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Abstract. Many problems, not only in computer vision and visualization, lead
to a system of linear equations Ax = 0 or Ax = b and fast and robust solution is
required. A vast majority of computational problems in computer vision, visu-
alization and computer graphics are three dimensional in principle. This paper
presents equivalence of the cross–product operation and solution of a system of
linear equations Ax = 0 or Ax = b using projective space representation and
homogeneous coordinates. This leads to a conclusion that division operation for
a solution of a system of linear equations is not required, if projective repre-
sentation and homogeneous coordinates are used. An efficient solution on CPU
and GPU based architectures is presented with an application to barycentric
coordinates computation as well.

Keywords: Linear system of equations � Extended cross-product � Projective
space computation � Geometric algebra � Scientific computation

1 Introduction

Many applications, not only in computer vision, require a solution of a homogeneous
system of linear equations Ax = 0 or a non-homogeneous system of linear equations
Ax = b. There are several numerical methods used implemented in standard numerical
libraries. However, the numerical solution actually does not allow further symbolic
manipulation. Even more, solutions of equations Ax = 0 and Ax = b are considered as
different problems and especially Ax = 0 is not usually solved quite correctly as users
tend to use some additional condition for x unknown (usually setting xk ¼ 1 or so).

In the following, we show the equivalence of the extended cross-product (outer
product or progressive product) with a solution of both types of linear systems of
equations, i.e. Ax = 0 and Ax = b.

Many problems in computer vision, computer graphics and visualization are 3-
dimensional. Therefore specific numerical approaches can be applied to speed up the
solution. In the following extended cross-product, also called outer product or pro-
gressive product, is introduced in the “classical” notation using “×” symbol.
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2 Extended Cross Product

Let us consider the standard cross-product of two vectors a ¼ a1, a2, a3½ �T and
b ¼ b1, b2, b3½ �T . Then the cross-product is defined as:

a� b ¼ det
i j k
a1 a2 a3
b1 b2 b3

2
4

3
5 ð1Þ

where: i ¼ 1, 0, 0½ �T , j ¼ 0, 1, 0½ �T , k ¼ 0, 0, 1½ �T .
If a matrix form is needed, then we can write:

a� b ¼
0 �a3 a2
a3 0 �a1

�a2 a1 0

2
4

3
5

b1
b2
b3

2
4

3
5 ð2Þ

In some applications the matrix form is more convenient.
Let us introduce the extended cross-product of three vectors a ¼ a1, . . . ,an½ �T ,
b ¼ b1, . . . ,bn½ �T and c ¼ c1; . . . ; cn½ �T , n ¼ 4 as:

a� b� c ¼ det

i j k l
a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

2
664

3
775 ð3Þ

where: i ¼ 1; 0; 0; 0½ �T , j ¼ 0; 1; 0; 0½ �T , k ¼ 0; 0; 1; 0½ �T , l ¼ 0; 0; 0; 1½ �T .
It can be shown that there exists a matrix form for the extended cross-product

representation:

a� b� c ¼ �1ð Þnþ 1

0 �d34 d24 �d23
d34 0 �d14 d13

�d24 d14 0 �d12
d23 �d13 d12 0

2
664

3
775

c1
c2
c3
c4

2
664

3
775 ð4Þ

where: n ¼ 4. In this case and dij are sub-determinants with columns i, j of the matrix
T defined as:

T ¼ a1 a2 a3 a4
b1 b2 b3 b4

� �
ð5Þ

e.g. sub-determinant d24 ¼ det
a2 a4
b2 b4

� �
etc.
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The extended cross-product for 5-dimensions is defined as:

a� b� c� d ¼ det

i j k l n
a1 a2 a3 a4 a5
b1 b2 b3 b4 b5
c1 c2 c3 c4 c5
d1 d2 d3 d4 d5

2
66664

3
77775

ð6Þ

where: i ¼ 1; 0; 0; 0; 0½ �T , j ¼ 0; 1; 0; 0; 0½ �T , k ¼ 0; 0; 1; 0; 0½ �T , l ¼ 0; 0; 0; 1; 0½ �T ,
n ¼ 0; 0; 0; 0; 0; 1½ �T .

It can be shown that there exists a matrix form as well:

a� b� c� d ¼ �1ð Þnþ 1

0 �d345 d245 �d235 d234
d345 0 �d145 d135 �d134

�d245 d145 0 �d125 d124
d235 �d135 d125 0 �d123

�d234 d134 �d124 d123 0

2
66664

3
77775

d1
d2
d3
d4
d5

2
66664

3
77775

ð7Þ

where n = 5. In this case and dijk are sub-determinants with columns i, j, k of the matrix
T defined as:

T ¼
a1 a2 a3 a4 a5
b1 b2 b3 b4 b5
c1 c2 c3 c4 c5

2
4

3
5 ð8Þ

e.g. sub-determinant d245 is defined as:

d245 ¼ det
a2 a4 a5
b2 b4 b5
c2 c4 c5

2
4

3
5 ¼ a2 det

b4 b5
c4 c5

� �
� a4 det

b2 b5
c2 c5

� �
þ a5 det

b2 b4
c2 c4

� �

ð9Þ

In spite of the “complicated” description above, this approach leads to a faster
computation in the case of lower dimensions, see Sect. 7.

3 Projective Representation and Duality Principle

Projective representation and its application for computation are considered to be
mysterious or too complex. Nevertheless we are using it naturally very frequently in the
form of fractions, e.g. a/b. We also know that fractions help us to express values, which
cannot be expressed precisely due to limited length of a mantissa,
e.g.1=3 ¼ 0,33 . . . . . . :333. . . ¼ 0:�3.

In the following we will explore projective representation, actually rational frac-
tions, and its applicability.
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3.1 Projective Representation

Projective extension of the Euclidean space is used commonly in computer graphics
and computer vision mostly for geometric transformations. However, in computational
sciences, the projective representation is not used, in general. This chapter shortly
introduces basic properties and mutual conversions. More detailed description of
projective representation and applications can be found in [12, 15, 20].

The given point X ¼ X,Yð Þ in the Euclidean space E2 is represented in homoge-
neous coordinates as x ¼ x; y : w½ �T , w 6¼ 0. It can be seen that x is actually a line in the
projective space P3 with the origin excluded. Mutual conversions are defined as:

X ¼ x
w

Y ¼ y
w

ð10Þ

where: w 6¼ 0 is the homogeneous coordinate. Note that the homogeneous coordinate
w is actually a scaling factor with no physical meaning, while x, y are values with
physical units in general.

The projective representation enables us nearly double precision as the mantissa of
x, resp. y and w are used for a value representation. However we have to distinguish
two different data types, i.e.

• Projective representation of a n-dimensional value X ¼ X1; . . . ;Xnð Þ, represented
by one dimensional array x ¼ x1; . . . ; xn : xw½ �T , e.g. coordinates of a point, that is
fixed to the origin of the coordinate system.

• Projective representation of a n -dimensional vector (in the mathematical meaning)
A ¼ A1; . . . ;Anð Þ, represented by one dimensional array a ¼ a1; . . . ; an : aw½ �T . In
this case the homogeneous coordinate aw is actually just a scaling factor. Any vector
is not fixed to the origin of the coordinate system and it is “movable”.

Therefore a user should take an attention to the correctness of operations. Another
interesting application of the projective representation is the rational trigonometry [19].

3.2 Principle of Duality

The projective representation offers also one very important property – principle of
duality. The principle of duality in E2 states that any theorem remains true when we
interchange the words “point” and “line”, “lie on” and “pass through”, “join” and “in-
tersection”, “collinear” and “concurrent” and so on. Once the theorem has been estab-
lished, the dual theorem is obtained as described above [1, 5, 9, 14]. In other words, the
principle of duality says that in all theorems it is possible to substitute the term “point” by
the term “line” and the term “line” by the term “point” etc. in E2 and the given theorem
stays valid. Similar duality is valid for E3 as well, i.e. the terms “point” and “plane” are
dual etc. it can be shown that operations “join” a “meet” are dual as well.
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This helps a lot to solve some geometrical problems. In the following we will
demonstrate that on very simple geometrical problems like intersection of two lines,
resp. three planes and computation of a line given by two points, resp. of a plane given
by three points.

4 Solution of Ax = B

Solution of non-homogeneous system of equation AX = b is used in many computa-
tional tasks.

For simplicity of explanation, let us consider a simple example of intersection
computation of two lines p1 a p2 in E2 given as:

p1 : A1XþB1Y þC1 ¼ 0 p2 : A2XþB2Y þC2 ¼ 0 ð11Þ

An intersection point of two those lines is given as a solution of a linear system of
equations: Ax = b:

a1 b1
a2 b2

� �
X
Y

� �
¼ �c1

�c2

� �
ð12Þ

Generally, for the given system of n liner equations with n unknowns in the form
AX = b the solution is given:

Xi ¼ det Aið Þ
det Að Þ i ¼ 1, . . . ,n ð13Þ

where: A is a regular matrix n� n having non-zero determinant, the matrix Ai is the
matrix A with replaced ith column by the vector b and X ¼ X1, . . . ,Xn½ �T is a vector of
unknown values.

In a low dimensional case using general methods for solution of linear equations,
e.g. Gauss-Seidel elimination etc., is computational expensive. Also division operation
is computationally expensive and decreasing precision of a solution.

Usually, a condition if det Að Þ\eps then EXIT is taken for solving “close to
singular cases”. Of course, nobody knows, what a value of eps is appropriate.

5 Solution of Ax = 0

There is another very simple geometrical problem; determination of a line p given by
two points X1 ¼ X1,Y1ð Þ and X2 ¼ X2,Y2ð Þ in E2. This seems to be a quite simple
problem as we can write:

aX1 þ bY1 þ c ¼ 0 aX2 þ bY2 þ c ¼ 0 ð14Þ

i.e. it leads to a solution of homogeneous systems of equations AX = 0, i.e.:
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X1 Y1 1
X2 Y2 1

� � a
b
c

2
4

3
5 ¼ 0 ð15Þ

In this case, we obtain one parametric set of solutions as the Eq. (15) can be
multiplied by any value q 6¼ 0 and the line is the same.

There is a problem – we know that lines and points are dual in the E2 case, so the
question is why the solutions are not dual. However if the projective representation is
used the duality principle will be valid, as follows.

6 Solution Ax = b and Ax = 0

Let us consider again intersection of two lines p1 ¼ a1, b1 : c1½ �T a p2 ¼ a2, b2 : c2½ �T
leading to a solution of non-homogeneous linear system AX = b, which is given as:

p1 : a1Xþ b1Y þ c1 ¼ 0 p2 : a2X þ b2Y þ c2 ¼ 0 ð16Þ

If the equations are multiplied by w 6¼ 0 we obtain:

p1 : a1X þ b1Y þ c1 , p2 : a2Xþ b2Y þ c2 ,
a1xþ b1yþ c1w ¼ 0 a2xþ b2yþ c2w ¼ 0

ð17Þ

where:, means “projectively equivalent to” as x = wX and y = wY.
Now we can rewrite the equations to the matrix form as Ax = 0:

a1 b1 �c1
a2 b2 �b2

� � x
y
w

2
4

3
5 ¼ 0

0

� �
ð18Þ

where x ¼ x; y : w½ �T is the intersection point in the homogeneous coordinates.
In the case of computation of a line given by two points given in homogeneous

coordinates, i.e. x1 ¼ x1; y1 : w1½ �T and x2 ¼ x2; y2 : w2½ �T , the Eq. (14) is multiplied by
wi 6¼ 0.Then, we get a solution in the matrix form as Ax = 0, i.e.

x1 y1 w1

x2 y2 w2

� � a
b
c

2
4

3
5 ¼ 0 ð19Þ

Now, we can see that the formulation is leading in the both cases to the same
numerical problem: to a solution of a homogeneous linear system of equations.

However, a solution of homogeneous linear system of equations is not quite
straightforward as there is a one parametric set of solutions and all of them are pro-
jectively equivalent. It can be seen that the solution of Eq. (18), i.e. intersection of two
lines in E2, is equivalent to:
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x ¼ p1 � p2 ð20Þ

and due to the principle of duality we can write for a line given by two points:

p ¼ x1 � x2 ð21Þ

In the three dimensional case we can use extended cross-product [12, 15, 16].
A plane q : aXþ bY þ cY þ d ¼ 0 given by three points x1 ¼ x1, y1, z1 : w1½ �T ,

x2 ¼ x2; y2; z2 : w2½ �T and x2 ¼ x3; y3; z3 : w3½ �T is determined in the projective repre-
sentation as:

q ¼ a; b; c : d½ �T¼ x1 � x2 � x2 ð22Þ

and the intersection point x of three planes points q1 ¼ a1; b1; c1 : d1½ �T , q2 ¼
a2, b2, c2 : d2½ �T and q3 ¼ a3; b3; c3 : d3½ �T is determined in the projective representa-
tion as:

x ¼ x; y; z : w½ �T ¼ q1 � q2 � q2 ð23Þ

due to the duality principle.
It can be seen that there is no division operation needed, if the result can be left in

the projective representation. The approach presented above has another one great
advantage as it allows symbolic manipulation as we have avoided numerical solution
and also precision is nearly doubled.

7 Barycentric Coordinates Computation

Barycentric coordinates are often used in many engineering applications, not only in
geometry. The barycentric coordinates computation leads to a solution of a system of
linear equations. However it was shown, that a solution of a linear system equations is
equivalent to the extended cross product [12–14]. Therefore it is possible to compute
barycentric coordinates using cross product which is convenient for application of SSE
instructions or for GPU oriented computations. Let us demonstrate the proposed
approach on a simple example again.

Given a triangle in E2 defined by points xi ¼ ½xi, yi : 1�T , i ¼ 1, . . . ; 3, the
barycentric coordinates of the point x0 ¼ ½x0, y0 : 1�T can be computed as follows:

k1x1 þ k2x2 þ k3x3 ¼ x0
k1y1 þ k2y2 þ k3y3 ¼ y0

k1 þ k2 þ k3 ¼ 1
ð24Þ
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For simplicity, we set wi ¼ 1, i ¼ 1; . . . ; 3. It means that we have to solve a system
of linear equations Ax = b:

x1 x2 x3
y1 y2 y3
1 1 1

2
4

3
5

k1
k2
k3

2
4

3
5 ¼

x0
y0
1

2
4

3
5 ð25Þ

if the points are given in the projective space with homogeneous coordi-
natesxi ¼ ½xi; yi : wi�T , i ¼ 1; . . . ; 3 and x0 ¼ ½x0; y0 : w0�T . It can be easily proved, due
to the multilinearity, we need to solve a linear system Ax = b:

x1 x2 x3
y1 y2 y3
w1 w2 w3

2
4

3
5

k1
k2
k3

2
4

3
5 ¼

x0
y0
w0

2
4

3
5 ð26Þ

Let us define new vectors containing a row of the matrix A and vector b as:

x ¼ ½x1; x2; x3; x0�T y ¼ ½y1; y2; y3; y0�T w ¼ ½w1;w2;w3;w0�T ð27Þ

The projective barycentric coordinates n ¼ ½n1; n2; n3 : nw�T are given as:

k1 ¼ � n1
nw

k2 ¼ � n2
nw

k3 ¼ � n3
nw

ð28Þ

i.e.

ki ¼ � ni
nw

i ¼ 1; . . . ; 3 ð29Þ

Using the extended cross product, the projective barycentric coordinates are given
as:

n ¼ x� y� w ¼ det

i j k l
x1 x2 x3 x0
y1 y2 y3 y0
w1 w2 w3 w4

2
664

3
775 ¼ n1; n2; n3 : nw½ �T ð30Þ

where i ¼ 1; 0; 0; 0½ �T ; j ¼ 0; 1; 0; 0½ �T ; k ¼ 0; 0; 1; 0½ �T ; l ¼ 0; 0; 0; 1½ �T
Similarly in the E3 case, given a tetrahedron in E3 defined by points

xi ¼ ½xi; yi; zi : wi�T , i ¼ 1; . . . ; 3 and the point x0 ¼ ½x0; y0; z0 : w0�T :

x ¼ ½x1; x2; x3; x4 : x0�T y ¼ ½y1; y2; y3; y4 : y0�T
z ¼ ½z1; z2; z3; z4 : z0�T w ¼ ½w1;w2;w3;w4 : w0�T

ð31Þ
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Then projective barycentric coordinates are given as:

n ¼ x� y� z� w ¼ ½n1; n2; n3; n4 : nw�T ð32Þ

The Euclidean barycentric coordinates are given as:

k1 ¼ � n1
nw

k2 ¼ � n2
nw

k3 ¼ � n3
nw

k4 ¼ � n4
nw

ð33Þ

i.e.

ki ¼ � ni
nw

i ¼ 1; . . . ; 4 ð34Þ

How Simple and Elegant Solution! The presented computation of barycentric
coordinates is simple and convenient for GPU use or SSE instructions. Even more, as
we have assumed from the very beginning, there is no need to convert projective values
to the Euclidean notation. As a direct consequence of that is, that we are saving a lot of
computational time also increasing robustness of the computation, especially due to
division operation elimination. As a result is represented as a rational fraction, the
precision is nearly equivalent to double mantissa precision and exponent range.

Let us again present advantages of the projective representation on simple
examples.

8 Intersection of Two Planes

Intersection of two planes q1 and q1 in E3 is seemingly a simple problem, but sur-
prisingly computationally expensive, Fig. 1. Let us consider the “standard” solution in
the Euclidean space and a solution using the projective approach.

Given two planes q1 and q2 in E3:

q1 ¼ ½a1; b1; c1 : d1�T ¼ ½nT1 : d1�T q2 ¼ ½a2; b2; c2 : d2�T ¼ ½nT2 : d2�T ð35Þ

where: n1 and n2 are normal vectors of those planes.
Then the directional vector s of a parametric line X tð Þ ¼ X0 þ st is given by a cross

product:

s ¼ n1 � n2 � ½a3; b3; c3�T ð36Þ

and point X0 2 E3 of the line is given as:
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X0 ¼
d2

b1 c1
b3 c3

����
�����d1

b2 c2
b3 c3

����
����

DET Y0 ¼
d2

a3 c3
a1 c1

����
�����d1

a3 c3
a2 c2

����
����

DET

Z0 ¼
d2

a1 b1
a3 b3

����
�����d1

a2 b2
a3 b3

����
����

DET DET ¼
a1 b1 c1
a2 b2 c2
a3 b3 c3

������

������

ð37Þ

It can be seen that the formula above is quite difficult to remember and its
derivation is not simple. It should be noted that there is again a severe problem with
stability and robustness if a condition like DETj j\eps is used. Also the formula is not
convenient for GPU or SSE applications. There is another equivalent solution based on
Plücker coordinates and duality application, see [12, 16].

Let us explore a solution based on the projective representation explained above.
Given two planes q1 and q2. Then the directional vector s of their intersection is

given as:

s ¼ n1 � n2 ð38Þ

We want to determine the point x0 of the line given as an intersection of those two
planes. Let us consider a plane q0 passing the origin of the coordinate system with the
normal vector n0 equivalent to s, Fig. 1. This plane q0 is represented as:

q0 ¼ a0; b0; c0 : 0½ �T¼ ½sT : 0�T ð39Þ

Then the point x0 is simply determined as an intersection of three planes q1; q2; q0 as:

Fig. 1. A line as the intersection of two planes
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x0 ¼ q1 � q2 � q0 ¼ x0; y0; z0 : w0½ �T ð40Þ

It can be seen that the proposed algorithm is simple, easy to understand, elegant and
convenient for SEE and GPU applications as it uses vector-vector operations.

9 Closest Point on the Line Given as an Intersection of Two
Planes

Another example of advantages of the projective notation is finding the closest point on
a line given as an intersection of two planes q1 and q2 to the given point n 2 E3, Fig. 2.
The closest point to the given point on an intersection of two planes

A solution in the Euclidean space, proposed in [8], is based on a solution of a
system of linear equations using Lagrange multipliers, leading to a matrix of 5� 5ð Þ:

2 0 0 n1x n2x
0 2 0 n1y n2y
0 0 2 n1z n2z
n1x n1y n1z 0 0
n2x n2y n2z 0 0

2
66664

3
77775

x
y
z
k
l

2
66664

3
77775
¼

2nx
2ny
2nz
p1n1
p2n2

2
66664

3
77775

ð41Þ

where: p1, resp. p2 are points on planes q1, resp. q2, with a normal vector n1, resp. n2.
Coordinates of the closest point x ¼ x; y; z½ �T on the intersection of two planes to the

Fig. 2. The closest point to the given point on an intersection of two planes

28 V. Skala



point n ¼ nx; ny; nz
� �

are given as a solution of this system of linear equations. Note
that the point n is given in the Euclidean space.

Let us consider a solution based on the projective representation. The proposed
approach is based on basic geometric transformations with the following steps:

1. Translation of planes q1, q2 and point n ¼ nx; ny; nz : 1
� �T

so that the point n is in
the origin of the coordinate system, i.e. using transformation matrix T for the point

translation and matrix TT
� ��1¼ T�T for translation of planes [11, 14, 16].

2. Intersection computation of those two translated planes; the result is a line with the
directional vector s and point x0

3. Translation of the point x0 by inverse translation using the matrix T�1

The translation matrices are defined as:

T ¼

1 0 0 �nx
0 1 0 �ny
0 0 1 �nz
0 0 0 1

2
6664

3
7775 T�T ¼

1 0 0 0

0 1 0 0

0 0 1 0

nx ny nz 1

2
6664

3
7775

T
0 ¼

nw 0 0 �nx
0 nw 0 �ny
0 0 nw �nz
0 0 0 nw

2
6664

3
7775

ð42Þ

If the point n is given in the projective space, i.e. n ¼ nx; ny; nz : nw
� �T

,

w 6¼ 1&w 6¼ 0, then the matrix T is given as T
0
.

It can be seen that the computation is more simple, robust and convenient for SSE
or GPU oriented applications. It should be noted that the formula is more general as the
point n can be given in the projective space and no division operations are needed.

10 Symbolic Manipulations

Symbolic manipulations are very important and help to find or simplify computational
formulas, avoid singularities etc. As the extended cross-product is an associative and
anti-commutative as the cross-product in E3 similar rules are valid, i.e. in E3:

a� bþ cð Þ ¼ a� bþ a� c

a� b ¼ �b� a
ð43Þ
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In the case of the extended cross-product, i.e. in the projective notation P3 we
actually formally have operations in E4:

a� bþ cð Þ � d ¼ a� b� dþ a� c� d

a� b� c ¼ �b� a� c
ð44Þ

This can be easily proved by applications of rules for operations with determinants.
However, for general understanding more general theory is to be used – Geometric

Algebra [2–4, 6, 7, 10, 18], in which the extended cross-product is called outer product
and the above identities are rewritten as:

a ^ bþ cð Þ ^ d ¼ a ^ b ^ dþ a ^ c ^ d

a ^ b ^ c ¼ �b ^ a ^ c
ð45Þ

where: “^” is an operator of the outer product, which is equivalent to the cross-product
in E3. There is also an operator “_” for the inner product which is equivalent to the dot
product in E3.

In geometric algebra geometric product is defined as:

ab ¼ a _ bþ a ^ b ð46Þ

i.e. in the case of E3 we can write:

ab ¼ a � bþ a� b ð47Þ

and getting some “strange”, as a scalar and a vector (actually a bivector) are summed
together. But it is a valid result and ab is called geometric product [18].

However, if the projective representation is used, we need to be a little bit careful
with equivalent operations to the standard operations in the Euclidean space.

11 Example of Application

Let us consider a simple example in 3-dimensional space. Assume, that Ax = b is a
system of linear equations, i.e.:

a11 a12 a13
a21 a22 a23
a31 a32 a33

2
4

3
5

x1
x2
x3

2
4

3
5 ¼

b1
b2
b3

2
4

3
5 ð48Þ

and we want to explore n ¼ c � x, where c ¼ c1; c2; c3½ �T .
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In the “standard” approach a system of linear equations has to be solved numeri-
cally or symbolic manipulation has to be used. We can rewrite the Eq. (48) using the
projective representation as:

a11 a12 a13 �b1
a21 a22 a23 �b2
a31 a32 a33 �b3

2
4

3
5

�x1
�x2
�x3
�xw

2
664

3
775 ¼

0
0
0

2
4

3
5& xi ¼ �xi

�xw
ð49Þ

The conversion to the Euclidean space is given as:

xi ¼ �xi
�xw

i ¼ 1; . . .; 3 ð50Þ

Then using equivalence of the extended cross-product and solution of a linear
system of equations we can write:

�x ¼ �a1 � �a2 � �a3 ð51Þ

where: �x ¼ �x1;�x2;�x3 : �xw½ �T , �ai ¼ ai1; ai2; ai3 : �bi½ �T , i ¼ 1; . . .; 3. It should be noted
that the result is actually in the 3-dimensional projective space.

In many cases, the result of computation is not necessarily to be converted to the
Euclidean space. If left in the projective representation, we save division operations,
increase precision of computation as the mantissa is actually nearly doubled (mantissa
of �xi and �xw). Also robustness is increased as well as we haven’t made any specific
assumptions about collinearity of planes. Let a scalar value n 2 E1 is given as:

n ¼ c � x ð52Þ

The scalar value n can be expressed as a homogeneous vector �n in the projective
notation as:

�nT ¼ �n : �nw
� �

& �nw ¼ 1 ð53Þ

Generally, the value in the Euclidean space is given as n ¼ �n
�nw
. Extension to the

3-dimensional case is straightforward.

As an example let us consider a test if the given point �n ¼ �n1; �n2; �n3 : �nw
� �T

lies on
a plane given by three points xi; i ¼ 1; . . . ; 3 using projective notation. A plane p is
given:

q ¼ x1 � x2 � x3 ¼ a; b; c : d½ �T ð54Þ

and the given point has to fulfill condition �n � q ¼ a�n1 þ b�n2 þ c�n13 þ d�nw ¼ 0.
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We know that:

a� b� c ¼ det

i j k l
a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

2
664

3
775 ¼ �

0 �d34 d24 �d23
d34 0 �d14 d13

�d24 d14 0 �d12
d23 �d13 d12 0

2
664

3
775

c1
c2
c3
c4

2
664

3
775

ð55Þ

where: i ¼ 1, 0, 0, 0½ �T , j ¼ 0; 1; 0; 0½ �T , k ¼ 0, 0, 1, 0½ �T , l ¼ 0, 0, 0, 1½ �T . Then, the test
n � q ¼ 0 is actually:

n1; n2; n3 : nw½ �
0 �d34 d24 �d23

d34 0 �d14 d13
�d24 d14 0 �d12
d23 �d13 d12 0

2
664

3
775

x3
y3
z3
w3

2
664

3
775 ¼ 0 ð56Þ

It means that we are getting a bilinear form:

�nTBx3 ¼ 0 ð57Þ

where: B is an antisymmetric matrix with a null diagonal. So we can analyze such
conditions more deeply in an analytical form. It means that we can explore the formula
on a symbolic level. It is also possible to derive some additional information for the n
value, resp. �n value, if the projective notation is used. This approach can be directly
extended do the d-dimensional space using geometry algebra [18].

12 Efficiency of Computation and GPU Code

Let us consider reliability and the cost of computation of the “standard” approach using
Cramer’s rule using determinants. For the given system of n liner equations with
n unknowns in the form Ax = b the solution is given as:

Xi ¼ det Aið Þ
det Að Þ i ¼ 1, . . . ,n ð58Þ

In the projective notation using homogeneous coordinates we can actually write
x ¼ x1; . . . ; xn : w½ �T , where: w ¼ det Að Þ and xi ¼ det Aið Þ, i ¼ 1, . . . ,n
The projective representation not only enables to postpone division operations, but

also offers some additional advantages as follows. Computing of determinants is quite
computationally expensive task. However for 2–4 dimensional cases there are some
advantages using the extended cross-product as explained below (Table 1).
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Generally the computational expenses are given as:

Det kþ 1ð Þ�ðkþ 1Þ ¼ kDetk�k þ kð00�00Þ ð59Þ

Total cost of computation if Cramer’s rule for generalized is used (Table 2):
Computational expenses for the generalized cross-product matrix based formula-

tion, if partial intermediate computations are used (Table 3).
It means, that for the 2-dimensional and 4-dimensional cases, the expected speed up

t is:

t ffi Cramer
0
s rule

partial summation
¼: 2 ð60Þ

In real implementations on CPU the SSE instructions can be used which are more
convenient for vector-vector operations and some steps can be made in parallel.
Additional speed up can be achieved by GPU use for computation.

In the case of higher dimension modified standard algorithms can be used including
iterative methods [17]. Also as the projective representation nearly doubles precision of
computation, if a single precision on GPU is used (only few processors compute in a
double precision), the result after conversion to the Euclidean representation is
equivalent to the double precision.

13 GPU Code

Many today’s computational systems can use GPU support, which allows fast and
parallel processing. The above presented approach offers significant speed up as the
“standard” cross-product is implemented in hardware as an instruction and the
extended cross-product for 4D can be implemented as:

Table 1. Cost of determinant computation

Operation Det2�2 Det3�3 Det4�4 Det5�5

± 1 6 24 120
× 2 12 48 240

Table 2. Cost of cross-product computation

Operation a� b a� b� c a� b� c� d

“±” 3 27 159
“×” 6 52 173

Table 3. Cost of cross-product computation with subdeterminants

a� b a� b� c a� b� c� d

± 3 14 60
× 6 24 77
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In general, it can be seen that a solution of linear systems of equations on GPU for a
small dimension n is simple, fast and can be performed in parallel.

14 Conclusion

Projective representation is not widely used for general computation as it is mostly
considered for as applicable to computer graphics and computer vision field only. In
this paper the equivalence of cross-product and solution of linear system of equations
has been presented. The presented approach is especially convenient for 3-dimensional
and 4 dimensional cases applicable in many engineering and statistical computations,
in which significant speed up can be obtained using SSE instructions or GPU use. Also,
the presented approach enables symbolic manipulation as the solution of a system of
linear equations is transformed to extended cross-product using a matrix form which
enables symbolic manipulations.

Direct application of the presented approach has also been demonstrated on the
barycentric coordinates computation and simple geometric problems.

The presented approach enables avoiding division operations as a denominator is
actually stored in the homogeneous coordinate w. It which leads to significant com-
putational savings, increase of precision and robustness as the division operation is the
longest one and the most decreasing precision of computation.

The presented approach also enables derivation of new and more computationally
efficient formula in other computational fields.
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