
Chapter 3
Analysis of Horizontal Thin-Wire Conductor
Buried in Lossy Ground: New Model
for Sommerfeld Type Integral

Milica Rančić , Radoslav Jankoski, Sergei Silvestrov and Slavoljub Aleksić

Abstract A new simple approximation that can be used for modeling of one type
of Sommerfeld integrals typically occurring in the expressions that describe sources
buried in the lossy ground, is proposed in the paper. The ground is treated as a
linear, isotropic and homogenous medium of known electrical parameters. Proposed
approximation has a form of a weighted exponential function with an additional
complex constant term. The derivation procedure of this approximation is explained
in detail, and the validation is done applying it in the analysis of a bare conductor
fed in the center and immersed in the lossy ground at arbitrary depth. Wide range of
ground and geometry parameters of interest has been taken into consideration.

Keywords Current distribution · Horizontal conductor · Integral equation · Lossy
ground · Point-matching method · Sommerfeld integral

3.1 Introduction

Significant effort has been put into evaluation of the influence of real ground parame-
ters on the near- and far-field characteristics ofwire conductors (or systems consisting
of them) located in the air above lossy ground, or buried inside of it [1–8, 10–22,
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Faculty of Electronic Engineering, University of Niš, Niš, Serbia
e-mail: slavoljub.aleksic@elfak.ni.ac.rs

© Springer International Publishing Switzerland 2016
S. Silvestrov and M. Rančić (eds.), Engineering Mathematics I,
Springer Proceedings in Mathematics & Statistics 178,
DOI 10.1007/978-3-319-42082-0_3

33

http://orcid.org/http://orcid.org/0000-0001-9635-0301
http://orcid.org/http://orcid.org/0000-0003-4554-6528


34 M. Rančić et al.

24–37]. The methods applied in this research field range from simplified analytical
to rigorous full-wave ones.

The one often used in cases of conductors buried in the ground is the trans-
mission line model (TLM) [3, 16, 17, 20], which offers advantages of analytical
approaches: simplicity and short calculation time. However, the TLM introduces
calculation errors depending on the electrical properties of the ground, burial depth,
and frequency range in question. More specifically, it is reliable for deep-buried long
horizontal conductors at frequencies below MHz range, [16, 17, 20].

On the other hand, using the full-wave approach [1, 4–6, 12–15, 18, 19, 21], any
kind of arbitrarily positioned wire system could be analyzed, at any frequency of
interest with no restrictions to the electrical parameters of the ground. This approach
is based on formulation of the electric field integral equation (EFIE) and its solution
using an appropriate numerical method (e.g. method of moments, boundary element
method). The influence of the ground parameters is taken into account through Som-
merfeld integrals, which are a part of the kernel of the formulated integral equation
(e.g. Pocklington, Hallén, etc.). Although the calculation accuracy that comes with
this approach is high, greater computational costs also need to be paid,which depends
on the numerical method used for EFIE solving, and the way Sommerfeld integrals
are dealt with.

Basically, two approaches can be taken for the latter issue. The first, more time-
consuming one, but also the one yielding most accurate results is any method of
numerical integration of such integrals [4, 5, 21, 24, 33, 37]. A variety of methods
have been proposed that could be roughly divided into a group of methods of direct
integration (integration along the real axis), and a group of methods that consider
changing of the integration path in the complex plane. The second approach con-
siders approximate solving of these integrals using different methods, [6, 9, 11–15,
18, 19, 22, 25–32, 35, 36]. The reflection coefficient method, the method of images,
methods considering approximation of the transformed reflection coefficient (spec-
tral reflection coefficient - SRC) that is a part of the integrand, are some of the
directions that researchers took in this area.

For the cases of wires buried in the ground, the influence of the air/ground
boundary surface is usually taken into account using the reflection coefficient (or
the transmission coefficient) approach (RC or TC, respectively, [5, 12–18, 20]), or
themodified image theory (MIT, [15, 18, 19]). The latter one can only account for the
electrical properties of the ground, not the burial depth, and its validity is frequency
dependent (up to 1 MHz), [16]. On the other hand, the simplicity of the MIT and low
computational cost that comes with it are also present in the RC or TC approaches;
however, the plane wave incidence angle and wire depth are here taken into account.
A drawback of these approaches is that they are valid for the far-field region, whereas
the influence of the lossy ground is primarily noticeable in the close proximity of
the sources. As an improvement, in [36] authors propose an approximation of the
Sommerfeld integrals using a linear combination of 15 exponential functions with
certain unknown constants obtained using the least-squares method. According to
the authors, the maximum relative error of calculations is less than 0.1 per cent in
a wide range of tested parameters describing the geometry and the ground, [36].
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Similar solution, but applicable to static and quasi-static cases, is used in [11, 35].
The integrands are approximated by a set of exponential functions with unknown
exponents and weight coefficients.

In this paper the authors propose a new model for approximation of one type
of Sommerfeld integrals occurring in cases of conductors buried at arbitrary depth
in the lossy ground parallel to the air/ground surface. This model is based on the
procedure proposed by the first author in [25–32], which considers approximation
of a part of the integrand using a weighted exponential function with an additional
unknown complex constant term. This procedure has been successfully employed
for approximation of two forms of Sommerfeld integrals appearing in expressions
describing the Hertz’s vector potential in the surroundings of sources positioned in
the air above lossy ground. Proposed solutions have been applied to near- and far-field
analysis of different wire antenna structures arbitrarily located in the air above lossy
soil, [25–32], and modeling of the lightning discharge using an antenna model, [9].

Application of the newly proposed approximation of the integral in question is val-
idated analyzing a centrally fed horizontal conductor immersed in the lossy ground.
An integral equation of Hallén’s type (HIE) is solved applying the point-matching
method (PMM) as in [25–32], and adopting the polynomial current approximation
as in [21, 22, 25–32]. Different burial depths of the wire, and different ground types,
are considered at various frequencies. Obtained results are, were possible, compared
to the TC approach in combination with the PMM solution to the HIE. Also, Partial
Element Equivalent Circuit (PEEC) method applied in [10], and a so-called Hybrid
Circuit Model (HCM) proposed in [7, 8], are also used for comparison purposes.
Based on presented results, corresponding conclusions are given, and possibilities
for further research are discussed.

3.2 Problem Formulation

Let us observe a centrally fed horizontal thin-wire conductor with lengths of con-
ductor halves l, and cross-section radii a, buried in the lossy half-space (LHS) at
depth h, as illustrated in Fig. 3.1. The LHS is considered a homogeneous, linear and
isotropic medium of known electrical parameters. Electrical parameters of the air
are:

• σ0 = 0 - conductivity;
• ε0 - permittivity;
• μ0 - permeability,

and of the soil:

• σ1 - conductivity;
• ε1 = εr1ε0 - permittivity (εr1 - relative permittivity);
• μ1 = μ0 - permeability;
• σ i = σi + jωε1 - complex conductivity;
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Fig. 3.1 Illustration of a
horizontal conductor buried
in the lossy half-space

• γi = αi + jβi = (jωμσ i )
1/2, i = 0, 1 - complex propagation constant (i = 0 for

the air, and i = 0 for the LHS);
• ω = 2π f - angular frequency;
• εr1 - complex relative permittivity;
• n = γ1/γ0 = ε

1/2
r1 = (εr1 − j60σ1λ0)

1/2 - refractive index, and
• λ0 - wavelength in the air.

The Hertz’s vector potential has two components at an arbitrary point M1(x, y, z)
in the ground in the vicinity of the conductor, i.e. �1 = 
x1 x̂ + 
z1 ẑ, [5, 12–16,
18–20, 34]. Consequently, the tangential component of the scattered electric field
can be expressed as:

Esct
x1 (x, x ′) =

[
∂2

∂x2
− γ 2

1

]

x1 + ∂2
z1

∂x∂z
, (3.1)

where


x1 = 1

4πσ 1

∫ l

−l
I (x ′)

[
Ko(x, x

′) − Ki (x, x
′) +U11

]
dx ′, (3.2)


z1 = 1

4πσ 1

∫ l

−l
I (x ′)

∂W11

∂x
dx ′, (3.3)

with I (x ′) - the current distribution along the conductor (x ′- axis assigned to the
wire);

Ko(x, x
′) = e−γ1ro , ro =

√
ρ2 + a2, ρ = ∣∣x − x ′∣∣ , (3.4)

Ki (x, x
′) = e−γ1ri , ri =

√
ρ2 + (2h)2, ρ = ∣∣x − x ′∣∣ , (3.5)

U11 =
∫ ∞

α=0
T̃η1(α)e−u1(z+h) α

u1
J0(αρ)dα, (3.6)
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W11 =
∫ ∞

α=0
T̃η2(α)e−u1(z+h) α

u1
J0(αρ)dα, (3.7)

T̃η1(α) = 2u1
u0 + u1

, ui =
√

α2 + γ 2
i
, i = 0, 1, (3.8)

T̃η2(α) = 2u1(u0 − u1)

γ 2
1
u0 + γ 2

0
u1

, ui =
√

α2 + γ 2
i
, i = 0, 1, (3.9)

where J0(αρ) is the zero-order Bessel function of the first kind. Adopting (3.2) and
(3.3), expression (3.1) can be written as

Esct
x1 (x, x ′) = 1

4πσ 1

∫ l

−l
I (x ′)G(x, x ′)dx ′, and (3.10)

G(x, x ′) =
[

∂2

∂x2
− γ 2

1

] [
Ko(x, x

′) − Ki (x, x
′) +U11

] + ∂2

∂x∂z

[
∂W11

∂x

]
. (3.11)

Since, according to [34], integral given by (3.7) can be rewritten as ∂W11
∂z =

−γ 2
1
V11 −U11, where

V11 =
∫ ∞

α=0
T̃η3(α)e−u1(z+h) α

u1
J0(αρ)dα, and (3.12)

T̃η3(α) = 2u1
γ 2
1
u0 + γ 2

0
u1

, ui =
√

α2 + γ 2
i
, i = 0, 1, (3.13)

then the expressions (3.10) and (3.11) can be rewritten as

Esct
x1 (x, x ′) = 1

4πσ 1

⎡
⎢⎣

∂2

∂x2
∫ l
−l I (x

′)
[
Ko(x, x ′) − Ki (x, x ′) − γ 2

1
V11

]
dx ′−

−γ 2
1

∫ l
−l I (x

′)
[
Ko(x, x ′) − Ki (x, x ′) +U11

]
dx ′

⎤
⎥⎦ .

(3.14)
Boundary condition for the total tangential component of the electric field vector

must be satisfied at any given point on the conductor’s surface, and if the wire is
perfectly conducting then

Esct
x1 (x, x ′) + Etr

x1(x, x
′) = 0, (3.15)

where Etr
x1(x, x

′) is the transmitted electric field. Now, the integral equation-IE (3.15)
has the form

Etr
x1(x, x

′) = −Esct
x1 (x, x ′), (3.16)
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which, as a solution, gives the current distribution along the observed conductor.
However, in order to do so, a group of improper integrals, referred to as integrals
of Sommerfeld type, needs to be solved. Those would be integrals given by (3.6)
and (3.7) if the formulation (3.10) and (3.11) is substituted in (3.16), or a set of
integrals (3.6) and (3.12), if (3.14) is adopted.

3.3 Sommerfeld Integral Approximations

Different approaches have been applied in this field, but most of them start with a
simplified version of the Green’s function (3.11) having the following form:

G(x, x ′) =
[

∂2

∂x2
− γ 2

1

] [
Ko(x, x

′) − Ki (x, x
′) +U11

]
, (3.17)

which means that only one Sommerfeld integral (the one given by (3.6)) needs to
be solved. The following sub-sections will give an overview of a solution already
proposed in the literature (Sect. 3.3.1), and also a newly developed one by the authors
of this paper (Sect. 3.3.2).

3.3.1 Transmission Coefficient (TC) Approach

Transmission coefficient approach [3, 12], substitutes the part −Ki (x, x ′) +U11

in (3.17) by
− Ki (x, x ′) +U11 = −Ki (x, x ′)�trans.

T M , (3.18)

i.e. approximates the U11 by

Ua
11 ≈ Ki (x, x ′)

(
1 − �trans.

T M

)
, (3.19)

where

�trans.
T M = 2n cos θ

n2 cos θ +
√
n2 − sin2 θ

, θ = arctan
ρ

2h
, (3.20)

presents the transmission coefficient for TM polarization.
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3.3.2 Two-Image Approximation - TIA

In this paper, the authors propose a new approximation for the integral (3.6), so-called
two-image approximation (TIA) developed using the procedure applied in [25–32]
for modeling two different forms of Sommerfeld integrals occurring in cases of
sources located in the air above LHS.

1st case: Let us assume the expression (3.8) in the following form:

T̃ a
η1 = B + Ae−(u1−γ

1
)d , (3.21)

where B, A and d are unknown complex constants. When (3.21) is substituted
into (3.6), taking into account the identity, [23],

∫ ∞

α=0

e−|c|√α2+γ 2
1√

α2 + γ 2
1

α J0(αρ)dα = Kc(x, x
′) = e−γ

1

√
ρ2+|c|2√

ρ2 + |c|2
, (3.22)

the following general TIA approximation of (3.6) is obtained:

Ua
11(x, x

′) = BKzh(x, x
′) + Aeγ1|d|Kzhd(x, x

′), (3.23)

where
Kzh(x, x

′) = e−γ1rzh , rzh =
√

ρ2 + (z + h)2, (3.24)

Kzhd(x, x
′) = e−γ1rzhd , rzhd =

√
ρ2 + (z + h + ∣∣d∣∣)2. (3.25)

Constants B, A and d are evaluated matching the expressions (3.8) and (3.21), as
well as their first derivative, at certain characteristic points in the range of integration
of (3.6). One possibility is as follows,

1. Matching point 1: u1 → ∞

T̃η1(u1 → ∞) = 1, (3.26)

T̃ a
η1(u1 → ∞) = B. (3.27)

2. Matching point 2: u1 = γ
0

T̃η1(u1 = γ
0
) = 2

1 + √
2 − n2

, (3.28)

T̃ a
η1(u1 = γ

0
) = B + Ae−γ

0
(1−n)d . (3.29)

3. Matching point for the first derivative: u1 = γ
0
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T̃ ′
η1(u1 = γ

0
) = −2(n2 − 1)

γ
0

√
2 − n2

(
1 + √

2 − n2
)2 , (3.30)

T̃
′a
η1(u1 = γ

0
) = −d Ae−γ

0
(1−n)d . (3.31)

Equating (3.26) and (3.27), (3.28) and (3.29), and (3.30) and (3.39), a system of
three equations over three unknown constants B, A and d is formed, and the solution
is given in the first row of Table3.1.

2nd case: The same approximation of (3.6) can be achieved if we assume (3.8) as

T̃ a
η1 = B + Ae−u1d , (3.32)

then (3.6) gets the form

Ua
11(x, x

′) = BKzh(x, x
′) + AKzhd(x, x

′), (3.33)

For the same matching points as previously, we get
1. Matching point 1: u1 → ∞

T̃η1(u1 → ∞) = 1, (3.34)

T̃ a
η1(u1 → ∞) = B. (3.35)

2. Matching point 2: u1 = γ
0

T̃η1(u1 = γ
0
) = 2

1 + √
2 − n2

, (3.36)

T̃ a
η1(u1 = γ

0
) = B + Ae−γ

0
d . (3.37)

3. Matching point for the first derivative: u1 = γ
0

T̃ ′
η1(u1 = γ

0
) = −2(n2 − 1)

γ
0

√
2 − n2

(
1 + √

2 − n2
)2 , (3.38)

T̃
′a
η1(u1 = γ

0
) = −d Ae−γ

0
d . (3.39)

The values obtained for B, A and d are listed in the second row of Table3.1.
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Table 3.1 Obtained values of constants describing proposed TIA model

TIA Model B A d

1st case 1 1−
√

2−n2

1+
√

2−n2
eγ

0
(1−n)d 2

γ
0

√
2−n2

2ndcase 1 1−
√

2−n2

1+
√

2−n2
eγ

0
d 2

γ
0

√
2−n2

3.4 Solution of the Integral Equation

In order to validate the application of the proposed approximation for the inte-
gral (3.6), the integral equation (3.16) will be solved for the current. First, the form of
the Hallén’s IE (HIE) is obtained as a solution of the partial differential equation that
arises from (3.16). For the case of a thin-wire conductor centrally-fed by a Dirac’s
δ-generator, Etr

x1(x, x
′) = Uδ(x), U = 1 V, and taking into account the simplified

Green’s function given by (3.17), the HIE becomes:

∫ l

−l
I (x ′)

[
Ko(x, x

′) − Ki (x, x
′) +U11

]
dx ′ − C cos(jγ

1
x) = j

n

60
U sin(jγ

1
x),

(3.40)
where C is an integration constant.

In order to solve (3.40), the point-matching method (PMM) is applied, giving us
a system of linear equations with current distribution and integration constant C as
unknowns. In this paper, we adopt the entire domain polynomial current approxima-
tion for the current as in [21, 22, 25–32]:

I (u′ = x ′/ l) =
M∑

m=0

Imu
′m, 0 ≤ u′ ≤ 1, (3.41)

where Im ,m = 0, 1, ..., M , are complex current coefficients. This amounts to a total
of (M + 1) + 1 unknowns, which calls for as much linear equations. The matching
is done at (M + 1) points that are chosen as xi = il/M , i = 0, 1, 2, ..., M . This
way, a system of (M + 1) linear equations is formed, lacking one additional equation
to account for the unknown integration constant C . This remaining linear equation is
obtained applying the condition for vanishing of the current at the conductor’s end,
which corresponds to I (−l) = I (l) = 0. If we adopt TC or TIA model for (3.6), the
system of equations becomes:

M∑
m=0

Im

∫ l

−l

(
x ′

l

)m [
Ko(x, x

′) − Ki (x, x
′) +Ua

11(x, x
′)
]
dx ′ − C cos(β0nxi ) =

= −j
n

60
U sin(β0nxi ), i = 0, 1, 2, ..., M,

(3.42)
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M∑
m=0

Im = 0. (3.43)

3.5 Numerical Results

First we observed the convergence of the PMM method when the TIA approach to
solving Sommerfeld integral (3.6) is adopted. The current magnitude is calculated
for different values of the order of the polynomial current distribution M . Obtained
results along a half of the conductor, which correspond to burial depth of h = 0.1 m,
can be observed from Figs. 3.2 and 3.3 for two frequency values: 1 and 10 MHz,
respectively. Each figure includes two diagrams corresponding to two different values
of the ground conductivity: (a) σ1 = 0.001 S/m and (b) σ1 = 0.01 S/m. The analysis
is performed for the case of the conductor’s half-length l = 5 m, cross-section radius
a = 5 mm, and electric permittivity of the ground εr1 = 10.

The conductor with the same geometry parameters is considered again, for two
cases of burial depths: (a) h = 1.0 m and (b) h = 5.0 m. The variable parameter
in all figures is the specific conductivity of the ground, and it takes three values:
σ1 = 0.001, 0.01 and 0.1 S/m. The analysis is performed for the case of the electric
permittivity of the ground εr1 = 10. The results obtained by the PMM method and
both the TC and newly proposed TIA approach are compared to the corresponding
ones obtained by the methods from [7, 8, 10]. In [10] the authors employ the Partial
Element Equivalent Circuit (PEEC)method,while in [7, 8] a so-calledHybridCircuit
Model (HCM) is proposed. Satisfying accordance of the results can be observed from
the presented results. This is especially noticeable formore deeply buried conductors,
and lower frequencies.

Fig. 3.2 Current magnitude along a half of the conductor for burial depth of 0.1m and two values
of ground conductivities: a 0.001 S/m, b 0.01 S/m. Order of polynomial current approximation M
is taken as a parameter. Frequency is 1 MHz
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Fig. 3.3 Current magnitude along a half of the conductor for burial depth of 0.1m and two values
of ground conductivities: a 0.001 S/m, b 0.01 S/m. Order of polynomial current approximation M
is taken as a parameter. Frequency is 10 MHz

Fig. 3.4 Current magnitude along a half of the conductor buried at a 0.1 m, b 5 m for frequency
of 1 MHz. Conductivity of the ground is taken as a parameter. Comparison of different methods

Next, results for the current magnitude are given in Figs. 3.4 and 3.5 for two
frequency values, 1 and 10 MHz, respectively.

Figures3.6, 3.7 and 3.8 illustrate the current magnitude distribution for three
different frequencies: 1, 5 and 10 MHz. Two cases of burial depth are considered:
(a) h = 1.0 m and (b) h = 5.0 m. The conductor’s geometrical parameters are the
same as previously.

Each figure corresponds to the same electrical permittivity (εr1 = 10), while the
ground’s conductivity is varied (σ1 = 0.001, 0.01 and 0.1 S/m). Again, the results
obtained by different methods, PMM-TC, PMM-TIA, PEEC, and HCM, are com-
pared.
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Fig. 3.5 Current magnitude along a half of the conductor buried at a 0.1 m, b 5 m for frequency
of 10 MHz. Conductivity of the ground is taken as a parameter. Comparison of different methods

Fig. 3.6 Current magnitude along a half of the conductor buried at a 0.1 m and b 5 m for ground
conductivity of 0.001 S/m. Frequency is taken as a parameter. Comparison of different methods

Final set of numerical results illustrates the influence of different values of the
electrical permittivity at two frequencies: (a) 1MHz and (b) 5MHz. Figures3.9, 3.10
and 3.11 correspond to three cases of specific ground conductivity σ1 = 0.001 S/m,
0.01 S/m, and 0.1 S/m. The conductor has the same geometry as previously, and is
positioned at h = 5.0m below the boundary surface air/LHS. The results obtained by
the PMM-TIA (solid squares), and the PEECmethod (continual lines) are presented.
Observed values of the electrical permittivity are: εr1 = 1, 2, 5, 10, 20, 36 and 81.
This influence is most noticeable at higher frequencies and for lower values of the
ground conductivity.
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Fig. 3.7 Current magnitude along a half of the conductor buried at a 0.1 m and b 5 m for ground
conductivity of 0.01 S/m. Frequency is taken as a parameter. Comparison of different methods

Fig. 3.8 Current magnitude along a half of the conductor buried at a 0.1 m and b 5 m for ground
conductivity of 0.1 S/m. Frequency is taken as a parameter. Comparison of different methods

3.6 Conclusion

The aimof the paper to effectively approximate one formof Sommerfeld integrals has
been achieved developing a simple approximation in a form of a weighted exponen-
tial function with an additional constant term, denoted here as two-image approx-
imation (TIA). Proposed approximation is valid over a wide range of parameters
(electrical parameters of the ground and geometry parameters). Presented numerical
results show that the proposed model in combination with the PMM method can be
successfully applied to frequency analysis of conductors buried in the lossy medium.

Furthermore, presented results indicate a possibility of effective application of
the proposed procedure to other forms of Sommerfeld integrals that also appear
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Fig. 3.9 Current magnitude along a half of the conductor for frequencies a 1 MHz, b 5 MHz.
Electrical permittivity of the ground is taken as a parameter. Ground conductivity is 0.001 S/m

Fig. 3.10 Current magnitude along a half of the conductor for frequencies a 1 MHz, b 5 MHz.
Electrical permittivity of the ground is taken as a parameter. Ground conductivity is 0.01 S/m

in the observed case of sources buried in the lossy ground (the ones given by (3.7)
and (3.12)), which are usually neglected [3, 5, 6, 12–20, 24]. Thiswould yield amore
stringent analysis, and also amore accurate one, of not only antennas immersed in the
lossy ground, but alsowire grounding systems in such soil, buried telecommunication
cables exposed to electromagnetic interferences, submarine dipoles, bare or isolated
antennas embedded in dissipative media, etc.
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Fig. 3.11 Current magnitude along a half of the conductor for frequencies a 1 MHz, b 5 MHz.
Electrical permittivity of the ground is taken as a parameter. Ground conductivity is 0.1 S/m
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21. Popović, B.D., Djurdjević, D.: Entire-domain analysis of thin-wire antennas near or in lossy
ground. IEE Proc. Microw. Antennas Propag. 142(3), 213–219 (1995)
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