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Abstract. Reliability-based optimization of a network topology is to
maximize the network reliability within certain constraints. For mod-
eling of unrelaible networks we use random graphs due to their good
applicability, wide facilities and profound elaborating. However, graph
optimization problems in conditions of different constraints are NP-hard
problems mostly. These problems can be effectively solved by optimiza-
tion methods based on biological processes, such as genetic algorithms
or clonal selection algorithms. As a rule, these techiques can provide an
applicable solution for network topology optimization within an accept-
able time. In order to speed up fitness function calculation, we improve
operators of a genetic algorithm and a clonal selection algorithm by using
the method of cumulative updating of lower and upper bounds of net-
work reliability with diameter constraint. This method allows us to make
a decision about the network reliability (or unreliability) with respect to
a given threshold without performing the exhaustive calculation. Based
on this method, we obtain the genetic algorithm and the clonal selec-
tion algorithm for network topology optimization. Some computational
results are also presented for demonstration of an applicability of the
proposed approach.

Keywords: Network reliability · Network topology optimization ·
Genetic algorithm · Clonal selection algorithm · Random graph · Diam-
eter constraint · Factoring method · Cumulative updating

1 Introduction

Genetic algorithms (GAs) and clonal selection algorithms (CSAs) [1–3] are
widely used for network topology optimization [4–6]. These approaches are
based on selection and recombination of promising solutions. GAs and CSAs
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have achieved great success in solving numerous graph optimization problems.
However, the performance of these algorithms depends on the right choice of
operators (such as selection, crossover, cloning, mutation etc.), and method for
calculation of fitness function. Otherwise, computational time of GAs and CSAs
can be increased on an enormous scale. On the other hand, we can significantly
improve the algorithms performance by using various techniques for rejecting
inapplicable chromosomes.

In present paper we deal with the problem of obtaining the most reliable
network topology within a given budget.

It is assumed that network has unreliable elements which are subject to ran-
dom fault that occur mutually independently. Random graphs are commonly
used for modeling such networks. We consider the case of absolutely reliable
nodes and unreliable edges which corresponds to real networks where the relia-
bility of nodes is much higher than reliability of communication links.

One of the basic reliability measures for such networks is the probabilistic
connectivity, i.e. the probability of a given subset of nodes to be connected.
This measure is quite well examined, various exact and approximate reliability
calculation methods have been proposed [7]. Another popular measure of network
reliability is the diameter constrained network reliability (Petingi and Cancela,
2001 [8,9]). Further on we use abbreviation DCNR for notation of diameter
constrained network reliability. DCNR is a probability that every two nodes from
a given set of terminals are connected with a path of length less or equal to a given
integer. By the length of a path we understand the number of edges in this path.
This reliability measure is more applicable in practice, for example, in the case
of P2P networks [10]. However, the problems of computing these characteristics
are known to be NP-hard. Moreover, DCNR calculation problem is NP-hard for
most combinations of a diameter value and a number of terminals [11].

The new approach in the area of network reliability analysis was introduced
in [12,13]: cumulative updating of lower and upper bounds of all-terminal net-
work reliability for faster feasibility decision. This method allows to decide the
feasibility of a given network without performing the exhaustive calculation.
The approach was further developed with help of network decomposition [14].
In our previous research [15] we’ve proposed the method for network topology
optimization with use of cumulative updating. The most reliable topology was
sought from the point of view of all-terminal reliability. In present study we
obtain the cumulative updating method for DCNR and use it for network topol-
ogy optimization.

2 Problem Statement

Let us have a set of vertices V = {V1, ..., Vn} and a set S = {S1, ..., St} of
weighted edges, C = {C1, ..., Ct} and P = {r1, ..., rt} — weights and connection
probabilities of edges from S accordingly; K = {k1, ..., kl} — terminal nodes.
Values of budget constraint C∗ and diameter constraint d are given. We use
notation Rd

K(G) for reliability of G with diameter constraint d. Probabilistic
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connectivity of G is denoted by R(G). For rigorous definitions of the described
reliabilities measures we refer to [16] (for probabilistic connectivity) and [17] (for
DCNR).

Need to construct connected undirected graph G = (V,E ⊂ S) with maxi-
mum diameter constrained reliability value with following restrictions:{

Rd
k(G) → max;

Weight(G) < C∗.
(1)

Preference is given to the cheapest solution in case of equal probability values.

3 Brief Survey of Exact Methods for Network Reliability
Calculation

Present section describes some methods of network reliability calculation, but
this is not meant to be a complete summary of the work in this field.

The usually used method for calculating any network reliability measure is
the factoring method. The main idea is to partition the probability space into
two sets based on the success or failure of a chosen network’s element which is
referred to as factored element. Thus, given a graph G and a factored element e
we will obtain two graphs G/e and G\e. In the first of them the factored element
is absolutely reliable and in the second one the factored element is absolutely
unreliable, e.g. it could just be removed. The probability of G/e is equal to the
reliability of factored element and the probability of G\e is equal to the failure
probability of factored element. The same procedure is to be applied for the
both graphs involved. Using the total probability law the following expression is
obtained [7]:

Rel(G) = reRel(G/e) + (1 − re)Rel(G\e), (2)

Recursions continue until either obtained network is clearly unreliable (pro-
cedure returns 0) or it is absolutely reliable (returns 1). In some cases it is
possible to improve factoring process by calculating reliabilities of intermediate
networks directly, i.e. without further factorization. For example, the formula
5-vertex graph reliability can be applied for R(G) calculation [14].

For DCNR calculation we have a modified factoring method which is much
faster than the basic factoring method (2) in the diameter constrained case [9].
The main feature of this method is operating with the list of paths instead of
operating with graphs: in the preliminary step for any pair of terminals s and
t the list Pst(d) of all paths with limited length between s, t is generated. It
automatically removes all the edges which don’t belong to any such path from
consideration. For example, all so called “attached trees” without terminals are
no longer considered.

Afterwards all the operations described above are performed with the list of
all paths P = ∪s,t∈TPst(d). In these terms the success of the factored element
will also make it absolutely reliable while failure of the factored element will
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remove all the paths which contained it from further consideration. Further on
we refer to described method as CPFM (Cancela&Petingi factoring method).

Another approach for network reliability calculation is applying methods
of reduction and decomposition. One of the most effective among them is the
parallel-series transformation which removes chains and multiple edges from
graph. For probabilistic connectivity [18,19] it is possible to apply such reduction
in every call of the factoring procedure. For computing DCNR we can only use
parallel-series transformation in the preliminary step, before factoring process
starts [17]. Below we assume that the described reduction is performed dur-
ing network reliability calculation by factoring method, both for probabilistic
connectivity and DCNR.

4 Cumulative Updating of Network Reliability

Recent research [12] considered problem of determination whether a network is
reliable enough in terms of network probabilistic connectivity (without diameter
constraint). The idea of the proposed method is to check if a network is feasible
without exact calculating a value of network reliability. For this purpose we
define so called threshold R0 which is a requirement of the network reliability.
By RL and RU we will denote the lower bound and the upper bound of R(G)
respectively, and initialize them by 0 and 1. These bounds are updated in such
a way that on i-th iteration RLi ≥ RLi−1 and RUi ≤ RUi−1. Decision process
stops when either RLl exceeds R0 or R0 exceeds RUl. In the first case the network
is supposed to be reliable and in the second one the network is unreliable.

Let us assume that during factoring procedure we obtain L final graphs
G1, G2, . . . , GL, for which the reliability can be easily calculated. Let Pl for
1 ≤ l ≤ L be the probability to have Gl. Thus,

∑L
l=1 Pl = 1 and the following

inequality holds for any 1 ≤ k ≤ L [12]:

k∑
l=1

PlR(Gl) ≤ R(G) ≤ 1 −
k∑

l=1

Pl(1 − R(Gl)). (3)

This inequality gives the algorithm for cumulative updating of the lower
and upper bounds of R(G). Every time whenever reliability of some Gl for any
1 ≤ l ≤ L is calculated, we can update RLl and RUl in the following way:

RLl = RLl−1 + PlR(Gl)
RUl = RUl−1 − Pl(1 − R(Gl)).

(4)

RLl and RUl approach exact G(R) value every time when l increases. Once
either RLl or RUl reaches R0, the proposed algorithm concludes the feasibility
of G: if RLl reaches R0, G is feasible; if RUl passes R0, G is infeasible. Thus, we
can set any acceptable value of R0 in order to stop the method during execution
without performing exact calculating of the network reliability.

We have applied this approach for DCNR bounds updating by CPFM. As
it was mentioned above, CPFM doesn’t oprate with graphs directly, instead it
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operates with the list of all paths P . In cases when either at least one pair of
terminals cannot be connected by any path or all pairs of terminals are connected
by absolutely reliable paths we can update our RLl and RUl values. In other
words, these cases will play a role of the final graphs G1, G2, . . . , GL. We also
denote by Pl the probability of the network obtained on l-th iteration. P0 will
be initialized by 1. Any time during the factoring procedure we should multiply
Pl by either re or 1 − re depending on the factored element e status.

Parameters of the modified factoring procedure in CPFM aren’t graphs.
Instead we use 6 parameters, which describe the corresponding graph from the
viewpoint of Pd. Listed below is the parameters of the CPFM and the pseudocode
of the proposed method for DCNR bounds cumulative updating.

– npst: the number of paths of length at most d between s and t in the graph
being considered.

– linksp: the number of non-perfect edges (edges e such that r(e) < 1) in path
p, for every p ∈ Pd.

– feasiblep: this is a flag, which has value False when the path is no longer
feasible, i.e. it includes an edge which failed; and True otherwise.

– connectedst: this is a flag, which has value True when s and t are connected
by a perfect path of length at most d and False otherwise.

– connectedPairs: this is the number of connected pairs of terminals (those
between which there is a perfect path of length at most d).

Fig. 1. Tested network (Color figure online)
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Input: G = (V,E), d, Pd, P (e), np(s, t), links(p), feasible(p),
connected(s, t), connectedPairs, RL = 0, RU = 1, Pl = 1

1 Function FACTO( np(s, t), links(p), feasible(p), connected(s, t),
connectedPairs, Pl)

2 if nowTime − startT ime > T0 or RL > R0 or RU < R0 then
3 return
4 end
5 e ← arbitrary edge : 0 < re < 1
6 contractEdge( np(s, t), links(p), feasible(p), connected(s, t),

connectedPairs, Pl)
7 deleteEdge( np(s, t), links(p), feasible(p), connected(s, t),

connectedPairs, Pl)
8 end
9 Function contractEdge( np(s, t), links(p), feasible(p), connected(s, t),
connectedPairs, Pl)

10 Pl ← Pl ∗ re
11 foreach p = (s, . . . , t) in P (e) such that feasible(p) = true do
12 links(p) ← links(p) − 1
13 if connected(s, t) = false and links(p) = 0 then
14 connected(s, t) ← true
15 connectedPairs ← connectedPairs + 1
16 if connectedPairs = k×(k−1)

2 then
17 RL ← RL + Pl

18 return
19 end
20 end
21 end
22 FACTO (np(s, t), links(p), feasible(p), connected(s, t),

connectedPairs, Pl)
23 end
24 Function deleteEdge( np(s, t), links(p), feasible(p), connected(s, t),

connectedPairs, Pl)
25 Pl ← Pl ∗ re
26 foreach p = (s, . . . , t) in P (e) such that feasible(p) = true do
27 feasible(p) ← false
28 np(s, t) ← np(s, t) − 1
29 if np(s, t) = 0 then
30 RU ← RU − Pl

31 return
32 end
33 end
34 FACTO (np(s, t), links(p), feasible(p), connected(s, t),

connectedPairs, Pl)
35 end

1. Pseudocode of the method for cumulative updating of DCNR bounds
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Diagram (Fig. 2) shows updating of RL and RU during execution of the
proposed procedure for topology of Internet2 network (Fig. 1) for the diameter
value 25. Edge reliability is equal 0.9 for each edge. R0 value was equal to exact
value of DCNR. Calculation time was about 48 s.
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Fig. 2. D = 25, P = 0.9 (Color figure online)

5 Genetic Algorithm

Genetic Algorithms are a common probabilistic optimization method based on
the model of natural evolution. Imitation of natural processes — selection,
mutation, recombination, reproduction, proliferation is used as a basis, refer
to Charles Darvin’s theory presented in “On the Origin of Species” [20].

Algorithmic scheme (Fig. 3): At first, individual is presented as chromo-
somes — sequenced collection of elements (more often as a bit string). Each chro-
mosome presents some solution. Then, the population is defined like an arbitrary
subset of full set of chromosomes. The most appropriate individuals are found
by a fitness function. Next step is selection of chromosomes — choosing mates
(for example, wheel selection). Crossover occurs among the fittest individuals
specially selected for it. After crossover, new offspring goes through mutation.
New population is combined from fittest individuals from the current population
and new individuals with possible addition of randomly chosen new individuals.
Algorithms stops after given time constraints, given number of generations, or
when given number of generations does not produce any improvement of solu-
tion.

Cumulative updating lets the GA operators work faster due to cutting down
bad chromosomes (with worse fitness function value).

Mutation: let A0 be original chromosome with known diameter constrained
reliability R0. Verification new chromosome A1:



148 D.A. Migov et al.

Fig. 3. Genetic algorithm scheme

Feas(A1, R0) =

{
1, Rd

k(A1) > R0;
0, else.

(5)

Crossover : let A0 and A1 be parents with reliability minimum of Rmin. Ver-
ification offspring A2:

Feas(A2, Rmin) =

{
1, Rd

k(A2) > Rmin;
0, else.

(6)

Obtained offspring is accepted only if it is better fitted than one of the
parents.
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6 Artificial Immune System

Artificial immune system (AIS) theory comes from theoretical immunology in
the middle of 80th. First immune algorithms were used by Bersini [2] for solving
different problems. The main aim of AIS is to use immunology principles for
creating systems to solve different optimization problems [3].

One of the main algorithm among AIS algorithms is the Clonal Selection
Algorithm (CSA) [5]. The CSA is simulating the natural B-cell response mech-
anism. When the antigen (virus, for instance) get to a blood, B-cells start to
secret antibodies. Each cell secrets only one type of antibody specific for anti-
gen. During the process the B-cells are cloning and mutating for achieving the
best match for antigen. Those B-cells with better matching start quickly spread
antibodies and become plasma cells, part of them becomes memory cells and is
circulating in blood until new invasion.

Fig. 4. Clonal selection algorithm scheme
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Algorithmic scheme (Fig. 4): Like chromosomes in GA, antibodies are
coded as bit strings or as collection of elements. An arbitrary set of them is
defined as the population. Then we calculate affinity of each antibody in the
population. The next step is to clone antibodies accordingly their affinity values.
Every clone goes through mutation to obtain better solution. After elimination
of some part of the worst clones, new group of new random antibodies adds
to population in the same number. Next, algorithm works repeatedly with new
population until stop criteria: time constraints, number of generations etc.

Same as GAs we can accelerate clonal selection operators by cutting down
worst antibodies using the cumulative updating.

7 Case Studies

This section presents series of experiments aimed to demonstrate relation
between given data and running time. We demonstrate this on not dense graphs
with 15 vertices (cause of their fast computational time). The results of the GA
and CSA performance are presented in Tables 1 and 2 respectively. Changeable
parameters are diameter (5, 8, 10) and edge reliability (0.1, 0.5, 0.9), which is the
same for all edges. Other parameters fixed: mutation probability for GA is 0.1,
size of population is 50, a number of populations is 10. So we have to calculate
exactly reliabilities for 500 graphs for mutation and crossover. The number of
terminals is equal to 3.

Table 1. Computational results for GA

Graph d = 5 d = 8 d = 10

|V | = 15, |E| = 22

r = 0,1 GA 1 m 55 s 789 ms 2 m 43 s 671 ms 3 m 50 s 336 ms

GAwithCU 1 m 56 s 70 ms 2 m 43 s 563 ms 3 m 50 s 374 ms

Reliability 0,053377031 0,035480363 0,042657732

r = 0,5 GA 39 s 247 ms 2 m 13 s 754 ms 12 m 18 s 777 ms

GAwithCU 39 s 321 ms 2 m 11 s 322 ms 12 m 21 s 311 ms

Reliability 0,801047325 0,796380579 0,830094337

r = 0,9 GA 1 m 59 s 10 ms 3 m 5 s 699 ms 4 m 1 s 559 ms

GAwithCU 1 m 54 s 263 ms 2 m 41 s 897 ms 3 m 27 s 677 ms

Reliability 0,999966901 0,999951435 0,999883982

We’ve also compared computational results in case of different numbers of
terminals (3 and 7). The results are presented in Table 3.

We can see that using GAs and CSAs with cumulative updating for such
types of problems gives some improvements, especially in the case of not dense
and highly reliable graphs. The best results were obtained for problems where
amount of terminals is large.



Cumulative Updating of Network Reliability with Diameter Constraint 151

Table 2. Computational results for CSA

Graph d = 5 d = 8 d = 10

|V | = 15, |E| = 22

r = 0,1 CSA 42 s 939 ms 1 m 18 s 686 ms 1 m 20 s 586 ms

CASwithCU 43 s 484 ms 1 m 19 s 501 ms 1 m 20 s 227 ms

Reliability 0,033715333 0,035687813 0,035632029

r = 0,5 CSA 46 s 870 ms 1 m 46 s 51 ms 2 m 14 s 788 ms

CSAwithCU 46 s 965 ms 1 m 44 s 935 ms 2 m 5 s 659 ms

Reliability 0,771484375 0,756820679 0,652519226

r = 0,9 CSA 44 s 178 ms 1 m 52 s 241 ms 2 m 50 s 238 ms

CSAwithCU 43 s 616 ms 1 m 45 s 308 ms 2 m 31 s 871 ms

Reliability 0,999604889 0,999946036 0,999672344

Table 3. Computational results for T = 3 and T = 7

|T | = 3 |T | = 7

GA 3 m 5 s 699 ms 39 m 20 s 844 ms

GAwithCU 2 m 41 s 897 ms 33 m 29 s 853 ms

Reliability 0,999951434 0,998523183

CSA 1 m 52 s 241 ms 13 m 34 s 306 ms

CSAwithCU 1 m 45 s 308 ms 9 m 53 s 614 ms

Reliability 0,999946036 0,992177548

8 Conclusion

Proposed optimization approach allows to reduce computational time for obtain-
ing an appropriate solution, i.e. a reliable enough network topology. Neverthe-
less, network topology optimization problems still show a great level of complex-
ity. Our ongoing research involves studying of new improvements of cumulative
updating method for further speeding up the optimization process.
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