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Abstract. In this work we present a nonlinear multiscale viscosity
method to solve inviscid compressible flow problems in conservative vari-
ables. The basic idea of the method consists of adding artificial viscosity
adaptively in all scales of the discretization. The amount of viscosity added
to the numerical model is based on the YZβ shock-capturing parameter,
which has the property of being mesh and numerical solution dependent.
The subgrid scale space is defined using bubble functions whose degrees of
freedom are locally eliminated in favor of the degrees of freedom that live
on the resolved scales. This new numerical formulation can be considered a
free parameter and self adaptive method. Performance and accuracy com-
parisons with the well known method SUPG combined with shock captur-
ing operators are conducted based on benchmark 2D problems.

Keywords: Finite element method · Multiscale stabilized formulation ·
Compressible flow problems

1 Introduction

The numerical solution of the compressible flows may exhibit global spurious
oscillations, especially near shock regions. More accurate and stable results can
be obtained using stabilized formulations, either linear or nonlinear approach
[4,5,12,20]. In the 1990s it was shown that the stabilized finite element methods
could be derived from the variational multiscale framework, which consists of a
consistent decomposition of the approximation space into resolved (coarse) and
unresolved (subgrid) scales subspaces via a variational projection. The numerical
oscillations originated by the standard Galerkin method can be related to scales
that are not represented by the discretization, that is, the unresolved scales.
In this case, those unresolved scales or their effect may be inserted into the
problem formulation to be solved on the resolved scales, represented by the
chosen discretization. Examples of multiscale methods can be found in [6,9,11,
13,14]. It is important to highlight that those stabilization/multiscale techniques
prevent numerical oscillations and other instabilities in solving problems with
high Reynolds and/or Mach numbers and shocks or strong boundary layers [17].
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Santos and Almeida [15] presented a nonliner multiscale method to solve
advection dominated transport problem where a nonlinear artificial diffusion
is added on the subgrid scale. The amount of artificial diffusion added to the
numerical model was stablished considering a two-level decomposition of the
function space and the velocity field into the resolved (coarse) and unresolved
(subgrid) scales. The subgrid velocity field was determined by requiring the
minimum of the associated kinetic energy for which the residue of the resolved
scale solution vanishes on each element of the discretization. The idea of adding
a nonlinear diffusion in both scales (subgrid and coarse) of the discretization
was considered in [2] through the Dynamic Diffusion (DD) method, where the
subgrid space is constructed by bubbles functions defined into elements and
the amount of nonlinear diffusion is similar to the method presented in [15].
This methodology was extended to the compressible Euler equations in [16],
where comparisons with the well known SUPG method coupled with the two
shock capturing operators: the Consistent Approximate Upwind Petrov-Galerkin
(CAU) [7] and the YZβ [19], were made. Although the DD method offered good
results, it did not live up to expectations compared to the SUPG formulations
with shock capturing operators as CAU and YZβ.

The SUPG method coupled with the YZβ shock capturing operator has
offered numerical solution with good accuracy for compressible problems. More-
over, Tezduyar [17] has been proposing adaptive ways for calculations of the
local length scale (also known as “element length”) present in the stabilization
parameters. The calculus of the local length scale parameter is made taking into
account the directions of high gradients and the spatial discretization domain.
The stabilization parameter resulting acts adaptively and is useful to avoid exces-
sive viscosity helping to maintain smaller numerical dissipations.

In this paper we propose a new numerical formulation, named, Nonlinear
Multiscale Viscosity (NMV) method, to solve inviscid compressible flow prob-
lems in conservative variables. As the DD method, the basic idea is to add a
nonlinear artificial viscosity in all scales of the discretization, but the amount of
artificial viscosity is defined by the stabilization parameter of the YZβ method,
as proposed in [19,20]. The nonlinear artificial viscosity added to the numerical
formulation is made adaptively, leading the NMV to a self adaptive methodology.

The remainder of this work is organized as follows. Section 2 briefly addresses
the governing equations and the variational multiscale formulation. Numerical
experiments are conducted in Sect. 3 to show the behavior of the new multiscale
finite element method for a variety of benchmark Euler equations problems.
Section 4 concludes this paper.

2 Governing Equations and Variational Multiscale
Formulation

The two-dimensional Euler equations in conservative variables, U = (ρ, ρu, ρv,
ρe), without source terms are an inviscid system of conservation laws represented
by
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∂U
∂t

+
∂Fx

∂x
+

∂Fy

∂y
= 0, on Ω × [0, Tf ], (1)

where ρ is the fluid density, u = (u, v) is the velocity vector, e is the total energy
per unit mass, Fx and Fy are the Euler fluxes, Ω is a domain in IR2, and Tf is
a positive real number, representing the final time. Alternatively, Eq. (1) can be
written as

∂U
∂t

+ Ax
∂U
∂x

+ Ay
∂U
∂y

= 0, on Ω × [0, Tf ], (2)

where Ax = ∂Fx

∂U and Ay = ∂Fy

∂U . Associated to Eq. (2) we have a proper set of
boundary and initial conditions.

To define the finite element discretization, we consider a triangular partition
TH of the domain Ω into nel elements, where: Ω =

⋃nel

e=1 Ωe and Ωi ∩ Ωj = ∅,
i, j = 1, 2, · · · , nel, i �= j. We introduce the space VE , that is written as the
direct sum

VE = Vh ⊕ VB , (3)

where the subspaces Vh and VB are given by

Vh = {Uh ∈ [H1(Ω)]4 | Uh|Ωe
∈ [P1(Ωe)]4,Uh · ek = gk(t) in Γgk

};

VB = {UB ∈ [H1
0 (TH)]4 | UB |Ωe

∈ [span(ψB)]4, ∀Ωe ∈ TH},

where P1(Ωe) represents the set of first order polynomials in Ωe, ψB is a bubble
function (0 ≤ ψB ≤ 1 and ψB ∈ H1

0 (TH)) and H1, H1
0 are Hilbert spaces [3].

The space Vh represents the resolved (coarse) scale space whereas VB stands for
the subgrid (fine) scale space (Fig. 1).

Fig. 1. VE Representation: • stands for Vh nodes and ◦ stands for VB nodes.

The NMV method for the Euler equation consists of find UE = Uh +UB ∈
VE with Uh ∈ Vh, UB ∈ VB such that

∫

Ω

WE ·
(∂UE

∂t
+ Ah

x

∂UE

∂x
+ Ah

y

∂UE

∂y

)
dΩ +

nel∑

e=1

∫

Ωe

δh

(∂WE

∂x
· ∂UE

∂x
+

∂WE

∂y
· ∂UE

∂y

)
dΩ = 0 ∀WE ∈ VE , (4)
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where WE = Wh + WB ∈ VE with Wh ∈ Vh, WB ∈ VB and the amount of
artificial viscosity is calculated on the element-level by using the YZβ shock-
capturing viscosity parameter [19]

δh = ‖Y−1R(Uh)‖
(

2∑

i=1

∣
∣
∣
∣

∣
∣
∣
∣Y

−1 ∂Uh

∂xi

∣
∣
∣
∣

∣
∣
∣
∣

2
) β

2 −1

‖Y−1Uh‖1−βhβ , (5)

where
R(Uh) =

∂Uh

∂t
+ Ah

x

∂Uh

∂x
+ Ah

y

∂Uh

∂y

is the residue of the problem on Ωe, Y is a diagonal matrix constructed from
the reference values of the components of U, given by

Y = diag ((U1)ref , (U2)ref , (U3)ref , (U4)ref), (6)

h is the local length scale defined as in [17] by

h =

(
∑

a

|j · ∇Na|
)−1

, (7)

j is a unit vector defined as

j =
∇ρ

‖∇ρ‖
and Na is the interpolation function associated with node a. It is important to
note that, the local length h is defined automatically taking into account the
directions of high gradients and spatial discretization domain.

Generally, the parameter β is set as β = 1 for smoother shocks and β = 2 for
sharper shocks. The compromise between the β = 1 and β = 2 selections was
defined in [17–19] as the following average expression for δh:

δh =
1
2

(δh|β=1 + δh|β=2).

The numerical solution is obtained using iterative procedures for space and
time. The iterative procedure for space is defined of the following way: given Ui

E

at iteration i, we find Ui+1
E satisfying the formulation (4) with δh = δh(Ui

E) = δi
h,

for i = 0, 1, · · · , iMAX . The formulation (4) can be partitioned in two subprob-
lems, one related to the resolved scale, given by

∫

Ω

Wh ·
(∂Ui+1

h

∂t
+ Ah

x

∂Ui+1
h

∂x
+ Ah

y

∂Ui+1
h

∂y

)
dΩ +

∫

Ω

Wh ·
(∂Ui+1

B

∂t
+ Ah

x

∂Ui+1
B

∂x
+ Ah

y

∂Ui+1
B

∂y

)
dΩ +

nel∑

e=1

∫

Ωe

δi
h

(∂Wh

∂x
· ∂Ui+1

h

∂x
+

∂Wh

∂y
· ∂Ui+1

h

∂y

)
dΩ = 0, ∀Wh ∈ Vh, (8)
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and another, representing the subgrid scale is written as
∫

Ω

WB · ∂Ui+1
B

∂t
dΩ +

∫

Ω

WB ·
(∂Ui+1

h

∂t
+ Ah

x

∂Ui+1
h

∂x
+ Ah

y

∂Ui+1
h

∂y

)
dΩ +

nel∑

e=1

∫

Ωe

δi
h

(∂WB

∂x
· ∂Ui+1

B

∂x
+

∂WB

∂y
· ∂Ui+1

B

∂y

)
dΩ = 0, ∀WB ∈ VB , (9)

where some terms were omitted, once they are zero.
Applying the standard finite element approximation on Eqs. (8) and (9), we

arrive at a local system of ordinary differential equations:
[

Mhh MhB

MBh MBB

] [
U̇h

U̇B

]

+
[

Khh KhB

KBh KBB

] [
Uh

UB

]

=
[

0h

0B

]

, (10)

where Uh and UB are, respectively, the nodal values of the unknowns Uh and
UB on each element Ωe, whereas U̇h and U̇B are its time derivative.

The numerical solution is advanced in time by the implicit predictor-
multicorrector algorithm given in [10] and adapted for the DD method in [16]
for the Euler equations. The degrees of freedom related to the subgrid space are
locally eliminated in favor of the ones of the macro space using a static conden-
sation approach. Algorithm1 shows the implicit predictor-multicorrector steps,
considering second order approximations in time for the micro and macro scales
subproblems, where Δt is the time-step; subscripts n + 1 and n mean, respec-
tively, the solution on the time-step n + 1 and n; α = 0.5 is the time advancing
parameter; i is the iteration counter and N2 is a nonsingular diagonal matrix.
The resulting linear systems of equations are solved by the GMRES method con-
sidering all matrices stored by the well know strategy element-by-element [10].

3 Numerical Experiments

In this section we present numerical experiments considering three well known
2D benchmark problems: ‘oblique shock’, ‘reflected shock’ and ‘explosion’,
discretized by unstructured triangular meshes using Delaunay triangulation
through the software Gmsh [8]. The first and second problems used GMRES
with 5 vectors to restart, tolerance equal to 10−1, the number of multicorrec-
tions fixed to 3, the time-step size is 10−3 and the simulation is run until 3000
steps. The third problem used GMRES with 30 vectors to restart, tolerance
equal to 10−5, the number of multicorrections fixed to 3, the time-step size is
10−3 and the simulation is run until 250 steps. We compare the NMV method
with SUPG formulation and two shock capturing operators, the CAU and the
YZβ, named here, respectively, as SUPG + CAU and SUPG + YZβ. The tests
were performed on a machine with an Intel Core i7-4770 3.4 GHz processor with
16 GB of RAM and Ubuntu 12.04 operating system.
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Algorithm 1. NMV Predictor Multicorrector Algorithm

Step 1. i = 0

Step 2. Predictor phase:

Un+1,0
h = Un

h + (1 − α)ΔtU̇n
h ,

U̇n+1,0
h = 0

Un+1,0
B = Un

B + (1 − α)ΔtU̇n
B ,

U̇n+1,0
B = 0

Step 3. Multicorrector phase:

Residual Force:

Rn+1,i
1 = Fn+1

h −
(
MhhU̇n+1,i

h + MhBU̇n+1,i
B

)

− (KhhUn+1,i
h + KhBUn+1,i

B

)

Rn+1,i
2 = Fn+1

B −
(
MBhU̇n+1,i

h + MBBU̇n+1,i
B

)

− (KBhUn+1,i
h + KBBUn+1,i

B

)

Solve:

M∗ΔU̇n+1,i+1
h = F ∗,

with M∗ = M1 − N1N
−1
2 M2 and F ∗ = R1 − N1N

−1
2 R2

where M1 = Mhh + αΔtKhh, N1 = MhB + αΔtKhB

M2 = MBh + αΔtKBh and N2 = MBB + αΔtKBB

Corrector:

Un+1,i+1
h = Un,i

h + αΔtΔU̇n+1,i+1
h ,

U̇n+1,i+1
h = U̇n+1,i

h + ΔU̇n+1,i+1
h

Un+1,i+1
B = Un,i

B + αΔtΔU̇n+1,i+1
B ,

U̇n+1,i+1
B = U̇n+1,i

B + ΔU̇n+1,i+1
B

with ΔU̇n+1,i+1
B = N−1

2

(
Rn+1,i

2 − M2ΔU̇n+1,i+1
h

)

3.1 2D Oblique Shock Problem

The first problem is a Mach 2 uniform flow over a wedge, at an angle of −10◦ with
respect to a horizontal wall. The solution involves an oblique shock at an angle
of 29.3◦ emanating from the leading edge of the wedge, as shown in Fig. 2. The
computational domain is a square with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Prescribing
the following inflow data on the left and top boundaries results in a solution
with the following outflow data:
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Inflow

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M = 2.0
ρ = 1.0
u = cos 100

v = − sin 100

p = 0.17857

Outflow

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M = 1.64052
ρ = 1.45843
u = 0.88731
v = 0.0
p = 0.30475

(11)

Fig. 2. Oblique shock problem description

Here M is the Mach number and p is the pressure. Four Dirichlet boundary
conditions are imposed at the left and the top boundaries, the condition v = 0
is set at the bottom boundary, and no boundary condition is imposed at the
outflow (right) boundary.

For all simulations we consider an unstructured mesh consisting of 462 nodes
and 846 elements. For the reference values used in Eq. (6), we consider the initial
condition values for the left domain. Figure 3 shows the 2D density distribution
obtained with all methods. Figure 4 shows the density profile along x = 0.9,
obtained with SUPG + CAU, SUPG + YZβ and NMV methods. The solution
obtained with the SUPG + YZβ is slightly better than the NMV on the left of
the shock, whereas the solution with NMV is better on the right of the shock.
The SUPG + CAU method clearly exhibit more dissipation.

On the other hand, the NMV method needs less GMRES iterations and CPU
time than the others, as we can see in Table 1. The NMV method need less than
half the number of GMRES iterations required by SUPG + CAU and SUPG
+ YZβ methods. Furthermore, the NMV method requires approximately 60 %
and 55 %, respectively, of the CPU time required by the SUPG + CAU and the
SUPG + YZβ methods.
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Table 1. Oblique shock problem: computational performance

Methods GMRES iterations CPU time (s)

SUPG + CAU 58,514 54.225

SUPG + YZβ 69,863 60.302

NMV 18,020 33.361

(a) SUPG + CAU (b) SUPG + YZβ (c) NMV

Fig. 3. Oblique shock problem: density distribution 2D solution at time t = 3. (Color
figure online)

 0.9
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Fig. 4. Oblique shock problem: density profile along x = 0.9. (Color figure online)



A Nonlinear Multiscale Viscosity Method 11

3.2 2D Reflected Shock Problem

This problem consists of three regions (R1, R2 and R3) separated by an oblique
shock and its reflection from a wall, as shown in Fig. 5. Prescribing the following
Mach 2.9 inflow data in the first region on the left (R1), and requiring the
incident shock to be at an angle of 29◦, leads to the following exact solution at
the other two regions (R2 and R3):

R1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M = 2.9
ρ = 1.0
u = 2.9
v = 0.0
p = 0.714286

R2

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M = 2.3781
ρ = 1.7
u = 2.61934
v = −0.50632
p = 1.52819

R3

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M = 1.94235
ρ = 2.68728
u = 2.40140
v = 0.0
p = 2.93407

(12)

1

2

3

Fig. 5. Reflected shock problem description.

The computational domain is a rectangle with 0 ≤ x ≤ 4.1 and 0 ≤ y ≤ 1. We
prescribe the density, velocities and pressure at the left and top boundaries, the
slip condition with v = 0 is imposed at the bottom boundary, and no boundary
condition is imposed at the outflow (right) boundary.

For all simulations we consider an unstructured mesh consisting of 1,315
nodes and 2,464 elements. For the reference values used in Eq. (6), we consider
the initial condition values for the left domain. Figure 6 shows the 2D density
distribution obtained with all methods. Figure 7 shows the density profile along
y = 0.25, obtained with SUPG + CAU, SUPG + YZβ and NMV methods. We
may observe a good agreement between the SUPG + YZβ and NMV solutions,
clearly exhibit less dissipation than the SUPG + CAU solution.

One more time, the NMV method needs less GMRES iterations and CPU
time than the others, as we can see in Table 2. The NMV method need less than
half the number of GMRES iterations required by SUPG + CAU and SUPG
+ YZβ methods. Additionally, the NMV method requires approximately 48 %
and 77 %, respectively, of the CPU time required by the SUPG + CAU and the
SUPG + YZβ methods.
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Table 2. Reflected shock problem: computational performance

Methods GMRES Iterations CPU Time (s)

SUPG + CAU 80,948 198.365

SUPG + YZβ 35,023 124.468

NMV 17,482 96.139

(a) SUPG + CAU

(b) SUPG + YZβ

(c) NMV

Fig. 6. Reflected shock problem: density distribution 2D solution at time t = 3. (Color
figure online)
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Fig. 7. Reflected shock problem: density profile along y = 0.25. (Color figure online)

3.3 2D Explosion Problem

We consider the explosion problem for an ideal gas with γ = 1.4 as described
by [1]. The 2D Euler equations are solved on a 2.0 × 2.0 square domain in the
xy−plane. The initial condition consists of the region inside of a circle with
radius R = 0.4 centered at (1, 1) and the region outside the circle, see Fig. 8.
The flow variables are constant in each of these regions and are separated by a
circular discontinuity at time t = 0. The two constant states are chosen as

Fig. 8. Explosion problem description.
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ins

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ = 1.0
u = 0.0
v = 0.0
p = 1.0

out

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ = 0.125
u = 0.0
v = 0.0
p = 0.1

(13)

Subscripts ins and out denote values inside and outside the circle respectively.

Table 3. Explosion problem: computational performance

Methods GMRES Iterations CPU Time (s)

SUPG + CAU 1,273,137 9,965.661

SUPG + YZβ 15,012 178.953

NMV 11,228 70.029

A reference solution was used considering a fine mesh with 1000× 1000 com-
puting cells by WAF method and it is in good agreement with the analytical
solution as described in [21]. In our simulation, we consider an unstructured
mesh with 13,438 nodes and 26,474 elements. For the reference values used in
Eq. (6), we consider the initial condition values for inside the circle. Figure 9
shows the 2D density distribution and Fig. 10 shows the 3D density distribu-
tion obtained with all methods. Figure 11 compares the radial variations of the
density obtained using SUPG + CAU, SUPG + YZβ and NMV methods. The
solution obtained with NMV is slightly more accurate than the SUPG + YZβ
solution, whereas the SUPG + CAU solution clearly exhibit more dissipation.

Again, the NMV method needs less GMRES iterations and CPU time than
the others, as we can see in Table 3. The NMV method needed less GMRES iter-
ations than required by SUPG + CAU and SUPG + YZβ methods. In addition,

(a) SUPG + CAU (b) SUPG + YZβ (c) NMV

Fig. 9. Explosion problem: density distribution 2D solution at time t = 0.25. (Color
figure online)
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(a) SUPG + CAU (b) SUPG + YZβ (c) NMV

Fig. 10. Explosion problem: density distribution 3D solution at time t = 0.25. (Color
figure online)
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Fig. 11. Explosion problem: comparisons of radial variations of density obtained using
SUPG + CAU, SUPG + YZβ and NMV, with the reference solution. (Color figure
online)

the NMV method requires approximately 0.7 % and 39 %, respectively, of the
CPU time required by the SUPG + CAU and the SUPG + YZβ methods.

4 Conclusions

We presented a new nonlinear multiscale finite element formulation self adaptive
for the inviscid compressible flows in conservative variables, where the amount
of artificial viscosity is determined by the YZβ shock-capturing parameter. Solu-
tions obtained with the NMV method is comparable with those obtained with the
SUPG + YZβ method in oblique shock and reflected shock problems, whereas in
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the explosion problem the NMV method yields solutions slightly more accurate.
Furthermore, the NMV method requires less GMRES iterations and CPU time
than the others, as we have seen in the experiments. The NMV method improve
conditioning of the linear system, coupled nonlinear equation system that needs
to be solved at every time step of a flow computation, which makes substan-
tial difference in convergence of the iterative solution and computationally less
costly.

Acknowledgments. This work has been supported in part by CNPq, CAPES and
FAPES.
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