
Chapter 7
The Electromagnetic–Thermal Dosimetry
Model of the Human Brain

Mario Cvetković and Dragan Poljak

Abstract The electromagnetic–thermal dosimetry model for the human brain
exposed to EM radiation is developed. The electromagnetic (EM)model based on the
surface integral equation (SIE) formulation is derived using the equivalence theorem
for the case of a lossy homogeneous dielectric body. The thermal dosimetry model of
the brain is based on the form of Pennes’ equation of heat transfer in biological tissue.
The numerical solution of the EM model is carried using the Method of Moments
(MoM) while the bioheat equation is solved using the finite element method. Devel-
oped electromagnetic thermal model has been applied in internal dosimetry of the
human brain to assess the absorbed electromagnetic energy and consequent temper-
ature rise due to exposure of 900MHz plane wave.

Keywords Electromagnetic-thermal model ·Human brain ·Numerical dosimetry ·
Surface integral equation approach

7.1 Introduction

The exposure of a modern man to artificially generated EM fields has raised some
controversies as well as unanswered questions regarding the potentially harmful
effects on the human health. This is, in particular, the case for the human head and
brain exposed to radiation of nowadays ubiquitous cellular phones and base station
antennas. Due to this fact the set of techniques for measuring and for calculation
of the absorbed EM radiation in the human body referred to as the electromagnetic
dosimetry have been developed.
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It is a well established fact that the principal biological effect of high frequency
EM radiation is predominantly thermal in nature [1, 10, 12]. If the body absorbs high
enough dose of EM power, it could lead to the harmful effects due to a breakdown of
the protective thermoregulatory mechanisms. These can be quantified by the analysis
of the thermal response of the particular body organ [17].

A direct experimental measurement of the brain thermal response in humans is
not possible, and the indirect methods such as magnetic resonance imaging cannot
record fine variations in temperature, hence lacking necessary resolution. On the
other hand, animal studies are questionable due to a difference in interspecies size and
tissue parameters. Consequently, the computational modeling provides the powerful
alternative.

This paper describes an electromagnetic–thermal dosimetry model of the human
brain. In the first part the electromagnetic model based on the SIE formulation is
derived by using the equivalence theorem and the appropriate boundary conditions
for the case of lossydielectric object of an arbitrary shape.The secondpart outlines the
thermal dosimetry model of the human brain based on the form of Pennes’ equation
of heat transfer in biological tissue. The obtained numerical results for the electric
and magnetic fields, respectively, on the brain surface are presented, as well as the
distribution of specific absorption rate (SAR) and the related temperature increase.

7.2 Electromagnetic Dosimetry Model

The human brain exposed to incident EM radiation is treated as a classical scattering
problem.

The human brain, represented by an arbitrary shape S of a complex parameters
(ε2,µ2) is placed in a free space with given properties (ε1,µ1), as shown in Fig. 7.1a.
The complex permittivity of the brain is given by

ε2 = ε0εr − j
σ

ω
, (7.1)

where ε0 is permittivity of the free space, εr is relative permittivity, σ is electrical
conductivity of the brain, and ω = 2π f is the operating frequency. The value for the
permeability of the brain is that of free space, i.e. µ0 = 4π × 10−7 Vs/Am, due to
the fact that biological tissues do not posses magnetic properties.

The lossy homogeneous object representing the human brain is exposed to the
electromagnetic field (Einc,Hinc). This incident field is present regardless of the
scattering object.Due to the scattering object, a scatteredfield denoted by (Esca,Hsca)
is also present. The electric and magnetic fields exterior and interior to the surface S
are, (E1,H1) and (E2,H2), respectively.

Applying the equivalence theorem, the equivalent problems for both regions 1 and
2 are formulated in terms of the equivalent electric and magnetic current densities J
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(a)

(b) (c)

Fig. 7.1 Scattering from arbitrarily shaped lossy homogeneous dielectric (human brain) placed
in the incident field (Einc,Hinc). a Original problem, b Region 1 equivalent problem, c Region 2
equivalent problem

andM placed on the scatterer surface S [3, 9, 16, 22]. Two equivalent problems are
shown on Fig. 7.1b and c, for the external and internal region, respectively.

In case of region 1 equivalent problem, shown in Fig. 7.1b, the field inside is
assumed zero, (E2 = 0,H2 = 0), allowing one to arbitrarily choose material prop-
erties for this region. Selecting the properties of the exterior region, a homogeneous
domain of (ε1,µ1) is obtained, enabling the use of the free space Green’s function.
The boundary conditions on the surface S are satisfied by introducing the equiva-
lent surface currents J1 and M1 at the surface S. Applying the same procedure for
the region 2, it follows another homogeneous domain of (ε2,µ2). Here as well, the
equivalent surface currents J2 = −J1 and M2 = −M1, as shown in Fig. 7.1c, are
introduced at the surface S.

Since both equivalent problems represent the equivalent current densities radiating
in a homogeneousmedium, following expressions for the scattered fields due to these
sources can be used:

Esca
n (J,M) = − jωAn − ∇ϕn − 1

εn
∇ × Fn, (7.2)

Hsca
n (J,M) = − jωFn − ∇ψn + 1

µn
∇ × An, (7.3)
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where n = 1, 2 is index of the medium where equivalent surface currents radiate,
and ϕ, F, ψ i A are electric and magnetic, scalar and vector potentials, respectively.
These potentials are given in terms of integrals over the sources, i.e.

An(r) = µn

∫
S
J(r ′)Gn(r, r ′) dS′, (7.4)

Fn(r) = εn

∫
S
M(r ′)Gn(r, r ′) dS′, (7.5)

ϕn(r) = j

ωεn

∫
S
∇′

S · J(r ′)Gn(r, r ′) dS′, (7.6)

ψn(r) = j

ωµn

∫
S
∇′

S · M(r ′)Gn(r, r ′) dS′, (7.7)

where the electric and magnetic charge from (7.6) and (7.7) is replaced with the
divergence of the electric and magnetic current, respectively, featuring the use of a
continuity equation. Gn(r, r ′) is homogeneous medium Green’s function given by

Gn(r, r ′) = e− jkn R

4πR
, R = |r − r ′|, (7.8)

where R is the distance from the observation point r to the source point r ′, and kn is
the wave number in medium n.

Applying the boundary conditions for the electric field at the interface of the two
equivalent problems, i.e. the surface S, the following is obtained

[−Esca
n (J,M)

]
tan =

{[
Einc

]
tan

, n = 1,
0 , n = 2.

(7.9)

Equation (7.9) represents the electric field integral equation (EFIE) formulation
in the frequency domain for the lossy homogeneous object, i.e. the human brain. The
incident field Einc is known, while J and M represent unknown surface currents, to
be solved for.

Substituting (7.4)–(7.7) into (7.2) and (7.3), and the resulting expressions
into (7.9), we arrive at the coupled set of integral equations

jωµn

∫
S
J(r ′)Gn(r, r ′) dS′−

− j

ωεn
∇

∫
S
∇′

S · J(r ′)Gn(r, r ′) dS′+
+∇ ×

∫
S
M(r ′)Gn(r, r ′) dS′

=
{[

Einc
]
tan

, n = 1,
0 , n = 2.

(7.10)
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Following some mathematical manipulations on the second and third integral of
(7.10), the nabla operator can be transferred to the Green’s function leading to

jωµn

∫
S
J(r ′)Gn(r, r ′) dS′−

− j

ωεn

∫
S
∇′

S · J(r ′)∇Gn(r, r ′) dS′+
+

∫
S
M(r ′) × ∇′Gn(r, r ′) dS′

=
{[

Einc
]
tan , n = 1,

0 , n = 2,
(7.11)

where the property for the Green’s function gradient, ∇Gn(r, r ′) = −∇′Gn(r, r ′),
is used in (7.11).

7.2.1 Numerical Solution

For complex geometry of surface S, such as the human brain, the coupled integral
equations set (7.11) cannot be solved analytically, hence the numerical approach is
necessary. The corresponding numerical solution is carried out via the method of
moments (MoM). It is a technique for finding an approximate solution to the system
of a linear operator equations. Inserting the approximated function back into the
operator equation, while multiplying it by a set of a known test functions, leads to
a system of a linear equations. Solving the matrix system, one obtain the unknown
coefficients from which equivalent surface currents are determined.

This work features an efficient MoM scheme in which the equivalent electric and
magnetic currents J and M in (7.11), are first expanded by a linear combination of
basis functions fn and gn , respectively [5]

J(r) =
N∑

n=1

Jnfn(r), (7.12)

M(r) =
N∑

n=1

Mngn(r), (7.13)

where Jn and Mn are unknown coefficients, and N is the number of elements used
to discretize the surface S.

The brain surface S is discretized using the triangular elements or patches enabling
one to use the Rao-Wilton-Glisson (RWG) basis functions [18] specially developed
for triangular patches.

RWG function fn is defined on T+
n and T−

n pair of triangles that share a common
edge (hence, sometimes the name edge-element is used), while on the rest of the
surface S function vanishes.
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Fig. 7.2 RWG basis
function fn(r) defined on a
pair of triangles in R3 [18]

Namely, the function is given by

f±
n (r) =

⎧⎨
⎩

ln
2A±

n
ρ±
n , r ∈ T±

n ,

0 , r /∈ T±
n ,

(7.14)

where ln is the edge length at the interface of triangles T+
n and T−

n , while A+
n and A−

n
are the surface areas of those triangles. The vector ρ +

n = r − r+
n is directed from the

free vertex of T+
n and ρ −

n = r−
n − r is directed to the free vertex of T−

n , as shown
on Fig. 7.2.

While the surface electric current J is approximated by the RWG function fn ,
the surface magnetic current M is approximated by gn = n̂ × fn , i.e. the function
point wise orthogonal to the RWG function. The unknown equivalent currents J(r′)
and M(r′) from (7.11) are substituted by (7.12) and (7.13). Equation (7.11) is next
multiplied by the set of a test functions fm , where fm = fn , and integrated over the
surface S. After some mathematical manipulations, it follows

jωµi

N∑
n=1

Jn

∫
S
fm(r) ·

∫
S′
fn(r ′)Gi dS

′ dS+

+ j

ωεi

N∑
n=1

Jn

∫
S

∇S · fm(r)
∫
S′

∇′
S · fn(r ′)Gi dS

′ dS±

±
N∑

n=1

Mn

∫
S
fm(r) · [n̂ × gn(r ′)] dS+

+
N∑

n=1

Mn

∫
S
fm(r) ·

∫
S′
gn(r′) × ∇′Gi dS

′ dS

=
⎧⎨
⎩

∫
S
fm(r) · Einc dS , i = 1,

0 , i = 2,

(7.15)
where subscript i is now the index of the medium. The third and the fourth integrals
on the left hand side of (7.15) represent the residual term and the Cauchy principal
value, respectively, of the last integral from (7.11). The residual term is calculated
in the limiting case when r → r ′.

After extracting the two sums, (7.15) can be written in the form of the following
linear equations system
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N∑
n=1

(
jωµi Amn,i + j

ωεi
Bmn,i

)
Jn +

N∑
n=1

(
Cmn,i + Dmn,i

)
Mn =

{
Vm , i = 1,
0 , i = 2,

(7.16)
or in the matrix form as

[Z] · {I} = {V}, (7.17)

where Z and V represents the system matrix, and the source vector, respectively,
while Amn,i , Bmn,i , Cmn,i and Dmn,i represent the surface integrals calculated for
each m − n combination of basis and testing functions, respectively.

Solution to the (7.17) is a vector I containing the unknown coefficients Jn and Mn .
From these coefficients, the equivalent surface electric and magnetic currents J and
M, respectively, placed on the surface S of the dielectric object, i.e. the human brain,
can be determined from (7.12) and (7.13), respectively. Knowing these currents, the
electric field can be determined at an arbitrary point in space, i.e. the electric field
inside the human brain represented by parameters (ε2,µ2), can be calculated from
the following integral expression:

E2(r) = − jωµ2

∫
S
J(r ′)G2(r, r ′) dS′ −

− j

ωε2

∫
S
∇′

S · J(r ′)G2(r, r ′) dS′ −

−
∫
S
M(r ′) × ∇G2(r, r ′) dS′. (7.18)

Once obtained the electric field distribution inside the brain, the distribution of
the SAR can be readily found using the following relation

SAR = σ

2ρ
|E|2, (7.19)

where σ and ρ are the electric conductivity and the brain tissue density, respectively.
The SAR distribution can be latter used as the input information to the thermal part
of the brain model.

7.3 Thermal Dosimetry Model

It is well known that two most important factors for sustaining biological system are
the metabolism and the blood flow [14]. The complex network of blood vessels sig-
nificantly complicates mathematical modeling of heat transfer in biological tissues,
unless a distributed heat source or sink is assumed.

The most commonly used model taking the flow of blood in this manner is the
Pennes bioheat transfer equation [15]
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∇ · (λ∇T ) + wρbcb (Ta − T ) + Qm + Qext = ρC
∂T

∂t
. (7.20)

According to (7.20) the temperature rise in the given volume of tissue is based on
the energy balance between the conductive heat transfer, the heat generated due to
metabolic processes Qm , the heat loss (generation) due to blood perfusion, and the
influence of external heat sources Qext . The volumetric perfusion rate is given by ω,
ρb and cb are the density and the specific heat capacity of blood, respectively, λ is the
thermal conductivity of the tissue, while Ta is the temperature of the arterial blood.

The analytical solutions of the bioheat transfer equation (7.20) are limited to cases
of relatively high degree of symmetry [21], thus making numerical approach neces-
sary for problemswith complex geometry of the domain arising for realistic exposure
scenarios. In this work the problem of determining the temperature distribution in
the human brain is addressed using the finite element method (FEM) [7].

The steady-state temperature distribution in the brain, exposed to an incident time
harmonic EM field, is governed by the stationary form of the bioheat equation (7.20)

∇ · (λ∇T ) + Wbcb (Ta − T ) + Qm + Qext = 0 (7.21)

extended with Qext . This term represents the amount of heat generated per unit time
per unit volume due to absorption of EM energy in the biological tissue [4, 6, 7]:

Qext = ρ · SAR, (7.22)

where SAR is defined by (7.19).
The bioheat equation (7.21) is supplemented by the corresponding boundary con-

ditions, as shown in Fig. 7.3.
This work features the use of Neumann or the natural boundary conditions given

by

− λ
∂T

∂ n̂
= hs (T − Tamb) , (7.23)

where, λ is the thermal conductivity of the brain, and hs is the convection coefficient
between the surface and the surroundings, T and Tamb are the surface and the ambient

Fig. 7.3 Illustration of the
finite element mesh with
boundary conditions on the
brain surface
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temperature, respectively. Unit normal n̂ is directed from the surface S, as shown on
Fig. 7.3.

Note that the heat loss due to radiation, and the forced convection are neglected.
Neverthless, (7.23) satisfactorily describes the heat exchange between the surface of
the brain and the environment.

Since the human brain is separated from the scalp by various other tissues, when
using the homogeneous brain model, it is necessary to account for the heat exchange
through all of them. This is ensured by using the effective thermal convection coef-
ficient hef f [23] between the brain and the surroundings.

The widely adopted value for the effective thermal convection coefficient, typical
for the human brain, is hef f = 1.2 × 10−3 W/cm2 ◦C [20]. This value is used in our
homogeneous thermal model of the brain, as well.

7.3.1 Finite Element Solution

The finite element formulation of (7.21) is based on the weighted residual approach.
The approximate solution of (7.21) is expanded in terms of the known basis functions
Ni and the unknown coefficients αi

T (x, y, z) =
m∑
i=1

Ni (x, y, z)αi , (7.24)

where i is the node index, m is the number of nodes per finite element, and Ni is the
basis function given by

Ni (x, y, z) = 1

D
(Vi + ai x + bi y + ci z) , i = 1, 2, 3, 4, (7.25)

where expressions for the coefficients ai , bi , ci , Vi and D can be found in [19].
Multiplying (7.21) by a set of weighting functions Wj and integrating over the

domain Ω = V , yields

∫
Ω

[∇ · (λ∇T ) + Wbcb (Ta − T ) + Qm + Qext ]Wj dΩ = 0. (7.26)

Applying the same procedure on (7.23), it follows

− λ

∫
∂Ω

∂T

∂ n̂
W j dS =

∫
∂Ω

hsTWj dS −
∫

∂Ω

hsTambWj dS. (7.27)

Taking the integration by parts in the first term of (7.26), the Gauss’ divergence
theorem is applied, resulting in
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∫
Ω

∇ · [
(λ∇T )Wj

]
dΩ = λ

∫
∂Ω

∂T

∂ n̂
W j dS. (7.28)

Inserting (7.28) into (7.26), and after some rearranging, a suitable expression for
the FEM implementation is obtained [7]

∫
Ω

λ∇T · ∇Wj dΩ +
∫

Ω

WbcbTWj dΩ =

=
∫

∂Ω

λ
∂T

∂ n̂
W j dS +

∫
Ω

(WbcbTa + Qm + Qext )Wj dΩ. (7.29)

Having discretized the brain surface by triangular elements, performed in the
electromagnetic part of the model [5], the interior of the brain depicted as Ω in
Fig. 7.3 was discretized by the tetrahedral elements.

Implementing the Galerkin-Bubnov procedure, followed by the standard finite
element discretization of (7.29), the weak formulation for the finite element domain
Ωe can be written in the matrix form

[K ]e {T }e = {M}e + {P}e , (7.30)

where [K ]e, {M}e and {P}e are the finite element matrix

[K ]eji =
∫

Ωe

λe∇Wi · ∇Wj dΩe +
∫

Ωe

W e
b c

e
bWiWj dΩe, (7.31)

the flux vector on the boundary ∂Ωe of the finite element

{M}ej =
∫

∂Ωe

λe ∂T

∂ n̂
W j dSe, (7.32)

and the finite element source vector

{P}ej =
∫

Ωe

(We
b c

e
bTa + Qe

m + Qe
ext )Wj dΩe, (7.33)

respectively.
Solving (7.31)–(7.33) for each N elements, the global matrix is assembled from

the contribution of the local finite element matrices, while the global flux and the
source vectors are assembled from the local flux and the local source vectors, respec-
tively:

[K ] {T } = {M} + {P} . (7.34)

The solutionof thematrix system (7.34) is the vector {T }whose elements represent
the values of temperature in the tetrahedra nodes.
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7.4 Computational Example

The numerical results for our homogeneous three-dimensional brain model are pre-
sented in this section. The dimensions of the average adult human brain are used
(length 167 mm, width 140 mm, height 93 mm, volume of 1400 cm3) [2]. The sur-
face of the brain is disretized using the T = 696 triangular elements and N = 1044
edge-elements, while the interior of the brain is discretized using 1871 tetrahedral
elements. The frequency dependent parameters of the human brain are taken from
[8]. The value for the relative permittivity and the electrical conductivity of the
brain are εr = 45.805 and σ = 0.766 S/m, respectively, taken as the average values
between white and gray matter at 900 MHz. Value for the density of the brain tissue
is ρ = 1046 kg/m3.

The incident plane wave of power density of P = 5mW/cm2 is directed perpen-
dicular to the right side of the brain (positive x coordinate), the polarization of the
wave is in the horizontal (y coordinate) direction, while the operating frequency is
900 MHz.

Using our EM model based on the SIE formulation [5], the distribution of the
electric and magnetic fields on the brain surface, shown on Fig. 7.4, are determined
first.

From the electric field values in the brain interior, SAR can be calculated
using (7.19). The obtained peak and average SAR values are 0.856 W/kg and 0.174
W/kg, respectively. The calculated results show that the peak SARvalue in the human
brain does not exceed the limit set by ICNIRP [11] as a basic restriction for localized
SAR (in the head and the trunk), for the occupational exposure (10W/kg). Figure7.5
shows the distribution of the SAR obtained for the brain model.
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Fig. 7.4 Distribution of electric and magnetic fields on the brain surface. Horizontally polarized
plane wave of frequency 900 MHz
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Fig. 7.5 Distribution of SAR for the case of horizontally polarized plane wave of frequency 900
MHz, power density P = 5 mW/cm2



7 The Electromagnetic–Thermal Dosimetry Model of the Human Brain 111

Medial view

Rostral view

X−os

Z
−

os

Dorsal view

X−os

Y
−

os

Ventral view

X−os

Y
−

os

Lateral view

Y−os

Z
−

os

Y−os

Z
−

os

Caudal view

X−os

Z
−

os

 T [°C] x 10

 

1

2

3

4

5

 6

−3

 

Fig. 7.6 Temperature rise in the human brainmodel due to incident 900MHz horizontally poralized
plane wave, power density P = 5mW/cm2
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The human brain parameters used in the thermal dosimetry model are taken from
[13]: the heat conductivity λ = 0.513W/m ◦C, the volumetric perfusion rate of blood
Wb = 33297 kg/m3, the specific heat capacity of blood cb = 1 J/kg ◦C, the heat
generated due to metabolism Qm = 6385 W/m3, and the arterial blood temperature
Tart = 37 ◦C.

Figure7.6 shows the results for the temperature rise in the human brain. Themaxi-
mum temperature rise isT = 7.11 × 10−3 ◦C, which is rather negligible compared
to the values proven to cause adverse health effects.

7.5 Conclusion

This work deals with the electromagnetic–thermal dosimetry model for the human
brain exposed to EM radiation. The electromagnetic model based on the surface
integral equation formulation is first derived from the equivalence theorem and using
the boundary conditions for the electric field. The human brain is represented by an
arbitrarily shaped lossy homogeneous dielectric. The thermal model of the brain is
based on the extended form of the Pennes’ bioheat equation supplemented by the
natural boundary condition on the brain surface. The numerical results for the electric
and magnetic fields are presented for the brain exposed to a radiation of 900MHz
horizontally polarized plane wave. The calculated peak SAR value in the human
brain does not exceed the basic restriction for the occupational exposure set by the
ICNIRP. Also, the resulted temperature rise in the human brain is rather negligible
compared to established health based threshold.
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