
Chapter 18
Pricing European Options Under Stochastic
Volatilities Models

Betuel Canhanga, Anatoliy Malyarenko, Jean-Paul Murara
and Sergei Silvestrov

Abstract Interested by the volatility behavior, differentmodels have been developed
for option pricing. Starting from constant volatility model which did not succeed
on capturing the effects of volatility smiles and skews; stochastic volatility models
appear as a response to the weakness of the constant volatility models. Constant
elasticity of volatility, Heston, Hull and White, Schöbel–Zhu, Schöbel–Zhu–Hull–
White andmany others are examples of models where the volatility is itself a random
process. Along the chapter we deal with this class of models and we present the
techniques of pricing European options. Comparing single factor stochastic volatil-
ity models to constant factor volatility models it seems evident that the stochastic
volatility models represent nicely the movement of the asset price and its relations
with changes in the risk. However, these models fail to explain the large indepen-
dent fluctuations in the volatility levels and slope. Christoffersen et al. (Manag Sci
22(12):1914–1932, 2009, [4]) proposed a model with two-factor stochastic volatili-
tieswhere the correlation between the underlying asset price and the volatilities varies
randomly. In the last section of this chapter we introduce a variation of Chiarella and

B. Canhanga (B)
Faculty of Sciences, Department of Mathematics and Computer Sciences,
Eduardo Mondlane University, Box 257, Maputo, Mozambique
e-mail: betuel.canhanga@mdh.se

B. Canhanga · A. Malyarenko · J.-P. Murara · S. Silvestrov
Division of Applied Mathematics, The School of Education, Culture and Communication,
Mälardalen University, Box 883, 721 23 Västerås, Sweden
e-mail: anatoliy.malyarenko@mdh.se

J.-P. Murara
e-mail: jean-paul.murara@mdh.se

S. Silvestrov
e-mail: sergei.silvestrov@mdh.se

J.-P. Murara
Department of Applied Mathematics, School of Sciences, College of Science
and Technology, University of Rwanda, P.O. Box 3900, Kigali, Rwanda

© Springer International Publishing Switzerland 2016
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Ziveyi model, which is a subclass of the model presented in [4] and we use the first
order asymptotic expansion methods to determine the price of European options.

Keywords Financial markets ·Option pricing · Stochastic volatilities ·Asymptotic
expansion

18.1 Introduction

Let (Ω,F,P) be a probability space with risk-neutral probability measure P. Let
{Ft : 0 ≤ t ≤ T } be the filtration generated by a standard d-dimensional Brownian
motion Wt .

LetX = (X1, . . . , Xm)� be the vector of stochastic variables. Assume, that under
P the stochastic variables satisfy the following stochastic differential equation:

dXt = μ(t,Xt ) dt + Σ(t,Xt ) dWt , (18.1)

where μ : [0, T ] × R
m → R

m is the drift, and where Σ : [0, T ] × R
m → R

m×d is
the diffusion. Let r(t,Xt ) be the instantaneous risk-free interest rate, and let g(x) be
the payoff of a financial instrument with maturity T .

By risk-neutral valuation, the price V (t, x) of the instrument is

V (t, x) = E
[
exp

(
−

∫ T

0
r(u, x) du

)
g(XT )|Ft ,Xt = x

]
.

In [1] it is proved that the price V (t, x) satisfies the partial differential equation

∂V

∂t
+

m∑
i=1

μi (t, x)
∂V

∂xi
+ 1

2

m∑
i=1

m∑
j=1

d∑
k=1

Σik(t, x)Σk j (t, x)
∂2V

∂xi∂x j
− r(t, x)V = 0

subject to the terminal value condition V (T, x) = g(x). The seminal Black–Scholes
European option pricingmodel has the assumption that underlying stock price returns
follow a lognormal diffusion process.

Different from the Black–Scholes, for a given stochastic process like the stock
price St , if its variance σt is itself randomly distributed, then (18.1) can be written
for m = d = 2 as

dSt = μ(St , t)dt + σt StdW
1
t , (18.2)

where σt satisfies
dσt = a(σt , t)dt + b(σt , t)dW

2
t ,

and where W 1
t and W 2

t are standard one-dimensional Brownian motions defined
on (Ω,F,P) with the covariance satisfying d(Wi

t ,W
j
t ) = ρi j dt for some constant
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ρi j ∈ [−1, 1] and σt is known as the stochastic volatility or the instantaneous
volatility or the spot volatility. a(σt , t) and b(σt , t) are smooth functions that corre-
spond respectively to the drift and diffusion of the spot volatility. Tomodel derivatives
like European options more accurately, it is better to assume that the volatility of the
underlying price is a stochastic process rather than a constant as it has been assumed
for models based on Black–Scholes formula. The reason is that the latter cannot
explain long-observed features of the implied volatility surface, volatility smile and
skew, which indicate that the implied volatility does not tend to vary with respect to
strike price K and horizon date T .

Definition 18.1 Under anymartingale measureP and the interest rate at time t given
by rt ; a model with the form

dSt = rt Stdt + σt StdW
1
t

dσt = a(σt , t)dt + b(σt , t)dW
2
t

is said to be a stochastic volatility model.

The sections of this chapter present different procedures to price European options
with underlying asset prices governed by Constant Elasticity of Variance, Stochastic
αβρ, Detemple–Tian, Grzelak–Oosterlee–Van Veeren, Jourdain–Sbai, Ilhan–Sircar
and Chiarella-Ziveyimodels.

18.2 The Constant Elasticity of Variance (CEV) Model

The lognormality assumption from the Black–Scholes formula does not hold accu-
rately. The pricing of European options has been studied recently for alternative
diffusion models.

In 1976 Cox and Ross [5] focused their attention on the constant elasticity of
variance diffusion class, and gave the following Constant Elasticity of Variance
(CEV) Model

dSt = μStdt + σ Sβ
t dWt . (18.3)

They considered the driftμ to be constant and the real constant parameters are σ ≥ 0
and β ≥ 0. The parameter β is the main feature of this model and it is known as the
elasticity factor. The relationship between volatility and price described by the CEV
model is controlled by β. The payoff function is defined by g(s) = αsβ for positive
constant α and real positive s.

Remark 18.1 Equation (18.3) becomes theBacheliermodel forβ = 0, and forβ = 1
it becomes the Black–Scholes model.

Remark 18.2 Some say that the CEVmodel is not a stochastic volatility model, but a
local volatility model based on the fact that it does not incorporate its own stochastic
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process for volatility and thus they remove it among the other stochastic volatility
models.

The CEVmodel is used for modelling equities and commodities when attempting
to capture the stochastic volatility and the leverage effect. In commodities markets,
volatility rises when prices rise. This is known as the inverse leverage effect and for
this case β > 1. Whereas in equity markets the volatility of a given stock increases
when its price falls which is known as the leverage effect with β < 1.

Now, for cases where 0 < β < 1, the infinitesimal conditional variance of the
logarithmic rate of return of the stock equals σ 2

t = α2S2(β−1)
t , and thus it changes

inversely with the price. Under this condition the following equations hold:

dvt
dSt

St
vt

= g′(St )St
g(St)

= αβSβ−1
t St

σ Sβ
t

= β, vt = g(St ),

dσt

dSt

St
σt

= f ′(St )St
f (St )

= α(β − 1)Sβ−2
t St

αSβ−1
t

= β − 1.

Equation (18.3) corresponds to the classical Girsanov example in the theory of
stochastic differential equations which is presented in [15, 16]; assuming that μ = 0
then it has a unique solution for any β ≥ 1

2 and this uniqueness fails to hold for values
in the interval (0, 1

2 ).
The CEV model is complete when assuming that the filtrationF is generated by

the driving Brownian motionW 1
t . From this completeness, any European contingent

claim that is FT -measurable and P-integrable, with time t discounting factor Bt ,
possesses a unique arbitrage price given by the risk-neutral valuation formula

v(St , t) = BtEP(B
−1
T h(ST )|Ft ).

By the Feynman–Kac theorem, the option price v(St , t), with v(ST , T ) = h(s)
and h(St ) the inverse of g(St), can be given as the solution of the following partial
differential equation

∂v(St , t)

∂t
+ 1

2

(
αSβ

t

)2 ∂2v(St , t)

∂S2t
+ r St

∂v(St , t)

∂St
− rv(St , t) = 0. (18.4)

18.2.1 European Option Pricing Formulae Under
the CEV Model

Many authors have examined option pricing equations related to the CEV model
among others and mentioned that the transition probability density function for the
stock price governed by the CEV model can be explicitly expressed in term of
the modified Bessel functions. From this, the integration of the payoff function with
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respect to the transition density can be used to find the arbitrage price of anyEuropean
contingent claim.

The European option pricing formula can be derived and let us have a look on a
computational convenient representation of Schroder presented in [18] for the call
price in the CEV model:

Ct (St , T − t) = St

(
1 −

∞∑
n=1

g(n + 1 + γ, K̃t )

n∑
m=1

g(m, F̃t)

)
(18.5)

−Ke−r(T−t)
∞∑
n=1

g(n + γ, F̃t )

n∑
m=1

g(m, K̃t)),

where γ = 1
2(1−β)

and g(p, x) = x p−1e−x


(p) is the density function of the Gamma dis-

tribution. For the forward price of a stock Ft = St
B(t,T )

we have:

F̃t = F2(1−β)
t

2χ(t)(1 − β)2
, K̃t = K 2(1−β)

2χ(t)(1 − β)2
, χ(t) = σ 2

∫ T

t
e2r(1−β)udu

is the scaled expiry of an option.

18.2.2 Implied Volatility Smile in the CEV Model

The presence of parameter β in the CEV model is a big advantage over the classical
Black-Scholes model because it is possible to make a better fit to observed market
prices options with an appropriate choice of α and β. Making β 	= 1 and α 	= 0,
the CEV model yields prices of European options corresponding to smiles in the
Black-Scholes implied volatility surface. Which means that, for a fixed maturity T,
the implied volatility of a call option is a decreasing function of the strike K.

Considering the case when a stock price is governed by (18.3), the forward price
of a stock

Ft = FS(t, T ) = St
B(t, T )

= eμ(T−t)St

under the martingale measure P, satisfies

dFt = α(t)Fβ
t dWt . (18.6)

As presented in [16] the implied volatility σ̂0(T, K ) predicted by (18.6) is

σ̂0(T, K ) = αa

F1−β
a

(
1 + (1 − β)(2 + β)(F0 − K )2

24F2
a

+ (1 − β)2α2
aT

24F2(1−β)
a

+ · · ·
)

.
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σ̂0(T, K ) is the Black implied volatility, Fa = (F0+K )

2 and αa = ( 1
T

∫ T
0 α2(u)du)1/2.

18.3 The Stochastic αβρ (SABR) Model

The SABR model can be seen as a natural extension of the CEV model. When in
[11] Hagan et al. examined the issue of dynamics of the implied volatility smile, they
argued that any model based on the local volatility function incorrectly predicts the
future behaviour of the smile, i.e. when the price of the underlying decreases, local
volatilitymodels predict that the smile shifts to higher prices. Similarly, an increase of
the price results in a shift of the smile to lower prices. It was observed that the market
behaviour of the smile is precisely the opposite. Thus, the local volatility model has
an inherent flaw of predicting the wrong dynamics of the Black–Scholes implied
volatility. Consequently, hedging strategies based on such a model may be worse
than the hedging strategies evaluated for the naive model with constant volatility that
is, the Black–Scholes models.

A challenging issue is to identify a class of models that has the following essential
features: a model should be easily and effectively calibrated and it should correctly
capture the dynamics of the implied volatility smile.

A particular model proposed and analyzed in [11] is specified as follows: under
the martingale measure P, the forward asset price St is assumed to obey the equation

dSt = αt S
β
t dW

1
t , (18.7)

dαt = νtαt dW
2
t , (18.8)

which is the SABR model, where α0 = 0, 1
2 ≤ β ≤ 1, αt 	=0 > 0 and νt is the instan-

taneous variance of the variance process. W 1
t and W 2

t are two correlated Brownian
motions with respect to a filtration F with constant correlation −1 < ρ < 1. Thus,
(18.8) can be written as

dαt = νtαt (ρdW
1
t +

√
1 − ρ2dW 2

t ),

dW 1
t dW

2
t = ρdt, W 2

t = ρW 1
t +

√
1 − ρ2W 2

t .

18.3.1 European Option Pricing Formulae Under
the SABR Model

Let us now assume that the overall volatility αt and the volatility of volatility νt are
very small. At date t , S(t) = s, α(0) = α we can write the value of an European call
option by

V (t, s, α) = E{[S(tex .) − K ]+|S(t) = s, α(t) = α}, (18.9)
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where tex . is the exercise time. As presented in [19] the option price becomes

V (t, s, α) = [s − K ]+ + |s − K |
2
√

π

∞∫
x2
2τex

e−q

(q)3/2
dq, (18.10)

where q = x2

2τ .

18.3.2 Implied Volatility Smile in the SABR Model

After deriving the European call option pricing formula under the SABR model, we
can derive the approximate implied normal volatility and the implied Black volatility
in order to utilize the pricing formula more conveniently.

At-the-money option, it is proven in [16] that the Black implied volatility formula
under the SABR is as follows:

σ̂0(S0, T ) ∼= α

Sβ̂

0

{
1 +

[
β̂2α2

24S2β̂0
+ ρβανt

4Sβ̂

0

+ (2 − 3ρ2)ν2
t

24

]
T

}
, (18.11)

where β̂ = 1 − β.

18.4 The Detemple–Tian Model (DTM)

Different frommost of the models we present in this chapter, the DTM is considering
volatility to be constant but it assumes that the interest rate changes randomly. The
underlying asset price St and the interest rate rt follow the system of stochastic
differential equations bellow:

dSt
St

= (rt − δ)dt + σ1dW1(t), (18.12)

drt = a(r − rt )dt + σ2dW2(t) = [θ(t) − art ]dt + σ2dW2(t), (18.13)

where δ, a, σ1, σ2 are constants, δ is the dividend rate, σ1 is the asset price volatility,
the speed of mean reversion of the interest rate is a and σ2 its volatility. θ(t) is
deterministic function of time and W1, W2 are correlated Brownian motions with
correlation coefficient ρ.

Detemple and Tian in [6] use the model to compute the American option price
and show that the exercise region is depending on the interest rate and dividend yield.
Also the results were used to derive recursively an integral equation for the exercise
region.
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If we define

J (t, T ) = e

(
−

T∫
t

v∫
t
e−a(v−s)θ(s)dsdv+ 1

2 σ 2
2

T∫
t
(1−e−a(T−s))2ds

)

and

G(t, T ) = 1

a

[
1 − e−a(T−t)

]

for the European call, the options price is given by the following formula

V (St , rt , t) = e−δ(T−t)St N (h(St , K ; t, T )) − K P(t, T ) × N (h(St , K ; t, T ) − √
ω(t, T )),

(18.14)

where

h(St , K ; t, T ) = ln(S/K P(t, T )) − δ(T − t)√
ω(t, T )

+ 1

2

√
ω(t, T );

P(t, T ) the pure discount bond price is given by

P(t, T ) = J (t, T )e−rt G(t,T )

and

ω(t, T ) =
∫ T

t
(σ 2

1 + σ 2
2G(u, T )2 + 2ρσ1σ2G(u, T ))du. (18.15)

18.5 Grzelak–Oosterlee–Van Veeren (GOVV) Model

The particular case of (18.1) when the drift and the diffusion are defined for m =
d = 3 is known as GOVVmodel presented by Grzelak et al. in [10]. They considered
that the price of an asset at time t is St and is governed by an stochastic differential
equation with stochastic interest rate rt and stochastic volatility σt of mean reversion
type. The model evolves according to the following system:

dSt = rt Stdt + σ
p
t Std Z

1
t , (18.16)

drt = λ(θt − rt )dt + ηdZ2
t ,

dσt = k(σ − σt )dt + γ σ
1−p
t d Z3

t ,

where p is constant, λ and k are the speed of mean reversion processes, η is the
volatility of the interest rate, γ is the volatility of volatility. θt is the long run mean
of the interest rate and σ is the long run mean of the volatility. Z1

t , Z2
t , Z

3
t are

independent Brownian motions with correlation factors given by
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dZi
t d Z

j
t = ρi j for i, j = 1, 2, 3.

Considering

Z1
t = W 1

t ,

Z2
t = ρ12W

1
t +

√
1 − ρ2

12W
2
t ,

Z3
t = ρ13W

1
t + ρ23 − ρ12ρ13√

1 − ρ2
12

W 2
t +

√
1 − ρ2

13 − (ρ23 − ρ12ρ13)

1 − ρ2
12

W 3
t ,

and using the notation

a = ρ23 − ρ12ρ13√
1 − ρ2

12

, b =
√
1 − ρ2

13 − (ρ23 − ρ12ρ13)

1 − ρ2
12

,

the GOVV model (18.16) can be written as

dSt = rt Stdt + σ
p
t StdW

1
t , (18.17)

drt = λ(θt − rt )dt + η

(
ρ12dW

1
t +

√
1 − ρ2

12dW
2
t

)
,

dσt = k(σ − σt )dt + γ σ
1−p
t

(
ρ13dW

1
t + adW 2

t + bdW 3
t

)
.

If on the above model we consider that the interest rate is constant, the correlation
factors ρ2 j and ρi2 are equal to zero we generate:

• Heston Model, if p = 1
2 . The underlying asset price and volatilities are governed

by the following system

dSt = r + Stdt + √
σt StdW

1
t , (18.18)

dσt = kH (σ H − σt )dt + γ H√
σt

(
ρ13dW

1
t +

√
1 − ρ2

13dW
3
t

)
,

where the superscript H stands for Heston, to indicate long run volatility mean,
speed of mean return and volatility of volatility.

• Schöbel–Zhu–Heston model, if p = 1. The underlying asset price and volatility
are governed by the following system

dSt = rt Stdt + σt StdW
1
t , (18.19)

dσt = kH (σ H − σt )dt + γ H

(
ρ13dW

1
t +

√
1 − ρ2

13dW
3
t

)
.
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• Schöbel–Zhu model; which is a transformation of Schöbel–Zhu–Heston model
that is obtained considering the variance of instantaneous stock σt = √

vt , when
the speed of mean reversion of the volatility process is given by 2k and the long

run mean is represented by −
(
σtσ + γ 2

2k

)
i.e.

dvt = 2
√
vt

(
kH (σ H − σt )dt + γ H

(
ρ13dW

1
t +

√
1 − ρ2

13dW
3
t

))
;

therefore the governing equations of the asset price and its volatility will be

dSt = rt Stdt + vt StdW
1
t , (18.20)

dvt = 2k(vt + σtσ + γ 2

2k
)dt + 2γ

√
vt

(
ρ13dW

1
t +

√
1 − ρ2

13dW
3
t

)
.

• Black–Scholes model, if p = 0.

18.5.1 Pricing European Options for the GOVV Type Models

Assuming that the characteristic function of the logarithm of the underlying asset
price is known; to price an European option one can choose to apply the fast Fourier
transforms in a Carr–Madan technique presented in [2] or use the Fourier–Cosine
explained in [8]. If from one hand Carr–Madan is a forward method and with easy
computations; it requires to use a damping parameter which is only experimentally
determined for some very specific classes of models. The fact that there is no any
scientifically method to determine the damping parameters brings a huge limitation
for the cases when dealing with models with unknown damping parameter. In the
next section the pricing methodology is developed using the Fourier–Cosine method.

18.5.1.1 Pricing Method

Let us present first a theorem that will give us the approximation of the probability
density function in a bounded domain.

Theorem 18.1 For a given bounded domain D = [a1, a2] and a Fourier expansion
with N terms, the probability density function pY (y|St ) can be approximated by

pY (y|St ) =
N∑

n=0

2wn

|D| R
[
φ̃

(
nπ

|D|
)
e
(
−nπ

ia1
|D|

)
cos

(
nπ

y − a1
|D|

)]
,

for w0 = 1
2 , wn = 1, ∀n ∈ R and R denoting the real part.
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The proof of the theorem is presented in [8].
For the European options, the general risk neutral pricing formula shows that

the contingent claim C(t, St ) written at time t on an asset that value is St can
be obtained by calculating the expected value under risk neutral measure P of the
discounted payoff function H(t, St ) at maturity T , given that the information Ft is
known, i.e.

C(t, St ) = EP

⎛
⎝e

−
T∫
t
rsds

H(T, ST )|Ft

⎞
⎠ .

If the probability density function pY (y|St ) is known, the above expectation is
given by

EP

⎛
⎝e

−
T∫
t
rsds

H(T, ST )|Ft

⎞
⎠ =

∫
R

H(T, y)pY (y|St )dy,

where

pY (y|St ) =
∫
R

pY Z (y, z|St )dz,

and

z = −
T∫
t

rsds is the discounting exponent.

Assuming that pY (y|St ) decays fast, it is possible to restrict the integrations to a
closed and bounded domain. Therefore, the contingent claim will be approximated
to

C(t, St ) =
∫
D

H(T, y)pY (y|St )dy, (18.21)

where D = [a1, a2] and |D| = a2 − a1 > 0.
If we set

u = [u, 0, . . . , 0]′ and [ST = St , rt , . . .]

in order to obtain obvious boundary conditions at maturity, the discounted charac-
teristic function is given by

φ(u, St , t, T ) =
∫ ∫

R

ez+iuy pY,Z (y, z|St )dzdy

=
∫
R

eiuy pY (y|St )dy,
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which is the transformation of the probability density function pY (y|St ) according
to Fourier. Moreover, when considering the domainD instead ofR the characteristic
function is approximated to

φ̃(u, St , t, T ) =
∫
D

eiuy pY (y|St )dy,

where the probability density function is determined with the use of the Theorem
18.1. The contingent claim can then be obtained by

C(t, St ) =
∫
D

H(T, y)
N∑

n=0

2wn

|D| R
[
φ̃

(
nπ

|D|
)
e
(
−nπ

ia1
|D|

)
cos

(
nπ

y − a1
|D|

)]
dy

= |D|
2

N∑
n=0

Φn
ζD

n

wn
,

where

Φn =
N∑

n=0

2wn

|D| R
[
φ̃

(
nπ

|D|
)
e
(
−nπ

ia1
|D|

)
cos

(
nπ

y − a1
|D|

)]
,

H(T, y) = max(Key − K ; 0) for y = log

(
S

K

)
,

and ζD

n = 2K
|D| (αn − βn) . αn and βn are defined by

βn = |D|2
|D|2 + (nπ)2

[
cos(a1, a2) + nπ

|D| sin(a1, a2)
]

for

cos(a1, a2) = cos(nπ)ea2 − cos

(−a1nπ

|D|
)

,

sin(a1, a2) = sin(nπ)ea2 − sin

(−a1nπ

|D|
)

,

and

α0 = a2, αn 	=0 = |D|
nπ

[
sin(nπ) − sin

(−a1nπ

|D|
)]

.
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18.5.1.2 Schöbel–Zhu–Hull–White (SZHW) Model

On a probability space (Ω,Ft ,P), when the vector state Xt = [St , rt , σt ] is
Markovian relative to filtrationFt with asset price and volatility defined as in (18.16),
when p = 1 we obtain the so called SZHWmodel, if interest rate process is given by

rt = r0e
−λt + λ

t∫
0

e−λ(t−s)θsds + η

t∫
0

e−λ(t−s)dWP

s .

From the Hull–White decomposition explained in [10], the interest rate process
can be expressed by

rt = r̃t + mt ,

where

mt = e−λt r0 + λ

t∫
0

e−λ(t−s)θsds,

and
dr̃t = −λ̃rtdt + ηdWP

s with r̃0 = 0.

Introducing the notation σt = √
vt , log St = xt = x̃t + ϕt for φt =

t∫
0
msds; the

SZHW model is described in an expanded vector space with the new stochastic
process vt , i.e.

dxt = (̃rt + mt − 1

2
vt )dt + σt dW

1
t ,

dr̃t = −λ̃rtdt + η

(
ρ12dW

1
t +

√
1 − ρ2

12dW
2
t

)
,

dvt = (−2vtk + 2kσtσ + γ 2)dt + 2σtγ
(
ρ13dW

1
t + adW 2

t + bdW 3
t

)
,

dσt = k(σ − σt )dt + γ
(
ρ13dW

1
t + adW 2

t + bdW 3
t

)
.

(18.22)

It is shown in [7] that the characteristic function has the following form:

φSZHW (u,Xt , t, T ) = e
−

T∫
t
msds+iu′[φT , mT , 0, 0]′

eA(u,τ )+B′(u,τ )[̃xt ,̃rt ,vt ,σt ],

where
B(u, τ ) = [Bx (u, τ ), Br (u, τ ), Bv(u, τ ), Bσ (u, τ )],
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for

Bx (u, τ ) = iu,

Br (u, τ ) = (iu − 1)

λ
(1 − ν(−2λ)),

Bv(u, τ ) = β − D

2θ

(
1 − ν(−2D)

1 − ν(−2D)G

)
,

Bσ (u, τ ) =
(

ν(D)

ν2D − G

)[
16kσb sinh2

(
τD

4

)
D−1 + iu − 1

λ
F(u, τ )

]
,

A(u, τ ) =
(β − D)τ − 2 log

(
Gν(−2D)−1

G−1

)
4γ 2

−

− (iu − 1)2(3 + ν(−4λ) − 4ν(−2λ) − 2τλ)

2λ3
,

where

F(u, τ ) = ηρ12iuF1(u, τ ) + 2ηγρ23bF2(u, τ ),

F1(u, τ ) = 2

D
(ν(D) − 1) + 2G

D
(ν(−D) − 1) − 2(ν(D − 2λ) − 1)

D − 2λ
+

+2G(1 − ν(2λ − D))

D + 2λ
,

F2(u, τ ) = 2

D − 2τ
− 4

D
+ 2

D + 2λ
+

+ν(2λ − D)

(
2ν(2λ)(1 + ν(2D))

D
− 2ν(2D)

D − 2λ
− 2

D + 2λ

)
,

F3(u, τ ) =
∫ τ

0
Bσ (u, s)

(
kσ + 1

2
γ 2Bσ (u, s) + ηρ23γ Br (u, s)

)
ds,

and

β = (k − ρ13γ ui), D =
√

β2 − 4αγ , θ = 2γ 2, α = 1

2
u(i + u),

G = β − D

β + D
, ν(x) = e

xτ
2 , b = β − D

2θ
.

Making U = [u, 0, 0, 0] the boundary conditions at maturity will be

φSZHW (u, [̃xt , r̃t , vt , σt ], T, T ) = eiux̃T , Bx (u, 0) = iu,

A(u, 0) = Br (u, 0) = Bσ (u, 0) = Bv(u, 0) = 0.
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This implies that, for the log ST , the discounted characteristic function is

φSZHW (u,Xt , t, T ) = eÃ(u,τ )+Bx (u,τ )xt+Br (u,τ )rt+Bv(u,τ )vt+Bσ (u,τ )σt ,

for

Ã(u, τ ) = −
∫ T

t
msds + iu

∫ T

t
msds + A(u, τ ) = Θ(u, τ ) + A(u, τ ),

Θ(u, τ ) = (1 − iu)

{
log

(
P(0, T )

P(0, t)

)
+ η2

2λ2

(
τ + 2

λ

(
e−2λT−e−2λt

))}
,

and
P(0, t) = e− ∫ t

0 msdseA(0,τ )+Bx (0,τ )x0+Bv(0,τ )v0+Bσ (0,τ )σ0 .

18.6 Jourdain–Sbai Model (JSM)

Another particular case of (18.16) can be obtained by considering constant interest
rate. In this particular model, let us denote volatility by Y

Y p
t = f (Yt ), k(Y − Yt ) = b(Yt ), γY 1−p

t = c(Yt ),

with
Z1
t = ρW 2

t +
√
1 − ρ2W 1

t , Z2
t = W 2

t

for independent correlated Brownian motions W 1
t and W 2

t . Under these conditions,
the underlying asset price is governed the following model:

dSt = r Stdt + f (Yt )St
(
ρdW 2

t +
√
1 − ρ2dW 1

t

)
, (18.23)

dYt = b(Yt )dt + c(Yt )dW
2
t , Y0 = y0.

In [14] the above model was treated considering a particular case of Ornstein–
Uhlenbeck process and introducing higher order discretization schemes. JSM con-
siders function f to be positive and strictly monotonic allowing that the effective
correlation between the asset price and the volatility remain with the same signal
(positive). It also considers that function b and c are also smooth functions. This gen-
eralizes a group of model, for example Quadratic Gaussian, Stein & Stein, Scotts,
Hull and White, Cox and Ross and Detemple–Tian model. When considering the
log-price of the asset return, model (18.23) is transformed to
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dXt =
(
r − 1

2
f 2(Yt )

)
dt + f (Yt )

(
ρdW 2

t +
√
1 − ρ2dW 1

t

)
, (18.24)

dYt = b(Yt )dt + c(Yt )dW
2
t , Y0 = y0.

The goal is to use the second equation of (18.24) into the first equation andmake it
free of the stochastic integral involving the commonBrownianmotionW 2

t . Assuming
that the volatility of volatility is positive, the drift function of the volatility and the
underlying asset volatility are first order differentiable functions with continuous
derivatives, then one can define a primitive

F(y) =
y∫

0

f

c
(z)dz,

and using Ito’s formula, the differential of the primitive is

dF(Yt ) = f

c
(Yt )dYt + 0.5

(
c
∂ f

∂y
− f

∂c

∂y

)
(Yt )dt,

which transforms (18.24) into

dXt = ρdF(Yt ) + h(Yt )dt +
√
1 − ρ2 f (Yt )dW

1
t , (18.25)

dYt = b(Yt )dt + c(Yt )dW
2
t ,

where

h(y) = r − 0.5 f 2(y) − ρ

(
b

c
f + 0.5

(
c
∂ f

∂y
− f

∂c

∂y

))
y.

For simplicity, functions c(Yt ), b(Yy) are denoted by c and b respectively. Bellow
we present the discretization of the SDE satisfied by Yt constructing a scheme which
converges to order 2. The details can be found in [14].

18.6.1 The Weak Scheme of Second Order

In the system (18.25), the integration of both sides of the first integral when time
goes from 0 to t , gives

Xt = log(S0) + ρ [F(Yt ) − F(y0)] +
t∫

0

h(Ys)ds +
√
1 − ρ2

t∫
0

f (Ys)dW
1
t ,
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which is not dependent on the Brownian motion W 2
t . The challenge now is to solve

one integral with respect to time and another integral with respect to a Brownian
motion W 1

t . This is done using numerical techniques (i.e. numerical integration).
The weak scheme is defined as:

X
N
T = log(S0) + ρ

[
F(Y

N
T ) − F(y0)

]
+ aN

T +
√
1 − ρ2uN

T dW
1
t ,

where

aN
T = δN

N−1∑
k=0

h
(
Y

N
tk

)
+ h

(
Y

N
tk+1

)
2

, δN = T

N
,

uN
T = δN

N−1∑
k=0

f 2
(
Y

N
tk

)
+ f 2

(
Y

N
tk+1

)
2

,

Y
N
0 = y0,

Y
N
tk+1

= e
T
2N V0e

[
(Wtk+1−Wtk )V

]
e

T
2N V0Y

N
tk ,

for

V0 = b(x) − 1

2
c × c′(x) and v = c(x).

The notation etV (x) means the solution of an ordinary differential equation of order
one in the form ζ ′(t) = V (ζ(t)) at time t and starting from x .

On the other hand if Zt = Xt − ρF(Yt ) the system on our scheme will be

dZt = h(Yt )dt +
√
1 − ρ2 f (Yt )dW

1
t , (18.26)

dYt = b(Yt )dt + c(Yt )dW
2
t .

Applying Feynman–Kac theorem the differential operator associated with (18.26)
will be

L v(z, y) = h(y)
∂v

∂z
+ b(y)

∂v

∂y
+ c2(y)

2

∂2v

∂y2
+ 1 − ρ2

2
f 2(y)

∂2v

∂z2
(18.27)

= L1v(z, y) + L2v(z, y),

with

L1v(z, y) = b(y)
∂v

∂y
+ c2(y)

2

∂2v

∂y2
,

L2v(z, y) = h(y)
∂v

∂z
+ 1 − ρ2

2
f 2(y)

∂2v

∂z2
.
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In the case of plain vanilla, the option price is given in [17] by

BSα,T

(
s0e

ρ(F(YT )−F(y0))+aT +
(

(1−ρ2)vT
2T −r

)
T
,
(1 − ρ2)vT

T

)
,

where α is the payoff function depending on the underlying asset and the strike
price. BSα,T (s, v) is the price of a European option with payoff function α which
matures at T , initial stock price s, volatility

√
v, constant interest rate r , given by

Black - Scholes formula. For the case of call or put option, BSα,T is given in a closed
formula and the option price can be approximated by

P(s, T, r, v, K ) ∼= 1

M

M∑
i=1

BSα,T

⎛
⎜⎜⎝s0e

ρ(F(Y
N ,i
T )−F(y0))+aN ,i

T +
(

(1−ρ2)vN ,i
T

2T −r

)
T

,
(1 − ρ2)vN ,i

T
T

⎞
⎟⎟⎠ ,

where M is the total number of Monte Carlo samples and the index i refers to
independent draws.

18.7 Ilhan–Sircar Model (ISM)

Barrier options are contingent claims that are activated or deactivated if the under-
lying asset price hits the barrier during the life time of the option. These options are
qualified as:

• up in - the underlying asset price in the beginning is lower than the barrier level
and the option will be activated only if before the maturity the asset price hits the
barrier;

• up out - the underlying asset price in the beginning is lower than the barrier level
and the option starts activated. If the asset price hits the barrier before the maturity
the option is deactivated;

• down in - the underlying asset price in the beginning is greater than the barrier
level and the option will be activated only if before the maturity the asset price
hits the barrier;

• down out - the underlying asset price in the beginning is greater than the barrier
level and the option starts activated. If the asset price hits the barrier before the
maturity the option is deactivated.

The activation or deactivation of an barrier option is for its life, meaning that if
the option hits the barrier and is activated or deactivate doesn’t matter if afterwards
it returns to the barrier. For the execution or not is only considered the position the
option took at the first time it hits the barrier level.

In a model presented by Ilhan and Sircar in [13] the stock price process and
the volatility driving process are solutions of the following stochastic differential
equations:
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dSt = μSt dt + σ(t,Yt ) dW
1
t , S0 = xe−rT ,

dYt = b(t,Yt ) dt + a(t,Yt )(ρ dW 1
t + ρ ′ dW 2

t ), Y0 = y,

where ρ is the instantaneous correlation between shocks to S and Y and the symbol ρ ′
denote

√
1 − ρ2. Assuming that a(t,Yt ) and σ(t,Yt ) are bounded above and bellow

away from zero and smoothwith bounded derivatives, and also that b(t,Yt ) is smooth
with bounded derivatives. The utility indifference price of the contingent claim D
at time t = 0 of an investor who has initial wealth z, is the solution h̃(z, D) to the
following equation:

u(z, D) = u(z − erT h̃(z, D), 0).

Let h(z, D) = erT h̃(z, D) be the T -forward value of indifference price. Accord-
ing to

h(z, D) = 1

γ
log

(
u(0, D)

u(0, 0)

)
,

the indifference price does not depend on the initial wealth. Therefore, we omit the
dependence on z in the notation.

According to [13] under some regularity conditions, the optimal static hedging
position exists, is unique, and satisfies the following equation:

h̃′(Bα∗
) = p̃.

It remains to find h̃(Bα).
Let L 0

y be the following differential operator:

L 0
y = 1

2
a2(t, y)

∂2

∂y2
+

(
b(t, y) − ρa(t, y)

μ − r

σ(t, y)

)
∂

∂y
,

and f (t, y) be the solution to the following problem:

∂ f

∂t
+ L 0

y f = (1 − ρ2)
(μ − r)2

2σ 2(t, y)
f, t < T,

f (T, y) = 1.

Denoting

ψ(t, y) = 1

1 − ρ2
log f (t, y),
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for the differential operator L E
x,y defined as:

L E
x,y = L 0

y + ρ′2a2(t, y) ∂ψ

∂y
(t, y)

∂

∂y
+ 1

2
σ 2(t, y)x2

∂2

∂x2
+ ρσ(t, y)a(t, y)x

∂2

∂x∂y
,

if Φ(t, x, y) is the solution to the following problem:

∂Φ

∂t
+ L E

x,yΦ + 1

2
γρ ′2a2(t, y)

(
∂Φ

∂y

)2

= 0, t < T, x > 0,

Φ(T, x, y) = α(K ′ − x)+ − (x − K )−,

and ϕ(t, x, y) the solution to the following problem:

∂ϕ

∂t
+ L E

x,yϕ + 1

2
γρ ′2a2(t, y)

(
∂ϕ

∂y

)2

= 0, t < T, x > Ber(T−t),

ϕ(T, x, y) = α(K ′ − x)+,

ϕ(t, Ber(T−t), y) = Φ(t, Ber(T−t), y),

then, the indifference price at time t = 0 is

h̃(Bα) = e−rTϕ(0, x, y).

18.8 Two Stochastic Volatilities Model

The previous models considered an underlying asset governed by one stochastic
variance. Some models considered stochastic interest rate and others assume interest
rate as constant. We consider here the price evolution of an asset (for example an
equity stock) that is governed by the following stochastic differential equation

dSt = μSt dt + √
V1,t St dW1 + √

V2,t St dW2, (18.28)

where μ is the mean return of the asset, V1,t and V2,t are two uncorrelated and
finite variance processes described by Heston [12] that also change stochastically
according to the following equations

dV1,t = 1

ε
(θ1 − V1,t ) dt + ρ13

√
1

ε
V1,t dW1 +

√
1

ε
(1 − ρ2

13)V1,t dW3, (18.29)

dV2,t = δ(θ2 − V2,t )dt + ρ24

√
δV2,t dW2 +

√
δ(1 − ρ2

24)V2,t dW4.
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Here
1

ε
and δ are the speeds of mean reversion; θ1 and θ2 are the long run means;√

1

ε
and

√
δ the instantaneous volatilities of V1,t and V2,t respectively and Wi , for

i = {1, 2, 3, 4} are Wiener processes. The correlations between the asset price St

and the variance processes V1,t and V2,t are given respectively by ρ13

√
V1,t

ε
and

ρ24
√
V2,tδ which are chosen as in Chiarella and Ziveyi [3] to avoid the product term√

V1,t V2,t .
In Eq. (18.29) choosing ε and δ to be small and to follow Feller [9] conditions, we

have a fast mean reversion speed for V1,t and a slow mean reversion speed for V2,t .
Therefore in our model the underlying asset price St is influenced by two volatility
terms that behave completely differently. For example, one may change each month
whereas the other one may change twice a day.

The finiteness of the two variances gives guarantee that (18.28) has a solution
under the real-world probability measure. In addition it ensures that there exists an
equivalent risk neutral measure under which the same equation has a solution and
the discounted stock price process under this measure is a martingale. Girsanov
theorem presented in [15] allow to transform the presented environment into risk
neutral probability world. Feynman–Kac theorem also presented in [15], proves that
the option price of the underlying asset described above can be given as the solution
of the following partial differential equation

(r − q)St
∂U

∂St
+

[
1

ε
(θ1 − V1,t ) − λ1V1,t

]
∂U

∂V1,t
+ [δ(θ2 − V2,t ) − λ2V2,t ] ∂U

∂V2,t

+1

2

[
(V1,t + V2,t )S

2
t

∂2U

∂S2t
+ 1

ε
V1,t

∂2U

∂V 2
1,t

+ δV2,t
∂2U

∂V 2
2,t

]
+ 1√

ε
ρ13StV1,t

∂2U

∂St∂V1,t

+√
δρ24StV2,t

∂2U

∂St∂V2,t
= rU − ∂U

∂t
,

subject to the terminal value condition U (T, St , V1,t , V2,t ) = h(St ). λ1 and λ2 are
the market prices of risk; r and q are constant interest rate and dividend factor
respectively. Consider that the solution of the partial differential equationU depends
on the values of ε and δ, i.e. U = U ε,δ; collecting terms with the same power of 1√

ε

and
√

δ will transform the above partial differential equation into

(
1

ε
L0 + 1√

ε
L1 + L2 + √

δM1 + δM2

)
U ε,δ = 0 (18.30)
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for

L0 = (θ1 − V1,t )
∂

∂V1,t
+ 1

2
V1,t

∂2

∂V 2
1,t

, (18.31)

L1 = ρ13StV1,t
∂2

∂St∂V1,t
,

L2 = ∂

∂t
+ (r − q)St

∂

∂St
+ 1

2
(V1,t + V2,t )S

2
t

∂2

∂S2t
− r −

−λ1V1,t
∂

∂V1,t
− λ2V2,t

∂

∂V2,t
,

M1 = ρ24StV2,t
∂2

∂St∂V2,t
,

M2 = (θ2 − V2,t )
∂

∂V2,t
+ 1

2
V2,t

∂2

∂V 2
2,t

.

Our aim is to find the price of a European option with payoff function h(St ) at
maturity T . Taking into account the Markov property and the fact that our system is
considered under the risk neutral probability measure, we can apply Feynman–Kac
theorem to obtain the option price as

U (t, St , V1,t , V2,t ) = e−(T−t)E
[
h(St ) | St = s, V1,t = v1, V2,t = v2

]
.

Calculation of this expectation is very complicated because it involves many para-
meters that have to be clearly measured and applied. To avoid this complication,
we present a perturbation method that approximates the option price by a quan-
tity that depends on much less parameters than those imposed by Feynman–Kac
theorem. From our system and also our partial differential equation, it is clear that
U (t, s, v1, v2) depends on ε and δ. From now on, to make this dependence clear, we
writeU ε;δ(t, s, v1, v2) instead ofU (t, s, v1, v2). Our assumption is that if ε and δ are
small, the associated operators will diverge and be small respectively. Therefore we
use the approach of singular and regular perturbations. Assume that our solution can
be expressed in the following form

U ε,δ =
∑
i≥0

∑
j≥0

(
√

δ)i (
√

ε) jU j,i . (18.32)

Applying this expansion in (18.30) we generate systems of partial differential equa-
tions that can be solved to obtain the prices of European option in the following
form

U ε,δ = UBS + (T − t)
(
A δ + Bε

)
UBS,

where the notationUBS stands for the solution to the corresponding two-dimensional
Black–Scholes model.
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Bε = −Υ ε
2 (v2)D1D2, Dk = xki

∂k

∂xki
, i = 1, 2, Υ ε

2 (v2) = −
√

ερ13

2

〈
v1

∂φ(v1, v2)

∂v1

〉
,

and φ(v1, v2) is the solution of

L0φ(v1, v2) = f 2(v1, v2) − σ 2(v2),

A δ = 1

2

√
δρ24〈v2〉∂σ(v2)

∂v2
, and

σ 2(v2) =
∫

(v1 + v2)Π(dv1),

where 〈·〉 =
∫

· π(s)ds denotes the averaging over the invariant distribution Π of

the variance process V1,t .
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