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Abstract. The research on Artificial Intelligence and Operational
Research has provided models and techniques to solve many industrial
problems. For instance, many real life problems can be formulated as a
Set Covering Problem (SCP). The SCP is a classic NP-hard combina-
torial problem consisting in find a set of solutions that cover a range of
needs at the lowest possible cost following certain constraints. In this
work, we use a recent metaheuristic called Biogeography-Based Opti-
mization Algorithm (BBOA) inspired by biogeography, which mimics
the migration behavior of animals in nature to solve optimization and
engineering problems. In this paper, BBOA for the SCP is proposed.
In addition, to improve performance we provide a new feature for the
BBOA, which improve stagnation in local optimum. Finally, the exper-
iment results show that BBOA is a excellent method for solving such
problems.

Keywords: Biogeography-Based Optimization Algorithm · Set Cover-
ing Problem · Metaheuristics

1 Introduction

Different solving methods have been proposed in the literature to solve Combi-
natorial Optimization Problems. Exact algorithms are mostly based on Branch-
and-Bound and Branch-and-Cut techniques, Linear Programing and Heuristic
methods [2,16]. However, these algorithms are rather time consuming and can
only solve instances of very limited size. For this reason, many research efforts
have been focused on the development of heuristics to find good results or near-
optimal solutions within a reasonable period of time.

In Artificial Intelligence (AI) heuristics are used, that in a very generic way,
is a set of techniques or methods for solve a problem more quickly, finding an
approximate solution when classic methods fail to find any exact solution. From
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this point of view, the heuristic is a procedure which tries to give good solutions,
with quality and good performance.

Metaheuristics, as the prefix says, are upper level heuristics. They are intelli-
gent strategies to design or improve general heuristic procedures with high per-
formance. In their original definition, metaheuristics are general purpose approx-
imated optimization algorithms; they find a good solution for the problem in a
reasonable time (not necessarily the optimal solution). They are iterative proce-
dures that smartly guide a subordinate heuristic, combining different concepts
to suitably explore and operate the search space. Over time, these methods have
also come to include any procedures that employ strategies for overcoming the
trap of local optimum in complex solution spaces, especially those procedures
that utilize one or more neighborhood structures as a means of defining admis-
sible moves to transition from one solution to another, or to build or destroy
solutions in constructive and destructive processes.

To get good solutions, any search algorithm must establish an adequate bal-
ance between two overlayed process characteristics:

– Intensity: Effort put on local space search (space exploitation).
– Diversity: Effort put on distant space search (space exploration).

This balance is needed to quickly identify regions with good quality solutions
and to not spend time in promising or visited regions.

The metaheuristics are categorized based on the procedures types which it
refers. Some of the fundamental types of metaheuristics are:

– Constructive heuristics: Start from an empty solution and go adding compo-
nents until a solution is built.

– Trajectory methods: Start from an initial solution and then, iteratively, try
to replace it with a better one from their neighborhood.

– Population-based methods: Iteratively evolve a solution-population.

One of the fairly new and existing metaheuristics is the Biogeography-Based
Optimization Algorithm (BBOA). It is based on the behavior of natural migra-
tion of animals, considering emigration, immigration and mutation factors. This
is a population algorithm for binary and real problems, and it’s useful for maxi-
mizing and minimizing problems [28]. In general, BBOA is based on the concept
of Habitat Suitability Index (HSI) which it is generated from the characteristics
of an habitat, where the habitat that has better characteristics have a higher HSI
and worst features, lower HSI. It is also considered that the more HSI have an
habitat, more species inhabit it, contrary to lower HSI [28,36]. Each habitat also
has a single rate of immigration, emigration and mutation probabilities, which
come from the habitat number of species.

This metaheuristic is applied for solving the Set Covering Problem (SCP),
whose aim is to cover a range of needs at the lowest cost, following certain restric-
tions on the context of the problem where the needs are constraints. SCP can be
applied for location services, selection of files in a database, simplifying boolean
expressions, slot allocation, among others [3]. Currently, there is extensive litera-
ture on methods for SCP resolutions. They are the exact methods as mentioned
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in [2,16], and heuristic methods to solve a range of problems such in [21]. In case
of SCP, this is solved by a variety of heuristics, so there is considerable litera-
ture. Among the metaheuristics that has tried to solve the SCP, they are: hybrid
algorithms [15], hybrid ant algorithm [13], binary cat swarm optimization [7],
bat algorithm [10], cuckoo search [30], artificial bee colony algorithm [8], binary
firefly algorithm [11], among others.

BBOA has been used to solve other problems of optimization, among them
are the classic and one of the most important optimization problems: The Trav-
eling Salesman Problem of NP-hard class, which it is to find the shortest route
between a set of points, visiting them all at once and returning to the starting
point [26]. This was solved by using BBOA in [25], demonstrating that behaves
very effectively for some combinations of optimization and even outperforms
other traditional methods inspired by nature. Also, BBOA has been used to
solve constraint optimization problems such as in [23], where indicate that BBO
generally performs better than Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO) in handling constrained single-objective optimization prob-
lems. Undoubtedly, the BBOA is a method that may have great potential to
solve the SCP.

The remaining of this document is structured as follows: a description of the
SCP, then the technique (BBOA) used to solve SCP. Then, the changes to the
algorithm to relate and integrated at problem. Subsequently, results of experi-
ments comparing with known global optimums and, finally, the corresponding
conclusions.

2 Set Covering Problem

The Set Covering Problem is a popular NP-hard problem [19] that has been
used to a wide range of airlines and buses crew scheduling [29], location of
emergency facilities [32], railway crew management [5], steel production [33],
vehicle scheduling [18], ship scheduling [17], etc.

The SCP consists of finding a set of solutions which covers a range of needs
at the lowest cost. In a zero-one matrix view (aij), the needs correspond to m-
rows (constraints), while the whole solution is the selection of n-columns that
optimally cover the rows. Among the real-world applications in which it applies
are: location of emergency facilities, steel production, vehicle routing, network
attack or defense, information retrieval, services location, among others [3].

The SCP was also successfully solved with metaheuristics such as taboo
search [6], simulated annealing [4,31], genetic algorithm [20,22,24], ant colony
optimization [1,24], swarm optimization particles [9], artificial bee colony [12,35]
and firefly algorithms [14].
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2.1 Formal Definition

The SCP is mathematically modeled as follows.

MinimizeZ =
n∑

j=1

cjxj . (1)

Subject to:

n∑

j=1

aijxj ≥ 1 ∀i ∈ {1, 2, 3, ...,m}

xj ∈ {0, 1} ∀j ∈ {1, 2, 3, ..., n}. (2)

where Eq. (1) minimizes the number of sets, analogous to obtain the minimum
cost (cj). Subject to Eq. (2), ensuring that each m-row is covered by at least one
n-column. Where the domain constraint xj is 1 if the column belongs to solution
and 0 otherwise.

3 Biogeography-Based Optimization Algorithm

Biogeography studies the migration between habitats, speciation and extinction
of species. Simon (2008) proposes the BBOA by mathematical models of bio-
geography made in the 1960s [28]. This says that areas that are well adapted as a
residence for biological species have a high HSI. Some features are related to this
index; precipitation, vegetation diversity, diversity of topography, land surface
and temperature. Variables that characterize the habitability are called Suitabil-
ity Index Variables (SIV). SIVs can be considered the independent variables of
the habitat, and HSI can be considered the dependent variable [28].

Then, based on the species number, it is possible to predict the rate of immi-
gration and emigration: habitats that are more HSI have higher rate of emi-
gration, since the big population causes that species migrate to neighboring
habitats. They also have a low inmigration rate because they are already nearly
saturated with species. Furthermore, habitats with a low HSI have a high species
immigration rate because of their sparse populations and a high rate of emigra-
tion, as conditions cause rapid way or species extinction. This behavior is shown
in Fig. 1.

Where I and E are the highest rates of immigration and emigration, the same
for simplicity. Smax, the maximum amount of species and S0 the equilibrium
number of species. Finally, λ is the inmigration rate and μ is the emigration
rate. k is the habitat species number.

3.1 Migration Operator

As mentioned in biogeography, species can migrate between habitats. In BBO,
the characteristics of the solutions may affect others and themselves, using immi-
gration and emigration rates to share information between them probabilistically.
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Fig. 1. Species model of a single habitat

In BBOA and based on Fig. 1, immigration curve is used to probabilistically
decide whether or not to immigrate each feature in each solution. If a char-
acteristic of solution is selected to immigrate, a solution to migrate one of its
features are probabilistically selected randomly. Based on above description the
main steps in the BBOA are detailed in Algorithm 1. Also, note that “probabil-
ity λi” and “probability μj” are a random number (0 to 1) compared with the
respective rate.

Algorithm 1. Migration operator
1: {N the size of the population}
2: for i=1 to N do
3: Select Hi with probability λi

4: if Hi is selected then
5: {D the solution length}
6: for k=1 to D do
7: Select Hj with probability μj

8: if Hj is selected then
9: Select random k ε [1, D]

10: Set Hik = Hjk

11: end if
12: end for
13: end if
14: end for

We note that the best solutions are the least likely to immigrate characteris-
tics, since immigration rates are lower. Opposite of this the solutions with lower
fitness are more likely to immigrate, given their high rates of immigration. How-
ever, the solutions they provide to their emigration to these worst solutions are
those having good fitness for its high rate of emigration [36].
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3.2 Mutation Operator

A natural habitat may be affected by cataclysmic events drastically changing its
HSI. This could cause a count of species that is different from its equilibrium
value (species arriving from neighboring habitats, diseases, natural disasters and
others). Thus, the HSI of habitat could suddenly change due to random events.
In BBOA likely number of species (Ps) is used to determine mutation rates.
These are determined by the balance between immigration and emigration rates
(Fig. 1) as a balance between these rates, the probability that S number of species
is greater: immigrating species at a rate that is similar to the number of species
that migrate in the same habitat. Given that, the best and worst habitats are
less likely to have S number of species. This is mentioned in detail in [28]. Then,
the mutation rate is calculated as Eq. (3)

m(s) = mmax

(
1 − Ps

Pmax

)
, (3)

where mmax is a maximum probability of mutation given by parameter, and
Pmax the probability of S maximum existing. Then, the algorithm2 explain
this operator: where for each habitat the probability of S species is calculated,
and then for each feature if selected to be mutated by this probability, it is
replaced with another SIV random.

Algorithm 2. Mutation Operator
1: {M the size of the solution}
2: for j=1 to M do
3: Calculate probability of mutation Pi based on (3)
4: Select SIV Hi(j) with probability Pi(j)
5: if Hi(j) is selected then
6: Replace Hi(j) with a randomly generated SIV.
7: end if
8: end for

Note that in binary problems, the mutation operator to exchange a SIV does
so that Hi(j) = 1 − Hi(j) [36]

3.3 Algorithm Description

The features and steps are described in general terms of the BBOA:

1. Initialize parameters. Mapping SVI and habitats according to problem solu-
tions. Initialize a maximum of species Smax (for simplicity, matching with
the size of the population); immigration, emigration and mutation maximum
rates. An elitist parameter to save the best solutions.

2. Initialize set of habitats, where each habitat corresponds to a possible solution
of the problem.
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3. For each habitat, calculate the HSI and accordingly, the number of species
(A greater HSI, the greater the number of species). Then calculate rates of
immigration and emigration.

4. Probabilistically using rates of immigration and emigration to modify habitats
(Migration operator).

5. For each habitat, update the probability of number of species. Then mutate
based on their probability of mutation (Mutation Operator).

6. Back to step 3 and finish until a stopping criterion is satisfied.

Note that after each habitat is modified (steps 2, 4, and 5), its feasibility as
a problem solution should be verified. If it does not represent a feasible solution,
then some method needs to be implemented in order to map it to the set of
feasible solutions [28].

4 Biogeography-Based Optimization Algorithm
for the SCP

After the description of the problem and the technique to use, finally it continues
with the implementation and adaptation of BBOA to obtain acceptable results
for the SCP.

4.1 General Considerations

As general considerations of the algorithm implementation, we can highlight:

– The long (SIVs) of each solution is the same size as the amount of costs
instance of SCP.

– Repair function for infeasible solutions is used.
– A parameter of elitism, which stores the 2 solutions with the lowest cost over

the generations is used.
– The stop criterion is a maximum number of generations.
– We use an optimized stagnation in local optimum by a created method for

this purpose.

4.2 Fitness

An important point of the implemented algorithm is the calculation of the HSI,
also called fitness in other population optimization algorithms. BBOA indicates
that greater HSI solutions are best; and lower HSI, the worst. In addition, these
estimates based on the costs of the problem being optimized. This contradicts
the SCP, since this is minimization. It must find a solution with the lowest cost;
therefore, lower cost solution is the best. Given that the fitness is calculated as:

HSI =
1

total cost solution
(4)

Thus, at lower cost, the greater the value of the HSI. And higher cost, lower it.
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4.3 Repair Infeasible Solutions

Due to changes in the solution features, some of these may be unfeasible for
the instance of SCP; this means that the solution generated not comply with
constraints. To resolve this problem, repair function is used. The repair is based
on analyzing the solution in each constraint (row) verifying the feasibility; i.e.,
occurs at least one active column covering the restriction. If not exists a column
that covers the row, then it is considered infeasible. To fix this, sought and acti-
vated columns from unfeasible rows with lower cost that will make the solution
becomes feasible.

4.4 Delete Redundant Columns

Other technique for improving solutions is delete redundant columns [27]. A col-
umn is considered as redundant, w.r.t a given solution, if after deleting it the
solution remains feasible. Therefore, we check the columns of the solution to
find possible removals. With this, the solutions costs is reduced without losing
feasibility.

4.5 Optimize Stagnation in Local Optimum

In BBOA, a very high maximum mutation rate allowed varied solutions, affecting
the cost of these. For this, the value in parameter tends to lower numbers (0.0005
to 0.004 approximately). In the convergence of the BBOA, solutions generally
stagnate in a local optimum, losing valuable iterations. When this happens, we
created and applied a method that increase the maximum mutation rate, adding
diversity and avoiding long stagnation.

The maximum rate of mutation should be increased to allow for new solu-
tions when there is stagnation. For this, we calculated a percentage of 10 % of
deadlock over the missing iterations. If this is true, the maximum mutation rate
is increased in a 0.0009 over the rate (the latter parameter value subject to more
experimentation). Then, if the percentage of stagnation continues to increase
up to 20 %, the rate increases again and so that the local optimum change. By
applying this method, the maximum mutation rate, which is a fixed parameter
of BBOA, becomes variable.

We created this method over experimentation, nothing improvements in
results. The values mentioned in this section, are very subject to more experi-
mentation, since they could improve much more the solutions and avoiding the
stagnation.

5 Experiments and Results

For the experiments, the optimization algorithm was implemented in Java pro-
gramming language. In addition, they were carried out on a laptop with Windows
8.1 operating system, Intel Core i3 2.50 GHz with 6 GB of RAM. Moreover, we
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Table 1. Results of preprocessed instances experiments - Problem Set 4

Instance Optimal Best R Worst R Average

mscp41 429 430 433 430,83

mscp410 514 514 519 516,53

mscp42 512 512 512 512,00

mscp43 516 516 521 516,53

mscp44 494 495 495 495,00

mscp45 512 514 517 516,50

mscp46 560 560 570 561,47

mscp47 430 430 433 431,73

mscp48 492 493 499 498,20

mscp49 641 641 656 646,07

Table 2. Results of preprocessed instances experiments - Problem Set 5

Instance Optimal Best R Worst R Average

mscp51 253 253 263 255,70

mscp510 265 265 267 265,87

mscp52 302 305 307 305,70

mscp53 226 226 230 228,07

mscp54 242 242 243 242,37

mscp55 211 211 212 211,50

mscp56 213 213 216 213,57

mscp57 293 293 301 294,53

mscp58 288 288 299 289,13

mscp59 279 279 287 280,27

used preprocessed [34] instances for SCP, obtained from OR-Library [3]. The
table columns are formatted following: the first, for instance executed; the sec-
ond, the global optimum known; the third best result obtained; fourth worst
result and in the fifth the average of the results obtained.

The next parameters, obtained through experimentation was used: Popula-
tion size = 15, maximum mutation probability = 0.004, maximum immigration
probability = 1, maximum emigration probability = 1 and a maximum number
of iterations = 6000. Each instance was executed 30 times. We divide the results
on instances set. This can be seen in Tables 1, 2, 3, 4, 5, 6, 7 and 8.

Given the above results, we can see an excellent performance with the pre-
processed instances. Getting the global optimum in 41 of 48 instances, and low
cost average. Furthermore, thanks to the preprocessed method, this instances
allow numerous experiments because to the speed of execution.
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Table 3. Results of preprocessed instances experiments - Problem Set 6

Instance Optimal Best R Worst R Average

mscp61 138 138 148 142,57

mscp62 146 146 151 149,90

mscp63 145 145 148 146,60

mscp64 131 131 134 131,10

mscp65 161 161 169 164,83

Table 4. Results of preprocessed instances experiments - Problem Set A

Instance Optimal Best R Worst R Average

mscpa1 253 253 258 255,33

mscpa2 252 252 261 255,73

mscpa3 232 232 239 234,00

mscpa4 234 234 235 234,60

mscpa5 236 236 238 236,70

Table 5. Results of preprocessed instances experiments - Problem Set B

Instance Optimal Best R Worst R Average

mscpb1 69 69 75 70,37

mscpb2 76 76 80 76,50

mscpb3 80 80 82 80,77

mscpb4 79 79 83 80,53

mscpb5 72 72 74 72,13

Table 6. Results of preprocessed instances experiments - Problem Set C

Instance Optimal Best R Worst R Average

mscpc1 227 227 233 229,93

mscpc2 219 219 225 221,13

mscpc3 243 248 255 250,40

mscpc4 219 219 227 221,20

mscpc5 215 215 218 216,83
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Table 7. Results of preprocessed instances experiments - Problem Set D

Instance Optimal Best R Worst R Average

mscpd1 60 60 62 60,27

mscpd2 66 66 69 67,43

mscpd3 72 72 76 73,83

mscpd4 62 62 65 63,37

mscpd5 61 61 64 61,57

Table 8. Results of preprocessed instances experiments - Problem Set NR

Instance Optimal Best R Worst R Average

mscpnre1 29 29 32 29, 63

mscpnrf1 14 14 15 14, 47

mscpnrg1 176 177 190 181, 77

6 Conclusion

After analyzed the problem and the technique to solve it, the algorithm is imple-
mented, showing good results with full experiments; finding some low-cost solu-
tions and low average cost. We created and implemented a technique that occur
very good behavior in the algorithm, adding diversity and avoiding long stagna-
tion. This, together with delete redundant columns and a simple repair method,
allowed improve the results and algorithm performance. This type of algorithm
modifications were made in order to obtain better quality results, shown results
with 41 optimum solutions of 48 instances, including big instances.

Undoubtedly, new methods applied had great impact on the quality of results,
due to the native algorithm not shown as good behavior. We could carry out more
experiments, with new good repair methods, since even a basic repair method
is used; as to find more precise parameters in the change of maximum mutation
rate or BBOA input. This could generate a full optimum table. Finally, we can
say that BBOA is very good to solve the SCP.
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