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Abstract. The set cover problem is a classical question in combina-
torics, computer science and complexity theory. It is one of Karp’s
21 NP-complete problems shown to be NP-complete in 1972. Several
algorithms have been proposed to solve this problem, based on genetic
algorithms (GA), Particle Swarm Optimizer (PSO) and in recent years
algorithms based in behavior algorithms based groups or herds of ani-
mals, such as frogs, bats, bees and domestic cats. This work presents
the basic features of the algorithm based on the behavior of domestic
cats and results to solve the SCP bi-objective, experimental results and
opportunities to improve results using adaptive techniques applied to
Cat Swarm Optimization. For this purpose we will use instances of SCP
OR-Library of Beasley by adding an extra function fitness to transform
the Beasly instance to Bi-Objective problem.

Keywords: Multiobjective problems · Evolutionary algorithm · Swarm
optimization · Cat swarm optimization · Multiobjective cat swarm
optimization · Pareto dominance

1 Introduction

Optimization problems require complex and optimal solutions because they
relate to distribute limited basic resources. To resolve these problems it means
improving the lives of poor people directly and enabling the growth of businesses,
for example: resources related to social welfare, reaction by natural disasters,
medical distribution capabilities. For these reasons the optimization generates a
wide area of research in the sciences of Operations Research and Computer.

In the last decades bio-inspired algorithms have called the attention of
researchers, in particular the heuristic Particle Swarm Optimization, which is
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based the behavior of some species: Bugs, fish, felines. These species use the
collective intelligence to reach specific objectives guided by some community
member. This paper is focused on studying the heuristic based on the behavior
of domestic cats to solve a classical problem the Set Covering Problem (SCP).

2 Basic Concepts

2.1 Swarm Intelligent

Swarm intelligence (SI) is the collective behavior of independent individuals, that
generate self-organizing, natural or artificial systems. Algorithms based on this
principle are generally composed of simple agents that interact directly, locally,
with simple rules, without centralized control, with interactions with stochastic
components. This interaction between different autonomous agents generates an
“intelligent” behavior, which gives rise to a pattern of global functioning that
is used for optimization of complex mathematical functions. These techniques
are inspired by nature (Bio Inspired), in processes such as ant colonies, schools,
flocks or herds [1–3].

2.2 Multi Objective

Decision problems involves multiple evaluation criteria and generally they are in
conflict [4]. To resolve a multi objective problem it required to optimize multiple
criteria simultaneously. Exists a wide variety of cases in our society, for exam-
ple: vehicle route optimization, environmental problems, allocation of medical
resources [5]. The solution to multi-objective optimization problem it is pre-
sented by a set of feasible solutions, and the best of them define a set of non-
dominated solutions, this set we will call Front. Formally the multi objective
problem is defined as:

min z(x) = [z1(x), z2(x), z3(x), z4(x), ....., zM (x)] (1)

The goal consists in minimizing a function z with M components with a vector
variable x = (x1, . . . , xn) in a universe U, i.e., A solution u dominates v if u
performs at least as well as v across all the objectives and performs better than
v in at least one objective.

The dimensions of the target area corresponding to the number of functions to
optimize. In this single-objective problem is one-dimensional space, since each
decision vector corresponds to only a scalar number. In multi-objective prob-
lems, this is multi-dimensional space, where each dimension corresponds to each
objective function to be optimized [6].

2.3 Pareto Dominance

If we have two candidate solutions u and v from U, vector z(u) is said to dominate
vector z(v) denoted by: z(u)≺ z(v), if and only if:

zi(u) ≤ zi(v), ∀ i ∈ {1, ......,M} (2)
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zi(u) ≤ zi(v), ∃ i ∈ {1, ......,M} (3)

If solution u is not dominated by any other solution, then u is declared as a
Non Dominated or Pareto Optimal Solution. There are no superior solutions to
the problem than u, although there may be other equally good solutions [7,8].

2.4 Hypervolume

When measuring the quality of multi-objective algorithms we consider two
aspects: minimizing the distance of Pareto Front obtained by the algorithm to
Front exact Pareto problem and maximize the spread of solutions on the front
so that the distribution is as uniform possible [6]. Hypervolume is designed to
measure both aspects: convergence and diversity - in a given front. This metric
calculates the volume (in the objective space) covered by members of a given
set, Q, non-dominated solutions to problems where all the objectives are to be
minimized. Mathematically, for each i ∈ Q a hypercube vi is built with a refer-
ence point W and the solution i that define the diagonal thereof. The point W
can be obtained simply with the worst values of the objective functions. Then
the union of all hypercubes is what defines the hypervolume (HV):

HV =
|Q|⋃

i=1

vi (4)

3 Set Covering Problem

SCP is defined as a fundamental problem in Operations Research and often
described as a problem of coverage of m-rows n-columns of a binary matrix by
a subset of columns to a minimum cost [9]. It is one of Karp’s 21 NP-complete
problems. This is the problem of covering the rows of an m-row, n column, zero-
one m x n matrix aij by a subset of the columns at minimal cost. Formally, the
problem can be defined as:
Defining xj = 1 if column j with cost cj is in the solution and xj = 0 otherwise

Minimize Z =
n∑

j=1

cjxj j ∈ {1, 2, 3, ..., n} (5)

Subject to:
n∑

j=1

aijxj ≥ 1 i ∈ {1, 2, 3, ...,m} (6)

xj = {0, 1} (7)

This definition contains a one fitness function, there is just one objective to be
optimized. We study the case for two objective functions, using meta heuristic
Cat Swarm Optimization (CSO) and using position vector of ones and zeros.
A complete case study of SCP using CSO was done Pontificia Universidad
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Cátolica de Valparáıso [10]. This work focuses on solving the SCP with two
fitness functions, i.e., textit M = 2. To ensure the fitness functions have opposed
criteria the second cost vector will be transposed the first, therefore the definition
will be:

c2 = (c1)t (8)

min z(x) = [z1(x), z2(x)] (9)

Minimize Z1 =
n∑

j=1

c1jxj j ∈ {1, 2, 3, ..., n} (10)

Minimize Z2 =
n∑

j=1

c2jxj j ∈ {1, 2, 3, ..., n} (11)

Subject to:
n∑

j=1

aijxj ≥ 1 i ∈ {1, 2, 3, ...,m} (12)

4 Cat Swarm Optimization CSO

4.1 Basic Concepts

A detailed description of the behavior of cats and especially domestic cats may
be revised in [10,11]. This work indicates the specific concepts that control the
behavior of the algorithm. There are importants features in their behavior and
they employ to achieve their goals:

– Seeking mode. Resting but being alert - looking around its environment for
its next move.

– Tracing mode. The cat is moving after its prey.
– The presentation of solution sets. How many cats we would like to use in

the iteration and we must to define a mixture ratio (MR) which dictates the
joining of seeking mode with tracing mode. According to observations, the
cats spend a lot more time resting therefore MR should take a low value to
ensure this feature.

The CSO was originally developed for continuous valued spaces. But there
exist a number of optimization problems, as the SCP, in which the values are not
continuous numbers but rather discrete binary integers. Sharafi et al. introduced
a discrete binary version of CSO for discrete optimization problems: Binary Cat
Swarm Optimization (BCSO) [14]. BCSO is based on CSO algorithm proposed
by Chu, Tsai ann Pan in 2006 [11]. The difference is that in BCSO the vector
position consists of ones and zeros, instead of the real numbers of CSO.
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4.2 Parameters Important

In this paper, we considered the following BCSO parameters as relevant for
our experimentation. We have considered the impact on the results in previous
experiments

– NC: Number of population or pack cats
– MR: Mixture Rate that defines number of cats mode, this parameter must be

chosen between 0 and 1. Define what percentage of cats are in seeking mode
and tracing mode

– Termination condition. Normally is used a number of iterations.
– Adaptative criteria. To get better results usually we choose a parameter mod-

ified to perform the process again. In our work we choose the MR parameter
especially to calculate the front not dominated ranging from 0.1 to 0.9 on
increasing 0.1

4.3 Description of Cat Swarm Optimization - Main Algorithm

The main mechanism used in our experiments was consider as criteria of adaptive
change the mixing ratio. In our experiment It was modified from 0.6 until 0.9
and determined non dominated solution

(a) Create N cats
(b) Initiate MRp in min value (= 0.5)
(c) Create the cat swam, N cats working to solve the problem
(d) Define, randomly the position and velocity for each cat
(e) Distribute the swarm in tracing and seeking mode based on MRp

(f) Check the cat mode, if cat is in Seeking Mode, applay Seekin Mode, else
apply Tracing Mode

(g) Check if the cat is feasible solution (Ec. 11). if the cat satisfies the restriction
compute the fitness (Ec. 9 and Ec.10) and compare with the non dominated
solutions in the archive

(h) Update de solution file
(i) If number iteration less than the max iteration continue work, goto step c
(j) If MRp les than max value MR, increment MRp and go to step b
(k) Calculate the pareto front from non domination file

Below the two main modes are described

4.4 Seeking Mode

The seeking mode corresponds to a global search technique in the search space
of the optimization problem. A term used in this mode is seeking memory pool
(SMP). It is the number of copies of a cat produced in seeking mode.

There are four essential factors in this mode: seeking memory pool (SMP),
seeking range of the selected dimension (SRD), counts of dimension to change
(CDC), and self-position considering (SPC).
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– SMP is used to define the size of seeking memory for each cat. SMP indicates
the points explored by the cat. This parameter can be different for different
cats.

– SRD declares the mutation ratio for the selected dimensions.
– CDC indicates how many dimensions will be varied.
– SPC is a Boolean flag, which decides whether current position of cat

The steps involved in this mode are:

(a) Create T (=SMP) copies of jth cat i.e. Ykd where (1 ≤ k ≤ T ) and (1 ≤ d ≤
D). D is the total number of dimensions.

(b) Apply a mutation operator to Yk.
(c) Evaluate the fitness of all mutated copies.
(d) Update the contents of the archive with the position of those mutated copies

which represent non dominated solutions.
(e) Pick a candidate randomly from T copies and place it at the position of jth

cat.

4.5 Tracing Mode

The tracing mode corresponds to a local search technique for the optimization
problem. In this mode, the cat traces the target while spending high energy.
The rapid chase of the cat is mathematically modeled as a large change in its
position. Define position and velocity of ith cat in the D-dimensional space as
Xi = (Xi1,Xi2,Xi3 . . .XiD) and Vi=(Vi1,Vi2,Vi3 . . .ViD) where (1 ≤ d ≤ D) rep-
resents the dimension. The global best position of the cat swarm is represented
as Xg=(Xg1,Xg2,Xg3 . . .XgD). The steps involved in tracing mode are:

(a) Compute the new velocity of ith cat using (13)

Vid = w ∗ Vid + c ∗ r ∗ (Xgd − Xid) (13)

where
w = is the inertia weight
c = is the acceleration constant
r = is a random number uniformly distributed in the range [0, 1]

(b) Compute the new position of ith cat using

Vid = Xgd − Xid (14)

(c) If the new position of ith cat corresponding to any dimension goes beyond
the search space, then the corresponding boundary value is assigned to that
dimension and the velocity corresponding to that dimension is multiplied by
−1 to continue the search in the opposite direction.

(d) Evaluate the fitness of the cats.
(e) Update the contents of the archive with the position of those cats which

represent no dominated vectors.
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5 The Execution of the Algorithm

1 Load Instance SCP
2 Initiate phase

(a) For to obtein the best Pareto Front: MR = 0, 1...0.99
(b) For Analysis CSO, MR = 0.5
(c) Initiate: SRD, CDC, SPC, w, c1
(d) Define the size file Pareto
(e) Define Iteration number
(f) Define, randomly the position and velocity for each cat

3 Distribute the swarm in tracing and seeking mode based on MR
4 Repeat until iteration number reached

(a) If cat is seeking mode, apply seeking process and return a solution candi-
date

−→
X

(b) If cat is tracing mode, apply seeking process and return a solution candi-
date

−→
X

(c) Check if the
−→
X satisfies the restriction problem:

∑n
j=1 aijXj ≥ 1

(d) Compute
f1 =

∑n
j=1 c1jXj

f2 =
∑n

j=1 c2jXj

(e) Store the position of the cats representing non-dominated solutions in the
archive

5 Calculate the pareto front from non domination file

This algorithm was executed 30 times for each SCP Instance, and the pareto
front was obtained ParetoFront =

⋃30
i=1 (pf)i

6 Experimental Results

The CSO was evaluated using the next features:

Table 1. Parameter values CSO

Name Parameter Value Obs

Number of cats C 30

Mixture ratio MR 0.5

Seeking memory pool SMP 20 -

Probability of Mutation PMO 1 -

Counts of dimensions to change CDC 0,001 -

Inertia weight w 1 -

Factor c1 c1 1 -
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Table 2. Experimentals results

INST HYPER MAX MIN PROM DESV

scp41 0,6223 132,441 109,345 118,84 7,48

scp42 0,6845 156,556 121,211 143,1 10,03

scp43 0,7261 135,3 115,309 125,22 6,53

scp44 0,5804 154,609 129,51 140,53 6,38

scp45 0,7426 134,763 105,963 119,49 9,28

scp46 0,5435 140,833 114,68 134,02 7,41

scp47 0,5172 147,812 126,058 136,42 7,26

scp48 0,7319 135,586 114,344 120,57 7,09

scp49 0,6029 159,194 135,4 148,2 7,13

scp51 0,6156 270,516 247,489 256,56 7,63

scp52 0,6378 282,612 259,742 270,77 7,24

scp53 0,6613 257,966 203,538 229,88 17,42

scp54 0,8511 259,181 212,809 241,01 15,83

scp55 0,5872 234,38 205,496 225,25 9,034

scp56 0,7223 265,601 218,673 238,11 14,736

scp57 0,6036 259,252 234,426 245,85 8,5

scp58 0,6242 270,754 242,436 254,9 9,502

scp59 0,5338 243,13 209,511 227,58 11,928

scp61 0,5992 103,339 81,946 94,31 7,73

scp62 0,6673 100,748 79,064 91,99 8,472

scp63 0,6873 96,555 77,817 86,94 6,077

scp64 0,6363 103,206 78,183 90,4 9,285

scp65 0,6696 101,83 78,088 90,66 7,244

scpa1 0,7834 506,95 463,377 482,7 14,943

scpa2 0,5462 618,465 513,501 559,59 34,738

scpa3 0,5631 517,718 474,45 496,63 13,896

scpa4 0,6269 526,053 469,132 502,76 17,687

scpa5 0,7679 529,614 445,58 488,48 27,499

MAX, MIN, PROM, DESV in sec

1 Using 65 Instances for set covering from OR-Library of Beasley [12]
2 MacBook Pro (13-inch, Mid 2012), CPU MacBook Pro (13-inch, Mid 2012),

16 GB 1333 MHz DDR3, OS X Yosemite, version 10.10.5
3 IDE: BlueJ version 3.1.5 (Java version 1.8.0 31)

The Optimal Pareto Front was estimated individually for each instance vary-
ing the value of MR from 0.1 until 0.9 using an increment 0.1, and we choose
use the hypervolume because is the only one indicator of performance that is
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compatible unary with Pareto dominance and it has been able to demonstrate
that its maximization is equivalent to achieve convergence to the true Pareto
front for a specific value of MR (fig. a) and collectively by varying the value of
MR from 0.5 until 0.9 using an increment 0.1 (fig b). According to the results,
the best result is obtained collectively. The working conditions of the process
were:

1 1.500 iterations for each MR value
2 30 times each Beasly instance
3 Varying MR from 0.5 until 0.9 using an increment 0.1
4 The parameters BCO was obteined from [10,13] and show in Table 1.

Table 2 shows the experimental results for each Beasly Instance. The Optimal
Pareto Front was obtained varying MR from 0.1 until 0.99 and determined by
the union of fronts obtained MR.

In our experiments the best HV was with SCP54 instance, however the worst
HV was with SCP47. If we observe the charts there are zones of the solution
space that they need a better exploration strategy by changing the calculation
(Fig. 1).

250 300 350 400

5,000

5,500

6,000

Z1

Z
2

SCP54, best HV=0,8511

PFcalculated

PFoptimal

Fig. 1. Best HV was with SCP54 instance (Color figure online)
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5,000

5,200

5,400

5,600

Z1

Z
2

SCP47, worst HV=0,5172

PFcalculated

PFoptimal

Fig. 2. Worst HV was with SCP54 instance (Color figure online)

7 Conclusion and Future Work

There are not published results on a SCP Bi Objective using BCSO and we think
the Pareto Front is quite promising considering just we varied only MR. We
also think that applying adaptive mechanisms in other parameters of the CSO
metaheuristic we can improve results. We also believe that this particular CSO
should be compared with genetic and evolutionary algorithms. Within the same
field with metaheuristics highlighted with ants, bees and frogs. The proposed
BCSO is implemented and tested using 65 SCP test instances from the OR-
Library of Beasley. This is first phase of our research. We only work with MR
parameter, however. We think that using adaptive techniques for parameter we
wil improve our results (Fig. 2). The next step:

1 To use adaptive techniques for BCSO parameters to improve HV
2 To obtain a Pareto optimal front using genetic, evolutionary algorithms.

Within the same field with metaheuristics highlighted with ants, bees and
frogs and
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