
Chapter 14
Effect of Time-Periodic Boundary
Temperature Modulations on the Onset
of Convection in a Maxwell Fluid–Nanofluid
Saturated Porous Layer

Jawali C. Umavathi, Kuppalapalle Vajravelu, Prashant G. Metri
and Sergei Silvestrov

Abstract The linear stability of Maxwell fluid–nanofluid flow in a saturated porous
layer is examined theoretically when the walls of the porous layers are subjected to
time-periodic temperature modulations. A modified Darcy–Maxwell model is used
to describe the fluid motion, and the nanofluid model used includes the effects of
the Brownian motion. The thermal conductivity and viscosity are considered to be
dependent on the nanoparticle volume fraction. A perturbation method based on a
small amplitude of an applied temperature field is used to compute the critical value of
the Rayleigh number and the wave number. The stability of the system characterized
by a critical Rayleigh number is calculated as a function of the relaxation parameter,
the concentration Rayleigh number, the porosity parameter, the Lewis number, the
heat capacity ratio, the Vadász number, the viscosity parameter, the conductivity
variation parameter, and the frequency of modulation. Three types of temperature
modulations are considered, and the effects of all three types of modulations are
found to destabilize the system as compared to the unmodulated system.
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14.1 Introduction

Heat transfer enhancement in the base flow of fluid dispersion of nanoscale particles
was reported byMasuda et al. [16]. The presence of nanoparticles in the fluid signifi-
cantly increases the effective thermal conductivity of themixture. The term nanofluid
was coined by Choi [5] to refer to a fluid containing a dispersion of nanoparticles.
These enhanced properties and behavior imply an enormous potential of nanoflu-
ids for device miniaturization and process intensification which could have impacts
on many industrial sectors including chemical processing, transportation, electron-
ics, medicine, energy, and the environment (see for details Chen et al. [4]). Several
attempts were made to explain abnormal increases in the thermal conductivity and
viscosity of nanofluids (Buongiorno [3], Vadász [34, 35]). However, a satisfactory
explanation has yet to be found as emphasized by Eastman et al. [7] in their recent
comprehensive review of the nanofluid literature. On the other hand, Buongiorno [3]
focused on heat transfer enhancement of nanofluids in convective situations. He
focused on the further heat transfer enhancement observed in convective situations:
Buongiorno noted that the observation of convective heat transfer enhancement by
several researchers could be due to the dispersion of the suspended nanoparticles,
but he argued that this effect is too small to explain the observed enhancement.
Also, Buongiorno noted that the absolute velocity of a nanoparticle could be viewed
as the sum of the base fluid velocity and a relative velocity (that he called the slip
velocity). He considered, in turn, seven slipmechanisms: inertia, Brownian diffusion,
thermophoresis, diffusiophoresis, Magnus effect, fluid drainage, and gravity settling.
After examining each of these effects, he concluded that in the absence of turbulence,
the effects of the Brownian diffusion and the thermophoresis are important. Based
on these two effects, Buongiorno formulated the conservation equations.

The Bénard problem (the onset of convection in a horizontal layer uniformly
heated from below) for a nanofluid was studied by Tzou [32] on the basis of the
transport equations of Buongiorno [3]. The corresponding problem for flow in a
porous medium (the Horton–Rogers–Lapwood problem) was studied by Nield and
Kuznetsov [21] using the Darcy model.

An alternative approach is to ignore special phenomena such as Brownian motion
and thermophoresis but instead examine the effect of the variation of thermal con-
ductivity and viscosity with the nanofluid particle fraction, using expressions used
in the theory of mixtures. This approach was employed by Tiwari and Das [31] to
study the cross-diffusion effects. It is assumed that the nanofluid is diluted so that
the nanofluid volume fraction is small compared with unity. Then they assumed that
the volume fraction is a linear function of the vertical coordinate. The vertical het-
erogeneity (especially the case of horizontal layers) was studied by McKibbin and
O’Sullivan [18] and Leong and Lai [13]; and horizontal heterogeneity was studied by
Nield [19], and Gounat and Caltagirone [10]. More general aspects of conductivity
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heterogeneity were discussed by Braester and Vadász [2], and Rees and Riley [23].
Simmons et al. [28] have pointed out that in many heterogeneous geological systems,
hydraulic properties such as the hydraulic conductivity of the system under consid-
eration can vary by many orders of magnitude and sometimes rapidly over small
spatial scales. They also pointed out that the onset of instability is controlled by very
local conditions in the vicinity of the evolving boundary layer and not by the global
layer properties or indeed some average property of that macroscopic layer. They
also pointed out that any averaging process would remove the very structural controls
and physics that are expected to be important in controlling the onset, growth, and/or
decay of instabilities in a highly heterogeneous system for the general case involv-
ing both vertical heterogeneity and horizontal heterogeneity. For this complicated
situation no exact analytical solution can be expected to exist, but it is reasonable
to seek an approximate analytical solution, based on the expectation that for weak
heterogeneity, the solution would not differ dramatically from the solution for the
homogeneous case. Following this approach, an extension of the Galerkin approx-
imate method has been widely employed (see, for example, Finlayson [9]). In the
context of the onset of convection, the commonly used Galerkin method involves
trial functions of the vertical coordinate only. Thus, to a first approximation, the
thermal conductivity and the viscosity can be taken as weak functions of the vertical
coordinate. This means that we can treat the problem as one involving a weakly
heterogeneous porous medium (Nield [20]).

Many working fluids of practical interest are viscoelastic rather than Newtonian.
For this reason, current interest in this area is concerned with studies of the various
viscoelastic models such asMaxwell fluids (Sokolov and Tanner [29]), Oldroyd type
models (Khayat [12], Siddheshwar et al. [27]), Rivlin–Ericksen fluids (Siddheshwar
and Srikrishna [26]), and Walters-B liquids (El-Sayed [8]). Analogous studies on
viscoelastic fluid convection in porous media are those by Shekar and Jayalatha [24],
Tan and Masuoka [30], and Shivakumara et al. [25].

Recently, Wang and Tan [36] have made a stability analysis of double diffusive
convection ofMaxwell fluid in a porousmedium. It is worthwhile to point out that the
first viscoelastic rate type model, which is still used widely, is due to Maxwell [17].
While Maxwell did not develop this model for polymeric liquids, he recognized that
such fluid has a means for storing energy characterizing its viscous nature. Recently,
Malashetty et al. [15] have studied double diffusive convection in a viscoelastic fluid
saturated porous layer using the Oldroyd model. Very recently, Awad et al. [1] used
the Darcy–Brinkman–Maxwell model to study linear stability analysis of a Maxwell
fluid with cross-diffusion and double-diffusive convection.

Nonetheless, the studies related to the effects of thermal modulation on the onset
of convection in a viscoelastic fluid-saturated porous medium have not received
much attention. Chung Liu [6] has examined the stability of a horizontally extended
second-grade fluid layer heated from below subject to temperature modulation at
walls.

Motivated by the above studies, in the present paper, we study the effect of thermal
modulation on the onset of convection in a Maxwell fluid and nanofluid saturated
porous medium. The boundary temperature modulation alters the basic temperature
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distribution from linear to nonlinear which helps in effective control of convective
instability. The difficulty in dealing with such instability problems is that one has
to solve time-dependent stability equations with variable coefficients, and to our
knowledge no work has been initiated for such fluids in this direction. The resulting
eigenvalue problem is solved by a perturbation technique with amplitude of the
temperature modulation as a perturbation parameter. In particular, it is shown that
the onset of convection can be advanced by a proper tuning of the frequency of the
boundary temperature modulation.

14.2 Mathematical Formulation

We consider an infinite horizontal porous layer saturated with a nanofluid, confined
between the planes z∗ = 0 and z∗ = H, with the vertically downward gravity force
acting on it. A Cartesian frame of reference is chosen with the origin in the lower
boundary and the z-axis vertically upwards. The Boussinesq approximation, which
states that the variation in density is negligible everywhere in the conservation except
in the buoyancy term, is assumed to hold. The conservation equations take the form

�∗ ·v∗
D = 0. (14.1)

Here v∗
D is the nanofluid Darcy velocity and v∗

D = (u∗, v∗,w∗).
The conservation equation for the nanoparticles, in the absence of thermophoresis

and chemical reactions, takes the form

∂φ∗

∂t∗
+ 1

ε
v∗
D · �φ∗ = �∗ · [DB �∗ φ∗], (14.2)

whereφ∗ is the nanoparticle volume fraction, ε is the porosity, andDB is theBrownian
diffusion coefficient. We use the Darcy model for a porous medium. Hence, the
momentum equation can be written as

(
1 + λ̃

∂

∂t∗

)
ρ

ε

∂v∗
D

∂t∗
=

(
1 + λ̃

∂

∂t∗

)
(− �∗ p∗ + ρg) − μeff

K
v∗
D. (14.3)

Here ρ is the overall density of the nanofluid, which we assume to be given by

ρ = φ∗ρp + (1 − φ∗)ρ0[1 − βT (T∗ − T∗
0 )], (14.4)

where ρp is the particle density, ρ0 is a reference density for the fluid, and βT is the
thermal volumetric expansion. The thermal energy equation for a nanofluid can be
written as

(ρc)m
∂T∗

∂t∗
+ (ρc)f v

∗
D · �∗T∗ = km �∗2 T∗ + ε(ρc)p[DB �∗ φ∗ · �T∗]. (14.5)
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The conservation of nanoparticle mass requires that

∂φ∗

∂t∗
+ 1

ε
v∗
D · �∗φ∗ = Dp �∗2 φ∗. (14.6)

Here c is the fluid specific heat (at constant pressure), km is the overall thermal
conductivity of the porous medium saturated by the nanofluid, and cp is the nanopar-
ticle specific heat of the material constituting the nanoparticles (following Nield and
Kuznetsov [22]). Thus,

km = εkeff + (1 − ε)ks, (14.7)

where keff is the effective conductivity of the nanofluid (fluid plus nanoparticles) and
ks is the conductivity of the solid material forming the matrix of the porous medium.

We now introduce the viscosity and the conductivity dependence on nanoparticle
fraction. Following Tiwari and Das [31], we adopt the formulas, based on a theory
of mixtures,

μeff

μf
= 1

(1 − φ∗)2.5
, (14.8)

keff
kf

= (kp + 2kf ) − 2φ∗(kf − kp)

(kp + 2kf ) + φ∗(kf − kp)
. (14.9)

Here kf and kp are the thermal conductivities of the fluid and the nanoparticles,
respectively. In the case where φ∗ is small compared with unity, we can approximate
these formulas by

μeff

μf
= 1 + 2.5φ∗, (14.10)

keff
kf

= (kp + 2kf ) − 2φ∗(kf − kp)

(kp + 2kf ) + φ∗(kf − kp)
= 1 + 3φ∗ (kp − kf )

(kp + 2kf )
. (14.11)

We assume that the volumetric fractions of the nanoparticles are constant on the
boundaries. Thus, the boundary conditions are

w∗ = 0, φ∗ = φ∗
0 at z∗ = 0, (14.12)

w∗ = 0, φ∗ = φ∗
1 at z∗ = H. (14.13)

For thermal modulation, the external driving force is modulated harmonically
in time by varying the temperature of the lower and upper horizontal boundary.
Accordingly, we take

T(z, t) = T0 + �T

2
[1 + ε1cos(Ωt)] at z∗ = 0, (14.14)
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T(z, t) = T0 − �T

2
[1 − ε1cos(Ωt + φ)] at z∗ = H, (14.15)

where ε1 represents a small amplitude of modulation (which is used as a perturbation
parameter to solve the problem), Ω the frequency of modulation, and φ the phase
angle. We consider three types of modulation, viz.,
Case (a): Symmetric (in phase, φ = 0),
Case (b): Asymmetric (out of phase, φ = π ), and
Case (c): Only lower wall temperature is modulated while the upper one is held at
constant temperature (φ = −i∞).

14.3 Basic State Problem

The basic state of the fluid is quiescent and is given by

ρb−→g + �pb = 0, (14.16)

(ρc)m
∂T∗

b

∂t∗
= km �2 T∗, (14.17)

d2φ∗
b

dz2
= 0. (14.18)

The solution of (14.17) satisfying the thermal conditions as given in (14.14) and
(14.15) is Tb = T1(z) + εtT2(z, t) where

T1(z) = TR + �T

2

(
1 − 2z

H

)
, (14.19)

T2(z, t) = Re[{b(λ)e
λz
H + b(−λ)e

−λz
H }e−iωt], (14.20)

with

λ = (1 − i)

(
(ρc)mωH2

2km

)
, b(λ) = �T

2

(
e−iφ − e−λ

eλ − e−λ

)
, (14.21)

and Re stands for real part. We do not record the expressions of pb and ρb as these
are not explicitly required in the remaining part of the paper.

14.4 Linear Stability Analysis

Let the basic state be distributed by an infinitesimal perturbation. We now have,
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v = v
′
, p = pb + p

′
, T = Tb + T

′
, φ = φb + φ

′
, (14.22)

where a prime indicates that the quantities are infinitesimal perturbations. Substi-
tuting (14.22) into (14.1)–(14.7) and linearizing by neglecting products of primed
quantities, we have,

(1 + λ1s)(�p − RTêz + Rnφêz + γasv) + μ̃v = 0, (14.23)

∂T
′

∂t
+ w

′ ∂Tb
∂z

= k̃
∂2T

∂z2
+ NB

Le

(
∂Tb
∂z

+ ∂T
′

∂z
+ ∂φ

′

∂z

∂Tb
∂z

)
, (14.24)

1

σ

∂φ
′

∂t
+ 1

ε
w

′ = 1

Le
�2 φ

′
, (14.25)

w
′ = 0, T

′ = 0, φ
′ = 0 at z = 0, 1. (14.26)

We introduce the following transformations:

(x, y, z) = (x∗, y∗, z∗)
H

, t = t∗αm

σH2
, (u, v,w) = (u∗, v∗,w∗)H

αm
, p = p∗K

μf αm
,

φ = φ∗ − φ∗
0

φ∗
1 − φ∗

0

, T = T∗ − T∗
c

T∗
h − T∗

c

, ω = σΩH2

αm
, s = ∂

∂t
,

with

αm = km
(ρcp)f

, σ = (σcp)m
(ρcp)f

, μ̃ = μeff

μf
, k̃p = kp

kf
, k̃s = ks

kf
, k̃ = km

ks
.

The dimensionless parameters that appear are these:

• Pr = μf

ραm
- the Prandtl number,

• Da = K
H2 - the Darcy number,

• Va = ε2Pr
Da - the Vadász number,

• λ1 = λ̃αm
σH2 - the relaxation parameter (also known as the Deborah number),

• γa = ε
σVa - the acceleration coefficient,

• Le = αm
Dm

- the nanofluid Lewis number,

• R = R0gK(1−φ∗
0 )βT�T∗H

μf αm
- the nanoparticle Rayleigh number, and

• NB = (ρcp)p
(ρc)f

(φ∗
1 − φ∗

0 ) - modified particle-density increment.

In deriving (14.23), the term proportional to the product of φ and T (Oberbeck–
Boussinesq approximation) is neglected. This assumption is likely to be valid in
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the case of small temperature gradients in a dilute suspension of nanoparticles: For
regular fluid the parameters Rn and NB are zeros.

We eliminate pressure by operating on (14.23) with êz curl curl and using the
identity curl curl ≡ grad div − �2 results in

[(1 + λ1s)sγa + μ̃] �2 w
′ = (1 + λ1s)[R �2

H −Rn �2
H φ

′ ]. (14.27)

Here �2
H is the two-dimensional Laplacian operator on the horizontal plane. By

combining the (14.24)–(14.26), we obtain the equations for the vertical component
of velocity w in the form (dropping prime)

[
∂

∂t
− �2γ

] [
1

σ

∂

∂t
− �2

Le

]
[ν + sγa(1 + λ1s)] �2 w − (14.28)

− (1 + λ1s)Rn

ε

[
∂

∂t
− �2γ

]
�2

1 w +

+(1 + λ1s)R
∂Tb
∂z

[
1

σ

∂

∂t
− �2

Le

]
�2

1 w = 0,

where, v = 1 + 1.25(φ∗
1 + φ∗

0 ), and η = ε + (1 − ε)k̃s + 3(φ∗
1+φ∗

0 )ε

2

( ˜kp−1
˜kp+2

)
.

It is worth noting that the factor ν comes from the mean value of μ̃(z) over the
range [0, 1], and the factor η is the mean value of k̃(z) over the same range. That
means that when evaluating the critical Rayleigh number, it is a good approximation
to base that number on themean values of the viscosity and conductivity based in turn
on the basic solution for the nanofluid fraction (followingNield and Kuznetsov [22]).

The boundary condition (14.26) is applied to (14.27) resulting in the following
boundary condition for w:

w = d2w

dz2
= 0 at z = 0, 1. (14.29)

Using (14.19), the dimensionless temperature gradient appearing in (14.24) may
be written as

∂Tb
∂z

= −1 + εf , (14.30)

where

f = Re
[
A(λ)eλz + A(−λ)e−λze−iωt

]
, for (14.31)

A(λ) = λ

2

(
e−iϕ − e−λ

eλ − e−λ

)
, and λ = (1 − i)

(σω

2

) 1
2
.



14 Effect of Time-Periodic Boundary Temperature Modulations on the Onset … 229

14.5 Method of Solution

We seek the eigenfunctionsw and eigenvaluesRa of (14.28) for the basic temperature
gradient given by (14.30) that departs from the linear profile ∂Tb

∂z = −1 by quantities
of order ε1. We therefore assume the solution of (14.28) is in the form

(w,R) = (w0,R0) + ε1(w1,R1) + ε21(w2,R2) + . . . . (14.32)

Substituting (14.32) into (14.28) and equating the coefficients of various powers
of εt on either side of the resulting equation, we obtain the following system of
equations up to the order of ε2t :

Lw0 = 0, (14.33)

Lw1 = (1 + λ1s)

[(
R0ωG

σ
�2

1 +R0f

Le

)
�2

1 −R1

Le
�2 �2

1

]
w0, (14.34)

Lw2 = (1 + λ1s)

[
R0

(
ωG

σ
+ f

Le
�2

)
− R1

Le
�2

]
�2

1 w1 + (14.35)

+(1 + λ1s)R1

(
ωG

σ
+ f

Le
�2 +R2

Le
�2

)
�2

1 w0,

where

L =
(
1 + λ

∂

∂t

)(
∂

∂t
− �2γ

)(
1

σ

∂

∂t
− �2

Le

)(
ν + γa

∂

∂t

)
�2 −

−Rn

ε

(
∂

∂t
− �2γ

)
�2

1 +R0

Le
�2 �2

1,

and w0,w1,w2 are required to satisfy the boundary condition in (14.29).
We now assume the solutions for (14.33) are of the form w0 = w0(z)exp[i(lx +

my)]wherew0(z) = wn
0(z) = sin(nπz), n = 1, 2, 3 . . . and l,m are thewave numbers

in the xy plane such that l2 + m2 = α2. The corresponding eigenvalues are given by

R0 = (n2π2 + α2)2νγ

α2
− RnLeγ

ε
. (14.36)

For a fixed value of the wave number α, the least eigenvalue occurs at n = 1 and
is given by

R0 = (π2 + α2)2νγ

α2
− RnLeγ

ε
, (14.37)
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and R0c assumes the minimum value

R0c = 4π2νγ − RnLeγ

ε
. (14.38)

These are the values reported by Horton and Rogers [11] in the absence of con-
centration Rayleigh number Rn.

The equation for w1 then takes the form

Lw1 = R0α
2(1 − λ1iω)

(
ω

σ
G + (D2 − α2)f

Le

)
sin πz, (14.39)

where D = d
dz and G = I.P.[{A(λ)eλz} + {A(−λ)e−λz}e−iωt]. Thus,

D2f sin πz = (λ2 − π2)f sin πz + 2λπ f
′
cosπz (14.40)

with f
′ = R.P.[{A(λ)eλz} + {A(−λ)e−λz}e−iωt].

Using (14.40), (14.39) becomes

Lw1 = R0α
2(−1 + λ1iω)

(
ω

σ
G sin πz − L1f sin πz + 2λπ f

′

Le
cosπz

)
,

(14.41)

where L1 = iω+π2+α2

Le .

We solve (14.41) for w1 by expanding the right hand side of it in Fourier series
expansion and inverting the operator L for this we need the following Fourier series
expansions

gnm(λ) = 2
∫ 1

0
eλz sin(mπz) sin(nπz)dz = −4nmπ2λ[1 + (−1)n+m+1ez]

[λ2 + (n + m)2π2][λ2 + (n − m)2π2] ,
(14.42)

fnm(λ) = 2
∫ 1

0
eλz cos(mπz) cos(nπz)dz = 2λ[λ2 + (n + m)2π2][1 + (−1)n+m+1ez]

[λ2 + (n + m)2π2][λ2 + (n − m)2π2] ,

(14.43)

where

eλz sin(mπz) =
∞∑
n=1

gnm(λ) sin(nπz), (14.44)

eλz cos(mπz) =
∞∑
n=1

fnm(λ) cos(nπz). (14.45)
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Now,
L(ω, n) = A + iωB, (14.46)

where

A =
[
ω2γa(n

2π2 + α2)2
(

1

Le
+ γ

σ

)
(1 + λ1ν) + ω2

σ
(n2π2 + α2)(ν − λ1ω

2γa)+

+(n2π2 + α2)3
γ

Le
(−ν + λ1ω

2γa) + Rn

ε
α2(γ (n2π2 + α2) − λ1ω

2) +

+
(
4π2νγ − RnLeγ

ε

)
α2

Le
(n2π2 + α2)

]
,

B =
[
(n2π2 + α2)2

(
1

Le
+ γ

σ

)
(ν − λ1γaω

2) + ω2

σ
(n2π2 + α2)(−γa − λ1ν)+

+(n2π2 + α2)3
γ

Le
(γa + λ1ν) + Rn

ε
α2(−1 + γ λ1(n

2π2 + α2)) −

−
(
4π2νγ − RnLeγ

ε

)
α2λ1

Le
(n2π2 + α2)

]
.

It is easily seen that:

L
[
sin(nπz)e−iωt

] = L(ω, n) sin(nπz)eiωt,

and
L

[
cos(nπz)e−iωt

] = L(ω, n) cos(nπz)eiωt,

and (14.41) now becomes

Lw1 = (−1 + λ1iω)α2R0

[
ω

σ
I.P.

∞∑
n=1

An(λ) sin nπzeiωt− (14.47)

−L1R.P.

∞∑
n=1

An(λ) sin nπzeiωt + 2λπ

Le
R.P.

∞∑
n=1

Bn(λ) cos nπzeiωt
]

,

Lw1 = (−1 + λ1iω)α2R0

[
ω

σ
I.P.

∞∑
n=1

An(λ)

L(ω, n)
sin nπzeiωt− (14.48)

−L1R.P.

∞∑
n=1

An(λ)

L(ω, n)
sin nπzeiωt +
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+ 2λπ

Le
R.P.

∞∑
n=1

Bn(λ)

L(ω, n)
cos nπzeiωt

]
,

where An = A(λ)gn1(λ) + A(−λ)gn1(−λ), and Bn = A(λ)fn1(λ) + A(−λ)

fn1(−λ).
To simplify (14.34) for w2 we need

Lw2 = (1 + λ1s)

[
R0

(
ωG

σ
+ �2f

Le

)
�2

1 w1 − R2
�2

Le
· �2

1w1

]
. (14.49)

The equation for then can be written as

Lw2 = (1 − λ1iω)

[
R0

(
ωG

σ
− Lnf

)
w1 + 2DfDw1

Le

]
− R2

α2

Le
(π2 + α2),

(14.50)
where Ln = iω+n2π2+α2

Le .
We shall not require the solution of this equation but merely use it to determine

R2. The solvability condition requires that the time-independent part of the right
hand side of (14.50) must be orthogonal to sin(πz). Multiplying equation (14.50) by
sin(πz) and integrating between 0 and 1 we obtain

R2 = 2LeR0(1 − 2iλω)

�2

∫ 1

0

(
�2f

Le

ωG

σ

)
w1 sin(πz)dz, (14.51)

where an upper bar denotes the time average.
We have the Fourier series expansions

f sin πz = R.P.
∑

An(λ) sin nπzeiωt, (14.52)

Df sin πz = R.P.
∑

λCn(λ)sinnπzeiωt,

where Cn(λ) = A(λ)gn1(λ) − A(−λ)gn1(−λ).
Using (14.52) in (14.51) we obtain

R2 = LeR2
0α

2

2(π2 + α2)
· (14.53)

[(
−ω2

σ 2
− LnL1

)
R.P.

∑ | An |2
| L(ω, n) |2 L

∗(ω, n)(1 − 2iλ1ω)(−1 + iλ1ω)+
]

+
[
4nπ2λ1

Le2
R.P.

∑
λ1Cn

Bn

| L(ω, n) |2 L
∗(ω, n)(1 − 2iλ1ω)(−1 + iλ1ω)

]
,
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where L∗(ω, n) is the complex conjugate of L(ω, n), and

| An(λ) |2= 16n2π4ω2

(ω2 + (n + 1)4π4)(ω2 + (n − 1)4π4)
.

The critical value of R2, denoted by R2c, is obtained at the wave number given by
equation αc = π for the following three different cases:

1. When the oscillating temperature field is symmetric so that the wall temperatures
are modulated in phase (with φ = 0).

2. When the wall temperature field is antisymmetric corresponding to out-of-phase
modulation (with φ = π ).

3. When only the temperature of the bottom wall is modulated, the upper wall being
held at a constant temperature (with φ = −i∞).

14.6 Results and Discussion

The effect of thermal modulation on the onset of convection in a layer of Maxwell
fluid and nanofluid saturated porous medium is investigated using linear stability
analysis. A perturbation technique with amplitude of the modulating temperature
as a perturbation parameter is used to find the critical thermal Rayleigh number
as a function of frequency of the modulation, relaxation parameter, concentration
Rayleigh number, porosity parameter, Lewis number, heat capacity ratio, Vadász
number, conductivity, and viscosity variation parameters. The sign of R2c character-
izes the stabilizing or destabilizing effects of modulation. A positive R2c indicates
that the modulation effect is to stabilize the flow: while a negative R2c indicates the
effect is to destabilize, compared to the system in which modulation is absent. We
present below the results for three different wall temperature oscillatingmechanisms:
They are, symmetric, asymmetric, and lower wall temperature modulation only.

In Figs. 14.1, 14.2, 14.3, 14.4, 14.5, 14.6, 14.7 and 14.8, the variations of criti-
cal Rayleigh number R2c with frequency ω for different governing parameters are
presented for the case of symmetric temperature modulation. It can be seen from
these figures that for small frequencies the critical Rayleigh number R2c is nega-
tive indicating the destabilized flow. For moderate and high frequencies, the critical
Rayleigh number R2c is positive indicating that the effect of symmetric modulation
is to stabilize the system. It can also be seen that as R2c decreases to its minimum
value (thus producing maximum destabilization), and then increases to its maximum
stabilizing value, and finally decreases to zero as the frequency increases from zero
to infinity. That is, in the presence of thermal modulation, convection occurs at lower
values of the Rayleigh number compared to the unmodulated system.

Figure14.1 shows the effect of the relaxation parameter λ1 on the critical Rayleigh
numberR2c for fixing the other governing parameters in the case of symmetric modu-
lation. It is seen that an increase in the value of the relaxation parameter increases the
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Fig. 14.1 Variation of R2c with ω for different values of λ1 and Rn

Fig. 14.2 Variation of R2c with ω for different values of Rn

magnitude of R2c. At small frequencies, R2c increases negatively, while R2c increases
positively with the relaxation parameter at moderate and high frequencies for both
regular and nanofluids. Hence the effect of the relaxation parameter is to destabilize
the system for small frequencies while its effect is to stabilize the system for mod-
erate and high frequencies. This agrees well with the results obtained by Malashetty
and Begum [14] for a clear fluid. Figure14.1 also indicates that the peak negative
value of R2c increases with an increase in the value of λ1 which is the result obtained
by Shivakumara et al. [25] for a viscoelastic fluid.
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Fig. 14.3 Variation of R2c with ω for different values of ε and Le

Fig. 14.4 Variation of R2c with ω for different values of Rn and Le

Figure14.2 shows the variation of R2c with ω for different values of the concen-
tration Rayleigh number Rn : Rn > 0 indicates top heavy nanoparticles and Rn < 0
indicates bottom heavy nanoparticles. Here also it is observed that for small frequen-
cies,R2c is negative indicating that the symmetric modulation has destabilizing effect
while for moderate and large values of frequencies its effect is stabilizing for both
regular and nanofluids. This is similar to the observed results of Umavathi [33]. The
effect of porosity parameter ε for symmetric modulation is shown in Fig. 14.3. It is
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Fig. 14.5 Variation of R2c with ω for different values of Rn and σ

Fig. 14.6 Variation of R2c with ω for different values of Rn and Vadász number Va

observed that as ε increases, the value of | R2c | becomes small indicating that the
larger values of ε decrease the effect of modulation. Here also it is observed that as
ω increases, R2c increases to its maximum value initially and then starts decreasing
with further increase inω. Whenω is very large, all the curves for different porosity ε

coalesce and | R2c | approaches to zero. Figure14.4 depicts the variation of R2c with
frequency ω for different values of Lewis number Le. An increase in the value of the
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Fig. 14.7 Variation of R2c with ω for different values of Rn and ν

Fig. 14.8 Variation of R2c with ω for different values of Rn and γ

Lewis number decreases the value of | R2c | indicating that the effect of increasing
Le is to reduce the effect of thermal modulation for regular and nanofluids. As ω

increases, | R2c | increases to its maximum value initially and then decreases with
further increase in ω. For large, ω all the curves for different Lewis number coincide,
and | R2c | approaches to zero for both regular and nanofluids. The effect of thermal
capacity ratio σ and ω is shown in Fig. 14.5. As σ increases, | R2c | decreases for
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Fig. 14.9 Variation of R2c with ω for different values of Rn and λ1

Fig. 14.10 Variation of R2c with ω for different values of Rn

both regular and nanofluids. Here also | R2c | increases to its maximum value initially
as ω increases and then starts decreasing with further increase in ω. The effect of
Vadász number Va shows a similar nature as that of heat capacity ratio σ as seen in
Fig. 14.6. The effects of viscosity variation parameter υ and conductivity variation
parameter γ are shown in Figs. 14.7 and 14.8, respectively. As υ and γ increase,
| R2c | decreases indicating that the viscosity and conductivity ratio stabilizes the
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Fig. 14.11 Variation of R2c with ω for different values of Rn and ε

Fig. 14.12 Variation of R2c with ω for different values of Rn and Le

system. As ω increases, | R2c | increases to its maximum value initially and then
starts decreasing with further increase in ω.

The results obtained for the case of asymmetric modulation are presented in
Figs. 14.9, 14.10, 14.11, 14.12, 14.13, 14.14, 14.15 and 14.16. All these figures
show that for all parameters, small frequencies have destabilizing effects while for
moderate and large values of the frequency, their effects are to stabilize the system.
It is seen from Fig. 14.9 that an increase in the value of λ1 increases the magnitude of
R2c. The effect of the concentrationRayleigh numberRn, porosity parameter ε, Lewis
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Fig. 14.13 Variation of R2c with ω for different values of Rn and σ

Fig. 14.14 Variation of R2c with ω for different values of Rn and Va

number Le, thermal capacity ratio σ , Vadász number Va, viscosity and conductivity
variation parameters υ and γ is the same as in the case of symmetric modulation,
and hence a detailed explanation is not presented. The variation of all the governing
parameters for the case of only lower wall temperature modulation produce similar
effects as for asymmetric modulation and hence not shown pictorially.
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Fig. 14.15 Variation of R2c with ω for different values of Rn and ν

Fig. 14.16 Variation of R2c with ω for different values of Rn and γ

From Figs. 14.1, 14.2, 14.3, 14.4, 14.5, 14.6, 14.7, 14.8, 14.9, 14.10, 14.11, 14.12,
14.13, 14.14, 14.15 and 14.16, one can observe that the peak values of for a regular
fluid compared to a nanofluid for all the governing parameters. A nanofluid has a
more stabilizing effect compared to a regular fluid.
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Table 14.1 Nomenclature

c Nanofluid specific heat at constant
pressure

cp Specific heat of the nanoparticle
material

(ρc)m Effective heat capacity of the
porous medium

dp Nanoparticle diameter

g Gravitational acceleration DB Brownian diffusion coefficient m2

s

hp Specific enthalpy of the
nanoparticle Specific enthalpy of
the nanoparticle materialmaterial

H Dimensional layer depth (m)

jp Diffusion mass flux for the
nanoparticles

jp,T Thermophoretic diffusion

k Thermal conductivity of the
nanofluid

kB Boltzman constant

km Effective thermal conductivity of
the porous medium

kp Thermal conductivity of the
particle material

Le Lewis parameter NA Modified diffusivity ratio

NB Modified particle-density
increment

p∗ Pressure

p Dimensionless pressure, p∗K
μαm

q Energy flux relative to a frame
moving with the nanofluid
velocity

R Thermal Rayleigh–Darcy number Rn Concentration Rayleigh number

t∗ time t Dimensionless time, t∗αm/σH2

T∗ Nanofluid temperature T Dimensionless temperature,
T∗−T∗

c
T∗
h −T∗

c

T∗
c Temperature at the upper wall T∗

h Temperature at the lower wall

TR Reference temperature (u, v,w) Dimensionless Darcy velocity
components (u∗,v∗,w∗)H

αm

v Nanofluid velocity vD Darcy velocity εv

v∗
D Dimensionless Darcy velocity

(u∗, v∗,w∗)
γa Non dimensional acceleration

coefficient

Va Vadász number (x, y, z) Dimensionless Cartesian
coordinate

(x∗,y∗,z∗)
H Vertically upward coordinate (x∗, y∗, z∗) Cartesian coordinates

Greek symbols

αm Thermal diffusivity of the porous
medium km

(ρc)f

β̃ Proportionality factor

γ Conductivity variation parameter λ1 Relaxation parameter

ε Porosity of the medium εt Amplitude of the modulation

μ Viscosity of the fluid ν Viscosity variation parameter

ρ Fluid density ρp Nanoparticle mass density

σ Parameter φ∗ Nanoparticle volume fraction

(continued)



14 Effect of Time-Periodic Boundary Temperature Modulations on the Onset … 243

Table 14.1 (continued)

φ Relative nanoparticle volume

fraction, φ
∗−φ∗

c
φ∗
h−φ∗

c

Ω Dimensional frequency

ω Dimensionless frequency(
= ΩH2

K

)

ψ Phase angles

ψ = 0 Symmetric modulation ψ = π Antisymmetric modulation

ψ = −i∞ Only lower wall temperature
modulation

14.7 Conclusion

The effect of thermal modulation on the onset of convection in a Maxwell fluid and
nanofluid saturated porous layer was studied using a linear stability analysis and the
following conclusions were drawn (Table14.1):

1. The effect of all three types of modulations namely, symmetric, asymmetric,
and only with lower wall temperature modulations is found to be destabilizing
compared to the unmodulated system.

2. Low frequency symmetric modulation is destabilizing while high frequency sym-
metric modulation is always stabilizing for both regular and nanofluids.

3. Large values of the concentration Rayleigh number are found to stabilize the
system for all types of modulations.

4. The viscosity and conductivity variation parameters produce more stability for
the system.

5. The nanofluid is found to bemore stabilizing compared to regular fluid in all three
types of temperature modulations.
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