge
Forces

In this part the predictor-corrector method based on matrix formalizm will be
discussed. By saying predictor-corrector we mean a multiple step method. This
one can be used as an alternative to the well known Runge-Kutta method.
The scheme of this method is simple. First, the extrapolation method is used
to predict the value of some yj+1 by known previous yj , yj−1, etc. Then the
obtained value is estimated and is correcting to get the better approximation of
yj+1. If the difference between the correcting and the predicting values exceeds
a certain value, then the next iteration is running [19].

In our case the main idea of this method is to predict the distribution of
the particles, which we want to get at the end, by correcting the intermediate
results during the calculations. First, let’s talk about the solution algorithm of
self-consistent dynamic of the beam in general. Here the distribution functions
will be discussed.

At the beginning we set an interval T = [t0, t1], on which the solution is
looking for, and Δt = t1−t0. The transportation system is given on this interval,
that means that the external fields Bext, Eext and the function Fext can be
obtained.

Besides, the distribution function is selected from the set of initial distribu-
tions. In the simple case it can be the ideal Kapchinskij-Vladimirslij distribution.
Or it can be the modifications of KV, which are given in [20]. It is a base distri-
bution in such cases, because K-V distribution is a four dimensional distribution
in phase space and has properties:

– the space charge forces are linear;
– it transforms into a K-V distribution under a linear mapping.

With other distributions this one forms something like the class of initial
distributions:

– linear: ρ1(x, y) = ρ0(1 − 4κ
2/9)Θ(1 − 4κ

2/9));
– uniform: ρ2(x, y) = ρ0Θ(1 − κ

2);
– normal: ρ3(x, y) = ρ0exp(−α2

3κ
2), α3 = − π

2 i erf(i) .

Where erf(x) =
∫ x

0
exp(−t2/2)dt - probability integral.

– quadratic: ρ4(x, y) = ρ0(1 − (4/5)4κ4)Θ(1 − (4/5)4κ4);
– co-sinusoidal: ρ5(x, y) = ρ0cos2(πα2

5κ
2)Θ(1 − α2

5κ
2).

Where α5 calculates with Frenel integral.

On Fig. 2 the density function ρi, i = 1, 5 as the function of scalar variable R
is shown. See the [16] for more details. This list can be supplemented by other
distributions depending on the task.
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Fig. 2. Distribution of charge density: 1 - linear, 2 - uniform, 3 - normal, 4 - quadratic,
5 - co-sinusoidal.

Now we are turning back to the algorithm. After all the initial parameters
are set, the evolution operator is calculated using the Eq. 3 and the technology
as described above.

After that the distribution function is obtained with the help of evolution
operator applying on the previous value of distribution:

f1(X, t) = f0((M0)−1 ◦ X0).

Substituting the obtained function to the field equations, we get (Bself )1,
(Eself )1.

Now we are ready to calculate the function

(Fself )1 = Fself (Bself )1, (Eself )1,X, t)).

Or the self-consistent Hamiltonian (Hself )1 = Hself ((Bself )1, (Eself )1,X, t) is
found.

Thereafter, the evolution operator M1 = A ◦ M0 is evolved by equation

M(t|t0;Vext+Vself ) = Id+

t∫

t0

(Vext(τ)+Vself (τ))◦M(τ |t0;Vext(τ)+Vself (τ))dτ.

(7)
The new average value of distribution function is found by the following

equation:

〈f(X, t0)〉1M1
= (1 − α)〈f0((M0)−1 ◦ X0)〉M0

+ α〈f0((M0)−1 ◦ X0)〉M0
, (8)

The final step is to verify the criteria, e.g.:

||Mk − A ◦ Mk−1|| < ε, k ≥ 1. (9)
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It is obvious that if the condition 9 is carried out, the solution is obtained.
Otherwise, the (Bself )i, (Eself )i are calculating again.

This algorithm is suitable for analytical analysis, but on practice we can
not measure the distribution function. To get the result that can be proved by
experiment the algorithm based on envelope dynamic was designed.

Similarly to the previous algorithm we set an interval T = [t0, t1], Δt = t1−t0,
and f(X, t0) = f0(X) is the initial value of the distribution function consisting
of the set of phase points when t = t0, and N is the order of approximation.

First step. We calculate matrices Sik
0 , i, k = 1, N by the following equation:

Sik
0 =

∫
M0

f0(X)X[i](X[k])∗dX

As a form-matrix A0 (S11
0 )−1 can be chosen, or S−1

0 – if the initial set M0

is an ellipsoid with the border

X∗
0S

−1
0 X0 = ε.

Next we built approximant ϕ0(κ2
0) ≈ f0(X0), where κ

2
0 = X∗

0A0X0 and turn to
the next step.

Second step. Here we get the block-matrices P
1k(Bext, Eext, t) and N

1k
1 =

P
1k(Bext,Eext, t) [14] for external fields. The (ij) element of matrix P

1k, for
example, can be found by the following form:

{
P
1k(t)

}
ij

=
1

k1! . . . kn!
∂kFi(Xj , t)

∂xk1
1 . . . ∂xkn

n

∣∣∣∣∣
x1=···=xn=1

Third step. It is necessary to find Eself = E(ϕ0(κ2
0)) depending of the dis-

tribution function we have chosen (e.g. uniform, normal, etc.).
On the fourth step we calculate block-matrices P

1k(Eself , t) with space
charge effect: N

1k
2 = P

1k(Eext, t)
Fifth step. Then comes the calculations of block-matrices M

ik where
i ≤ k ≤ N ,

M
ik
1 = M

ik(t|t0; {N
1l
1 }), l = 1, k,

M
ik
2 = M

ik(t|t0; {N
1l
2 }),

M
ik
0 = M

ik
1 + M

ik
2 .

Block-matrices M
ik are the matrix form of the evolution operator.

On the next step, after all necessary matrices have been obtained, we can
substitute them into block-matrices Sik

0

Sik
0 =

∞∑
l=i

∞∑
j=k

M
il
0S

lj
0 (Mjk

0 )
T
.



292 N. Kulabukhova et al.

Step seven. Before the conditions will be checked the virtual changes of set-
tings while beam evolution must be made:

Sik
1 = αSik

0 + (1 − α)Sik
0 , 0 < α < 1.

Virtual change implies changes of settings that are necessary to built a map.
Envelope matrices, functions of distributions, etc., are not changed.

Step eight. Now we can check the conditions:

2‖Sik
1 − Sik

0 ‖
‖Sik

1 ‖ + ‖Sik
0 ‖ < εik. (10)

Different equivalent rules can be used as 10. If the condition is right, the
process stops. Otherwise:

Sik
0 = Sik

1 ,

and before turning back to the algorithm the final step is to find the approximate
value ϕ(κ2) for function f(X, t):

ϕ(κ2) ≈ f0(μ−1
0 ◦ X0) = f0(

∞∑
i=1

T
1l
0 X

[i]
0 ).

Assuming that ϕ0(κ2) = ϕ(κ2) return to the step three.
Considered algorithm can be simplified by using as approximate value the

function that is constant on the ellipsoid and zero outside it. After that step
three is modified to be easier and the final changes are not needed at all. That
significantly accelerates the process. Moreover, choosing the approximate value
from the class of polynomials allows us to use pre-computed block-matrices from
special database. So this approach can significantly reduce the computations
instead of numerical simulations.

4 Parallelization of Predictor-Corrector Method

Practically for every one it is obvious that the number of particles needed to
compute on practice can not be provided by any known approach. The natural
parallelization and distributed structures of beam physics problems allow using
parallel and distributed computer systems (see works [21–23]. Analyzing the
situation, it became clear that it is no matter how much resources we have, if
the algorithm is not suitable for parallelization there will be not great benefit
of it. As we can see from the algorithm shown above matrix formalism is a
high-performance mapping approach for ODE solving. It allows to present the
intermediate results and the solution of the system in the form of matrices. That
makes the approach to be easy implemented in parallel code.

Due to the fact that only matrix multiplication and addition are used, we
think of a GPU programming [24]. The present research is shown that there is
no great benefit via parallelization of computational code for one particle by
using OpenMP library (see Fig. 3 and Tables 1 and 2). In this case overhead
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Fig. 3. a – Sequential code; b – Parallel code

Table 1. Time (sec.) in sequential code for different number of particles

Optimization/Num. of particles 106 107 20 ∗ 106 30 ∗ 106

normal 4,3942 44.0785 88.42 133.955

-O 2.0449 20.5504 41.6161 63.3152

-O2 0.9780 9.7588 19.4914 29.2429

-O3 0.9114 9.14508 18.3444 28.1367

on data sending is significant and take the greatest part of time. On the other
hand, matrix formalism allows to process a set of initial points, where paral-
lelization is more preferable on GPUs. But using only GPUs is not justified. In
our experiment we have the system that can provide the power to compute only
the number of particles nearly 107. It’s less that required, but our goal in this
part of research was to test the algorithm before using in on the real system. The
results has shown good parallelization of the described approach.

Table 2. Time (sec.) in parallel code for different number of particles

Num. threads/Num. of particles 106 107 20 ∗ 106 30 ∗ 106

Sequential with -O3 0,911436 9,14508 18,3444 28,1367

4 2,00863 13,1787 26,3788 21,5358

8 1,06923 7,16977 14,5777 20,8549

16 1,06208 6,8548 13,6071 20,15

64 1,00906 6,70448 13,5593 20,0794

128 3,86119 7,92809 14,8894 22,748

5 Conclusion

Our challenge is to provide computer simulation for developed algorithm for
solving the problem of accounting space-charge forces in general and compare
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this algorithm with other methods. It allows simulate both long-term evolution
of a set of particles, and evaluating based on envelope description. As it was said
above the method can be implemented in parallel codes on GPU+CPU hybrid
Cluster. That is why the future development of the research also can be based
on writing software to compare different parallel techniques for Hybrid Systems,
in order to effective use of described approach to compute the required number
of particles in long-term evolution of the beam.

Acknowledgments. The authors would like to express gratitude to Vladimir
Korkhov for valuable help. Scientific research were performed using the equipment
of the Research Park of St.Petersburg State University. The work was sponsored by
the Russian Foundation for Basic Research under the projects: 16-07-01113 “Virtual
supercomputer as a tool for solving complex problems” and by the Saint-Petersburg
State University under the project 0.37.155.2014 “Research in the field of designing
and implementing effective computational simulation for hydrophisical and hydro-
meteorological processes of Baltic Sea (and the open Ocean and offshores of Russia)”.

References

1. Batygin, Y.K., Scheinker, A.: Suppresion of halo formation in fodo channel with
nonlinear focusing. In: Proceedings of IPAC 2013. JACOW (2015)

2. Batygin, Y.K., Scheinker, A., Kurennoy, S.: Nonlinear Optics for Suppresion of
Halo Formation in Space Charge Dominated Beams (2015)

3. Batygin, Y.K.: Space-charge neutralization of 750-keV proton beam in lansce injec-
tor LIN. In: Proceedings of IPAC 2015. JACOW (2015)

4. Ryne, R.D., Habib, S., Wangle, T.P.: Halos of Intense Proton Beams. IEEE (1996)
5. Paret, S., Qiang, J.: Collisional effects in particle-in-cell beam-beam simulation.

In: Proceedings of IPAC 2013. JACOW (2013)
6. Wolfheimer, F., Gjonaj, E., Weiland, T.: Parallel particle-in-cell (PIC) codes. In:

Proceedings of ICAP 2006. JACOW (2006)
7. Stancari, G., Redaelli, S., Moens, V.: Beam dynamics in an electron lens with the

warp particle-in-cell code. In: Proceedings of IPAC 2014. JACOW (2014)
8. Bowers, K.J.: Accelerating a paticle-in-cell simulation using a hybrid counting sort.

J. Comput. Phys. 173, 393–411 (2001). Academic Press
9. Makino, K., Berz, M.: COSY INFINITY Version 9. Nuclear Instruments and Meth-

ods A558 (2005)
10. Dragt, A.J.: Lie methods for nonlinear dynamics with applications to accelerator

physics. University of Maryland (2015)
11. Dragt, A.J., Ryne, R.D., et al.: MARYLIE 3.0 Users Manual: A Program for

Charged Particle Beam Transport Based on Lie Algebraic Methods. University
of Maryland (2003)

12. Dragt, A.J., Ryne, R.D., et al.: Numerical computation of transfer maps using lie
algebraic methods. In: Proceedings of PAC 1987 (1987)

13. Ryne, R.D.: Advanced computing tools and models for accelerator physics. In:
Proceedings of EPAC 2008 (2008)

14. Andrianov, S.N.: Dynamical Modeling of Control Systems for Particle Beams’.
Saint Petersburg State University, SPb (2004)



Simulation of Space Charge Dynamics 295

15. Magnuss, W.: On the exponential solution of differential equations for a linear
operator. Comm. Pure Appl. Math. 7(4), 649–673 (1954)

16. Kulabukhova, N., Degtyatev, A., Bogdanov, A., Andrianov, S.: Simulation of space
charge dynamics on HPC. In: Proceedings of IPAC 2014. JACOW (2014)

17. Healy, L.M., Dragt, A.J.: Concatenation of Lie algebraic maps. Lie Methods in
Optics II. Lect. Notes in Physics, vol. 352 (1989)

18. Andrianov, S., Kulabukhova, N.: Lie algebraic methods as mathematical models
for high performance computing using the multi-agent approach. In: Gervasi, O.,
et al. (ed.) ICCSA 2016, Part I. LNCS, vol. 9786, pp. 418–430. Springer, Heidelberg
(2016)

19. Szilagui, M.: Electron and ion optics (in russian). Mir, Moscow (1990)
20. Venturini, M.: Lie methods, exact map computation, and the problem of dispertion

in space charge dominated beams. Ph.D. thesis (1998)
21. Giovannozzi, M.: Space-Charge Simulation Using Parallel Algorithms
22. Bowers, K.J.: Accelerating a particle-in-cell simulation using a hybrid counting

sort. J. Comput. Phys. 173, 393–411 (2001)
23. Qiang, J., Ryne, R.D., Habib, S., Decy, V.: An object-oriented parallel particle-in-

cell Code for beam dynamics simulation in linear accelerators. J. Comput. Phys.
163, 434–451 (2000)

24. Kulabukhova, N.: GPGPU implementation of matrix formalism for beam dynamics
simulation. In: Proceedings of ICAP 2012. JACOW (2012)


	Simulation of Space Charge Dynamics in High Intensive Beams on Hybrid Systems
	1 Introduction
	2 Lie Algebra in Accelerator Physics
	3 Self-consistent Particle Dynamics with Space Charge Forces
	4 Parallelization of Predictor-Corrector Method
	5 Conclusion
	References


