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Abstract. The Set Covering Problem (SCP) is a matrix that is com-
posed of zeros and ones and consists in finding a subset of zeros and
ones also, in order to obtain the maximum coverage of necessities with
a minimal possible cost. In this world, it is possible to find many
practical applications of this problem such as installation of emergency
services, communications, bus stops, railways, airline crew scheduling,
logical analysis of data or rolling production lines. SCP has been solved
before with different nature inspired algorithms like fruit fly optimiza-
tion algorithm. Therefore, as many other nature inspired metaheuristics
which imitate the behavior of population of animals or insects, Artificial
Fish Swarm Algorithm (AFSA) is not the exception. Although, it has
been tested on knapsack problem before, the objective of this paper is
to show the performance and test the binary version of AFSA applied
to SCP, with its main steps in order to obtain good solutions. As AFSA
imitates a behavior of a population, the main purpose of this algorithm
is to make a simulation of the behavior of fish shoal inside water and it
uses the population as points in space to represent the position of fish in
the shoal.
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1 Introduction

Metaheuristics provide “acceptable” solutions in a reasonable time for solving
hard and complex problems in science and engineering when it is expensive to
find the best solution especially with a computing power limited.

One of the classical problems that Metaheuristics try to solve is Set Covering
Problem (SCP) which consists in finding a set of solutions at the lowest possible
cost, accomplishing with the constraints of a matrix that has zeros and ones,
where each row must be covered of at least one column. In the past, SCP has
been solved with different algorithms such as cultural algorithm [5], fruit fly opti-
mization algorithm [13] or teaching-learning-based optimization algorithm [14].
There are many applications of this problem such as optimal selection of ingot
sizes [25] or assign fire companies to fire houses [26].

The main goal of this paper is to show the performance of Artificial Fish
Swarm Algorithm (AFSA) applied to SCP, previously, it was tested on the knap-
sack problem [19–21]. This algorithm, simulates the behavior of a fish inside the
water which belongs to a shoal and it uses a population of points in space to rep-
resent the position of fish in the shoal. In the original version of AFSA, there are
five main behaviors such as random, chasing, swarming, searching and leaping.
In the following work, it will be showed its simplified version of AFSA in order
to solve SCP. The proposed algorithm has the following steps, initialization of
its population, generation of trial points, the effect-based crossover, dealing with
SCP constraints, selection of a new population, reinitialization of the population,
local search and termination conditions. This method will be tested on each one
of the 70 SCP benchmarks obtained from OR-Library website. These 70 files are
formatted as: number of rows n, number of columns m, the cost of each column
cj , j ∈ {1, . . . , n}, and for each row i, i ∈ {1, ...,m} the number of columns which
cover row i followed by a list of the columns which cover rows i. These 70 files
were chosen in order to solve SCP in an academic and theoretical way.

The remainder paper is organized as follows: In Sect. 2, it will be explained
the set covering problem. In Sect. 3, it is going to be presented the artificial
fish swarm algorithm in general terms. In Sect. 4, It will be showed the AFSA
method and its simplified version in order to solve the SCP with its main steps
for solving this problem and, it is going to be illustrated the proposed algorithm.
In Sect. 5, it will be exposed the experimental results. Finally, in Sect. 6, it is
going to be presented the conclusions of this paper.

2 Set Covering Problem

This is a classical and well-known NP-hard problem. It is a representation of
a sort of combinatorial optimization problem which has many practical appli-
cations in the world such as construction of firemen stations in different places
or installation of network cell phones in order to obtain the maximum coverage
with a minimal possible cost. The SCP can be formulated as follows [1]:
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minimize Z =
n∑

j=1

cjxj (1)

Subject to:
n∑

j=1

aijxj ≥ 1 ∀i ∈ I (2)

xj ∈ {0, 1} ∀j ∈ J (3)

where A = (aij) be a m × n 0–1 matrix with I = {1, . . . ,m} and J = {1, . . . , n}
be the row and column sets respectively. Column j can be covered a row i if
aij = 1. Where cj is a nonnegative value that represents the cost of selecting the
column j and xj is a decision variable, that can be 1 if column j is selected or
0 otherwise. The objective is to find a minimum cost subset S ⊆ J , such that
each row i ∈ I is covered by at least one column j ∈ S.

2.1 How Has It Been Solved Before?

There are two kinds of methods that have been used to solve the SCP. First,
the methods which produce optimal solutions but sometimes need a lot of time
and/or high computational cost. Those methods could be constraint program-
ming, branch and bound or integer linear programming. On the other hand,
there are the metaheuristics that provide “acceptable or good” solutions in
a reasonable time. Even, it is possible to find optimal solutions with many
metaheuristics.

2.2 Metaheuristics that Have Solved SCP

In the past, the SCP was successfully solved with many metaheuristics such
as artificial bee colony [2–4], cultural algorithm [5], swarm optimization parti-
cles [6], ant colony optimization [7], firefly algorithm [8–10], shuffled frog leaping
algorithm [11,12], fruit fly optimization algorithm [13], teaching-learning-based
optimization algorithm [14], or genetic algorithm [15,16,27]. In others works
there are comparisons among different kind of metaheuristics [17], or compar-
isons among different kinds of nature-inspired metaheuristics [18] in order to
solve the SCP.

2.3 Metaheuristics, Bio-Inspired and AFSA

As it mentioned before, one of the main advantage of metaheuristics is to provide
good solutions in a “reasonable” time, especially when the computing resources
are not infinite. On the other hand, metaheuristics not always provide the opti-
mal results. However, in real life not always is required the best known solution
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because this world moves quickly and it is necessary to obtain responses in little
time, for instance, in companies when they try to increase benefits or decrease
costs. Moreover, metaheuristics can be helped by other techniques, according
to [23], such as handling of constraints that problem impose and/or the dimen-
sion reduction of the problem.

Bio-inspired metaheuristics are a sort of metaheuristics and they are meth-
ods that simulate the behavior of a swarm or group of animals. Also, they try
to solve problems of optimization such as maximization or minimization. In this
case, AFSA was created with the intention of solving the knapsack problem
which is a kind of maximization problem. Hence, the proposed work has the
objective of transforming the application of a maximization problem into a min-
imization problem and observe its results because many others nature inspired
metaheuristics have been good results on SCP, as it mentioned above.

3 Artificial Fish Swarm Algorithm

As many other nature inspired metaheuristics which imitate the behavior of
population of animals or insects, AFSA is not the exception. According to [19],
this algorithm was proposed and applied in order to solve optimization problems
and it simulates the behavior of a fish swarm inside the water where a fish
represents a point or a fictitious entity of a true fish in a population and the
swarm movements are randomly.

3.1 Main Behaviors of AFSA

The fish swarm behavior is summarized as follows [19]:

1. Random Behavior: In order to find companion and food, a fish swims
randomly inside water.

2. Chasing Behavior: If food is discovered by a fish, the others in the neigh-
borhood go quickly after it.

3. Swarming Behavior: In order to guarantee the survival of the swarm and
avoid dangers from predatory, Fish come together in groups.

4. Searching Behavior: Fish goes directly and quickly to a region, when that
region is discovered with more food by it. That can be by vision or sense.

5. Leaping Behavior: Fish leaps to look for food in other regions, when it
stagnates in a region.

These five behaviors are the responsible that the artificial fish swarm tries to
search good results. Also, AFSA works with feasible solutions.



170 B. Crawford et al.

3.2 Another Description of AFSA

Additionally to the explanation showed above there is another description of
AFSA which is proposed with more details in [20]. The concept of “visual scope”
is the main concept utilized in that version of AFSA, and it represents how close
is the neighborhood in comparison to a point/fish.

Depending on the position of a point related to the population, there could
occur three situations [20]:

(a) The “visual scope” is empty, and the current point with no other points in
its neighborhood, moves randomly looking for a better region.

(b) When the “visual scope” is not crowded, the current point can move towards
the best point inside the “visual scope”, or, if this best point does not
improve the objective function value it moves towards the central point
of the “visual scope”.

(c) When the “visual scope” is crowded, the current point has some difficulty in
following any particular point, and searches for a better region by choosing
randomly another point (from the “visual scope”) and moving towards it.

The condition that decides when the “visual scope” of the current point is
not crowded and the central point inside the “visual scope” are explained in [20].

3.3 Proposed Algorithm of AFSA Binary Version

Before of applying AFSA on SCP, it is necessary to show the binary version of
this algorithm which was proposed by [19], but it was applied on the knapsack
problem. That algorithm is the following:

Algorithm 1. Binary version of AFSA
1: Set parameter values
2: Set t = 1 and randomly initialize x i,t, i = 1, 2, ..., N
3: Perform decoding and evaluate z. Identify xmax and zmax

4: if Termination condition is met then
5: Stop
6: end if
7: for all x i,t do
8: Calculate"visual scope" and "crowding factor"
9: Perform fish behavior to create trial point y i,t

10: Perform decoding to make the trial point feasible
11: end for
12: Perform selection according to step 4 to create new current points
13: Evaluate z and identify xmax and zmax

14: if t%L = 0 then
15: Perform leaping
16: end if
17: Set t = t + 1 and go to step 4
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4 Artificial Fish Swarm Algorithm and Its Simplified
Binary Version

In this section, it is going to be showed the main steps of AFSA and its simplified
binary version in order to solve SCP. According to the authors [21] AFSA converges
to a non-optimal solution in previous versions like [20]. Therefore, there were pro-
posed some modifications of AFSA and they were slightly modified in order to solve
SCP.

4.1 Features that Were Modified in AFSA

In [21] the main modifications were: the “visual scope” concept was rejected; The
behavior depends on two probability values; Swarming behavior is never utilized;
An effect-based crossover is used instead of an uniform crossover in different
behaviors to create trial points; A local search with two steps was implemented;
Among other modifications that are explained with more details in [21]. Also, it
was introduced a repair function for handling the SCP constaraints.

Next, it will be explained the steps of AFSA in order to obtain SCP results.

4.2 Initialization of Population

As many other metaheuristics, it is necessary to initialize the population with
objective to find good solutions. Therefore, the best representation of a popula-
tion is N current points, x i, where i ∈ {1, 2, ..., N} each one represented by a
binary string of 0/1 bits of length n and are randomly generated.

4.3 Generation of Trial Population

This metaheuristic works with a trial population at each iteration. So, in order
to create trial points in consecutive iterations based on behaviors of random,
chasing, and searching is necessary utilize crossover and mutation after the ini-
tialization of population. In [21] probabilities of 0 ≤ τ1 ≤ τ2 ≤ 1 were introduced
and they are the responsible to reach this objective.

Random Behavior: If a fish does not have companion in its neighborhood,
then it moves randomly looking for food in another region [21]. This happens
when a random number rand(0, 1) is less than or equal to τ1. The trial point y i

is created randomly setting 0/1 bits of length n [21].

Chasing Behavior: When a fish, or a group of fish in the swarm, discover
food, and the others go quickly after it [21]. This happens when rand(0, 1) ≥ τ2
and it is related to the movement towards the best point found so far in the
population, xmin. The trial point y i is created using an effect-based crossover
(see Algorithm 2) between x i and xmin [21].
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Searching Behavior: When fish discovers a region with more food, by vision or
sense, it goes directly and quickly to that region [21]. This behavior is related to
the movement towards a point x rand where “rand” is an index randomly chosen
from the set {i = 1, 2, ..., N}. When τ1 < rand(0, 1) < τ2 it is implemented. An
effect-based crossover between x rand and x i is utilized to create the trial point
y i [21].

Trial Point Corresponding to the Best Point: In [21], the 3 behaviors
explained above are implemented to create N − 1 trial points; the best point
xmin uses a 4 flip-bit mutation. It is performed on the point xmin to create
the corresponding trial point y i. In this operation 4 positions are randomly
selected, and the bits of the corresponding positions are changed from 0 to 1 or
vice versa [21].

4.4 The Effect-Based Crossover in Simplified Binary Version
of AFSA

In order to obtain the trial point in chasing and searching behavior, it necessary
to calculate the effect ratio ERu,xi of u on the current point x i, according
to [21]. It can obtain with the following two formulas:

ERu,xi =
q(u)

q(u) + q(xi)
(4)

q(xi) = exp[
−(z(xmin) − z(xi))
(z(xmin) − z(xmax))

] (5)

u = xmin is used with chasing behavior, u = x rand is used with search-
ing behavior and xmax is the worst point of the population. The effect-based
crossover to obtain the trial point y i is showed in Algorithm 2 according to [21].

Algorithm 2. Effect-based crossover
Require: current point x i, u and ER

u, xi

1: for j = 1 to n do
2: if rand(0, 1) < ER

u, xi then

3: yi
j = uj

4: else
5: yi

j = xj

6: end if
7: end for
8: return trial point yi

4.5 Deal with Constraints of SCP

In order to obtain good results, it is necessary to introduce an appropriate
method that helps with SCP constraints. Therefore, it is going to be showed
a repair function for handling the SCP constraints in the Algorithm 3. Accord-
ing to [23], Algorithm 3 shows a repair method where all rows not covered are
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identified and the columns required are added. Hence, in this way all the con-
straints will be covered. The search of these columns are based in the relationship
showed in the next equation.

cost of one column

amount of columns not covered
(6)

Once the columns are added and the solution is feasible, a method is applied
to remove redundant columns of the solution. The redundant columns are those
that are removed, the solution remains a feasible solution. The algorithm of this
repair method is detailed in the Algorithm 3. Where:

(a) I is the set of all rows
(b) J is the set of all columns
(c) Ji is the set of columns that cover the row i, i ∈ I
(d) Ij is the set of rows covered by the column j, j ∈ J
(e) S is the set of columns of the solution
(f) U is the set of columns not covered
(g) wi is the number of columns that cover the row i,∀i ∈ I in S

Algorithm 3. Repair Operator for Dealing with SCP Constraints
1: wi ←| S ∩ Ji | ∀i ∈ I;
2: U ← {i | wi = 0}, ∀i ∈ I;
3: for i ∈ U do
4: find the first column j in Ji that minimize

cj
|U∩Ij | S ← S ∩ j;

5: wi ← wi + 1, ∀i ∈ Ij ;
6: U ← U − Ij ;
7: end for
8: for j ∈ S do
9: if wi ≥ 2, ∀i ∈ Ij then
10: S ← S − j;
11: wi ← wi − 1, ∀i ∈ Ij ;
12: end if
13: end for

4.6 Selection of New Population

The new population is selected between trial population and current population.
Each trial point contends against the current point, therefore, if z(y i) ≤ z(x i),
then the trial point becomes a member of the new population to the next itera-
tion; otherwise, the current point is maintained to the next iteration, according
to [21].

xi,t+1 =

⎧
⎨

⎩

y i,t if z(y i,t) ≤ z(x i,t), i = 1, 2, ..., N

x i,t otherwise
(7)
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4.7 Reinitialization of Current Population

In [21], Every certain iterations, this metaheuristic replaces the population of the
last iteration with a new population to the next iteration. Therefore, utilizing the
same values, it will be done a randomly reinitialization of 50 % of the population
at every R iterations, where R is a positive integer parameter.

4.8 Exploitation or Local Search

Exploitation is related to leaping behavior of AFSA. So, according to the
authors [21], in oder to obtain better solutions and improve old versions of AFSA,
the concept of exploitation/local search was utilized and its purpose is to find
better solutions when the method obtains the same solution as the iterations
pass. This is based on a flip-bit mutation which Nloc points are selected ran-
domly from the population, where Nloc = τ3N with τ3 ∈ (0, 1). This mutation
changes the bit values of those points from 0 to 1 and vice versa according to pm

probability. After that, those new points are made feasible by using the repair
function of SCP explained in Sect. 4.5. Then they become members of the pop-
ulation, if they improve zmin at that moment. Afterwards, the best point of the
population is identified and another mutation is operated on Nref positions, with
Nref = τ3n, those positions are randomly selected from the point [21]. Then it
becomes a member of the population, if it improves zmin at that moment. This
mutation is used L times, where L is s a positive integer parameter.

4.9 Conditions to Finish the Algorithm

As many other metaheuristics, it is necessary to stop this metaheuristic when it
is almost impossible to find a better solution and it is unnecessary continuing
wasting the computational resource. Therefore, in accordance with [21], AFSA
terminates when the known optimal solution is reached or a maximum number
of iterations, Tmax, is exceeded.

t > Tmax or zmin ≤ zopt (8)

where zmin is the best objective function value attained at iteration t and zopt

is the known optimal value available in the literature.

4.10 AFSA-SCP Proposed Algorithm

After showing the main steps of this algorithm, it is going to show the proposed
algorithm by mean of two tools. First, the flow chart of this algorithm in Fig. 1.
Then it will be showed the pseudocode of the proposed method which is shown
in Algorithm 4 and it has the appropriate modifications in order to solve SCP.
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Fig. 1. Flow Chart AFSA



176 B. Crawford et al.

Algorithm 4. AFSA applied to SCP
Require: Tmax and zopt and other values of parameters

1: Set t = 1 Initialize population x i,t, i = 1, 2, ..., N
2: Execute SCP repair function in order to evaluate the population, identify xmin and zmin

3: while t ≤ Tmax or zmin ≥ zopt do
4: if t%R = 0 then
5: Reinitialize 50 % of the population, keeping xmin and zmin

6: Execute SCP repair function in order to evaluate population, identify xmin and
zmin

7: end if
8: for i = 1 to N do
9: if i = xmin then
10: Execute 4 flip-bit mutation to create trial point y i,t

11: else
12: if rand(0, 1) ≤ τ1 then

13: Execute random behavior to create trial point y i,t

14: else if rand(0, 1) ≥ τ2 then

15: Execute chasing behavior to create trial point y i,t

16: else
17: Execute searching behavior to create trial point y i,t

18: end if
19: end if
20: end for
21: Execute SCP repair function in order to evaluate and get y i,t, i = 1, 2, ..., N and

evaluate them
22: Select new population x i,t+1, i = 1, 2, ..., N
23: if t%L = 0 then
24: Execute exploitation/local search - leaping behavior
25: Identify xmin and zmin

26: end if
27: Set t = t + 1
28: end while
29: return xmin and zmin

5 Experimental Results

After many experiments, it is going to be showed the obtained results after
performing AFSA to solve SCP. At the final of this section it is possible to find
the Tables 1 and 2, which shows the results of SCP with more details.

In other related works, algorithms were run 30 times for each instance, also
it is an accepted number in the literature. Therefore, this algorithm proposed
was run with that number of times. Moreover, this algorithm needs almost 20 h
to analyze the last 10 files, sets from NRG to NRH, because each one has a
matrix with a big dimension, great deal of rows and columns. That should not be
considered a problem in academic area but that could be considered a problem
if it is applied in a real problem due to the big quantity of hours.

This algorithm tested the 70 data files from the OR-Library, 25 of them are
the instance sets 4, 5, 6 was originally from Balas and Ho [22], the others 25, the
sets A, B, C, D, E from Beasley [23] and 20 of these data files are the test problem
sets E, F, G, H from Beasley [24]. These 70 files are formatted as: number of
rows n, number of columns m, the cost of each column cj , j ∈ {1, . . . , n}, and
for each row i, i ∈ {1, ...,m} the number of columns which cover row i followed
by a list of the columns which cover rows i.
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Table 1. Experimental results of SCP benchmark sets (4, 5, 6, A, B, C, D, E, NRE,
NRF, NRG and NRH)

Number NumberofF iles Instance ARPD

1 10 4 0,84

2 10 5 0,83

3 5 6 0,78

4 5 A 1,83

5 5 B 2,92

6 5 C 2,29

7 5 D 3,65

8 5 E 0,0

9 5 NRE 4,93

10 5 NRF 7,16

11 5 NRG 5,82

12 5 NRH 6,72

This algorithm was implemented in Java programming language, using
Eclipse IDE, with the following hardware: Intel core i5 dual core 2.60 GHz proces-
sor, 8 GB RAM and it was run under OSX Yosemite.

Finally, the program was executed only with feasible solutions, with a pop-
ulation of N = 20 fish, probability τ1 = 0.1, probability τ2 = 0.9, probability
τ3 = 0.1, probability pm = 0.1, L = 50, reinitialization of population R = 10
and each trial was run 1000 iterations, and 30 times each one. After obtained all
results, it was obtained the averages values from these 30 times for each one of
the files.

Table 1 shows an overview of all sets. It contains the instance number, set
number and ARPD which is an average of the deviation of the objective value
(best known solution). With these results, it is possible to show that the best
results which have an ARPD minor to 1%, are the groups 4, 5, 6 and E, and due
to that reason they were selected because they have better results in comparison
with other benchmark groups. Hence, Table 2 shows the best results obtained
where the first column is the number of experiment of each instance, the second
column Instance indicates each benchmark evaluated, and Zopt shows the best
known solution value of each instance. The next columns Zmin, Zmax, Zavg rep-
resents the minimum, maximum among minimums, and average of minimums
solutions obtained. The last column reports the relative percentage deviation
RPD which represents the deviation of the objective value or best known solu-
tion fopt from fmin which is the minimum value obtained for each instance.
RPD was calculated as follows:

RPD =
100(fmin − fopt)

fopt
(9)



178 B. Crawford et al.

Table 2. Experimental results of SCP benchmark sets (4, 5, 6 and E)

Number Instance Zopt Zmin Zmax Zavg RPD

1 4.1 429 430 445 437,4 0,23

2 4.2 512 515 546 530,83 0,59

3 4.3 516 519 543 528,27 0,58

4 4.4 494 495 532 514,83 0,20

5 4.5 512 514 536 521,73 0,39

6 4.6 560 565 597 580,9 0,89

7 4.7 430 432 447 437,37 0,47

8 4.8 492 492 514 501,73 0,0

9 4.9 641 658 688 669,8 2,65

10 4.10 514 525 559 539,6 2,14

11 5.1 253 254 271 263,03 0,40

12 5.2 302 310 318 314,27 2,65

13 5.3 226 228 244 232,77 0,88

14 5.4 242 242 247 244,77 0,0

15 5.5 211 212 215 212,6 0,47

16 5.6 213 214 242 227,77 0,47

17 5.7 293 299 315 307,9 2,05

18 5.8 288 291 313 298,97 1,04

19 5.9 279 279 296 285,73 0,0

20 5.10 265 266 276 272,07 0,38

21 6.1 138 138 153 146,37 0,0

22 6.2 146 149 156 151,97 2,05

23 6.3 145 145 161 149,63 0,0

24 6.4 131 131 137 134,17 0,0

25 6.5 161 164 181 172,67 1,86

26 E.1 5 5 6 5,87 0,0

27 E.2 5 5 6 5,5 0,0

28 E.3 5 5 6 5,2 0,0

29 E.4 5 5 6 5,7 0,0

30 E.5 5 5 6 5,57 0,0

6 Conclusions

AFSA optimization has a good performance with some instances. It has been
observed that sets 4, 5, 6 and E obtained each one an ARPD minor to 1 %, and
sets A,B,C,D obtained an ARPD minor to 4 %. Then with the last 20 instances
the results of ARPD start to decrease. Due to that reason sets 4, 5, 6 and E were
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selected because they have better results in comparison with other benchmark
groups and their results were showed in Table 2. Moreover, in comparison to
other metaheuristics such as Artificial Bee Colony Algorithm [4], Binary Firefly
Algorithm [8] or Genetic Algorithm [27], the results of AFSA are similar with
sets 4, 5, 6 and E and worse than the other groups. For this reason, this technique
requires more study.

It was observed that in the first 200 iterations, this algorithm converges
quickly to very good solutions or optimal solutions in some cases. Between 200
and 1000 iterations, sometimes, the algorithm can obtain a slightly better results
if it does not obtain the optimal result before but in other cases it maintain the
same result reached at first 200 iterations. Therefore, It could be possible that
it is necessary more than 1000 iterations and/or find a better configuration of
parameters to obtain the optimal results or closest to the optimal in all instances.
Thus, reduce the variability in its results.

Another characteristic that was observed is that AFSA requires a lot of
processing time with some benchmarks, especially the last 10 files, sets from
NRG to NRH need almost 20 h. Therefore, It could be possible that it is
necessary to introduce a the technique of the dimension reduction of the problem
in order to reduce the processing time.

Although, this paper showed that this algorithm is a good way to solve
SCP with feasible solutions, in a binary domain. An interesting future work is
to apply other versions of AFSA on SCP or making a comparison among the
different versions of AFSA.
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