
Chapter 10
On Some Properties of the Multi-peaked
Analytically Extended Function
for Approximation of Lightning Discharge
Currents

Karl Lundengård, Milica Rančić , Vesna Javor and Sergei Silvestrov

Abstract According to experimental results for lightning discharge currents, they
are classified in the IEC 62305 Standard into waveshapes representing the first pos-
itive, first and subsequent negative strokes, and long-strokes. These waveshapes,
especially shot-term pulses, are approximated with a few mathematical functions
in literature, in order to be used in lightning discharge models for calculations of
electromagnetic field and lightning induced effects. An analytically extended func-
tion (AEF) is presented in this paper and used for lightning currents modeling. The
basic properties of this function with a finite number of peaks are examined. A
general framework for estimating the parameters of the AEF using the Marquardt
least-squares method (MLSM) for a waveform with an arbitrary (finite) number of
peaks as well as for the given charge transfer and specific energy is described. This
framework is used to find parameters for some common single-peak waveforms and
some advantages and disadvantages of the approach are also discussed.
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e-mail: milica.rancic@mdh.se

S. Silvestrov
e-mail: sergei.silvestrov@mdh.se

V. Javor
Department of Power Engineering, Faculty of Electronic Engineering,
University of Niš, Niš, Serbia
e-mail: vesna.javor@elfak.ni.ac.rs

© Springer International Publishing Switzerland 2016
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10.1 Introduction

Many different types of systems, objects and equipment are susceptible to damage
from lightning discharges. Lightning effects are usually analysed using lightning dis-
charge models. Most of the engineering and electromagnetic models imply channel-
base current functions. Various single and multi-peaked functions are proposed
in the literature for modelling lightning channel-base currents, examples include
Heidler, Heidler and Cvetic [3], Javor and Rancic [7], Javor [5, 6]. For engineer-
ing and electromagnetic models, a general function that would be able to reproduce
desired waveshapes is needed, such that analytical solutions for its derivatives, inte-
grals, and integral transformations, exist. A multi-peaked channel-base current func-
tion has been proposed in Javor [5] as a generalization of the so-called TRF (two-rise
front) function from Javor [6], which possesses such properties.

In this paper we analyse a modification of such a multi-peaked function, a
so-called p -peak analytically extended function (AEF). Possibility of application of
the AEF to modelling of various multi-peaked waveshapes is investigated. Estima-
tion of its parameters has been performed using the Marquardt least-squares method
(MLSM), an efficient method for the estimation of non-linear function parameters,
Marquardt [14]. It has been applied in many fields, including lightning research for
optimizing parameters of the Heidler function in Lovric et al. [10], or the Pulse
function in Lundengård et al. [11, 12].

Some numerical results are presented, including those for the Standard IEC
62305 [4] current of the first-positive strokes, and an example of a fast-decaying
lightning current waveform.

10.2 The p -Peak Analytically Extended Function

The p-peaked AEF is constructed using the function

x(β; t) = (te1−t
)β

, 0 ≤ t, (10.1)

which we will refer to as the power exponential function. The power exponential
function is qualitatively similar to the desired waveforms in the sense that it has a
steeply rising initial part followed by a more slowly decaying part. The steepness of
both the rising and decaying part is determined by the β-parameter. This is illustrated
in Fig. 10.1.

This function is in some ways similar to the Heidler function [2] that is commonly
used [4]. One feature of theHeidler function that the power exponential function does
not share is that a Heidler function with a very steep rise and slow decay can be easily
constructed. To construct the AEF so that it can imitate this feature we define it as a
piecewise linear combinations of scaled and translated power exponential functions,
the concept is illustrated in Fig. 10.2.
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Fig. 10.1 An illustration of how the steepness of the power exponential function varies with β

Fig. 10.2 An illustration of how the steepness of the power exponential function varies with β

In order to get a function with multiple peaks and where the steepness of the rise
between each peak as well as the slope of the decaying part is not dependent on each
other, we define the analytically extended function (AEF) as a function that consist of
piecewise linear combinations of the power exponential function that has been scaled
and translated so that the resulting function is continuous. Given the difference in
height between each pair of peaks Im1 , Im2 , . . . , Imp , the corresponding times tm1 ,
tm2 , . . . , tm p , integers nq > 0, real values βq,k , ηq,k , 1 ≤ q ≤ p + 1, 1 ≤ k ≤ nq such
that the sum over k of ηq,k is equal to one, the p-peaked AEF i(t) is given by (10.2).

Definition 10.1 Given Imq ∈ R, tmq ∈ R,q = 1, 2, . . . , p such that tm0 = 0 < tm1 ≤
tm2 ≤ . . . ≤ tm p along with ηq,k, βq,k ∈ R and 0 < nq ∈ Z for q = 1, 2, . . . , p + 1,

k = 1, 2, . . . , nq such that
nq∑

k=1

ηq,k = 1.

The analytically extended function (AEF), i(t), with p peaks is defined as
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i(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
q−1∑

k=1

Imk

)

+ Imq

nq∑

k=1

ηq,k xq(t)
β2
q,k+1, tmq−1 ≤ t ≤ tmq , 1 ≤ q ≤ p,

(
p∑

k=1

Imk

) np+1∑

k=1

ηp+1,k xp+1(t)
β2
p+1,k , tm p ≤ t,

(10.2)

where

xq(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t − tmq−1

Δtmq

exp

(
tmq − t

Δtmq

)
, 1 ≤ q ≤ p,

t

tmq

exp

(
1 − t

tmq

)
, q = p + 1,

and Δtmq = tmq − tmq−1 .
Sometimes the notation i(t;β, η) with

β = [β1,1 β1,2 . . . βq,k . . . βp+1,np+1

]
, η = [η1,1 η1,2 . . . ηq,k . . . ηp+1,np+1

]

will be used to clarify what the particular parameters for a certain AEF are.

Remark 10.1 The p -peak AEF can be written more compactly if we introduce the
vectors

ηq = [ηq,1 ηq,2 . . . ηq,nq ]�, (10.3)

xq(t) =
⎧
⎨

⎩

[
xq(t)

β2
q,1+1 xq(t)

β2
q,2+1 . . . xq(t)

β2
q,nq +1

]�
, 1 ≤ q ≤ p,

[
xq(t)

β2
q,1 xq(t)

β2
q,2 . . . xq(t)

β2
q,nq

]�
, q = p + 1.

(10.4)

The more compact form is

i(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
q−1∑

k=1

Imk

)

+ Imq · η�
q xq(t), tmq−1 ≤ t ≤ tmq , 1 ≤ q ≤ p,

(
q∑

k=1

Imk

)

· η�
q xq(t), tmq ≤ t, q = p + 1.

(10.5)

If the AEF is used to model an electrical current, than the derivative of the AEF
determines the induced electrical voltage in conductive loops in the lightning field.
For this reason it is desirable to guarantee that the first derivative of the AEF is
continuous.

Since the AEF is a linear function of elementary functions its derivative can be
found using standard methods.
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Theorem 10.1 The derivative of the p -peak AEF is

di(t)

dt
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Imq

tmq − t

t − tmq−1

xq(t)

Δtmq

η�
q Bq xq(t), tmq−1 ≤ t ≤ tmq , 1 ≤ q ≤ p,

Imq

xq(t)

t

tmq − t

tmq

η�
q Bq xq(t), tmq ≤ t, q = p + 1,

(10.6)

where

Bp+1 =

⎡

⎢⎢⎢
⎣

β2
p+1,1 0 . . . 0
0 β2

p+1,2 . . . 0
...

...
. . .

...

0 0 . . . β2
p+1,np+1

⎤

⎥⎥⎥
⎦

, Bq =

⎡

⎢⎢⎢
⎣

β2
q,1 + 1 0 . . . 0
0 β2

q,2 + 1 . . . 0
...

...
. . .

...

0 0 . . . β2
q,nq + 1

⎤

⎥⎥⎥
⎦

,

for 1 ≤ q ≤ p.

Proof From the definition of the AEF (see (10.2)) and the derivative of the power
exponential function (10.1) given by

d

dt
x(β; t) = β(1 − t)tβ−1eβ(1−t),

expression (10.6) can easily be derived since differentiation is a linear operation and
the result can be rewritten in the compact form analogously to (10.5).

Illustration of the AEF function and its derivative for various values of βq,k-
parameters is shown in Fig. 10.3.

Lemma 10.1 The AEF is continuous and at each tmq the derivative is equal to zero.

Proof Within each interval tmq−1 ≤ t ≤ tmq the AEF is a linear combination of con-
tinuous functions and at each tmq the function will approach the same value from

both directions unless all ηq,k ≤ 0, but if ηq,k ≤ 0 then
nq∑

k=1

ηq,k �= 1.

Noting that for any diagonal matrix B the expression

η�
q B xq(t) =

nq∑

k=1

ηq,kBkk xq(t)
β2
q,k+1, 1 ≤ q ≤ p,

is well-defined and that the equivalent statement holds for q = p it is easy to see
from (10.6) that the factor (tmq − t) in the derivative ensures that the derivative is
zero every time t = tmq .

When interpolating a waveform with p peaks it is natural to require that there
will not appear new peaks between the chosen peaks. This corresponds to requiring
monotonicity in each interval. One way to achieve this is given in Lemma 10.2.
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Fig. 10.3 Illustration of the AEF (solid line) and its derivative (dashed line) with the same Imq and
tmq but different βq,k -parameters. a 0 < βq,k < 1, b 4 < βq,k < 5, c 12 < βq,k < 13, d a mixture
of large and small βq,k -parameters

Lemma 10.2 If ηq,k ≥ 0, k = 1, . . . , nq the AEF, i(t), is strictly monotonic on the
interval tmq−1 < t < tmq .

Proof The AEF will be strictly monotonic in an interval if the derivative has the
same sign everywhere in the interval. That this is the case follows from (10.6) since
every term in η�

q Bq xq(t) is non-negative if ηq,k ≥ 0, k = 1, . . . , nq , so the sign of
the derivative it determined by Imq .

If we allow some of the ηq,k-parameters to be negative, the derivative can change
sign the function might get an extra peak between two other peaks, see Fig. 10.4.

The integral of the electrical current represents the charge transfer. Unlike the
Heidler function the integral of the AEF is relatively straightforward to find. How to
do this is detailed in Lemmas 10.3, 10.4, Theorems 10.2, and 10.3.

Lemma 10.3 For any tmq−1 ≤ t0 ≤ t1 ≤ tmq , 1 ≤ q ≤ p,

∫ t1

t0

xq(t)
β dt = eβ

ββ+1
Δγ

(
β + 1,

t1 − tmq

βΔtmq

,
t0 − tmq

βΔtmq

)
(10.7)

with Δtmq = tmq − tmq−1 and
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Fig. 10.4 An example of a
two-peaked AEF where
some of the ηq,k -parameters
are negative, so that it has
points where the first
derivative changes sign
between two peaks. The
solid line is the AEF and the
dashed lines is the derivative
of the AEF

Δγ (β, t0, t1) = γ (β + 1, βt1) − γ (β + 1, βt0) ,

where

γ (β, t) =
∫ t

0
τβ−1e−τ dτ

is the lower incomplete Gamma function [1].
If t0 = tmq−1 and t1 = tmq then

∫ tmq

tmq−1

xq(t)
β dt = eβ

ββ+1
γ (β + 1, β) . (10.8)

Proof

∫ t1

t0

xq(t)
β dt =

∫ t1

t0

(
t − tmq

Δtmq

exp

(
1 − t − tmq

Δtmq

))β

dt

= eβ

ββ+1

∫ t1

t0

(
β
t − tmq

Δtmq

)β

exp

(
1 − β

t − tmq

Δtmq

)
dt.

Changing variables according to τ = t−tmq

Δtmq
gives

∫ t1

t0

xq(t)
β dt = eβ

ββ+1

∫ τ1

τ0

τβe−τ dt

= eβ

ββ+1
(γ (β + 1, τ1) − γ (β + 1, τ0))

= eβ

ββ+1
Δγ (β + 1, τ1, τ0)

= eβ

ββ+1
Δγ

(
β + 1, β

t1 − tmq

Δtmq

, β
t0 − tmq

Δtmq

)
.
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When t0 = tmq−1 and t1 = tmq then

∫ t1

t0

xq(t)
β dt = eβ

ββ+1
Δγ (β + 1, β)

and with γ (β + 1, 0) = 0 we get (10.8).

Lemma 10.4 For any tmq−1 ≤ t0 ≤ t1 ≤ tmq , 1 ≤ q ≤ p,

∫ t1

t0

i(t) dt = (t1 − t0)

(
q−1∑

k=1

Imk

)

+ Imq

nq∑

k=1

ηq,k gq(t1, t0), (10.9)

where

gq(t1, t0) = eβ2
q,k

(
β2
q,k + 1

)β2
q,k+1

Δγ

(
β2
q,k + 2,

t1 − tmq−1

Δtmq

,
t0 − tmq−1

Δtmq

)

with Δγ (β, t0, t1) defined as in (10.7).

Proof

∫ t1

t0

i(t) dt =
∫ t1

t0

(
q−1∑

k=1

Imk

)

+ Imq

nq∑

k=1

ηq,k xq(t)
β2
q,k+1 dt

= (t1 − t0)

(
q−1∑

k=1

Imk

)

+ Imq

nq∑

k=1

ηq,k

∫ t1

t0

xq(t)
β2
q,k+1 dt

= (t1 − t0)

(
q−1∑

k=1

Imk

)

+ Imq

nq∑

k=1

ηq,k gq(t0, t1).

Theorem 10.2 If tma−1 ≤ ta ≤ tma , tmb−1 ≤ tb ≤ tmb and 0 ≤ ta ≤ tb ≤ tm p then

∫ tb

ta

i(t) dt = (tma − ta)

(
a−1∑

k=1

Imk

)

+ Ima

na∑

k=1

ηa,k ga(ta, tma )

+
b−1∑

q=a+1

(

Δtmq

(
q−1∑

k=1

Imk

)

+ Imq

nq∑

k=1

ηq,k ĝ
(
β2
q,k + 1

)
)

+ (tb − tmb)

(
b−1∑

k=1

Imk

)

+ Imb

nb∑

k=1

ηb,k gb(tmb , tb), (10.10)

where gq(t0, t1) is defined as in Lemma 10.4 and
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ĝ(β) = eβ

ββ+1
γ (β + 1, β) .

Proof This theorem follows from integration being linear and Lemma 10.4.

Theorem 10.3 For tmp ≤ t0 < t1 < ∞ the integral of the AEF is

∫ t1

t0

i(t) dt =
(

p∑

k=1

Imk

) np+1∑

k=1

ηp+1,k gp+1(t1, t0), (10.11)

where gq(t0, t1) is defined as in Lemma 10.4.
When t0 = tm p and t1 → ∞ the integral becomes

∫ ∞

tm p

i(t) dt =
(

p∑

k=1

Imk

) np+1∑

k=1

ηp+1,k g̃
(
β2
p+1,k

)
, (10.12)

where

g̃(β) = eβ

ββ+1
(Γ (β + 1) − γ (β + 1, β))

with

Γ (β) =
∫ ∞

0
tβ−1e−t dt

is the Gamma function [1].

Proof This theorem follows from integration being linear and Lemma 10.4.

In the next section we will estimate the parameters of the AEF that gives the best
fit with respect to some data and for this the partial derivatives with respect to the βmq

parameters will be useful. Since the AEF is a linear function of elementary functions
these partial derivatives can easily be found using standard methods.

Theorem 10.4 The partial derivatives of the p-peak AEF with respect to the β

parameters are

∂i

∂βq,k
=

⎧
⎪⎨

⎪⎩

0, 0 ≤ t ≤ tmq−1,

2 Imqηq,k βq,k hq(t)xq(t)
β2
q,k+1, tmq−1 ≤ t ≤ tmq , 1 ≤ q ≤ p,

0, tmq ≤ t,

(10.13)

∂i

∂βp+1,k
=
{
0, 0 ≤ t ≤ tm p ,

2 Imp+1ηp+1,k βp+1,k h p+1(t)xp+1(t)
β2
p+1,k , tm p ≤ t,

(10.14)

where
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hq(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ln

(
t − tmq−1

Δtmq

)
− t − tmq−1

Δtmq

+ 1, 1 ≤ q ≤ p,

ln

(
t

tmq

)
− t

tmq

+ 1, q = p + 1.

Proof Since the βq,k parameters are independent, differentiation with respect to βq,k

will annihilate all terms but one in each linear combination. The expressions (10.13)
and (10.14) then follow from the standard rules for differentiation of composite
functions and products of functions.

10.3 Least Square Fitting Using MLSM

10.3.1 The Marquardt Least-Squares Method

TheMarquardt least-squares method, also known as the Levenberg-Marquardt algo-
rithm or damped least-squares, is an efficient method for least-squares estimation for
functions with non-linear parameters that was developed in the middle of the 20th
century (see [9, 14]).

The least-squares estimation problem for functions with non-linear parameters
arises when a function of m independent variables and described by k unknown
parameters needs to be fitted to a set of n data points such that the sum of squares of
residuals is minimized.

The vector containing the independent variables is x = (x1, . . . , xn), the vector
containing the parameters β = (β1, . . . , βk) and the data points

(Yi , X1i , X2i , . . . , Xmi ) = (Yi , Xi ) , i = 1, 2, . . . , n.

Let the residuals be denoted by Ei = f (Xi ;β) − Yi and the sum of squares of Ei

is then written as

S =
n∑

i=1

[ f (Xi ;β) − Yi ]
2 ,

which is the function to be minimized with respect to β.
The Marquardt least-square method is an iterative method that gives approximate

values of β by combining the Gauss–Newton method (also known as the inverse
Hessian method) and the steepest descent (also known as the gradient) method to
minimize S. The method is based around solving the linear equation system

(
A∗(r) + λ(r)I

)
δ∗(r) = g∗(r), (10.15)
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where A∗(r) is a modified Hessian matrix of E(b) (or f (Xi ; b)), g∗(r) is a rescaled
version of the gradient of S, r is the number of the current iteration of the method,
and λ is a real positive number sometimes referred to as the fudge factor [15]. The
Hessian, the gradient and their modifications are defined as follows:

A = J�J,

Ji j = ∂ fi
∂b j

= ∂Ei

∂b j
, i = 1, 2, . . . ,m; j = 1, 2, . . . , k,

and
(A∗)i j = ai j√

aii
√
a j j

,

while
g = J�(Y − f0), f0i = f (Xi , b, c), g∗

i = gi

aii
.

Solving (10.15) gives a vector which, after some scaling, describes how the para-
meters b should be changed in order to get a new approximation of β,

b(r+1) = b(r) + δ(r), δ(r) = δ
∗(r)
i√
aii

. (10.16)

It is obvious from (10.15) that δ(r) depends on the value of the fudge factor λ.
Note that if λ = 0, then (10.15) reduces to the regular Gauss–Newton method [14],
and if λ → ∞ the method will converge towards the steepest descent method [14].
The reason that the two methods are combined is that the Gauss–Newton method
often has faster convergence than the steepest descent method, but is also an unstable
method [14]. Therefore,λmust be chosen appropriately in each step. In theMarquardt
least-squares method this amounts to increasing λ with a chosen factor v whenever
an iteration increases S, and if an iteration reduces S then λ is reduced by a factor v
as many times as possible. Below follows a detailed description of the method using
the following notation:

S(r) =
n∑

i=1

[
Yi − f (Xi , b(r), c)

]2
, (10.17)

S
(
λ(r)
) =

n∑

i=1

[
Yi − f (Xi , b(r) + δ(r), c)

]2
. (10.18)
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Fig. 10.5 The basic iteration step of the Marquardt least-squares method, definitions of computed
quantities are given in (10.16), (10.17) and (10.18)

The iteration step of the Marquardt least-squares method can be described as
follows:

• Input: v > 1 and b(r), λ(r).
� Compute S

(
λ(r)
)
.

• If λ(r) � 1 then compute S
(

λ(r)

v

)
, else go to 
.

• If S
(

λ(r)

v

)
≤ S(r) let λ(r+1) = λ(r)

v .


 If S
(
λ(r)
) ≤ S(r) let λ(r+1) = λ(r).

• If S
(
λ(r)
)

> S(r) find the smallest integerω > 0 such that S
(
λ(r)vω

) ≤ S(r), and
then set λ(r+1) = λ(r)vω.

• Output: b(r+1) = b(r) + δ(r), δ(r).

This iteration step is also described in Fig. 10.5. Naturally, some condition for what
constitutes an acceptable fit for the function must also be chosen. If this condition is
not satisfied the new values for b(r+1) and λ(r+1) will be used as input for the next
iteration and if the condition is satisfied the algorithm terminates. The quality of the
fitting, in other words the value of S, is determined by the stopping condition and
the initial values for b(0). The initial value of λ(0) affects the performance of the
algorithm to some extent since after the first iteration λ(r) will be self-regulating.
Suitable values for b(0) are challenging to find for many functions f and they are
often, together with λ(0), found using heuristic methods.
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10.3.2 Estimating Parameters for Underdetermined Systems

For the Marquardt least-squares method to work one data point per unknown para-
meter is needed, m = k. It can still be possible to estimate all unknown parameters
if there is insufficient data, m < k.

Suppose that k − m = p and let γ j = βm+ j , j = 1, 2, . . . , p. If there are at least
p known relations between the unknown parameters such that γ j = γ j (β1, . . . , βm)

for j = 1, 2, . . . , p then the Marquardt least-squares method can be used to give
estimates on β1, . . . , βm and the still unknown parameters can be estimated from
these. Denoting the estimated parameters b = (b1, . . . , bm) and c = (c1, . . . , cp)
the following algorithm can be used:

• Input: v > 1 and initial values b(0), λ(0).
• r = 0
� Find c(r) using b(r) together with extra relations.
• Find b(r+1) and δ(r) using MLSM.
• Check chosen termination condition for MLSM, if it is not satisfied go to �.
• Output: b, c.

The algorithm is illustrated in Fig. 10.6.
In order to fit the AEF it is sufficient that kq ≥ nq . Suppose we have some estimate

of the β-parameters which is collected in the vector b. It is then fairly simple to
calculate an estimate for the η-parameters, see Sect. 10.3.4, which we collect in h.
We can then define a residual vector by (E)k = i(tq,k; b, h) − iq,k where i(t; b, h)

is the AEF with the estimated parameters.
The J matrix can in this case be described as

Fig. 10.6 Schematic
description of the parameter
estimation algorithm
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J =

⎡

⎢⎢⎢⎢⎢⎢
⎢
⎣

∂i
∂βq,1

∣∣
∣
t=tq,1

∂i
∂βq,2

∣∣
∣
t=tq,1

. . . ∂i
∂βq,nq

∣∣
∣
t=tq,1

∂i
∂βq,1

∣∣∣
t=tq,2

∂i
∂βq,2

∣∣∣
t=tq,2

. . . ∂i
∂βq,nq

∣∣∣
t=tq,2

...
...

. . .
...

∂i
∂βq,1

∣∣∣
t=tq,kq

∂i
∂βq,2

∣∣∣
t=tq,kq

. . . ∂i
∂βq,nq

∣∣∣
t=tq,kq

⎤

⎥⎥⎥⎥⎥⎥
⎥
⎦

, (10.19)

where the partial derivatives are given by (10.13) and (10.14).

10.3.3 Fitting with Data Points as Well as Charge Transfer
and Specific Energy Conditions

By considering the charge transfer at the striking point, Q0, and the specific energy,
W0, two further conditions need to be considered:

Q0 =
∫ ∞

0
i(t) dt, (10.20)

W0 =
∫ ∞

0
i(t)2 dt. (10.21)

First we will define

Q(b, h) =
∫ ∞

0
i(t; b, h) dt,

W (b, h) =
∫ ∞

0
i(t; b, h)2 dt.

These two quantities can be calculated as follows.

Theorem 10.5

Q(b, h) =
p∑

q=1

(

Δtmq

(
q−1∑

k=1

Imk

)

+ Imq

nq∑

k=1

ηq,k ĝ(β
2
q,k + 1)

)

+
(

p∑

k=1

Imk

) np+1∑

k=1

ηp+1,k g̃(β
2
p+1,k), (10.22)
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W (b, h) =
p∑

q=1

⎛

⎝
(

q−1∑

k=1

Imk

)2

+
(

q−1∑

k=1

Imk

)

Imq

nq∑

k=1

ηq,k ĝ(β
2
q,k + 1)

+I 2mq

nq∑

k=1

η2
q,k ĝ

(
2 β2

q,k + 2
)

+ 2 I 2mq

nq−1∑

r=1

nq∑

s=r+1

ηq,r ηq,s ĝ
(
β2
q,r + β2

q,s + 2
)
⎞

⎠

+
(

p∑

k=1

Imk

)2 ( np∑

k=1

η2
p,k g̃

(
2 β2

p,k

)

+ 2
np+1−1∑

r=1

np+1∑

s=r+1

ηp+1,r ηp+1,s g̃
(
β2
p+1,r + β2

p+1,s

)
⎞

⎠ , (10.23)

where ĝ(β) and g̃(β) are defined in Theorems 10.2 and 10.3.

Proof Formula (10.22) is found by combining (10.10) and (10.12). Formula (10.23)
is found by noting that

(
n∑

k=1

ak

)2

=
n∑

k=1

a2k +
n−1∑

r=1

n∑

s=r+1

ar as,

and then reasoning analogously to the proofs for (10.10) and (10.12).

We can calculate the charge transfer and specific energy given by the AEF
with formula (10.22) and (10.23), respectively, and get two additional residuals
EQ0 = Q(b, h) − Q0 and EW0 = W (b, h) − W0. Since these are global conditions
this means that the parameters η and β no longer can be fitted separately in each
interval. This means that we need to consider all data points simultaneously.

The resulting J-matrix is

J =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

J1 . . . 0
...

. . .
...

0 . . . Jp+1
∂EQ0
∂β1,1

. . .
∂EQ0
∂β1,n1

. . .
∂EQ0

∂βp+1,1
. . .

∂EQ0
∂βp+1,n p+1

∂EW0
∂β1,1

. . .
∂EW0
∂β1,n1

. . .
∂EW0

∂βp+1,1
. . .

∂EW0
∂βp+1,n p+1

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

, (10.24)

where
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Jq =

⎡

⎢⎢⎢⎢⎢⎢
⎢
⎣

∂i
∂βq,1

∣∣
∣
t=tq,1

∂i
∂βq,2

∣∣
∣
t=tq,1

. . . ∂i
∂βq,nq

∣∣
∣
t=tq,1

∂i
∂βq,1

∣∣∣
t=tq,2

∂i
∂βq,2

∣∣∣
t=tq,2

. . . ∂i
∂βq,nq

∣∣∣
t=tq,2

...
...

. . .
...

∂i
∂βq,1

∣∣∣
t=tq,kq

∂i
∂βq,2

∣∣∣
t=tq,kq

. . . ∂i
∂βq,nq

∣∣∣
t=tq,kq

⎤

⎥⎥⎥⎥⎥⎥
⎥
⎦

and the partial derivatives in the last two rows are given by

∂Q

∂βq,s
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 Imqηq,s βq,s
dĝ

dβ

∣∣
∣∣
β=β2

q,s+1

, 1 ≤ q ≤ p,

2 Impηp+1,s βp+1,s
dg̃

dβ

∣∣∣
∣
β=β2

p+1,s

, q = p + 1.

For 1 ≤ q ≤ p

∂W

∂βq,s
= 2

(
q−1∑

k=1

Imk

)

Imqηq,s βq,s
dĝ

dβ

∣
∣∣∣
β=β2

q,s+1

+ 4 I 2mq
ηq,sβq,s

⎛

⎜
⎝ηq,s

dĝ

dβ

∣∣∣∣
β=2β2

q,s+2

+
nq∑

k=1
k �=s

ηq,k
dĝ

dβ

∣∣∣∣
β=β2

q,s+β2
q,k+2

⎞

⎟
⎠

and

∂W

∂βp+1,s
= 4

(
p∑

k=1

Imk

)

ηp+1,sβp+1,s

⎛

⎜
⎝ηp+1,s

dg̃

dβ

∣∣∣
∣
β=2β2

p+1,s

+
nq∑

k=1
k �=s

ηp+1,k
dg̃

dβ

∣∣∣
∣
β=β2

p+1,s+β2
p+1,k

⎞

⎟
⎠ .

The derivatives of ĝ(β) and g̃(β) are

dĝ

dβ
= eβ

ββ+1

(
Γ (β + 1)

(
Ψ (β + 1) + ln(β)

)− G(β) − γ (β + 1, β)

β

)
+ 1,

(10.25)

dg̃

dβ
= eβ

ββ+1

(
G(β) − Γ (β + 1) − γ (β + 1, β)

b

)
− 1,

(10.26)



10 On Some Properties of the Multi-peaked Analytically Extended Function … 167

where Γ (β) is the Gamma function, Ψ (β) is the digamma function, see [1], and
G(β) is a special case of the Meijer G-function and can be defined as

G(β) = G3,0
2,3

(
β

∣∣∣∣
1, 1

0, 0, β + 1

)

using the notation from [16].When evaluating this function it might bemore practical
to rewrite G using other special functions

G(β) = G3,0
2,3

(
β

∣∣∣∣
1, 1

0, 0, β + 1

)
= ββ+1

(β + 1)2
2F2(β + 1, β + 1; β + 2, β + 2; −β)

+
(
ln(β) − Ψ (β) − 1

b

)
π csc (πβ)

Γ (−β)
,

where

2F2(β + 1, β + 1; β + 2, β + 2; −β) =
∞∑

k=0

(−1)kβk (β + 1)2

(β + k + 1)2

= β2 + 2β + 1

β

(
1

β2
−

∞∑

k=0

(−b)k

(b + k)2

)

is a special case of the hypergeometric function. These partial derivatives were found
using software for symbolic computation [13].

Note that all η-parameters must be recalculated for each step, how this is done is
detailed in the Sect. 10.3.4.

10.3.4 Calculating the η-Parameters from the β-Parameters

Suppose that we have nq − 1 points (tq,k, iq,k) such that

tmq−1 < tq,1 < tq,2 < . . . < tq,nq−1 < tmq .

For an AEF that interpolates these points it must be true that

q−1∑

k=1

Imk + Imq

nq∑

s=1

ηq,s xq(tq,k)
βq,s = iq,k, k = 1, 2, . . . , nq − 1. (10.27)

Since ηq,1 + ηq,2 + . . . + ηq,nq = 1 equation (10.27) can be rewritten as
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Imq

nq−1∑

s=1

ηq,s
(
xq(tq,k)

βq,s − xq(tq,k)
βq,nq
) = iq,k − xq(tq,k)

βq,nq −
q−1∑

s=1

Ims (10.28)

for k = 1, 2, . . . , nq − 1. This can easily be written as a matrix equation

Imq X̃q η̃q = ĩq , (10.29)

where

η̃q = [ηq,1 ηq,2 . . . ηq,nq−1
]�

,

(
ĩq
)

k
= iq,k − xq(tq,k)

βq,nq −
q−1∑

s=1

Ims ,

(
X̃q

)

k,s
= x̃q(k, s) = xq(tq,k)

βq,s − xq(tq,k)
βq,nq ,

with xq(t) given by (10.4).
When all βq,k , k = 1, 2, . . . , nq are known then ηq,k , k = 1, 2, . . . , nq − 1 can be

found by solving (10.29) and ηq,nq = 1 −
nq−1∑

k=1

ηq,k .

If we have kq > nq − 1 data points than the parameters can be estimated with the
least-squares solution to (10.29), more specifically the solution to

I 2mq
X̃�
q X̃q η̃q = X̃�

q ĩq .

If we wish to guarantee monotonicity in an interval by forcing ηq,k > 0, k ∈
{1, 2, . . . , nq} (see Lemma 10.2) this becomes a so-called nonnegative least squares
problem that can also be solved effectively with well known algorithms, e.g. [8].

10.3.5 Explicit Formulas for a Single-Peak AEF

Consider the case where p = 1, n1 = n2 = 2 and τ = t
tm1

. Then the explicit formula
for the AEF is

i(τ )

Im1

=
{

η1,1 τβ2
1,1+1e(β2

1,1+1)(1−τ)+ η1,2 τβ2
1,2+1e(β2

1,2+1)(1−τ), 0≤τ ≤ 1,

η2,1 τβ2
2,1 eβ2

2,1(1−τ)+ η2,2 τβ2
2,2 eβ2

2,2(1−τ), 1≤τ.
(10.30)

Assume that four data points, (ik, τk), k = 1, 2, 3, 4, as well as the charge transfer
and specific energy Q0, W0 are known.

If we want to fit the AEF to this data using MLSM, then (10.24) gives
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J =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

f1(τ1) f2(τ1) 0 0
f1(τ2) f2(τ2) 0 0
0 0 g1(τ3) g2(τ3)
0 0 g1(τ4) g2(τ4)

∂

∂β1,1
Q(β, η)

∂

∂β1,2
Q(β, η)

∂

∂β2,1
Q(β, η)

∂

∂β2,2
Q(β, η)

∂

∂β1,1
W (β, η)

∂

∂β1,2
W (β, η)

∂

∂β2,1
W (β, η)

∂

∂β2,2
W (β, η)

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

,

fk(τ ) = 2 η1,k β1,kτ
β2
1,k+1e(β2

1,k+1)(1−τ)
(
ln(τ ) + 1 − τ

)
,

η1,1 = i1
Im1

− τ
β2
1,2

1 e(β2
1,2+1)(1−τ1), η1,2 = 1 − η1,1,

gk(τ ) = 2 η2,k β2,kτ
β2
2,k eβ2

2,k (1−τ)
(
ln(τ ) + 1 − τ

)
,

η2,1 = i3
Im1

− τ
β2
2,2

3 eβ2
1,2(1−τ3), η2,2 = 1 − η2,1,

β = [(β2
1,1 + 1

) (
β2
1,2 + 1

)
β2
2,1 β2

2,2

]
,

η = [η1,1 η1,2 η2,1 η2,2
]
,

Q(β, η)

Im1

=
2∑

s=1

η1,s
eβ2

1,s

(
β2
1,s + 1

)β2
1,s+1

γ
(
β2
1,s + 2, β2

2,s + 1
)

+
2∑

s=1

η2,s
eβ2

2,s−1

β
2β2

2,s

2,s

(
Γ
(
β2
2,s + 1

)− γ
(
β2
2,s + 1, β2

2,s

))
,

∂Q

∂βq,s
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 Im1η1,s β1,s
dĝ

dβ

∣∣∣∣
β=β2

1,s+1

, q = 1,

2 Imqηp,s β2,s
dg̃

dβ

∣∣∣∣
β=β2

2,s

, q = 2,

with derivatives of ĝ(β) and g̃(β) given by (10.25) and (10.26),

β̃ = [(β2
1,1 + β2

1,2 + 2
) (

β2
1,1 + β2

1,2 + 2
)

(β2
2,1 + β2

2,2) (β2
2,1 + β2

2,2)
]
,

η̂ = [η2
1,1 η2

1,2 η2
2,1 η2

2,2

]
, η̃ = [(η1,1η1,2) (η1,1η1,2) (η2,1η2,2) (η2,1η2,2)

]
,

∂

∂βq,s
W (β, η) = 2 βq,s

∂

∂βq,s
Q (2β, η̂) + β

q,

(
(s−1 mod 2)+1

) ∂

∂βq,s
Q
(
β̃, η̃

)
.

Remark 10.2 If we only have one datapoint such that (cIm1 , τ3), 0 < c < 1, and one
term in the decaying part, we can actually interpolate that point using the formula

β2 =
√
1 − τ3 + ln(τ3)

ln(c)
.
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10.3.6 Examples of Fitting a Single-Peak AEF

Here we apply the procedure described in Sect. 10.3.5 to estimate parameters of the
single-peaked AEF to fit two different one-peaked waveforms, a fast-decaying wave-
form [10] and the so called first-positive stroke 10/350 µs from [4]. Each waveform
is defined by aHeidler function and all parameters (rise/decay time ratio, T1/T2, peak
current value, Im1, time to peak current, tm1, charge transfer at the striking point, Q0,
specific energy, W0, and time to 0.1Im1, t1) are given in Table10.1. Data points were
chosen as follows:

(i1, τ1) = (0.1 Im1 , t1), (i3, τ3) = (0.5 Im1 , th = t1 − 0.1 T1 + T2),

(i2, τ2) = (0.9 Im1 , t2 = t1 + 0.8 T1), (i4, τ4) = (i(1.5 th), 1.5 th).

The AEF representation of the fast-decaying waveshape is shown in Fig. 10.7.
Rising and decaying parts of the first-positive stroke current in IEC 62305 [4], are
shown in Fig. 10.8. Apart from the AEF (solid line), the Heidler function represen-
tation of the same waveforms (dashed line), and used data points (red solid circles)
are also shown in the figures.

In Fig. 10.7 it can be noticed that the fit in the rising part is very good and the fit
in the decaying part is acceptable for many purposes.

FromFig. 10.8 it is clear that the fitting of theAEF can be difficult. In the rising part
the fit is poor and this is due to the Heidler function rising steeply in the middle of the
interval and when the steepness of the power exponential function is increased it will
also move the steepest part of the slope to the right. The charge transfer Q has a low
relative accuracy compared to the specific energy W but similar absolute accuracy.
This is an example that in some cases a weighted least-square sum is preferable.

For both waveforms the best fit using two terms in each interval for the AEF is
not better than the fit that is achieved using only a single term in each interval which
can be seen in Table10.1 since all the η-parameters are either 0 or 1.

Fig. 10.7 The normalized fast-decaying current waveshape 8/20 µs, represented by the AEF
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Fig. 10.8 First positive stroke 10/350 µs, for Im = 200 kA, represented by the AEF

Table 10.1 The AEF parameters for the example waveshapes

First-positive stroke Fast-decaying

T1/T2 10/350 8/20

tm1 [µs] 31.428 15.141

Im1 [kA] 200 0.001

t1 [µs] 14.528 6.343

Q0 [C] 100 /

W0 [MJ/
] 10 /

Q [C] 89.7 /

W [MJ/
] 10.000095 /

β1,1 2.600 2.626

β1,2 2.477 2.700

β2,1 0.295 2.500

β2,2 0.567 1.958

η1,1 0 1

η1,2 1 0

η2,1 1 0

η2,2 0 1

10.4 Conclusions

We have presented and examined some basic properties of a generalized version of
the AEF function intended to be used for approximation of multi-peaked lightning
discharge currents. Existence as well as explicit formulas of the analytical solution
for the first derivative and the integral of the AEF function has been shown, which
is needed in order to perform lightning electromagnetic field (LEMF) calculations
based on it.
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A method for finding a least square approximation using the Marquardt least
square method (MLSM) that works for any number of peaks has been presented.

Two examples of parameter estimation for single-peakedwaveforms, the Standard
IEC 62305 first-positive stroke 10/350 µs function and a fast-decaying waveform
8/20 µs, have been shown. An estimation of their parameters using MLSM was
performed using two pairs of data points for each waveform (one pair for the rising
part and one pair for the decaying part). As it can be observed from the results a good
approximation is achievable but not under all circumstances.
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