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Preface

This book highlights the latest advances in engineering mathematics with a main
focus on the mathematical models, structures, concepts, problems and computa-
tional methods and algorithms most relevant for applications in modern technolo-
gies and engineering. In particular, it features mathematical methods and models of
applied analysis, probability theory, differential equations, tensor analysis and
computational modelling used in applications to important problems concerning
electromagnetics, antenna technologies, fluid dynamics, material and continuum
physics and financial engineering.

The individual chapters cover both theory and applications, and include a wealth
of figures, schemes, algorithms, tables and results of data analysis and simulation.
Presenting new methods and results, reviews of cutting-edge research, and open
problems for future research, they equip readers to develop new mathematical
methods and concepts of their own, and to further compare and analyse the methods
and results discussed.

Chapters 1–10 are concerned with applied mathematics methods and models
applied in electrical engineering, electromagnetism and antenna technologies.
Chapter 1 by Dragan Poljak is concerned with applications of integro-differential
equations and numerical analysis methods to the analysis of grounding systems
important in the design of lightning protection systems. The analysis of horizontal
grounding electrodes has been carried out using the antenna theory approach in the
frequency and time domain respectively. The formulation is based on the corre-
sponding space-frequency and space-time Pocklington integro-differential equations.
The integro-differential relationships are numerically handled via the Galerkin–
Bubnov scheme of the Indirect Boundary Element Method. Frequency domain and
time domain analysis is illustrated by computational examples. Chapter 2 by Silvestar
Šesnić and Dragan Poljak deals with the use of analytical methods for solving various
integro-differential equations in electromagnetic compatibility, with the emphasis on
the frequency and time domain solutions of the thin-wire configurations buried in a
lossy ground. Solutions in the frequency domain are carried out via certain mathe-
matical manipulations with the current function appearing in corresponding integral
equations. On the other hand, analytical solutions in the time domain are undertaken
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using the Laplace transform and Cauchy residue theorem. Obtained analytical results
are compared to those calculated using the numerical solution of the frequency
domain Pocklington equation, where applicable. Also, an overview of analytical
solutions to the Grad-Shafranov equation for tokamak plasma is provided. In Chap. 3
byMilica Rančić, Radoslav Jankoski, Sergei Silvestrov and Slavoljub Aleksić, a new
simple approximation that can be used for modelling one type of Sommerfeld inte-
grals typically occurring in the expressions that describe sources buried in the lossy
ground, is proposed. The proposed approximation has a form of a weighted expo-
nential function with an additional complex constant term. The derivation procedure
for this approximation is explained in detail, and the validation is supplied by
applying it to the analysis of a bare conductor fed in the centre and immersed in the
lossy ground at arbitrary depth. In Chap. 4 by Radoslav Jankoski, Milica Rančić,
Vesna Arnautovski-Toseva and Sergei Silvestrov, high frequency analysis of a
horizontal dipole antenna buried in lossy ground is performed. The soil is treated as a
homogenous half-space of known electrical parameters. The authors compare the
range of applicability of two forms of transmission line models, a hybrid circuit
method, and a point-matching method in this context. Chapter 5 by Pushpanjali G.
Metri pertains to an experimental implementation and evaluation of geometrically
designed antennas. A novel design for an equilateral triangular microstrip antenna is
proposed and tested. The antenna is designed, fabricated and tested for single and
multiband operation. A theory for such antennas based on the experimental results is
also considered. Chapter 6 by Nenad Cvetković, Miodrag Stojanović, Dejan
Jovanović, Aleksa Ristić, Dragan Vučković and Dejan Krstić provides a brief review
of the derivation of two groups of approximate closed form expressions for the
electrical scalar potential Green’s functions that originates from the current of the
point ground electrode in the presence of a spherical ground inhomogeneity, proposes
approximate solutions and considers known exact solutions involving infinite series
sums. The exact solution is reorganized in order to facilitate comparison to the closed
form solutions, and to estimate the error introduced by the approximate solutions, and
error estimation is performed comparing the results for the electrical scalar potential
obtained applying the approximate expressions and the accurate calculations. This is
illustrated by a number of numerical experiments. In Chap. 7 byMario Cvetković and
Dragan Poljak, the electromagnetic thermal dosimetry model for the human brain
exposed to electromagnetic radiation is developed. The electromagnetic model based
on the surface integral equation formulation is derived using the equivalence theorem
for the case of a lossy homogeneous dielectric body. The thermal dosimetry model
of the brain is based on the form of Pennes’ equation of heat transfer in biological
tissue. The numerical solution of the electromagnetic model is carried out using the
Method of Moments, while the bioheat equation is solved using the finite element
method. The electromagnetic thermal model developed here has been applied in
internal dosimetry of the human brain to assess the absorbed electromagnetic energy
and consequent temperature rise. In Chap. 8 byMirjana Perić, Saša Ilić and Slavoljub
Aleksić, multilayered shielded structures are analysed using the hybrid boundary
element method. The approach is based on the equivalent electrodes method, on the
point-matching method for the potential of the perfect electric conductor electrodes
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and for the normal component of electric field at the boundary surface between any
two dielectric layers. In order to verify the obtained results, they have been compared
with the finite element method and results that have already been reported in the
literature. In Chap. 9 by Vesna Javor, new engineering modified transmission line
models of lightning strokes are presented. The computational results for lightning
electromagnetic field at various distances from lightning discharges are in good
agreement with experimental results that are usually employed for validating elec-
tromagnetic, engineering and distributed-circuit models. Electromagnetic theory
relations, thin-wire antenna approximation of a lightning channel without tortuosity
and branching, as well as the assumption of a perfectly conducting ground, are used
for electric and magnetic field computation. An analytically extended function,
suitable for approximating channel-base currents in these models, is also considered.
Chapter 10 by Karl Lundengård, Milica Rančić, Vesna Javor and Sergei Silvestrov
explores the properties of the multi-peaked analytically extended function for
approximation of lightning discharge currents. According to experimental results for
lightning discharge currents, they are classified into waveshapes representing the first
positive, first and subsequent negative strokes, and long-strokes. A class of analyti-
cally extended functions is presented and used for the modelling of lightning currents.
The basic properties of this function with a finite number of peaks are examined.
A general framework for estimating the parameters of the analytically extended
function using the Marquardt least-squares method for a waveform with an arbitrary
(finite) number of peaks as well as for the given charge transfer and specific energy is
described and used to find parameters for some common single-peak waveforms.

In turn, Chaps. 11–15 address the mathematical modelling and optimisation of
technological processes with applications of partial differential equations, ordinary
differential equations, numerical analysis, perturbation methods and special func-
tions in fluid mechanics models that are important in engineering applications and
technologies. Chapter 11 by Jüri Olt, Olga Liivapuu, Viacheslav Maksarov,
Alexander Liyvapuu and Tanel Tärgla, is devoted to the mathematical modelling
of the process system which paves the way for research on the selection and
optimisation of machining conditions. The subject of this chapter is the method of
dynamic process approximation method, which makes it possible to analyse the
behaviour of the machining process system in the process of chip formation at a
sufficient level of accuracy. In Chap. 12 by Prashant G. Metri, Veena M. Bablad,
Pushpanjali G. Metri, M. Subhas Abel and Sergei Silvestrov, a mathematical
analysis is carried out to describe mixed convection heat transfer in magnetohy-
drodynamic non-Darcian flow due to an exponential stretching sheet embedded in a
porous medium in the presence of a non-uniform heat source/sink. Approximate
analytical similarity solutions of the highly nonlinear momentum and energy
equations are obtained. The governing system of partial differential equations is first
transformed into a system of nonlinear ordinary differential equations using simi-
larity transformation. The transformed equations are nonlinear coupled differential
equations and are solved very efficiently by employing a fifth order Runge–Kutta–
Fehlberg method with shooting technique for various values of the governing
parameters. The numerical solutions are obtained by considering an exponential
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dependent stretching velocity and prescribed boundary temperature on the flow
directional coordinate. The computed results are compared with the previously
published work on various special cases of the problem and are in good agreement
with the earlier studies. The effects of various physical parameters, such as the
Prandtl number, the Grashof number, the Hartmann number, porous parameter,
inertia coefficient and internal heat generation on flow and heat transfer charac-
teristics are presented graphically to reveal a number of interesting aspects of the
physical parameter. Chapter 13 by Prashant G. Metri, M. Subhas Abel and Sergei
Silvestrov presents an analysis of the boundary layer flow and heat transfer over a
stretching sheet due to nanofluids with the effects of the magnetic field, Brownian
motion, thermophoresis, viscous dissipation and convective boundary conditions.
The transport equations used in the analysis take into account the effect of
Brownian motion and thermophoresis parameters. The highly nonlinear partial
differential equations governing flow and heat transport are simplified using simi-
larity transformation, and the ordinary differential equations obtained are solved
numerically using the Runge–Kutta–Fehlberg and Newton–Raphson schemes based
on the shooting method. The solutions for velocity temperature and nanoparticle
concentration depend on parameters such as Brownian motion, thermophoresis
parameter, magnetic field and viscous dissipation, which have a significant influ-
ence on controlling of the dynamics. In Chap. 14 by Jawali C. Umavathi,
Kuppalapalle Vajravelu, Prashant G. Metri and Sergei Silvestrov, the linear stability
of Maxwell fluid-nanofluid flow in a saturated porous layer is examined theoreti-
cally when the walls of the porous layers are subjected to time-periodic temperature
modulations. A modified Darcy-Maxwell model is used to describe the fluid
motion, and the nanofluid model used includes the effects of the Brownian motion.
The thermal conductivity and viscosity are considered to be dependent on the
nanoparticle volume fraction. A perturbation method that is based on a small
amplitude of an applied temperature field is used to compute the critical value of the
Rayleigh number and the wave number. The stability of the system, characterized
by a critical Rayleigh number, is calculated as a function of the relaxation
parameter, the concentration Rayleigh number, the porosity parameter, the Lewis
number, the heat capacity ratio, the Vadász number, the viscosity parameter, the
conductivity variation parameter, and the frequency of modulation. Three types of
temperature modulations are considered, and the effects of all three types are found
to destabilize the system as compared to the unmodulated system. Chapter 15 by J.
Pratap Kumar, Jawali C. Umavathi, Prashant G. Metri and Sergei Silvestrov is
devoted to a study of magneto-hydrodynamic flow in a vertical double passage
channel taking into account the presence of the first order chemical reaction. The
governing equations are solved by using a regular perturbation technique valid for
small values of the Brinkman number and a differential transform method valid for
all values of the Brinkman number. The results are obtained for velocity, temper-
ature and concentration. The effects of various dimensionless parameters such as
the thermal Grashof number, mass Grashof number, Brinkman number, first order
chemical reaction parameter, and Hartman number on the flow variables are dis-
cussed and presented graphically for open and short circuits. The validity of

viii Preface



solutions obtained by the differential transform method and regular perturbation
method are in good agreement for small values of the Brinkman number. Further,
the effects of governing parameters on the volumetric flow rate, species concen-
tration, total heat rate, skin friction and Nusselt number are also observed and
tabulated.

Chapters 16–18 are concerned with mathematical methods of stochastic pro-
cesses, probability theory, differential geometry, tensor analysis, representation
theory, differential equations, algebra and computational mathematics for applica-
tions in materials science and financial engineering. In Chap. 16 by Anatoliy
Malyarenko and Martin Ostoja-Starzewski, a random field model of the
21-dimensional elasticity tensor is considered, and representation theory is used to
obtain the spectral expansion of the model in terms of stochastic integrals with
respect to random measures. The motivation for treating this tensor as a random field
is that nearly all the materials encountered in nature as well those produced by man,
except for the purest crystals, possess some degree of disorder or inhomogeneity.
At the same time, elasticity is the starting point for any solid mechanics model.
Chapter 17 by Anatoliy Malyarenko, Jan Röman and Oskar Schyberg is devoted to
mathematical models for catastrophe bonds which are an important instrument in the
fields offinance, insurance and reinsurance, where the natural risk index is described
by the Merton jump-diffusion while the risk-free interest rate is governed by the
Hull–White stochastic differential equation. The sensitivities of the bond price with
respect to the initial condition, volatility of the diffusion component, and jump
amplitude are calculated using the Malliavin calculus approach. Lastly, in Chap. 18
by Betuel Canhanga, Anatoliy Malyarenko, Jean-Paul Murara and Sergei Silvestrov,
stochastic volatilities models for pricing European options are considered as a
response to the weakness of the constant volatility models, which have not suc-
ceeded in capturing the effects of volatility smiles and skews. A model with
two-factor stochastic volatilities where the correlation between the underlying asset
price and the volatilities varies randomly is considered, and the first order asymptotic
expansion methods are used to determine the price of European options.

The book consists of carefully selected and refereed contributed chapters cov-
ering research developed as a result of a focused international seminar series on
mathematics and applied mathematics, as well as three focused international
research workshops on engineering mathematics organised by the Research
Environment in Mathematics and Applied Mathematics at Mälardalen University
from autumn 2014 to autumn 2015: the International Workshop on Engineering
Mathematics for Electromagnetics and Health Technology; the International
Workshop on Engineering Mathematics, Algebra, Analysis and Electromagnetics;
and the 1st Swedish-Estonian International Workshop on Engineering Mathematics,
Algebra, Analysis and Applications.

This book project has been realised thanks to the strategic support offered by
Mälardalen University for the research and research education in Mathematics,
which is conducted by the research environment Mathematics and Applied
Mathematics (MAM), in the established research area of Educational Sciences and
Mathematics at the School of Education, Culture and Communication at Mälardalen
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University. We also wish to extend our thanks to the EU Erasmus Mundus projects
FUSION, EUROWEB and IDEAS, the Swedish International Development
Cooperation Agency (Sida) and International Science Programme in Mathematical
Sciences, Swedish Mathematical Society, Linda Peetre Memorial Foundation, as
well as other national and international funding organisations and the research and
education environments and institutions of the individual researchers and research
teams who contributed to this book.

We hope that this book will serve as a source of inspiration for a broad spectrum
of researchers and research students in the field of applied mathematics, as well as
in the specific areas of applications of mathematics considered here.

Västerås, Sweden Sergei Silvestrov
July 2016 Milica Rančić
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Chapter 1
Frequency Domain and Time Domain
Response of the Horizontal Grounding
Electrode Using the Antenna Theory
Approach

Dragan Poljak

Abstract The analysis of horizontal grounding electrode has been carried out using
the antenna theory (AT) approach in the frequency and time domain, respectively. The
formulation is based on the corresponding space-frequency and space-time Pockling-
ton integro-differential equations. The integro-differential relationships are numer-
ically handled via the Galerkin–Bubnov scheme of the Indirect Boundary Element
Method (GB-IBEM). Some illustrative computational examples related to frequency
domain (FD) and time domain (TD) analysis are given in the paper.

Keywords Transient response · Grounding systems · Frequency domain analysis ·
Time domain analysis · Pocklington integro-differential equation · Numerical solu-
tion

1.1 Introduction

Analysis of grounding systems is rather important issue in the design of lightning
protection systems (LPS). Particularly important application is related to LPS for
environmentally attractive wind turbines. In general, analysis of grounding systems
can be carried out by using the transmission line (TL) model [1, 5, 6] or the full wave
model, also referred to as the antenna theory (AT) model (AM) [3, 4, 11]. The latter
is considered to be the rigorous one, while the principal advantage of TL approach
is simplicity [14]. Both TL and AT models can be formulated in either frequency
domain (FD) or time domain (TD) [9].

This paper reviews FD-AT and TD-AT approach, respectively, for the study of
horizontal grounding electrode being an important component in many realistic

D. Poljak (B)
Department of Electronics, University of Split, FESB, R. Boskovica 32,
21000 Split, Croatia
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2 D. Poljak

grounding systems of complex shape. The key-parameter in the study of horizontal
grounding electrode is the equivalent current distribution along the electrode. Once
the current distribution along the electrode is determined, other parameters of inter-
est, such as voltage distribution or transient impedance, can be calculated. Within
the AT approach the effect of an earth-air interface is taken into account via the
corresponding reflection coefficient thus avoiding the rigorous approach based on
the Sommerfeld integrals. The space-frequency and space-time integro-differential
expressions arising from the AT model are numerically treated by means of the
Galerkin–Bubnov scheme of the Boundary Element Method (GB-IBEM) [9]. Some
illustrative FD and TD numerical results for the current distribution and subsequently
the scattered voltage along the electrode are obtained.

1.2 Frequency Domain Analysis

The configuration of interest, shown in Fig. 1.1, is the horizontal grounding electrode
of length L and radius a, buried in a lossy medium at depth d and energized by an
equivalent current generator Ig .

The corresponding integral relationships for the current and voltage induced along
the electrode can be derived by enforcing the continuity conditions for the tangential
components of the electric field along the electrode surface.

Total tangential electric field at the buried conductor surface given by a sum of
the excitation field Eexc and scattered field Esct is equal to the product of the current
along the electrode I(x) and surface internal impedance Zs(x) per unit length of the
conductor [13]

ex · (
Eexc + Esct

) = Zs(x)I(x), (1.1)

where the surface internal impedance Zs(x) is given by [12, 14]

Zs(x) = Zcw
2πa

I0 (γwa)

I1 (γwa)
. (1.2)

Fig. 1.1 Horizontal grounding wire excited by a current generator Ig



1 Frequency Domain and Time Domain Response … 3

Note that I0 (γw) and I1 (γw) are modified Bessel functions of the zero and first
order respectively, while Zcw and γw are given by [9, 12–14]:

Zcw =
√

jωμw

σw + jωεw
, (1.3)

γw = √
jωμ(σw + jωεw). (1.4)

For the case of good conductors the surface impedance Zs(x) can be neglected.
The scattered electric field can be expressed in terms of the vector potential A and
the scalar potential ϕ, and according to the thin wire approximation [8, 9, 12, 13]
only the axial component of the scattered field exists, i.e. it follows

Esct
x = −jωAx − ∂ϕ

∂x
, (1.5)

where the vector and scalar potential are given by:

Ax = μ

4π

∫ L

0
I(x′)g(x, x′)dx′, (1.6)

ϕ (x) = 1

4πεeff

∫ L

0
q

(
x′) g

(
x, x′) dx′, (1.7)

while q(x) denotes the charge distribution along the electrode, I(x′) is the induced
current along the electrode.

The complex permittivity of the lossy ground εeff is

εeff = εrε0 − j
σ

ω
, (1.8)

where εrg and σ denotes the corresponding permittivity and conductivity, respec-
tively.

The Green function g(x, x′) is given by

g(x, x′) = g0(x, x
′) − Γref gi(x, x

′), (1.9)

where g0(x, x′) is the lossy medium Green function

g0(x, x
′) = e−γR1

R1
, (1.10)

and gi(x, x′), due to the image electrode in the air, is
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gi(x, x
′) = e−γR2

R2
. (1.11)

The propagation constant of the lower medium is defined as:

γ =
√
jωμσ − ω2με, (1.12)

and R1 and R2 are given by:

R1 = √
(x − x′)2 + a2, R2 = √

(x − x′)2 + 4d2. (1.13)

The effect of a ground-air interface is taken into account in terms of the reflection
coefficient (RC) [11]:

Γref =
1
n cos θ −

√
1
n − sin2 θ

1
n cos θ +

√
1
n − sin2 θ

; θ = arctg

∣∣x − x′∣∣

2d
; n = εeff

ε0
. (1.14)

The principal advantage of RC approach versus rigorous Sommerfeld integral
approach is a simplicity of the formulation and appreciably less computational cost
within the numerical solution of related integral expression [8, 9, 12, 13].

Combining the continuity equation. [9]

q = − 1

jω

dI

dx
(1.15)

with (1.7) yields:

ϕ (x) = − 1

j4πωεeff

∫ L

0

∂I
(
x′)

∂x′ g
(
x, x′) dx′. (1.16)

Furthermore, inserting (1.6) and (1.16) into (1.5) gives an integral relationship for
the scattered field

Esct
x = −jω

μ

4π

∫ L

0
I
(
x′) g

(
x, x′) dx′ + 1

j4πωεeff

∂

∂x

∫ L

0

∂I
(
x′)

∂x′ g
(
x, x′) dx′.

(1.17)
Finally, as for the case of grounding electrodes the excitation function is given

in the form of a current source the tangential field at the electrode surface does not
exist, i.e. it can be written [3]

Eexc
x = 0. (1.18)

Combining Eqs. (1.1), (1.17) and (1.18) leads to the homogeneous Pocklington
integro-differential equation for the electrode current
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jω
μ

4π

∫ L

0
I
(
x′) g

(
x, x′) dx′ − 1

j4πωεeff

∂

∂x

∫ L

0

∂I
(
x′)

∂x′ g
(
x, x′) dx′ + Zs(x)I(x) = 0. (1.19)

Knowing the current distribution along the electrode the scattered voltage can be
determined by computing the line integral of a scattered vertical field component
from the remote soil to the electrode surface:

V sct(x) = −
∫ d

∞
Esct
z (x, z)dz. (1.20)

The vertical field component is expressed by the scalar potential gradient

Esct
z = −∂ϕ

∂z
, (1.21)

and the scattered voltage along the electrode can be written

V sct(x) =
∫ d

−∞
∂ϕ

∂z
dz = d

dz

∫ d

−∞
ϕ(x, z)dz. (1.22)

Integrating the scattered field from the infinite soil to the electrode surface and
assuming the scalar potential in the remote soil to be zero [13] from (1.16) and (1.22)
it follows

V sct(x) = − 1

j4πωεeff

∫ L

0

∂I(x′)
∂x′ g(x, x′)dx′. (1.23)

The grounding electrode is energized by an equivalent ideal current generator
with one terminal connected to the grounding electrode and the other one grounded
at infinity, as depicted in Fig. 1.1.

The current generator is included into the integro-differential equation formulation
in terms of the following boundary conditions [11]:

I(0) = Ig, I(L) = 0, (1.24)

where Ig stands for the impressed unit current generator.

1.2.1 Numerical Solution

The current Ie(x) along the wire segment can expressed, as follows

Ie(x′) = {f }T {I} . (1.25)
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Applying the weighted residual approach, performing certain mathematical
manipulations and eventually assembling the contributions from all segments the
integro-differential equation (1.19) is transferred into following matrix equation [9]

M∑

j=1

[Z]ji{I}i = 0, and j = 1, 2, ...,M, (1.26)

where M is the total number of segments and [Z]ji is the mutual impedance matrix
representing the interaction of the i-th source with the j-th observation segment,
respectively:

[Z]ji = − 1

4jπωεeff

(∫

Δlj

{D}j
∫

Δli

{
D′}T

i
g(x, x′)dx′dx+

+ k2
∫

Δlj

{f }j
∫

Δli

{f }Ti g(x, x′)dx′dx

)

+
∫

Δlj

ZL(x) {f }j {f }Ti dx. (1.27)

Matrices {f } and {
f ′} contain the shape functions, while {D} and {

D′} contain
their derivatives, and Δli and Δlj are the widths of i-th and j-th boundary elements.

A linear approximation over a boundary element is used in this work:

fi = xi+1 − x′

Δx
fi+1 = x′ − xi

Δx
, (1.28)

as this choice was proved to be optimal one in modeling various wire structures [9].
The excitation function in the form of the current generator Ig is taken into account

through the forced boundary condition at the first node of the solution vector, i.e.:

I1 = Ig; Ig = 1ej0. (1.29)

Once the current distribution is obtained the scattered voltage (1.23) can be readily
evaluated using the boundary element formalism.

As the current distribution derivative on the segment is simply given by

∂I(x′)
∂x′ = Ii+1 − Ii

Δx
, (1.30)

the scattered voltage can be computed from the following formula:

V sct(x) = − 1

j4πωεeff

M∑

i=1

Ii+1 − Ii
Δx

∫ xi+1

xi

g(x, x′)dx′. (1.31)

The integral on the right hand side of (1.31) is solved via the standard Gaussian
quadrature.
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1.2.2 Computational Examples

Figure1.2 shows the frequency response at the center of the electrodewith:L = 20m,
d = 1m, a = 5mm and Ig = 1A. The ground conductivity is σ = 0.01S/m while
the permittivity is εr = 10. The results computed via the GB-IBEM are compared
to the results obtained via NEC using Sommerfeld integral approach and the Mod-
ified Transmission Line Model (MTLM) [13]. The results obtained via different
approaches agree satisfactorily for the given set of parameters.

Fig. 1.2 Current induced at the center of the grounding electrode versus frequency (L = 20m,
d = 1m, a = 5mm, σ = 0.01S/m, εr = 10)

Fig. 1.3 Voltage spectrum at the grounding electrode driving point (L = 10m, d = 1m, a = 5mm,
σ = 0.01S/m, εr = 10)
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Figure1.3 shows the voltage spectrum at the injection point of the horizontal
grounding electrode with: L = 10m, d = 1m, a = 5mm and Ig = 1A. The ground
conductivity is σ = 0.01S/m, while the permittivity is εr = 10.

The agreement between the results obtained via GB-IBEM with linear approx-
imation is in a good agreement with the results calculated via the point matching
technique.

1.3 Time Domain Analysis

The geometry of interest is shown in Fig. 1.1 and the time domain counterpart of
(1.1) is given by:

ex · [
Eexc (x, t) + Esct (x, t)

] =
∫ t

0
zs(x, t − τ)I(x, τ )dτ, (1.32)

where zs(x, t) is the time domain counterpart of the surface impedance Zs (1.2).
The axial component of the scattered field is given by

Esct
x (x, t) = −∂Ax (x, t)

∂t
− ∂ϕ (x, t)

∂x
, (1.33)

where Ax (x, t) and ϕ (x, t) are time domain counterparts of the vector potential (1.6)
and scalar potential (1.7).

Utilizing the time domain counterpart of the continuity Eq. (1.15) and taking into
account that the electric field excitation along the electrode does not exist (1.18)
the transient current induced along the electrode is governed by the homogeneous
space-time Pocklington integro-differential equation

[
−v2

∂2

∂x2
+ ∂2

∂t2
+ σ

ε

∂

∂t

]
·
[

μ

4π

∫ L

0
I(x′, t − R/v)

e− t
τg

R
v

R
dx′−

− t∫
−∞

L∫
0
Γref (θ, τ )

I(x′, t − R∗ /v − τ)

4π R∗
e− t

τg
R∗
v

R∗ dx′dτ

⎤

⎦ = 0, (1.34)

where the reflection coefficient is given by [10]:

Γref (t) = −
[

τ1

τ2
δ (t) + 1

τ2

(
1 − τ1

τ2

)
e−t/τ2

]
, (1.35)

while τ1 and τ2 are the time constants of a lossy medium [10]:

τ1 = εr − 1

σ
ε0, τ2 = εr + 1

σ
ε0. (1.36)
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Note that the current source is included into the integral equation scheme through
the boundary condition:

I(0, t) = Ig, (1.37)

which is inserted subsequently in the global matrix system [9].

1.3.1 BEM Procedure for Pocklington Equation

The implementation of GB-IBEM to the solution of the Pocklington equation suffers
from numerical instabilities. The origin of these instabilities is the existence of space-
time differential operator [7, 9].

For the sake of simplicity, this paper deals with the case of an infinite lossy
medium.

The space-timedependent current along the electrode canbe expressed, as follows:

I(x′, t − R/v) =
N∑

i=1

I(t − R/v)fi(x
′). (1.38)

Applying the weighted residual approach and performing space-discretization
yields

∑N
i=1 Ii(t − τij)

[
μ

4π

∫
Δlj

∫
Δli

∂fj(x)
∂x

∂fi(x′)
∂x′

e− σ
2εv R

R dx′dx+
+ 1

v2
∂2

∂t2
∫
Δlj

∫
Δli

fj(x)fi(x′) e
− σ

2εv R

R dx′dx+
+ σ

ε
∂
∂t

∫
Δlj

∫
Δli

fj(x)fi(x′) e
− σ

2εv R

R dx′dx
]

= 0 j = 1, 2, ...,N .

(1.39)
Performing the discretization in the time domain the following set of time domain

differential equations is obtained

[M]
∂2

∂t2
{
I(t′)

} + [C]
∂

∂t

{
I(t′)

} + [K]
{
I(t′)

} = 0, (1.40)

where the corresponding space dependent matrices are:

Mji = 1

v2

∫

Δlj

∫

Δli

{f }j {f }Ti
e− T

τ

R
dx′dx, (1.41)

Cji = σ

ε

∫

Δlj

∫

Δli

{f }j {f }Ti
e− T

τ

R
dx′dx, (1.42)



10 D. Poljak

Kji = μ

4π

∫

Δlj

∫

Δli

{D}j {D}Ti
e− T

τ

R
dx′dx, (1.43)

where {D} contains the shape functions derivatives and: τ = 2ε
σ
and T = R

v .
Set of differential equation (1.40) is solved by using the marching-on-in-time

procedure [2]

∑n
i=1

[
Mji + βΔt2Kji

]
Iki = − ∑n

i=1

[
−2Mji +

(
1
2 − 2β + γ

)
Δt2Kji

]
Ik−1
i , (1.44)

whereΔt stands for the time increment and the stability of the procedure is achieved
by choosing γ = 1/2 and β = 1/4 [4].

1.3.2 Numerical Results for Grounding Electrode

Computational example is related to the transient response of the electrode with
length L = 10m, radius a = 5mm, immersed in the lossy ground with εr = 10, and
σ = 0.001S/m. The electrode is energizedwith the double exponential current pulse:

ig(t) = I0 · (e−at − e−bt), t ≥ 0 (1.45)

with I0 = 1.1043A, a = 0.07924·107 s−1, b = 4.0011·107 s−1.

Fig. 1.4 Transient current induced at the centre of the grounding electrode



1 Frequency Domain and Time Domain Response … 11

The transient current at the centre of the electrode obtained via the direct time
domain approach and the indirect frequency domain approach GB-IBEM with Fast
Fourier Transform (FFT) is shown in Fig. 1.4.

Satisfactory agreement between the results obtained via different approaches can
be observed.

1.4 Concluding Remarks

The paper reviews electromagnetic modeling of grounding systems by means of the
antenna theory (AT) approach in the frequency and time domain, respectively. The
space-frequency and space-time Pocklington integro-differential equation, arising
from theAT approach, are numerically solved by using theGalerkin–Bubnov scheme
of the Indirect Boundary Element Method (GB-IBEM). The obtained numerical
results for the current distribution and scattered voltage induced along the horizontal
grounding electrode agree satisfactorily with the results calculated via other solution
methods.
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Chapter 2
On the Use of Analytical Methods
in Electromagnetic Compatibility
and Magnetohydrodynamics

Silvestar Šesnić and Dragan Poljak

Abstract The paper deals with the use of analytical methods for solving various
integro-differential equations in electromagnetic compatibility, with the emphasis
on the frequency and time domain solutions of the thin wire configurations buried
in a lossy ground. Solutions in the frequency domain are carried out via certain
mathematical manipulations with the current function appearing in corresponding
integral equations. On the other hand, analytical solutions in the time domain are
undertaken using the Laplace transform and Cauchy residue theorem. Obtained ana-
lytical results are compared to those calculated using the numerical solution of the
frequency domain Pocklington equation, where applicable. Also, an overview of
analytical solutions to the Grad–Shafranov equation for tokamak plasma is given.

Keywords Electromagnetic compatibility ·Thin wire analysis · Integro-differential
equations · Analytical methods · Magnetohydrodynamics

2.1 Introduction

The electromagnetic field coupling to thin wire scatterers can be treated either in
frequency (FD) or time domain (TD) [18]. The principal advantage of the frequency
domain approach is relative simplicity of both the formulation and the selected numer-
ical treatment. However, time domain modeling ensures better physical insight, accu-
rate modeling of highly resonant structures, possibility of calculating only early time
period and easier implementation of nonlinearities [12, 21].
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Department of Power Engineering, University of Split, FESB,
R. Boskovica 32, 21000 Split, Croatia
e-mail: ssesnic@fesb.hr

D. Poljak
Department of Electronics, University of Split, FESB,
R. Boskovica 32, 21000 Split, Croatia
e-mail: dpoljak@fesb.hr

© Springer International Publishing Switzerland 2016
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The formulation of the problem in thin wire analysis (FD or TD) is usually based
on some variants of integral or integro-differential equation (Hallén or Pocklington
type), respectively. Numerical modeling is widely used for solving various complex
problems. On the other hand, analytical solution can be obtained when dealing with
canonical problems, using a carefully chosen set of approximations [10, 26]. The
advantage of analytical solutions over numerical ones is the ability to “follow up”
the procedure with the complete control of adopted approximations. In this way, the
insight into the physical characteristics of the problem is ensured, which is, when
using numerical methods, rather complex task. Also, analytical solutions are readily
implemented for benchmark purposes, as well as some fast engineering estimation
of phenomena.

Valuable contributions in the area of analytical solutions of integral equations in
electromagnetics are given by R.W.P. King et al. [9, 10]. S. Tkachenko derives the
analytical solution for the current induced along the wire above perfectly conducting
(PEC) ground using the transmission line modeling (TLM) for LF excitations [25].
On the other hand, time domain analytical modeling is not investigated to a greater
extent and papers on the subject are rather scarce. A. Hoorfar and D. Chang give the
solution for transient response of thin wire in free space using singularity expansion
method [8]. R. Velazquez and D. Mukhedar derive analytical solution for the cur-
rent induced along a grounding electrode, based on the TL model [27]. Analytical
solutions in time domain have been reported by the authors in [20–22].

Analytical solutions pertaining to the mathematical model of fusion plasma, given
by the set of magnetohydrodynamic (MHD) equations provide a satisfactory descrip-
tion of macroscopic plasma behavior. Combining MHD equations with Maxwell’s
equations of classical electrodynamics yields nonlinear second order differential
equation known as Grad–Shafranov equation (GSE) [1]. Analytical solutions of the
GSE are very useful for theoretical studies of plasma equilibrium, transport and MHD
stability [28].

2.2 Thin Wire Models in Antenna Theory

2.2.1 Frequency Domain Formulation

Horizontal, perfectly conducting wire of length L and radius a, embedded in a lossy
medium at depthd and excited by a plane wave is considered, as shown in Fig. 2.1. The
medium is characterized with electric permittivity ε and conductivity σ . Dimensions
of the structure satisfy the thin-wire approximation [12].

The current induced along the wire is governed by the inhomogeneous Pocklington
integro-differential equation [17]

− 1

j4πωεeff

(
∂2

∂x2
− γ 2

)∫ L

0
I
(
x′) g

(
x, x′) dx′ = Ex (ω) , (2.1)
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Fig. 2.1 Horizontal straight thin wire buried in a lossy medium

where I
(
x′) denotes current distribution along the wire. Complex permittivity of the

medium is defined as
εeff = εrε0 − j

σ

ω
, (2.2)

where εr and σ represent relative electric permittivity and conductivity, respectively.
Green’s function g

(
x, x′) can be expressed as [14]

g
(
x, x′) = g0

(
x, x′)− Γref gi

(
x, x′) , (2.3)

where g0
(
x, x′) denotes the lossy medium Green’s function

g0
(
x, x′) = e−γR1

R1
, (2.4)

and gi
(
x, x′) is Green’s function according to the image theory

gi
(
x, x′) = e−γR2

R2
. (2.5)

Propagation constant of the medium is defined in the following way

γ =
√
jωμσ − ω2με, (2.6)

and distances R1 and R2 correspond to distances from the source and the image to
the observation point, respectively
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R1 =
√

(x − x′)2 + a2,

R2 =
√

(x − x′)2 + 4d2. (2.7)

Presence of the earth-air interface is taken into account via the reflection coefficient
within the Green’s function (2.3). The reflection coefficient can be taken in the form
of Fresnel coefficient [3, 5] or, as a simpler solution, from Modified Image Theory
(MIT) [23]. The Fresnel reflection coefficient is considered to be better approximation
of the Sommerfeld theory [11] and is defined as

Γ Fr
ref =

1
n cos θ −

√
1
n − sin2 θ

1
n cos θ +

√
1
n − sin2 θ

,

θ = arctg

∣∣x − x′∣∣

2d
, n = εeff

ε0
. (2.8)

On the other hand, the reflection coefficient that arises from MIT is defined as
follows [23]

Γ MIT
ref = −εeff − ε0

εeff + ε0
. (2.9)

The scattered voltage along the wire is defined as an integral of the vertical com-
ponent of the scattered electric field and the Generalized Telegrapher’s Equation for
spatial distribution of the scattered voltage is given as [16]

V sct (x) = − 1

j4πωεeff

∫ L

0

∂I
(
x′)

∂x′ g
(
x, x′) dx′, (2.10)

which can be easily determined, once the current distribution is known.

2.2.2 Time Domain Formulation

In the case of time domain formulation, the same configuration is considered as shown
in Fig. 2.1 [7]. Governing equation for the unknown transient current flowing along
the electrode is given in the form of time domain Pocklington integro-differential
equation [21]

−
(

∂2

∂x2 − μσ
∂

∂t
− με

∂2

∂t2

)

·
⎡

⎣ μ

4π

∫ L

0
I

(
x′, t − R

v

)
e
− 1

τg
R
v

R
dx′−

− μ

4π

∫ t

0

∫ L

0
Γ MIT
ref (τ ) I

(
x′, t − R∗

v
− τ

)
e
− 1

τg
R∗
v

R∗ dx′dτ

⎤

⎥
⎦ =

(
με

∂

∂t
+ μσ

)
Etr
x (t) , (2.11)
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where I
(
x′, t − R

v

)
represents the unknown transient current. Detailed derivation

of (2.11) can be found in [21].
The distance from the source point in the wire axis to the observation point on

the wire surface is given by

R =
√

(x − x′)2 + a2, (2.12)

while the distance from the source point on the image wire, according to the image
theory is

R∗ =
√

(x − x′)2 + 4d2. (2.13)

Time constant and propagation velocity in the lossy medium are defined as fol-
lows [21]

τg = 2ε

σ
,

v = 1√
με

. (2.14)

The reflection coefficient arising from the Modified Image Theory is given by
inverse Laplace transform of (2.9) [23]

Γ MIT
ref (t) = −

[
τ1

τ2
δ (t) + 1

τ2

(
1 − τ1

τ2

)
e− t

τ2

]
, (2.15)

where

τ1 = ε0 (εr − 1)

σ
,

τ2 = ε0 (εr + 1)

σ
. (2.16)

Reflection coefficient (2.15) represents the simplest characterization of the earth-
air interface, taking into account only medium properties. However, an extensive
investigation of this coefficient applied to thin wires in two-media configuration has
been carried out in [15].
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2.3 Frequency Domain Applications of Analytical Methods

2.3.1 Horizontal Wire Below Ground

To solve the Pocklington equation (2.1) analytically, the integral on the left-hand
side of (2.1) can be written in the following manner [20]:

∫ L

0
I
(
x′) g

(
x, x′) dx′ = I(x)

∫ L

0
g
(
x, x′) dx′ +

∫ L

0

[
I(x′) − I(x)

]
g
(
x, x′) dx′. (2.17)

The integral on the left hand side can be approximated by the first term on the
right hand side of (2.17), thus neglecting the second integral. Furthermore, the char-
acteristic integral term over the Green function is evaluated analytically. For the case
of an imperfectly conducting ground the appropriate analytical integration of the first
integral on the right hand side of (2.17) gives [25]

∫ L

0
g
(
x, x′) dx′ = ψ = 2

(
ln

L

a
− Γ MIT

ref ln
L

2d

)
, (2.18)

where reflection coefficient is given with (2.9).
After performing some mathematical manipulations, the analytical solution (2.1)

can be obtained in the closed form and is given by

I (x, ω) = 4πej
a
v ω

jωμΨ (ω)
Eexc
x (ω)

[

1 − cosh
(
γ
(
L
2 − x

))

cosh
(
γ L

2

)

]

. (2.19)

Figures 2.2 and 2.3 are related to horizontal wire of length L, radius a = 0.01 m,
buried at depth d = 2.5 m in a lossy ground and illuminated by the plane wave of nor-
mal incidence transmitted into the ground with amplitudeE0 = 1 V/m at the interface
between two media. Absolute value of spatial current distribution for lines L = 5 m
and L = 10 m. The operating frequency of f = 50 MHz is shown. The conductivity

Fig. 2.2 Absolute value of
current distribution along the
single wire buried in a
ground, L = 5 m
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Fig. 2.3 Absolute value of
current distribution along the
single wire buried in a
ground, L = 10 m

of the ground is σ = 0.01 S/m and permittivity is εr = 10. The agreement between
results obtained via different methods (analytical and numerical) is satisfactory.

2.3.2 Horizontal Grounding Electrode

When horizontal grounding electrode is considered, (2.1) can be written as a homo-
geneous equation, since source function is incorporated through the boundary con-
dition [20]

− 1

j4πωεeff

(
∂2

∂x2
− γ 2

)∫ L

0
I
(
x′) g

(
x, x′) dx′ = 0. (2.20)

Now, the similar approach as in the case of horizontal wire can be adopted
and (2.20) can be written as

− 1

j4πωεeff

(
∂2

∂x2
− γ 2

)
I (x)

∫ L

0
g
(
x, x′) dx′ = 0. (2.21)

Integral in (2.21) can be readily calculated as given in [20]

∫ L

0
g
(
x, x′) dx′ = 2

(
ln

L

a
− Γref ln

L

2d

)
= Ψ. (2.22)

Now, the homogeneous Pocklington equation (2.21) simplifies into

(
∂2

∂x2
− γ 2

)
I (x) = 0. (2.23)

Equation (2.23) is readily solved and the solution is given with

I (x) = Ig
sinh

[
γ (L − x)

]

sinh (γL)
. (2.24)
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The expression for scattered voltage can be obtained substituting (2.24) into (2.10),
which yields

V sct (x) = γ Ig
j4πωεeff sinh (γL)

∫ L

0
cosh

[
γ (L − x)

]
g
(
x, x′) dx′. (2.25)

Integral in (2.25) is computed by means of standard numerical integration.
In Fig. 2.4, the current distribution along the electrode L = 10 m, buried at d =

0.3 m, with ground properties σ = 0.01 S/m and εr = 10 at the operating frequency
f = 10 MHz. The waveforms obtained via different approaches are very similar.

Figure 2.5 shows the results for transient impedance of an electrode of L = 10 m,
buried in a ground of conductivity σ = 1 mS/m for 1/10μs lightning pulse. It can be
seen that the agreement between analytical and numerical results is very good, except
for the early time response where discrepancy of around 10 % can be observed.

Fig. 2.4 Absolute value of a
current distribution along the
horizontal electrode

Fig. 2.5 Transient
impedance of the grounding
electrode
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2.4 Time Domain Applications of Analytical Methods

2.4.1 Horizontal Wire Below Ground

To obtain analytical solution of (2.11), the integral operator is simplified, using
addition and subtraction technique

∫ L

0
I

(
x′, t − R

v

)
e− 1

τg
R
v

R
dx′ = I

(
x, t − a

v

) ∫ L

0

e− 1
τg

R
v

R
dx′. (2.26)

This approximation has proven to be valid in papers by Tijhuis et al. [4, 24]. Next
step in solving the differential equation (2.11) is to apply the Laplace transform and
obtain the following equation

(μεs + μσ)Etr
x (s) = − μ

4π

(
∂2

∂x2
− μσ s − μεs2

)
·

·I (x, s) e− a
v s

⎡

⎣
∫ L

0

e− 1
τg

R
v

R
dx′ − Γ MIT

ref (s)
∫ L

0

e− 1
τg

R∗
v

R∗ dx′
⎤

⎦ . (2.27)

Integrals in (2.27) can be solved analytically as follows [25]

Ψ (s) =
∫ L

0

e− 1
τg

R
v

R
dx′ − Γ MIT

ref (s)
∫ L

0

e− 1
τg

R∗
v

R∗ dx′= 2

(
ln

L

a
+ sτ1 + 1

sτ2 + 1
ln

L

2d

)
.

(2.28)
Now, relation (2.27) can be written as

∂2I (x, s)

∂x2
− γ 2I (x, s) = − 4π

μsΨ (s)
e

a
v sγ 2Etr

x (s) . (2.29)

The solution of (2.29) can be readily obtained, prescribing the boundary conditions
at the wire ends

I (0, s) = 0,

I (L, s) = 0. (2.30)

The solution of (2.29) is written as

I (x, s) = 4πe
a
v s

μsΨ (s)
Etr
x (s)

[

1 − cosh
(
γ
(
L
2 − x

))

cosh
(
γ L

2

)

]

. (2.31)
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To obtain the solution for the current distribution in time domain, inverse Laplace
transform has to be performed featuring the Cauchy residue theorem [19]

f (t) = lim
y→∞

1

j2π

∫ x+jy

x−jy
etsF (s) ds =

n∑

k=1

Res (sk) . (2.32)

Calculating all the residues of the function (2.31) and undertaking the inverse
transform as in (2.32), the following expression is obtained

I (x, t) = 4π

μ

⎧
⎨

⎩

R (sΨ )
[
1 − cosh(γΨ ( L

2 −x))
cosh(γΨ

L
2 )

]
e(t+

a
v )sΨ −

− π
μεL2

∑∞
n=1

2n−1

±
√

b2−4cns1,2nΨ(s1,2n)
sin (2n−1)πx

L e(t+
a
v )s1,2n

⎫
⎬

⎭
, (2.33)

where coefficients R (sΨ ) and sΨ represent physical properties of the system

R (sΨ ) = 1

2 ln L
2d

sΨ
sΨ τ2+1

(
τ1 − τ2

sΨ τ1+1
sΨ τ2+1

) , sΨ = − ln L
a + ln L

2d

τ1 ln L
a + τ2 ln L

2d

. (2.34)

Furthermore, other coefficients in relation (2.33) are given as follows

γΨ =
√

με
(
s2
Ψ + bsΨ

)
,

s1,2n = 1

2

(
−b ±

√
b2 − 4cn

)
,

b = σ

ε
, cn = (2n − 1)2 π2

μεL2
, n = 1, 2, 3, ... . (2.35)

Expression (2.33) represents the space-time distribution of the current along the
straight wire buried in a lossy medium excited by an impulse excitation.

Furthermore, the response to an arbitrary excitation can be obtained performing
the corresponding convolution. The excitation function is plane wave in the form of
double exponential electromagnetic pulse tangential to the wire [16]

Ex (t) = E0
(
e−αt − e−βt

)
. (2.36)

In Fig. 2.6, transient current at the center of the straight wire with L = 1 m, d =
30 cm, σ = 10 mS/m is shown. Relatively good agreement between the results is
achieved for a short wire and higher conductivity of a medium.

Figure 2.7 shows the transient current induced at the center of straight longer wires
buried in a lossy medium with σ = 1 mS/m. For a 10 m–long wire the agreement
between the results is rather satisfactorily.
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Fig. 2.6 Transient current at
the center of the straight
wire, L = 1 m, d = 30 cm,
σ = 10 m S/m
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Fig. 2.7 Transient current at
the center of the straight
wire, L = 10 m, d = 4 m,
σ = 1 m S/m

2.4.2 Horizontal Grounding Electrode

Homogeneous variant of integro-differential equation (2.11), representing the gov-
erning equation for grounding electrode can be solved analytically, as it has been
reported recently by the authors in [22]. The governing equation (2.11) is simplified
using (2.26). Now (2.11) can be written as follows

∂2I (x, s)

∂x2
− γ 2I (x, s) = 0. (2.37)
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Prescribing the boundary conditions at the wire ends

I (0, s) = Ig (s) ,

I (L, s) = 0, (2.38)

the solution of (2.37) is readily obtained in the form

I (x, s) = Ig (s)
sinh

[
γ (L − x)

]

sinh (γL)
. (2.39)

To obtain the solution for the current distribution in the time domain, inverse
Laplace transform is performed and Cauchy residue theorem is applied [19] using
(2.32). Having determined the residues of (2.39), the time domain counterpart is
given

I (x, t) = 2π

μεL2

∞∑

n=1

(−1)n−1 n

±√b2 − 4cn
sin

nπ (L − x)

L
ets1,2n , (2.40)

where corresponding coefficients are

s1,2n = 1

2

(
−b ±

√
b2 − 4cn

)
,

b = σ

ε
, cn = n2π2

μεL2
, n = 1, 2, 3, ... . (2.41)

Equation (2.40) represents an analytical expression for the space-time distribution
of the current flowing along the grounding electrode excited by an equivalent current
source in the form of the Dirac pulse. On the other hand, one of the functions most
frequently used to represent the lightning current is the double exponential pulse,
given with [13]

Ig (t) = I0
(
e−αt − e−βt

)
. (2.42)

Analytical convolution is undertaken with (2.40) and (2.42), to obtain the expres-
sion for the current flowing along the electrode

I (x, t) = 2π I0
μεL2

∞∑

n=1

(−1)n−1 n

±√b2 − 4cn
sin

nπ (L − x)

L
·

·
(
es1,2nt − e−αt

s1,2n + α
− es1,2nt − e−βt

s1,2n + β

)
. (2.43)
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Fig. 2.8 Transient current at
the center of the grounding
electrode, 0.1/1μs pulse
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Fig. 2.9 Transient current at
the center of the grounding
electrode, 1/10μs pulse
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Equation (2.43) represents the expression for the space-time distribution of the
current flowing along the electrode due to a double exponential current source exci-
tation.

Analytical results for the transient current induced at the center of the electrode
are calculated with (2.43) and are compared to the results obtained via numerical
approach. The results shown in Fig. 2.8 are calculated for the grounding electrode
with L = 10 m, buried in a lossy ground with the conductivity σ = 1 mS/m. The
agreement between the results is very good.

The results shown in Fig. 2.9 are related to calculations performed for electric
properties of the ground σ = 0.833 mS/m and εr = 9. It is worth emphasizing that
low ground conductivity is considered. The electrode is buried at depth d = 0.5 m.
Length of the grounding electrode is L = 200 m. The agreement between analytical
and numerical results for the current induced at the center of the electrodes is very
good, especially for the longer electrode.
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2.5 Some Analytical Solutions to the Grad–Shafranov
Equation

Grad–Shafranov equation describing the plasma equilibrium is given as [28]

∂2ψ

∂r2
− 1

r

∂ψ

∂r
+ ∂2ψ

∂z2
= −f

df

dψ
− μ0r

2 dP

dψ
. (2.44)

Various analytical solutions of GSE have been derived so far [6]. The analytical
solutions are essential in describing various parameters that are involved in real
tokamak scenarios as they are well suited for benchmarking various numerical codes.
In this section, four different analytical solutions will be presented, with a short
overview of their derivation as well as the emphasis to their applications.

2.5.1 Solution of the Homogeneous Equation

In order to obtain any solution corresponding to the realistic source functions that
appear on the right-hand side of (2.44), it is necessary to define possible solutions of
the homogeneous equation given by

∂2ψ

∂r2
− 1

r

∂ψ

∂r
+ ∂2ψ

∂z2
= 0. (2.45)

Solution of (2.45) can be obtained by variable separation and is given with

ψ0 (r, z) = (c1rJ1 (kr) + c2rY1 (kr))
(
c3e

kz + c4e
−kz
)
. (2.46)

On the other hand, the solutions can also be based on the series expansion [28]

ψ0 =
∑

n=0,2,...

fn (r) zn. (2.47)

One of the possible solutions satisfying these conditions and suitable for further
implementation is [28]

ψ0 (r, z) = c1 + c2r
2 + c3

(
r4 − 4r2z2

)+ c4
(
r2 ln r − z2

)
. (2.48)
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2.5.2 The Solov’ev Equilibrium

The Solov’ev equilibrium is the simplest usable solution to the inhomogeneous
GSE [6]. It has been widely used in studies of plasma equilibrium, transport and
MHD stability analysis.

The source functions in Solov’ev equilibrium are linear in ψ and are given as [2]

P (ψ) = A

μ0
ψ, f 2 (ψ) = 2Bψ + F2

0 , (2.49)

with the corresponding solution

ψ (r, z) = ψ0 (r, z) − A

8
r4 − B

2
z2. (2.50)

Wide variety of plasma shapes can be generated using (2.50). However, the current
profile of this solution is restricted, since implementation of A and B allow choosing
only two plasma parameters.

2.5.3 The Herrnegger–Maschke Solutions

The solution to the GSE for a parabolic source functions was reported in [6]

P (ψ) = C

2μ0
ψ2, f 2 (ψ) = Dψ2 + F2

0 . (2.51)

The solution of (2.51) can be given in the form of Coulomb wave functions as [2]

ψ = α (F0 (η, x) + γG0 (η, x)) cos (kz) . (2.52)

As is the case for the Solov’ev equilibrium, the Herrnegger–Maschke solutions
have only two free parameters, namely C and D, which allow independent specifi-
cation of plasma current and pressure ratio.

2.5.4 Mc Carthy’s Solution

Innovative source functions were introduced by Mc Carthy in [6]. These source
functions are dissimilar in their nature and describes a linear dependence of pressure
and quadratic dependence of the current profile



28 S. Šesnić and D. Poljak

P (ψ) = S

μ0
ψ, f 2 (ψ) = Tψ2 + 2Uψ + F2

0 . (2.53)

Equation (2.53) can be solved by the separation of variables where the following
equations are obtained

∂2H (z)

∂z2
+ k2H (z) = 0, (2.54)

∂2G (r)

∂r2
− 1

r

∂G (r)

∂r
− (k2 − T

)
G (r) = 0. (2.55)

The solution for H (z) is readily obtained as

H (z) = c1e
jkz + c2e

−jkz, (2.56)

while the solution of (2.55) is given with

G (r) = rB1 (ar) , (2.57)

where B1 denotes the family of Bessel functions and parameter a satisfies the equa-
tion [6]

a2 = ± (T − k2
)
. (2.58)

More mathematical details on these families can be found in [6].
To obtain exact solution of (2.56) and (2.57) for various real scenarios, the numer-

ical solution of the free boundary problem (with a conventional equilibrium solver)
and subsequent projection of the numerically obtained solution onto the exact solu-
tions via a least squares fitting procedure is implemented [6]. The obtained solution
can be written in the form

ψ = c1 + c2r
2 + rJ1 (pr) (c3 + c4z) + c5 cos pz + c6 sin pz +
+r2 (c7 cos pz + c8 sin pz) + c9 cos p

√
r2 + z2 +

+c10 sin p
√
r2 + z2 + rJ1 (vr) (c11 cos qz + c12 sin qz) +

+rJ1 (qr) (c13 cos vz + c14 sin vz) +
+rY1 (vr) (c15 cos qz + c16 sin qz) +

+rY1 (qr) (c17 cos vz + c18 sin vz) , (2.59)

where corresponding vector of coefficients ci can be found in [6].
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Fig. 2.10 Exact GSE
solution for ASDEX
Upgrade discharge # 10 958,
t = 5.20 s

2.5.5 Computational Example

Computational example depicted in Fig. 2.10 corresponds to the results for
tokamak equilibrium obtained using analytical solution (2.59). The highest value
for the poloidal magnetic flux ψmax = 1.4 Tm2 is observed at the center of tokamak
plasma, as it is expected, while the final contour (called separatrix) defines the area
where the value of the magnetic flux is equal to zero.

2.6 Concluding Remarks

In the paper, some analytical methods for solving various integro-differential equa-
tionss in electromagnetic compatibility have been reviewed. Of particular interest
are thin wire configurations buried in a lossy medium. Both frequency and time
domain solutions are considered. Solutions in the frequency domain are obtained by
performing certain mathematical manipulations with the unknown current function.
On the other hand, solutions in the time domain are carried out using the Laplace
transform and Cauchy residue theorem. The trade-off between the presented methods
is given in this review paper, as well. Obtained analytical results are compared to
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those calculated by means of various numerical solutions, where applicable. Finally,
an overview of well-established and widely used analytical solutions of the Grad–
Shafranov equation is given and discussed.
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Chapter 3
Analysis of Horizontal Thin-Wire Conductor
Buried in Lossy Ground: New Model
for Sommerfeld Type Integral

Milica Rančić , Radoslav Jankoski, Sergei Silvestrov and Slavoljub Aleksić

Abstract A new simple approximation that can be used for modeling of one type
of Sommerfeld integrals typically occurring in the expressions that describe sources
buried in the lossy ground, is proposed in the paper. The ground is treated as a
linear, isotropic and homogenous medium of known electrical parameters. Proposed
approximation has a form of a weighted exponential function with an additional
complex constant term. The derivation procedure of this approximation is explained
in detail, and the validation is done applying it in the analysis of a bare conductor
fed in the center and immersed in the lossy ground at arbitrary depth. Wide range of
ground and geometry parameters of interest has been taken into consideration.

Keywords Current distribution · Horizontal conductor · Integral equation · Lossy
ground · Point-matching method · Sommerfeld integral

3.1 Introduction

Significant effort has been put into evaluation of the influence of real ground parame-
ters on the near- and far-field characteristics ofwire conductors (or systems consisting
of them) located in the air above lossy ground, or buried inside of it [1–8, 10–22,
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24–37]. The methods applied in this research field range from simplified analytical
to rigorous full-wave ones.

The one often used in cases of conductors buried in the ground is the trans-
mission line model (TLM) [3, 16, 17, 20], which offers advantages of analytical
approaches: simplicity and short calculation time. However, the TLM introduces
calculation errors depending on the electrical properties of the ground, burial depth,
and frequency range in question. More specifically, it is reliable for deep-buried long
horizontal conductors at frequencies below MHz range, [16, 17, 20].

On the other hand, using the full-wave approach [1, 4–6, 12–15, 18, 19, 21], any
kind of arbitrarily positioned wire system could be analyzed, at any frequency of
interest with no restrictions to the electrical parameters of the ground. This approach
is based on formulation of the electric field integral equation (EFIE) and its solution
using an appropriate numerical method (e.g. method of moments, boundary element
method). The influence of the ground parameters is taken into account through Som-
merfeld integrals, which are a part of the kernel of the formulated integral equation
(e.g. Pocklington, Hallén, etc.). Although the calculation accuracy that comes with
this approach is high, greater computational costs also need to be paid,which depends
on the numerical method used for EFIE solving, and the way Sommerfeld integrals
are dealt with.

Basically, two approaches can be taken for the latter issue. The first, more time-
consuming one, but also the one yielding most accurate results is any method of
numerical integration of such integrals [4, 5, 21, 24, 33, 37]. A variety of methods
have been proposed that could be roughly divided into a group of methods of direct
integration (integration along the real axis), and a group of methods that consider
changing of the integration path in the complex plane. The second approach con-
siders approximate solving of these integrals using different methods, [6, 9, 11–15,
18, 19, 22, 25–32, 35, 36]. The reflection coefficient method, the method of images,
methods considering approximation of the transformed reflection coefficient (spec-
tral reflection coefficient - SRC) that is a part of the integrand, are some of the
directions that researchers took in this area.

For the cases of wires buried in the ground, the influence of the air/ground
boundary surface is usually taken into account using the reflection coefficient (or
the transmission coefficient) approach (RC or TC, respectively, [5, 12–18, 20]), or
themodified image theory (MIT, [15, 18, 19]). The latter one can only account for the
electrical properties of the ground, not the burial depth, and its validity is frequency
dependent (up to 1 MHz), [16]. On the other hand, the simplicity of the MIT and low
computational cost that comes with it are also present in the RC or TC approaches;
however, the plane wave incidence angle and wire depth are here taken into account.
A drawback of these approaches is that they are valid for the far-field region, whereas
the influence of the lossy ground is primarily noticeable in the close proximity of
the sources. As an improvement, in [36] authors propose an approximation of the
Sommerfeld integrals using a linear combination of 15 exponential functions with
certain unknown constants obtained using the least-squares method. According to
the authors, the maximum relative error of calculations is less than 0.1 per cent in
a wide range of tested parameters describing the geometry and the ground, [36].
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Similar solution, but applicable to static and quasi-static cases, is used in [11, 35].
The integrands are approximated by a set of exponential functions with unknown
exponents and weight coefficients.

In this paper the authors propose a new model for approximation of one type
of Sommerfeld integrals occurring in cases of conductors buried at arbitrary depth
in the lossy ground parallel to the air/ground surface. This model is based on the
procedure proposed by the first author in [25–32], which considers approximation
of a part of the integrand using a weighted exponential function with an additional
unknown complex constant term. This procedure has been successfully employed
for approximation of two forms of Sommerfeld integrals appearing in expressions
describing the Hertz’s vector potential in the surroundings of sources positioned in
the air above lossy ground. Proposed solutions have been applied to near- and far-field
analysis of different wire antenna structures arbitrarily located in the air above lossy
soil, [25–32], and modeling of the lightning discharge using an antenna model, [9].

Application of the newly proposed approximation of the integral in question is val-
idated analyzing a centrally fed horizontal conductor immersed in the lossy ground.
An integral equation of Hallén’s type (HIE) is solved applying the point-matching
method (PMM) as in [25–32], and adopting the polynomial current approximation
as in [21, 22, 25–32]. Different burial depths of the wire, and different ground types,
are considered at various frequencies. Obtained results are, were possible, compared
to the TC approach in combination with the PMM solution to the HIE. Also, Partial
Element Equivalent Circuit (PEEC) method applied in [10], and a so-called Hybrid
Circuit Model (HCM) proposed in [7, 8], are also used for comparison purposes.
Based on presented results, corresponding conclusions are given, and possibilities
for further research are discussed.

3.2 Problem Formulation

Let us observe a centrally fed horizontal thin-wire conductor with lengths of con-
ductor halves l, and cross-section radii a, buried in the lossy half-space (LHS) at
depth h, as illustrated in Fig. 3.1. The LHS is considered a homogeneous, linear and
isotropic medium of known electrical parameters. Electrical parameters of the air
are:

• σ0 = 0 - conductivity;
• ε0 - permittivity;
• μ0 - permeability,

and of the soil:

• σ1 - conductivity;
• ε1 = εr1ε0 - permittivity (εr1 - relative permittivity);
• μ1 = μ0 - permeability;
• σ i = σi + jωε1 - complex conductivity;
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Fig. 3.1 Illustration of a
horizontal conductor buried
in the lossy half-space

• γi = αi + jβi = (jωμσ i )
1/2, i = 0, 1 - complex propagation constant (i = 0 for

the air, and i = 0 for the LHS);
• ω = 2π f - angular frequency;
• εr1 - complex relative permittivity;
• n = γ1/γ0 = ε

1/2
r1 = (εr1 − j60σ1λ0)

1/2 - refractive index, and
• λ0 - wavelength in the air.

The Hertz’s vector potential has two components at an arbitrary point M1(x, y, z)
in the ground in the vicinity of the conductor, i.e. �1 = 
x1 x̂ + 
z1 ẑ, [5, 12–16,
18–20, 34]. Consequently, the tangential component of the scattered electric field
can be expressed as:

Esct
x1 (x, x ′) =

[
∂2

∂x2
− γ 2

1

]

x1 + ∂2
z1

∂x∂z
, (3.1)

where


x1 = 1

4πσ 1

∫ l

−l
I (x ′)

[
Ko(x, x

′) − Ki (x, x
′) +U11

]
dx ′, (3.2)


z1 = 1

4πσ 1

∫ l

−l
I (x ′)

∂W11

∂x
dx ′, (3.3)

with I (x ′) - the current distribution along the conductor (x ′- axis assigned to the
wire);

Ko(x, x
′) = e−γ1ro , ro =

√
ρ2 + a2, ρ = ∣∣x − x ′∣∣ , (3.4)

Ki (x, x
′) = e−γ1ri , ri =

√
ρ2 + (2h)2, ρ = ∣∣x − x ′∣∣ , (3.5)

U11 =
∫ ∞

α=0
T̃η1(α)e−u1(z+h) α

u1
J0(αρ)dα, (3.6)



3 Analysis of Horizontal Thin-Wire Conductor Buried … 37

W11 =
∫ ∞

α=0
T̃η2(α)e−u1(z+h) α

u1
J0(αρ)dα, (3.7)

T̃η1(α) = 2u1
u0 + u1

, ui =
√

α2 + γ 2
i
, i = 0, 1, (3.8)

T̃η2(α) = 2u1(u0 − u1)

γ 2
1
u0 + γ 2

0
u1

, ui =
√

α2 + γ 2
i
, i = 0, 1, (3.9)

where J0(αρ) is the zero-order Bessel function of the first kind. Adopting (3.2) and
(3.3), expression (3.1) can be written as

Esct
x1 (x, x ′) = 1

4πσ 1

∫ l

−l
I (x ′)G(x, x ′)dx ′, and (3.10)

G(x, x ′) =
[

∂2

∂x2
− γ 2

1

]
[
Ko(x, x

′) − Ki (x, x
′) +U11

] + ∂2

∂x∂z

[
∂W11

∂x

]
. (3.11)

Since, according to [34], integral given by (3.7) can be rewritten as ∂W11
∂z =

−γ 2
1
V11 −U11, where

V11 =
∫ ∞

α=0
T̃η3(α)e−u1(z+h) α

u1
J0(αρ)dα, and (3.12)

T̃η3(α) = 2u1
γ 2
1
u0 + γ 2

0
u1

, ui =
√

α2 + γ 2
i
, i = 0, 1, (3.13)

then the expressions (3.10) and (3.11) can be rewritten as

Esct
x1 (x, x ′) = 1

4πσ 1

⎡

⎢
⎣

∂2

∂x2
∫ l
−l I (x

′)
[
Ko(x, x ′) − Ki (x, x ′) − γ 2

1
V11

]
dx ′−

−γ 2
1

∫ l
−l I (x

′)
[
Ko(x, x ′) − Ki (x, x ′) +U11

]
dx ′

⎤

⎥
⎦ .

(3.14)
Boundary condition for the total tangential component of the electric field vector

must be satisfied at any given point on the conductor’s surface, and if the wire is
perfectly conducting then

Esct
x1 (x, x ′) + Etr

x1(x, x
′) = 0, (3.15)

where Etr
x1(x, x

′) is the transmitted electric field. Now, the integral equation-IE (3.15)
has the form

Etr
x1(x, x

′) = −Esct
x1 (x, x ′), (3.16)
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which, as a solution, gives the current distribution along the observed conductor.
However, in order to do so, a group of improper integrals, referred to as integrals
of Sommerfeld type, needs to be solved. Those would be integrals given by (3.6)
and (3.7) if the formulation (3.10) and (3.11) is substituted in (3.16), or a set of
integrals (3.6) and (3.12), if (3.14) is adopted.

3.3 Sommerfeld Integral Approximations

Different approaches have been applied in this field, but most of them start with a
simplified version of the Green’s function (3.11) having the following form:

G(x, x ′) =
[

∂2

∂x2
− γ 2

1

] [
Ko(x, x

′) − Ki (x, x
′) +U11

]
, (3.17)

which means that only one Sommerfeld integral (the one given by (3.6)) needs to
be solved. The following sub-sections will give an overview of a solution already
proposed in the literature (Sect. 3.3.1), and also a newly developed one by the authors
of this paper (Sect. 3.3.2).

3.3.1 Transmission Coefficient (TC) Approach

Transmission coefficient approach [3, 12], substitutes the part −Ki (x, x ′) +U11

in (3.17) by
− Ki (x, x ′) +U11 = −Ki (x, x ′)�trans.

T M , (3.18)

i.e. approximates the U11 by

Ua
11 ≈ Ki (x, x ′)

(
1 − �trans.

T M

)
, (3.19)

where

�trans.
T M = 2n cos θ

n2 cos θ +
√
n2 − sin2 θ

, θ = arctan
ρ

2h
, (3.20)

presents the transmission coefficient for TM polarization.
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3.3.2 Two-Image Approximation - TIA

In this paper, the authors propose a new approximation for the integral (3.6), so-called
two-image approximation (TIA) developed using the procedure applied in [25–32]
for modeling two different forms of Sommerfeld integrals occurring in cases of
sources located in the air above LHS.

1st case: Let us assume the expression (3.8) in the following form:

T̃ a
η1 = B + Ae−(u1−γ

1
)d , (3.21)

where B, A and d are unknown complex constants. When (3.21) is substituted
into (3.6), taking into account the identity, [23],

∫ ∞

α=0

e−|c|√α2+γ 2
1

√
α2 + γ 2

1

α J0(αρ)dα = Kc(x, x
′) = e−γ

1

√
ρ2+|c|2

√
ρ2 + |c|2

, (3.22)

the following general TIA approximation of (3.6) is obtained:

Ua
11(x, x

′) = BKzh(x, x
′) + Aeγ1|d|Kzhd(x, x

′), (3.23)

where
Kzh(x, x

′) = e−γ1rzh , rzh =
√

ρ2 + (z + h)2, (3.24)

Kzhd(x, x
′) = e−γ1rzhd , rzhd =

√
ρ2 + (z + h + ∣∣d

∣∣)2. (3.25)

Constants B, A and d are evaluated matching the expressions (3.8) and (3.21), as
well as their first derivative, at certain characteristic points in the range of integration
of (3.6). One possibility is as follows,

1. Matching point 1: u1 → ∞

T̃η1(u1 → ∞) = 1, (3.26)

T̃ a
η1(u1 → ∞) = B. (3.27)

2. Matching point 2: u1 = γ
0

T̃η1(u1 = γ
0
) = 2

1 + √
2 − n2

, (3.28)

T̃ a
η1(u1 = γ

0
) = B + Ae−γ

0
(1−n)d . (3.29)

3. Matching point for the first derivative: u1 = γ
0
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T̃ ′
η1(u1 = γ

0
) = −2(n2 − 1)

γ
0

√
2 − n2

(
1 + √

2 − n2
)2 , (3.30)

T̃
′a
η1(u1 = γ

0
) = −d Ae−γ

0
(1−n)d . (3.31)

Equating (3.26) and (3.27), (3.28) and (3.29), and (3.30) and (3.39), a system of
three equations over three unknown constants B, A and d is formed, and the solution
is given in the first row of Table3.1.

2nd case: The same approximation of (3.6) can be achieved if we assume (3.8) as

T̃ a
η1 = B + Ae−u1d , (3.32)

then (3.6) gets the form

Ua
11(x, x

′) = BKzh(x, x
′) + AKzhd(x, x

′), (3.33)

For the same matching points as previously, we get
1. Matching point 1: u1 → ∞

T̃η1(u1 → ∞) = 1, (3.34)

T̃ a
η1(u1 → ∞) = B. (3.35)

2. Matching point 2: u1 = γ
0

T̃η1(u1 = γ
0
) = 2

1 + √
2 − n2

, (3.36)

T̃ a
η1(u1 = γ

0
) = B + Ae−γ

0
d . (3.37)

3. Matching point for the first derivative: u1 = γ
0

T̃ ′
η1(u1 = γ

0
) = −2(n2 − 1)

γ
0

√
2 − n2

(
1 + √

2 − n2
)2 , (3.38)

T̃
′a
η1(u1 = γ

0
) = −d Ae−γ

0
d . (3.39)

The values obtained for B, A and d are listed in the second row of Table3.1.



3 Analysis of Horizontal Thin-Wire Conductor Buried … 41

Table 3.1 Obtained values of constants describing proposed TIA model

TIA Model B A d

1st case 1 1−
√

2−n2

1+
√

2−n2
eγ

0
(1−n)d 2

γ
0

√
2−n2

2ndcase 1 1−
√

2−n2

1+
√

2−n2
eγ

0
d 2

γ
0

√
2−n2

3.4 Solution of the Integral Equation

In order to validate the application of the proposed approximation for the inte-
gral (3.6), the integral equation (3.16) will be solved for the current. First, the form of
the Hallén’s IE (HIE) is obtained as a solution of the partial differential equation that
arises from (3.16). For the case of a thin-wire conductor centrally-fed by a Dirac’s
δ-generator, Etr

x1(x, x
′) = Uδ(x), U = 1 V, and taking into account the simplified

Green’s function given by (3.17), the HIE becomes:

∫ l

−l
I (x ′)

[
Ko(x, x

′) − Ki (x, x
′) +U11

]
dx ′ − C cos(jγ

1
x) = j

n

60
U sin(jγ

1
x),

(3.40)
where C is an integration constant.

In order to solve (3.40), the point-matching method (PMM) is applied, giving us
a system of linear equations with current distribution and integration constant C as
unknowns. In this paper, we adopt the entire domain polynomial current approxima-
tion for the current as in [21, 22, 25–32]:

I (u′ = x ′/ l) =
M∑

m=0

Imu
′m, 0 ≤ u′ ≤ 1, (3.41)

where Im ,m = 0, 1, ..., M , are complex current coefficients. This amounts to a total
of (M + 1) + 1 unknowns, which calls for as much linear equations. The matching
is done at (M + 1) points that are chosen as xi = il/M , i = 0, 1, 2, ..., M . This
way, a system of (M + 1) linear equations is formed, lacking one additional equation
to account for the unknown integration constant C . This remaining linear equation is
obtained applying the condition for vanishing of the current at the conductor’s end,
which corresponds to I (−l) = I (l) = 0. If we adopt TC or TIA model for (3.6), the
system of equations becomes:

M∑

m=0

Im

∫ l

−l

(
x ′

l

)m [
Ko(x, x

′) − Ki (x, x
′) +Ua

11(x, x
′)
]
dx ′ − C cos(β0nxi ) =

= −j
n

60
U sin(β0nxi ), i = 0, 1, 2, ..., M,

(3.42)
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M∑

m=0

Im = 0. (3.43)

3.5 Numerical Results

First we observed the convergence of the PMM method when the TIA approach to
solving Sommerfeld integral (3.6) is adopted. The current magnitude is calculated
for different values of the order of the polynomial current distribution M . Obtained
results along a half of the conductor, which correspond to burial depth of h = 0.1 m,
can be observed from Figs. 3.2 and 3.3 for two frequency values: 1 and 10 MHz,
respectively. Each figure includes two diagrams corresponding to two different values
of the ground conductivity: (a) σ1 = 0.001 S/m and (b) σ1 = 0.01 S/m. The analysis
is performed for the case of the conductor’s half-length l = 5 m, cross-section radius
a = 5 mm, and electric permittivity of the ground εr1 = 10.

The conductor with the same geometry parameters is considered again, for two
cases of burial depths: (a) h = 1.0 m and (b) h = 5.0 m. The variable parameter
in all figures is the specific conductivity of the ground, and it takes three values:
σ1 = 0.001, 0.01 and 0.1 S/m. The analysis is performed for the case of the electric
permittivity of the ground εr1 = 10. The results obtained by the PMM method and
both the TC and newly proposed TIA approach are compared to the corresponding
ones obtained by the methods from [7, 8, 10]. In [10] the authors employ the Partial
Element Equivalent Circuit (PEEC)method,while in [7, 8] a so-calledHybridCircuit
Model (HCM) is proposed. Satisfying accordance of the results can be observed from
the presented results. This is especially noticeable formore deeply buried conductors,
and lower frequencies.

Fig. 3.2 Current magnitude along a half of the conductor for burial depth of 0.1m and two values
of ground conductivities: a 0.001 S/m, b 0.01 S/m. Order of polynomial current approximation M
is taken as a parameter. Frequency is 1 MHz
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Fig. 3.3 Current magnitude along a half of the conductor for burial depth of 0.1m and two values
of ground conductivities: a 0.001 S/m, b 0.01 S/m. Order of polynomial current approximation M
is taken as a parameter. Frequency is 10 MHz

Fig. 3.4 Current magnitude along a half of the conductor buried at a 0.1 m, b 5 m for frequency
of 1 MHz. Conductivity of the ground is taken as a parameter. Comparison of different methods

Next, results for the current magnitude are given in Figs. 3.4 and 3.5 for two
frequency values, 1 and 10 MHz, respectively.

Figures3.6, 3.7 and 3.8 illustrate the current magnitude distribution for three
different frequencies: 1, 5 and 10 MHz. Two cases of burial depth are considered:
(a) h = 1.0 m and (b) h = 5.0 m. The conductor’s geometrical parameters are the
same as previously.

Each figure corresponds to the same electrical permittivity (εr1 = 10), while the
ground’s conductivity is varied (σ1 = 0.001, 0.01 and 0.1 S/m). Again, the results
obtained by different methods, PMM-TC, PMM-TIA, PEEC, and HCM, are com-
pared.
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Fig. 3.5 Current magnitude along a half of the conductor buried at a 0.1 m, b 5 m for frequency
of 10 MHz. Conductivity of the ground is taken as a parameter. Comparison of different methods

Fig. 3.6 Current magnitude along a half of the conductor buried at a 0.1 m and b 5 m for ground
conductivity of 0.001 S/m. Frequency is taken as a parameter. Comparison of different methods

Final set of numerical results illustrates the influence of different values of the
electrical permittivity at two frequencies: (a) 1MHz and (b) 5MHz. Figures3.9, 3.10
and 3.11 correspond to three cases of specific ground conductivity σ1 = 0.001 S/m,
0.01 S/m, and 0.1 S/m. The conductor has the same geometry as previously, and is
positioned at h = 5.0m below the boundary surface air/LHS. The results obtained by
the PMM-TIA (solid squares), and the PEECmethod (continual lines) are presented.
Observed values of the electrical permittivity are: εr1 = 1, 2, 5, 10, 20, 36 and 81.
This influence is most noticeable at higher frequencies and for lower values of the
ground conductivity.
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Fig. 3.7 Current magnitude along a half of the conductor buried at a 0.1 m and b 5 m for ground
conductivity of 0.01 S/m. Frequency is taken as a parameter. Comparison of different methods

Fig. 3.8 Current magnitude along a half of the conductor buried at a 0.1 m and b 5 m for ground
conductivity of 0.1 S/m. Frequency is taken as a parameter. Comparison of different methods

3.6 Conclusion

The aimof the paper to effectively approximate one formof Sommerfeld integrals has
been achieved developing a simple approximation in a form of a weighted exponen-
tial function with an additional constant term, denoted here as two-image approx-
imation (TIA). Proposed approximation is valid over a wide range of parameters
(electrical parameters of the ground and geometry parameters). Presented numerical
results show that the proposed model in combination with the PMM method can be
successfully applied to frequency analysis of conductors buried in the lossy medium.

Furthermore, presented results indicate a possibility of effective application of
the proposed procedure to other forms of Sommerfeld integrals that also appear
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Fig. 3.9 Current magnitude along a half of the conductor for frequencies a 1 MHz, b 5 MHz.
Electrical permittivity of the ground is taken as a parameter. Ground conductivity is 0.001 S/m

Fig. 3.10 Current magnitude along a half of the conductor for frequencies a 1 MHz, b 5 MHz.
Electrical permittivity of the ground is taken as a parameter. Ground conductivity is 0.01 S/m

in the observed case of sources buried in the lossy ground (the ones given by (3.7)
and (3.12)), which are usually neglected [3, 5, 6, 12–20, 24]. Thiswould yield amore
stringent analysis, and also amore accurate one, of not only antennas immersed in the
lossy ground, but alsowire grounding systems in such soil, buried telecommunication
cables exposed to electromagnetic interferences, submarine dipoles, bare or isolated
antennas embedded in dissipative media, etc.
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Fig. 3.11 Current magnitude along a half of the conductor for frequencies a 1 MHz, b 5 MHz.
Electrical permittivity of the ground is taken as a parameter. Ground conductivity is 0.1 S/m
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Chapter 4
Comparison of TL, Point-Matching
and Hybrid Circuit Method Analysis
of a Horizontal Dipole Antenna Immersed
in Lossy Soil

Radoslav Jankoski, Milica Rančić , Vesna Arnautovski-Toseva
and Sergei Silvestrov

Abstract HF analysis of a horizontal dipole antenna buried in lossy ground has been
performed in this paper. The soil is treated as a homogenous half-space of known
electrical parameters. The authors compare the range of applicability of two forms
of transmission line model, a hybrid circuit method, and a point-matching method
in such analysis.

Keywords Transmission line model · Point matching method · Hybrid circuit
method

4.1 Introduction

Modeling of wire conductors buried in finitely conducting soil has been a subject of
great amount of research, [1, 2, 4–10, 13–15]. This problem has been dealt with in
different ways, from application of rigorous full-wave approaches to simplified ones
more suitable for practical engineering studies. In this paper the authors compare
three different concepts.
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The first one considers the Transmission Line derived for the case of the centrally
fed horizontal dipole antenna and buried in lossy ground. Two considered variants
take into account the properties of the ground through ground impedances given by
Sunde in [13], and Theethayi et al. in [15].

The second one, the integral equation (IE) approach considers solution of the
Hallén’s IE using the point-matching method, and the entire domain polynomial
representation of the current distribution along the observed antenna, [11, 12].

Finally, the modification of the well-known PEEC (Partial Element Equivalent
Circuit) method successfully applied in [4, 5], and denoted as the Hybrid Circuit
Method (HCM) is used also in this paper. The HCM, unlike PEEC, assumes that
capacitive and inductive coupling between different parts of a thin wire conductor
can be modelled without cell shifting. This method has been validated against the
full wave approach in [4, 5], and will be used here as the reference one.

The analysis is performed in a wide frequency range for different ground conduc-
tivities and geometry parameters. Corresponding comments are given in the conclu-
sion.

4.2 Geometry Layout

Let us consider a symmetrical horizontal dipole antenna (HDA) with conduc-
tor length l, and cross-section radius a, buried in the lossy half-space (LHS) at
depth h, Fig. 4.1. The LHS is idealized as a homogeneous, linear and isotropic
medium of known electrical parameters (air: σ0 = 0 - conductivity; ε0 - permit-
tivity; μ0 - permeability; soil: σ1 - conductivity; ε1 = εr1ε0 - permittivity (εr1 - rela-
tive permittivity); μ1 = μ0 - permeability; σ i = σi + jωε1 - complex conductivity;
γi = αi + jβi = (jωμσ i )

1/2, i = 0, 1 - complex propagation constant ( i = 0 for
the air, and i = 0 for the LHS); ω = 2π f - angular frequency; εr1 - complex relative
permittivity; n = γ1/γ0 = ε

1/2
r1 = (εr1 − j60σ1λ0)

1/2 - refractive index, and λ0 -
wavelength in the air). The HDA is fed in the center by harmonic voltage generator
U = 1 V in range 1kHz–10MHz.

Fig. 4.1 Illustration of a
horizontal conductor buried
in the lossy half-space
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4.3 Transmission Line Model (TLM)

The frequency domain formulation of the transmission line equations, [1], is as
follows:

dU (x ′)
dx ′ + Z I (x ′) = 0, (4.1)

dI (x ′)
dx ′ + Y I (x ′) = 0, (4.2)

where U (x ′) and I (x ′) are line voltage and current, Z and Y are ground impedance
andadmittance, respectively, andγ 2

1
= ZY . Substitutingvoltage from(4.2) into (4.1),

we get
d2 I (x ′)
dx ′2 − γ 2

1
I (x ′) = 0, (4.3)

whose solution presents the current distribution along the HDA

I (x ′) =

⎡

⎢⎢
⎣

U sinh γ
1
x ′

Z0 sinh γ
1
L sinh γ

1
l, − l < x ′ < 0,

U sinh γ
1
l

Z0 sinh γ
1
L sinh γ

1
(L − x ′), 0 < x ′ < l,

(4.4)

where Z0 = Z/γ
1
- characteristic impedance, and L = 2l.

According to Sunde’s expression [13], Z can be expressed as:

Z S = jωμ0

2π

⎡

⎣K0(γ 1
a) − K0(γ 1

√
a2 + 4h2) + 2

∫ ∞

0

e−2h
√

α2+γ 2
1 cosαa

α +
√

α2 + γ 2
1

dα

⎤

⎦ ,

(4.5)
K0(∗) being the Bessel function of the second kind and order zero. Authors in [15]
propose a more simplified formula:

Z Log = jωμ0

2π
ln

[
1 + γ

1
a

γ
1
a

]

. (4.6)

Depending on the chosen expression for Z , two variants of the TLM are obtained:
TLM-Sunde and TLM-Log corresponding to (4.5) and (4.6), respectively.
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4.4 Point-Matching Method (PMM)

The point-matching method (PMM) is applied to solve the Hallén’s integral equation
(HIE) that arises from the partial differential equation obtained satisfying the bound-
ary condition for the tangential component of the electric field on the surface of the
HDA, [6, 11, 12]. For the case of the HDA centrally-fed by a Dirac’s δ-generator of
voltageU , and taking into account the simplified formof theGreen’s function [7–10],
the HIE becomes:

∫ l

−l
I (x ′)

[
Ko(x, x

′) − Ki (x, x
′) +U11

]
dx ′ − C cos(jγ

1
x) = j

n

60
U sin(jγ

1
x),

(4.7)
Ko(x, x

′) = e−γ1ro , ro =
√

ρ2 + a2, ρ = ∣∣x − x ′∣∣ , (4.8)

Ki (x, x
′) = e−γ1ri , ri =

√
ρ2 + (2h)2, ρ = ∣∣x − x ′∣∣ , (4.9)

U11 =
∫ ∞

α=0
T̃η1(α)e−u1(z+h) α

u1
J0(αρ)dα, (4.10)

T̃η1(α) = 2u1
u0 + u1

, ui =
√

α2 + γ 2
i
, i = 0, 1, (4.11)

where J0(αρ) is the zero-orderBessel function of the first kind, andC is an integration
constant.

Applying the PMM, the HIE is transformed into a system of linear equations with
current distribution I (x ′) and constant C being the unknowns. The entire domain
polynomial current approximation is adopted as in [6, 11, 12]:

I (u′ = x ′/ l) =
M∑

m=0

Imu
′m, 0 ≤ u′ ≤ 1, (4.12)

where Im ,m = 0, 1, ..., M , are complex current coefficients. Thematching is done at
(M + 1) points that are chosen as xi = il/M , i = 0, 1, 2, ..., M . The (M + 2) − th
equation needed for evaluation of C is derived from (4.12) with the assumption that
the current vanishes at HDA’s ends. The system of equations becomes:

M∑

m=0

Im

∫ l

−l

(
x ′

l

)m [
Ko(x, x

′) − Ki (x, x
′) +Ua

11(x, x
′)
]
dx ′ − C cos(β0nxi ) = (4.13)

= −j
n

60
U sin(β0nxi ), i = 0, 1, 2, ..., M,

M∑

m=0

Im = 0. (4.14)
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where Ua
11 denotes the approximation of the Sommerfeld integral (4.10), which is

here obtained applying three approaches:

1. Modified Image Theory (MIT) approach, models (4.10) by

Ua
11 ≈ Ki (x, x ′)

(
1 − 

re f.
E

)
, (4.15)

where 
re f.
E = −(n2 − 1)/(n2 + 1) is the reflection coefficient due to earth/air

interface, [2, 8–10, 14].
2. Transmission coefficient approach (TC), [7],

Ua
11 ≈ Ki (x, x ′)

(
1 − trans.

T M

)
, (4.16)

where trans.
T M = 2n cos θ

n2 cos θ+
√

n2−sin2 θ
- the transmission coefficient for TM polariza-

tion, and θ = arctan ρ

2h .
3. Two-image approximation (TIA), [6], models (4.10) by:

Ua
11(x, x

′) = BKzh(x, x
′) + Aeγ1|d|Kzhd(x, x

′), (4.17)

where

Kzh(x, x
′) = e−γ1rzh , rzh =

√
ρ2 + (z + h)2,

Kzhd(x, x
′) = e−γ1rzhd , rzhd =

√
ρ2 + (z + h + ∣∣d

∣∣)2,

B = 1, A = 1 − √
2 − n2

1 + √
2 − n2

eγ
0
(1−n)d , d

2

γ
0

√
2 − n2

.

4.5 Hybrid Circuit Method (HCM)

The HCMwill be explained based on a single cell used for representing the observed
structure, Fig. 4.2. The following notations are used: Vl and Vm are nodal voltages;
Jl and Jm are nodal leakage currents; Uk is the voltage of the k-th segment; Ik is the
total leakage current of the k-th segment. The voltage of the k-th segment is assumed
to be an average value of node voltages:

Uk = Vl + Vm

2
. (4.18)

Consequently, the following matrix representation of the voltage distribution is
obtained:

[U ] = [Q][V ], (4.19)
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Fig. 4.2 Illustration of a
HCM cell

Uk Vm

Ik

Vl

JmJl

where the elements of [V ] matrix are node voltages, and the elements of [Q] matrix
are evaluated as follows:

qi, j =
[
1/2, i − th branch is connected to the j − th node,
0, i − th branch is not connected to the j − th node.

(4.20)

Each leakage current Ik is broken down into two currents (Ik/2). This assumption
leads to the following matrix equation describing node leakage currents [J ] (with
[Il] - matrix of leakage currents):

[J ] = [Q]T [Il]. (4.21)

The inductive coupling between wire segments is represented by self and mutual
partial inductances:

Lmn = μ0e
−γ

1
rmn cos θmn

4π

∫

lm

∫

ln

dlm dln
rmn

, (4.22)

where dlm and dln are elementary lengths of analyzed segments, while the θmn is the
angle between them. Conductive and capacitive coupling is represented by means of
complex resistivities evaluated as follows:

Rmn = 1

4πlmlnσ 1

[
e−γ

1
rrm

∫

lm

∫

ln

dlm dln
rmn

+ e−γ
1
r ′′
rm Rt

∫

lm

∫

ln

dlm dln
r ′′
mn

]
, (4.23)

Rt = σ1 + jωε0(εr1 − 1)

σ1 + jωε0(εr1 + 1)
, (4.24)

rrm is the distance between the m-th and n-th segment while r ′′
rm is the distance

between the image of the m-th segment and n-th segment.
Now, the relationship between the voltage and the leakage currents of segments

can be written as:
[Il] = [G][U ], (4.25)

where [G] - matrix of conductances.
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Combining (4.19), (4.21), and (4.25) we get the relation between the node leakage
currents and node voltages:

[J ] = [Q]T [G][Q][V ]. (4.26)

Using the Modified Nodal Analysis (MNA), [3], a compact form of the Conven-
tional Nodal Analysis (CNA) is obtained:

[Is] − [A]T [Z ]−1[Vs] = [Y ][V ], (4.27)

where [A] is the incidence matrix, [Z ] is the longitudinal impedance matrix, [Y ] =
[Q]T [G][Q] + [A]T [Z ]−1[A] is the matrix of admittances, and [Is] and [Vs] are
matrices of external current and voltage sources.

Once the voltage distribution is determined based on (4.27), the longitudinal
current distribution is obtained as:

[I ] = [Z ]−1([Vs] + [A][V ]). (4.28)

4.6 Numerical Results

Dependence of the current magnitude at specific points along the HDA arm in the
observed frequency range from 1kHz–10MHz, is presented in Figs. 4.3, 4.4 and 4.5.
The HDA’s conductors have a cross-section radius of a = 0.001m, and the antenna
is buried at depth h = 0.5m. Considered electrical parameters of the ground are:
electrical permittivity εr1 = 10, and specific conductivities a) σ1 = 0.001 S/m, b)
σ1 = 0.01 S/m, and c) σ1 = 0.1 S/m. Current is calculated at four different points
along one arm of the HDA (A, B, C and D from Fig. 4.1).

Figures4.3a, 4.4a and 4.5a illustrate the dependence of the current magnitude on
frequency for a case of a short dipole l = 10m, while corresponding results obtained
for a long HDA (l = 50m) are illustrated in Figs. 4.3b, 4.4b and 4.5b.

We have compared results obtained by methods described in previous sections,
which are denoted as:

• TLM-Sunde - transmission line model, expression (4.5);
• TLM-Log - transmission line model, expression (4.6);
• PMM-MIT - point-matching method, MIT approach;
• PMM-TC - point-matching method, TC approach;
• PMM-TIA - point-matching method, TIA approach;
• HCM - hybrid circuit method.

For the sake of evaluating limitations of mentioned methods, the results obtained
by a full-wave approach are also presented in the figures.
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Fig. 4.3 Current magnitude at different points along an arm of a a short and b long HDA versus
frequency for ground conductivity of 0.001S/m. Comparison of different methods

The comparison of the samemethods, for a case of more deeply buried HDA (h =
5.0m) is given in Table 4.1. The results correspond to current magnitude calculated
at point A (feeding point of the HDA) of HDA’s arm with length of l = 10m.
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Fig. 4.4 Current magnitude at different points along an arm of a a short and b long HDA versus
frequency for ground conductivity of 0.01S/m. Comparison of different methods

4.7 Conclusion

Exact modeling of wire conductors buried in lossy soil at arbitrary depth calls
for tedious numerical integration of Sommerfeld’s integrals, which appear in the
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Fig. 4.5 Current magnitude at different points along an arm of a a short and b long HDA versus
frequency for ground conductivity of 0.1S/m. Comparison of different methods

expression describing the electromagnetic field in its surroundings. In that sense,
an approximate approach that can be applied in the analysis of such structures in
desired frequency spectrum, and for wide range of ground and geometry parameters,
is welcomed. This paper deals with three such methods used for HDA analysis.
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Observed behavior in the considered frequency range can be summarized as fol-
lows:

• The biggest difference between the methods can be observed at the HDA’s feeding
pointA regardless of the antenna length, burial depth, or conductivity of the ground.
The best accordance with the exact solution is obtained by the HCMmethod at all
points along the HDA.

• For the lower frequency spectrum, the HCM method best agrees with the PMM-
MIT approach for the lowest conductivity value (Fig. 4.3), but with its increase
becomes closer to PMM-TC and PMM-TIA values, especially for higher frequen-
cies regardless of HDA length. For h = 5m, differences between the HCM and
all variants of PMM method are barely noticeable.

• Both TL models are in the best accordance with the reference HCM results for
the cases of higher ground conductivities, longer antenna, and higher range of
frequencies (Figs. 4.4b and 4.5b). The same characteristics can be also observed
for more deeply buried HDA (Table 4.1).

Some improvements are possible for the PMM approach, taking into account the
actual Green’s function ((4.19) in [7]) instead of the simplified one used in this paper,
which will be explored in our future work.
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Chapter 5
Theoretical Study of Equilateral Triangular
Microstrip Antenna and Its Arrays

Pushpanjali G. Metri

Abstract Novel design of equilateral triangular microstrip antenna is proposed at
X-band frequency. The antenna is designed, fabricated and tested for single and
multiband operation. This study presents the theory developed with respect to the
experimental work carried out on design and development of equilateral triangu-
lar microstrip array antenna (ETMAA). The experimental impedance bandwidth
of single element conventional equilateral triangular microstrip antenna (CETMA)
is found to be 5.02%. The two, four and eight elements of ETMAA have been
designed and fabricated using low cost glass epoxy substrate material. The array
elements are excited using corporate feed technique. The effect of slot in enhancing
the impedance bandwidth is studied by placing the slot in the radiating elements of
ETMAA. The study is also made by exciting the array element of ETMAA through
aperture coupling. For eight elements, maximum 33.8% impedance bandwidth is
achieved, which is 6.73 times more than the impedance bandwidth of conventional
single element CETMA. The experimental impedance bandwidths are verified the-
oretically and they are in good agreement. The obtained experimental results and
theoretical study of the proposed antennas are given and discussed in detail.

Keywords Theoretical study of ETMAA · Gap-coupled feeding technique · Slot
loading technique

5.1 Introduction

A microstrip or patch antenna is a low-profile antenna that has a number of advan-
tages over other antennas: it is light weight, low volume, low profile, planar con-
figurations which can be made conformal, low fabrication cost, readily amenable to
mass production and electronics like LNA’s and SSPA’s, and can be integrated with
these antennas quite easily [27]. While the antenna can be a 3-D structure (wrapped
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around a cylinder, for example), it is usually flat and that is why patch antennas are
sometimes referred to as planar antennas.

Global demand for voice, data and video related services continues to grow faster
than the required infrastructure can be deployed. Despite huge amount of money that
has been spent in attempts to meet the need of the world market, the vast majority
of people on Earth still do not have access to quality communication facilities. The
greatest challenge faced by governments and service providers is the “last-mile”
connection, which is the final link between the individual user or business users and
worldwide network [35]. Copper wires, traditional means of providing this “last-
mile” connection is both costly and inadequate to meet the needs of the bandwidth
intensive applications. Coaxial cable and power line communications all have techni-
cal limitations.Andfiber optics,while technically superior but is extremely expensive
to install to every home or business user. To overcome this wireless connection is
being seen as an alternative to quickly and cost effectively meet the need for flexible
broadband links.

Basically an antenna can be considered as the connecting link between free-space
and transmitter or receiver [2]. Presently there exist different types of antennas.
The design and development of microwave antennas are the most important task in
microwave communication systems to achieve the desired radiation requirements.
Among the various types of microwave antennas, the microstrip antennas (MSAs)
have found one of the important classes within the broad field of microwave antennas
because of their diversified applications in microwave communication.

Microstrip antenna technology has been the most rapidly developing topic in the
antennafield receiving the creative attentions of academic, industrial and professional
engineers and researchers throughout the world [29]. As the microstrip antenna is
planar in configuration, it enjoys all the advantages of printed circuit technology. A
microstrip antenna in its simplest form consists of a radiating patch, power dividers,
matching networks and phasing circuits photoetched on one side of the dielectric
substrate board. The other side of the board is a metallic ground plane [3].

G.A. Deschamps first proposed the concept of the microstrip antenna in 1953
[13]. However, practical antennas were developed by Robert E. Munson [26] and
John Q. Howell [16] in the 1970s. As a result, microstrip antennas have quickly
evolved from academic novelty to commercial reality, with applications in a wide
variety of microwave systems.

The radiating patch of microstrip antenna can be of any geometry viz: rectangular,
triangular, circular, square, elliptical, sectoral, annular ring etc. Among the various
types of microstrip antenna configurations, the rectangular geometry is commonly
used. But, one of the most attractive features of the equilateral triangular microstrip
antenna is that, the area necessary for the patch becomes about half as large as that of a
nearly rectangular or squaremicrostrip antenna designed for the same frequency [36].

Microstrip antennas despite their potential advantages also have some drawbacks
compared to conventional microwave antennas. One of the major drawbacks is its
narrow impedance bandwidth i.e. 1–2%. Increasing the impedance bandwidth of
microstrip antennas has become an important task and is the major thrust of research
inmicrowave communication. Various techniques have been reported in the literature
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for enhancing the impedance bandwidth of microstrip antennas. But equilateral tri-
angular microstrip antenna found handful of investigations. The literature study
shows that, there is still void and hence requires further investigation to enhance
its impedance bandwidth.

In the present investigation, work is mainly concentrated on the enhancement of
impedance bandwidth of equilateral triangular microstrip array antennas using:

i. Corporate feed technique,
ii. Slot-loading technique,
iii. Aperture-coupled feeding technique, and
iv. Gap-coupled technique.

The conventional equilateral triangular microstrip antenna (CETMA) is designed
and fabricated using glass-epoxy substratematerial. The two, four and eight elements
equilateral triangular microstrip array antennas (ETMAAs) are constructed using
the same substrate material. The antenna elements are excited through corporate
feed technique. The change in impedance bandwidth is studied for these antennas.
Further, by loading slot in the radiating elements, the effect of slot in enhancing the
impedance bandwidth is studied. The elements of slot loaded antennas are excited
through aperture coupled feeding. The comparative study of impedance bandwidth is
made between corporate fed slot loaded and aperture coupled equilateral triangular
microstrip array antennas. The impedance bandwidths of these antennas are studied
comparatively.

5.2 Types of Microstrip Antennas

The approaching maturity of microstrip antenna technology, coupled with the
increasing demand and applications these antennas are mainly classified into three
basic categories [3]:

1. Microstrip patch antennas,
2. Microstrip traveling wave antennas,
3. Microstrip slot antennas.

The present study is carried out experimentally for microstrip patch antennas
and microstrip slot antennas. Theory for the proposed antennas is also developed
for validation of experimental results of the antennas. This chapter presents the
theoretical calculation of impedance bandwidth of conventional equilateral triangular
microstrip antenna (CETMA) and equilateral triangular microstrip array antennas
(ETMAAs). The impedance bandwidth is determined separately for corporate and
aperture coupled fed ETMAAs.

Several techniques have been developed and found quite useful to enhance the
impedance bandwidth of microstrip antennas (MSAs), such as use of stacked tech-
nique [5–7, 22], use of corporate feed technique [12, 15], use of parasitic elements [1],
use of thick dielectric substrate [4, 6, 12], use of additional resonator [18], use
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of aperture-coupled technique [11, 28], use of electromagnetically coupled tech-
nique [17], use of L-shaped probe [25], use of a resonant slot inserted in the main
patch [21, 23, 31, 33], etc.

Various theoretical analyses are available in the literature to validate the experi-
mental impedance bandwidth of MSAs. Joseph Helszajn and David S. James [14]
have described theoretical and experimental results on planar resonators of equilateral
triangular resonators having magnetic sidewalls. The TM fields in such resonators
with magnetic boundary conditions are obtained by duality from the TE modes with
electric boundaries. The theoretical description includes the cutoff numbers of the
first few modes. The performance of a microstrip circulator using a triangular res-
onator is also described by them.

GirishKumar et al. [18] have verified the theoretical bandwidth ofMSAconsisting
of additional resonator gap-coupled to the radiating edges of resonant patch. They
have verified the theoretical bandwidth using Green’s function approach and the
segmentation method.

Kai Fong Lee et al. [20] have analyzed the equilateral triangular patch antenna
by means of the cavity model. They have given the theoretical formulas and the
characteristics obtained from the theory including radiation patterns, percentages
of power radiated, total Q factors, input impedances and their variations with feed
position. They opined that, the equilateral triangular patch can be designed to function
as a triple frequency antenna.

Wei Chen et al. [10] have presented a critical study of the resonant frequency of
the equilateral triangular patch antenna. They compared their results with experi-
mental results reported by other scientists using the moment method and the Gang’s
hypothesis analysis.

Qing Song andXue-Xia Zhang [34] have verified the theoretical bandwidth of two
element gap-coupled microstrip array antenna by using the spectral dyadic Green’s
function for a grounded dielectric slab and the moment method.

Girish Kumar and K.P. Ray [19] have given the expressions for calculating the
percentage impedance bandwidth of rectangular microstrip antenna (RMSA). In this
study theoretical determination of impedance bandwidth of ETMA and ETMAAs
has been made with the help of the equations given by Girish Kumar and K.P. Ray
[8: pp.13] by replacing [3, 8] W/L ratio with (n × Se) where, Se is the effective
side length of the equilateral triangular radiating patch and n is the number of equi-
lateral triangular radiating patches. The impedance bandwidth of single element
conventional equilateral triangular microstrip antenna (CETMA) is determined by
this method.

The equations given by Girish Kumar and K.P. Ray have been extended to deter-
mine the impedance bandwidth of ETMAAs. The extended equations are applied to
determine the impedance bandwidth of two, four and eight element ETMAAs. As
the number of array elements increases in ETMAAs the multiplying factor Se also
increases accordingly.

The theoretical impedance bandwidth of ETMA and ETMAAs computed on the
basis of the above theory is compared to the experimental impedance bandwidth for
the validation.
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5.2.1 Theoretical Impedance Bandwidth

The conventional equilateral triangular microstrip antenna (CETMA) and equilateral
triangular microstrip array antennas (ETMAAs) have been designed for TE10 mode.

The expression derived by Girish Kumar and K.P. Ray [19] for the calculation
of percentage impedance bandwidth are in terms of patch dimensions and substrate
parameters. The expressions are, [19],

Impedence bandwidth(%) =
[
A × h

λ0
√

εr

]
×

√
W

L
, (5.1)

where:
h - thickness of the substrate,
εr - relative permittivity of the substrate,
W - width of the patch,
L - length of the patch,
λ0 - free-space wavelength,
A - correction factor.

The correction factor A changes as the value of
[

A×h
λ0

√
εr

]
changes [19], which is

given by:

A = 180 for

[
A × h

λ0
√

εr

]
≤ 0.045,

A = 200 for 0.045 ≤
[
A × h

λ0
√

εr

]
≤ 0.075,

A = 220 for

[
A × h

λ0
√

εr

]
≥ 0.075.

In the present investigation the value of correction factor A is taken as 180 because

the calculated value of
[

A×h
λ0

√
εr

]
for CETMA and ETMAAs is less than 0.045 deter-

mined for the known value of h, λ0 and εr .
The expression (5.1) given by Girish Kumar et al. [19] is for RMSA. But in the

present study the geometry of radiating elements are equilateral triangular in shape.
Therefore the Eq. (5.1) is converted for equilateral triangular microstrip antenna and
arrays by replacing [3, 14, 19] the W/L ratio with (n × Se). The modified equation
for CETMA is given by

Impedence bandwidth(%) =
[
A × h

λ0
√

εr

]
× √

n × Se, (5.2)

where:
Se - effective side length of the equilateral triangular radiating patch, and
n - number of equilateral triangular radiating patches.



70 P.G. Metri

In Eq. (5.2) the value of Se is given by the formula, [19],

Se = S + 4h

εe
, (5.3)

where:
S - side length of the equilateral triangular microstrip patch,
εe - effective dielectric constant.

The value of S and εr are determined using the following Eqs. (5.4), [30], and
(5.5), respectively.

S =
(
Sef f 1 + Sef f 2

2

)
, (5.4)

εe = εr + 1

2
+ εr − 1

2

(
1 + 12

h

s

)
− 1

2 . (5.5)

The Eq. (5.2) is extended to calculate the impedance bandwidth of corporate fed
two, four and eight element array antennas. Further, (5.2) is also used to determine the
impedance bandwidth of aperture-coupled fed four and eight element array antennas
by considering the aperture coupled parameters. During the calculations of percent-
age impedance bandwidth of array elements the patch dimensions [19] in terms of
area i.e. the area of the equilateral triangular radiating patch (At ), area of slot loaded
equilateral triangular microstrip radiating patch (Asp) and capacitance of the slot
(Cs) are taken into consideration. The capacitance of the slot Cs is calculated with
the help of the transmission line model [3]. This analytical technique [19] is based
on equivalent magnetic current distribution around the patch edges (similar to slot
antennas).

5.2.1.1 Calculation of Impedance Bandwidth of CETMA

The CETMA is fed by 50 microstripline, which is connected at the center pointCp of
the side length of the equilateral triangular microstrip patch. Between the equilateral
triangular microstrip patch and 50 feed line a matching transform is used to avoid
the mismatch. For CETMA, n is taken as 1 in Eq. (5.2) as CETMA consists of only
one radiating element. Hence Eq. (5.2) reduces to,

Impedence bandwidth(%) =
[
A × h

λ0
√

εr

] √
Se. (5.6)

Therefore, the theoretical impedance bandwidth ofCETMAis calculated using the
above equation which is found to be 5.35%. This impedance bandwidth is recorded
in Table5.1. From this table it is seen that, the theoretical impedance bandwidth is
in close agreement with the experimental value.
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5.2.1.2 Calculation of Impedance Bandwidth of T-ETMAA

The two element equilateral triangular microstrip array antenna i.e. T-ETMAA is fed
by corporate feed arrangement. The area of equilateral triangular radiating element
(At ) is taken into consideration [19] for calculating the impedance bandwidth of
T-ETMAA. The value of At is determined using the basic formula of equilateral
triangular element, which is given by

At =
√
3

4
S2, (5.7)

where S is the side length of the equilateral triangular radiating element. The value
of At is multiplied to Eq. (5.2) to find impedance bandwidth of T-ETMAA.

The value of n is taken as 2 in Eq. (5.2) as T-ETMAA consists of two radiating
elements. Hence the extended formula for the determination of impedance bandwidth
of T-ETMAA is given by

Impedence bandwidth(%) =
[
A × h

λ0
√

εr

]
× (

√
2 × Se)At . (5.8)

Table5.1 shows the theoretical and experimental impedance bandwidths of T-
ETMAA.

5.2.1.3 Calculation of Impedance Bandwidth of TS-ETMAA

The rectangular slots are loaded at the center of the radiating elements of two element
slot-loaded equilateral triangular microstrip array antenna i.e. TS-ETMAA. There-
fore the area of the slot loaded patch (Asp) [19] and capacitance of the slot (Cs) [3]
are considered during the calculation of impedance bandwidth of TS-ETMAA. Slot
also resonates along with patch, which enhances the impedance bandwidth. The
capacitance parameter Cs associated to the slot is responsible for its resonance. This
Cs is evaluated using the transmission line model [3]. According to transmission line
model, the Cs is given by

Cs = �l
√

εe f f

c × Z0
, (5.9)

where �l is the extension length and εe f f is the effective dielectric constant. The
value of �l and εe f f are evaluated from (5.10) and (5.11), respectively. For these
calculations εe is taken from (5.5).

� l = 0.412h

[
(εe + 0.3)

(
W
h + 0.264

)

(εe − 0.258)
(
W
h

) + 0.8

]

, (5.10)
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εe f f = εr − εr − εe

1 + G
(

fr
f p

)2 , (5.11)

where

G =
(
Z0 − 5

60

) 1
2

+ (0.004 × Z0), (5.12)

f p = Z0

2μh
, (5.13)

μ0 = 4π10−9, (5.14)

Impedence bandwidth(%) =
[(

A × h

λ0
√

εr

)
× √

2 × Se × Asp

]
+ Cs, (5.15)

where:
Asp - area of the slot loaded patch excluding the area of rectangular slot, and
Cs - capacitance of the slot.

Hence the value of Asp in (5.15) is calculated by the formula

Asp = At − As . (5.16)

In the above equation the value of At is calculated with the help of (5.7) and As

is the area of rectangular slot which is given by

As = Ls × Ws, (5.17)

where:
Ls - length of the rectangular slot,
Ws - width of the rectangular slot.

The impedance bandwidth of TS-ETMAA is calculated using (5.15) and is
recorded in Table5.1.

5.2.1.4 Calculation of Impedance Bandwidth of FS-ETMAA

The radiating elements of TS-ETMAA are increased from two to four to con-
struct four element slot-loaded equilateral triangular microstrip array antenna i.e.
FS-ETMAA. The value of n is taken as 4 in (5.2) for FS-ETMAA as FS-ETMAA
consists of four radiating elements and a slot at their centre. The total capacitance
effect caused by slots in two radiating elements of FS-ETMAA is minimized by the
capacitance effect of slots produced by the remaining two elements of FS-ETMAA.
The slot in the elements acts as series capacitances and hence Cs decreases. The two
set of elements in FS-ETMAA are resonating independently and gives two operating
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Table 5.1 Verification of impedance bandwidth of corporate fed and aperture-coupled fed ETMA
and ETMAAs

Antennas Impedence bandwidth (%) Error(%)

Theoretical Experimental

CETMA 5.35 5.02 6.57

T-ETMAA 4.76 4.50 5.77

TS-ETMAA 7.12 7.35 3.12

FS-ETMAA 6.62 6.68 0.89

F-ETMAA 9.44 9.11 3.62

ES-ETMAA 9.96 10.20 2.35

FA-ETMAA 13.47 13.75 2.03

FAS-ETMAA 22.98 23.74 3.20

EAS-ETMAA 32.50 33.80 3.84

bands [30]. Therefore the total Cs due to slot in FS-ETMAA is subtracted as shown
in the following Eq. (5.18)

Impedance bandwidth(%) =
[(

A × h

λ0
√

εr

)
× √

4 × Se × Asp

]
− Cs . (5.18)

The values of Asp and Cs in (5.18) are determined with the help of (5.16) and
(5.9), respectively. The obtained theoretical impedance bandwidth of FS-ETMAA is
tabulated in Table5.1.

5.2.1.5 Calculation of Impedance Bandwidth of F-ETMAA

The F-ETMAA is the extension of T-ETMAA. The radiating elements of T-ETMAA
are increased from two to four to construct four element equilateral triangular
microstrip array antenna i.e. F-ETMAA. The (5.8) used for the calculation of
impedance bandwidth of T-ETMAA, is also used here for the impedance band-
width calculation of F-ETMAA. But the value of n is taken as 4 in this case (i.e. 2
is replaced by 4) as F-ETMAA consists of four radiating elements. From the experi-
mental results of the proposed antennas [30], it is clear that the antenna is resonating
for four bands of frequencies. This indicates that each element of F-ETMAA is res-
onating independently. The coupling effect caused by the total radiating area (At )
of the two adjacent elements in F-ETMAA if subtracted as shown in the following
Eq. (5.19), and the obtained overall impedance bandwidth now becomes equal to the
experimental impedance bandwidth of F-ETMAA. Hence (5.8) becomes

Impedence bandwidth(%) =
[(

A × h

λ0
√

εr

)
× √

4 × Se

]
− 2At . (5.19)
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The value of At is calculated using (5.7). The impedance bandwidth of F-ETMAA
obtained from (5.19) is recorded in Table5.1.

5.2.1.6 Calculation of Impedance Bandwidth of ES-ETMAA

The eight element slot-loaded equilateral triangular microstrip array antenna i.e.
ES-ETMAA is the extension of FS-ETMAA. The number of radiating elements is
increased from four to eight. The value of n is taken as 8 in (5.18) (i.e. 4 is replaced by
8) for ES-ETMAA as this antenna consists eight radiating elements. By comparing
the graphs of the experimental results of the said antennas [30], it is clear that, ES-
ETMAA resonates for four bands of frequencies by increasing elements from four
to eight. But the overall impedance bandwidth is more in this case when compared
to FS-ETMAA. The capacitance effect due to slot is similar in this case also as
explained in Sect. 5.2.1.4. The equation used to determine the impedance bandwidth
of ES-ETMAA is given by

Impedance bandwidth(%) =
[(

A × h

λ0
√

εr

)
× √

8 × Se × Asp

]
− Cs . (5.20)

The value of Asp is calculated using (5.16) and the value of Cs is calculated with
the help of (5.9). The impedance bandwidth of ES-ETMAA is determined using
(5.20) and is recorded in Table5.1.

5.2.1.7 Calculation of Impedance Bandwidth of FA-ETMAA

The F-ETMAA is fed by aperture-coupling to construct four element aperture-
coupled equilateral triangular microstrip array antenna i.e. FA-ETMAA. The radiat-
ing elements of FA-ETMAA are excited through coupling slots. The coupling slot
resonates nearer to the patch resonance [33]. The total area At of radiating elements
becomes virtually twice the actual area. Hence the basic Eq. (5.2), if multiplied by
2At , now predicts the impedance bandwidth of FA-ETMAA. Hence (5.2) becomes

Impedence bandwidth(%) =
[(

A × h

λ0
√

εr

)
× (

√
4 × Se)

]
× (2At ). (5.21)

The value of n in (5.2) is taken as 4 as FA-ETMAA consists of four radiating
elements. The value of At is calculated using (5.7). The impedance bandwidth of
FA-ETMAA is calculated using (5.21) and is given in Table5.1.
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5.2.1.8 Calculation of Impedance Bandwidth of FAS-ETMAA

The four element aperture-coupled slot-loaded equilateral triangular microstrip array
antenna i.e. FAS-ETMAA is the extension of FS-ETMAA. The radiating elements of
FS-ETMAA are fed by aperture-coupling to construct FAS-ETMAA. The equation
used for calculating the impedance bandwidth of FS-ETMAA is taken in this case
to determine the impedance bandwidth of FAS-ETMAA. But in FAS-ETMAA the
coupling slots are kept exactly below the slot etched in the radiating elements of
FAS-ETMAA separated by a substrate material. The coupling slot and slot in the
radiating elements are resonating independently [8]. Capacitance Cs associates for
each slot is in parallel, and hence Cs doubles the actual value. Therefore, 2Cs is
multiplied to modified equation of (5.2) as in (5.18) to now predict the impedance
bandwidth of FAS-ETMAA. Hence, the basic Eq. (5.6) for FAS-ETMAA becomes,

Impedance bandwidth(%) =
[(

A × h

λ0
√

εr

)
× (

√
4 × Se × Asp)

]
× 2Cs . (5.22)

The impedance bandwidth of FAS-ETMAA is calculated using the above formula
(5.22) and is tabulated in Table5.1.

5.2.1.9 Calculation of Impedance Bandwidth of EAS-ETMAA

The eight element aperture-coupled slot-loaded equilateral triangular microstrip
array antenna i.e. EAS-ETMAA is the extension of ES-ETMAA. The radiating ele-
ments of ES-ETMAA are fed by aperture-coupling to construct EAS-ETMAA. The
impedance bandwidth of this antenna is calculated by using (5.22). But the value
of n is taken as 8 (i.e. 4 is replaced by 8 in (5.22)) as EAS-ETMAA consists of 8
radiating elements. The obtained impedance bandwidth of EAS-ETMAA is given in
Table5.1.

Figure5.1 gives the clear view of the comparison of theoretical and experimental
impedancebandwidthof proposed antennas. From thegraph it is clear that, theoretical
and experimental results are with close agreement. From Table5.1 it is clear that,
the theoretical impedance bandwidth of CETMA, corporate and aperture coupled
fed ETMAAs are in good agreement with the experimental results. The last column
of the Table5.1 clearly tells that, the percentage errors between experimental and
theoretical results are minimum, which validate that the developed theory is with
good agreement with the designed equilateral triangular microstrip antennas and its
arrays.
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Fig. 5.1 Graph showing the
comparison of theoretical
and experimental impedance
bandwidth of proposed
antennas

5.3 Conclusion

The antennas reported in this study have been designed at X-band frequency of
9.4GHz and are fabricated using low-cost glass epoxy dielectric substrate mater-
ial. From the return loss [32] graph of CETMA, it is clear that, antenna resonat-
ing very close to the designed frequency of 9.4GHz. This validates the design of
CETMA. The dual band operation of antenna is easily achieved by simply increas-
ing the array elements of TS-ETMAA from two to four. This newly obtained antenna
FS-ETMAA is more useful for SAR application [24]. The multiband operation of
antenna is achieved by increasing the array elements in T-ETMAA from two to four
(F-ETMAA) with wider impedance bandwidth of 9.11%. This multiband operation
can be used in mobile computing network applications [32]. Further, the multiband
impedance bandwidth is enhanced from 9.11% to 10.20% by increasing array ele-
ments of F-ETMAA from four to eight and by using slot in the radiating elements
i.e. ES-ETMAA. This show that by increasing number of array elements, use of opti-
mum slot in array elements and use of corporate feed arrangement is more effective
in enhancing the impedance bandwidth and for converting single band into dual and
multiband operation of antenna.

The triple band operation of FA-ETMAA can be converted into dual wide bands
by inserting the slot at the center of radiating elements i.e. FAS-ETMAA which
is 1.73 times more when compared to the impedance bandwidth of FA-ETMAA.
The dual impedance bandwidth of FAS-ETMAA can be converted into a single
wide band of magnitude 33.80% by increasing array elements of FAS-ETMAA
from four to eight i.e. EAS-ETMAA. This shows the effect of slot and aperture
coupling is quite effective in enhancing the impedance bandwidth of ETMAAs. The
impedance bandwidth of EAS-ETMAA is 3.07 times more than found earlier [9].
Further, this antenna is simple in design, fabrication uses low cost substrate material
and is compact as it uses only eight array elements when compared to similar study in
which the antenna consisted of sixteen array elements arranged in four rows and four
columns to get nearly 11% impedance bandwidth by [9]. FromTable5.1 it is seen that
the experimental impedance bandwidths of CETMA, corporate and aperture coupled
fed ETMAAs are in good agreement with the theoretical impedance bandwidths.
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Chapter 6
Green Function of the Point Source
Inside/Outside Spherical Domain -
Approximate Solution

Nenad Cvetković, Miodrag Stojanović, Dejan Jovanović, Aleksa Ristić,
Dragan Vučković and Dejan Krstić

Abstract A brief review of derivation of two groups of approximate closed form
expressions for the electrical scalar potential (ESP) Green functions that originates
from the current of the point ground electrode (PGE) in the presence of a spher-
ical ground inhomogeneity are presented in this paper. The PGE is fed by a very
low frequency periodic current through a thin isolated conductor. One of approxi-
mate solutions is proposed in this paper. Known exact solutions that have parts in
a form of infinite series sums are also given in this paper. In this paper, the exact
solution is solely reorganized in order to facilitate comparison to the closed form
solutions, and to estimate the error introduced by the approximate solutions. Finally,
error estimation is performed comparing the results for the electrical scalar potential
obtained applying the approximate expressions and the accurate calculations. This
is illustrated by a number of numerical experiments.
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18000 Niš, Serbia
e-mail: dejan.krstic@znrfak.ni.ac.rs

© Springer International Publishing Switzerland 2016
S. Silvestrov and M. Rančić (eds.), Engineering Mathematics I,
Springer Proceedings in Mathematics & Statistics 178,
DOI 10.1007/978-3-319-42082-0_6

79



80 N. Cvetković et al.

6.1 Introduction

Problems of potential fields related to the influence of spherical material inhomoge-
neities, have a rather rich history of over 150 years in different fields of mathe-
matical physics. In the fields of electrostatic field, stationary and quasi-stationary
current field, and magnetic field of stationary currents, problems of a point source
in the presence of a spherical material inhomogeneity are gathered in the book by
Stratton [19] and all later authors that have treated this matter quote this reference
as the basic one. The authors of this paper will also consider the results from [19] as
the referent ones.

The exact solution shown in [19, pp. 201–205] related to the point charge in
the presence of the dielectric sphere, is obtained solving the Poisson, i.e. Laplace
partial differential equation expressed in the spherical coordinate system, using the
methodof separated variables.Unknown integration constants are obtained satisfying
the boundary conditions for the electrical scalar potential continuity and normal
component of the electric displacement at the boundary of medium discontinuity,
i.e. at the dielectric sphere surface. The obtained general solution for the electrical
scalar potential, besides a number of closed form terms, also consists of a part in a
form of an infinite series sum that has to be numerically summed.

Among work of other authors that have dealt with this problem, the following
will be cited in this paper: Hannakam [10, 11], Reiß [17], Lindell et al. [13, 14, 18]
and Velickovic [20, 21]. The last cited ones, according to the authors of this paper,
gave an approximate closed form solution of the problem. This is also characterized
in this paper. In [10], author through detail analysis manages to express a part of
general solution in a form of infinite sums by a class of integrals whose solutions
can not be given in a closed form, i.e. general solution of these integrals have to be
obtained numerically. In [17], the author considers a problem of this kind with an aim
to calculate the force on the point charge in the presence of a dielectric sphere. For
this problem solving he uses Kelvin’s inversion factor and introduces a line charge
image, which coincides with results from [10]. Starting with the general solution
from [19], authors in [13, 18] using different mathematical procedures practically
obtain the same solutions as in [10], considering separately the case of a point charge
outside the sphere [13] and the case of a point charge inside the sphere [18].

In [20, pp. 97–98] and [21] author deduces the closed form solution for the elec-
trical scalar potential of the point source in the presence of sphere inhomogeneity in
two steps. In the first one the author assumes a part of the solution that corresponds
to images in the spherical mirror and approximately satisfies boundary conditions on
the sphere surface. In the second step, assumed solutions are broadened by infinite
sums that approximately correspond to the ones that occur as an exact general solu-
tion in [19], i.e. in other words, approximately satisfy the Laplace partial differential
equation. Afterwards, unknown constants under the sum symbol are obtained satis-
fying the boundary condition of continuity of the normal component of total current
density on the sphere surface. These solutions enable summing of infinite sums and
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presenting the general solution in a closed form. Well known mathematical tools
from Legendre polynomial theory were used for the summing procedure.

Finally, the author of this paper has, analysing problems of this kind, started
from the general solution from [19] and primarily, reorganized certain parts in the
following way. A number of terms that correspond to images in the spherical mirror
with unknown weight coefficients are singled out. Remaining parts of the general
solution are infinite sums whose general, n-th term presents a product of an unknown
integration constant, factored function of radial sphere coordinate r−1(n+1) and rn , and
Legendre polynomial of the first kind Pn(cos θ). Afterwards, all unknown constants
are determined satisfying mentioned boundary conditions, but in such a way that
the condition for the electrical scalar potential continuity is completely satisfied,
while the condition for the normal component of total current density can be fulfilled
approximately. Approximate satisfying of this boundary condition is done in a way
to sum a part of the general solution expressed by infinite sums in a closed form.
This technique is well known and was very successfully, although under certain
assumptions, used by many authors especially in the high frequency domain. For
example, one of them is explicitly considered in [12], and one is implicitly given
in [15, 16].

Among five quoted solutions, three will be analyzed in this paper, i.e. the accurate
one from [19] as the referent one, approximate one from [20, 21] (which will be
characterized in detail since this was not done in [20, 21]) and the second one, also
approximate model, proposed in this paper.

In the second section of the paper three groups of cited expressions for the ESP
distribution will be given with minimal remarks about their deduction. In this part
of the paper, general expressions for the evaluation of error of the ESP calculation
will be also presented.

In the third section of the paper, a part of numerical experiments whose results
justify the use of approximate solutions and also present the error level done along
the way will be presented.

Finally, based on the presented theory and performed numerical experiments,
corresponding conclusion will be made and a list of used references will be given.

6.2 Theoretical Background

6.2.1 Description of the Problem

Spherical inhomogeneity of radius rs is considered. Sphere domain is considered
a linear, isotropic and homogenous semi-conducting medium of known electrical
parameters σs, εs and μs = μ0 (σs - specific conductivity, εs = ε0εrs - permittivity
and μ0 - permeability). The remaining space is also a linear, isotropic and homoge-
nous semi-conducting medium of known electrical parameters (σ1, ε1 = ε0εr1 and
μ1 = μ0).
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Fig. 6.1 The PGE outside
the sphere

The spherical, i.e. Descartes’ coordinate systems with their origins placed in the
sphere centre are associated to the problem. At the arbitrary point P ′, defined by
the position vector r′ = r ′ ẑ, a point current source is placed (so-called Point ground
electrode - PGE), and is fed through a thin isolated conductor by a periodic current
of intensity IPGE and very low angular frequency ω,ω = 2π f .

The location of the PGE can be outside the sphere, r ′ ≤ rs , or inside of it, r ′ ≥ rs ,
which also goes for the observed point P , defined by the vector r, at which the
potential and quasi-stationary current and electrical field structure are determined,
i.e. for r ≥ rs the point P is outside the sphere, and for r ≤ rs inside of it.

In accordance with the last one, the electrical scalar potential ϕ..(r), total cur-
rent density vector J..(r) and electrical field vector E..(r), will be denoted by two
indexes i, j = 1, s where the first one “i” denotes the medium where the quantity
is determined, and the other one “ j” the medium where the PGE is located. For
example: ϕs1(r) presents the potential calculated inside the sphere, r ≤ rs , when the
PGE is located outside the sphere, r ′ ≤ rs . Also, in order to systemize text and ease
its reading, the solutions that correspond to references [19–21], will be denoted in
the exponent as follows: S-Stratton, V-Velickovic and R-Rancic, respectively. For
example: ϕs

11(r) presents the solution for the potential according to [19]—Stratton
outside the sphere, r ≥ rs , when the PGE is located at point P ′ that is also outside
the sphere, r ′ ≥ rs .

Problemgeometry is illustrated graphically in Figs. 6.1 and 6.2,where Fig. 6.1 cor-
responds to the case when the PGE is placed outside the sphere, whilst Fig. 6.2 refers
to its location inside of the sphere. Singled out images in the spherical mirror, i.e. P ′′
points with corresponding position vector r′′ = r ′′ ẑ, where r ′′ = r2s /r

′ is Kelvin’s
inversion factor of the spherical mirror, are also given in figures. Distance from the
PGE, point P ′, to the observed point P is denoted by r1, r1 = √

r2 + r ′2 − 2rr ′ cos θ ,
and distance from the image in the spherical mirror, point P ′, to the point P by r2,
r2 = √

r2 + r ′′2 − 2rr ′′ cos θ .
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Fig. 6.2 The PGE inside the
sphere

Finally, the following labels were used in the paper: σ̄i = σi + jωεi - complex
conductivity of i-th medium, i = 1, s; ¯εri = εri − jεi i = εri − j60σiλ0 - complex
relative permittivity of i-th medium, i = 1, s and λ0—wave-length in the air; γ̄i =
( jωμi σ̄i )

1/2—complex propagation constant of i-th medium, i = 1, s; n̄i j = γ̄i/γ̄ j

- complex refraction index of i-th and j-th medium, i, j = 1, s and R1s, T1s, Ts1—
quasi-stationary reflection and transmission coefficients defined by the following
expression:

R1s = σ̄1 − σ̄s

σ̄1 + σ̄s
= n̄21s − 1

n̄21s + 1
= T1s − 1 = −Rs1 = 1 − Ts1.

The time factor exp( jωt) is omitted in all relations.

6.2.2 Exact ESP Solution According to [19]

6.2.2.1 Electrical Scalar Potential (ESP)

The ESP function for any position of the PGE must satisfy the Poisson, i.e. Laplace
partial differential equation, which are, in accordance with introduced labels for the
spherical coordinate system, as follows:

• The PGE outside the sphere, i = 1, s, r ′ ≥ rs , Fig. 6.1,
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Δϕi1 = 1
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∂r

(
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∂ϕi1
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+ 1

sin θ

∂

∂θ

(
sin θ

∂ϕi1

∂θ

)
=

= − IPGE

2πσ̄s

δ(r − r ′)δ(θ)

r2 sin θ
, r ≥ rs, (6.1)

Δϕi1 = 1

r2
∂

∂r
(r2

∂ϕi1

∂r
) + 1

sin θ

∂

∂θ

(
sin θ

∂ϕi1

∂θ

)
= 0, r ≤ rs, (6.2)

• The PGE inside the sphere, i = 1, s, r ′ ≤ r s , Fig. 6.2,

Δϕis = 1

r2
∂

∂r

(
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∂ϕi1

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂ϕi1

∂θ

)
= 0, r ≥ rs, (6.3)

Δϕis = 1

r2
∂

∂r

(
r2

∂ϕi1

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂ϕi1

∂θ

)
=

= − IPGE

2πσ̄1

δ(r − r ′δ(θ)

r2 sin θ
, r ≤ rs, (6.4)

where δ(r − r ′) and δ(θ) are Dirac’s δ -functions.
After the differential equations, for example (6.1) and (6.2), are solved applying the
method of separating variables, the unknown integration constants are determined
so the obtained solution satisfies the condition for the finite value of the potential
at all points r ∈ [0,∞), except at r = r′. Remaining integration constants are
determined from the electrical scalar potential boundary condition,

ϕ11(r = rs, θ) = ϕs1(r = rs, θ), (6.5)

and the one for the normal component of the total current density on the disconti-
nuity surface, i.e.,

σ̄1
∂ϕ11(r, θ)

∂r
|r=rs = σ̄s

∂ϕs1(r, θ)

∂r
|r=rs . (6.6)

Finally, according to [19, Sect. 3.23, pp. 204, Eqs. (20)–(21)], the exact solution
for the potential distribution is for r ′ ≥ rs :

ϕs
11(r) = IPGE

4πσ̄1

[
1

r1
+

∞∑

n=0

n(σ̄1 − σ̄s)

nσ̄s + (n + 1)σ̄1

r2n+1
s

r ′n+1

Pn(cos θ)

rn+1

]

, r ≥ rs, (6.7)

ϕs
s1(r) = IPGE

4πσ̄1

∞∑

n=0

(2n + 1)σ̄1rn

nσ̄s + (n + 1)σ̄1

Pn(cos θ)

r ′n+1
, r ≤ rs, (6.8)
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where Pn(cos θ) is Legendre polynomial of the first kind.
Keeping in mind the duality of electrostatic and quasi-stationary very low fre-
quency current fields, in relation to the solution from [19, Eqs. (20)–(21)]:

• Labels introduced in expressions (6.7) and (6.8) fit the described geometry and
used labels;

• q/ε2 is substituted by IPGE/σ̄1; and
• instead of permittivity, corresponding indexed complex conductivities are used,
i.e. σ̄s instead of ε1, and σ̄1 instead of ε2.
When expressions (6.7) and (6.8) are reorganized in such a way so they can be
compared to approximate expressions, and additionally labelled with S - Stratton,
the following exact solution is obtained:

ϕs
11(r) = Vs

[
rs
r1

+ R1s
rs
r ′

(
rs
r2

− rs
r

)
−

− R1sT1s
2

∞∑

n=1

1

n + T1s/2

(
r ′′

r

)n+1

Pn(cos θ)

]

, r ≥ rs, (6.9)

ϕs
s1(r) = Vs

[
T1s

rs
r1

− R1s
rs
r ′ −

− R1sT1s
2

rs
r ′

∞∑

n=1

1

n + T1s/2

( r

r ′
)n

Pn(cos θ)

]

, r ≤ rs, (6.10)

where Vs = IPGE/(4πσ̄1rs), and R1s, T1s , are reflection and transmission coeffi-
cients, respectively.
In the same way, final solutions for Eqs. (6.3) and (6.4), for r ′ ≤ rs , that satisfy
conditions (6.5) and (6.6) are:

ϕs
1s(r) = Vs

[
T1s

rs
r1

− R1s
rs
r

−

− R1sT1s
2

rs
r ′

∞∑

n=1

1

n + T1s/2

(
r ′

r

)n+1

Pn(cos θ)

]

, r ≥ rs, (6.11)

ϕs
ss(r) = Vs

[
T1s
Ts1

rs
r1

− R1s
T1s
Ts1

rs
r ′
rs
r2

− R1s −

− R1sT1s
2

∞∑

n=1

1

n + T1s/2

( r

r ′′
)n

Pn(cos θ)

]

, r ≤ rs, (6.12)

Comment: The last two expressions are not explicitly given in [19], as (6.7) and
(6.8).
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6.2.2.2 Quasi-Stationary Electrical and Current Field Structure

Once the potential distributions (6.9)–(6.10) and (6.11)–(6.12) are determined, the
structure of the quasi-stationary field vectors are:

• Electrical field vector:

Ei j
∼= −gradϕi j = −∂ϕi j

∂r
r̂ − 1

r

∂ϕi j

∂θ
θ̂, i, j = 1, s; (6.13)

• Total current density vector:

Jtot
i j = σ̄iEi j , i, j = 1, s; (6.14)

• Conduction current density vector:

Ji j = σiEi j , i, j = 1, s. (6.15)

6.2.3 ESP Solution According to [20, pp. 97–98] and [21]

The ESP solution proposed in [21] considers the following. Firstly, for the case
r ′ ≥ rs , solution is proposed in a form:

ϕ11
∼= IPGE

4πσ̄1

[
1

r1
+ C1

1

r2
+ C2

1

r

]
, r ≥ rs, (6.16)

ϕs1
∼= IPGE

4πσ̄1

[
C3

1

r1
+ C4

]
, r ≤ rs, (6.17)

where C1−C4 are unknown constants that are determined satisfying the condition
(6.5) and the one that the solution ((6.16), (6.17)) is also valid for the case of sphere
with great radius. This solution is identical to the first three terms of the exact solution
(6.9) and the first two of (6.10).

Since, this way obtained solution ((6.16), (6.17)) does not satisfy the boundary
condition (6.6), the author broadened solutions (6.16) and (6.17) with two infinite
series of general form:

∞∑

n=1

C5n

(rs
r

)±n
Pn(cos θ), (6.18)

where C5n are unknown constants, for “+n” in (6.18) the (6.16) is broadened and
(6.17) for “−n”. Unknown constants C5n are determined using the condition (6.6),
having the ESP final solution:
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φV
11(r) ∼= Vs

[
rs
r1

+ R1s
rs
r ′

(
rs
r2

− rs
r

)
+

+ R1sT1s
2

ln
r − r ′′ cos θ + r2

2r

]
, r ≥ rs, (6.19)

φV
s1(r) ∼= Vs

[
T1s

rs
r1

− R1s
rs
r ′ +

+ R1sT1s
2

(rs
r ′

)
ln

r ′ − r cos θ + r1
2r ′

]
, r ≤ rs . (6.20)

Label V-Velickovic in the exponent denotes that solutions (6.19) and (6.20) cor-
respond to the ones from [21], and Vs is previously introduced constant that appears
also in (6.9) and (6.10).

It should be noted that the introduced extension (6.18) for “+n”, approximately
satisfies the general solution of the Laplace equation, i.e. (6.7), where rs/r is factored
by (n + 1).

Similarly, the solutions for the potential when r ′ ≤ rs , i.e. the PGE is located
inside the sphere, are also given in [21]. The solutions are as follows:

φV
1s(r) ∼= Vs

[
T1s

rs
r1

− R1s
rs
r

+

+ R1sT1s
2

(rs
r ′

)
ln

r − r ′ cos θ + r1
2r

]
, r ≥ rs, (6.21)

φV
ss(r) ∼= Vs

[
T1s
Ts1

rs
r1

− R1s
T1s
Ts1

rs
r ′
rs
r2

− R1s+

+ R1sT1s
2

ln
r ′′ − r cos θ + r2

2r ′′

]
, r ≤ rs . (6.22)

6.2.4 ESP Solution Proposed in This Paper

If the general solution from [19] is reorganized under the sum symbol into a form
that is for r ′ ≥ rs given by (6.9) and (6.10), the following is obtained:

ϕ11(r) ∼= IPGE

4πσ̄1

[
1

r1
+ C1

rs
r ′

1

r2
+ B0

rs
r

+
∞∑

n=1

Bn

(rs
r

)n+1
Pn(cos θ)

]

, r ≥ rs,

(6.23)
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ϕs1(r) ∼= IPGE

4πσ̄1

[

D1
1

r1
+ A0 +

∞∑

n=1

An

(
r

rs

)n

Pn cos θ

]

, r ≤ rs, (6.24)

where C1, D1, Bn and An, n = 0, 1, . . . , are unknown constants. Starting from the
boundary condition (6.5) we have 1 + C1 = D1 and Bn = An, n = 0, 1, . . . The
other boundary condition gives C1 = R1s , so D1 = T1s . If the condition (6.6) is
approximately satisfied, we also have A0 = B0 = −R1s/r ′ and constants Bn, n =
1, 2, . . ., related to (6.6) are determined from the condition

− R1sT1s
2r ′

∞∑

n=1

(rs
r ′

)n
Pn(cos θ) =

∞∑

n=1

nBn Pn(cos θ). (6.25)

In (6.6) remains a term in a form of a sum, i.e. the error “e” of satisfying the
boundary condition (6.6) for the radial component of total current density is

e{J tot
11r } = IPGE

4πrs

∞∑

n=1

Bn Pn(cos θ) =

= −σ̄1Vs
R1sT1s
2r ′

∞∑

n=1

1

n

(rs
r ′

)n
Pn(cos θ) =

= σ̄1Vs
R1sT1s
2r ′ ln

r ′ − rs cos θ + r1s
2r ′ , (6.26)

where r1s is r1 for r = rs , and Bn = An, n = 1, 2, . . . , from (6.25).
If we substitute the solution for Bn = An, n = 1, 2, . . . , from (6.25) into (6.24)

and (6.23) and using known tools from Legandre polynomial theory, we have:

φR
11(r) ∼= Vs

[
rs
r1

+ R1s
rs
r ′

(
rs
r2

− rs
r

)
+

+ R1sT1s
2

(rs
r ′

) (rs
r

)
ln

r − r ′′ cos θ + r2
2r

]
, r ≥ rs, (6.27)

φR
s1(r) ∼= Vs

[
T1s

rs
r1

− R1s
rs
r ′ +

+ R1sT1s
2

(rs
r ′

)
ln

r ′ − r cos θ + r1
2r ′

]
, r ≤ rs . (6.28)

The ESP solution when r ′ ≤ rs is obtained in a similar way. After obtaining the
unknown constants, satisfying the condition (6.5) and approximately satisfying the
condition (6.6), we have:
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φR
1s(r) ∼= Vs

[
T1s

rs
r1

− R1s
rs
r

+ R1sT1s
2

(rs
r

)
ln

r − r ′ cos θ + r1
2r

]
, r ≥ rs,

(6.29)

φR
ss(r) ∼= Vs

[
T1s
Ts1

rs
r1

− R1s
T1s
Ts1

rs
r ′
rs
r2

− R1s+

+ R1sT1s
2

ln
r ′′ − r cos θ + r2

2r ′′

]
, r ≤ rs . (6.30)

6.2.5 Analysis of the Presented ESP Solutions

• In contrast to the exact solution [19], both approximate ones have a closed form.
• Obtained approximate solutions (6.27) and (6.28) are very similar to (6.19) and
(6.20). The only difference is between (6.19) and (6.27) in factor rs/r that factors
the Ln-function. The same respectively goes for solutions (6.29) and (6.30) when
compared to approximate ones (6.29) and (6.30).

• Solutions (6.19) and (6.20) satisfy boundary conditions (6.5) and (6.6), but do not
have a general solution for r ≥ rs that follows from the solution for the Poisson,
i.e. Laplace equation [19]. The same goes for (6.21) and (6.22). A solution to one
technical problem of this kind, solved applying this “V” model, is given in [3, 4].

• Solutions (6.27) and (6.28) satisfy the general solution for the Poisson, i.e. Laplace
partial differential equation, satisfy boundary condition (6.5), and approximately
satisfy boundary condition (6.6). The same goes for solutions given by (6.29) and
(6.30).

• Expressions (6.27)–(6.30) can also be obtained starting from accurate ones (6.9)–
(6.12) under a condition n1s 	 1. In that case, the addend T1s/2 in the denominator
under the sum symbol is | T1s/2 |=| n̄21s/(1 + n̄21s) |= 1, so, it can be neglected in
relation to the sum index n ≥ 1. Since, for example the sum term in (6.9) is then
approximately −∑∞

n=1
1
n (

r ′′
r )n+1Pn(cos θ) = r ′′

r ln r−r ′′ cos θ+r2
2r , then, the expres-

sion (6.9) becomes identical to (6.27). Similarly, we obtain remaining expressions
(6.28)–(6.30). Accordance of the results obtained applying the approximate model
“R” and the exact one “S” is better for all values of the refraction coefficient
n1s < 1, then for the case of n1s > 1. This can be easily concluded analysing the
given expressions “S” and “R”. This conclusion is also confirmed by numerical
experiments.
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6.2.6 Error Estimation Using the Approximate Expressions
for the ESP

All the ESP expressions, accurate ones (6.9)–(6.12) according to [19], approximate
ones (6.19)–(6.22) according to [20, 21] and approximate ones according to R-
model proposed in this paper, evolved towards the same form so they could be
directly compared. Firstly, the terms that associate to spherical mirror imaging are
singled out, and they correspond to images with weight coefficients multiplied by
quasi-stationary reflection R1s , or transmission T1s , coefficients. Remaining part of
the solution is an infinite sum in the case of the exact solution, and in the case of
approximate ones, a closed form expressed by Ln-functions.

Error estimation of the ESP calculation is done according to the general expression

δQ = 100 | ϕs
i j (r) − ϕ

Q
i j (r)

ϕs
i j (r)

|, in [%], (6.31)

where i, j = 1, s and Q = V, R.
Relative error estimation of satisfying boundary condition (6.6) can be evaluated

according to the following expression:

δQ = 100 | e{J tot
11r }

−σ̄1∂ϕs
11/∂r

|r=rs , in [%]. (6.32)

6.3 Numerical Results

Based on the presented ESP expressions a number of numerical experiments were
performed in order to establish the validity of the proposed approximate solutions
compared to the exact ESP calculations using expressions (6.9)–(6.12) according
to [19].

The results presented graphically in the figures that follow will be denoted as:

• S-model, Eqs. (6.9)–(6.12), [19];
• V-model, Eqs. (6.19)–(6.22), [20, 21]; and
• R-model, Eqs. (6.27)–(6.30), i.e. the ESP model proposed in this paper.

The first group of numerical results deals with the electrostatic problem of the
point charge (PCh) in the presence of the spherical dielectric inhomogeneity. In
this case εi = ε0εri , i = 1, s, should replace σ̄1 in all the expressions, having Vs =
Q/(4πε1rs) and p1s = ε1/εs . Normalized ESP (R-model, solid line) versus radial
distance r for different values of angle θ = 0◦, 5◦, 45◦, and 90◦ and different values
of relative permittivity εrs = 1, 1.5, 2, 3, 5, 10, 20, 36, 80 and 1000 as parameters,
are given in the left column of the Fig. 6.3 (the PCh inside the sphere: r ′ = 0.7rs).
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Fig. 6.3 Point charge inside dielectric sphere. Normalized ESP and corresponding relative error
versus radial distance r for different values of angle θ and relative permittivity εrs taken as parameters
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For the sake of comparing, the exact normalized ESP values according to S-model
(solid circle) are presented in the same figures. Corresponding relative error, δ in [%],
calculated for both R- and V- models is presented in the right column of Fig. 6.3.
Normalized ESP (R- and S-models) and corresponding relative errors (R- and V-
models) for the case of r ′ = 1.5rs are presented in Fig. 6.4 (the PCh outside the
sphere).

The second group of numerical experiments consider the quasi-stationary field,
i.e. the case of the semi-conducting spherical inhomogeneity and the PGE fed by
VLF current, f = 50 [Hz]. The ESP is calculated as a function of r , and angle
θ = 0◦, 45◦ and ratio p1s = σ1/σs = 0.1, 10 are taken as parameters. The rest of
system parameters are given in figures. For the sake of comparing, the ESP values
obtained applying the R-, S- and V-models are presented in the same figures. For
each example, relative errors δ in [%], done using the approximate models are also
calculated. The results for the case of the PGE placed inside the sphere, r ′ = 0.9rs ,
are presented in Fig. 6.5, and in Fig. 6.6 the results for the case of the PGE placed
outside the sphere, r ′ = 1.1rs .

Based on graphically illustrated results one can conclude that the relative error for
the R-model is always δ < 1% when the refraction index is n1s < 1. For the other
case, n1s > 1, the maximal error is δ < 15%, but only for the worst case, i.e. when
the field point P is on the sphere surface, r = rs . This conclusion does not apply
on the V-model, i.e. the error δ is for certain parameters in a wide range of radial
distance r greater than 30% (see Figs. 6.5 and 6.6).

6.4 Technical Application

Considering the fact that the author uses a method of numerical solving of inte-
gral equations when dealing with technical problems of modelling a design of EM
field structure of wire structures in the presence of inhomogeneous media, it is very
important to have simple expressions for Green function for that purpose.

One of those models refers to problems of modeling and design of groundings
in the presence of different ground inhomogeneities. Thus, direct application of the
models deployed in this paper combined with quasi-stationary image theory is on
modeling and design of grounding electrical characteristics in the presence of a
spherical and semi-spherical ground inhomogeneity. Direct technical application on
real technical problems are schematically illustrated in the Fig. 6.7 labeled as a–d,
[1, 2, 5–9].

6.5 Conclusion

A new approximate solution for the Green function of the ESP that originates from
PGE current in the presence of a spherical ground inhomogeneity, when the PGE is
fed by a VLF current through a thin isolated ground conductor, was proposed in this



6 Green Function of the Point Source Inside/Outside Spherical Domain … 93

Fig. 6.4 Point charge outside dielectric sphere. Normalized ESP and corresponding relative error
versus radial distance r for different values of angle θ and relative permittivity εrs taken as parameters
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Fig. 6.5 The PGE inside the sphere. Normalized ESP, ϕis/Vs , i = 1, s, and corresponding relative
errors versus radial distance r , for different values of geometry parameters and relation p1s = σ1/σs
as parameters
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Fig. 6.6 The PGEoutside the sphere. Normalized ESP,ϕi1/Vs , i = 1, s, and corresponding relative
errors versus radial distance r , for different values of geometry parameters and relation p1s = σ1/σs
as parameters



96 N. Cvetković et al.

Fig. 6.7 Direct technical
application to real technical
problems
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paper. The obtained solution is compared to the exact one from [19, pp. 201–205]
and also, according to author’s opinion, to the approximate solution from [20, pp.
97–98] and [21].

This conclusion (regarding the V-model) is theoretically explained and numeri-
cally verified in this paper. Both approximate solutions are in a closed form, which
is not the case for the exact one according to [19].

Based on the numerical experiments, one can conclude that using the proposed
approximate solution, smaller error in ESP evaluation is done, then when the approx-
imate solution from [20, 21] is used, where the error is estimated in relation to the
exact solution from [19]. This is also evident analysing the presented ESP expres-
sions. The error is almost negligible in special cases, e.g. when the refraction coef-
ficient is n1s < 1.

Based on everything that was presented, one can conclude that the proposed
solution can be successfully used for modelling grounding characteristics in the
presence of a spherical and also semi-spherical ground inhomogeneity, but also for
other problems of this kind.

The proposed approximate R-model can be also applied to derivation of expres-
sions for the Green function of electrical dipole in the presence of a spherical material
inhomogeneity and also on other problems of this kind.
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Chapter 7
The Electromagnetic–Thermal Dosimetry
Model of the Human Brain

Mario Cvetković and Dragan Poljak

Abstract The electromagnetic–thermal dosimetry model for the human brain
exposed to EM radiation is developed. The electromagnetic (EM)model based on the
surface integral equation (SIE) formulation is derived using the equivalence theorem
for the case of a lossy homogeneous dielectric body. The thermal dosimetry model of
the brain is based on the form of Pennes’ equation of heat transfer in biological tissue.
The numerical solution of the EM model is carried using the Method of Moments
(MoM) while the bioheat equation is solved using the finite element method. Devel-
oped electromagnetic thermal model has been applied in internal dosimetry of the
human brain to assess the absorbed electromagnetic energy and consequent temper-
ature rise due to exposure of 900MHz plane wave.

Keywords Electromagnetic-thermal model ·Human brain ·Numerical dosimetry ·
Surface integral equation approach

7.1 Introduction

The exposure of a modern man to artificially generated EM fields has raised some
controversies as well as unanswered questions regarding the potentially harmful
effects on the human health. This is, in particular, the case for the human head and
brain exposed to radiation of nowadays ubiquitous cellular phones and base station
antennas. Due to this fact the set of techniques for measuring and for calculation
of the absorbed EM radiation in the human body referred to as the electromagnetic
dosimetry have been developed.
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It is a well established fact that the principal biological effect of high frequency
EM radiation is predominantly thermal in nature [1, 10, 12]. If the body absorbs high
enough dose of EM power, it could lead to the harmful effects due to a breakdown of
the protective thermoregulatory mechanisms. These can be quantified by the analysis
of the thermal response of the particular body organ [17].

A direct experimental measurement of the brain thermal response in humans is
not possible, and the indirect methods such as magnetic resonance imaging cannot
record fine variations in temperature, hence lacking necessary resolution. On the
other hand, animal studies are questionable due to a difference in interspecies size and
tissue parameters. Consequently, the computational modeling provides the powerful
alternative.

This paper describes an electromagnetic–thermal dosimetry model of the human
brain. In the first part the electromagnetic model based on the SIE formulation is
derived by using the equivalence theorem and the appropriate boundary conditions
for the case of lossydielectric object of an arbitrary shape.The secondpart outlines the
thermal dosimetry model of the human brain based on the form of Pennes’ equation
of heat transfer in biological tissue. The obtained numerical results for the electric
and magnetic fields, respectively, on the brain surface are presented, as well as the
distribution of specific absorption rate (SAR) and the related temperature increase.

7.2 Electromagnetic Dosimetry Model

The human brain exposed to incident EM radiation is treated as a classical scattering
problem.

The human brain, represented by an arbitrary shape S of a complex parameters
(ε2,µ2) is placed in a free space with given properties (ε1,µ1), as shown in Fig. 7.1a.
The complex permittivity of the brain is given by

ε2 = ε0εr − j
σ

ω
, (7.1)

where ε0 is permittivity of the free space, εr is relative permittivity, σ is electrical
conductivity of the brain, and ω = 2π f is the operating frequency. The value for the
permeability of the brain is that of free space, i.e. µ0 = 4π × 10−7 Vs/Am, due to
the fact that biological tissues do not posses magnetic properties.

The lossy homogeneous object representing the human brain is exposed to the
electromagnetic field (Einc,Hinc). This incident field is present regardless of the
scattering object.Due to the scattering object, a scatteredfield denoted by (Esca,Hsca)
is also present. The electric and magnetic fields exterior and interior to the surface S
are, (E1,H1) and (E2,H2), respectively.

Applying the equivalence theorem, the equivalent problems for both regions 1 and
2 are formulated in terms of the equivalent electric and magnetic current densities J
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(a)

(b) (c)

Fig. 7.1 Scattering from arbitrarily shaped lossy homogeneous dielectric (human brain) placed
in the incident field (Einc,Hinc). a Original problem, b Region 1 equivalent problem, c Region 2
equivalent problem

andM placed on the scatterer surface S [3, 9, 16, 22]. Two equivalent problems are
shown on Fig. 7.1b and c, for the external and internal region, respectively.

In case of region 1 equivalent problem, shown in Fig. 7.1b, the field inside is
assumed zero, (E2 = 0,H2 = 0), allowing one to arbitrarily choose material prop-
erties for this region. Selecting the properties of the exterior region, a homogeneous
domain of (ε1,µ1) is obtained, enabling the use of the free space Green’s function.
The boundary conditions on the surface S are satisfied by introducing the equiva-
lent surface currents J1 and M1 at the surface S. Applying the same procedure for
the region 2, it follows another homogeneous domain of (ε2,µ2). Here as well, the
equivalent surface currents J2 = −J1 and M2 = −M1, as shown in Fig. 7.1c, are
introduced at the surface S.

Since both equivalent problems represent the equivalent current densities radiating
in a homogeneousmedium, following expressions for the scattered fields due to these
sources can be used:

Esca
n (J,M) = − jωAn − ∇ϕn − 1

εn
∇ × Fn, (7.2)

Hsca
n (J,M) = − jωFn − ∇ψn + 1

µn
∇ × An, (7.3)
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where n = 1, 2 is index of the medium where equivalent surface currents radiate,
and ϕ, F, ψ i A are electric and magnetic, scalar and vector potentials, respectively.
These potentials are given in terms of integrals over the sources, i.e.

An(r) = µn

∫

S
J(r ′)Gn(r, r ′) dS′, (7.4)

Fn(r) = εn

∫

S
M(r ′)Gn(r, r ′) dS′, (7.5)

ϕn(r) = j

ωεn

∫

S
∇′

S · J(r ′)Gn(r, r ′) dS′, (7.6)

ψn(r) = j

ωµn

∫

S
∇′

S · M(r ′)Gn(r, r ′) dS′, (7.7)

where the electric and magnetic charge from (7.6) and (7.7) is replaced with the
divergence of the electric and magnetic current, respectively, featuring the use of a
continuity equation. Gn(r, r ′) is homogeneous medium Green’s function given by

Gn(r, r ′) = e− jkn R

4πR
, R = |r − r ′|, (7.8)

where R is the distance from the observation point r to the source point r ′, and kn is
the wave number in medium n.

Applying the boundary conditions for the electric field at the interface of the two
equivalent problems, i.e. the surface S, the following is obtained

[−Esca
n (J,M)

]
tan =

{[
Einc

]
tan

, n = 1,
0 , n = 2.

(7.9)

Equation (7.9) represents the electric field integral equation (EFIE) formulation
in the frequency domain for the lossy homogeneous object, i.e. the human brain. The
incident field Einc is known, while J and M represent unknown surface currents, to
be solved for.

Substituting (7.4)–(7.7) into (7.2) and (7.3), and the resulting expressions
into (7.9), we arrive at the coupled set of integral equations

jωµn

∫

S
J(r ′)Gn(r, r ′) dS′−

− j

ωεn
∇

∫

S
∇′

S · J(r ′)Gn(r, r ′) dS′+
+∇ ×

∫

S
M(r ′)Gn(r, r ′) dS′

=
{[

Einc
]
tan

, n = 1,
0 , n = 2.

(7.10)
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Following some mathematical manipulations on the second and third integral of
(7.10), the nabla operator can be transferred to the Green’s function leading to

jωµn

∫

S
J(r ′)Gn(r, r ′) dS′−

− j

ωεn

∫

S
∇′

S · J(r ′)∇Gn(r, r ′) dS′+
+

∫

S
M(r ′) × ∇′Gn(r, r ′) dS′

=
{[

Einc
]
tan , n = 1,

0 , n = 2,
(7.11)

where the property for the Green’s function gradient, ∇Gn(r, r ′) = −∇′Gn(r, r ′),
is used in (7.11).

7.2.1 Numerical Solution

For complex geometry of surface S, such as the human brain, the coupled integral
equations set (7.11) cannot be solved analytically, hence the numerical approach is
necessary. The corresponding numerical solution is carried out via the method of
moments (MoM). It is a technique for finding an approximate solution to the system
of a linear operator equations. Inserting the approximated function back into the
operator equation, while multiplying it by a set of a known test functions, leads to
a system of a linear equations. Solving the matrix system, one obtain the unknown
coefficients from which equivalent surface currents are determined.

This work features an efficient MoM scheme in which the equivalent electric and
magnetic currents J and M in (7.11), are first expanded by a linear combination of
basis functions fn and gn , respectively [5]

J(r) =
N∑

n=1

Jnfn(r), (7.12)

M(r) =
N∑

n=1

Mngn(r), (7.13)

where Jn and Mn are unknown coefficients, and N is the number of elements used
to discretize the surface S.

The brain surface S is discretized using the triangular elements or patches enabling
one to use the Rao-Wilton-Glisson (RWG) basis functions [18] specially developed
for triangular patches.

RWG function fn is defined on T+
n and T−

n pair of triangles that share a common
edge (hence, sometimes the name edge-element is used), while on the rest of the
surface S function vanishes.
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Fig. 7.2 RWG basis
function fn(r) defined on a
pair of triangles in R3 [18]

Namely, the function is given by

f±
n (r) =

⎧
⎨

⎩

ln
2A±

n
ρ±
n , r ∈ T±

n ,

0 , r /∈ T±
n ,

(7.14)

where ln is the edge length at the interface of triangles T+
n and T−

n , while A+
n and A−

n
are the surface areas of those triangles. The vector ρ +

n = r − r+
n is directed from the

free vertex of T+
n and ρ −

n = r−
n − r is directed to the free vertex of T−

n , as shown
on Fig. 7.2.

While the surface electric current J is approximated by the RWG function fn ,
the surface magnetic current M is approximated by gn = n̂ × fn , i.e. the function
point wise orthogonal to the RWG function. The unknown equivalent currents J(r′)
and M(r′) from (7.11) are substituted by (7.12) and (7.13). Equation (7.11) is next
multiplied by the set of a test functions fm , where fm = fn , and integrated over the
surface S. After some mathematical manipulations, it follows

jωµi

N∑

n=1

Jn

∫

S
fm(r) ·

∫

S′
fn(r ′)Gi dS

′ dS+

+ j

ωεi

N∑

n=1

Jn

∫

S
∇S · fm(r)

∫

S′
∇′
S · fn(r ′)Gi dS

′ dS±

±
N∑

n=1

Mn

∫

S
fm(r) · [n̂ × gn(r ′)] dS+

+
N∑

n=1

Mn

∫

S
fm(r) ·

∫

S′
gn(r′) × ∇′Gi dS

′ dS

=
⎧
⎨

⎩

∫

S
fm(r) · Einc dS , i = 1,

0 , i = 2,

(7.15)
where subscript i is now the index of the medium. The third and the fourth integrals
on the left hand side of (7.15) represent the residual term and the Cauchy principal
value, respectively, of the last integral from (7.11). The residual term is calculated
in the limiting case when r → r ′.

After extracting the two sums, (7.15) can be written in the form of the following
linear equations system
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N∑

n=1

(
jωµi Amn,i + j

ωεi
Bmn,i

)
Jn +

N∑

n=1

(
Cmn,i + Dmn,i

)
Mn =

{
Vm , i = 1,
0 , i = 2,

(7.16)
or in the matrix form as

[Z] · {I} = {V}, (7.17)

where Z and V represents the system matrix, and the source vector, respectively,
while Amn,i , Bmn,i , Cmn,i and Dmn,i represent the surface integrals calculated for
each m − n combination of basis and testing functions, respectively.

Solution to the (7.17) is a vector I containing the unknown coefficients Jn and Mn .
From these coefficients, the equivalent surface electric and magnetic currents J and
M, respectively, placed on the surface S of the dielectric object, i.e. the human brain,
can be determined from (7.12) and (7.13), respectively. Knowing these currents, the
electric field can be determined at an arbitrary point in space, i.e. the electric field
inside the human brain represented by parameters (ε2,µ2), can be calculated from
the following integral expression:

E2(r) = − jωµ2

∫

S
J(r ′)G2(r, r ′) dS′ −

− j

ωε2

∫

S
∇′

S · J(r ′)G2(r, r ′) dS′ −

−
∫

S
M(r ′) × ∇G2(r, r ′) dS′. (7.18)

Once obtained the electric field distribution inside the brain, the distribution of
the SAR can be readily found using the following relation

SAR = σ

2ρ
|E|2, (7.19)

where σ and ρ are the electric conductivity and the brain tissue density, respectively.
The SAR distribution can be latter used as the input information to the thermal part
of the brain model.

7.3 Thermal Dosimetry Model

It is well known that two most important factors for sustaining biological system are
the metabolism and the blood flow [14]. The complex network of blood vessels sig-
nificantly complicates mathematical modeling of heat transfer in biological tissues,
unless a distributed heat source or sink is assumed.

The most commonly used model taking the flow of blood in this manner is the
Pennes bioheat transfer equation [15]
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∇ · (λ∇T ) + wρbcb (Ta − T ) + Qm + Qext = ρC
∂T

∂t
. (7.20)

According to (7.20) the temperature rise in the given volume of tissue is based on
the energy balance between the conductive heat transfer, the heat generated due to
metabolic processes Qm , the heat loss (generation) due to blood perfusion, and the
influence of external heat sources Qext . The volumetric perfusion rate is given by ω,
ρb and cb are the density and the specific heat capacity of blood, respectively, λ is the
thermal conductivity of the tissue, while Ta is the temperature of the arterial blood.

The analytical solutions of the bioheat transfer equation (7.20) are limited to cases
of relatively high degree of symmetry [21], thus making numerical approach neces-
sary for problemswith complex geometry of the domain arising for realistic exposure
scenarios. In this work the problem of determining the temperature distribution in
the human brain is addressed using the finite element method (FEM) [7].

The steady-state temperature distribution in the brain, exposed to an incident time
harmonic EM field, is governed by the stationary form of the bioheat equation (7.20)

∇ · (λ∇T ) + Wbcb (Ta − T ) + Qm + Qext = 0 (7.21)

extended with Qext . This term represents the amount of heat generated per unit time
per unit volume due to absorption of EM energy in the biological tissue [4, 6, 7]:

Qext = ρ · SAR, (7.22)

where SAR is defined by (7.19).
The bioheat equation (7.21) is supplemented by the corresponding boundary con-

ditions, as shown in Fig. 7.3.
This work features the use of Neumann or the natural boundary conditions given

by

− λ
∂T

∂ n̂
= hs (T − Tamb) , (7.23)

where, λ is the thermal conductivity of the brain, and hs is the convection coefficient
between the surface and the surroundings, T and Tamb are the surface and the ambient

Fig. 7.3 Illustration of the
finite element mesh with
boundary conditions on the
brain surface
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temperature, respectively. Unit normal n̂ is directed from the surface S, as shown on
Fig. 7.3.

Note that the heat loss due to radiation, and the forced convection are neglected.
Neverthless, (7.23) satisfactorily describes the heat exchange between the surface of
the brain and the environment.

Since the human brain is separated from the scalp by various other tissues, when
using the homogeneous brain model, it is necessary to account for the heat exchange
through all of them. This is ensured by using the effective thermal convection coef-
ficient hef f [23] between the brain and the surroundings.

The widely adopted value for the effective thermal convection coefficient, typical
for the human brain, is hef f = 1.2 × 10−3 W/cm2 ◦C [20]. This value is used in our
homogeneous thermal model of the brain, as well.

7.3.1 Finite Element Solution

The finite element formulation of (7.21) is based on the weighted residual approach.
The approximate solution of (7.21) is expanded in terms of the known basis functions
Ni and the unknown coefficients αi

T (x, y, z) =
m∑

i=1

Ni (x, y, z)αi , (7.24)

where i is the node index, m is the number of nodes per finite element, and Ni is the
basis function given by

Ni (x, y, z) = 1

D
(Vi + ai x + bi y + ci z) , i = 1, 2, 3, 4, (7.25)

where expressions for the coefficients ai , bi , ci , Vi and D can be found in [19].
Multiplying (7.21) by a set of weighting functions Wj and integrating over the

domain Ω = V , yields

∫

Ω

[∇ · (λ∇T ) + Wbcb (Ta − T ) + Qm + Qext ]Wj dΩ = 0. (7.26)

Applying the same procedure on (7.23), it follows

− λ

∫

∂Ω

∂T

∂ n̂
W j dS =

∫

∂Ω

hsTWj dS −
∫

∂Ω

hsTambWj dS. (7.27)

Taking the integration by parts in the first term of (7.26), the Gauss’ divergence
theorem is applied, resulting in
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∫

Ω

∇ · [
(λ∇T )Wj

]
dΩ = λ

∫

∂Ω

∂T

∂ n̂
W j dS. (7.28)

Inserting (7.28) into (7.26), and after some rearranging, a suitable expression for
the FEM implementation is obtained [7]

∫

Ω

λ∇T · ∇Wj dΩ +
∫

Ω

WbcbTWj dΩ =

=
∫

∂Ω

λ
∂T

∂ n̂
W j dS +

∫

Ω

(WbcbTa + Qm + Qext )Wj dΩ. (7.29)

Having discretized the brain surface by triangular elements, performed in the
electromagnetic part of the model [5], the interior of the brain depicted as Ω in
Fig. 7.3 was discretized by the tetrahedral elements.

Implementing the Galerkin-Bubnov procedure, followed by the standard finite
element discretization of (7.29), the weak formulation for the finite element domain
Ωe can be written in the matrix form

[K ]e {T }e = {M}e + {P}e , (7.30)

where [K ]e, {M}e and {P}e are the finite element matrix

[K ]eji =
∫

Ωe

λe∇Wi · ∇Wj dΩe +
∫

Ωe

W e
b c

e
bWiWj dΩe, (7.31)

the flux vector on the boundary ∂Ωe of the finite element

{M}ej =
∫

∂Ωe

λe ∂T

∂ n̂
W j dSe, (7.32)

and the finite element source vector

{P}ej =
∫

Ωe

(We
b c

e
bTa + Qe

m + Qe
ext )Wj dΩe, (7.33)

respectively.
Solving (7.31)–(7.33) for each N elements, the global matrix is assembled from

the contribution of the local finite element matrices, while the global flux and the
source vectors are assembled from the local flux and the local source vectors, respec-
tively:

[K ] {T } = {M} + {P} . (7.34)

The solutionof thematrix system (7.34) is the vector {T }whose elements represent
the values of temperature in the tetrahedra nodes.
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7.4 Computational Example

The numerical results for our homogeneous three-dimensional brain model are pre-
sented in this section. The dimensions of the average adult human brain are used
(length 167 mm, width 140 mm, height 93 mm, volume of 1400 cm3) [2]. The sur-
face of the brain is disretized using the T = 696 triangular elements and N = 1044
edge-elements, while the interior of the brain is discretized using 1871 tetrahedral
elements. The frequency dependent parameters of the human brain are taken from
[8]. The value for the relative permittivity and the electrical conductivity of the
brain are εr = 45.805 and σ = 0.766 S/m, respectively, taken as the average values
between white and gray matter at 900 MHz. Value for the density of the brain tissue
is ρ = 1046 kg/m3.

The incident plane wave of power density of P = 5mW/cm2 is directed perpen-
dicular to the right side of the brain (positive x coordinate), the polarization of the
wave is in the horizontal (y coordinate) direction, while the operating frequency is
900 MHz.

Using our EM model based on the SIE formulation [5], the distribution of the
electric and magnetic fields on the brain surface, shown on Fig. 7.4, are determined
first.

From the electric field values in the brain interior, SAR can be calculated
using (7.19). The obtained peak and average SAR values are 0.856 W/kg and 0.174
W/kg, respectively. The calculated results show that the peak SARvalue in the human
brain does not exceed the limit set by ICNIRP [11] as a basic restriction for localized
SAR (in the head and the trunk), for the occupational exposure (10W/kg). Figure7.5
shows the distribution of the SAR obtained for the brain model.
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Fig. 7.4 Distribution of electric and magnetic fields on the brain surface. Horizontally polarized
plane wave of frequency 900 MHz
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Fig. 7.5 Distribution of SAR for the case of horizontally polarized plane wave of frequency 900
MHz, power density P = 5 mW/cm2
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Fig. 7.6 Temperature rise in the human brainmodel due to incident 900MHz horizontally poralized
plane wave, power density P = 5mW/cm2
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The human brain parameters used in the thermal dosimetry model are taken from
[13]: the heat conductivity λ = 0.513W/m ◦C, the volumetric perfusion rate of blood
Wb = 33297 kg/m3, the specific heat capacity of blood cb = 1 J/kg ◦C, the heat
generated due to metabolism Qm = 6385 W/m3, and the arterial blood temperature
Tart = 37 ◦C.

Figure7.6 shows the results for the temperature rise in the human brain. Themaxi-
mum temperature rise isT = 7.11 × 10−3 ◦C, which is rather negligible compared
to the values proven to cause adverse health effects.

7.5 Conclusion

This work deals with the electromagnetic–thermal dosimetry model for the human
brain exposed to EM radiation. The electromagnetic model based on the surface
integral equation formulation is first derived from the equivalence theorem and using
the boundary conditions for the electric field. The human brain is represented by an
arbitrarily shaped lossy homogeneous dielectric. The thermal model of the brain is
based on the extended form of the Pennes’ bioheat equation supplemented by the
natural boundary condition on the brain surface. The numerical results for the electric
and magnetic fields are presented for the brain exposed to a radiation of 900MHz
horizontally polarized plane wave. The calculated peak SAR value in the human
brain does not exceed the basic restriction for the occupational exposure set by the
ICNIRP. Also, the resulted temperature rise in the human brain is rather negligible
compared to established health based threshold.
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4. Cvetković, M., Čavka, D., Poljak, D., Peratta, A.: 3D FEM temperature distribution analysis of
the human eye exposed to laser radiation. Adv. Comput. Methods Exp. Heat Transf. XI. WIT
Trans. Eng. Sci. 68, 303–312 (2009)
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Chapter 8
Quasi-TEM Analysis of Multilayered
Shielded Microstrip Lines Using Hybrid
Boundary Element Method

Mirjana Perić, Saša Ilić and Slavoljub Aleksić

Abstract In this paper multilayered shielded structures have been analyzed using
the hybrid boundary element method. The method is based on the equivalent elec-
trodes method, on the point-matching method for the potential of the perfect electric
conductor electrodes and for the normal component of electric field at boundary sur-
face between any two dielectric layers. The quasi-static TEM analysis is applied. The
characteristic parameters (characteristic impedance and effective relative permittiv-
ity) of shielded multilayered microstrip lines are determined. The method can be
use to analyze microstrip transmission lines with arbitrary configurations, arbitrary
number of conductors and dielectric layers, infinitesimally thin or finite metalliza-
tion thickness and finite width of substrate. It is a simple and an accurate procedure
comparing to the other numerical and semi-numerical methods. In order to verify the
obtained results, they have been compared with the finite element method and results
that have already been reported in the literature. A very good results agreement with
available data can be noticed.

Keywords Characteristic impedance · Hybrid boundary element method · Multi-
layered structures · Shielded microstrip lines

8.1 Introduction

Analysis of microwave transmission lines is the main subject of research in the world
for more than six decades. From the first days of the stripline origin, back in 1949,
and its modifications that followed in the coming years, an “army” of scientists trying
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to analyze it simpler and to design the structures, which, due to their characteristics,
have found wide application in microwave integrated circuits, for microwave filters
and antennas design, delay lines, directional couplers, etc.

Microstrip lines with multilayered media have been investigated during the years
using various numerical and analytical techniques such as variational method [1, 5],
boundary element method (BEM)/method of moments [2, 4, 7, 11], conformal map-
ping, so-called moving perfect electric wall (MPEW) method [22, 23], finite element
method (FEM) [10, 13, 15], finite difference method (FDM) [3], etc. Those methods
evaluate, in different manners, the capacitance per unit length of the microstrip line,
from which the characteristic impedance can be calculated. The application of some
of those methods is limited by the number of dielectric layers, conductor’s thickness
or shape. The multiple image method can be used for deriving Green’s function for
the microstrip line, but there is difficult to extend it to the case of multilayered and
shielded stripline. The equivalent electrodes method (EEM) [25] was successfully
applied for analysing transmission and microstrip lines in [26]. Generally, the appli-
cation of the EEM depends on the Green’s function for the observed problem. The
method is based on the combination of analytical derivation of the Green’s function
in the closed form and the numerical procedure for solving simplified problems.

Combining the EEM with the boundary element method, in order to solve prob-
lems of arbitrarily shaped multilayered structures, where finding the Green’s function
is very difficult or even impossible, an improvement of the EEM has been done. This
method, called in [18] the hybrid boundary element method (HBEM), is developed
at our Department. It is based on the EEM, on the point-matching method (PMM) for
the potential of the perfect electrode conductor (PEC) electrodes and for the normal
component of electric field at the boundary surface between any two dielectric layers.
Until now, it is successfully applied to solve large scale of electromagnetic problems
[8, 9, 16, 19, 20, 27]. The method is capable to analyze microstrip transmission lines
with arbitrary configurations, arbitrary number of conductors and dielectric layers,
infinitesimally thin or finite metallization thickness and finite width of substrate. It
is valid if a conductor touches a dielectric interface, straddles a dielectric interface
or is a totally within one dielectric media.

In this paper, as an illustration of the HBEM application, numerical solutions
for shielded microstrip lines with multilayered media are presented. A quasi-TEM
analysis is applied, which is often adequate for microwave frequencies. Quasi-static
methods are based on the assumption that the dominant mode of the wave, which
propagates along the transmission line, can be approximated (with good accuracy)
by the transversal electromagnetic (TEM) wave. This assumption is valid on low
microwave frequencies (typically by 5–10 GHz). If frequency increases, then the
value of longitudinal components of electromagnetic field rises, and hence, it cannot
be neglected.

The characteristic impedance and effective relative permittivity of several shielded
microstrip lines will be determined. With the aim to test the accuracy of the method,
the results will be compared to those obtained by the FEMM software [12] and the
results already reported in the literature.
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8.2 Theoretical Background

In order to explain the application of the hybrid boundary element method, the
multilayered shielded microstrip line with an arbitrary cross-section and inhomo-
geneous dielectric layer is considered, Fig. 8.1. The following procedure can also
be applied for analysis of open microstrip line structures. The each subregion
of the layer is isotropic, linear, homogeneous dielectric with different permittivi-
ties εi (i = 1, . . . , N ). The line is uniform along z-axis. The quasi-TEM analysis
assumes that the dominant mode propagating along the line is the TEM mode.

During the HBEM application, each arbitrary shaped surface of the PEC electrode
as well as an arbitrary shaped boundary surface between any two dielectric layers is
divided into a large number of segments. Each of those segments on PEC electrode
is replaced by equivalent electrodes (EEs) placed at their centres. The equivalent
electrodes can be: toroidal electrodes, in the case of 2D problems with axial sym-
metry, cylindrical electrodes (line charges) for planparallel problems and spherical
electrodes for 3D systems. The potential of equivalent electrodes, obtained in this
manner, is the same as the potential of PECs themselves:

ϕ = ϕk, k = 1, . . . , N . (8.1)

where ϕk is the potential of k-th electrode.
The segments at any boundary surfaces between two layers are replaced by dis-

crete equivalent total charges placed in the air. The Green’s function for the electric
scalar potential of the charges is used. However, the problem occurs during the
determination of polarized charges at the boundary surfaces of any two layers,
because it must be taken into consideration a dielectric influence on the electric
potential and electric field distribution. In the electrostatic field theory it is well

Fig. 8.1 Cross-section of a
shielded microwave
transmission line
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known that the influence of dielectric can be replaced with polarized (surface and
volume) charges, placed in the air. In that way, the electric field strength and electric
potential will remain unchanged at all system points. Inside an isotropic, linear and
homogeneous dielectric, the polarized volume charges, ρv, does not exist,

ρv = −divP = 0, (8.2)

where P is the polarization vector. Thus, only the polarized surface charges, ηv, exist
at the dielectric surfaces.

Total surface charges at boundary surface of two dielectric layers are equal to the
polarized surface charges, because the free charges at this surface do not exist. The
free charges exist only at the PEC surfaces.

The boundary surface between any two dielectric layers is divided into a large
number of segments. Those segments are replaced with equivalent electrodes placed
at the centers of the segments. The electrodes are placed in the air and represent the
polarized charges.

At the boundary surface of two dielectric, the boundary condition for the normal
components of polarization vector is satisfied, and

ηv = P2n − P1n. (8.3)

Using described procedure, the equivalent HBEM system is formed, Fig. 8.2.
At the boundary surface between the PEC and the dielectric, the free and polar-

ized charges exist. Their sum gives the total charges. But, the satisfying results are
obtain using an approximation that polarized charges at that boundary surface can
be neglected and only free charges taken into account. Those charges are placed in
the corresponding dielectric layer. At the boundary surface between the PEC and the
air, only free surface charges exist, placed in the air. The polarized charges exist at

Fig. 8.2 HBEM model
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the boundary surface between two dielectrics or dielectric and the air. Those EEs are
placed in the air. The electric potential for the system from Fig. 8.2 is:

ϕ = ϕ0 −
Ku∑

k=1

q ′
uk

2πεN
ln

√
(x − xuk)

2 + (y − yuk)
2 −

−
Ks∑

k=1

q ′
sk

2πε1
ln

√
(x − xsk)

2 + (y − ysk)
2 −

−
N−1∑

i=1

Mi∑

m=1

q ′
tim

2πε0
ln

√
(x − xtim)2 + (y − ytim)2, N ≥ 2, (8.4)

where

• Ku is the number of equivalent electrodes at the inner conductor, with free line
charges q ′

uk (k = 1, . . . , Ku);
• Ks is the number of equivalent electrodes at the outer conductor, with free line

charges q ′
sk (k = 1, . . . , Ks);

• Mi is the number of EEs on the i-th boundary surface between any two dielectric
layers, with polarized line charges q ′

tim (m = 1, . . . , Mi , i = 1, . . . , N − 1);
• N − 1 is the number of boundary surfaces (between two dielectric layers);
• (xuk, yuk), (xsk, ysk) and (xtim, ytim) are EE coordinates;
• εn (n = 1, . . . , N ) is the relative permittivity of n-th dielectric layer;
• ϕ0 is an additive constant which value depends on the position of zero potential

point.

Ntot = Ku + Ks +
N−1∑

i=1

Mi + 1 (8.5)

is total number of unknowns.
The electric field strength is

E = −grad(ϕ) = Ex x̂ + Ey ŷ, (8.6)

and the corresponding components:

Ex = −∂ϕ

∂x
=

Ku∑

k=1

q ′
uk

2πεN

x − xuk

(x − xuk)
2 + (y − yuk)

2 +

+
Ks∑

k=1

q ′
sk

2πε1

x − xsk

(x − xsk)
2 + (y − ysk)

2 +
N−1∑

i=1

Mi∑

m=1

q ′
tim

2πε0

x − xtim

(x − xtim)2 + (y − ytim)2 ,

(8.7)
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Ey = − ∂ϕ

∂y
=

Ku∑

k=1

q ′
uk

2πεN

y − yuk

(x − xuk)
2 + (y − yuk)

2 +

+
Ks∑

k=1

q ′
sk

2πε1

y − ysk

(x − xsk)
2 + (y − ysk)

2 +
N−1∑

i=1

Mi∑

m=1

q ′
tim

2πε0

y − ytim

(x − xtim)2 + (y − ytim)2 . (8.8)

The relation between the normal component of electric field strength and total
surface charges, ηt , is

n̂im · Eim
(0+) = −εi+1

ε0(εiεi+1)
ηtim, ηtim = q ′

tim

�lim
, m = 1, . . . , Mi , i = 1, . . . , N − 1,

(8.9)
where n̂im is the unit normal vector oriented from the layer εi+1 towards the layer εi
and Δlim is the segment width.

Positions of the matching points for the potential of the inner and the outer PECs
are: xun = xuk + δnkaeuk n̂uk · x̂ , yun = yuk + δnkaeuk n̂uk · ŷ, xsn = xsk + δnkaesk n̂sk ·
x̂ , ysn = ysk + δnkaesk n̂sk · ŷ and aeuk = Δluk/4, aesk = Δlsk/4, where δnk is the
Kronecker’s delta function,

δnk =
{

1, n = k;
0, n �= k.

(8.10)

while aeuk and aesk are corresponding EEs radii.
The boundary surface matching points’ for the normal component of the elec-

tric field on the i-th boundary surface are: xtin = xtim + δnmaetim n̂tim · x̂ and ytin =
ytim + δnmaetim n̂tim · ŷ, where aetim = Δltim/π are the EEs radii.

It is necessary to add only one equation to the system of linear equations for the
electrical neutrality of the whole observed microwave transmission line,

Ku∑

k=1

q ′
uk +

Ks∑

k=1

q ′
sk = 0. (8.11)

The aim is to obtain the quadratic system of linear equations with unknown free
charges of PECs, total charges per unit length at boundary surfaces between dielectric
layers, and unknown additive constant ϕ0 that depends on the chosen referent point
for the electric scalar potential. Using the PMM for the potential of the inner and the
outer conductor given by (8.4), the PMM for the normal component of the electric
field (8.9), and the electrical neutrality condition (8.11), it is possible to determine
unknown free charges per unit length on conductors, total charges per unit length on
the boundary surfaces between layers and the unknown constant ϕ0.

Increasing the number of the EEs the distances between them becomes smaller.
In order to keep stability of the formed system of equations it is necessary that the
distances between EEs be larger than their radius. The quadratic system of linear
equations, formed in that way, is well-conditioned. The system matrix always has
the greatest values at the main diagonal.
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After solving the system of linear equations it is possible to calculate capacitance
per unit length of the microwave transmission line given by

C ′ =
Ku∑

k=1

q ′
uk

U
. (8.12)

Characteristic impedance of the transmission line is calculated as

Zc = Zc0√
εeff

r

, (8.13)

where εeff
r = C ′/C ′

0 is the effective (dielectric) permittivity, and Zc0 is the charac-
teristic impedance of the transmission line without dielectrics (free space).

The expressions given in (8.12) and (8.13) are for the single line, but the same
procedure can be applied to find the capacitance and characteristic impedance of
coupled microwave transmission lines for even and odd modes.

8.3 Numerical Results

On the basis of described procedure, the computer codes have been written to obtain
numerical solutions for several multilayered structures.

A shielded, multilayered microstrip line with finite metallization thickness is
considered, Fig. 8.3.

The structure of this type has been recently used as a part of integrated microwave
circuits, [24]. In some of the papers which deal with this structures, it is considered
that strip has zero thickness.

Convergence of the effective relative permittivity and the characteristic impedance
as well as the computation time are shown in Table 8.1. Microstrip line parameters are:
εr1 = εr3 = 1, εr2 = 9.35, a/w = 4.0, b/w = 2.0, h1/w = 0.8, h2/w = 0.4, h3/w =

Fig. 8.3 Shielded
multilayered microstrip line
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Table 8.1 Convergence of the results and computation time

N Ntot εeff
r Zc [Ω] t(s)

50 189 1.5903 45.519 1.25

100 375 1.6707 44.982 4.7

150 556 1.6971 44.808 10.4

200 735 1.7106 44.723 18.1

250 919 1.7186 44.680 28.5

300 1100 1.7246 44.642 41.0

350 1281 1.7289 44.614 56.5

400 1465 1.7317 44.602 74.9

450 1644 1.7341 44.587 94.6

500 1825 1.7362 44.573 116.5

550 2011 1.7378 44.566 138.8

Fig. 8.4 Equipotential
contours

0.8 and t/w = 0.4. N is the initial number and Ntot denotes the total number of
unknowns. A good convergence of the results is achieved in a short computation
time.

The “computation time” is a term which describes the time spent for determining
the number of unknowns using initial number, their positioning, forming a matrix
elements, solving the system of linear equations, the characteristic parameters deter-
mination. Most of the calculation time goes to the matrix fill.

Equipotential contours are shown in Fig. 8.4 for: εr1 = εr3 = 1, εr2 = 9.35, a/w =
4.0, b/w = 2.0, h1/w = 0.7, h2/w = 0.6, h3/w = 0.7 and t/w = 0.1. The influence
of dielectric layers is evident.

In order to verify the obtained HBEM values, a comparison of HBEM results
with FEMM software [12] and results from [15, 28] is given in Fig. 8.5. The char-
acteristic impedance as a function of ratio a/b and t/b obtained using the FEMM
is denoted with dashed line, the HBEM results are shown with solid line, and the
results from [15, 28] with square and circle points, respectively. In [15] the finite
element method is applied. The Green’s function method is used in [28]. A very good
results agreement can be noticed. The influence of the side walls on the characteristic
impedance values can be neglected if the walls are sufficiently far away from the strip
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Fig. 8.5 Characteristic
impedance distribution for:
εr1 = εr3 = 1, εr2 = 9.35,
b/w = 2.0, h1/w = 0.8,
h2/w = 0.4, and h3/w = 0.8
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(a/b > 5). Increasing the strip thickness, the characteristic impedance decreases.
Shielded microstrip line parameters are: εr1 = εr3 = 1, εr2 = 9.35, b/w = 2.0,
h1/w = 0.8, h2/w = 0.4, and h3/w = 0.8. During the HBEM application, the total
number of unknowns was about 1500. All calculations in this paper were performed
on computer with dual core INTEL processor 2.8 GHz and 4 GB of RAM.

An influence of relative permittivity εr3 on characteristic impedance distribution
for different values of parameter h2/w is given in Fig. 8.6. The parameters of the
shielded microstrip line from Fig. 8.3 are: εr1 = 1, εr2 = 9.35, a/w = 4.0, b/w =
2.0, h1/w = h3/w = (b − h2)/w and t/w = 0.2.

From Fig. 8.6 is evident that increasing the relative permittivity of third layer, the
characteristic impedance decreases. Also, increasing the height of second layer, the
characteristic impedance decreases. The HBEM results have also been compared
with the FEMM [12] results. An excellent results agreement is obtained.

A special case of the structure presented in Fig. 8.3 is obtained for ε1 = ε2 = ε

and ε3 = ε0, Fig. 8.7.
The characteristic impedance distribution versus h/w and εr , obtained for: a/w =

4.0, b/w = 2.0 and t/w = 0.2 is shown in Fig. 8.8. Also, the HBEM and FEMM
results comparison is given in this figure. The results deviation is less than 1 %.

Increasing the substrate height the characteristic impedance increases first, then
decreases. The reason for this variation is due to the influence of shield upper side.

Using the HBEM coupled structures can also be analyzed. The shielded microstrip
line with partial dielectric support is shown in Fig. 8.9 [17].

The convergence of the results for the characteristic impedance and effective
relative permittivity is shown in Table 8.2. Both modes (“even” and “odd”) are taken
into account. The parameters of the microstrip line are: εr1 = 1, εr2 = 2.35, a/w =
b/w = 2.5, d/w = 0.5 and t/w = 0.01. The good results convergence is obtained.
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Fig. 8.6 Characteristic
impedance distribution
versus εr3 and h2/w for:
εr1 = 1, εr2 = 9.35,
a/w = 4.0, b/w = 2.0,
h1/w = h3/w = (b − h2)/w
and t/w = 0.2
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Fig. 8.7 Shielded microstrip
line as a special case of
Fig. 8.3

Fig. 8.8 Characteristic
impedance distribution
versus h/w and εr for:
a/w = 4.0, b/w = 2.0 and
t/w = 0.2
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Fig. 8.9 Shielded coupled
microstrip line with partial
dielectric support
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Table 8.2 Convergence of the results and computation time

“even” mode “odd” mode

Ntot εeff
r Zc [Ω] εeff

r Zc [Ω] t(s)

784 1.1058 66.702 2.0388 36.869 20.0

872 1.1394 65.732 2.0157 37.096 25.3

960 1.1621 65.101 2.0005 37.252 29.2

1044 1.1790 64.646 1.9901 37.362 35.6

1128 1.1920 64.306 1.9825 37.444 41.6

1216 1.2022 64.043 1.9768 37.509 47.4

1300 1.2104 63.835 1.9722 37.561 54.7

1384 1.2173 63.661 1.9686 37.603 61.5

1468 1.2231 63.516 1.9656 37.639 72.3

1565 1.2282 63.392 1.9632 37.669 81.3

1640 1.2325 63.288 1.9610 37.696 90.9

Equipotential curves for “even” and “odd” modes are shown in Figs. 8.10 and 8.11,
respectively. The microstrip parameters are: εr1 = 1, εr2 = 2.35, a/w = b/w = 2.5,
d/w = 0.5 and t/w = 0.1.

Table 8.3, taken from [17], shows the comparison of the obtained HBEM results
for the characteristic impedance (for “even” mode) with the ones from [6, 14, 21],
for parameters: εr1 = 1, εr2 = 2.35, a/w = b/w = 2.5, d/w = 0.5 and t/w = 0,
adopted from [21]. Good results agreement, within 3 %, is obtained. Some disagree-
ment is the result of different values of parameter t/w in the case when the FEMM
and HBEM are applied. In those two cases the conductors are of finite thickness,
while in the other ones are infinitesimally thin.

Influences of dielectric substrate height and relative permittivity εr2 are given
in Figs. 8.12 and 8.13 for “even” and “odd” modes, respectively. Some of typical
materials which can be used as microstrip substrate are mentioned in [29]: εr3 =
3.78 (quartz), εr3 = 6.1 (99 % berylia), εr3 = 9.35 (99.5 % alumina) and εr3 = 11
(sapphire).
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Fig. 8.10 Equipotential
contours for “even” mode

Fig. 8.11 Equipotential
contours for “odd” mode

Table 8.3 Comparison of
results (“even” mode)

Method/Reference Zc [Ω]
Gish and Graham [6] 62.50

FEMM [12], t/w = 0.01 61.63

Naiheng and Harrington [14] 65.02

FDM [17] 64.67

FDM [21] 61.53

HBEM, t/w = 0.01 63.29
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Fig. 8.12 Characteristic
impedance distribution
versus εr2 and d/w for:
εr1 = 1, a/w = b/w = 2.5
and t/w = 0 (“even” mode)
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Fig. 8.13 Characteristic
impedance distribution
versus εr2 and d/w for:
εr1 = 1, a/w = b/w = 2.5
and t/w = 0 (“odd” mode) r2
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In “even” mode, increasing the substrate height, the characteristic impedance
decreases, Fig. 8.12. Increasing the substrate height in the “odd” mode, the charac-
teristic impedance increases first, then decreases as the conductor approaches to the
shield upper side, Fig. 8.13. The dielectric permittivity of substrate also has the influ-
ence on the characteristic impedance value. Increasing the substrate permittivity, the
characteristic impedance values decrease in both modes.

In Figs. 8.12 and 8.13 the HBEM results have been compared with the FEMM
results. A very good results agreement can be noticed.
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8.4 Conclusion

This paper presents the hybrid boundary element method application for shielded
microstrip lines analysis. The method is capable to solve arbitrary shaped, multilay-
ered configuration of microstrip lines, with finite strip thickness, without any numer-
ical integration. The quasi-TEM analysis is applied. The convergence of the results
is very good and the computation time is very short. Analysis of shielded microstrip
lines with two and three layers was performed for different values of microstrip para-
meters and different configurations. The results comparison with those reported in
the literature and obtained using software package gives a very good agreement.

Although this paper describes only the HBEM application on shielded microstrip
structures, the method can be applied without any restriction for analysis of all
types of microwave transmission lines. In the following research, the method will be
extended to the structures with bi-isotropic and anisotropic layers.
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Chapter 9
Modified Transmission Line Models
of Lightning Strokes Using New Current
Functions and Attenuation Factors

Vesna Javor

Abstract New engineering modified transmission line models of lightning strokes
are presented in this paper. Their computational results for lightning electromagnetic
field (LEMF) at various distances from lightning discharges are in good agreement
with experimental results that are usually used for validating electromagnetic, engi-
neering and distributed-circuit models. Electromagnetic theory relations, thin-wire
antenna approximation of a lightning channel without tortuosity and branching, so
as the assumption of perfectly conducting ground, are used for electric and magnetic
field computation. An analytically extended function (AEF), suitable for approxi-
mating channel-base currents in these models, may also represent typical lightning
stroke currents as given in IEC 62305-1 Standard, as well as the IEC 61000-4-2
Standard electrostatic discharge current.

Keywords Lightning electromagnetic field · Modified transmission line model ·
Return stroke

9.1 Introduction

Modeling of lightning strokes and computation of lightning electromagnetic field
(LEMF), based on these models, are important for electromagnetic compatibility
applications such as estimation of lightning effects and lightning protection of power
systems, electrical equipment and other objects in such a field. Experimental results
are given in literature for lightning discharge currents at striking points, so as electric
and magnetic field values and waveshapes at some distances from lightning channels,
usually at the ground surface or nearby above. Based on the channel-base current,
speed of the propagating front and channel luminosity, an engineering model is
an attempt to achieve agreement between calculated and measured LEMF results at
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distances from tens of meters to hundreds of kilometers. In engineering models, either
current distribution or charge density distribution along the channel is considered,
and afterwards, LEMF is calculated based on it. Although lightning events differ very
much from each other, there are some noticed features in experimental LEMF results
of typical lightning strokes. Engineering models from literature provide a few of these
features, but neither one provides all of them [17, 19]. Calculated LEMF values and
waveshapes may differ from experimental results at a certain distance more than
at other, which depends on the applied model. Although channel-base current and
return stroke speed are more studied in literature than current attenuation factors and
channel-heights, the latter two have great influence on LEMF results. Channel-base
current, as the most important for direct lightning discharges, is defined in IEC 62305
Standard [8] for typical lightning strokes. However, current attenuation factors are
usually taken in one of just a few forms given in literature [19]. Return stroke speed
is often taken as constant in all models, although it is well known that it varies
along the channel. It is based on optical measurements. The influence of lightning
channel-height on LEMF results is rarely addressed to [14].

Review and evaluation of lightning stroke models from literature, so as their
computational LEMF results are given in detail in papers [17, 19]. Most of com-
parisons usually refer to experimental results given in [1, 2, 16, 20] for natural
lightning, and other references for triggered lightning. Although double-exponential
function has been widely used for approximation of channel-base currents, results
are often given in literature for Heidler’s function [7], the sum of a few of its terms,
the sum of it and other functions [17], or other pulse functions from literature. For
the first stroke lightning currents having more discontinuities in waveshapes than
other typical lightning strokes, the sum of seven Heidler’s function terms is needed
for their representation [3]. More terms mean more parameters to adjust and often
non-analytical solutions of current integrals and derivatives which are necessary for
LEMF calculations.

An analytically extended function (AEF), proposed as the sum of same terms
with different parameters values [15], results in the variety of waveshapes [11, 12]
that may represent typical lightning stroke currents [9] given in IEC 62305-1 Stan-
dard, measured lightning stroke currents, but also the IEC 61000-4-2 Standard [5]
electrostatic discharge current, as proposed in [13].

New engineering models and their current attenuation factors are presented in
Sect. 9.2 of this paper. AEF and results of using this function for representing different
lightning stroke currents is presented in Sect. 9.3. LEMF computation results of new
models are given in Sect. 9.4 and compared to experimental and other models, results.

9.2 Current Attenuation Factors in Engineering Models
of Lightning Strokes

In an engineering model, current distribution i(z′, t) at time t and height z′ along
the lightning channel (Fig. 9.1) is assumed as a product of the channel-base cur-
rent i(0, t), height- and time-dependent attenuation factor P(z′, t), and Heaviside
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Fig. 9.1 Thin-wire antenna
representation of a lightning
channel
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function equal to unity for t > z′/v f and to zero for t < z′/v f , thus showing if the cur-
rent pulse front has either reached that point along the channel, or not. P(z′, t) intro-
duces uneven current weakening along the channel. Longitudinal channel-current is
given with the following expression

i(z′, t) = h(t − z′/v f ) i(0, t − z′/v) P(z′, t), (9.1)

where v f is the return stroke speed (upward-propagating front speed) and v is the
current-wave propagation speed, i(0, t − z′/v) is the channel-base current function,
delayed in time for z′/v due to the current-wave propagation. σ0, μ0, ε0 are electrical
parameters of the air and σ , μ, ε electrical parameters of the ground. The diameter
of the channel is 2a << H , and H is the total channel-height. Position of the field
point M having cylindrical coordinates r , ψ , z is defined with R.

The current attenuation factor in (9.1) was introduced as height-dependent in [18].
Based on different values of current-wave propagation speeds, attenuation factors and
other parameters, engineering models are grouped [19] into transmission line models
(TL), modified transmission line models with linear decay of the current with height
(MTLL), modified transmission line models with exponential decay of the current
with height (MTLE), modified transmission line models with distortion of the current
(MTLD), Bruce-Golde model (BG) [6], travelling current source models (TCS) [7],
and other, as Master-Uman-Lin-Standler (MULS), Diendorfer-Uman (DU), etc.

The difference between two major types of engineering models, TL and TCS, is
that the direction of current wave propagation is upward in TL type of models and
downward in TCS type of models, whereas channel-base current may be chosen the
same. Although the direction of wave propagation is not taken the same in these
types of models, the direction of the current is the same for modeling the transport
of the same sign charge [19]. BG may be viewed as a special case of either TL or
TCS types of models. Current wave propagates in BG model with infinite speed and
the propagation direction is not defined, whereas the return stroke speed is of finite
value as in other models given in Table 9.1.
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Table 9.1 Attenuation factors and pulse propagation speed for some engineering models

Engineering model Attenuation factor P(z′) Pulse propagation speed v

TL 1 v f

MTLL 1 − z′/H v f

MTLE exp(−z′/λ) v f

MTLE exp(−z′/H) v f

MTLTCOS 0.95 − 0.9z′/H + 0.05cos(5π z′/H) v f

MTLT [1 + (1 − 2z′/H)3]/2 v f

MTLTS [1 + (1 − 2z′/H)3]2/4 v f

BG 1 ∞
TCS 1 −c

Fig. 9.2 Attenuation factors
in MTLL, MTLE, MTLCOS,
MTLT and MTLTS models
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MTLL P(z')=1-z'/H
MTLE P(z')=exp(-3.75z'/H)
MTLCOS P(z')=0.95-0.9 z'/H+0.05cos(5 z'/H)

Current attenuation factors in the often used engineering models are also presented
in Table 9.1. TL model is without any current decay along the channel, so its atten-
uation factor is P(z′) = 1. In MTLL the attenuation factor is P(z′) = 1 − z′/H , so
that current decays to zero value at the channel top (Fig. 9.2). In MTLE, the current
attenuation factor is exponential function P(z′) = exp(−z′/λ), where the constant is
often chosen to be λ = 2000 m, as in [17]. Its value may be discussed and specified
otherwise according to LEMF results [14]. In MTLE model the total channel-height
H may also be the parameter of its attenuation factor, as in fact the value at the
channel top is defined by z′ = H , so it has influence on LEMF results in both MTLE
models given in Table 9.1. For MTLE model the attenuation factor is assumed in
this paper as P(z′) = exp(−z′/λ) = exp(−7500z′/2000H) = exp(−3.75z′/H), so
to compare it with other models for the normalized height z′/H (Fig. 9.2). Thus,
H = 7500 m is taken for the channel-height corresponding to λ = 2000 m as the
constant in this model.
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New models and their attenuation factors are presented in this paper and denoted
with MTLT, MTLTS and MTLCOS (Fig. 9.2). MTLT denotes modified transmission
line model with the third degree function of height z′ in the attenuation factor, P(z′) =
[1 + (1 − 2z′/H)3]/2, which results in zero value at the channel top, for z′ = H .
MTLTS denotes the square of the MTLT attenuation factor (sixth degree function
of height z′), so that P(z′) = [1 + (1 − 2z′/H)3]2/4, or simply PMTLTS = P2

MTLT.
Obviously, it also results in zero value at z′ = H , so as in factors of MTLT and
MTLL models. Model denoted with MTLCOS has the current attenuation factor
which gives results more similar to MTLL than MTLT and MTLTS. Its attenuation
factor is P(z′) = 0.95 − 0.9z′/H + 0.05cos(5π z′/H), also resulting in P(0) = 1
and P(H) = 0.

If MTLT is applied, the current peak near the channel-base and up to z′ = 0.2H
decays faster with height than if MTLL is applied, later very slow up to z′ = 0.7H ,
and afterwards faster than in all other models, up to the channel top. In MTLTS, due
to its attenuation factor, current peak decays even faster than in other models up to
z′ = 0.3H , but very slow at about half height of the channel, and afterwards fast, near
the assumed total channel-height. In the lower half of the channel this attenuation
factor is more similar to MTLE, whereas in the upper half is more similar to MTLL
attenuation factor (Fig. 9.2).

9.3 Channel-Base Current Functions

One-peaked pulse functions are usually used as channel-base currents in engineering
models of lightning strokes. Double exponential (DEXP) function (at z′ = 0) is given
in [6] as

i(t) = Im[e−αt − e−βt ], (9.2)

where Im is the current value, α and β are the constants. DEXP has non-realistic
convex waveshape in the rising part and its first derivative is not equal to zero at
t = 0+, as it should be.

Heidler’s function (at z′ = 0) is given in [7] as

i(t) = I0
η

(
t
τ1

)n

1 +
(

t
τ1

)n e
− t

τ2 , for η = e− τ1
τ2

(
nτ1
τ2

)1/n

, (9.3)

where I0 is the current value, η is the peak correction factor, τ1 and τ2 are time
constants, and n is often chosen between 2 and 10. Heidler’s function is also used for
representation of the first and subsequent negative strokes and first positive strokes
as defined in [8].

One-peaked AEF may approximate the IEC 62305 standard currents and other
typical lightning stroke currents, as given in [9, 15], with the following expression
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i(t) =

⎧
⎪⎨

⎪⎩

Im(t/tm)aea(1−t/tm ), 0 ≤ t ≤ tm,

Im

n∑

i=1

ci (t/tm)bi ebi (1−t/tm ), tm ≤ t ≤ ∞,
(9.4)

for tm the rise time to the maximum current value Im , whereas n is the number of
terms in the decaying part, a and bi are parameters, and ci weighting coefficients, so
that

∑n
1 ci = 1. In the simplest case n = 1, c1 = 1 and b1 = b, so the function has

four parameters Im , tm , a and b. The function normalized to the maximum value at
tm = 1.9 µs, for a = 4 and b = 0.03 is presented in Fig. 9.3. This waveshape may
represent high-voltage pulse 1.2/50 µs. Its rising part is shown in more detail in
Fig. 9.4, and both rising and decaying part in Fig. 9.3.

Fig. 9.3 Normalized
channel-base current AEF
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Parameters of this function are calculated according to the IEC 62305 lightning
currents of the first negative strokes, subsequent negative strokes and positive strokes
and given in [15], and for other typical lightning strokes in [9].

First stroke current, as measured in experiments at Monte San Salvatore [1],
is represented by the sum of seven Heidler’s functions [3], given in Fig. 9.5 and
denoted by MSS and the dash line. First stroke current measured in experiments at
Morro do Cachimbo Station [20] is approximated also by the sum of seven Heidler’s
functions [3], given in Fig. 9.6 and denoted by MCS and the dash line. These two
first stroke currents may be well represented with the double-peaked AEF (solid
lines in Figs. 9.5 and 9.6) and parameters given in [11]. Double-peaked AEF has the
following expression:

i(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Im1

m∑

i=1

di (t/tm1)
ai eai (1−t/tm1), 0 ≤ t ≤ tm1,

Im1 + Im2

l∑

i=1

fi

(
t/tm1 − 1

tm2/tm1 − 1

)bi

e
bi

(
1− t/tm1−1

tm2/tm1−1

)

, tm1 ≤ t ≤ tm2,

(Im1 + Im2)

n∑

i=1

gi (t/tm2)
ci eci (1−t/tm2), tm2 ≤ t ≤ ∞,

(9.5)

with parameters ai , bi , ci , and weighting coefficients di , fi , gi , so that
∑m

1 di =∑l
1 fi = ∑n

1 gi = 1.
Three-peaked AEF, as given in [12], is used for the computation of LEMF results

in this paper. Its peaks are Im1 at tm1, Im1 + Im2 at tm2, Im1 + Im2 + Im3 at tm3, and it
is given with the following expression:

Fig. 9.5 Double-peaked
AEF representing first stroke
current MSS
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Fig. 9.6 Double-peaked
AEF representing first stroke
current MCS
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(
t/tm2 − 1

tm3/tm2 − 1

)ci

e
ci

(
1− t/tm2−1
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)

, tm2 ≤ t ≤ tm3,

(Im1 + Im2 + Im3)

n∑

i=1

hi (t/tm3)
di edi (1−t/tm3), tm3 ≤ t ≤ ∞,

(9.6)
for parameters ai , bi , ci , di , weighting coefficients ei , fi , gi , hi , and j , k, l, n the
number of terms chosen for better approximation in the corresponding time interval.
The expression reducing the number of unknown coefficients is

j∑

1

ei =
k∑

1

fi =
l∑

1

gi =
n∑

1

hi = 1. (9.7)

Three-peaked AEF (Fig. 9.7) approximating measurements results from [4] has
the following parameters: the first peak Im1 = 11 kA at tm1 = 2 µs, the second peak
Im1 + Im2 = 8.3 kA at tm2 = 22 µs, the third peak Im1 + Im2 + Im3 = 4.4 kA at
tm3 = 110 µs, and other parameters: a1 = 2.2, a2 = 0.5, e1 = 0.37, e2 = 1 − e1,
b1 = 2, b2 = 0.5, f1 = 0.9, f2 = 1 − f1, c1 = 2, g1 = 1, d1 = 5, d2 = 0.55, h1 =
0.6, h2 = 1 − h1.

The advantage of AEF is analytically calculated first derivative and integral, both
necessary for LEMF computation at the perfectly conducting ground. Fourier trans-
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Fig. 9.7 Three-peaked AEF
representing measured
current [4]
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form, needed for calculations above lossy ground, is analytically calculated for (9.4),
(9.5) and (9.6). The integral of the square of the AEF, needed for calculating specific
energy of lightning strokes, is also given in [10].

9.4 LEMF Computation

At the perfectly conducting ground surface, electric field has only vertical component
and magnetic field its azimuthal component, whereas other components of electric
and magnetic field do not exist. Vertical electric field at the ground surface points
can be calculated from

Ez(R, t) = 1

4πε0

∫ H

−H

[
2(z − z′)2 − r2

R5

∫ τ=t

τ=0
i(z′, τ − R/c)dτ+

+2(z − z′)2 − r2

cR4
i(z′, t − R/c) − r2

c2R3

∂i(z′, t − R/c)

∂t

]
dz′, (9.8)

and azimuthal magnetic field from

Hψ(R, t) = 1

4π

∫ H

−H

[
r

R3
i(z′, t − R/c) + r

cR2

∂i(z′, t − R/c)

∂t

]
dz′, (9.9)

for c the speed of light and R the distance from the elementary current source to
the field point M(r, ψ, z), as in Fig. 9.1. For all the results of engineering models
applied in this paper, the return stroke speed is v f = 1.3 108 m/s, and the maximum
channel-base current value is Im = 11 kA.
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For AEF with one term in the rising part and two terms in the decaying part (9.4),
which well approximates the channel-base current given in [17], the current along
channel of the total height H = 7000 m is given in Fig. 9.8a in three time moments,
and in Fig. 9.8b at three heights. If the decaying constant is λ = 4500 m in the applied
MTLE model, the current along the channel at t = 10 µs, t = 20 µs, and t = 30 µs
in Fig. 9.8a, and at z′ = 0, z′ = 2 km and z′ = 4 km in Fig. 9.8b has greater values
than if λ = 2000 m. Smaller λ means greater attenuation along the channel.
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Fig. 9.8 Current along the channel for H = 7000 m, λ = 4500 m and λ = 2000 m, at t = 10 µs,
t = 20 µs, and t = 30 µs (a), and at z′ = 0, z′ = 2 km and z′ = 4 km (b)
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For parameters of the three-peaked AEF (9.6) representing measured results from
[4], given also in Fig. 9.7, the influence of the channel-height on electric field is
great at r = 50 m, as can be noticed for MTLE and MTLL in Fig. 9.9a, but not on
magnetic field results as presented in Fig. 9.9b for all the models. In Fig. 9.9, the
results are given for the channel heights H = 2600 m and H = 7500 m, and in

(a)

(b)

Fig. 9.9 Vertical electric (a) and azimuthal magnetic field (b) results of MTLL, MTLE, MTLCOS,
and MTLT models at r = 50 m for channel heights H = 2600 m and H = 7500 m
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Fig. 9.10 Vertical electric field (a), and azimuthal magnetic field (b) results at r = 50 m from the
channel-base for MTLL, MTLE, MTLCOS, MTLT and MTLTS models

Fig. 9.10 for MTLL, MTLE, MTLT, MTLTS and MTLCOS just for H = 7500 m,
with the greatest electric field values obtained for MTLTS.

Results for electric and magnetic field at the distance of r = 5 km are presented
in Fig. 9.11. They are in better agreement with the experimental results from [16],
given in Fig. 9.12, compared to the results for other models (Fig. 9.13), given in [17]
for Heidler’s function and other parameters the same. LEMF results obtained with
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Fig. 9.11 Vertical electric field (a) and azimuthal magnetic field (b) at r = 5 km from the channel-
base for MTLL, MTLE, MTLCOS, MTLT and MTLTS models

MTLE, MTLL, MTLT, MTLTS and MTLCOS at r = 15 km are presented in Fig. 9.14
and experimental results in Fig. 9.15. At such distances waveshapes for MTLT and
MTLTS are approximately the same, whereas the intensities differ. Figure 9.16 shows
calculated results for all these models at r = 200 km, whereas experimental results
from [16] are given in Fig. 9.17. For other models and Heidler’s function in [17],
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Fig. 9.12 Measurements results for electric field and magnetic flux at the distance r = 5 km,
adopted from [16], solid line for first strokes and dashed line for subsequent strokes

Fig. 9.13 LEMF results for
TL, MTLL, MULS, BG and
TCS models at r = 5 km,
adopted from [17], solid line
for vertical electric filed,
dashed line for azimuthal
magnetic flux density
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LEMF results at r = 100 km are presented in Fig. 9.18. It should be noted that for
50 m the lightning electromagnetic pulse appears at t1 = 1/6 µs after the current
pulse starts propagating from the channel base (at t = 0). For 500 m this time is
t2 = 5/3 µs, for 5 km is t3 = 50/3 µs, for 200 km is t4 = 2000/3 µs. All LEMF
results are given in this paper for the first 170 µs of the pulse appearing at the
corresponding distance, as results in [16] are given in such interval.

Some features of measured electric and magnetic fields are given in [17] as bench-
mark for the validation of models. The characteristics of typical lightning strokes are:
(1) a sharp initial peak in both electric and magnetic fields, (2) a slow ramp in electric
field waveshape within a few tens of kilometres, (3) a hump in magnetic field within a
few tens of kilometers, and (4) a zero crossing in both electric and magnetic fields, at
all the distances over 50 km. New models MTLT, MTLTS and MTLCOS provide all
the features (Table 9.2) for the channel-base current approximated by three-peaked
AEF.
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Fig. 9.14 Vertical electric field (a) and azimuthal magnetic field (b) at r = 15 km from the channel-
base for MTLL, MTLE, MTLCOS, MTLT and MTLTS models
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Fig. 9.15 Measurements results for electric field and magnetic flux at the distance r = 15 km,
adopted from [16], solid line for first strokes and dashed line for subsequent strokes
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Fig. 9.16 Vertical electric field (a) and azimuthal magnetic field (b) at r = 200 km from the
channel-base for MTLL, MTLE, MTLCOS, MTLT and MTLTS models
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Fig. 9.18 Calculated LEMF results at r = 100 km for five models, adopted from [17], solid line
for vertical electric field and dashed line for azimuthal magnetic field

Table 9.2 LEMF characteristic features of lightning stroke models

Characteristic
feature
of the model

(1) Sharp initial
peak in E- and
H-field

(2) E-field ramp
within a few tens
of km

(3) H-field hump
within few tens
of km, max at 10
to 40 µs

(4) E- and
H-field zero
crossing at about
50 to 200 km

TL Yes No Yes No

MTLL Yes Yes No Yes

MTLE Yes Yes No Yes

MTLD Yes Yes No Yes

TCS Yes Yes Yes No

DU Yes Yes Yes No

MTLT Yes Yes Yes Yes

MTLTS Yes Yes Yes Yes

MTLCOS Yes Yes Yes Yes
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9.5 Conclusion

Modified transmission line models of lightning strokes with new attenuation factors
and using AEF as the channel-base current function provide LEMF results in better
agreement with measurements results. MTLT better models first strokes, whereas
MTLTS better models subsequent strokes. MTLCOS gives ripples in electric field
and magnetic field waveshapes in far field, similar to noticed in experimental results.

It should be noticed that if using three-peaked channel-base current all these
models perform zero crossing in their waveshapes of vertical electric and azimuthal
magnetic field at the distances over 50 km, a ramp in vertical electric field and a
hump in azimuthal magnetic field within a few tens of kilometers. New lightning
stroke models are based on the fact that electric and magnetic field waveshapes at
the distances over 50 km approximately follow the waveshape of the channel-base
current before their zero crossing.

Multi-peaked AEF is suitable for approximating experimental results for lightning
currents, double-peaked AEF is suitable for the first stroke currents, and the simplest,
one-peaked AEF, may well represent the Standard IEC 62305 lightning currents. AEF
may be also used to approximate measured electrostatic discharge currents, so as the
Standard IEC 61000-4-2 electrostatic discharge current [13].
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Chapter 10
On Some Properties of the Multi-peaked
Analytically Extended Function
for Approximation of Lightning Discharge
Currents

Karl Lundengård, Milica Rančić , Vesna Javor and Sergei Silvestrov

Abstract According to experimental results for lightning discharge currents, they
are classified in the IEC 62305 Standard into waveshapes representing the first pos-
itive, first and subsequent negative strokes, and long-strokes. These waveshapes,
especially shot-term pulses, are approximated with a few mathematical functions
in literature, in order to be used in lightning discharge models for calculations of
electromagnetic field and lightning induced effects. An analytically extended func-
tion (AEF) is presented in this paper and used for lightning currents modeling. The
basic properties of this function with a finite number of peaks are examined. A
general framework for estimating the parameters of the AEF using the Marquardt
least-squares method (MLSM) for a waveform with an arbitrary (finite) number of
peaks as well as for the given charge transfer and specific energy is described. This
framework is used to find parameters for some common single-peak waveforms and
some advantages and disadvantages of the approach are also discussed.
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10.1 Introduction

Many different types of systems, objects and equipment are susceptible to damage
from lightning discharges. Lightning effects are usually analysed using lightning dis-
charge models. Most of the engineering and electromagnetic models imply channel-
base current functions. Various single and multi-peaked functions are proposed
in the literature for modelling lightning channel-base currents, examples include
Heidler, Heidler and Cvetic [3], Javor and Rancic [7], Javor [5, 6]. For engineer-
ing and electromagnetic models, a general function that would be able to reproduce
desired waveshapes is needed, such that analytical solutions for its derivatives, inte-
grals, and integral transformations, exist. A multi-peaked channel-base current func-
tion has been proposed in Javor [5] as a generalization of the so-called TRF (two-rise
front) function from Javor [6], which possesses such properties.

In this paper we analyse a modification of such a multi-peaked function, a
so-called p -peak analytically extended function (AEF). Possibility of application of
the AEF to modelling of various multi-peaked waveshapes is investigated. Estima-
tion of its parameters has been performed using the Marquardt least-squares method
(MLSM), an efficient method for the estimation of non-linear function parameters,
Marquardt [14]. It has been applied in many fields, including lightning research for
optimizing parameters of the Heidler function in Lovric et al. [10], or the Pulse
function in Lundengård et al. [11, 12].

Some numerical results are presented, including those for the Standard IEC
62305 [4] current of the first-positive strokes, and an example of a fast-decaying
lightning current waveform.

10.2 The p -Peak Analytically Extended Function

The p-peaked AEF is constructed using the function

x(β; t) = (te1−t
)β

, 0 ≤ t, (10.1)

which we will refer to as the power exponential function. The power exponential
function is qualitatively similar to the desired waveforms in the sense that it has a
steeply rising initial part followed by a more slowly decaying part. The steepness of
both the rising and decaying part is determined by the β-parameter. This is illustrated
in Fig. 10.1.

This function is in some ways similar to the Heidler function [2] that is commonly
used [4]. One feature of theHeidler function that the power exponential function does
not share is that a Heidler function with a very steep rise and slow decay can be easily
constructed. To construct the AEF so that it can imitate this feature we define it as a
piecewise linear combinations of scaled and translated power exponential functions,
the concept is illustrated in Fig. 10.2.
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Fig. 10.1 An illustration of how the steepness of the power exponential function varies with β

Fig. 10.2 An illustration of how the steepness of the power exponential function varies with β

In order to get a function with multiple peaks and where the steepness of the rise
between each peak as well as the slope of the decaying part is not dependent on each
other, we define the analytically extended function (AEF) as a function that consist of
piecewise linear combinations of the power exponential function that has been scaled
and translated so that the resulting function is continuous. Given the difference in
height between each pair of peaks Im1 , Im2 , . . . , Imp , the corresponding times tm1 ,
tm2 , . . . , tm p , integers nq > 0, real values βq,k , ηq,k , 1 ≤ q ≤ p + 1, 1 ≤ k ≤ nq such
that the sum over k of ηq,k is equal to one, the p-peaked AEF i(t) is given by (10.2).

Definition 10.1 Given Imq ∈ R, tmq ∈ R,q = 1, 2, . . . , p such that tm0 = 0 < tm1 ≤
tm2 ≤ . . . ≤ tm p along with ηq,k, βq,k ∈ R and 0 < nq ∈ Z for q = 1, 2, . . . , p + 1,

k = 1, 2, . . . , nq such that
nq∑

k=1

ηq,k = 1.

The analytically extended function (AEF), i(t), with p peaks is defined as
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i(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
q−1∑

k=1

Imk

)

+ Imq

nq∑

k=1

ηq,k xq(t)
β2
q,k+1, tmq−1 ≤ t ≤ tmq , 1 ≤ q ≤ p,

(
p∑

k=1

Imk

) np+1∑

k=1

ηp+1,k xp+1(t)
β2
p+1,k , tm p ≤ t,

(10.2)

where

xq(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t − tmq−1

Δtmq

exp

(
tmq − t

Δtmq

)
, 1 ≤ q ≤ p,

t

tmq

exp

(
1 − t

tmq

)
, q = p + 1,

and Δtmq = tmq − tmq−1 .
Sometimes the notation i(t;β, η) with

β = [β1,1 β1,2 . . . βq,k . . . βp+1,np+1

]
, η = [η1,1 η1,2 . . . ηq,k . . . ηp+1,np+1

]

will be used to clarify what the particular parameters for a certain AEF are.

Remark 10.1 The p -peak AEF can be written more compactly if we introduce the
vectors

ηq = [ηq,1 ηq,2 . . . ηq,nq ]�, (10.3)

xq(t) =
⎧
⎨

⎩

[
xq(t)

β2
q,1+1 xq(t)

β2
q,2+1 . . . xq(t)

β2
q,nq +1

]�
, 1 ≤ q ≤ p,

[
xq(t)

β2
q,1 xq(t)

β2
q,2 . . . xq(t)

β2
q,nq

]�
, q = p + 1.

(10.4)

The more compact form is

i(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
q−1∑

k=1

Imk

)

+ Imq · η�
q xq(t), tmq−1 ≤ t ≤ tmq , 1 ≤ q ≤ p,

(
q∑

k=1

Imk

)

· η�
q xq(t), tmq ≤ t, q = p + 1.

(10.5)

If the AEF is used to model an electrical current, than the derivative of the AEF
determines the induced electrical voltage in conductive loops in the lightning field.
For this reason it is desirable to guarantee that the first derivative of the AEF is
continuous.

Since the AEF is a linear function of elementary functions its derivative can be
found using standard methods.
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Theorem 10.1 The derivative of the p -peak AEF is

di(t)

dt
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Imq

tmq − t

t − tmq−1

xq(t)

Δtmq

η�
q Bq xq(t), tmq−1 ≤ t ≤ tmq , 1 ≤ q ≤ p,

Imq

xq(t)

t

tmq − t

tmq

η�
q Bq xq(t), tmq ≤ t, q = p + 1,

(10.6)

where

Bp+1 =

⎡

⎢⎢⎢
⎣

β2
p+1,1 0 . . . 0
0 β2

p+1,2 . . . 0
...

...
. . .

...

0 0 . . . β2
p+1,np+1

⎤

⎥⎥⎥
⎦

, Bq =

⎡

⎢⎢⎢
⎣

β2
q,1 + 1 0 . . . 0
0 β2

q,2 + 1 . . . 0
...

...
. . .

...

0 0 . . . β2
q,nq + 1

⎤

⎥⎥⎥
⎦

,

for 1 ≤ q ≤ p.

Proof From the definition of the AEF (see (10.2)) and the derivative of the power
exponential function (10.1) given by

d

dt
x(β; t) = β(1 − t)tβ−1eβ(1−t),

expression (10.6) can easily be derived since differentiation is a linear operation and
the result can be rewritten in the compact form analogously to (10.5).

Illustration of the AEF function and its derivative for various values of βq,k-
parameters is shown in Fig. 10.3.

Lemma 10.1 The AEF is continuous and at each tmq the derivative is equal to zero.

Proof Within each interval tmq−1 ≤ t ≤ tmq the AEF is a linear combination of con-
tinuous functions and at each tmq the function will approach the same value from

both directions unless all ηq,k ≤ 0, but if ηq,k ≤ 0 then
nq∑

k=1

ηq,k �= 1.

Noting that for any diagonal matrix B the expression

η�
q B xq(t) =

nq∑

k=1

ηq,kBkk xq(t)
β2
q,k+1, 1 ≤ q ≤ p,

is well-defined and that the equivalent statement holds for q = p it is easy to see
from (10.6) that the factor (tmq − t) in the derivative ensures that the derivative is
zero every time t = tmq .

When interpolating a waveform with p peaks it is natural to require that there
will not appear new peaks between the chosen peaks. This corresponds to requiring
monotonicity in each interval. One way to achieve this is given in Lemma 10.2.
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Fig. 10.3 Illustration of the AEF (solid line) and its derivative (dashed line) with the same Imq and
tmq but different βq,k -parameters. a 0 < βq,k < 1, b 4 < βq,k < 5, c 12 < βq,k < 13, d a mixture
of large and small βq,k -parameters

Lemma 10.2 If ηq,k ≥ 0, k = 1, . . . , nq the AEF, i(t), is strictly monotonic on the
interval tmq−1 < t < tmq .

Proof The AEF will be strictly monotonic in an interval if the derivative has the
same sign everywhere in the interval. That this is the case follows from (10.6) since
every term in η�

q Bq xq(t) is non-negative if ηq,k ≥ 0, k = 1, . . . , nq , so the sign of
the derivative it determined by Imq .

If we allow some of the ηq,k-parameters to be negative, the derivative can change
sign the function might get an extra peak between two other peaks, see Fig. 10.4.

The integral of the electrical current represents the charge transfer. Unlike the
Heidler function the integral of the AEF is relatively straightforward to find. How to
do this is detailed in Lemmas 10.3, 10.4, Theorems 10.2, and 10.3.

Lemma 10.3 For any tmq−1 ≤ t0 ≤ t1 ≤ tmq , 1 ≤ q ≤ p,

∫ t1

t0

xq(t)
β dt = eβ

ββ+1
Δγ

(
β + 1,

t1 − tmq

βΔtmq

,
t0 − tmq

βΔtmq

)
(10.7)

with Δtmq = tmq − tmq−1 and
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Fig. 10.4 An example of a
two-peaked AEF where
some of the ηq,k -parameters
are negative, so that it has
points where the first
derivative changes sign
between two peaks. The
solid line is the AEF and the
dashed lines is the derivative
of the AEF

Δγ (β, t0, t1) = γ (β + 1, βt1) − γ (β + 1, βt0) ,

where

γ (β, t) =
∫ t

0
τβ−1e−τ dτ

is the lower incomplete Gamma function [1].
If t0 = tmq−1 and t1 = tmq then

∫ tmq

tmq−1

xq(t)
β dt = eβ

ββ+1
γ (β + 1, β) . (10.8)

Proof

∫ t1

t0

xq(t)
β dt =

∫ t1

t0

(
t − tmq

Δtmq

exp

(
1 − t − tmq

Δtmq

))β

dt

= eβ

ββ+1

∫ t1

t0

(
β
t − tmq

Δtmq

)β

exp

(
1 − β

t − tmq

Δtmq

)
dt.

Changing variables according to τ = t−tmq

Δtmq
gives

∫ t1

t0

xq(t)
β dt = eβ

ββ+1

∫ τ1

τ0

τβe−τ dt

= eβ

ββ+1
(γ (β + 1, τ1) − γ (β + 1, τ0))

= eβ

ββ+1
Δγ (β + 1, τ1, τ0)

= eβ

ββ+1
Δγ

(
β + 1, β

t1 − tmq

Δtmq

, β
t0 − tmq

Δtmq

)
.
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When t0 = tmq−1 and t1 = tmq then

∫ t1

t0

xq(t)
β dt = eβ

ββ+1
Δγ (β + 1, β)

and with γ (β + 1, 0) = 0 we get (10.8).

Lemma 10.4 For any tmq−1 ≤ t0 ≤ t1 ≤ tmq , 1 ≤ q ≤ p,

∫ t1

t0

i(t) dt = (t1 − t0)

(
q−1∑

k=1

Imk

)

+ Imq

nq∑

k=1

ηq,k gq(t1, t0), (10.9)

where

gq(t1, t0) = eβ2
q,k

(
β2
q,k + 1

)β2
q,k+1

Δγ

(
β2
q,k + 2,

t1 − tmq−1

Δtmq

,
t0 − tmq−1

Δtmq

)

with Δγ (β, t0, t1) defined as in (10.7).

Proof

∫ t1

t0

i(t) dt =
∫ t1

t0

(
q−1∑

k=1

Imk

)

+ Imq

nq∑

k=1

ηq,k xq(t)
β2
q,k+1 dt

= (t1 − t0)

(
q−1∑

k=1

Imk

)

+ Imq

nq∑

k=1

ηq,k

∫ t1

t0

xq(t)
β2
q,k+1 dt

= (t1 − t0)

(
q−1∑

k=1

Imk

)

+ Imq

nq∑

k=1

ηq,k gq(t0, t1).

Theorem 10.2 If tma−1 ≤ ta ≤ tma , tmb−1 ≤ tb ≤ tmb and 0 ≤ ta ≤ tb ≤ tm p then

∫ tb

ta

i(t) dt = (tma − ta)

(
a−1∑

k=1

Imk

)

+ Ima

na∑

k=1

ηa,k ga(ta, tma )

+
b−1∑

q=a+1

(

Δtmq

(
q−1∑

k=1

Imk

)

+ Imq

nq∑

k=1

ηq,k ĝ
(
β2
q,k + 1

)
)

+ (tb − tmb)

(
b−1∑

k=1

Imk

)

+ Imb

nb∑

k=1

ηb,k gb(tmb , tb), (10.10)

where gq(t0, t1) is defined as in Lemma 10.4 and
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ĝ(β) = eβ

ββ+1
γ (β + 1, β) .

Proof This theorem follows from integration being linear and Lemma 10.4.

Theorem 10.3 For tmp ≤ t0 < t1 < ∞ the integral of the AEF is

∫ t1

t0

i(t) dt =
(

p∑

k=1

Imk

) np+1∑

k=1

ηp+1,k gp+1(t1, t0), (10.11)

where gq(t0, t1) is defined as in Lemma 10.4.
When t0 = tm p and t1 → ∞ the integral becomes

∫ ∞

tm p

i(t) dt =
(

p∑

k=1

Imk

) np+1∑

k=1

ηp+1,k g̃
(
β2
p+1,k

)
, (10.12)

where

g̃(β) = eβ

ββ+1
(Γ (β + 1) − γ (β + 1, β))

with

Γ (β) =
∫ ∞

0
tβ−1e−t dt

is the Gamma function [1].

Proof This theorem follows from integration being linear and Lemma 10.4.

In the next section we will estimate the parameters of the AEF that gives the best
fit with respect to some data and for this the partial derivatives with respect to the βmq

parameters will be useful. Since the AEF is a linear function of elementary functions
these partial derivatives can easily be found using standard methods.

Theorem 10.4 The partial derivatives of the p-peak AEF with respect to the β

parameters are

∂i

∂βq,k
=

⎧
⎪⎨

⎪⎩

0, 0 ≤ t ≤ tmq−1,

2 Imqηq,k βq,k hq(t)xq(t)
β2
q,k+1, tmq−1 ≤ t ≤ tmq , 1 ≤ q ≤ p,

0, tmq ≤ t,

(10.13)

∂i

∂βp+1,k
=
{
0, 0 ≤ t ≤ tm p ,

2 Imp+1ηp+1,k βp+1,k h p+1(t)xp+1(t)
β2
p+1,k , tm p ≤ t,

(10.14)

where
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hq(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ln

(
t − tmq−1

Δtmq

)
− t − tmq−1

Δtmq

+ 1, 1 ≤ q ≤ p,

ln

(
t

tmq

)
− t

tmq

+ 1, q = p + 1.

Proof Since the βq,k parameters are independent, differentiation with respect to βq,k

will annihilate all terms but one in each linear combination. The expressions (10.13)
and (10.14) then follow from the standard rules for differentiation of composite
functions and products of functions.

10.3 Least Square Fitting Using MLSM

10.3.1 The Marquardt Least-Squares Method

TheMarquardt least-squares method, also known as the Levenberg-Marquardt algo-
rithm or damped least-squares, is an efficient method for least-squares estimation for
functions with non-linear parameters that was developed in the middle of the 20th
century (see [9, 14]).

The least-squares estimation problem for functions with non-linear parameters
arises when a function of m independent variables and described by k unknown
parameters needs to be fitted to a set of n data points such that the sum of squares of
residuals is minimized.

The vector containing the independent variables is x = (x1, . . . , xn), the vector
containing the parameters β = (β1, . . . , βk) and the data points

(Yi , X1i , X2i , . . . , Xmi ) = (Yi , Xi ) , i = 1, 2, . . . , n.

Let the residuals be denoted by Ei = f (Xi ;β) − Yi and the sum of squares of Ei

is then written as

S =
n∑

i=1

[ f (Xi ;β) − Yi ]
2 ,

which is the function to be minimized with respect to β.
The Marquardt least-square method is an iterative method that gives approximate

values of β by combining the Gauss–Newton method (also known as the inverse
Hessian method) and the steepest descent (also known as the gradient) method to
minimize S. The method is based around solving the linear equation system

(
A∗(r) + λ(r)I

)
δ∗(r) = g∗(r), (10.15)
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where A∗(r) is a modified Hessian matrix of E(b) (or f (Xi ; b)), g∗(r) is a rescaled
version of the gradient of S, r is the number of the current iteration of the method,
and λ is a real positive number sometimes referred to as the fudge factor [15]. The
Hessian, the gradient and their modifications are defined as follows:

A = J�J,

Ji j = ∂ fi
∂b j

= ∂Ei

∂b j
, i = 1, 2, . . . ,m; j = 1, 2, . . . , k,

and
(A∗)i j = ai j√

aii
√
a j j

,

while
g = J�(Y − f0), f0i = f (Xi , b, c), g∗

i = gi

aii
.

Solving (10.15) gives a vector which, after some scaling, describes how the para-
meters b should be changed in order to get a new approximation of β,

b(r+1) = b(r) + δ(r), δ(r) = δ
∗(r)
i√
aii

. (10.16)

It is obvious from (10.15) that δ(r) depends on the value of the fudge factor λ.
Note that if λ = 0, then (10.15) reduces to the regular Gauss–Newton method [14],
and if λ → ∞ the method will converge towards the steepest descent method [14].
The reason that the two methods are combined is that the Gauss–Newton method
often has faster convergence than the steepest descent method, but is also an unstable
method [14]. Therefore,λmust be chosen appropriately in each step. In theMarquardt
least-squares method this amounts to increasing λ with a chosen factor v whenever
an iteration increases S, and if an iteration reduces S then λ is reduced by a factor v
as many times as possible. Below follows a detailed description of the method using
the following notation:

S(r) =
n∑

i=1

[
Yi − f (Xi , b(r), c)

]2
, (10.17)

S
(
λ(r)
) =

n∑

i=1

[
Yi − f (Xi , b(r) + δ(r), c)

]2
. (10.18)
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Fig. 10.5 The basic iteration step of the Marquardt least-squares method, definitions of computed
quantities are given in (10.16), (10.17) and (10.18)

The iteration step of the Marquardt least-squares method can be described as
follows:

• Input: v > 1 and b(r), λ(r).
� Compute S

(
λ(r)
)
.

• If λ(r) � 1 then compute S
(

λ(r)

v

)
, else go to .

• If S
(

λ(r)

v

)
≤ S(r) let λ(r+1) = λ(r)

v .

 If S
(
λ(r)
) ≤ S(r) let λ(r+1) = λ(r).

• If S
(
λ(r)
)

> S(r) find the smallest integerω > 0 such that S
(
λ(r)vω

) ≤ S(r), and
then set λ(r+1) = λ(r)vω.

• Output: b(r+1) = b(r) + δ(r), δ(r).

This iteration step is also described in Fig. 10.5. Naturally, some condition for what
constitutes an acceptable fit for the function must also be chosen. If this condition is
not satisfied the new values for b(r+1) and λ(r+1) will be used as input for the next
iteration and if the condition is satisfied the algorithm terminates. The quality of the
fitting, in other words the value of S, is determined by the stopping condition and
the initial values for b(0). The initial value of λ(0) affects the performance of the
algorithm to some extent since after the first iteration λ(r) will be self-regulating.
Suitable values for b(0) are challenging to find for many functions f and they are
often, together with λ(0), found using heuristic methods.
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10.3.2 Estimating Parameters for Underdetermined Systems

For the Marquardt least-squares method to work one data point per unknown para-
meter is needed, m = k. It can still be possible to estimate all unknown parameters
if there is insufficient data, m < k.

Suppose that k − m = p and let γ j = βm+ j , j = 1, 2, . . . , p. If there are at least
p known relations between the unknown parameters such that γ j = γ j (β1, . . . , βm)

for j = 1, 2, . . . , p then the Marquardt least-squares method can be used to give
estimates on β1, . . . , βm and the still unknown parameters can be estimated from
these. Denoting the estimated parameters b = (b1, . . . , bm) and c = (c1, . . . , cp)
the following algorithm can be used:

• Input: v > 1 and initial values b(0), λ(0).
• r = 0
� Find c(r) using b(r) together with extra relations.
• Find b(r+1) and δ(r) using MLSM.
• Check chosen termination condition for MLSM, if it is not satisfied go to �.
• Output: b, c.

The algorithm is illustrated in Fig. 10.6.
In order to fit the AEF it is sufficient that kq ≥ nq . Suppose we have some estimate

of the β-parameters which is collected in the vector b. It is then fairly simple to
calculate an estimate for the η-parameters, see Sect. 10.3.4, which we collect in h.
We can then define a residual vector by (E)k = i(tq,k; b, h) − iq,k where i(t; b, h)

is the AEF with the estimated parameters.
The J matrix can in this case be described as

Fig. 10.6 Schematic
description of the parameter
estimation algorithm
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J =

⎡

⎢⎢⎢⎢⎢⎢
⎢
⎣

∂i
∂βq,1

∣∣
∣
t=tq,1

∂i
∂βq,2

∣∣
∣
t=tq,1

. . . ∂i
∂βq,nq

∣∣
∣
t=tq,1

∂i
∂βq,1

∣∣∣
t=tq,2

∂i
∂βq,2

∣∣∣
t=tq,2

. . . ∂i
∂βq,nq

∣∣∣
t=tq,2

...
...

. . .
...

∂i
∂βq,1

∣∣∣
t=tq,kq

∂i
∂βq,2

∣∣∣
t=tq,kq

. . . ∂i
∂βq,nq

∣∣∣
t=tq,kq

⎤

⎥⎥⎥⎥⎥⎥
⎥
⎦

, (10.19)

where the partial derivatives are given by (10.13) and (10.14).

10.3.3 Fitting with Data Points as Well as Charge Transfer
and Specific Energy Conditions

By considering the charge transfer at the striking point, Q0, and the specific energy,
W0, two further conditions need to be considered:

Q0 =
∫ ∞

0
i(t) dt, (10.20)

W0 =
∫ ∞

0
i(t)2 dt. (10.21)

First we will define

Q(b, h) =
∫ ∞

0
i(t; b, h) dt,

W (b, h) =
∫ ∞

0
i(t; b, h)2 dt.

These two quantities can be calculated as follows.

Theorem 10.5

Q(b, h) =
p∑

q=1

(

Δtmq

(
q−1∑

k=1

Imk

)

+ Imq

nq∑

k=1

ηq,k ĝ(β
2
q,k + 1)

)

+
(

p∑

k=1

Imk

) np+1∑

k=1

ηp+1,k g̃(β
2
p+1,k), (10.22)
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W (b, h) =
p∑

q=1

⎛

⎝
(

q−1∑

k=1

Imk

)2

+
(

q−1∑

k=1

Imk

)

Imq

nq∑

k=1

ηq,k ĝ(β
2
q,k + 1)

+I 2mq

nq∑

k=1

η2
q,k ĝ

(
2 β2

q,k + 2
)

+ 2 I 2mq

nq−1∑

r=1

nq∑

s=r+1

ηq,r ηq,s ĝ
(
β2
q,r + β2

q,s + 2
)
⎞

⎠

+
(

p∑

k=1

Imk

)2 ( np∑

k=1

η2
p,k g̃

(
2 β2

p,k

)

+ 2
np+1−1∑

r=1

np+1∑

s=r+1

ηp+1,r ηp+1,s g̃
(
β2
p+1,r + β2

p+1,s

)
⎞

⎠ , (10.23)

where ĝ(β) and g̃(β) are defined in Theorems 10.2 and 10.3.

Proof Formula (10.22) is found by combining (10.10) and (10.12). Formula (10.23)
is found by noting that

(
n∑

k=1

ak

)2

=
n∑

k=1

a2k +
n−1∑

r=1

n∑

s=r+1

ar as,

and then reasoning analogously to the proofs for (10.10) and (10.12).

We can calculate the charge transfer and specific energy given by the AEF
with formula (10.22) and (10.23), respectively, and get two additional residuals
EQ0 = Q(b, h) − Q0 and EW0 = W (b, h) − W0. Since these are global conditions
this means that the parameters η and β no longer can be fitted separately in each
interval. This means that we need to consider all data points simultaneously.

The resulting J-matrix is

J =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

J1 . . . 0
...

. . .
...

0 . . . Jp+1
∂EQ0
∂β1,1

. . .
∂EQ0
∂β1,n1

. . .
∂EQ0

∂βp+1,1
. . .

∂EQ0
∂βp+1,n p+1

∂EW0
∂β1,1

. . .
∂EW0
∂β1,n1

. . .
∂EW0

∂βp+1,1
. . .

∂EW0
∂βp+1,n p+1

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

, (10.24)

where
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Jq =

⎡

⎢⎢⎢⎢⎢⎢
⎢
⎣

∂i
∂βq,1

∣∣
∣
t=tq,1

∂i
∂βq,2

∣∣
∣
t=tq,1

. . . ∂i
∂βq,nq

∣∣
∣
t=tq,1

∂i
∂βq,1

∣∣∣
t=tq,2

∂i
∂βq,2

∣∣∣
t=tq,2

. . . ∂i
∂βq,nq

∣∣∣
t=tq,2

...
...

. . .
...

∂i
∂βq,1

∣∣∣
t=tq,kq

∂i
∂βq,2

∣∣∣
t=tq,kq

. . . ∂i
∂βq,nq

∣∣∣
t=tq,kq

⎤

⎥⎥⎥⎥⎥⎥
⎥
⎦

and the partial derivatives in the last two rows are given by

∂Q

∂βq,s
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 Imqηq,s βq,s
dĝ

dβ

∣∣
∣∣
β=β2

q,s+1

, 1 ≤ q ≤ p,

2 Impηp+1,s βp+1,s
dg̃

dβ

∣∣∣
∣
β=β2

p+1,s

, q = p + 1.

For 1 ≤ q ≤ p

∂W

∂βq,s
= 2

(
q−1∑

k=1

Imk

)

Imqηq,s βq,s
dĝ

dβ

∣
∣∣∣
β=β2

q,s+1

+ 4 I 2mq
ηq,sβq,s

⎛

⎜
⎝ηq,s

dĝ

dβ

∣∣∣∣
β=2β2

q,s+2

+
nq∑

k=1
k �=s

ηq,k
dĝ

dβ

∣∣∣∣
β=β2

q,s+β2
q,k+2

⎞

⎟
⎠

and

∂W

∂βp+1,s
= 4

(
p∑

k=1

Imk

)

ηp+1,sβp+1,s

⎛

⎜
⎝ηp+1,s

dg̃

dβ

∣∣∣
∣
β=2β2

p+1,s

+
nq∑

k=1
k �=s

ηp+1,k
dg̃

dβ

∣∣∣
∣
β=β2

p+1,s+β2
p+1,k

⎞

⎟
⎠ .

The derivatives of ĝ(β) and g̃(β) are

dĝ

dβ
= eβ

ββ+1

(
Γ (β + 1)

(
Ψ (β + 1) + ln(β)

)− G(β) − γ (β + 1, β)

β

)
+ 1,

(10.25)

dg̃

dβ
= eβ

ββ+1

(
G(β) − Γ (β + 1) − γ (β + 1, β)

b

)
− 1,

(10.26)
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where Γ (β) is the Gamma function, Ψ (β) is the digamma function, see [1], and
G(β) is a special case of the Meijer G-function and can be defined as

G(β) = G3,0
2,3

(
β

∣∣∣∣
1, 1

0, 0, β + 1

)

using the notation from [16].When evaluating this function it might bemore practical
to rewrite G using other special functions

G(β) = G3,0
2,3

(
β

∣∣∣∣
1, 1

0, 0, β + 1

)
= ββ+1

(β + 1)2
2F2(β + 1, β + 1; β + 2, β + 2; −β)

+
(
ln(β) − Ψ (β) − 1

b

)
π csc (πβ)

Γ (−β)
,

where

2F2(β + 1, β + 1; β + 2, β + 2; −β) =
∞∑

k=0

(−1)kβk (β + 1)2

(β + k + 1)2

= β2 + 2β + 1

β

(
1

β2
−

∞∑

k=0

(−b)k

(b + k)2

)

is a special case of the hypergeometric function. These partial derivatives were found
using software for symbolic computation [13].

Note that all η-parameters must be recalculated for each step, how this is done is
detailed in the Sect. 10.3.4.

10.3.4 Calculating the η-Parameters from the β-Parameters

Suppose that we have nq − 1 points (tq,k, iq,k) such that

tmq−1 < tq,1 < tq,2 < . . . < tq,nq−1 < tmq .

For an AEF that interpolates these points it must be true that

q−1∑

k=1

Imk + Imq

nq∑

s=1

ηq,s xq(tq,k)
βq,s = iq,k, k = 1, 2, . . . , nq − 1. (10.27)

Since ηq,1 + ηq,2 + . . . + ηq,nq = 1 equation (10.27) can be rewritten as



168 K. Lundengård et al.

Imq

nq−1∑

s=1

ηq,s
(
xq(tq,k)

βq,s − xq(tq,k)
βq,nq
) = iq,k − xq(tq,k)

βq,nq −
q−1∑

s=1

Ims (10.28)

for k = 1, 2, . . . , nq − 1. This can easily be written as a matrix equation

Imq X̃q η̃q = ĩq , (10.29)

where

η̃q = [ηq,1 ηq,2 . . . ηq,nq−1
]�

,

(
ĩq
)

k
= iq,k − xq(tq,k)

βq,nq −
q−1∑

s=1

Ims ,

(
X̃q

)

k,s
= x̃q(k, s) = xq(tq,k)

βq,s − xq(tq,k)
βq,nq ,

with xq(t) given by (10.4).
When all βq,k , k = 1, 2, . . . , nq are known then ηq,k , k = 1, 2, . . . , nq − 1 can be

found by solving (10.29) and ηq,nq = 1 −
nq−1∑

k=1

ηq,k .

If we have kq > nq − 1 data points than the parameters can be estimated with the
least-squares solution to (10.29), more specifically the solution to

I 2mq
X̃�
q X̃q η̃q = X̃�

q ĩq .

If we wish to guarantee monotonicity in an interval by forcing ηq,k > 0, k ∈
{1, 2, . . . , nq} (see Lemma 10.2) this becomes a so-called nonnegative least squares
problem that can also be solved effectively with well known algorithms, e.g. [8].

10.3.5 Explicit Formulas for a Single-Peak AEF

Consider the case where p = 1, n1 = n2 = 2 and τ = t
tm1

. Then the explicit formula
for the AEF is

i(τ )

Im1

=
{

η1,1 τβ2
1,1+1e(β2

1,1+1)(1−τ)+ η1,2 τβ2
1,2+1e(β2

1,2+1)(1−τ), 0≤τ ≤ 1,

η2,1 τβ2
2,1 eβ2

2,1(1−τ)+ η2,2 τβ2
2,2 eβ2

2,2(1−τ), 1≤τ.
(10.30)

Assume that four data points, (ik, τk), k = 1, 2, 3, 4, as well as the charge transfer
and specific energy Q0, W0 are known.

If we want to fit the AEF to this data using MLSM, then (10.24) gives
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J =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

f1(τ1) f2(τ1) 0 0
f1(τ2) f2(τ2) 0 0
0 0 g1(τ3) g2(τ3)
0 0 g1(τ4) g2(τ4)

∂

∂β1,1
Q(β, η)

∂

∂β1,2
Q(β, η)

∂

∂β2,1
Q(β, η)

∂

∂β2,2
Q(β, η)

∂

∂β1,1
W (β, η)

∂

∂β1,2
W (β, η)

∂

∂β2,1
W (β, η)

∂

∂β2,2
W (β, η)

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

,

fk(τ ) = 2 η1,k β1,kτ
β2
1,k+1e(β2

1,k+1)(1−τ)
(
ln(τ ) + 1 − τ

)
,

η1,1 = i1
Im1

− τ
β2
1,2

1 e(β2
1,2+1)(1−τ1), η1,2 = 1 − η1,1,

gk(τ ) = 2 η2,k β2,kτ
β2
2,k eβ2

2,k (1−τ)
(
ln(τ ) + 1 − τ

)
,

η2,1 = i3
Im1

− τ
β2
2,2

3 eβ2
1,2(1−τ3), η2,2 = 1 − η2,1,

β = [(β2
1,1 + 1

) (
β2
1,2 + 1

)
β2
2,1 β2

2,2

]
,

η = [η1,1 η1,2 η2,1 η2,2
]
,

Q(β, η)

Im1

=
2∑

s=1

η1,s
eβ2

1,s

(
β2
1,s + 1

)β2
1,s+1

γ
(
β2
1,s + 2, β2

2,s + 1
)

+
2∑

s=1

η2,s
eβ2

2,s−1

β
2β2

2,s

2,s

(
Γ
(
β2
2,s + 1

)− γ
(
β2
2,s + 1, β2

2,s

))
,

∂Q

∂βq,s
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 Im1η1,s β1,s
dĝ

dβ

∣∣∣∣
β=β2

1,s+1

, q = 1,

2 Imqηp,s β2,s
dg̃

dβ

∣∣∣∣
β=β2

2,s

, q = 2,

with derivatives of ĝ(β) and g̃(β) given by (10.25) and (10.26),

β̃ = [(β2
1,1 + β2

1,2 + 2
) (

β2
1,1 + β2

1,2 + 2
)

(β2
2,1 + β2

2,2) (β2
2,1 + β2

2,2)
]
,

η̂ = [η2
1,1 η2

1,2 η2
2,1 η2

2,2

]
, η̃ = [(η1,1η1,2) (η1,1η1,2) (η2,1η2,2) (η2,1η2,2)

]
,

∂

∂βq,s
W (β, η) = 2 βq,s

∂

∂βq,s
Q (2β, η̂) + β

q,

(
(s−1 mod 2)+1

) ∂

∂βq,s
Q
(
β̃, η̃

)
.

Remark 10.2 If we only have one datapoint such that (cIm1 , τ3), 0 < c < 1, and one
term in the decaying part, we can actually interpolate that point using the formula

β2 =
√
1 − τ3 + ln(τ3)

ln(c)
.
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10.3.6 Examples of Fitting a Single-Peak AEF

Here we apply the procedure described in Sect. 10.3.5 to estimate parameters of the
single-peaked AEF to fit two different one-peaked waveforms, a fast-decaying wave-
form [10] and the so called first-positive stroke 10/350 µs from [4]. Each waveform
is defined by aHeidler function and all parameters (rise/decay time ratio, T1/T2, peak
current value, Im1, time to peak current, tm1, charge transfer at the striking point, Q0,
specific energy, W0, and time to 0.1Im1, t1) are given in Table10.1. Data points were
chosen as follows:

(i1, τ1) = (0.1 Im1 , t1), (i3, τ3) = (0.5 Im1 , th = t1 − 0.1 T1 + T2),

(i2, τ2) = (0.9 Im1 , t2 = t1 + 0.8 T1), (i4, τ4) = (i(1.5 th), 1.5 th).

The AEF representation of the fast-decaying waveshape is shown in Fig. 10.7.
Rising and decaying parts of the first-positive stroke current in IEC 62305 [4], are
shown in Fig. 10.8. Apart from the AEF (solid line), the Heidler function represen-
tation of the same waveforms (dashed line), and used data points (red solid circles)
are also shown in the figures.

In Fig. 10.7 it can be noticed that the fit in the rising part is very good and the fit
in the decaying part is acceptable for many purposes.

FromFig. 10.8 it is clear that the fitting of theAEF can be difficult. In the rising part
the fit is poor and this is due to the Heidler function rising steeply in the middle of the
interval and when the steepness of the power exponential function is increased it will
also move the steepest part of the slope to the right. The charge transfer Q has a low
relative accuracy compared to the specific energy W but similar absolute accuracy.
This is an example that in some cases a weighted least-square sum is preferable.

For both waveforms the best fit using two terms in each interval for the AEF is
not better than the fit that is achieved using only a single term in each interval which
can be seen in Table10.1 since all the η-parameters are either 0 or 1.

Fig. 10.7 The normalized fast-decaying current waveshape 8/20 µs, represented by the AEF
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Fig. 10.8 First positive stroke 10/350 µs, for Im = 200 kA, represented by the AEF

Table 10.1 The AEF parameters for the example waveshapes

First-positive stroke Fast-decaying

T1/T2 10/350 8/20

tm1 [µs] 31.428 15.141

Im1 [kA] 200 0.001

t1 [µs] 14.528 6.343

Q0 [C] 100 /

W0 [MJ/] 10 /

Q [C] 89.7 /

W [MJ/] 10.000095 /

β1,1 2.600 2.626

β1,2 2.477 2.700

β2,1 0.295 2.500

β2,2 0.567 1.958

η1,1 0 1

η1,2 1 0

η2,1 1 0

η2,2 0 1

10.4 Conclusions

We have presented and examined some basic properties of a generalized version of
the AEF function intended to be used for approximation of multi-peaked lightning
discharge currents. Existence as well as explicit formulas of the analytical solution
for the first derivative and the integral of the AEF function has been shown, which
is needed in order to perform lightning electromagnetic field (LEMF) calculations
based on it.
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A method for finding a least square approximation using the Marquardt least
square method (MLSM) that works for any number of peaks has been presented.

Two examples of parameter estimation for single-peakedwaveforms, the Standard
IEC 62305 first-positive stroke 10/350 µs function and a fast-decaying waveform
8/20 µs, have been shown. An estimation of their parameters using MLSM was
performed using two pairs of data points for each waveform (one pair for the rising
part and one pair for the decaying part). As it can be observed from the results a good
approximation is achievable but not under all circumstances.
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Chapter 11
Mathematical Modelling of Cutting Process
System

Jüri Olt, Olga Liivapuu, Viacheslav Maksarov, Alexander Liyvapuu
and Tanel Tärgla

Abstract The mathematical modelling of the process system allows carrying out
research into the selection and optimisation of machining conditions. The concep-
tualization of the operator that represents the dynamic characteristics of the cutting
and friction process is an important issue in the development of the mathematical
formulation of the interaction between subsystems in the cutting process. Currently,
different approaches exist to the description of cutting and friction processes with the
use of dynamic and quasi-static concepts, which results in the different studies using
the machining process system models that are essentially distinct from each other.
The subject of this paper is the method of dynamic process approximation, which
allows analysing the behaviour of the machining process system in the process of
chip formation at a sufficient level of accuracy.
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11.1 Mathematical Model of Technological System

One of the ways of analysing a process system is its mathematical modelling, which
allows to perform studies on the selection of the optimummachining conditions. The
mathematical formulation of the behaviour of a process system at the phenomenolog-
ical level shall be regarded as the approximation of dynamic processes based on the
results of experimental studies and allowing to identify, within the framework of the
assumed concept, the time values of the cutting force lagging behind the movement
of the tool and the friction force lagging behind the cutting force, the time constants
and the transfer factors of the respective approximation elements.

In the light of today’s views, the process of chip formation in cutting has discrete
nature [2], defined by the presence of several stages in the chip formation. Let us
consider the dynamical model of four-loop manufacturing process system, which is
divided to workpiece sub-systemwith generalized coordinates X and Y and tool sub-
system with generalized coordinates x and y (Fig. 11.1). The analysis that has been
carried out in [1] allows to approximate the discrete cutting process by a continuous
one with a sufficient accuracy. In accordance with this supposition it is assumed that
the displacements of the cutting tool along the lines of cutting and friction forces
(respectively, along the tangent direction y and the normal direction x) for the lag
times τP and τQ of the cutting force P behind the displacement x and the friction
force Q behind the cutting force P, respectively, are equal to lP and lQ . The values
lP and lQ are supposed to be constant, they depend on the properties of the machined
material (cutting coefficient k, chip contraction coefficient ξ ) aswell as the coefficient
f of the friction of the chip on the cutting tool’s rake face.
Denoting the nominal cutting speed by vS and taking into account the adopted

supposition about lP and lQ, we obtain

lP =
τP∫

0

(vS + ẏ)dt = vSτP +
τP∫

0

ẏdt = const, (11.1)

lQ =
τQ∫

0

(vS + ẏ + ξ ẋ)dt = vSτQ +
τQ∫

0

(ẏ + ξ ẋ)dt = const, (11.2)

where ẋ and ẏ are time derivatives of the coordinates; ξ is the chip contraction
coefficient defined by the combined action of the forces P and Q. The constant
components of time lag parameters τP and τQ are found using the formulae TP = lP

vS

and TQ = lQ
vS

and referred as cutting process lag constants. The static cutting force
PS and friction force QS can be represented in the following form [1, 5]

PS = kbcδ
ε, QS = f P, (11.3)
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Fig. 11.1 Dynamic model of four-loop process system; WP - work piece sub-system; T - tool;
Ach - chip formation operator

where f is the coefficient of the friction of the chip on the cutting tool’s rake face; k
is the cutting factor; bc is the width of the sheared-off layer; δ is the thickness of the
sheared-off layer; ε is an empirical index (it is provisionally assumed to be equal to
0.75 for steel).

In case of small displacements of the cutter the cutting force Px (t) can be suffi-
ciently closely approximated using the expression [7]

Px (t) = −kbcδ
ε−1x(t), (11.4)

subsequently
QP(t) = f Px (t). (11.5)

Without passing on to the time lagging mechanism, we assume in accordance
with [7], that at any instant of time the following relations hold
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P(t + τP) = −Bx(t) ≡ Px (t), (11.6)

Q(t + τQ) = f P(t) ≡ QP(t), (11.7)

where B is is the disturbance factor in the loop x .
Expanding each of the previous functions in the Taylor series about the operat-

ing point and keeping the linear part of the series, we obtain the formulae for the
determination of τP and τQ

τP = Px (t) − P(t)

Ṗ(t)
, τQ = QP(t) − Q(t)

Q̇(t)
. (11.8)

Taking into consideration (11.1) (11.2) and (11.8), after a number of transforma-
tions we obtain the lag equations as follows

⎧
⎨

⎩

TP Ṗ + (1 + ẏ
vS

)(P + Bx) = 0,

TQ Q̇ + (1 + ẏ+ξ ẋ
vS

)(Q − f P) = 0.
(11.9)

The assumptions of the invariability of the values lP , lQ and the satisfaction of
the relations (11.6) and (11.7) are essential for the system of Eq. (11.9).

The two-loop dynamic model of the machining process system for the loops x and
y (Fig. 11.1) in the case of small perturbations can be represented by the following
differential equation system

{
mx ẍ + bx ẋ + cx x = Q,

my ÿ + by ẏ + cy y = P,
(11.10)

where mx , my are reduced inertial parameters of the loops x and y of the system;
bx , by are factors, which take account of the energy dissipation in the loops x and y
of the system; cx , cy are stiffness factors of the loops x and y.

Basing on simultaneous analysis of the Eqs. (11.9) and (11.10), the behaviour
of the two-loop model of the machining process system can be represented by the
following system of differential equations

⎧
⎪⎪⎨

⎪⎪⎩

mx ẍ + bx ẋ + cx x = Q,

my ÿ + by ẏ + cy y = P,

TP Ṗ + (1 + ẏ
vS

)(P + Bx) = 0,
TQ Q̇ + (1 + ẏ+ξ ẋ

vS
)(Q − f P) = 0.

(11.11)

This system of equations is nonlinear. That is a crucial statement for a self-
oscillating cutting machining process system. For the further research into it we
are going to use the approximation of the nonlinear differential equations by a sys-
tem of quasi-linear differential equations with piecewise constant coefficients [6].
For that purpose, it would be more convenient to reduce the system of differential
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equation (11.11) to its canonical representation. We introduce the variables of the
canonical system of equations with the following formulae

q1 = x, q2 = ẋ, q3 = y, q4 = ẏ, q5 = P, q6 = Q. (11.12)

Then the system (11.11) takes the following form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q̇1 − q2 = 0,
mxq̇2 + bxq2 + cxq1 − q6 = 0,
q̇3 − q4 = 0,
myq̇4 + byq4 + cyq3 − q5 = 0,
TPq̇5 + (1 + q4

vS
)(q5 + Bq1) = 0,

TQq̇6 + (1 + q4+ξq2
vS

)(q6 − f q5) = 0.

(11.13)

Thus, the differential equation system (11.13) can be represented in terms of state
variables in the following vector-matrix form

T q̇ + Sq = 0, (11.14)

where

• q = (q1, . . . , q6)T is a six-component vector of the system’s state variables;
• T = diag(t1, . . . , t6) is a diagonal matrix of the following constants:

T =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

1 0 0 0 0 0
0 mx 0 0 0 0
0 0 1 0 0 0
0 0 0 my 0 0
0 0 0 0 TP 0
0 0 0 0 0 TQ

⎞

⎟⎟⎟⎟⎟
⎟
⎠

. (11.15)

• S = (si j ), (i, j = 1, . . . , 6), is a square matrix of order 6, where the elements
s51 = s55, s56 = − f s66 are coordinate functions:

S =

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

0 −1 0 0 0 0
cx bx 0 0 0 −1
0 0 0 −1 0 0
0 0 cy by −1 0

1 + q4
vS

0 0 0 1 + q4
vS

0

0 0 0 0 − f
(
1 + q4+ξq2

vS

)
1 + q4+ξq2

vS

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

. (11.16)

Since thematrix S contains the elements s51, s55, s56 and s66,which are coordinate
functions, i.e. it includes nonlinear elements in the form of the products of state
variables, the system of Eq. (11.14) is nonlinear.
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The nonlinear parts of the system represented by the Eq. (11.14) can be trans-
formed by the approximate substitution of the products of variables by the corre-
sponding linear approximants

(
1 + q4

vS

)
(q5 + Bq1) = q5 + Bq1 + q4

vS
(aP + Bax ) + ay

vS
(q5 + Bq1) =

= (q5 + Bq1)
(
1 + ay

vS

)
+ q4

vS
(aP + Bax ) =

= q5 + Bq1 + q4
vS

(aP + Bax ), (11.17)

where ax , ay and aP are some average small perturbations of parameters in the
neighbourhood of the stability region boundary, which is brought into coincidence
with the supposed stable limit cycle. The product of the variables containing the
value ay will be dropped out because of the smallness of the latter compared to unity.

The product of other parameters is linearized similarly:

(
1 + q4 + ξq2

vS

)
(q6 − f q5) =

(
1 + ayx

vS

)
(q6 − f q5) +

(q4 + ξq2
vS

)
aPQ =

= (q6 − f q5) +
(q4 + ξq2

vS

)
aPQ .

(11.18)

To determine the values ayx and aPQ the equation of the energy balance for a
period of oscillation is set up following the method described in the work [1].

Nowwe present the initial system of differential equation (11.14) in the linearized
form in the neighbourhood of the limit cycle. This will be the system of linear
homogeneous differential equations. We present it in the matrix form, where all
matrices are with constant elements

T̃ q̇ + S̃q = 0. (11.19)

Let us introduce the relation formulae between coefficients of the system of
Eq. (11.19), which facilitate reducing the components of the system of differential
equation (11.14) to the dimensionless form

• ωx =
√

cx
mx

and ωy =
√

cy
my

are angular frequencies of the loops x and y;

• Tx2 = 1
ωx

and Ty2 = 1
ωy

are time constants of the loops x and y;
• dx = ψx

2π and dy = ψy

2π , where ψx and ψy are energy dissipation coefficients
(absorption coefficients) in the loops x and y;

• Tx1 = bx
cx

≈ dx
ωx

and Ty1 = by
cy

≈ dy
ωy

are damping time constants of the loops x and
y;
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• kx = f B
cx

is the system transfer factor in the loop x, B is the disturbance factor in
the loop x ;

• γ =
√

1+kx
T 2
x2+Tx1(TP+TQ )

is the angular frequency of the system.

After the transformations the diagonal matrix T̃ of time constants will take the
following form

T̃ =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0
0 T 2

x2 0 0 0 0
0 0 1 0 0 0
0 0 0 T 2

y2 0 0
0 0 0 0 TP 0
0 0 0 0 0 TQ

⎞

⎟
⎟⎟⎟⎟⎟
⎠

. (11.20)

In the matrix S̃ the elements s̃51, s̃55, s̃56 and s̃66 are no more coordinate functions,
while the elements s̃51 = kx and s̃55 = s̃56 = −s̃66 = 1. The elements s̃54, s̃62 and
s̃64 are equal to the cutting speed oscillation time constants s̃54 = Tky1, s̃62 = Tkx ,
s̃64 = Tkx2. The matrix S̃ will look as follows

S̃ =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

0 −1 0 0 0 0
1 Tx1 0 0 0 −1
0 0 0 −1 0 0
0 0 1 Ty1 −1 0
kx 0 0 Tky1 1 0
0 Tkx 0 Tky2 −1 1

⎞

⎟
⎟⎟⎟⎟⎟
⎠

, (11.21)

where

s̃54 = Tky1 = ATPψy L P ,

s̃64 = Tky2 = ATPψxy L P

NQ
,

s̃62 = Tkx = A f ξTQLPψxyky
NQ

,

LP = Bγ

vScy
√
T 2
Pγ 2 + 1

,

NQ =
√
T 2
Qγ 2 + 1,

ky = cx
cy

.

(11.22)

The amplitude A is entered into this expressions as a parameter. Its magnitude is
defined by the requirements of the soft limitation of the contact between the clearance
face of the cutting tool and the machined surface [7]
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A = vs tan (αP)

γ
√
1 + a2y tan (αP) + 2ay tan (αP) cos (ϕxy)

, (11.23)

where

• αP is the cutting tool clearance angle;
• ay = Ay

Ax
,where Ax and Ay are amplitudes of the oscillation of x and ywith relation

to the oscillation of the force P;
• ϕxy is the phase shift of the oscillation of x and y with relation to the oscillation
of the force P;

• γ is the angular frequency of the closed-loop system.

The functions ψy and ψxy are averaged over a period of oscillation and represent
the effect of the phase shift between variables

ψy = 1

2

[(π

2
− ϕPy

)
cos (ϕPy ) + sin (ϕPy )

]
, (11.24)

ϕPy =
⎧
⎨

⎩

π + arctan
(

dy
1−v2y

)
, when vy ≥ 1,

arctan
(

dy
1−v2y

)
, when vy < 1,

(11.25)

ψxy = 1

2

[(π

2
− |θxy − θPQ |

)
cos (|θxy − θPQ |) + sin (|θxy − θPQ |)

]
, (11.26)

where

θxy = arctan

⎡

⎢
⎣

(B cos (ϕPy ) − ξcy
√
N 2 + d2

y

√
T 2
Pγ 2 + 1)

(B sin (ϕPy ) + ξcy
√
N 2 + d2

y

√
T 2
Pγ 2 + 1)

· cos (ϕx P)

sin (ϕx P)

⎤

⎥
⎦ ,

θPQ = arctan
( 1

TQγ

)
,

N = 1 − v2y,

vy = γ

ωy
,

ϕx P = arctan (TPγ ),

ϕxy = ϕx P + ϕPy = arctan (TPγ ) + arctan
(dy
N

)
.

(11.27)

Thus, the initial nonlinear system of differential equation (11.11) can be repre-
sented in the form of a linearized two-loop model as follows
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T 2
x2 ẍ + Tx1 ẋ + x = Q, (11.28)

T 2
y2 ÿ + Ty1 ẏ + y = P, (11.29)

TP Ṗ + P = −kx x − Tky1 ẏ, (11.30)

TQ Q̇ + Q = P − Tkx x − Tky2 ẏ. (11.31)

The system of equations in the form of (11.28)–(11.31) defines the behaviour of
the process systemwhen describing the friction between the cutting face of the cutting
tool and the chip in the process of cutting in the form of quasi-static performance
like in the Amontons–Coulomb model. In the studies [3, 7] these equations were
modified taking into account the molecular andmechanical conception of the contact
interaction between the cutting tool and the chip on the basis of the binomial friction
law that includes the stages of slipping and adhesion. Their influence on the behaviour
of the process system was taken into consideration. The dynamic equations for the
four-loop model of the machining system were generated with due account for the
mentioned stages. In the state of slipping the behaviour of the process system was
defined by the system of equations (11.28)–(11.31).

11.2 Mathematical Simulation of Plastic Deformation
and Destruction in the Process of Chip Formation

The results of the analysis ofmathematical simulationof the process of chip formation
suggest that the adequate representation of this process is a rheological model con-
structed of the elastic-ductile-plastic relaxing medium of Ishlinskiy and the medium
of Voigt with the delay combined in serial [3, 4, 7].

In the state of adhesion the contact interaction during machining was represented
by the Voigt model [7], therefore, the equations of motion took the following form

mx ẍ + bx ẋ + cx x + βτ ẋ + cτ x = Q, (11.32)

my ÿ + by ẏ + cy y + βn ẏ + cn y = P, (11.33)

where cτ , cn, βτ , βn were quasi-elastic and dissipative factors for the tangent and
normal directions of the chip formation area.

The dynamic model presented in the paper [4] incorporates the relation between
theworkpiece and cutting tool sub-systems through the cuttingprocess, but the elastic
and dissipative characteristics cτ , cn, βτ , βn are given consideration there only in
the adhesion zone, i.e. during the adhesive interaction between the already departing
chip and the tool. Thence, effectively only the secondary deformation process and
its influence on the dynamic behaviour of the machining process system are taken
into account, while the process of the active primary deformation of metal in the chip
formation area, which continues throughout the whole cutting process irrespective
of the current stage of the chip progression over the tool’s rake face, is disregarded.
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The transition from one stage to the other affects the primary plastic deformation
only on account of the effective force vector change. Thus, for the formulation of a
rheological model of the machining process system we have to take into account as
the primary plastic deformation process in the area of the sheared-off layer, so the
secondary deformation and friction processes during the advancement of the chip
over the cutting tool’s rake face.

Figure11.2 shows the rheological model of chip formation that represents the
relations between the subsystems in cutting. The rheological model depicts the chip
formation process as a series combination of the elastoviscoplastic relaxing Ishlinsky
mediumand theVoigtmediumwith two elastic and dissipative elements in the tangent
and normal directions [7]. The properties of the elastic elements of the mechanical
system are determined by stiffness coefficients ci , (i = 1, 2, 3), (or pliability ei =
1/ci ), they characterize the ability of the formed links to accumulate strain energy.
The elements of damping in the mechanical system are interpreted as the ideal linear
elements creating resistant forces proportional to the relative deformation rate. The

Fig. 11.2 Rheological model of chip formation in the cutting process
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elements of damping characterize irreversible losses, connected with the dissipation
of energy both as a result of internal and external viscous resistances. The element
of damping is generally characterized by the coefficient of the linear resistance βi .

In accordance with the rheological model of chip formation (Fig. 11.2), the Ish-
linsky equation can be formulated as follows

β2σ̇ + (c1 + c2)σ = c1β2ε̇ + c1c2ε ± c1σy, (11.34)

where σy is a maximum load of a plastic element.
After reducing to unity the coefficients of the output variable, the Eq. (11.34)

assumes the following form

β2

(c1 + c2)
+ σ = c1c2

(c1 + c2)

(β2

c2
ε̇ + ε

)
± c1

(c1 + c2)
σy . (11.35)

Assuming β2

(c1+c2)
= n – relaxation time, c1c2

(c1+c2)
= H – continuous elasticity mod-

ulus and c1 = E – instantaneous elasticity modulus, we obtain

nσ̇ + σ = H
( En

H
ε̇ + ε

)
, (11.36)

since c1 � c2, then
c1

c1+c2
≈ 1, and σy is assumed to have a constant value.

After transforming the rheological equation and its coefficients, which represent
the time constants

TP1 = n = β2

(c1 + c2)
,

TP2 = En

H
= β2

c2
,

we come to
TP1σ̇ + σ = kP(TP2ε̇ + ε), (11.37)

where kP is a factor representing the rheological features of the chip formation
process. Employing the relations that enable the transition from stresses and strains
to forces and displacements, we obtain

σ = PS

δbc
,

ε = Δyξ + Δx

l0
,

where PS is the static cutting force, δ and bc are the thickness and width of the
sheared-off layer, l0 = vSτ, Δx andΔy are the displacement increments. Thereupon,
we come to the following expression for kP
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kP = δbcH

l0cx
. (11.38)

Thence, the final appearance of the differential equation in the dimensionless form
that represents the rheological processes in chip formation will be

TP1 Ṗ + P = kPx (TP2 ẋ + x) + kPy(TP2 ẏ + y), (11.39)

where kPx = 1
ξ
kP and kPy = kP . Now our aim is to present the Eq. (11.39) that

represents the rheological processes in chip formation in the operator form

(TP1 p + 1)P(p) = kPx
1

ξ
(TP2 p + 1)x(p) + kPy(TP2 p + 1)y(p), (11.40)

where p is differential operator.
The lagging Eq. (11.30) in the operator form appears as follows

(TP p + 1)P(p) = −kx x(p) − Tky1 py(p). (11.41)

Analysing simultaneously the rheological Eq. (11.40) and the lagging Eq. (11.41),
we obtain, for the x-direction

P(p)

x(p)
= [kPx (TP + TP2) − kxTP1]p + kPx − kx

(TP + TP1)p + 1
, (11.42)

and for the y-direction

P(p)

y(p)
= [kPy(TP + TP2) − Tky1]p + kPy

(TP + TP1)p + 1
. (11.43)

After the transformation of the previous equations, we obtain the general equation
in the operator form

[(TP + TP1)p + 1]P(p) = (kPx TP p + kPx TP2 p + kPx − kx TP1 p − kx )x(p) +
+(kPyTP p + kPyTP2 p − Tky1 p + kPy)y(p). (11.44)

Finally, the differential equation representing the lagging process and rheological
features of chip formation looks as follows

(TP + TP1)Ṗ + P = −(kx − kPx )x − (Tky1 − kPy(TP + TP2))ẏ +
+kPy y − (kxTP1 − kPx (TP + TP2))ẋ . (11.45)

The modelling on the basis of the piecewise linear approximation of the chip
formation processwith due consideration of the slipping and adhesion (slip and stick)
stages facilitates establishing the foundation for the generation of the differential
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equations of themachiningprocess system.Accordingly, the behaviour of the adopted
dynamic four-loop model in line with the assumed rheological chip formation model
is represented in general by the following differential equation system

T 2
x2 ẍ + (Tx1 + Tx3)ẋ − Tx3 Ẋ + 2x − X = Q,

T 2
y2 ÿ + (Ty1 + Ty3)ẏ − Ty3Ẏ + 2y − Y = P,

T 2
X2 Ẍ + (TX1 + TX3)Ẋ − TX3 ẋ + 2X − x = −Q,

T 2
Y2Ÿ + (TY1 + TY3)Ẏ − TY3 ẏ + 2Y − y = −P,

(TP + TP1)Ṗ + P = −(kx − kPx )(x − X) − (Tky1 − kPy(TP + TP2))(ẏ − Ẏ ) +
+kPy(y − Y ) − (kxTP1 − kPx (TP + TP2))(ẋ − Ẋ),

TQ Q̇ + Q = P − Tkx (ẋ − Ẋ) − Tky2(ẏ − Ẏ ),

where

• Tx2, Ty2, TX2, TY2 are time constants of the loops x, y, X and Y ;
• Tx1, Ty1, TX1, TY1, Tx3, Ty3, TX3, TY3 are damping time constants of the loops x,

y, X and Y ;
• kx is the transfer factor of the system’s loop x;
• TP and TQ are time constants;
• kPx , kPy, TP1, TP2 are factors and time constants taking into account the rheolog-
ical features of the chip formation process.

The last system of differential equations represents the dynamic processes in the
machining process system taking into account the elastoplastic properties involved
in the dynamics of the contact interaction between the cutting tool and the work
piece and the rheological features of the chip formation process in the area of active
plastic deformation. The obtained system of equations provides the basis for solving
the problem of analysing the behaviour of the machining process system during the
chip segmentation.
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Chapter 12
Mixed Convection Heat Transfer in MHD
Non-Darcian Flow Due to an Exponential
Stretching Sheet Embedded in a Porous
Medium in Presence of Non-uniform Heat
Source/Sink

Prashant G. Metri, Veena M. Bablad, Pushpanjali G. Metri,
M. Subhas Abel and Sergei Silvestrov

Abstract A mathematical analysis has been carried out to describe mixed
convection heat transfer in MHD non-Darcian flow due to an exponential stretching
sheet embedded in a porous medium in presence of non-uniform heat source/sink.
Approximate analytical similarity solutions of the highly non-linear momentum and
energy equations are obtained. The governing system of partial differential equa-
tions is first transformed into a system of non-linear ordinary differential equations
using similarity transformation. The transformed equations are non-linear coupled
differential equations and are solved very efficiently by using fifth order Runge–
Kutta–Fehlberg method with shooting technique for various values of the governing
parameters. The numerical solutions are obtained by considering an exponential de-
pendent stretching velocity and prescribed boundary temperature on the flow direc-
tional coordinate. The computed results are compared with the previously published
work on various special cases of the problem and are in good agreement with the ear-
lier studies. The effect of various physical parameters, such as the Prandtl number,
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the Grashoff number, the Hartmann number, porous parameter, inertia coefficient
and internal heat generation on flow and heat transfer characteristics are presented
graphically to show some interesting aspects of the physical parameter.

Keywords Exponential stretching · Magnetohydrodynamics (MHD) · Porous
medium · Similarity solutions

12.1 Introduction

Analysis of fluid flow in a boundary layer in a stretching sheet is an important part in
the fluid mechanics and heat transfer occurring in a number of engineering processes.
Few examples of such technological processes are the extrusion of plastic sheet, hot
rolling, wire drawing, glass-fiber and paper production, drawing of plastic films and
the cooling of a metallic plate in a cooling bath. A class of flow problems with obvious
relevance to polymer extrusion is the flow induced by the stretching motion of a flat
elastic sheet. For example, in a metal spinning process, the extradite from the die is
generally drawn and simultaneously stretched into a filament or sheet, which is there
after solidified through rapid quenching or gradual cooling by direct contact with
water or chilled metal rolls. Annealing and thinning of copper wires is another ex-
ample in which the final product depends on the rate of heat transfer at the stretching
continuous surface with power-law and exponential variations of stretching velocity
and temperature distribution. By drawing the strips in an electrically conducting fluid
subjected to a magnetic field the rate of cooling can be controlled and the final prod-
ucts of desired characteristic might be achieved. Both the kinematics of stretching and
the simultaneous heating or cooling during such processes have a decisive influence
on the quality of the final products. Considering their importance, those flows have
been studied by several research groups [22, 24, 28, 30]. The continuing interest in
heat transfer and fluid flow through porous media is mainly due to several engineer-
ing and geophysical fields such as cooling of nuclear reactors, enhanced oil recovery,
thermal insulation drying of porous solids, solid matrix heat exchanges, geothermal
and petroleum resources, ceramic processing, filtration processes, chromatography,
etc. Ali [6] investigated the effect of variable viscosity on mixed convection heat
transfer along a moving surface. The study of magnetohydrodynamic (MHD) flow
of an electrically conducting fluid is of considerable interest in modern metallur-
gical and metal-working process such as drawing of continuous filaments through
quiescent fluids, and annealing and tinning of copper wires, the properties of the
end product depend greatly on the rate of cooling involved in these processes. This
type of flow has also attracted many investigators due to its application in various
engineering problems such as MHD generators, nuclear reactors, geothermal energy
extraction.

Numerous attempts have been made to analyse the effect of transverse magnetic
field on boundary layer flow characteristics. Abel et al. [4] studied viscoelastic MHD
flow and heat transfer over a stretching sheet with viscous with Ohmic dissipations in
the presence of electric field. Pal and Chatterjee [16] investigated similar problem by
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considering micropolar fluid. Sharma and Singh [27] analyzed the effects of variable
thermal conductivity, viscous dissipation on steady MHD natural convection flow
of low Prandtl number fluid on an inclined porous plate with Ohmic dissipation.
Singh and Tewari [29] studied the effect of thermal stratification on Non-Darcian
free convection flow by using the Ergun model [10] to include the inertia effect.
It is well known that there exists non-Darcian flow phenomena bodies inertia effect
and solid-boundary viscous resistance. Seddeek [26] analyzed Non-Darcian effect on
forced convection heat transfer over a flat plate in a porous medium with temperature-
dependent viscosity. Recently, Pal and Mondal [18] analyzed the effect of variable
viscosity on MHD non-Darcy mixed convective heat transfer in porous medium
with non-uniform heat source/sink. Abel et al. [3] and Bataller [8] investigated the
effects of non-uniform heat source on viscoelastic fluid flow and heat transfer over
a stretching sheet.

In certain porous media applications such as those involving heat removal from
nuclear fuel debris, underground disposal of radiative waste material, storage of food
stuffs, the study of heat transfer is of much importance. Comprehensive reviews of
the convection through porous media have been reported by Nield and Bejan [15] and
by Ingham and Pop [12]. Ali [7] analyzed the effect of lateral mass flux on the natural
convection boundary layer induced by a heated vertical plate embedded in a saturated
porous medium with an exponential decaying heat generation. It is worth mentioning
that Non-Darcian forced flow boundary layers from a very important group of flows,
the solution of which is of great importance in many practical applications such
as in biomechanical problems, in filtration transpiration cooling and geothermal.
In all the above studies, the thermal-diffusion effects are negligible. However, the
thermal-diffusion effects, which is caused by temperature gradient is an interesting
macroscopically physical phenomenon in fluid mechanics. Usually, in heat and mass
transfer problems the variation of density with temperature give rise to combined
buoyancy effect under natural convection and hence the temperature will influence
the diffusion of species. Recently, Pal and Chatterjee [17] analyzed the effect of
mixed convection magnetohydrodynamic heat and mass transfer past a stretching
surface in a micropolar fluid-saturated porous medium under the influence of Ohmic
heating, Soret and Dufour effects. Alam et al. [5] have studied the Dufour and Soret
effects on steady free convection and mass transfer flow past a semi-infinite vertical
porous plate in a porous medium. Pal and Mondal [19] examined the effect of Soret
and Dufour on MHD non-Darcy unsteady mixed convection heat and mass transfer
over a stretching sheet.

In all above investigations porous medium is excluded. But the study of Non-
Newtonian fluid flow through porous medium gained momentum as some particular
polymer solutions while injected into oil reservoir attain better volumetric sweep ef-
ficiency in oil displacement mechanism, which is very important. Abel and Veena [1]
studied the flow and heat transfer characteristics in viscoelastic boundary layer flow
in porous medium over a stretching surface, Abel et al. [2] studied the hydromag-
netic viscoelastic fluid flow and heat transfer over a non-isothermal stretching sheet
embedded in porous media. Pillai et al. [20] investigated the effects of work done
by deformation in viscoelastic fluid in porous medium with uniform heat source.
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Chung [11] also studied the heat transfer characteristics in porous medium in pres-
ence of transverse magnetic field.

Rohni et al. [23] investigated steady laminar two-dimensional flow and heat trans-
fer of an incompressible viscous fluid in presence of buoyance force over an expo-
nentially shrinking vertical sheet with suction. The shrinking velocity and wall tem-
perature are assumed to have exponential functions form. Swati et al. [13] studied
boundary layer flow and mass transfer an exponential stretching sheet embedded
in porous medium. A first order constructive/destructive chemical reaction is also
considered. Chetan et al. [9] investigated viscoelastic flow and heat transfer over an
exponential stretching sheet with Navier slip boundary condition, here two types of
different heating process are considered, namely prescribed exponential order sur-
face and prescribed exponential order heat flux. Sandeep et al. [25] analyzed the
unsteady magneto hydrodynamic radiative flow and heat transfer characteristics of a
dusty nano fluid over an exponentially permeable stretching surface in presence vol-
ume fraction of nano particles. Raju et al. [21] investigated the flow and heat transfer
behavior of Casson fluid past an exponential permeable stretching sheet in presence
of thermal radiation, magnetic field, viscous dissipation and chemical reaction. Also,
dual solutions are presented by comparing the results of the Casson fluid with the
Newtonian fluid.

In view of above discussion authors envisage to investigate the effect of mixed
convection heat transfer in the MHD non-Darcian flow due to an exponential stretch-
ing sheet embedded in a porous medium in presence of non-uniform heat source/sink.
The Darcy-Forchheimer model is used to describe the flow in the porous medium.
Highly non-linear momentum and heat transfer equations are solved numerically us-
ing the fifth order Runge-Kutta-Fehlberg method with shooting technique, (Na [14]),
since the governing equations are solved analytically. The novelty of present investi-
gation is to consider temperature dependent and MHD Non-Darcian saturated porous
medium in the presence of effect of non-uniform heat source/sink. The effect of var-
ious parameters on the velocity and temperature profiles as well as various physical
parameters, such as the Prandtl number, the Grashoff number, the Hartmann number,
porous parameter, inertia coefficient and internal heat generation on flow and heat
transfer characteristics are presented graphically to show some interesting aspects of
the physical parameter. It is hoped that the results obtained from the present investi-
gation will provide useful information for application and also serve as a complement
to the previous study.

12.2 Mathematical Formulation

Consider a two-dimensional flow of an electrically conducting and incompressible
viscous fluid near an impermeable plane wall stretching with velocityUw and a given
temperature distribution Tw. The x-axis is directed along the continuous stretching
surface and points in the direction of motion. The y-axis is perpendicular to x-axis
whence the continuous stretching plane surface issues (see Fig. 12.1). A uniform
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Fig. 12.1 Schematic of the
boundary layer induced by
stretching sheet

magnetic field B0 is assumed to be applied in the y-direction. It is assumed that the
induced magnetic field of the flow is negligible in comparison with the applied one
which corresponds to a very small magnetic Reynolds number. Under boundary layer
along with the Boussinesq approximation, the continuity, momentum, and energy
equations can be written as,

∂u

∂x
+ ∂u

∂y
= 0, (12.1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− ν

k
u − Cb√

k
u2 + gβ(T − T∞) − σ B2

0

ρ
u, (12.2)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂y2

)
+ σ B2

0

ρCp
u2 + μ

ρCp

(
∂T

∂y

)2

+ q
′′′

ρCp
, (12.3)

q
′′′ =

(
kuw(x)

xν

)
[A∗(Tw − T∞)e−αη + B∗(T − T∞)], (12.4)

where ρ is density, T is temperature, ν kinematic viscosity, k is the coefficient of
thermal conductivity, Cp is the specific heat at constant pressure, q ′′′ is non-uniform
heat generation.

The parameters A∗ and B∗ are parameters of space temperature-dependent internal
heat generation/absorption. It is to be noted that A∗ > 0 and B∗ > 0 corresponds
to internal heat generation while A∗ < 0 and B∗ < 0 corresponds to internal heat
absorption.

The associated boundary conditions are:

U = Uw(x), v = 0, T = Tw(x) at y = 0, (12.5)

u = 0, T → T∞ as y → ∞, (12.6)

where (u, v) and (x, y) are the components of the velocity field of the steady plane
boundary flow, α is Thermal diffusivity of the ambient fluid. σ is the electrical
conductivity, and B0 is the magnetic flux density. The fluid flow is under the effect
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of the temperature field, where T∞ is the temperature of the ambient fluid, Cb is the
drag coefficient. The stretching velocityUw and exponential temperature distribution
Tw are defined as follows,

Uw(x) = Uoe
x
L , (12.7)

Tw(x) = T∞ + (T0 − T∞)e
ax
2L , (12.8)

where T0 and a are parameters of temperature distribution over the stretching surface.
We now introduce the following non-dimensional parameters,

η =
√

Rey

2L
e

x
2L , ψ(x, η) = √

2Reνe
x

2L f ′(η), (12.9)

T (x, y) = T∞ + (T0 − T∞)e
ax
2L θ(η), (12.10)

where ψ is the stream function which is defined in the usual form as

u = ∂ψ

∂y
and v = −∂ψ

∂x
. (12.11)

Thus, substituting (12.9) and (12.10) into (12.11), we obtain u and v as follows

u(x, y) = u0e
x
L f ′(η) and v(x, y) = − v

L

√
Re

2
e

x
2L [ f (η) + η f ′(η)]. (12.12)

Equations (12.1)–(12.6) are transformed into ordinary differential equation with
the aid of Eqs. (12.9)–(12.11). Thus the governing equations are,

f ′′′ + f ′′ − (2 + N2) f ′2 + 2Gre
aX
2 e−2Xθ − 2e−X f ′

(
H 2

Re
+ N1

)
= 0, (12.13)

Pr−1θ
′′ + f θ

′ − a f
′
θ + e

X (2−a)
2 Ec

(
2
H2

Re
f ′2 + f ′′2eX

)
+ 2e−X [A∗ f ′e−αη + B∗θ] = 0.

(12.14)

The boundary condition given in (12.5) and (12.6) reduce to

f (0) = 0, f
′
(0) = 1, θ(0) = 1, at η → 0, (12.15)

f
′
(∞) = 0, θ(∞) = 0, as η → ∞, (12.16)

where X = x
L , H = (

σ B2
0 L

2

ρ
ν)

1
2 is the Hartman number, Ec = U 2

0
Cp(T0−T∞)

is the Eckert

number,Gr = gβ(T0−T∞)L3

ν2 is the Grashof number, Re = U0L
ν

is the Reynolds number,
λ = Gr

Re2 is the thermal Buoyancy parameter, Pr = ν
α

is the Prandtl number, N1 =
L2

kRe is porous parameter and N2 = 2CbL√
k

is the inertia coefficient. In the above system
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of local similarity equations, the effect of the magnetic field is included as a ratio of
the Hartman number to the Reynolds number.

The physical quantities of interest in the problem are the local skin friction acting
on the surface in contact with the ambient fluid of constant density, which is defined
as follows

τwx = ρν

(
∂u

∂y

)

y=0

=
(

ρνU0

L

)
Re

2

1
2

e
x
2 f

′′
(0), (12.17)

and non-dimensional skin friction coefficient, C f can be written as,

C f = 2τwx

ρU 2
w

or C f

√
Rex = √

2X f
′′
(0). (12.18)

The local surface heat flux through the wall with k as the thermally conductivity
of the fluid is given by,

qw = −k

(
∂T

∂y

)

y=0

= k(T0 − T∞)

L

(
Re

2

) 1
2

e
(a+1)

2 θ
′
(0). (12.19)

The local Nusselt number, Nux is defined as

Nux = xqw(x)

k(Tw − T∞)
, (12.20)

Nux√
Rex

= −
(
X

2

) 1
2

θ
′
(0), (12.21)

where Rex is the local Reynolds number based on the surface velocity and is given
by,

Rex = U(x)

ν
. (12.22)

12.3 Numerical Solution

The system of non-linear differential equations (12.13) and (12.14) together with the
boundary condition (12.8)–(12.10) have been solved numerically using the Runge-
Kutta-Fehlberg and the Newton-Raphson schemes based on the shooting technique.
The most important step in this method is to choose an appropriate finite value of
η → ∞ for the boundary value problem described by Eqs. (12.13) and (12.14). We
start with initial guess values for a particular set of physical parameters to obtain
f ′′(0), θ ′(0). The solution procedure is repeated with another large value of η → ∞
until two successive values of f ′′(0), θ ′(0) differ only by a specified significant digit.
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In this method, the third order nonlinear differential equation (12.13) and the second
order equation (12.14) have been reduced to 5 ordinary differential equations as
follows:

dy1

dη
= y2, (12.23)

dy2

dη
= y3, (12.24)

dy3

dη
= −y3 − (2 + N2)y2

2 − 2Gre
aX
2 e−2Xθ − 2e−X y2

(
Ha2

Re
+ N1

)
, (12.25)

dy4

dη
= y5, (12.26)

dy5

dη
= Pr

[
−y1y5 + ay2y4 − e

X (2−a)
2 Ec

(
2
Ha2

Re
y2

2 + y2
3e

X
)

− 2e−X [A∗y2e
−αη + B∗y4]

]
.

(12.27)

Boundary conditions are:

y1(0) = 0, y2(0) = 1, y3(0) = S1, y4(0) = 1, y5(0) = S2 as η → 0, (12.28)

y2(∞) = 0, y4(∞) = 1 as η → ∞, (12.29)

where S1 and S2 are determined such that y2(∞) = 0, y4(∞) = 0. Thus we have
to solve this system, we require five initial conditions. However, since we have two
initial conditions for f , and one initial condition for θ , the conditions f ′′(0), θ ′(0)

are to be determined by the shooting method using initial guess values S1 and S2 until
the conditions y2(∞) = 0, y4(∞) = 0 are satisfied. In this paper we employed the
shooting technique with the Runge-Kutta-Fehlberg and Newton-Raphson schemes
to determine unknowns in order to convert the boundary value problem into an initial
value problem. Once all initial conditions are determined, the resulting differential
equations were integrated using an initial value solver. For this purpose Runge-Kutta-
Fehlberg scheme was used.

12.4 Results and Discussion

In this work MHD mixed convective flow and heat transfer characteristics over an
exponential stretching sheet embedded in porous medium in presence of viscous
dissipation and non-uniform heat source/sink are investigated. Both numerical and
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analytical solutions are presented. The similarity transformations were used to trans-
form the governing partial differential equations of flow and heat transfer into a sys-
tem of non-linear ordinary differential equations. The accuracy of the method was
established by comparing analytical solution with the numerical solution obtained
by the shooting method together with the Runge-Kutta-Fehlberg and the Newton-
Raphson schemes. The effects of magnetic field, porous parameter, Grashoff number,
Eckert number, and space-temperature dependent heat source/sink parameters on the
velocity and temperature profiles are shown in figures (Figs. 12.2, 12.3, 12.4, 12.5,
12.6, 12.7 and 12.8). In Table 12.1, we listed some particular parameter and physical
quantities name.

12.5 Conclusion

The flow and heat transfer for MHD non-Darcy boundary layer flow and heat transfer
characteristics in an incompressible electrically conducting fluid over an exponen-
tial stretching sheet in presence of non-uniform heat source/sink has been analyzed
and discussed. The similarity transformations were used to transform the governing
partial differential equations of flow and heat transfer into a system of non-linear or-
dinary differential equations. The accuracy of the method was established by compar-
ing analytical solution with the numerical solution obtained by the shooting method
together with the Runge-Kutta-Fehlberg and the Newton-Raphson schemes. The ef-
fect of various physical parameters like non uniform heat source/sink parameter,

(a) Temperature profile for different 
                     values of

(b) Velocity profile for different 
            values of PrPr

Fig. 12.2 a and b Shows the effect of Prandtl number on the heat transfer is shown in temperature
and velocity profiles for different values of Pr . We infer from the figures that temperature decreases
with increase in Pr which implies that viscous boundary layer is thicker than the thermal boundary
layer. This is in contrast to the effects of other parameters on heat transfer
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(a) Temperature profile for different 
                     values of Gr

(b) Velocity profile for different 
             values of Gr

Fig. 12.3 a Depicts the variation of temperature profile for different values of Grashoff number
Gr . From this figure, it is noticed that the temperature decreases with increase in the value of Gr in
the boundary layer. Temperature shows increase in the temperature difference between the stretched
wall and adjacent fluid which is the reason for enhancing the heat transfer process from surface to
the ambient fluid. Increase in the value of the Gr results in the decreasing of the thermal boundary
layer thickness. bDepicts the velocity response to distinct values of Grashoff number Gr . It is found
that the increase in Grashoff number results in rise in the values of velocity due to enhancement in
buoyancy force. Here, increase in the values of the Grashoff number correspond to cooling of the
surface

(a) Temperature profile for different 
                     values of

(b) Velocity profile for different 
            values of EcEc

Fig. 12.4 a and b Shows the effect of the Eckert number Ec in both temperature and velocity
respectively. It is evident that thermal boundary layer is broadened due to increase in Ec, the
energy dissipation exhibits an appreciable increase in the wall temperature in both temperature and
velocity. This is quite consistent with the physical situation as the dissipative energy due to elastic
deformation work, frictional and ohmic heating are considered, which results in the increase in the
temperature and velocity profiles
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(a) Effect of space dependent heat source/sink
parameter A∗ on heat transfer in Temperature
profile

(b) Effect of space dependent heat source/sink
parameter A∗ on heat transfer in Temperature
profile

Fig. 12.5 a and b Show temperature and velocity profiles, respectively, for different values of A∗.
For A∗ > 0, it can be seen that the thermal boundary layer generates the energy, and this causes
the temperature of the fluid to increase with increase in the value of A∗ > 0, where as in the case
of the A∗ < 0 the boundary layer absorbs the energy resulting the temperature to fall considerably
with decreasing values of A∗

(a) Effect of temperature dependent heat
source/sink parameter B∗ on heat transfer in
temperature profile

(b) Effect of temperature dependent heat
source/sink parameter B∗ on heat transfer in
velocity profile

Fig. 12.6 a and b Shows the effect of temperature dependent heat source/sink parameter B∗ on
temperature and velocity profiles, is demonstrated in the figure. The graphs illustrate that energy
is released for increasing B∗ > 0, which causes the temperature to increase both temperature and
velocity profiles, where as energy is absorbed for decreasing values of B∗ < 0, resulting temperature
to drop significantly near the boundary layer
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(a) Temperature profile for different values of
N1

(b) Velocity profile for different values of
N1

Fig. 12.7 a The variation of porous parameter in temperature profile is shown. The increase in the
porous parameter decreases permeability which results in obstruction in motion of the fluid due to
which there is an increase in the temperature in the thermal boundary layer. b The effect of porous
parameter on velocity profile is shown. It is observed that the effect of temperature distribution
decreases with increase in the porous parameter. This is due to increase in the obstruction of
the fluid motion with increase in the porous parameter, thereby increase in the porous parameter
indicates decreases in the permeability of the porous medium so the fluid velocity decreases

(a) Temperature profile for different values ofH (b) Velocity profile for different values of H

Fig. 12.8 a The thermal boundary layer thickness increases with increasing values of the magnetic
parameter. The opposing force introduced in the form of the Lorentz drag contributes in increasing
the frictional heating between the fluid layers, and hence energy is released in the form of heat. This
results in thickening of the thermal boundary layer. b The variation of the velocity profile against
the magnetic parameter is shown. We notice that the effect of the magnetic parameter is to reduce
the velocity of the fluid in the boundary layer region. This is due to an increase in the Lorentz force,
similar to Darcy’s drag observed in the case of flow through a porous medium. This adverse force
is responsible for slowing down the motion of the fluid in the boundary layer region
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Table 12.1 Nomenclature

A∗, B∗ Coefficients of space
and temperature
dependent heat
source/sink

a Temperature distribution
on the stretching sheet

Cb Drag coefficient which
is independent of
viscosity

k Permeability of the
porous medium

Cp Specific heat at constant
pressure

Ec Eckert number

Gr Grashof number H Hartmann number

L Characteristic length Nux Nusselt number

Pr Prandtl number qw Local heat flux

q
′′′

Non-uniform heat
source/sink

Rex Local Reynolds number

Tw Stretching sheet
temperature

Bo Uniform transverse
magnetic field

T∞ Temperature for away
from the stretching sheet

T Temperature of the fluid

u Velocity of the fluid in x
direction

v Velocity of the fluid y
directions

x Flow directional
coordinate along the
stretching sheet

y Distance normal to the
stretching sheet

C f Skin friction coefficient f Non-dimensional stream
function

Greek symbols

α Thermal diffusivity η Similarity variable

θ Dimensionless
temperature

τwx Local shear stress

μ Absolute viscosity of
the base fluid

ν Kinematic viscosity of
the base fluid

λ Buoyancy parameter σ Fluid electrical
conductivity

ρ Density of the fluid ψ Stream function

Subscripts

w, ∞ Conditions at the wall
and at infinity,
respectively
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magnetic field parameter, viscous dissipation parameter and porous parameter on
velocity and temperature profiles are analyzed. Some of important findings of our
analysis obtained by graphical representations are listed below:

1. The effect of temperature dependent heat source/sink parameter, A∗ and B∗ leads
to increase in both temperature and velocity profiles.

2. The effect of convection parameter is to decrease the temperature distribution in
the momentum boundary layer.

3. The effect of porous parameter is to increase in the temperature distribution.
4. The effect of Prandtl number is to decrease in both velocity and temperature

profiles.
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Chapter 13
Heat and Mass Transfer in MHD Boundary
Layer Flow over a Nonlinear Stretching
Sheet in a Nanofluid with Convective
Boundary Condition and Viscous Dissipation

Prashant G. Metri, M. Subhas Abel and Sergei Silvestrov

Abstract We analyzed the boundary layer flow and heat transfer over a stretch-
ing sheet due to nanofluids with the effects of magnetic field, Brownian motion,
thermophoresis, viscous dissipation and convective boundary conditions. The trans-
port equations used in the analysis took into account the effect of Brownian motion
and thermophoresis parameters. The highly nonlinear partial differential equations
governing flow and heat transport are simplified using similarity transformation.
Resultant ordinary differential equations are solved numerically using the Runge–
Kutta–Fehlberg and Newton–Raphson schemes based on the shooting method. The
solutions velocity temperature and nanoparticle concentration depend on parameters
such as Brownian motion, thermophoresis parameter, magnetic field and viscous
dissipation, which have a significant influence on controlling the dynamics of the
considered problem. Comparison with known results for certain particular cases
shows an excellent agreement.

Keywords Brownian motion · Convective boundary conditions · Magnetohydro-
dynamics (MHD) · Nanoliquid · Thermophoresis

13.1 Introduction

Modernnanotechnologyprovides newopportunities to process andproducematerials
with average crystallite sizes below 50nm. Nanofluids can be considered to be the
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next generation heat transfer fluids because they offer exciting new possibilities to
enhance heat transfer performance compared to pure liquids. They are expected
to have superior properties compared to conventional heat transfer fluids, as well
as fluids containing micro-sized metallic particles. Also, nanofluids can improve
abrasion-related properties as compared to the conventional solid/fluid mixtures.
The development of nanofluids is still hindered by several factors such as the lack
of agreement between results, poor characterization of suspensions, and the lack of
theoretical understanding of the mechanisms.

A nanofluid is a fluid containing nanometer sized particles called nanoparti-
cles. These fluids are engineered colloidal suspension of nanoparticles in a base
fluid. The nanoparticles used in nanofluids are typically made of metals, oxides,
carbides, or carbon nanotubes. Common base fluids include water, ethylene glycol
and oil. Nanofluids have novel properties that make them potentially useful in many
applications in heat transfer, including microelectronics, fuel cells, pharmaceutical
processes, and hybrid-powered engine, engine cooling/vehicle thermal management,
domestic refrigerator, chiller, heat exchanger, in grinding, machining and in boiler
gas temperature reduction. They demonstrate enhanced thermal conductivity and the
convective heat transfer coefficient compared to the base fluid. Knowledge of the rhe-
ological behavior of nanofluids is found to be very vital in deciding their suitability
for convective heat transfer applications.

In the present world of fast technology, the cooling of electronic devices is one of
the prominent industrial requirements, but the low thermal conductivity of classical
heat transfer fluid such as water, oil and ethylene glycol, is the primary limitation.
This leads to the creation of innovative technique in which the nanoscale size (1–
100nm) solid particles are suspended into classical heat transfer fluid in order to
change the thermo-physical properties of host fluid, which enhance the heat transfer
significantly. This colloidal suspension was first identified as nanofluid by Stephen
U.S. Choi in 1995 at the Argonne National Laboratory [4]. The recent development
of heat transfer nanofluids and their mathematical modeling [1] play a significant
role in various industries. These fluids have numerous applications like cooling of
electronics, transportation (engine cooling/vehicle thermal management), manufac-
turing, heat exchanger, nuclear systems cooling, biomedicine etc. [38, 42]. Several
other studies have addressed various aspects of regular/nanofluids with stretching
sheet [5, 6, 8, 9, 22, 24, 37, 43]. After the pioneering work by Sakiadis [39], a
large amount of literature is available on boundary layer flow of Newtonian and
non-Newtonian fluids over linear and nonlinear stretching surface. The problem of
natural convection in a regular fluid past a vertical plate is a classical problem first
studied theoretically by E. Pohlhausen in contribution to an experimental study by
Schmidt and Beckmann [40].

In the past few years, convective heat transfer in nanofluids has become a topic
of major current interest. Recently Khan and Pop [17] used the model of Kuznetsov
and Nield [19] to study the boundary layer flow of a nanofluid past a stretching sheet
with a constant surface temperature. Makinde and Aziz [22] considered to study the
effect of a convective boundary condition on boundary layer flow, Wang [41] and
Gorla et al. [7] to study the free convection on a vertical stretching surface, heat and
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mass transfer and nanoparticle fraction over a stretching surface in a nanofluid. The
transformed non-linear ordinary differential equations governing the flow are solved
numerically by the Runge-Kutta fourth order method.

The solution of boundary layer equation for a power law fluid in MHD was
obtained by Helmy [12]. Chiam [3] investigated hydromagnetic flow over a surface
stretching with power law velocity using shooting method. Ishak et al. [15] investi-
gated MHD flow and heat transfer adjacent to a stretching vertical sheet. Nourazar
et al. [33] investigated MHD forced convective flow of nanofluid over a horizon-
tal stretching sheet with variable magnetic field with the effect of viscous dissipa-
tion. Hamad [10] obtained analytical solution by considering the effect of magnetic
field for electrical conducting nanofluid flow over a linearly stretching sheet. Rana
et al. [36] investigated the numerical solution of unsteady MHD flow of nanofluid
on the rotating stretching sheet.

The effects of nanofluids could be considering in different ways such as dynamic
effects which include the effects of Brownian motion and thermophoresis diffu-
sion [13, 25, 34], and the static effects ofMaxwell’s theory [20, 21, 23, 28]. Recently,
many researchers, using similarity solution, have examined the boundary layer flow,
heat and mass transfer of nanofluids over stretching sheets. Khan and Pop [17] have
analyzed the boundary-layer flow of a nanofluid past a stretching sheet using a model
in which the Brownian motion and thermophoresis effects were taken into account.
They reduced the whole governing partial differential equations into a set of non-
linear ordinary differential equations and solved them numerically. In addition, the
set of ordinary differential equations which was obtained by Khan and Pop [11]
has been solved by Hassani et al. [16] using homotopy analysis method. After
that many researchers using similarity solution approach, have extended the heat
transfer of nanofluids over stretching sheets and examined the other effects such as
the chemical reaction and heat radiation [22], convective boundary condition [35],
nonlinear stretching velocity [29], partial slip boundary condition [30], magnetic
nanofluid [31], partial slip and convective boundary condition [32], heat genera-
tion/absorption [14], thermal and solutal slip [26], nano non-Newtonian fluid [27],
and Oldroyd-B nanofluid [2]. At the present time, it is not clear when the boundary
layer approximations are adequate for analysis of flow and heat transfer of nanoflu-
ids over a stretching sheet in the case of flow and heat transfer of nanofluids. As
mentioned, the enhancement of the thermal conductivity of nanofluids is the most
outstanding thermo-physical property of nanofluids. In all of the previous studies [2,
11, 14, 16–18, 22, 26, 27, 29–32, 35], the effect of local volume fraction of nano
particles on the thermal conductivity of the nanofluid was neglected. However, in the
work of Buongiorno [1], it has been reported that the local concentration of nanopar-
ticles may significantly affect the local thermal conductivity of the nanofluids.

In this paper, our main objective is to investigate the effect of a convective bound-
ary condition boundary layer flow, heat transfer and nanoparticle fraction profiles
over a stretching surface in nanofluid,with viscous dissipation. The governing bound-
ary layer equations have been transformed to a two-point boundary value problem in
similarity variables, and these have been solved numerically. The effects of embed-
ded parameters on fluid velocity, temperature and particle concentration have been
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shown graphically. It is hoped that the results obtained will not only provide useful
information for applications, but also serve as a balance to the previous studies.

13.2 Convective Transport Equations

Consider steady two-dimensional (x, y) boundary layer flow of a nanofluid past a
stretching sheet with a linear velocity variation with the distance x i.e. uw = cxn ,
where c is a real positive number with respect to a stretching rate, and n is a nonlinear
stretching parameter, and x is the coordinate measured from the location where the
sheet velocity is zero. The governing equations are:

∂u

∂x
+ ∂u

∂y
= 0, (13.1)
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where u and v are the velocity components along the x and y directions respectively,
p is the fluid pressure, ρ f is the density of base fluid, ν is the kinematic viscosity
of the base fluid, α is the thermal diffusivity of the base fluid, τ = ρcp

ρc f
is the ratio

of nanoparticle heat capacity and the base fluid heat capacity, DB is the Brownian
diffusion coefficient, DT is the thermophoretic diffusion coefficient, and T is the
local temperature (Fig. 13.1).

The associated boundary conditions are:

y = 0, u = axn, ν = 0, − k
∂T

∂y
= h(T f − T ), C = Cw, (13.5)

y → ∞, u = 0 , ν = 0, T = T∞, C = C∞. (13.6)

We introduce the following dimensionless quantities

η = y

√
a(n + 1)

2ν
x

n−1
2 , φ = C − C∞

Cw − C∞
, u = axn f ′(η),

ν = −
√
aν(n + 1)

2
x

n−1
2

{
f + (n − 1)

n + 1

}
η f ′, θ = T − T∞

T f − T∞
. (13.7)
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Fig. 13.1 Nano boundary
layer flow over a nonlinear
stretching sheet

Substituting (13.7) in (13.2)–(13.6), we obtain the following set of equations,

f ′′′ + f f ′′ − f ′2 −
(

2n

n + 1

)
f ′2 = 0, (13.8)

θ ′′ + Pr f θ ′ + PrNbφ′θ ′ + PrNtθ ′2 + Pr Ec f ′′2 = 0, (13.9)

φ′′ + Le f φ′ + Nt

Nb
θ ′′ = 0, (13.10)

subject to the following boundary conditions

f (0) = 0, f ′(0) = 1, θ ′(0) = Bi[1 − θ(0)], φ(0) = 1, (13.11)

f ′(∞) = 0, θ(∞) = 0, φ(∞) = 0, (13.12)

where primes denote differentiation with respect to η and the five parameters appear-
ing in Eqs. (13.9)–(13.12) are defined as follows

Pr = ν

α
, Le = ν

DB
,

Nb = (ρc)pDB(Cw − C∞)

(ρc)Vf
, Nt = (ρc)pDT (T f − T∞)

(ρc)Vf T∞
,

Bi = h( ν
a )

1
2

k
, M = 2σ B2

0

aρ f (n + 1)
, (13.13)

with Nb = 0 there is no thermal transport due to buoyancy effects created as a result
of nanoparticle concentration gradients.
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Here, we note that (13.8) with the corresponding boundary conditions on f
provided by (13.11) has a closed form solution which is given by

f (η) = 1 − e−η. (13.14)

In (13.14), Pr , Le, Nb, Nt and Bi denote the Prandtl number, the Lewis number,
the Brownian motion parameter, the thermophoresis parameter and the Biot number,
respectively. The reduced Nusselt number Nur and the reduced Sherwood number
Shr are obtained in terms of the dimensionless temperature at the surface θ ′(0) and
the dimensionless concentration at the sheet surface φ′(0) respectively, i.e.

Nur = Re
−1
2
x Nu = −θ ′(0), (13.15)

Shr = Re
−1
2
x Nu = −φ′(0), (13.16)

where

Nu = qwx

k(Tw − T∞)
, Sh = qmx

DB(φw − φ∞)
, Rex = uw(x)x

ν
. (13.17)

13.3 Results and Discussion

Equations (13.8)–(13.10) subject to the boundary conditions, (13.11) and (13.12),
were solved numerically using the Runge-Kutta-Fehlbergmethod. As a further check
of the accuracy of our numerical computations, Table13.1 contains a comparison of
our results for the reduced Nusselt number and the reduced Sherwood number with
those reported by Khan and Pop [17] for Le = 10, Pr = 10, Bi = ∞, M = 10.
The infinitely large Biot number simulates the isothermal stretching model used
in [17] as noted earlier. The results for all combination values of Brownian motion
parameter Nb and the thermophoresis parameter Nt used in our computations,
showed an exactmatch between our results and the ones reported in [17]. The first five
entries show that for a fixed thermophoresis parameter Nt = 0.1, the reduced Nus-
selt number decreases sharply with the increasing in Brownian motion, that as Nb is
increased from0.1 to 0.5.However, the reduced Sherwood number increases substan-
tially as Nb is increased from 0.1 to 0.2 but tends to plateau beyond Nb = 0.2. These
observations are consistent with the initial slopes of the temperature and concentra-
tion profiles to be discussed later. As the Brownian motion intensifies, it impacts a
larger extent of the fluid, causing the thermal boundary layer to thicken, which in
turn decreases the reduced Nusselt number. The thickening of the boundary layer
due to stronger Brownian motion will be highlighted again when the temperature
profiles are discussed. It will be seen from the concentration profiles appearing later
in the discussion that the initial slope of the curve and the extend of the concentra-



13 Heat and Mass Transfer in MHD Boundary Layer Flow … 209

Table 13.1 Comparison of results for the reduced Nusselt number −θ ′(0) and the reduced Sher-
wood number −φ′(0) with Khan and Pop [17]

Nb Nt Nur Shr Nur present Shr present

0.1 0.1 0.9524 2.1294 0.5230 2.0507

0.2 0.1 0.5056 2.3819 0.3561 2.2346

0.3 0.1 0.2522 2.4100 0.2082 2.2797

0.4 0.1 0.1194 2.3997 0.1077 2.2846

0.5 0.1 0.0543 2.3836 0.0513 2.2767

0.1 0.2 0.6932 2.2740 0.4761 1.9851

0.1 0.3 0.5201 2.5286 0.44235 2.0231

tion boundary layer are not affected significantly beyond Nb = 0.2 and hence the
plateau in the Sherwood number behavior. The last four entries in Table13.1 show
that the reducedNusselt number decreases as the thermophoresis diffusion penetrates
deeper into the fluid and causes the thermal boundary layer to thicken. However, the
increase in the thermophoresis parameter enhances the Sherwood number, conclu-
sion that is consistent with the results of Khan and Pop [17]. In Table13.2, we listed
some particular parameter and physical quantities name.

We now turn our attention to the discussion of graphical results that provide
additional insights into the problem under investigation.

Figure13.2 shows the temperature distribution in the thermal boundary layer for
different values of Brownian motion and the thermophoresis parameters. As both
Nb and Nt increase in the boundary layer thickness, as noted earlier in discussing
the tabular data, the surface temperature increases and the curves become less steep

Fig. 13.2 Effect of Nt and Nb on temperature profiles when M = 2, Ec = Le = 5, Pr = 5,
Bi = 0.1
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indicating a diminution of the reduced Nusselt number. As seen in Fig. 13.3, the
effect of Lewis number on the temperature profiles is noticeable only in the region
close to the sheet as the curves tend to merge at larger distances from the sheet.
The Lewis number expresses the relative contribution of thermal diffusion rate to
species diffusion rate in the boundary layer regime. An increase of Lewis number
will reduce thermal boundary layer thickness and will be accompanied by a increase
in the temperature. It also reveals that the temperature gradient at surface of sheet
increases. There will be much greater reduction in concentration boundary layer
thickness than the thermal boundary layer thickness over an increment in Lewis
number.

Figure13.4 illustrates the effect of Biot number on the thermal boundary layer. As
expected, the stronger convection results in higher surface temperatures, causing the
thermal effect to penetrate deeper into the quiescent fluid. The temperature profiles
depicted in Fig. 13.5 show that as the Prandtl number increases, the thickness of
the thermal boundary layer decreases as the curve become increasingly steeper. As
a consequence, the reduced Nusselt number, being proportional to the initial slope
increases. This pattern is reminiscent of the convective boundary layer flow in a

Table 13.2 Nomenclature

Bi Biot number a Positive constant associated with linear
stretching

DB Brownian diffusion coefficient DT Thermophoretic diffusion coefficient

f Dimensionless steam function g Gravitational acceleration

h Convective heat transfer
coefficient

k Thermal conductivity of the nanofluid

Le Lewis number Nb Brownian motion parameter

Nt Thermophoresis parameter Nu Nusselt number

Nur Reduced Nusselt number Pr Prandtl number

p Pressure Rex Local Reynolds number

Sh Sherwood number Shr Reduced Sherwood number

M Magnetic number Ec Eckert number

T f Temperature of the hot fluid Tw Sheet surface (wall) temperature

T∞ Ambient temperature u, v Velocity components in x and y directions

C Nanoparticle volume fraction cw Nanoparticle volume fraction at the wall

Greek symbols

α Thermal diffusivity of the base
fluid

η Similarity variable

θ Dimensionless temperature φ Dimensionless volume fraction

μ Absolute viscosity of the base
fluid

ν Kinematic viscosity of the base fluid

ρ f Density of the base fluid ρp Nanoparticle mass density

(ρc) f Heat capacity of the base fluid (ρc)p Heat capacity of the nanoparticle material

ψ Stream function
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Fig. 13.3 Effect of Le on temperature profiles when n = 2, M = 2, Nt = Nb = 0.1, Pr = 5,
Ec = 5, Bi = 0.1

Fig. 13.4 Effect of Bi on temperature profiles when n = 1.5, M = 2, Nt = Nb = 0.1, Pr =
Le = 5, Ec = 5, Bi = 0.1

regular fluid [12]. Figure13.6 shows that the effect of Magnetic number on the
temperature profiles is noticeable only in the region close to the sheet as the curves
tend to merge at larger distances from the sheet.

Figure13.7 reveals the effect made by the Viscous dissipation on temperature pro-
file. On observing the temperature graph, the wall temperature of the sheet increases
as the values of Ec increases. Moreover, when values of Ec increases the thermal
boundary layer thickness increases. This is due to fact that the heat transfer rate at
the surface decreases as Ec increases.
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Fig. 13.5 Effect of Pr on temperature profiles when n = 1, M = 2, Nt = Nb = Bi = 0.1,
Le = 5, Ec = 5

Figure13.8 shows the influence of the change of Brownian motion parameter
Nb and thermophoresis parameter Nt on concentration profile when Nb = Nt . It
is noticed that as thermophoresis parameter increases in the concentration boundary
layer thickness and the surface decreases as both Nb and Nt increase, which rep-
resents the mass transfer rate. Consequently, concentration on the surface of sheet
increases. This is due to fact that the thermophoresis parameter Nt is directly pro-
portional to the mass transfer coefficient associated with fluid.

Figure13.9 illustrates the effect of Lewis number on concentration profile. When
the Lewis number increases the concentration profile decreases and concentration
boundary layer thickness decreases. This is probably due to fact thatmass transfer rate
increases as Lewis number increases. It also reveals that the concentration gradient at
surface sheet increases. Moreover, the concentration at the surface of sheet decreases
as values of Le increase.

Figure13.10 reveals the effect of Biot number on nanoparticle concentration pro-
file. It is concluded that concentration distribution as well as concentration boundary
layer thickness increase for higher values of the Biot number.

Figure13.11 shows the influence of magnetic field parameter M on the concentra-
tion profile.Magnetic field is increased in the concentration boundary layer thickness.
However, an increment in concentration boundary layer is not significant. Similar
to other common fluids, the nanofluids show similar characteristics regarding the
influence of the magnetic field.

It is observed from Fig. 13.12 that the effect of nonlinear stretching parameter n
on the dimensionless velocity profile is to decrease velocity slightly with increase of
nonlinear stretching parameter n. In Fig. 13.13 it is noticed that nonlinear stretching
parameter n enhances temperature negligibly in the boundary layer region.
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Fig. 13.6 Effect of M on temperature profiles when n = 2, Nt = Nb = Bi = 0.1, Pr = Le = 5,
Ec = 5

Fig. 13.7 Effect of Eckert number on temperature profiles for different values of n = 1.5, Nt =
Nb = 5, Pr = 1.0, Bi = 0.5, M = 2
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Fig. 13.8 Effect of Nt and Nb on concentration profiles when n = 2, Bi = 0.1, Le = Pr = 5,
M = 1.5

Fig. 13.9 Effect of Le on concentration profiles for different values of n = 2, Nt = Nb = 0.1,
Pr = 5, Bi = 0.1
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13.4 Conclusion

We have studied the boundary layer flow and heat transfer within a nanofluid on a
stretching sheet using a shootingmethod that involves the Runge-Kutta-Fehlberg and
Newton–Raphson schemes. The effects of some governing parameters like Lewis
number, Brownian motion parameter, thermophoresis parameter, convective Biot
number, Magnetic parameter, nonlinear stretching parameter were analysed. The
obtained numerical results are excellent agreement for some limiting cases with

Fig. 13.10 Effect of Bi on concentration profiles for different values of n = 2, Nt = Nb = 0.1,
Pr = Le = 5

Fig. 13.11 Effect of M on concentration profiles for different values of n = 2, Nt = Nb = Bi =
0.1, Pr = Le = 5
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reference ones (Khan and Pop [17]). Some of the important findings of our analysis
obtained by the graphical representation are listed below:

Fig. 13.12 Effect of nonlinear stretching parameter n on velocity profile for various values of
M = 2, Nt = Nb = Bi = 0.1, Pr = Le = 5

Fig. 13.13 Effect of nonlinear stretching parameter n on temperature profile for various values of
M = 1, Nt = Nb = Bi = 0.1, Pr = Le = 5
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1. For infinitely large Biot number characterizing the convective heating, which
corresponds to the constant temperature boundary condition, the present results
and those reported by Khan and Pop [17] match up to four decimal places.

2. The increasing of thermophoresis parameter Nt and the Brownian motion para-
meter Nb is to increase the temperature in the boundary layer which consequently
reduces the heat transfer rate at the surface.

3. Velocity profile decreaseswith an increase in nonlinear stretching sheet parameter.
4. Concentration boundary layer thickness increases with an increase in the Biot

number and the magnetic field parameter.
5. A rising value in Nb and the decreasing in Nt produce a decrease in the nanopar-

ticle concentration, as a result the local Sherwood number increases.
6. An increase in parameter Nb decreases the local Nusselt number −θ ′(0), but the

opposite is true in local Sherhood number −φ′(0).
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Chapter 14
Effect of Time-Periodic Boundary
Temperature Modulations on the Onset
of Convection in a Maxwell Fluid–Nanofluid
Saturated Porous Layer

Jawali C. Umavathi, Kuppalapalle Vajravelu, Prashant G. Metri
and Sergei Silvestrov

Abstract The linear stability of Maxwell fluid–nanofluid flow in a saturated porous
layer is examined theoretically when the walls of the porous layers are subjected to
time-periodic temperature modulations. A modified Darcy–Maxwell model is used
to describe the fluid motion, and the nanofluid model used includes the effects of
the Brownian motion. The thermal conductivity and viscosity are considered to be
dependent on the nanoparticle volume fraction. A perturbation method based on a
small amplitude of an applied temperature field is used to compute the critical value of
the Rayleigh number and the wave number. The stability of the system characterized
by a critical Rayleigh number is calculated as a function of the relaxation parameter,
the concentration Rayleigh number, the porosity parameter, the Lewis number, the
heat capacity ratio, the Vadász number, the viscosity parameter, the conductivity
variation parameter, and the frequency of modulation. Three types of temperature
modulations are considered, and the effects of all three types of modulations are
found to destabilize the system as compared to the unmodulated system.
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14.1 Introduction

Heat transfer enhancement in the base flow of fluid dispersion of nanoscale particles
was reported byMasuda et al. [16]. The presence of nanoparticles in the fluid signifi-
cantly increases the effective thermal conductivity of themixture. The term nanofluid
was coined by Choi [5] to refer to a fluid containing a dispersion of nanoparticles.
These enhanced properties and behavior imply an enormous potential of nanoflu-
ids for device miniaturization and process intensification which could have impacts
on many industrial sectors including chemical processing, transportation, electron-
ics, medicine, energy, and the environment (see for details Chen et al. [4]). Several
attempts were made to explain abnormal increases in the thermal conductivity and
viscosity of nanofluids (Buongiorno [3], Vadász [34, 35]). However, a satisfactory
explanation has yet to be found as emphasized by Eastman et al. [7] in their recent
comprehensive review of the nanofluid literature. On the other hand, Buongiorno [3]
focused on heat transfer enhancement of nanofluids in convective situations. He
focused on the further heat transfer enhancement observed in convective situations:
Buongiorno noted that the observation of convective heat transfer enhancement by
several researchers could be due to the dispersion of the suspended nanoparticles,
but he argued that this effect is too small to explain the observed enhancement.
Also, Buongiorno noted that the absolute velocity of a nanoparticle could be viewed
as the sum of the base fluid velocity and a relative velocity (that he called the slip
velocity). He considered, in turn, seven slipmechanisms: inertia, Brownian diffusion,
thermophoresis, diffusiophoresis, Magnus effect, fluid drainage, and gravity settling.
After examining each of these effects, he concluded that in the absence of turbulence,
the effects of the Brownian diffusion and the thermophoresis are important. Based
on these two effects, Buongiorno formulated the conservation equations.

The Bénard problem (the onset of convection in a horizontal layer uniformly
heated from below) for a nanofluid was studied by Tzou [32] on the basis of the
transport equations of Buongiorno [3]. The corresponding problem for flow in a
porous medium (the Horton–Rogers–Lapwood problem) was studied by Nield and
Kuznetsov [21] using the Darcy model.

An alternative approach is to ignore special phenomena such as Brownian motion
and thermophoresis but instead examine the effect of the variation of thermal con-
ductivity and viscosity with the nanofluid particle fraction, using expressions used
in the theory of mixtures. This approach was employed by Tiwari and Das [31] to
study the cross-diffusion effects. It is assumed that the nanofluid is diluted so that
the nanofluid volume fraction is small compared with unity. Then they assumed that
the volume fraction is a linear function of the vertical coordinate. The vertical het-
erogeneity (especially the case of horizontal layers) was studied by McKibbin and
O’Sullivan [18] and Leong and Lai [13]; and horizontal heterogeneity was studied by
Nield [19], and Gounat and Caltagirone [10]. More general aspects of conductivity
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heterogeneity were discussed by Braester and Vadász [2], and Rees and Riley [23].
Simmons et al. [28] have pointed out that in many heterogeneous geological systems,
hydraulic properties such as the hydraulic conductivity of the system under consid-
eration can vary by many orders of magnitude and sometimes rapidly over small
spatial scales. They also pointed out that the onset of instability is controlled by very
local conditions in the vicinity of the evolving boundary layer and not by the global
layer properties or indeed some average property of that macroscopic layer. They
also pointed out that any averaging process would remove the very structural controls
and physics that are expected to be important in controlling the onset, growth, and/or
decay of instabilities in a highly heterogeneous system for the general case involv-
ing both vertical heterogeneity and horizontal heterogeneity. For this complicated
situation no exact analytical solution can be expected to exist, but it is reasonable
to seek an approximate analytical solution, based on the expectation that for weak
heterogeneity, the solution would not differ dramatically from the solution for the
homogeneous case. Following this approach, an extension of the Galerkin approx-
imate method has been widely employed (see, for example, Finlayson [9]). In the
context of the onset of convection, the commonly used Galerkin method involves
trial functions of the vertical coordinate only. Thus, to a first approximation, the
thermal conductivity and the viscosity can be taken as weak functions of the vertical
coordinate. This means that we can treat the problem as one involving a weakly
heterogeneous porous medium (Nield [20]).

Many working fluids of practical interest are viscoelastic rather than Newtonian.
For this reason, current interest in this area is concerned with studies of the various
viscoelastic models such asMaxwell fluids (Sokolov and Tanner [29]), Oldroyd type
models (Khayat [12], Siddheshwar et al. [27]), Rivlin–Ericksen fluids (Siddheshwar
and Srikrishna [26]), and Walters-B liquids (El-Sayed [8]). Analogous studies on
viscoelastic fluid convection in porous media are those by Shekar and Jayalatha [24],
Tan and Masuoka [30], and Shivakumara et al. [25].

Recently, Wang and Tan [36] have made a stability analysis of double diffusive
convection ofMaxwell fluid in a porousmedium. It is worthwhile to point out that the
first viscoelastic rate type model, which is still used widely, is due to Maxwell [17].
While Maxwell did not develop this model for polymeric liquids, he recognized that
such fluid has a means for storing energy characterizing its viscous nature. Recently,
Malashetty et al. [15] have studied double diffusive convection in a viscoelastic fluid
saturated porous layer using the Oldroyd model. Very recently, Awad et al. [1] used
the Darcy–Brinkman–Maxwell model to study linear stability analysis of a Maxwell
fluid with cross-diffusion and double-diffusive convection.

Nonetheless, the studies related to the effects of thermal modulation on the onset
of convection in a viscoelastic fluid-saturated porous medium have not received
much attention. Chung Liu [6] has examined the stability of a horizontally extended
second-grade fluid layer heated from below subject to temperature modulation at
walls.

Motivated by the above studies, in the present paper, we study the effect of thermal
modulation on the onset of convection in a Maxwell fluid and nanofluid saturated
porous medium. The boundary temperature modulation alters the basic temperature
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distribution from linear to nonlinear which helps in effective control of convective
instability. The difficulty in dealing with such instability problems is that one has
to solve time-dependent stability equations with variable coefficients, and to our
knowledge no work has been initiated for such fluids in this direction. The resulting
eigenvalue problem is solved by a perturbation technique with amplitude of the
temperature modulation as a perturbation parameter. In particular, it is shown that
the onset of convection can be advanced by a proper tuning of the frequency of the
boundary temperature modulation.

14.2 Mathematical Formulation

We consider an infinite horizontal porous layer saturated with a nanofluid, confined
between the planes z∗ = 0 and z∗ = H, with the vertically downward gravity force
acting on it. A Cartesian frame of reference is chosen with the origin in the lower
boundary and the z-axis vertically upwards. The Boussinesq approximation, which
states that the variation in density is negligible everywhere in the conservation except
in the buoyancy term, is assumed to hold. The conservation equations take the form

�∗ ·v∗
D = 0. (14.1)

Here v∗
D is the nanofluid Darcy velocity and v∗

D = (u∗, v∗,w∗).
The conservation equation for the nanoparticles, in the absence of thermophoresis

and chemical reactions, takes the form

∂φ∗

∂t∗
+ 1

ε
v∗
D · �φ∗ = �∗ · [DB �∗ φ∗], (14.2)

whereφ∗ is the nanoparticle volume fraction, ε is the porosity, andDB is theBrownian
diffusion coefficient. We use the Darcy model for a porous medium. Hence, the
momentum equation can be written as

(
1 + λ̃

∂

∂t∗

)
ρ

ε

∂v∗
D

∂t∗
=

(
1 + λ̃

∂

∂t∗

)
(− �∗ p∗ + ρg) − μeff

K
v∗
D. (14.3)

Here ρ is the overall density of the nanofluid, which we assume to be given by

ρ = φ∗ρp + (1 − φ∗)ρ0[1 − βT (T∗ − T∗
0 )], (14.4)

where ρp is the particle density, ρ0 is a reference density for the fluid, and βT is the
thermal volumetric expansion. The thermal energy equation for a nanofluid can be
written as

(ρc)m
∂T∗

∂t∗
+ (ρc)f v

∗
D · �∗T∗ = km �∗2 T∗ + ε(ρc)p[DB �∗ φ∗ · �T∗]. (14.5)
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The conservation of nanoparticle mass requires that

∂φ∗

∂t∗
+ 1

ε
v∗
D · �∗φ∗ = Dp �∗2 φ∗. (14.6)

Here c is the fluid specific heat (at constant pressure), km is the overall thermal
conductivity of the porous medium saturated by the nanofluid, and cp is the nanopar-
ticle specific heat of the material constituting the nanoparticles (following Nield and
Kuznetsov [22]). Thus,

km = εkeff + (1 − ε)ks, (14.7)

where keff is the effective conductivity of the nanofluid (fluid plus nanoparticles) and
ks is the conductivity of the solid material forming the matrix of the porous medium.

We now introduce the viscosity and the conductivity dependence on nanoparticle
fraction. Following Tiwari and Das [31], we adopt the formulas, based on a theory
of mixtures,

μeff

μf
= 1

(1 − φ∗)2.5
, (14.8)

keff
kf

= (kp + 2kf ) − 2φ∗(kf − kp)

(kp + 2kf ) + φ∗(kf − kp)
. (14.9)

Here kf and kp are the thermal conductivities of the fluid and the nanoparticles,
respectively. In the case where φ∗ is small compared with unity, we can approximate
these formulas by

μeff

μf
= 1 + 2.5φ∗, (14.10)

keff
kf

= (kp + 2kf ) − 2φ∗(kf − kp)

(kp + 2kf ) + φ∗(kf − kp)
= 1 + 3φ∗ (kp − kf )

(kp + 2kf )
. (14.11)

We assume that the volumetric fractions of the nanoparticles are constant on the
boundaries. Thus, the boundary conditions are

w∗ = 0, φ∗ = φ∗
0 at z∗ = 0, (14.12)

w∗ = 0, φ∗ = φ∗
1 at z∗ = H. (14.13)

For thermal modulation, the external driving force is modulated harmonically
in time by varying the temperature of the lower and upper horizontal boundary.
Accordingly, we take

T(z, t) = T0 + �T

2
[1 + ε1cos(Ωt)] at z∗ = 0, (14.14)
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T(z, t) = T0 − �T

2
[1 − ε1cos(Ωt + φ)] at z∗ = H, (14.15)

where ε1 represents a small amplitude of modulation (which is used as a perturbation
parameter to solve the problem), Ω the frequency of modulation, and φ the phase
angle. We consider three types of modulation, viz.,
Case (a): Symmetric (in phase, φ = 0),
Case (b): Asymmetric (out of phase, φ = π ), and
Case (c): Only lower wall temperature is modulated while the upper one is held at
constant temperature (φ = −i∞).

14.3 Basic State Problem

The basic state of the fluid is quiescent and is given by

ρb−→g + �pb = 0, (14.16)

(ρc)m
∂T∗

b

∂t∗
= km �2 T∗, (14.17)

d2φ∗
b

dz2
= 0. (14.18)

The solution of (14.17) satisfying the thermal conditions as given in (14.14) and
(14.15) is Tb = T1(z) + εtT2(z, t) where

T1(z) = TR + �T

2

(
1 − 2z

H

)
, (14.19)

T2(z, t) = Re[{b(λ)e
λz
H + b(−λ)e

−λz
H }e−iωt], (14.20)

with

λ = (1 − i)

(
(ρc)mωH2

2km

)
, b(λ) = �T

2

(
e−iφ − e−λ

eλ − e−λ

)
, (14.21)

and Re stands for real part. We do not record the expressions of pb and ρb as these
are not explicitly required in the remaining part of the paper.

14.4 Linear Stability Analysis

Let the basic state be distributed by an infinitesimal perturbation. We now have,
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v = v
′
, p = pb + p

′
, T = Tb + T

′
, φ = φb + φ

′
, (14.22)

where a prime indicates that the quantities are infinitesimal perturbations. Substi-
tuting (14.22) into (14.1)–(14.7) and linearizing by neglecting products of primed
quantities, we have,

(1 + λ1s)(�p − RTêz + Rnφêz + γasv) + μ̃v = 0, (14.23)

∂T
′

∂t
+ w

′ ∂Tb
∂z

= k̃
∂2T

∂z2
+ NB

Le

(
∂Tb
∂z

+ ∂T
′

∂z
+ ∂φ

′

∂z

∂Tb
∂z

)

, (14.24)

1

σ

∂φ
′

∂t
+ 1

ε
w

′ = 1

Le
�2 φ

′
, (14.25)

w
′ = 0, T

′ = 0, φ
′ = 0 at z = 0, 1. (14.26)

We introduce the following transformations:

(x, y, z) = (x∗, y∗, z∗)
H

, t = t∗αm

σH2
, (u, v,w) = (u∗, v∗,w∗)H

αm
, p = p∗K

μf αm
,

φ = φ∗ − φ∗
0

φ∗
1 − φ∗

0

, T = T∗ − T∗
c

T∗
h − T∗

c

, ω = σΩH2

αm
, s = ∂

∂t
,

with

αm = km
(ρcp)f

, σ = (σcp)m
(ρcp)f

, μ̃ = μeff

μf
, k̃p = kp

kf
, k̃s = ks

kf
, k̃ = km

ks
.

The dimensionless parameters that appear are these:

• Pr = μf

ραm
- the Prandtl number,

• Da = K
H2 - the Darcy number,

• Va = ε2Pr
Da - the Vadász number,

• λ1 = λ̃αm
σH2 - the relaxation parameter (also known as the Deborah number),

• γa = ε
σVa - the acceleration coefficient,

• Le = αm
Dm

- the nanofluid Lewis number,

• R = R0gK(1−φ∗
0 )βT�T∗H

μf αm
- the nanoparticle Rayleigh number, and

• NB = (ρcp)p
(ρc)f

(φ∗
1 − φ∗

0 ) - modified particle-density increment.

In deriving (14.23), the term proportional to the product of φ and T (Oberbeck–
Boussinesq approximation) is neglected. This assumption is likely to be valid in
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the case of small temperature gradients in a dilute suspension of nanoparticles: For
regular fluid the parameters Rn and NB are zeros.

We eliminate pressure by operating on (14.23) with êz curl curl and using the
identity curl curl ≡ grad div − �2 results in

[(1 + λ1s)sγa + μ̃] �2 w
′ = (1 + λ1s)[R �2

H −Rn �2
H φ

′ ]. (14.27)

Here �2
H is the two-dimensional Laplacian operator on the horizontal plane. By

combining the (14.24)–(14.26), we obtain the equations for the vertical component
of velocity w in the form (dropping prime)

[
∂

∂t
− �2γ

] [
1

σ

∂

∂t
− �2

Le

]
[ν + sγa(1 + λ1s)] �2 w − (14.28)

− (1 + λ1s)Rn

ε

[
∂

∂t
− �2γ

]
�2

1 w +

+(1 + λ1s)R
∂Tb
∂z

[
1

σ

∂

∂t
− �2

Le

]
�2

1 w = 0,

where, v = 1 + 1.25(φ∗
1 + φ∗

0 ), and η = ε + (1 − ε)k̃s + 3(φ∗
1+φ∗

0 )ε

2

( ˜kp−1
˜kp+2

)
.

It is worth noting that the factor ν comes from the mean value of μ̃(z) over the
range [0, 1], and the factor η is the mean value of k̃(z) over the same range. That
means that when evaluating the critical Rayleigh number, it is a good approximation
to base that number on themean values of the viscosity and conductivity based in turn
on the basic solution for the nanofluid fraction (followingNield and Kuznetsov [22]).

The boundary condition (14.26) is applied to (14.27) resulting in the following
boundary condition for w:

w = d2w

dz2
= 0 at z = 0, 1. (14.29)

Using (14.19), the dimensionless temperature gradient appearing in (14.24) may
be written as

∂Tb
∂z

= −1 + εf , (14.30)

where

f = Re
[
A(λ)eλz + A(−λ)e−λze−iωt

]
, for (14.31)

A(λ) = λ

2

(
e−iϕ − e−λ

eλ − e−λ

)
, and λ = (1 − i)

(σω

2

) 1
2
.



14 Effect of Time-Periodic Boundary Temperature Modulations on the Onset … 229

14.5 Method of Solution

We seek the eigenfunctionsw and eigenvaluesRa of (14.28) for the basic temperature
gradient given by (14.30) that departs from the linear profile ∂Tb

∂z = −1 by quantities
of order ε1. We therefore assume the solution of (14.28) is in the form

(w,R) = (w0,R0) + ε1(w1,R1) + ε21(w2,R2) + . . . . (14.32)

Substituting (14.32) into (14.28) and equating the coefficients of various powers
of εt on either side of the resulting equation, we obtain the following system of
equations up to the order of ε2t :

Lw0 = 0, (14.33)

Lw1 = (1 + λ1s)

[(
R0ωG

σ
�2

1 +R0f

Le

)
�2

1 −R1

Le
�2 �2

1

]
w0, (14.34)

Lw2 = (1 + λ1s)

[
R0

(
ωG

σ
+ f

Le
�2

)
− R1

Le
�2

]
�2

1 w1 + (14.35)

+(1 + λ1s)R1

(
ωG

σ
+ f

Le
�2 +R2

Le
�2

)
�2

1 w0,

where

L =
(
1 + λ

∂

∂t

)(
∂

∂t
− �2γ

)(
1

σ

∂

∂t
− �2

Le

)(
ν + γa

∂

∂t

)
�2 −

−Rn

ε

(
∂

∂t
− �2γ

)
�2

1 +R0

Le
�2 �2

1,

and w0,w1,w2 are required to satisfy the boundary condition in (14.29).
We now assume the solutions for (14.33) are of the form w0 = w0(z)exp[i(lx +

my)]wherew0(z) = wn
0(z) = sin(nπz), n = 1, 2, 3 . . . and l,m are thewave numbers

in the xy plane such that l2 + m2 = α2. The corresponding eigenvalues are given by

R0 = (n2π2 + α2)2νγ

α2
− RnLeγ

ε
. (14.36)

For a fixed value of the wave number α, the least eigenvalue occurs at n = 1 and
is given by

R0 = (π2 + α2)2νγ

α2
− RnLeγ

ε
, (14.37)
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and R0c assumes the minimum value

R0c = 4π2νγ − RnLeγ

ε
. (14.38)

These are the values reported by Horton and Rogers [11] in the absence of con-
centration Rayleigh number Rn.

The equation for w1 then takes the form

Lw1 = R0α
2(1 − λ1iω)

(
ω

σ
G + (D2 − α2)f

Le

)
sin πz, (14.39)

where D = d
dz and G = I.P.[{A(λ)eλz} + {A(−λ)e−λz}e−iωt]. Thus,

D2f sin πz = (λ2 − π2)f sin πz + 2λπ f
′
cosπz (14.40)

with f
′ = R.P.[{A(λ)eλz} + {A(−λ)e−λz}e−iωt].

Using (14.40), (14.39) becomes

Lw1 = R0α
2(−1 + λ1iω)

(
ω

σ
G sin πz − L1f sin πz + 2λπ f

′

Le
cosπz

)

,

(14.41)

where L1 = iω+π2+α2

Le .

We solve (14.41) for w1 by expanding the right hand side of it in Fourier series
expansion and inverting the operator L for this we need the following Fourier series
expansions

gnm(λ) = 2
∫ 1

0
eλz sin(mπz) sin(nπz)dz = −4nmπ2λ[1 + (−1)n+m+1ez]

[λ2 + (n + m)2π2][λ2 + (n − m)2π2] ,
(14.42)

fnm(λ) = 2
∫ 1

0
eλz cos(mπz) cos(nπz)dz = 2λ[λ2 + (n + m)2π2][1 + (−1)n+m+1ez]

[λ2 + (n + m)2π2][λ2 + (n − m)2π2] ,

(14.43)

where

eλz sin(mπz) =
∞∑

n=1

gnm(λ) sin(nπz), (14.44)

eλz cos(mπz) =
∞∑

n=1

fnm(λ) cos(nπz). (14.45)
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Now,
L(ω, n) = A + iωB, (14.46)

where

A =
[
ω2γa(n

2π2 + α2)2
(

1

Le
+ γ

σ

)
(1 + λ1ν) + ω2

σ
(n2π2 + α2)(ν − λ1ω

2γa)+

+(n2π2 + α2)3
γ

Le
(−ν + λ1ω

2γa) + Rn

ε
α2(γ (n2π2 + α2) − λ1ω

2) +

+
(
4π2νγ − RnLeγ

ε

)
α2

Le
(n2π2 + α2)

]
,

B =
[
(n2π2 + α2)2

(
1

Le
+ γ

σ

)
(ν − λ1γaω

2) + ω2

σ
(n2π2 + α2)(−γa − λ1ν)+

+(n2π2 + α2)3
γ

Le
(γa + λ1ν) + Rn

ε
α2(−1 + γ λ1(n

2π2 + α2)) −

−
(
4π2νγ − RnLeγ

ε

)
α2λ1

Le
(n2π2 + α2)

]
.

It is easily seen that:

L
[
sin(nπz)e−iωt

] = L(ω, n) sin(nπz)eiωt,

and
L

[
cos(nπz)e−iωt

] = L(ω, n) cos(nπz)eiωt,

and (14.41) now becomes

Lw1 = (−1 + λ1iω)α2R0

[
ω

σ
I.P.

∞∑

n=1

An(λ) sin nπzeiωt− (14.47)

−L1R.P.

∞∑

n=1

An(λ) sin nπzeiωt + 2λπ

Le
R.P.

∞∑

n=1

Bn(λ) cos nπzeiωt
]

,

Lw1 = (−1 + λ1iω)α2R0

[
ω

σ
I.P.

∞∑

n=1

An(λ)

L(ω, n)
sin nπzeiωt− (14.48)

−L1R.P.

∞∑

n=1

An(λ)

L(ω, n)
sin nπzeiωt +
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+ 2λπ

Le
R.P.

∞∑

n=1

Bn(λ)

L(ω, n)
cos nπzeiωt

]

,

where An = A(λ)gn1(λ) + A(−λ)gn1(−λ), and Bn = A(λ)fn1(λ) + A(−λ)

fn1(−λ).
To simplify (14.34) for w2 we need

Lw2 = (1 + λ1s)

[
R0

(
ωG

σ
+ �2f

Le

)
�2

1 w1 − R2
�2

Le
· �2

1w1

]
. (14.49)

The equation for then can be written as

Lw2 = (1 − λ1iω)

[
R0

(
ωG

σ
− Lnf

)
w1 + 2DfDw1

Le

]
− R2

α2

Le
(π2 + α2),

(14.50)
where Ln = iω+n2π2+α2

Le .
We shall not require the solution of this equation but merely use it to determine

R2. The solvability condition requires that the time-independent part of the right
hand side of (14.50) must be orthogonal to sin(πz). Multiplying equation (14.50) by
sin(πz) and integrating between 0 and 1 we obtain

R2 = 2LeR0(1 − 2iλω)

�2

∫ 1

0

(
�2f

Le

ωG

σ

)

w1 sin(πz)dz, (14.51)

where an upper bar denotes the time average.
We have the Fourier series expansions

f sin πz = R.P.
∑

An(λ) sin nπzeiωt, (14.52)

Df sin πz = R.P.
∑

λCn(λ)sinnπzeiωt,

where Cn(λ) = A(λ)gn1(λ) − A(−λ)gn1(−λ).
Using (14.52) in (14.51) we obtain

R2 = LeR2
0α

2

2(π2 + α2)
· (14.53)

[(
−ω2

σ 2
− LnL1

)
R.P.

∑ | An |2
| L(ω, n) |2 L

∗(ω, n)(1 − 2iλ1ω)(−1 + iλ1ω)+
]

+
[
4nπ2λ1

Le2
R.P.

∑
λ1Cn

Bn

| L(ω, n) |2 L
∗(ω, n)(1 − 2iλ1ω)(−1 + iλ1ω)

]
,
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where L∗(ω, n) is the complex conjugate of L(ω, n), and

| An(λ) |2= 16n2π4ω2

(ω2 + (n + 1)4π4)(ω2 + (n − 1)4π4)
.

The critical value of R2, denoted by R2c, is obtained at the wave number given by
equation αc = π for the following three different cases:

1. When the oscillating temperature field is symmetric so that the wall temperatures
are modulated in phase (with φ = 0).

2. When the wall temperature field is antisymmetric corresponding to out-of-phase
modulation (with φ = π ).

3. When only the temperature of the bottom wall is modulated, the upper wall being
held at a constant temperature (with φ = −i∞).

14.6 Results and Discussion

The effect of thermal modulation on the onset of convection in a layer of Maxwell
fluid and nanofluid saturated porous medium is investigated using linear stability
analysis. A perturbation technique with amplitude of the modulating temperature
as a perturbation parameter is used to find the critical thermal Rayleigh number
as a function of frequency of the modulation, relaxation parameter, concentration
Rayleigh number, porosity parameter, Lewis number, heat capacity ratio, Vadász
number, conductivity, and viscosity variation parameters. The sign of R2c character-
izes the stabilizing or destabilizing effects of modulation. A positive R2c indicates
that the modulation effect is to stabilize the flow: while a negative R2c indicates the
effect is to destabilize, compared to the system in which modulation is absent. We
present below the results for three different wall temperature oscillatingmechanisms:
They are, symmetric, asymmetric, and lower wall temperature modulation only.

In Figs. 14.1, 14.2, 14.3, 14.4, 14.5, 14.6, 14.7 and 14.8, the variations of criti-
cal Rayleigh number R2c with frequency ω for different governing parameters are
presented for the case of symmetric temperature modulation. It can be seen from
these figures that for small frequencies the critical Rayleigh number R2c is nega-
tive indicating the destabilized flow. For moderate and high frequencies, the critical
Rayleigh number R2c is positive indicating that the effect of symmetric modulation
is to stabilize the system. It can also be seen that as R2c decreases to its minimum
value (thus producing maximum destabilization), and then increases to its maximum
stabilizing value, and finally decreases to zero as the frequency increases from zero
to infinity. That is, in the presence of thermal modulation, convection occurs at lower
values of the Rayleigh number compared to the unmodulated system.

Figure14.1 shows the effect of the relaxation parameter λ1 on the critical Rayleigh
numberR2c for fixing the other governing parameters in the case of symmetric modu-
lation. It is seen that an increase in the value of the relaxation parameter increases the
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Fig. 14.1 Variation of R2c with ω for different values of λ1 and Rn

Fig. 14.2 Variation of R2c with ω for different values of Rn

magnitude of R2c. At small frequencies, R2c increases negatively, while R2c increases
positively with the relaxation parameter at moderate and high frequencies for both
regular and nanofluids. Hence the effect of the relaxation parameter is to destabilize
the system for small frequencies while its effect is to stabilize the system for mod-
erate and high frequencies. This agrees well with the results obtained by Malashetty
and Begum [14] for a clear fluid. Figure14.1 also indicates that the peak negative
value of R2c increases with an increase in the value of λ1 which is the result obtained
by Shivakumara et al. [25] for a viscoelastic fluid.
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Fig. 14.3 Variation of R2c with ω for different values of ε and Le

Fig. 14.4 Variation of R2c with ω for different values of Rn and Le

Figure14.2 shows the variation of R2c with ω for different values of the concen-
tration Rayleigh number Rn : Rn > 0 indicates top heavy nanoparticles and Rn < 0
indicates bottom heavy nanoparticles. Here also it is observed that for small frequen-
cies,R2c is negative indicating that the symmetric modulation has destabilizing effect
while for moderate and large values of frequencies its effect is stabilizing for both
regular and nanofluids. This is similar to the observed results of Umavathi [33]. The
effect of porosity parameter ε for symmetric modulation is shown in Fig. 14.3. It is
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Fig. 14.5 Variation of R2c with ω for different values of Rn and σ

Fig. 14.6 Variation of R2c with ω for different values of Rn and Vadász number Va

observed that as ε increases, the value of | R2c | becomes small indicating that the
larger values of ε decrease the effect of modulation. Here also it is observed that as
ω increases, R2c increases to its maximum value initially and then starts decreasing
with further increase inω. Whenω is very large, all the curves for different porosity ε

coalesce and | R2c | approaches to zero. Figure14.4 depicts the variation of R2c with
frequency ω for different values of Lewis number Le. An increase in the value of the
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Fig. 14.7 Variation of R2c with ω for different values of Rn and ν

Fig. 14.8 Variation of R2c with ω for different values of Rn and γ

Lewis number decreases the value of | R2c | indicating that the effect of increasing
Le is to reduce the effect of thermal modulation for regular and nanofluids. As ω

increases, | R2c | increases to its maximum value initially and then decreases with
further increase in ω. For large, ω all the curves for different Lewis number coincide,
and | R2c | approaches to zero for both regular and nanofluids. The effect of thermal
capacity ratio σ and ω is shown in Fig. 14.5. As σ increases, | R2c | decreases for
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Fig. 14.9 Variation of R2c with ω for different values of Rn and λ1

Fig. 14.10 Variation of R2c with ω for different values of Rn

both regular and nanofluids. Here also | R2c | increases to its maximum value initially
as ω increases and then starts decreasing with further increase in ω. The effect of
Vadász number Va shows a similar nature as that of heat capacity ratio σ as seen in
Fig. 14.6. The effects of viscosity variation parameter υ and conductivity variation
parameter γ are shown in Figs. 14.7 and 14.8, respectively. As υ and γ increase,
| R2c | decreases indicating that the viscosity and conductivity ratio stabilizes the
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Fig. 14.11 Variation of R2c with ω for different values of Rn and ε

Fig. 14.12 Variation of R2c with ω for different values of Rn and Le

system. As ω increases, | R2c | increases to its maximum value initially and then
starts decreasing with further increase in ω.

The results obtained for the case of asymmetric modulation are presented in
Figs. 14.9, 14.10, 14.11, 14.12, 14.13, 14.14, 14.15 and 14.16. All these figures
show that for all parameters, small frequencies have destabilizing effects while for
moderate and large values of the frequency, their effects are to stabilize the system.
It is seen from Fig. 14.9 that an increase in the value of λ1 increases the magnitude of
R2c. The effect of the concentrationRayleigh numberRn, porosity parameter ε, Lewis



240 J.C. Umavathi et al.

Fig. 14.13 Variation of R2c with ω for different values of Rn and σ

Fig. 14.14 Variation of R2c with ω for different values of Rn and Va

number Le, thermal capacity ratio σ , Vadász number Va, viscosity and conductivity
variation parameters υ and γ is the same as in the case of symmetric modulation,
and hence a detailed explanation is not presented. The variation of all the governing
parameters for the case of only lower wall temperature modulation produce similar
effects as for asymmetric modulation and hence not shown pictorially.
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Fig. 14.15 Variation of R2c with ω for different values of Rn and ν

Fig. 14.16 Variation of R2c with ω for different values of Rn and γ

From Figs. 14.1, 14.2, 14.3, 14.4, 14.5, 14.6, 14.7, 14.8, 14.9, 14.10, 14.11, 14.12,
14.13, 14.14, 14.15 and 14.16, one can observe that the peak values of for a regular
fluid compared to a nanofluid for all the governing parameters. A nanofluid has a
more stabilizing effect compared to a regular fluid.
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Table 14.1 Nomenclature

c Nanofluid specific heat at constant
pressure

cp Specific heat of the nanoparticle
material

(ρc)m Effective heat capacity of the
porous medium

dp Nanoparticle diameter

g Gravitational acceleration DB Brownian diffusion coefficient m2

s

hp Specific enthalpy of the
nanoparticle Specific enthalpy of
the nanoparticle materialmaterial

H Dimensional layer depth (m)

jp Diffusion mass flux for the
nanoparticles

jp,T Thermophoretic diffusion

k Thermal conductivity of the
nanofluid

kB Boltzman constant

km Effective thermal conductivity of
the porous medium

kp Thermal conductivity of the
particle material

Le Lewis parameter NA Modified diffusivity ratio

NB Modified particle-density
increment

p∗ Pressure

p Dimensionless pressure, p∗K
μαm

q Energy flux relative to a frame
moving with the nanofluid
velocity

R Thermal Rayleigh–Darcy number Rn Concentration Rayleigh number

t∗ time t Dimensionless time, t∗αm/σH2

T∗ Nanofluid temperature T Dimensionless temperature,
T∗−T∗

c
T∗
h −T∗

c

T∗
c Temperature at the upper wall T∗

h Temperature at the lower wall

TR Reference temperature (u, v,w) Dimensionless Darcy velocity
components (u∗,v∗,w∗)H

αm

v Nanofluid velocity vD Darcy velocity εv

v∗
D Dimensionless Darcy velocity

(u∗, v∗,w∗)
γa Non dimensional acceleration

coefficient

Va Vadász number (x, y, z) Dimensionless Cartesian
coordinate

(x∗,y∗,z∗)
H Vertically upward coordinate (x∗, y∗, z∗) Cartesian coordinates

Greek symbols

αm Thermal diffusivity of the porous
medium km

(ρc)f

β̃ Proportionality factor

γ Conductivity variation parameter λ1 Relaxation parameter

ε Porosity of the medium εt Amplitude of the modulation

μ Viscosity of the fluid ν Viscosity variation parameter

ρ Fluid density ρp Nanoparticle mass density

σ Parameter φ∗ Nanoparticle volume fraction

(continued)
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Table 14.1 (continued)

φ Relative nanoparticle volume

fraction, φ
∗−φ∗

c
φ∗
h−φ∗

c

Ω Dimensional frequency

ω Dimensionless frequency(
= ΩH2

K

)

ψ Phase angles

ψ = 0 Symmetric modulation ψ = π Antisymmetric modulation

ψ = −i∞ Only lower wall temperature
modulation

14.7 Conclusion

The effect of thermal modulation on the onset of convection in a Maxwell fluid and
nanofluid saturated porous layer was studied using a linear stability analysis and the
following conclusions were drawn (Table14.1):

1. The effect of all three types of modulations namely, symmetric, asymmetric,
and only with lower wall temperature modulations is found to be destabilizing
compared to the unmodulated system.

2. Low frequency symmetric modulation is destabilizing while high frequency sym-
metric modulation is always stabilizing for both regular and nanofluids.

3. Large values of the concentration Rayleigh number are found to stabilize the
system for all types of modulations.

4. The viscosity and conductivity variation parameters produce more stability for
the system.

5. The nanofluid is found to bemore stabilizing compared to regular fluid in all three
types of temperature modulations.
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Chapter 15
Effect of First Order Chemical Reaction
on Magneto Convection in a Vertical Double
Passage Channel

J. Pratap Kumar, Jawali C. Umavathi, Prashant G. Metri
and Sergei Silvestrov

Abstract The objective of this paper is to study magneto-hydrodynamic flow in a
vertical double passage channel taking into account the presence of the first order
chemical reaction. The channel is divided into two passages by means of a thin,
perfectly conducting plane baffle and hence the velocity will be individual in each
stream. The governing equations are solved by using regular perturbation technique
valid for small values of the Brinkman number and differential transform method
valid for all values of the Brinkman number. The results are obtained for veloc-
ity, temperature and concentration. The effects of various dimensionless parameters
such as thermal Grashof number, mass Grashof number, Brinkman number, first
order chemical reaction parameter, and Hartman number on the flow variables are
discussed and presented graphically for open and short circuits. The validity of solu-
tions obtained by differential transform method and regular perturbation method are
in good agreement for small values of the Brinkman number. Further the effects of
governing parameters on the volumetric flow rate, species concentration, total heat
rate, skin friction and Nusselt number are also observed and tabulated.
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15.1 Introduction

Magneto-hydrodynamics (MHD) is the branch of continuummechanics which deals
with the flow of electrically conducting fluids in electric and magnetic fields. Many
natural phenomena and engineering problems are worth being subjected to an MHD
analysis.Magneto-hydrodynamic equations are ordinary electromagnetic and hydro-
dynamic equations modified to take into account the interaction between the motion
of the fluid and the electromagnetic field. The formulation of the electromagnetic
theory in a mathematical form is known as Maxwell’s equations.

The flow and heat transfer of electrically conducting fluids in channels and
circular pipes under the effect of a transverse magnetic field occurs in magneto-
hydrodynamic (MHD) generators, pumps, accelerators and flow meters and have
applications in nuclear reactors, filtration, geothermal systems and others. The inter-
est in the outer magnetic field effect on heat-physical processes appeared seventy
years ago. Research in magneto-hydrodynamics grew rapidly during the late 1950s
as a result of extensive studies of ionized gases for a number of applications. Blum
et al. [1] carried out one of the first works in the field of heat and mass transfer in the
presence of a magnetic field. Many exciting innovations were put forth in the areas
of MHD propulsion [5], remote energy deposition for drag reduction [32], plasma
actuators, radiation driven hypersonic wind tunnel, MHD control of flow and heat
transfer in the boundary layer [2, 23, 24, 39], enhanced plasma ignition [11] and
combustion stability. Extensive research however has revealed that additional and
refined fidelity of physics in modeling and analyzing the interdisciplinary endeavor
are required to reach a conclusive assessment. In order to ensure a successful and
effective use of electromagnetic phenomena in industrial processes and technical
systems, a very good understanding of the effects of the application of a magnetic
field on the flow of electrically conducting fluids in channels and various geometric
elements is required.

Thepresent trend in thefieldof chemical reaction analysis is to give amathematical
model for the system to predict the reactor performance. Much research was being
carried out across the globe. The study of heat and mass transfer with chemical
reaction is given primary importance in chemical and hydro-metallurgical industries.
A studyon chemical reactionon theflowpast an impulsively started vertical platewith
uniform heat and mass flux was made by Muthucumaraswamy and Ganesan [21].
The same type of problem with inclusion of constant wall suction was studied by
Makinde and Sibanda [17]. Fan et al. [6] studied the same problem over a horizontal
moving plate. Kandasamy and Anjalidevi [10] investigated the effect of chemical
reaction of the flow over a wedge. Sattar [29] investigated the effect of free and
forced convection boundary layer flow through a Porous medium with large suction.
Atul Kumar Singh [30] analyzed the MHD free convection and mass transfer flow
with heat source and thermal diffusion. Recently Prathap Kumar et al. [12–16] have
studiedTaylor dispersion of solute for immiscible fluids for viscous and for composite
Porous media.
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Umavathi [33] studied the combined effect of viscous and applied electrical field
in a vertical channel. LaterUmavathi and her group analyzedmagneto-hydrodynamic
flow and heat transfer for various geometries [18–20, 34–38]. Yao [41] studied the
natural convection heat transfer from isothermal vertical wavy surfaces, such as
sinusoidal surfaces. Rees and Pop [27] examined the natural convection flow over a
vertical wavy surface with constant wall temperature in Porous media saturated with
Newtonian fluids. Hossain and Rees [8] studied the heat and mass transfer in natural
convection flow along a vertical wavy surface with constant wall temperature and
concentration for Newtonian fluid. Cheng [3] presented the solution of heat andmass
transfer in natural convection flow along a vertical wavy surface in Porous medium
saturated with Newtonian fluid.

When the channel is divided into several passages by means of plane baffles, as
usually occurs in heat exchangers or electronic equipment, it is quite possible to
enhance the heat transfer performance between the walls and fluid by the adjustment
of each baffle position and strength of separate flow streams. In such configurations,
perfectly conductive and thin baffles may be used to avoid significant increase of the
transverse thermal resistance. Chin-Hsiang et al. [4] studied the thermal character-
istics of hydro dynamically and thermally fully developed flow in an asymmetrical
heated horizontal channel, which is divided into two passages (by means of a baffle)
for two separate flow streams. Salah El-Din [28] studied analytically, the laminar
fully developed combined convection in a vertical double passage channel with dif-
ferent wall temperature and concluded that heat transfer in the channel is affected
significantly by the baffle position.

The differential transformation method (DTM) is a numerical method based on
a Taylor expansion. This method constructs an analytical solution in the form of
a polynomial. The concept of differential transform method was first proposed and
applied to solve linear and nonlinear initial value problems in electric circuit analysis
by Zhou [42]. Unlike the traditional high order Taylor series method which requires
a lot of symbolic computations, the differential transform method is an iterative pro-
cedure for obtaining Taylor series solutions. This method will not consume too much
computer time when applying to nonlinear or parameter varying systems. But, it is
different fromTaylor seriesmethod that requires computation of the high order deriv-
atives. The differential transformmethod is an iterative procedure that is described by
the transformed equations of original functions for solution of differential equations.
This method is well addressed in [9, 22, 25, 26, 40].

Keeping in view thepractical applicationswhere there is a requirement of enhance-
ment of heat transfer by inserting a baffle and the effects of chemical reaction, it is
the aim of this paper to understand the flow nature by inserting a baffle in a vertical
channel filled with chemically reacting conducting fluid.
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15.2 Mathematical Formulation

Consider a steady, two-dimensional laminar fully developed free convection flow
in an open ended vertical channel filled with purely viscous electrically conducting
fluid. The x-axis is taken vertically upward, and parallel to the direction of buoyancy,
and the y-axis is normal to it. A uniform magnetic field is applied normal to the
plates and uniform electric field is applied perpendicular to the plate. The thermal
conductivity, dynamic viscosity, thermal and concentration expansion coefficients
are considered as constant. The Oberbeck-Boussinesq approximation is assumed to
hold and for the evaluation of the gravitational body force, the density ρ is assumed to
depend on temperature according to the equation of state (ρ = ρ0(1 − β(T − T0))).
It is also assumed that the magnetic Reynolds number is sufficiently small so that the
inducedmagnetic field can be neglected and the induced electric field is assumed to be
negligible. Ohmic and viscous dissipations are included in the energy equation. The
flow is assumed to be steady, laminar and fully developed. The walls are maintained
at constant but different temperatures. The channel is divided into two passages by
means of thin, perfectly conducting plane baffle and each stream will have its own
pressure gradient and hence the velocity will be individual in each stream. After
inserting the baffle, the fluid in Stream-I is concentrated.

The governing equations for velocity, temperature and concentration are
Stream-I

ρgβT (T1 − Tw2) + ρgβc(C1 − C0) − dP

dX
+ μ

d2U1

dY 2
− σe(E0 + B0U1)B0 = 0,

(15.1)
d2T1
dY 2

+ ν

αCp

(
dU1

dY

)2

+ σe

αρCp
(E0 + B0U1)

2 = 0, (15.2)

D
d2C1

dY 2
− K1C1 = 0, (15.3)

Stream-II

ρgβT (T1 − Tw2) − ∂P

∂X
+ μ

d2U2

dY 2
− σe(E0 + B0U2)B0 = 0, (15.4)

d2T2
dY 2

+ ν

αCp

(
dU2

dY

)2

+ σe

αρCp
(E0 + B0U − 2)2 = 0, (15.5)

which are subject to the boundary conditions on velocity, temperature and concen-
tration as

U1 = 0, T1 = TW1 = 0, C = C1 at Y = −h,

U2 = 0, T1 = TW2 = 0, at Y = h,
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U1 = 0, U2 = 0, T1 = T2,
dT1
dY

= dT2
dY

, C = C2 at Y = h∗. (15.6)

Introducing the following non-dimensional variables in the governing equations
for velocity temperature and concentration as

ui = Ui

U1
, θ = Ti − Tw2

Tw1 − Tw2

, Gr = gβT�Th3

υ2
, (15.7)

Gc = gβc�Ch3

υ2
, φ1 = C − C0

C1 − C0
, Re = U1h

υ
, Br = U

2
1μ

k � T
,

Y∗ = Y∗

h
, p = h2

μU1

dp

dX
, � T = Tw2 − Tw1 ,

�C = C1 − C0, Y = y

h
, M2 = σeB2

0h
2

μ
,

E = E0

B0u1
, α = k1h2

D
, n = C2 − C0

C1 − C0
.

one obtains the momentum, energy and concentration equations corresponding to
Stream-I and Stream-II as

Stream-I
d2u1
dy2

+ GRTθ1 + GRCφ1 − p − M2(E + u1) = 0, (15.8)

d2θ1
dy2

+ Br

((
du1
dy

)2

+ M2(E + u1)
2

)

= 0, (15.9)

d2φ1

dy2
− α2φ1 = 0, (15.10)

Stream-II
d2u2
dy2

+ GRTθ2 − p − M2(E + u2) = 0, (15.11)

d2θ2
dy2

+ Br

((
du2
dy

)2

+ M2(E + u2)
2

)

= 0, (15.12)

which are subject to the boundary conditions

u1 = 0, θ1 = 1, φ1 = 1, at y = −1, (15.13)

u2 = 0, θ2 = 0 at y = 1,
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u1 = 0, u2 = 0, θ1 = θ2,
dθ1

dy
= dθ2

dy
, φ1 = n at y = y∗,

where GRT = Gr
Re and GRC = Gc

Re .

15.3 Solutions

Solution of (15.10) using boundary condition (15.13) becomes

φ1 = B1 cosh(αy) + B2 sinh(αy). (15.14)

15.3.1 Perturbation Method

Equations (15.8), (15.9), (15.11) and (15.12) are coupled non-linear ordinary dif-
ferential equations. Approximate solutions can be found by using the regular per-
turbation method. The perturbation parameter Br is usually small and hence regular
perturbation method can be strongly justified. Adopting this technique, solutions for
velocity and temperature are assumed in the form

ui(y) = ui0(y) + Brui1(y) + Br2ui2(y) + · · · , (15.15)

θi(y) = θi0(y) + Brθi1(y) + Br2θi2(y) + · · · . (15.16)

Substituting (15.15) and (15.16) in (15.8), (15.9), (15.11) and (15.12), and equating
the coefficients of like power of Br to zero and one, we obtain the zero and first order
equations as

Stream-I
Zeroth order equations

d2u10
dy2

+ GRTθ10 + GRCφ1 − p − M2(E + u10) = 0, (15.17)

d2θ10
dy2

= 0. (15.18)

First order equations

d2u11
dy2

+ GRTθ11 − M2u11 = 0, (15.19)

Tb = T1(z) + εtT2(z, t),
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d2θ11
dy2

+
((

du10
dy

)2

+ M2(E + u10)
2

)

= 0. (15.20)

Stream-II
Zeroth order equations

d2u20
dy2

+ GRTθ20 − p − M2(E + u20) = 0, (15.21)

d2θ20
dy2

= 0. (15.22)

First order equations

d2u21
dy2

+ GRTθ21 − p − M2(E + u20) = 0, (15.23)

d2θ21
dy2

+
((

du20
dy

)2

+ M2(E + u20)
2

)

= 0. (15.24)

The corresponding boundary conditions reduces to
Zeroth order

u10 = 0, θ10 = 1, φ1 = 1 at y = −1, (15.25)

u20 = 0, θ20 = 0 at y = 1,

u10 = 0, u20 = 0, θ10 = θ20,
dθ10

dy
= dθ20

dy
, φ1 = n at y = y∗.

First order

u11 = 0, θ11 = 0 at y = −1, (15.26)

u21 = 0, θ21 = 0 at y = 1,

u11 = 0, u21 = 0, θ11 = θ21,
dθ11

dy
= dθ21

dy
, φ1 = n at y = y∗.

The solutions of the zeroth and first order Eqs. (15.17)-(15.24) using the boundary
conditions as in (15.25) and (15.26) become

Zeroth-order solutions
Stream-I

θ10 = z1y + z2, (15.27)

u10 = A1 cosh(My) + A2 sinh(My) + r1 + r2y + r3 cosh(αy) + r4 sinh(αy).

(15.28)
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Fig. 15.1 Velocity profiles for different values of thermal Grashof number GRT at a y∗ = 0.8,
b y∗ = 0, c y∗ = 0.8

Stream-II
θ20 = z3y + z4, (15.29)

u20 = A3 cosh(My) + A4 sinh(My) + r5 + r6y. (15.30)

First order solution
Stream-I

θ11 = E1 + E2y + q1y
2 + q2y

3 + q3y
4 + q4 cosh(αy) + (15.31)

+q5 sinh(αy) + q6 cosh(2αy) + q7 sinh(2αy) + q8 cosh(2My) +
+q9 sinh(2My) + q10 cosh(My) + q11 sinh(My) + q12y cosh(My) +

+q13y sinh(My) + q14y cosh(αy) + q15y sinh(αy) + q16 cosh(α + M)y +
+q17 cosh(α − M)y + q18 sinh(α + M)y + q19 sinh(α − M)y,
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Fig. 15.2 Temperature profiles for different values of thermal Grashof number GRT at
a y∗ = 0.8, b y∗ = 0, c y∗ = 0.8

u11 = E3 cosh(My) + E4 sinh(My) + H1 + H2y + H3y
2 + (15.32)

+H4y
3 + H5y

4 + H6 cosh(αy) + H7 sinh(αy) +
+H8 cosh(2αy) + H9 sinh(2αy) + H10 cosh(2My) +

+H11 sinh(2My) + H12y cosh(My) + H13y sinh(My) +
+H14y cosh(αy) + H15y sinh(αy) + H16 cosh(α + M)y +

+H17 cosh(α − M)y + H18 sinh(α + M)y + H19 sinh(α − M)y +
+H20y

2 cosh(My) + H21y
2 sinh(My).



256 J. Pratap Kumar et al.

Fig. 15.3 Velocity profiles for different values of concentration Grashof number GRC at
a y∗ = −0.8, b y∗ = 0, c y∗ = 0.8

Stream-II

θ21 = E5 + E6y + F1y
2 + F2y

3 + F3y
4 + (15.33)

+F4 cosh(2My) + F5 sinh(2My) + F6 cosh(My) +
+F7 sinh(My) + F8y cosh(My) + F9y sinh(My),

u21 = E7 cosh(My) + E8 sinh(My) + (15.34)

+H22 + H23y + H24y
2 + H25y

3 + H26y
4 +

+H27 cosh(2My) + H28 sinh(2My) + H29y cosh(My) +
+H30y sinh(My) + H31y

2 cosh(My) + H32y
2 sinh(My).

The dimensionless total volume flow rate is given by

Qν = Qν1 + Qν2, (15.35)
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Fig. 15.4 Temperature profiles for different values of concentration Grashof number GRC at
a y∗ = −0.8, b y∗ = 0, c y∗ = 0.8

where

Qν1 =
∫ y∗

−1
u1dy, Qν2 =

∫ 1

y∗
u2dy. (15.36)

The dimensionless total heat rate added to the fluid is given by

E = HE1 + HE2 , (15.37)

HE1 =
∫ y∗

−1
u1θ1dy, HE2 =

∫ 1

y∗
u2θ2dy. (15.38)

The dimensionless total species rate added to the fluid is given by

Cs = Cs1 + Cs2, (15.39)
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Fig. 15.5 Velocity profiles for different values of Brikman number Br at a y∗ = −0.8,
b y∗ = 0, c y∗ = 0.8

where

Cs1 =
∫ y∗

−1
u1φ1dy, Cs2 =

∫ 1

y∗
u2φ2dy. (15.40)

15.3.2 Basic Concept of Differential Transform Method

The analytical solutions obtained in Sect. 15.3.1 are valid only for small values of
Brinkman numberBr. Inmany practical problemsmentioned earlier, the values ofBr
are usually large. In that case analytical solutions are difficult, and hence we resort to
semi-numerical-analytical method known as Differential TransformMethod (DTM).

The general concept ofDTM is explained here: The kth differential transformation
of an analytical function F(k) is defined as (Zhou [42])

F(k) = 1

k!
[
dkf (η)

dηk

]

η=η0

, (15.41)
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Fig. 15.6 Temperature profiles for different values ofBrikmannumberBr at a y∗ = −0.8,b y∗ = 0,
c y∗ = 0.8

and the inverse differential transformation is given by

f (η) =
∞∑

k=0

F(k)(η − η0)
k . (15.42)

Combining (15.41) and (15.42)

f (η) =
∞∑

k=0

F(k)
(η − η0)

k

k!
dkf (η)

dηk
|η=η0 . (15.43)

From (15.42), it can be seen that the differential transformation method is derived
from Taylor’s series expansion. In real applications the sum

∑∞
k=0 F(k)(η − η0)

k is
very small and can be neglected when k is sufficiently large. So f (η) can be expressed
by a finite series, and (15.42) may be written as
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Fig. 15.7 Velocity profiles for different values of chemical reaction parameter α at a y∗ = −0.8,
b y∗ = 0, c y∗ = 0.8

f (η) =
n∑

k=0

F(k)(η − η0)
k, (15.44)

where the value of k depends on the convergence requirement in real applications
and F(k) is the differential transform of f (η).

15.4 Results and Discussion

The velocity, temperature and concentration fields for an electrically conducting fluid
in a vertical double passage are presented in Figs. 15.1, 15.2, 15.3, 15.4, 15.5, 15.6,
15.7, 15.8, 15.9, 15.10, 15.11, 15.12 and 15.13. The channel is divided into two
passages by inserting a thin perfectly conducting baffle. The fluid is concentrated in
passage one only after inserting the baffle. The basic equations are solved by using
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Fig. 15.8 Temperature profiles for different values of chemical reactionparameterα at a y∗ = −0.8,
b y∗ = 0, c y∗ = 0.8

regular perturbation method valid for small values of Br. The Brinkman number is
exploited as a perturbation parameter. To understand the fluid nature for large values
ofBrinkmannumber, the coupled nonlinear ordinary differential equations are solved
by DTM which is a semi-numerical-analytical method. The case E = 0 corresponds
to short circuit and E �= 0 corresponds to the open circuit case. The values of thermal
Grashof number, mass Grashof number, Brinkman number, pressure gradient, first
order chemical reaction parameter, wall concentration ratio, and Hartman number
are fixed as 5, 5, –5, 0.5, 1, 4 for open circuit (E = −1) for all the graphs and tables
except the varying parameter.

The effect of thermal Grashof number GRT (ratio of thermal Grashof number
to Reynolds number) on the velocity and temperature fields is shown in Figs. 15.1
and 15.2 at three different baffle positions (y∗ = −0.8, 0, 0.8) keeping the left
wall at higher temperature. It is observed from Figs. 15.1 and 15.2 that the velocity
and temperature increases at all the baffle positions as the thermal Grashof number
increases. However when the baffle is placed near left wall the maximum point of
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Fig. 15.9 Concentration profiles for different values of chemical reaction parameter α at
a y∗ = −0.8, b y∗ = 0, c y∗ = 0.8

velocity is in Stream-II, when the baffle is placed near the centre of the channel and
near the right wall, the maximum point of velocity is in Stream-I. It is also seen
from Fig. 15.1 that the velocity profiles in both the passages are not equal though
there is a no-slip condition at the walls and near the baffle. One can infer this result
as, the thermal Grashof number increases as the buoyancy force increases and the
wall conditions on temperature are not equal (left wall is at higher temperature when
compared to right wall). It is seen from Fig. 15.2 that the temperature profiles look
similar at all the baffle positions. This is due to the reason that the temperature and
heat flux are considered as continuous at the baffle positions. The optimum value
of temperature is seen in Stream-II for the baffle position near the left wall and in
Stream-I when the baffle position is near the right wall.

The effect of mass Grashof number GRC (ratio of mass Grashof number to
Reynolds number) on the flow is shown in Figs. 15.3 and 15.4 at all baffle posi-
tions. The increase in mass Grashof number increases the velocity and temperature
fields in both the streams at all the baffle positions. The enhancement of velocity is
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Fig. 15.10 Velocity profiles for different values of Hartmann numberM at a y∗ = −0.8, b y∗ = 0,
c y∗ = 0.8

significant in Stream-I when compared to Stream-II. The reason for this nature is
that fluid is concentrated only in Stream-I. It is viewed from Fig.15.4b that though
the fluid is not concentrated in Stream-II there is a slight increase in the velocity
field when the baffle is positioned near the centre of the channel. This is because
of the conditions imposed on temperature and heat flux. That is to say that, there is
heat transfer from Stream-I to Stream-II and there is no mass transfer from Stream-I
to Stream-II. However due to transfer of heat from Stream-I to Stream-II results in
increase in thermal and concentration buoyancy forces and hence enhancement of
velocity in small magnitude is observed in Stream-II as GRC increases. There is no
effect of GRC in Stream-II when the baffle is positioned near the left and right walls.
Similar results were also observed by Fasogbon [7] for regular channel in the absence
of baffle. From Fig. 15.4a it is seen that the temperature does not vary significantly
in both the streams as GRC increases when the baffle is positioned near the left wall.
However its influence is dominated in Stream-I when the baffle is placed in the centre
of the channel and near the right wall.
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Fig. 15.11 Temperature profiles for different values of Hartmann number M at a y∗ = −0.8,
b y∗ = 0, c y∗ = 0.8

As the Brinkman number increases, the velocity and temperature increases in both
streams at all baffle positions as seen in Figs. 15.5 and 15.6, respectively. One can
infer this nature is due to the fact that increase in Brinkman number increases the
viscous dissipation and hence increases the temperature, which in turn influences the
velocity field. Here also temperature profiles looks similar at all baffle positions.

The effect of the first order chemical reaction parameterα, on the velocity, temper-
ature and concentration fields is observed in Figs. 15.7, 15.8 and 15.9, respectively.
As α increases the velocity and temperature decreases in Stream-I and does not
influence in Stream-II. This is due to the fact that the fluid in Stream-I is concen-
trated. At any position of the baffle the effect of α is to minimize the concentration
field. Figure15.9 shows the concentration profiles when the baffle is positioned at
y∗ = −0.8, 0, 0.8 and respectively. Similar results were also observed by Srinivas



15 Effect of First Order Chemical Reaction … 265

Fig. 15.12 Velocity profiles for different values of electric field load parameter E at a y∗ = −0.8,
b y∗ = 0, c y∗ = 0.8

and Muturaj [31] for mixed convective flow in a vertical channel in the absence of
baffle.

The effect of Hartman number M on velocity and temperature field is shown in
Figs. 15.10 and 15.11, respectively at three positions of the baffle. As the Hartman
number M increases velocity decreases in both streams at different positions of the
baffle for open circuits. The Hartman number M represents the ratio of the Lorentz
force to the viscous force, implying that the larger the Hartman number, the stronger
the retarding effect on the velocity field. Hence as Hartman number M increases
the velocity decreases at all baffle positions. Further, as the width of the passage
increases, the velocity profiles are flattened. Hence the velocity profiles are wider in
Stream-II when the baffle is placed near the left wall, in Stream-I when the baffle is
placed near the right wall and narrow when the baffle is placed in the centre of the
channel. The temperature profiles are also reduced as the Hartman number increases
in both the streamswhen the baffle is positioned at the centre and at the right wall. The
temperature decreases as M increases at M = −0.5 (approximately) and onwards,
where as it increases in Stream-I. This nature can be inferred aswhen the baffle is near
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Fig. 15.13 Temperature profiles for different values of electric field load parameter
E at a y∗ = −0.8, b y∗ = 0, c y∗ = 0.8

the right wall, which is at higher temperature, is not much influenced by the retarding
effect of the Lorenz force. Further one can also observe that the temperature profile
is wider in Stream-I when the baffle is placed near the right wall when compared to
the baffle positioned in the centre of the channel.

The effect of the applied electric field E on the velocity and temperature is dis-
placed in Figs. 15.12 and 15.13, respectively for both open and short circuits. The
effect of negative E is to add the flow while the effect of positive E is to oppose
the flow as compared to the case for the short circuit. Since the direction of flow
is reversed by changing the values of E, the results can be applied to the practical
problem where there is a requirement of reversal flow. The temperature increases
as the electric field load parameter increases in both passages at all baffle positions.
However, the magnitude of temperature is large for positive E when compared to
negative E. Here also the temperature profiles are flat in wider passage. The effect of
Hartman number and electric field load parameter on the flow show similar results
as observed by Umavathi [33] in the absence of baffle and the first order chemical
reaction.
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Table 15.1 Comparison of velocity and temperature with Br = 0 and y∗ = 0.0

y Velocity Temperature

DTM PM % of Error (%) DTM PM % of Error (%)

–1 0 0 0.00 1.000000 1.000000 0.00

–0.75 1.204365 1.204365 0.00 0.875000 0.875000 0.00

–0.5 1.550479 1.550479 0.00 0.750000 0.750000 0.00

–0.25 1.168996 1.168996 0.00 0.625000 0.625000 0.00

0 0 0 0.00 0.500000 0.500000 0.00

0 0 0 0.00 0.500000 0.500000 0.00

0.25 0.707605 0.707605 0.00 0.375000 0.375000 0.00

0.5 0.901861 0.901861 0.00 0.250000 0.250000 0.00

0.75 0.672236 0.672236 0.00 0.125000 0.125000 0.00

1 0 0 0.00 0 0 0.00

Table 15.2 Comparison of velocity and temperature with Br = 0.05 and y∗ = 0.0

y Velocity Temperature

DTM PM % of Error (%) DTM PM % of Error (%)

−1 0 0 0.00 1.000000 1.000000 0.00

−0.75 1.277758 1.247721 3.00 1.036972 0.971676 6.53

−0.5 1.665603 1.618226 4.74 1.019641 0.907179 11.25

−0.25 1.269718 1.228412 4.13 0.980143 0.835212 14.49

0 0 0 0.00 0.886478 0.727643 15.88

0 0 0 0.00 0.886478 0.727643 15.88

0.25 0.798468 0.759023 3.94 0.700614 0.558826 14.18

0.5 1.003566 0.959327 4.42 0.486179 0.382006 10.42

0.75 0.735737 0.708361 2.74 0.257282 0.201896 5.54

1 0 0 0.00 0 0 0.00

Since the regular perturbation method (PM) is valid only for small values of
Brinkman number, this restriction in relaxed by finding the solution of the governing
equation using the DTM. Tables15.1, 15.2, 15.3, 15.4, 15.5, 15.6, 15.7, 15.8 and
15.9 are the values of velocity and temperature when the baffle is positioned near
the centre of the channel, near the left wall and near the right wall respectively.
The validity of the DTM is justified by comparing the DTM solutions with the PM
method in the absence of the Brinkman number. It is seen from Tables15.1, 15.4,
and 15.7 that the DTM and PM values are exact in the absence of the Brinkman
number at all baffle positions in both streams. When the Brinkman number is 0.05,
the percentage of error of the DTM and the PM is less when compared with the value
of Br = 0.15 as seen in Tables15.2, 15.3, 15.5, 15.6, 15.8, and 15.9, respectively at all
baffle positions in both streams. Hence, one can conclude that regular perturbation
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Table 15.3 Comparison of velocity and temperature with Br = 0.15 and y∗ = 0.0

y Velocity Temperature

DTM PM % of Error (%) DTM PM % of Error (%)

–1 0 0 0.00 1.000000 1.000000 0.00

–0.75 1.536883 1.334433 20.24 1.604460 1.165029 43.94

–0.5 2.072972 1.753718 31.93 1.972888 1.221536 75.14

–0.25 1.626963 1.347243 27.97 2.242187 1.255635 98.66

0 0 0 0.00 2.268726 1.182928 108.58

0 0 0 0.00 2.268726 1.182928 108.58

0.25 1.117535 0.861860 25.57 1.849663 0.926477 92.32

0.5 1.358661 1.074260 28.44 1.306977 0.646019 66.10

0.75 0.956506 0.780613 17.59 0.711477 0.355687 35.58

1 0 0 0.00 0 0 0.0000

Table 15.4 Comparison of velocity and temperature with Br = 0 and y∗ = −0.8

y Velocity Temperature

DTM PM % of Error (%) DTM PM % of Error (%)

–1 0 0 0.00 1.000000 1.000000 0.00

–0.95 0.069354 0.069354 0.00 0.975000 0.975000 0.00

–0.9 0.092187 0.092187 0.00 0.950000 0.950000 0.00

–0.85 0.069043 0.069043 0.00 0.925000 0.925000 0.00

–0.8 0 0 0.00 0.900000 0.900000 0.00

–0.8 0 0 0.00 0.900000 0.900000 0.00

–0.5 1.260132 1.260132 0.00 0.750000 0.750000 0.00

–0.2 1.805345 1.805345 0.00 0.600000 0.600000 0.00

0.1 1.907424 1.907424 0.00 0.450000 0.450000 0.00

0.4 1.673782 1.673782 0.00 0.300000 0.300000 0.00

0.7 1.087305 1.087305 0.00 0.150000 0.150000 0.00

1 0 0 0.00 0 0 0.00

method cannot be applied for large values of the Brinkman number as the error is
greater. Further, one can infer from these tables that the percentage of error between
the DTM and the PM is greater in the narrow passage y∗ = 0 when compared with
wider passage y∗ = −0.8, 0.8, for different values of the Brinkman number.

The effect of thermalGrashof numberGRT ,massGrashof numberGRC , Brinkman
number Br, chemical reaction parameter α and Hartmann numberM on the volumet-
ric flow rate in Stream-I and Stream-II at different positions of the baffle is tabulated
in Table15.10. It is seen that increase in the thermal Grashof number, mass Grashof
number and the Brinkman number increases the volumetric flow rate of the fluid
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Table 15.5 Comparison of velocity and temperature with Br = 0.05 and y∗ = −0.8

y Velocity Temperature

DTM PM % of Error (%) DTM PM % of Error (%)

–1 0 0 0.00 1.000000 1.000000 0.00

–0.95 0.070556 0.069878 0.07 1.015203 0.992367 2.28

–0.9 0.094068 0.093024 0.10 1.026025 0.984173 4.19

–0.85 0.070662 0.069774 0.09 1.034695 0.975545 5.91

–0.8 0 0 0.00 1.041877 0.966357 7.55

–0.8 0 0 0.00 1.041877 0.966357 7.55

–0.5 1.397079 1.324997 7.21 1.006091 0.866824 13.93

–0.2 2.013926 1.905942 10.80 0.894776 0.736583 15.82

0.1 2.129951 2.018219 11.17 0.739775 0.593012 14.68

0.4 1.860009 1.770253 8.98 0.543458 0.431243 11.22

0.7 1.195027 1.145360 4.97 0.304197 0.242983 6.12

1 0 0 0.00 0 0 0.00

Table 15.6 Comparison of velocity and temperature with Br = 0.1 and y∗ = −0.8

y Velocity Temperature

DTM PM % of Error (%) DTM PM % of Error (%)

–1 0 0 0.00 1.000000 1.000000 0.00

–0.95 0.066662 0.070402 0.37 0.966262 1.009733 4.35

–0.9 0.090302 0.093860 0.36 0.993598 1.018345 2.47

–0.85 0.068630 0.070504 0.19 1.042718 1.026091 1.66

–0.8 0 0 0.00 1.098087 1.032715 6.54

–0.8 0 0 0.00 1.098087 1.032715 6.54

–0.5 1.547555 1.389862 15.77 1.259219 0.983648 27.56

–0.2 2.257138 2.006539 25.06 1.236455 0.873166 36.33

0.1 2.400241 2.129013 27.12 1.101593 0.736025 36.56

0.4 2.092376 1.866724 22.57 0.859604 0.562487 29.71

0.7 1.331559 1.203414 12.81 0.508352 0.335965 17.24

1 0 0 0.00 0 0 0.00

flowing through the vertical channel. This is due to the reasons that increase in the
thermal Grashof number and mass Grashof number increases the buoyancy which
tends to accelerate the fluid flow, thus raising the volumetric flow rate. Increase in the
Brinkman number increases the viscous dissipation and hence accelerates the fluid
flow. The chemical reaction parameter and the Hartmann number reduces the volu-
metric flow rates in both streams at all baffle positions, which is an expected result.
The effect of governing parameters on species concentration is shown in Table15.11.
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Table 15.7 Comparison of velocity and temperature with Br = 0 and y∗ = 0.8

y Velocity Temperature

DTM PM % of Error (%) DTM PM % of Error (%)

–1 0 0 0.00 1.000000 1.000000 0.00

–0.7 1.799059 1.799059 0.00 0.850000 0.850000 0.00

–0.4 2.596490 2.596490 0.00 0.700000 0.700000 0.00

–0.1 2.771982 2.771982 0.00 0.550000 0.550000 0.00

0.2 2.464927 2.464927 0.00 0.400000 0.400000 0.00

0.5 1.626232 1.626232 0.00 0.250000 0.250000 0.00

0.8 0 0 0.00 0.100000 0.100000 0.00

0.8 0 0 0.00 0.100000 0.100000 0.00

0.85 0.034303 0.034303 0.00 0.075000 0.075000 0.00

0.9 0.045492 0.045492 0.00 0.050000 0.050000 0.00

0.95 0.033991 0.033991 0.00 0.025000 0.025000 0.00

1 0 0 0.00 0 0 0.00

Table 15.8 Comparison of velocity and temperature with Br = 0.01 and y∗ = 0.8

y Velocity Temperature

DTM PM % of Error (%) DTM PM % of Error (%)

–1 0 0 0.00 1.000000 1.000000 0.00

–0.7 1.836544 1.827308 0.92 0.905152 0.892072 1.31

–0.4 2.660660 2.644651 1.60 0.785382 0.763931 2.15

–0.1 2.847653 2.828706 1.89 0.649513 0.624232 2.53

0.2 2.534629 2.517264 1.74 0.497826 0.473285 2.45

0.5 1.671046 1.660029 1.10 0.330520 0.311253 1.93

0.8 0 0 0.00 0.141015 0.131755 0.93

0.8 0 0 0.00 0.141015 0.131755 0.93

0.85 0.034751 0.034648 0.01 0.106057 0.098970 0.71

0.9 0.046004 0.045886 0.01 0.070900 0.066089 0.48

0.95 0.034312 0.034238 0.01 0.035550 0.033107 0.24

1 0 0 0.00 0 0 0.00

Increase in thermal Grashof number, mass Grashof number and Brinkman number
accelerates the fluid flow, thus enhancing the mass transfer rate between the wall and
the fluid flowing through the vertical channel. As the chemical reaction parameter α

and Hartmann numberM increase, the dimensionless total species rate added to the
fluid decreases.

The dimensionless total heat rate added to the fluid is tabulated in Table15.12 as
functions of thermal Grashof number GRT , mass Grashof number GRC , Brinkman
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Table 15.9 Comparison of velocity and temperature with Br = 0.08 and y∗ = 0.8

y Velocity Temperature

DTM PM % of Error (%) DTM PM % of Error (%)

–1 0 0 0.00 1.000000 1.000000 0.00

–0.7 2.503122 2.025055 47.81 1.858967 1.186577 67.24

–0.4 3.812342 2.981778 83.06 2.315717 1.211447 110.43

–0.1 4.213343 3.225770 98.76 2.456803 1.143857 131.29

0.2 3.794654 2.883624 91.10 2.275009 0.986280 128.87

0.5 2.480021 1.896608 58.34 1.778652 0.740023 103.86

0.8 0 0 0.00 0.884947 0.354042 53.09

0.8 0 0 0.00 0.884947 0.354042 53.09

0.85 0.043026 0.037067 0.60 0.681299 0.266759 41.45

0.9 0.055493 0.048650 0.68 0.472397 0.178715 29.37

0.95 0.040219 0.035966 0.43 0.251419 0.089852 16.16

1 0 0 0.00 0 0 0.00

Table 15.10 Volumetric flow rate

y∗ = −0.8 y∗ = 0 y∗ = 0.8

GRc Qv1 Qv2 Qv1 Qv2 Qv1 Qv2

1 0.01692 1.75421 0.86099 0.69703 2.08058 0.01324

5 0.01948 1.95914 1.00169 0.76976 2.35915 0.01363

10 0.02277 2.28458 1.19766 0.87605 2.79541 0.01423

15 0.02623 2.73524 1.42699 1.00924 3.36282 0.015

GRT

1 0.01698 1.95903 0.87573 0.76438 2.07089 0.01356

5 0.01948 1.95914 1.00169 0.76976 2.35915 0.01363

10 0.0226 1.95934 1.16339 0.77893 2.73876 0.01374

15 0.02572 1.95959 1.32983 0.79081 3.13977 0.01389

α

0.1 0.01949 1.95914 1.01724 0.77053 2.47398 0.01366

0.5 0.01949 1.95914 1.01318 0.77033 2.4396 0.01365

1 0.01948 1.95914 1.00169 0.76976 2.35915 0.01363

1.5 0.01946 1.95914 0.98573 0.76899 2.27668 0.01361

Br

0 0.01927 1.89015 0.96297 0.72032 2.33602 0.01332

0.1 0.01949 1.95914 1.01318 0.77033 2.4396 0.01365

0.5 0.02037 2.23513 1.21378 0.9675 2.82813 0.01488

1 0.02148 2.58011 1.45188 1.20699 3.20953 0.01624

4 0.01948 1.95914 1.00169 0.76976 2.35915 0.01363

(continued)
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Table 15.10 (continued)

y∗ = −0.8 y∗ = 0 y∗ = 0.8

M Qv1 Qv2 Qv1 Qv2 Qv1 Qv2

6 0.02986 1.79587 0.9518 0.81959 1.98524 0.02438

8 0.04219 1.74833 0.93402 0.85075 1.85845 0.03718

10 0.05516 1.73296 0.92916 0.87238 1.80541 0.05062

E

–2 0.03001 3.36255 1.62606 1.3969 3.75639 0.02417

–1 0.01948 1.95914 1.00169 0.76976 2.35915 0.01363

1 0 –0.61266 –0.01995 –0.25741 –0.2003 –0.00642

2 –0.01002 –1.78105 –0.41721 –0.65744 –1.36252 –0.01592

Table 15.11 Species concentration

y∗ = −0.8 y∗ = 0 y∗ = 0.8 y∗ = −0.8 y∗ = 0 y∗ = 0.8

GRT cs1 cs1 cs1 Br cs1 cs1 cs1

1 0.01685 0.78409 1.59338 0 0.01918 0.86393 1.71696

5 0.0194 0.9122 1.80591 0.1 0.0194 0.9122 1.80591

10 0.02268 1.09063 2.1381 0.5 0.02029 1.10529 2.16172

15 0.02613 1.29942 2.56938 1 0.02141 1.34664 2.60648

GRc M

1 0.01691 0.79748 1.5848 4 0.0194 0.9122 1.80591

5 0.0194 0.9122 1.80591 6 0.02975 0.86803 1.53088

10 0.02251 1.05948 2.09686 8 0.04202 0.85303 1.44083

15 0.02562 1.21107 2.404 10 0.05492 0.84967 1.40521

α E

0.1 0.01949 1.01624 2.4663 –2 0.02989 1.48077 2.87534

0.5 0.01947 0.98888 2.26397 –1 0.0194 0.9122 1.80591

1 0.0194 0.9122 1.80591 1 –5.33277E–4 –0.01818 –0.15355

1.5 0.01929 0.80804 1.35854 2 –0.00998 –0.37999 –1.04358

number Br, chemical reaction parameter α and Hartmann numberM. AsGRT , GRC

and Br increases, buoyancy tends to accelerate the fluid flow raising the heat trans-
fer rate between wall and fluid and thus increases the total heat rate added to the
fluid in the vertical channel. The first order chemical reaction parameter and Porous
parameter reduces the total heat rate added to the fluid in both streams at all baffle
positions.

The magnitude of skin friction at the left and right wall increase as GRT and GRC

increase, and decreases with α andM at all baffle positions in both streams as shown
in Table15.13. Similar nature is also observed on the Nusselt number at the left and
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Table 15.12 Total energy flow

y∗ = −0.8 y∗ = 0 y∗ = 0.8

GRT E1 E2 E1 E2 E1 E2

1 0.01718 1.01764 0.89702 0.37076 1.59443 0.00181

5 0.0199 1.23304 1.07937 0.43271 1.98767 0.00205

10 0.02359 1.66123 1.37037 0.54261 2.69272 0.00244

15 0.02777 2.36949 1.76313 0.7053 3.74289 0.00297

GRc

1 0.01734 1.23239 0.90022 0.40367 1.54667 0.00175

5 0.0199 1.23304 1.07937 0.43271 1.98767 0.00205

10 0.0231 1.23414 1.35645 0.48313 2.765 0.00257

15 0.02631 1.23557 1.70711 0.55024 3.8602 0.00325

α

0.1 0.01991 1.23305 1.10395 0.43691 2.2107 0.00219

0.5 0.01991 1.23304 1.09749 0.4358 2.14137 0.00214

1 0.0199 1.23304 1.07937 0.43271 1.98767 0.00205

1.5 0.01988 1.23304 1.05468 0.42854 1.84223 0.00195

Br

0 0.01829 0.86564 0.71276 0.18134 1.24812 6.66304E-4

0.1 0.0199 1.23304 1.07937 0.43271 1.98767 0.00205

0.5 0.02665 2.94332 2.92158 1.76675 5.64494 0.00823

1 0.03586 5.62265 6.06982 4.17362 1.7894 0.01745

M

4 0.0199 1.23304 1.07937 0.43271 1.98767 0.00205

6 0.02979 1.11922 1.08716 0.52123 1.5434 0.00368

8 –2.80383 1.12487 1.1434 0.61442 1.43794 –1113.94

10 –1.90679× 109 1.15488 1.2216 0.71078 1.42704 –372321

E

–2 0.03547 2.96291 2.82766 1.74077 4.04434 0.00763

–1 0.0199 1.23304 1.07937 0.43271 1.98767 0.00205

1 –0.0005 –0.40204 –0.02321 –0.15097 –0.17827 –0.0010

2 –0.01207 –1.77489 –0.78954 –0.85354 –1.74273 –0.00507

right walls as it can be viewed in Table15.14. That is to say that magnitude of Nusselt
number increases at both plates as GRT , GRC and Br increases and decreases as
alpha and M increase at all baffle positions in both streams.
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Table 15.13 Skin friction

σ1 σ2

GRT y∗ = −0.8 y∗ = 0 y∗ = 0.8 y∗ = −0.8 y∗ = 0 y∗ = 0.8

1 2.56415 6.44191 6.57903 –5.28872 –5.12096 –2.00331

5 2.95018 7.4637 7.60287 –5.50601 –5.37765 –2.04169

10 3.44136 8.82339 9.02368 –5.89122 –5.76215 –2.10164

15 3.94905 10.3187 10.6569 –6.47061 –6.25529 –2.17918

GRc

1 2.57139 6.52653 6.67111 –5.50591 –5.35993 –2.03506

5 2.95018 7.4637 7.60287 –5.50601 –5.37765 –2.04169

10 3.42371 8.65246 8.79515 –5.50617 –5.40786 –2.053

15 3.89731 9.86041 10.0181 –5.50639 –5.44702 –2.06763

α

0.1 2.95172 7.54163 7.78628 –5.50601 –5.3802 –2.04478

0.5 2.95135 7.52136 7.73191 –5.50601 –5.37953 –2.04383

1 2.95018 7.4637 7.60287 –5.50601 –5.37765 –2.04169

1.5 2.94824 7.38318 7.46623 –5.50601 –5.37512 –2.03964

Br

0 2.92909 7.33706 7.58184 –5.39674 –5.19449 –2.01023

0.1 2.95135 7.52136 7.73191 –5.50601 –5.37953 –2.04383

0.5 3.04072 8.26187 8.30113 –5.94309 –6.11029 –2.16754

1 3.15195 9.13437 8.86018 –6.48945 –7.00079 –2.30426

M

4 2.95018 7.4637 7.60287 –5.50601 –5.37765 –2.04169

6 4.57901 8.47224 8.41997 –6.95583 –6.98652 –3.71814

8 6.58056 9.89097 9.82926 –8.69979 –8.74509 –5.77982

10 8.78968 11.5243 11.4728 –10.552 –10.5923 –8.0517

E

–2 4.52116 11.7102 11.7408 –9.66328 –9.63963 –3.61414

–1 2.95018 7.4637 7.60287 –5.50601 –5.37765 –2.04169

1 –0.08577 –0.18818 –0.32186 2.45737 2.30527 0.99718

2 –1.55073 –3.59361 –4.10864 6.26348 5.72623 2.4636
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Table 15.14 Skin friction

Nu1 Nu2
GRT y∗ = −0.8 y∗ = 0 y∗ = 0.8 y∗ = −0.8 y∗ = 0 y∗ = 0.8

1 0.2535 0.54673 0.35596 –1.1001 –1.42956 –1.46421

5 0.3172 0.71448 –1.60179 –1.27357 –1.55062 –1.60179

10 0.4691 0.99858 –1.82031 –1.57949 –1.7604 –1.82031

15 0.70134 1.36538 –2.09053 –1.98439 –2.03513 –2.09053

GRc

1 0.31115 0.5101 0.31827 –1.27325 –1.48418 –1.38767

5 0.3172 0.71448 0.60472 –1.27357 –1.55062 –1.60179

10 0.32741 1.06058 1.08118 –1.2741 –1.66388 –1.96631

15 0.34057 1.50739 1.68918 –1.2748 –1.81071 –2.43845

α

0.1 0.31723 0.74361 0.73338 –1.27357 –1.56017 –1.70141

0.5 0.31722 0.73593 0.69384 –1.27357 –1.55765 –1.67072

1 0.3172 0.71448 0.60472 –1.27357 –1.55062 –1.60179

1.5 0.31715 0.68549 0.5184 –1.27357 –1.54113 –1.5354

Br

0 –0.5 –0.5 –0.5 –0.5 –0.5 –0.5

0.1 0.31722 0.73593 0.69384 –1.27357 –1.55765 –1.67072

0.5 3.58597 5.57239 5.02362 –4.36784 –5.75312 –6.00897

1 7.67152 1.3549 9.68395 –8.23565 –10.9113 –10.854

M

4 0.3172 0.71448 0.60472 –1.27357 –1.55062 –1.60179

6 0.72938 0.94208 0.52327 –1.36814 –1.86045 –1.87879

8 1.26914 1.25106 0.63165 –1.54831 –2.20863 –2.36426

10 1.5 1.60032 0.80544 –1.75148 –2.57817 –2.5

E

–2 2.20731 3.00672 1.97429 –2.69175 –3.88572 –3.54052

–1 0.3172 0.71448 0.60472 –1.27357 –1.55062 –1.60179

1 0.42631 0.75733 0.59284 –1.16445 –1.50777 –1.61368

2 2.42554 3.09243 1.95052 –2.47352 –3.80001 –3.5643
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Table 15.15 Nomenclature

h Channel width C0 Reference concentration

h∗ Width of passage U1 Reference velocity

y∗ Baffle position D Diffusion coefficients

Cp Dimensionless specific heat at
constant pressure

T1,T2 Dimensional Temperature
distributions

g Acceleration due to gravity Tw1 ,Tw2 Temperatures of the boundaries

Gr Grashof number
(
h3gβTT

ν2

)
U1,U2 Dimensional velocity

distributions

βT Coefficients of thermal
expansion

u1, u2 Non-dimensional velocities in
Stream-I, Stream-II

βc Coefficients of concentration
expansion

Gc Modified Grashoff Number(
gβcCh3

υ2

)

C1 Concentration in Stream-I GRT &GRC Dimensionless parameters
(GRT = GR

Re )&(GRC = Gc
Re )

K1 Thermal conductivity of fluid Re Reynolds numberU1h
υ

Br Brinkman number p Non-dimensional pressure

gradient
(

h2

U1μ

dp
dX

)

α Chemical reaction parameters Cp Specific heat at constant
pressure

M Hartmann number(
B0h1

√
σ0
μ1

) E Electric field load parameter

B0 Magnetic field E0 Applied electric field

σe Electrical conductivity

Greek symbols

T ,C Difference in temperatures and
concentration

ρ Density

μ Viscosity υ Kinematics viscosity

θi Non-dimensional temperature(
Ti−Tw2
Tw1−Tw2

) φ1 Non-dimensional
concentrations

Subscripts

i Refers to quantities for the
fluids in Stream-I and
Stream-II, respectively
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15.5 Conclusion

The characteristics of heat and mass transfer of electrically conducting fluid in a
vertical double passage channel with a perfectly conducting baffle was studied. The
solutions of governing equations and the associated boundary conditions have been
obtained by using regular the PM method valid for small values of the Brinkman
number and by the DTM valid for all values of Br. The following conclusions are
made

1. Increase in thermalGrashof number,massGrashof number andBrinkmannumber
enhances the flow in both passages at different baffle positions.

2. The maximum velocity profiles are obtained in Stream-II when the baffle is near
the left wall and in Stream-I when the baffle position is in the middle of the
channel and at the right wall.

3. Increase in chemical reaction parameter decreases the velocity, temperature and
concentration in Stream-I and remains unaltered in Stream-II.

4. The effect of the Hartman number is to reduce the flow at all baffle positions. The
flow profiles are flat in the wider passage when compared to the narrow one. The
negative electric field load parameter is to increase the velocity field and opposite
effect is observed for the positive one. The temperature field is enhanced for
both positive and negative values of the electric field load parameter at all baffle
positions.

5. An exact agreement was obtained with the results of the DTM and the PM in the
absence of the Brinkman number error increases between DTM and PM as the
Brinkman number increases.

6. The results of the present model agree with the results obtained by Fasogbon [7],
Srinivas Mutturajan [31] and Umavathi [33] in the absence of the baffle and the
first order chemical reaction.
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Chapter 16
Spectral Expansion of Three-Dimensional
Elasticity Tensor Random Fields

Anatoliy Malyarenko and Martin Ostoja-Starzewski

Abstract We consider a random field model of the 21-dimensional elasticity tensor.
Representation theory is used to obtain the spectral expansion of the model in terms
of stochastic integrals with respect to random measures.

Keywords Random field · Elasticity · Spectral expansion

16.1 Introduction

16.1.1 Motivation

In many problems of continuum physics there is a need to account for spatially
random phenomena using the random field (RF) concept. This implies working with
tensor-valued RFs or, simply, tensor random fields (TRFs). The key to using TRFs
is the ability to write their main characteristics explicitly, to determine restrictions
implied by the underlying physics, and also to generate thefields involved.Working in
the setting of second-order RFs, rather than the strict-sense stationary RFs, the focus
is on the first and second moments. Thus, to proceed further, explicit representations
of TRFs have to be determined.

In this chapter we consider the 4th rank TRF of elasticity (or stiffness) tensor in
classical elasticity. The motivation for treating this tensor as a random field is that
almost all the materials encountered in nature as well those produced by man, except
for the purest crystals, possess some degree of disorder or inhomogeneity. At the
same time, elasticity is the starting point for any solid mechanics model.
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To be more specific, we consider a deformable body occupying the region D in
the space domain R

3. The stress tensor σ(x) : D → S2(R3) describes the state of
stress at a point x inside the body. As a consequence of the linear momentum balance,
the stress field satisfies the equation

σ j i , j = ρüi , (16.1)

where ρ is the mass density and üi is the material time derivative of ui . As a conse-
quence of the angular momentum balance,

σ j i = σi j . (16.2)

Here ε(x) is the strain tensor: a function defined on D and taking values in the space
S2(R3) of symmetric rank 2 tensors over R3.

Next, the deformation of the body around a point x is described by the symmetrised
gradient of the displacement field u:

εi j = u(i , j) . (16.3)

Assuming the body to be linear hyperelastic, at each point x there exists a strain
energy function w(ε) = 1

2εi jCi jklεkl such that

σi j = ∂w

∂εi j
. (16.4)

In view of (16.2)–(16.4), the elasticity tensor C has these well-known symmetries

Ci jkl = C jikl = C jilk = Ckl ji , (16.5)

which implies that of all the 34 = 81 components only 21 are independent. In the
case (16.4) does not apply, the last equality in (16.5) does not hold, and there are
36 independent components − this is called Cauchy elasticity. Whether we have a
hyperelastic or a Cauchy elastic body, the stress-strain relation is written in the form
of Hooke’s law

σ(x) = C(x)ε(x), x ∈ D, (16.6)

where x indicates the dependence of all the fields on the position in D ⊂ R
3. Thus,

C(x) is a function on D with values in the linear space S2(S2(R3)) of symmetric
linear operators over S2(R3).

16.1.2 Elasticity Tensor as a Rank 4 Tensor Random Field

The tensor field C(x) may depend on time, temperature, pressure, microstructure,
and other physical variables.We suppose thatC(x) is the restriction to D of a second-
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order mean-square continuous random field. We denote the above field by the same
symbol C(x), x ∈ R

3. This means the following:

1. Random field: C is such a function of two variables C(x, ω) : R3 × Ω →
S2(S2(R3)) that for any x0 ∈ R

3 the function of one variableC(x0, ω) is a random
tensor on a probability space (Ω,F,P).

2. Second-order:E[‖C(x)‖2] < ∞, where ‖ · ‖ is the normon the spaceS2(S2(R3))

generated by the standard norm on R
3.

3. Mean-square continuous:

lim
x→x0

E[‖C(x) − C(x0)‖2] = 0, x0 ∈ R
3.

If one shifts the origin of a coordinate system in the space domain, the randomfield
C(x) does not change its value. It follows that C(x) is strictly homogeneous: for any
positive integer n, for any distinct points x1, …, xn in the space domain, and for any
shift x ∈ R

3, the random vectors (C(x1), . . . ,C(xn))� and (C(x1 + x), . . . ,C(xn +
x))� are identically distributed. In particular, the mean value

E(x) = E[C(x)]

is a constant rank 4 tensor, while the correlation function

B(x, y) = E[(C(x) − E(x)) ⊗ (C(y) − E(y))]

is a rank 8 tensor that depends only on the difference x − y. Such a field is calledwide-
sense homogeneous. In what follows, we consider only wide-sense homogeneous
random fields and omit words “wide-sense”.

Apply an arbitrary rotation k to the tensor field C(x). After the rotation k the
point x becomes the point kx. Evidently, the tensor C(x) is transformed by the
rotation into the tensor S2(S2(k))C(x), where S2(k) is the shortcut for S2(θ1(k)). It
follows that for any positive integer n, for any distinct points x1, …, xn in the space
domain, and for any rotation k, the random vectors (C(kx1), . . . ,C(kxn))� and
(S2(S2(k))C(x1), . . . ,S2(S2(k))C(xn))� are identically distributed. Such a rank 4
tensor field is called strictly isotropic.

In particular, the expected value of the rotated field is not changed:

E(kx) = E[C(kx)] = E[S2(S2(k))C(x)] = S2(S2(k))E[C(x)] = S2(S2(k))E(x).

The correlation function is not changed as well:

B(kx, ky) = E[(C(kx) − E(kx)) ⊗ (C(ky) − E(ky))] =
= E[(S2(S2(k))(C(x) − E(x))) ⊗ (S2(S2(k))(C(y) − E(y)))] =

= [S2(S2(k)) ⊗ S2(S2(k))]B(x, y).
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We call the random field C(x) wide-sense isotropic if for any rotation k we have

E(kx) = S2(S2(k))E(x),

B(kx, ky) = [S2(S2(k)) ⊗ S2(S2(k))]B(x, y).

(16.7)

Again, we consider only wide-sense isotropic random fields and omit words “wide-
sense”.

Wewould like to find spectral expansion of a homogeneous and isotropic elasticity
tensor field C(x).

16.1.3 Local Versus Wide-Sense Isotropy

Before we proceed, it is important to observe the difference between wide-sense
isotropy introduced above and the local isotropy of C well known in the theory of
elasticity. The latter is expressed by this very specific form

Ci jkl = λδi jδkl + μ
(
δikδ jl + δilδ jk

)
, (16.8)

where λ and μ are the so-called Lamé constants. Of course, in a random elastic
medium, λ and μ are scalar random fields related to Ci jkl by

C1122 = λ, C1212 = μ, (16.9)

with the corresponding strain energy being w(ε) = 1
2λ (εi i )

2 + μεi jεi j .
In a symbolic (bold letter) notation, the local isotropy is expressed as

C = λ (1 ⊗ 1) + 2μ1s4, (16.10)

where 1 = δi jδkl and 1s4 is the symmetric part of 14 = 1⊗1. For reference, we give
the key relations pertaining to isotropic rank 4 tensors

1 ⊗ 1 ⇔ δi jδkl, 14 = 1⊗1 ⇔ 1i jkl = δikδ jl , 1⊗1 ⇔ δilδ jk,

14 = 1s4 + 1a4, 1s4 = (
1⊗1 + 1⊗1

)
/2, 1a4 = (

1⊗1 − 1⊗1
)
/2.

(16.11)

Note that the tensor random field C may either be wide-sense isotropic or
anisotropic and, simultaneously, locally isotropic or anisotropic. There are four dis-
tinct possibilities, but which one is actually the case depends on the microstructure
and random morphology of the body.
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16.2 The Results

Lomakin [4] found the correlation tensor of an elasticity random field. To formulate
his result, we introduce the Ogden tensors after Ogden [6]. Let ν be a nonnegative
integer. The Ogden tensor Iν of rank 2ν + 2 is determined inductively as

I0i j = δi j , I1i jk� = 1

2
(δikδ j� + δi�δ jk),

Iνi1...i2ν+2
= ν−1(I1i1 pi3i4 I

ν−1
pi2i5...i2ν+2

+ · · · + I1i1 pi2ν+1i2ν+2
Iν−1
pi2...i2ν−1i2ν

),

(16.12)

where there is a summation over p.
Lomakin [4] statedwithout proof that the correlation tensor of an elasticity random

field has the form

Bi jk�i ′ j ′k ′�′(x, y) =
∑

Lm
i jk�i ′ j ′k ′�′(x − y)Bm(‖x − y‖),

where the 15 functions Lm
i jk�i ′ j ′k ′�′ are shown in Table16.1 in Roman.

In fact, Lomakin missed 14 functions. Our first result is

Theorem 16.1 The correlation tensor of an elasticity random field has the form

Bi jk�i ′ j ′k ′�′(x, y) =
29∑

m=1

Lm
i jk�i ′ j ′k ′�′(x − y)Bm(‖x − y‖),

where all 29 functions Lm
i jk�i ′ j ′k ′�′ are shown in Table16.1.

The complete description of the 29 functions Bm(‖x − y‖) occupies about 20
pages of formulae and will be published elsewhere. Here we consider a subclass of
the class of elasticity random fields for which the formulae become simpler. The next
result is

Theorem 16.2 The expected value of the elasticity random field has the form

Ei jk�(x) = C1δi jδk� + C2(δikδ j� + δi�δ jk), C1,C2 ∈ R.

The tensor-valued function

Bi jk�i ′ j ′k ′�′(x, y) =
13∑

n=1

∫ ∞

0

29∑

q=1

Nnq(λ, ‖y − x‖)Lq
i jk�i ′ j ′k ′�′(y − x) dΦn(λ),

where the functions Nnq(λ, ρ) are given in Table16.2, and whereΦn are finite Radon
measures on the interval [0,∞) satisfying the conditions
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Table 16.1 Lomakin’s functions

m Lm
ijk�i′j′k′�′ (x)

1 2

1 δi j δklδi ′ j ′δk′�′

2 2(δi j δk� Ii ′ j ′k′�′ + δi ′ j ′δk′�′ Ii jk�)

3 2(δij(δi′j′ Ik�k′�′ + δk′�′Ik�i′j′ ) + δk�(δi′j′ Iijk′�′ + δk′�′ Iiji′j′ ))

4 4Ii jk� Ii ′ j ′k′�′

5 8(δijIk�i′j′k′�′ + δk�Iiji′j′k′�′ + δi′j′ Iijk�k′�′ + δk′�′ Iijk�i′j′ )

6 4(Iiji′j′ Ik�k′�′ + Iijk′�′Ik�i′j′ )

7 4(Iiji′k′ Ik�j′�′ + Iiji′�′Ik�j′k′ + Iijj′k′Ik�i′�′ + Iijj′�′ Ik�i′k′ )

8 δi j δk�(δi ′ j ′ xk′ x�′ + δk′�′ xi ′ x j ′ ) + δi ′ j ′δk′�′ (δi j xk x� + δk�xi x j )

9 2(Ii jk�(δi ′ j ′ xk′ x�′ + δk′�′ xi ′ x j ′ ) + Ii ′ j ′k′�′ (δi j xk x� + δk�xi x j ))

10 δi j δk�(δi ′k′ x j ′ x�′ + δi ′�′ x j ′ xk′ + δ j ′k′ xi ′ x�′ + δ j ′�′ xi ′ xk′ )

+δi ′ j ′δk′�′ (δik x j x� + δi�x j xk + δ jk xi x� + δ j�xi xk)

11 δijδi′j′ (δkk′x�x�′ + δk�′x�xk′ + δ�k′xkx�′ + δ��′xkxk′ )

+δijδk′�′ (δki′x�xj′ + δkj′x�xj′ + δ�i′xkxj′ + δ�j′xkxi′ )
+δk�δi′j′ (δik′xjx�′ + δjk′xjx�′ + δi�′xjxk′ + δj�′xixk′ )

+δk�δk′�′ (δii′xjxj′ + δij′xjxi′ + δji′xixj′ + δjj′xixi′ )

12 2(Ii jk�(δi ′k′ x j ′ x�′ + δi ′�′ x j ′ xk′ + δ j ′k′ xi ′ x�′ + δ j ′�′ xi ′ xk′ )

+Ii ′ j ′k′�′ (δik x j x� + δi�x j xk + δ jk xi x� + δ j�xi xk))

13 2((δijIk�i′j′ + δk�Iiji′j′ )xk′x�′ + (δijIk�k′�′ + δk�Iijk′�′ )xi′xj′

+(δi′j′ Iijk′�′ + δk′�′ Iiji′j′ )xkx� + (δi′j′ Ik�k′�′ + δk′�′ Ik�i′j′ )xixj)

14 2((δijIk�i′k′ + δk�Iiji′k′ )xj′x�′ + (δijIk�i′�′ + δk�Iiji′�′ )xj′xk′

+(δijIk�j′k′ + δk�Iijj′k′ )xi′x�′ + (δijIk�j′�′ + δk�Iijj′�′ )xi′xk′

+(δi′j′ Iikk′�′ + δk′�′Iiki′j′ )xjx� + (δi′j′ Ii�k′�′ + δk′�′ Ii�i′j′ )xjxk
+(δi′j′ Ijkk′�′ + δk′�′ Ijki′j′ )xix� + (δi′j′ Ij�k′�′ + δk′�′ Ij�i′j′ )xixk)

15 8(Iijk�i′j′xk′x�′ + Iijk�k′�′xi′xj′ + Iiji′j′k′�′xkx� + Ik�i′j′k′�′xixj)

16 8(Iijk�i′k′xj′x�′ + Iijk�i′�′xj′xk′ + Iijk�j′k′xi′x�′ + Iijk�j′�′xi′xk′

+Iiki′j′k′�′xjx� + Ii�i′j′k′�′xjxk + Ijki′j′k′�′xix� + Ij�i′j′k′�′xixk)

17 2(Iiji′j′ (δkk′x�x�′ + δk�′x�xk′ + δ�k′xkx�′ + δ��′xkxk′ )

+Iijk′�′ (δki′x�xj′ + δkj′x�xi′ + δ�i′xkxj′ + δ�j′xkxi′

+Ik�i′j′ (δik′xjx�′ + δi�′xjxk′ + δjk′xix�′ + δj�′xixk′ )

+Ik�k′�′ (δii′xjxj′ + δij′xjxi′ + δji′xixj′ + δjj′xixi′ ))

18 δi j δk�xi ′ x j ′ xk′ x�′ + δi ′ j ′δk′�′ xi x j xk x�

19 (δi j xk x� + δk�xi x j )(δi ′ j ′ xk′ x�′ + δk′�′ xi ′ x j ′ )

20 2(Ii jk�xi ′ x j ′ xk′ x�′ + Ii ′ j ′k′�′ xi x j xk x�)

21 (δi j xk x� + δk�xi x j )(δi ′k′ x j ′ x�′ + δi ′�′ x j ′ xk′ + δ j ′k′ xi ′ x�′ + δ j ′�′ xi ′ xk′ )

+(δi ′ j ′ xk′ x�′ + δk′�′ xi ′ x j ′ )(δik x j x� + δi�x j xk + δ jk xi x� + δ j�xi xk)

(continued)
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Table 16.1 (continued)

m Lm
ijk�i′j′k′�′ (x)

1 2

22 δij(δki′x�xj′xk′x�′ + δkj′x�xi′xk′x�′ + δkk′x�xi′xj′x�′ + δk�′x�xi′xj′xk′

+δ�i′xkxj′xk′x�′ + δ�j′xkxi′xk′x�′ + δ�k′xkxi′xj′x�′ + δ��′xkxi′xj′xk′ )

+δk�(δii′xjxj′xk′x�′ + δij′xjxi′xk′x�′ + δik′xjxi′xj′x�′ + δi�′xjxi′xj′xk′

+δji′xixj′xk′x�′ + δjj′xixi′xk′x�′ + δjk′xixi′xj′x�′ + δj�′xixi′xj′xk′ )

+δi′j′ (δik′xjxkx�x�′ + δjk′xixkx�x�′ + δkk′xixjx�x�′ + δ�k′xixjxkx�′

+δi�′xkx�′xj′xk′ + δj�′xkx�′xi′xk′ + δk�′xixjxk′x�′ + δ��′xixjxkxk′ )

+δk′�′ (δii′xjxkx�xj′ + δji′xixkxj′x�′ + δki′xjxjx�xj′ + δ�i′xixjxkxj′

+δij′xjxkx�xi′ + δjj′xixkx�xi′ + δkj′xixjx�xi′ + δ�j′xixjxkxi′ )

23 (δik x j x� + δi�x j xk + δ jk xi x� + δ j�xi xk)

×(δi ′k′ x j ′ x�′ + δi ′�′ x j ′ xk′ + δ j ′k′ xi ′ x�′ + δ j ′�′ xi ′ xk′ )

24 2(Iiji′j′xkx�xk′x�′ + Iijk′�′xkx�xi′xj′ + Ik�i′j′xixjxk′x�′ + Ik�k′�′xixjxi′xj′ )

25 2[(Iiji′k′xj′x�′ + Iiji′�′xj′xk′ + Iijj′k′xi′x�′ + Iijj′�′xi′xk′ )xkx�

+(Iiki′j′xk′x�′ + Iikk′�′xi′xj′ )xjx� + (Ii�i′j′xk′x�′ + Ii�k′�′xi′xj′ )xjxk
+(Ijki′j′xk′x�′ + Ijkk′�′xi′xj′ )xix� + (Ij�i′j′xk′x�′ + Ij�k′�′xi′xj′ )xjxk
+(Ik�i′k′xj′x�′ + Ik�i′�′xj′xk′ + Ik�j′k′xi′x�′ + Ik�j′�′xi′xk′ )xixj]

26 (δi j xk x� + δk�xi x j )xi ′ x j ′ xk′ x�′ + (δi ′ j ′ xk′ x�′ + δk′�′ xi ′ x j ′ )xi x j xk x�

27 (δik x j x� + δi�x j xk + δ jk xi x� + δ j�xi xk)xi ′ x j ′ xk′ x�′

+(δi ′k′ x j ′ x�′ + δi ′�′ x j ′ xk′ + δ j ′k′ xi ′ x�′ + δ j ′�′ xi ′ xk′ )xi x j xk x�

28 (δii′xj′xk′x�′ + δij′xi′xk′x�′ + δik′xi′xj′x�′ + δi�′xi′xj′xk′ )xjxkx�

+(δji′xj′xk′x�′ + δjj′xi′xk′x�′ + δjk′xi′xj′x�′ + δj�′xi′xj′xk′ )xixkx�

+(δki′xj′xk′x�′ + δkj′xi′xk′x�′ + δkk′xi′xj′x�′ + δk�′xi′xj′xk′ )xixjx�

+(δ�i′xj′xk′x�′ + δ�j′xi′xk′x�′ + δ�k′xi′xj′x�′ + δ��′xi′xj′xk′ )xixjxk
29 xi x j xk x�xi ′ x j ′ xk′ x�′

Φ1(0) = 2Φ2(0), Φ3(0) = 2Φ4(0), Φ5(0) = 2Φ6(0),

Φ7(0) = 2Φ11(0), Φ8(0) = 2Φ13(0), Φ9(0) = Φ10(0) = Φ12(0),

is a correlation tensor of an elasticity random field.

We recognise C1 and C2 as the Lamé constants.
Here jm(λρ) denote the spherical Bessel functions.
To formulate the result concerning the spectral expansion of the elasticity random

field, we need to introduce more notation. Put m0 = 7, m2 = 10, m4 = 8, m6 = 3,
andm8 = 1. Let anqm , 0 ≤ n ≤ 4, 1 ≤ q ≤ m2n , 1 ≤ m ≤ 13 be the numbers shown
in Table16.3.

Let gm[m1,m2]
�[�1,�2] be the Godunov–Gordienko coefficients, introduced and calculated

by Godunov and Gordienko in [2]. They correspond to real representations of the
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Table 16.2 The nonzero functions Nnq (λ, ρ)

n q Nnq (λ, ρ) n q Nnq (λ, ρ) n q Nnq (λ, ρ)

1 1 − 15523
66150 j0(λρ) 1 2 − 19452949

57726900 j0(λρ) 1 3 6623
26460 j0(λρ)

1 4 16677923
70515900 j0(λρ) 1 5 − 221

185220 j0(λρ) 1 6 − 6607
52920 j0(λρ)

1 7 239
92610 j0(λρ) 1 8 − 4631

5145 j2(λρ) 1 9 2
147 j2(λρ)

1 11 1
4 j2(λρ) 1 12 748751

5885880 j2(λρ) 1 13 3505
7546 j2(λρ)

1 14 − 1037
8232 j2(λρ) 1 15 − 283

2744 j2(λρ) 1 16 − 949
5488 j2(λρ)

1 17 − 2987
24024 j2(λρ) 1 18 − 2603

2541 j4(λρ) 1 19 − j4(λρ)

1 20 1
4 j4(λρ) 1 21 239

924 j4(λρ) 1 22 31
132 j4(λρ)

1 23 36
7007 j4(λρ) 1 24 1

2 j4(λρ) 1 25 − 15679
60060 j4(λρ)

1 26 − 2
21 j6(λρ) 1 27 1

4 j6(λρ) 1 29 1
2 j8(λρ)

2 1 − 8944
99225 j0(λρ) 2 2 − 20456

2061675 j0(λρ) 2 3 4
6615 j0(λρ)

2 4 196054
17628975 j0(λρ) 2 5 − 4

6615 j0(λρ) 2 6 2
6615 j0(λρ)

2 7 − 1
46305 j0(λρ) 2 8 748

2205 j2(λρ) 2 9 − 8
735 j2(λρ)

2 12 2099
147147 j2(λρ) 2 13 − 268

11319 j2(λρ) 2 14 − 2
1029 j2(λρ)

2 16 4
21 j2(λρ) 2 17 4

3003 j2(λρ) 2 18 604
2541 j4(λρ)

2 21 − 4
231 j4(λρ) 2 22 1

33 j4(λρ) 2 23 72
7007 j4(λρ)

2 25 − 332
15015 j4(λρ) 2 26 10

21 j6(λρ) 2 29 j8(λρ)

3 1 − 128
11025 j0(λρ) 3 2 150512

2061675 j0(λρ) 3 3 32
6615 j0(λρ)

3 4 − 1117888
17628975 j0(λρ) 3 5 − 32

6615 j0(λρ) 3 6 16
6615 j0(λρ)

3 7 89
92610 j0(λρ) 3 9 16

245 j2(λρ) 3 12 − 96584
735735 j2(λρ)

3 13 536
3773 j2(λρ) 3 14 − 16

1029 j2(λρ) 3 16 − 8
7 j2(λρ)

3 17 32
3003 j2(λρ) 3 18 640

847 j4(λρ) 3 23 8159
14014 j4(λρ)

3 25 − 2656
15015 j4(λρ) 3 26 8

7 j6(λρ) 3 27 2 j6(λρ)

3 29 8 j8(λρ) 4 1 3908
3969 j0(λρ) 4 2 2890

1029 j0(λρ)

4 3 −2 j0(λρ) 4 4 − j0(λρ) 4 5 22
3077 j0(λρ)

4 6 j0(λρ) 4 7 − 85
3087 j0(λρ) 4 8 18040

3087 j2(λρ)

4 11 −2 j2(λρ) 4 12 − 212
1029 j2(λρ) 4 13 − 3580

1029 j2(λρ)

(continued)
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Table 16.2 (continued)

n q Nnq (λ, ρ) n q Nnq (λ, ρ) n q Nnq (λ, ρ)

4 14 j2(λρ) 4 15 283
343 j2(λρ) 4 16 − 1073

2058 j2(λρ)

4 17 j2(λρ) 4 18 8 j4(λρ) 4 19 8 j4(λρ)

4 21 −2 j4(λρ) 4 22 −2 j4(λρ) 4 23 j4(λρ)

4 24 −4 j4(λρ) 4 25 2 j4(λρ) 5 1 1216
14175 j0(λρ)

5 2 − 40912
2061675 j0(λρ) 5 3 8

6615 j0(λρ) 5 4 392108
17628975 j0(λρ)

5 5 − 8
6615 j0(λρ) 5 6 4

6615 j0(λρ) 5 7 − 2
46305 j0(λρ)

5 8 − 748
2205 j2(λρ) 5 9 − 16

735 j2(λρ) 5 12 4198
147147 j2(λρ)

5 13 − 536
11319 j2(λρ) 5 14 − 4

1029 j0(λρ) 5 16 8
21 j2(λρ)

5 17 8
3003 j2(λρ) 5 18 − 1564

2541 j4(λρ) 5 19 1
2 j4(λρ)

5 21 4
231 j4(λρ) 5 22 − 1

33 j4(λρ) 5 23 144
7007 j4(λρ)

5 25 − 664
15015 j4(λρ) 5 26 − 1

21 j6(λρ) 5 29 2 j8(λρ)

6 1 1408
1323 j0(λρ) 6 2 − 1237

1029 j0(λρ) 6 3 1
2 j0(λρ)

6 4 1
2 j0(λρ) 6 5 − 11

6174 j0(λρ) 6 6 − 1
4 j0(λρ)

6 7 1
343 j0(λρ) 6 8 − 1423

3087 j2(λρ) 6 9 − 1
2 j2(λρ)

6 10 − 1
2 j2(λρ) 6 11 1

2 j2(λρ) 6 12 1241
4116 j2(λρ)

6 13 895
1029 j2(λρ) 6 14 − 1

4 j2(λρ) 6 15 − 283
1372 j2(λρ)

6 16 1073
8232 j2(λρ) 6 17 − 1

4 j2(λρ) 6 18 −2 j4(λρ)

6 19 − j4(λρ) 6 22 1
2 j4(λρ) 6 24 j4(λρ)

6 25 − 1
2 j4(λρ) 7 1 − 352

1323 j0(λρ) 7 2 − 25856
5145 j0(λρ)

7 4 8464
47355 j0(λρ) 7 5 22

3087 j0(λρ) 7 7 271
2058 j0(λρ)

7 8 − 15212
1715 j2(λρ) 7 9 1342

735 j2(λρ) 7 10 2 j2(λρ)

7 11 j2(λρ) 7 12 − 17461
18865 j2(λρ) 7 13 8082

3773 j2(λρ)

7 14 − j2(λρ) 7 15 − 403
343 j2(λρ) 7 16 2419

686 j2(λρ)

7 17 − 1
2 j2(λρ) 7 18 − 12512

2541 j4(λρ) 7 19 − 94
77 j4(λρ)

7 21 788
231 j4(λρ) 7 22 − 101

231 j4(λρ) 7 23 18
77 j4(λρ)

7 24 − 146
77 j4(λρ) 7 25 − 92

77 j4(λρ) 7 26 − 8
21 j6(λρ)

(continued)
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Table 16.2 (continued)

n q Nnq (λ, ρ) n q Nnq (λ, ρ) n q Nnq (λ, ρ)

7 28 −2 j6(λρ) 8 1 − 3265
1323 j0(λρ) 8 2 7493

2058 j0(λρ)

8 3 j0(λρ) 8 4 1797
12628 j0(λρ) 8 5 − 1571

6174 j0(λρ)

8 6 − 1
4 j0(λρ) 8 7 313

8232 j0(λρ) 8 8 − 15167
10290 j2(λρ)

8 9 505
588 j2(λρ) 8 10 3

4 j2(λρ) 8 11 1
4 j2(λρ)

8 12 2369
30184 j2(λρ) 8 13 17525

15092 j2(λρ) 8 14 − 3
8 j2(λρ)

8 15 − 729
2744 j2(λρ) 8 16 − 10037

5488 j2(λρ) 8 17 − 1
8 j2(λρ)

8 18 − 34
2541 j4(λρ) 8 19 − 663

154 j4(λρ) 8 20 j4(λρ)

8 21 593
462 j4(λρ) 8 22 1

84 j4(λρ) 8 23 43
77 j4(λρ)

8 24 81
154 j4(λρ) 8 25 − 169

308 j4(λρ) 8 26 26
21 j6(λρ)

8 27 2 j6(λρ) 8 28 − 1
2 j6(λρ) 9 1 − 90809

33075 j0(λρ)

9 2 − 69048493
28863450 j0(λρ) 9 3 − 6647

6615 j0(λρ) 9 4 − 13157423
70515900 j0(λρ)

9 5 11924
46305 j0(λρ) 9 6 6551

26460 j0(λρ) 9 7 − 28121
370440 j0(λρ)

9 8 16213
3430 j2(λρ) 9 9 − 799

980 j2(λρ)

9 10 − 4
4 j2(λρ) 9 11 − 3

4 j2(λρ) 9 12 − 417803
5885880 j2(λρ)

9 13 − 18061
15092 j2(λρ) 9 14 3215

8232 j2(λρ) 9 15 849
2744 j2(λρ)

9 16 5885
5488 j2(λρ) 9 17 2747

24024 j2(λρ) 9 18 2747
24024 j4(λρ)

9 19 3 j4(λρ) 9 20 − j4(λρ) 9 21 247
154 j4(λρ)

9 22 − 25
44 j4(λρ) 9 23 − 576

7007 j4(λρ) 9 24 − 3
2 j4(λρ)

9 25 55669
60060 j4(λρ) 9 26 6

7 j6(λρ) 9 27 −2 j6(λρ)

9 29 −8 j8(λρ) 10 1 − 4016
33075 j0(λρ) 10 2 18020416

14431725 j0(λρ)

10 3 − 32
6615 j0(λρ) 10 4 − 8587732

193918725 j0(λρ) 10 5 283
92610 j0(λρ)

10 6 − 16
6615 j0(λρ) 10 7 − 3509

92610 j0(λρ) 10 8 − 4208
5145 j2(λρ)

10 9 32
735 j2(λρ) 10 12 5519

735735 j2(λρ) 10 13 − 134
3773 j2(λρ)

10 14 16
1029 j2(λρ) 10 15 15

343 j2(λρ) 10 16 − 519
686 j2(λρ)

10 17 − 32
3003 j2(λρ) 10 18 − 2416/2541

j 4
(λρ) 10 19 107

154 j4(λρ)

10 21 − 26
231 j4(λρ) 10 22 − 97

231 j4(λρ) 10 23 3337
7007 j4(λρ)

(continued)
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Table 16.2 (continued)

n q Nnq (λ, ρ) n q Nnq (λ, ρ) n q Nnq (λ, ρ)

10 24 − 75
77 j4(λρ) 10 25 11357

30030 j4(λρ) 10 26 − 40
21 j6(λρ)

10 28 − 1
2 j6(λρ) 10 29 −8 j8(λρ) 11 2 3712

1715 j0(λρ)

11 4 11936
47355 j0(λρ) 11 5 22

1029 j0(λρ) 11 7 − 17
343 j0(λρ)

11 8 − 2540
1029 j2(λρ) 11 9 − 554

245 j2(λρ) 11 10 −2 j2(λρ)

11 12 309
385 j2(λρ) 11 13 − 542

539 j2(λρ) 11 14 j2(λρ)

11 15 163
343 j2(λρ) 11 16 2749

686 j4(λρ) 11 18 − 2560
847 j4(λρ)

11 19 188
77 j4(λρ) 11 21 − 28

11 j4(λρ) 11 22 184
77 j4(λρ)

11 23 − 344
77 j4(λρ) 11 24 292

77 j4(λρ) 11 25 30
77 j4(λρ)

11 26 − 32
7 j6(λρ) 11 27 −8 j6(λρ) 11 28 4 j6(λρ)

12 2 237
245 j0(λρ) 12 3 − 1

2 j0(λρ) 12 4 − 45863
47355 j0(λρ)

12 6 1
2 j0(λρ) 12 7 2

343 j0(λρ) 12 8 2 j2(λρ)

12 9 − 8
245 j2(λρ) 12 11 − 1

2 j2(λρ) 12 12 − 16881
37730 j2(λρ)

12 13 − 11855
7546 j2(λρ) 12 14 1

2 j2(λρ) 12 15 1
2 j2(λρ)

12 16 9
28 j2(λρ) 12 17 1

2 j2(λρ) 12 18 1374
847 j4(λρ)

12 19 355
154 j4(λρ) 12 20 − j4(λρ) 12 21 − 9

11 j4(λρ)

12 22 − 31
154 j4(λρ) 12 23 − 43

77 j4(λρ) 12 24 − 81
154 j4(λρ)

12 25 123
154 j4(λρ) 12 26 − 4

7 j6(λρ) 12 27 − j6(λρ)

12 28 1
2 j6(λρ) 13 1 − 704

567 j0(λρ) 13 2 − 3712
5145 j0(λρ)

13 4 − 4232
47355 j0(λρ) 13 5 − 22

3087 j0(λρ) 13 7 100
3087 j0(λρ)

13 8 54224
15435 j2(λρ) 13 9 64

735 j2(λρ) 13 12 76
1155 j2(λρ)

13 13 − 536
1617 j2(λρ) 13 15 60

343 j2(λρ) 13 16 − 1546
1029 j2(λρ)

13 18 6256
2541 j4(λρ) 13 19 − 261

77 j4(λρ) 13 21 68
231 j4(λρ)

13 22 166
231 j4(λρ) 13 23 − 86

77 j4(λρ) 13 24 227
77 j4(λρ)

13 25 − 31
77 j4(λρ) 13 26 4

21 j6(λρ) 13 28 j6(λρ)
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group O(3), while the celebrated Clebsch–Gordan coefficients, see [7], correspond
to complex representations of the above group. Introduce the following notation.

T0,1
i jk� = 1

3
δi jδk�,

T0,2
i jk� = 1√

5

2∑

m=−2

gm[i, j]
2[1,1] g

m[k,�]
2[1,1] ,

T2,1,q
i jk� = 1√

6
(δi j g

q[k,�]
2[1,1] + δk�g

q[i, j]
2[1,1]),

T2,2,q
i jk� =

2∑

m,n=−2

gq[m,n]
2[2,2] g

m[i, j]
2[1,1] g

n[k,�]
2[1,1],

T4,1,q
i jk� =

2∑

m,n=−2

gq[m,n]
4[2,2] g

m[i, j]
2[1,1] g

n[k,�]
2[1,1] .

Introduce the shortcut i . . . �′ = i jk�i ′ j ′k ′�′. Let T2n,q,v
i ...�′ be the rank 8 tensors

shown in Table16.4.
Let < be the lexicographic order on the sequences tui jk�, where i jk� are indices

that numerate the 21 component of the elasticity tensor, t ≥ 0, and −t ≤ u ≤ t .
Consider the infinite symmetric positive definite matrices given by

bt
′u′i ′ j ′k′�′
tui jk� (m) = it

′−t
√

(2t + 1)(2t ′ + 1)
4∑

n=0

1

4n + 1
g0[0,0]2n[t,t ′]

mn∑

q=1

anqm

2n∑

v=−2n

T2n,q,v
i ...�′ gv[u,u′]

2n[t,t ′]

with 1 ≤ m ≤ 13. Let L(m) be the infinite lower triangular matrices of the Cholesky
factorisation of the matrices bt

′u′i ′ j ′k ′�′
tui jk� (m) constructed by Hansen in [3]. Let Z ′

mtui jk�
be the sequence of centred scattered random measures on the interval [0,∞) satis-
fying the following condition: for any Borel sets A1 and A2 we have

E[Z ′
mtui jk�(A1)Z

′
m ′t ′u′i ′ j ′k ′�′(A2)] = δmm ′δt t ′δuu′δi i ′δ j j ′δkk ′δ��′Φm(A1 ∩ A2).

Define
Zmtui jk� =

∑

(t ′u′i ′ j ′k ′�′)≤(tui jk�)

Lt ′u′i ′ j ′k ′�′
tui jk� (m)Z ′

mtui jk�.

Finally, let (ρ, θ, ϕ) be the spherical coordinates in R
3, and let Sut (θ, ϕ) be the

real-valued spherical harmonics, see [1].

Theorem 16.3 The spectral expansion of the class of elasticity random fields under
consideration has the form
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Table 16.4 The tensors T2n,q,v
i ...�′

Tensor Value

T0,1,0
i ...�′ T0,1

i jk�T
0,1
i ′ j ′k′�′

T0,2
i ...�′ 1√

2
(T0,1

i jk�T
0,2
i ′ j ′k′�′ + T0,1

i ′ j ′k′�′T
0,2
i jk�)

T0,3,0
i ...�′

2∑

q,q ′=−2

g0[q,q ′]
0[2,2] T

2,1,q
i jk� T2,1,q ′

i ′ j ′k′�′

T0,4,0
i ...�′ T0,2

i jk�T
0,2
i ′ j ′k′�′

T0,5,0
i ...�′ 1√

2

⎛

⎝
2∑

q,q ′=−2

g0[q,q ′]
0[2,2] T

2,1,q
i jk� T2,2,q ′

i ′ j ′k′�′ +
2∑

q,q ′=−2

g0[q
′,q]

0[2,2] T
2,1,q ′
i ′ j ′k′�′T

2,2,q
i jk�

⎞

⎠

T0,6,0
i ...�′

2∑

q,q ′=−2

g0[q,q ′]
0[2,2] T

2,2,q
i jk� T2,2,q ′

i ′ j ′k′�′

T0,7,0
i ...�′

4∑

q,q ′=−4

g0[q,q ′]
0[4,4] T

4,1,q
i jk� T4,1,q ′

i ′ j ′k′�′

T2,1,v
i ...�′ 1√

2
(T0,1

i jk�T
2,1,v
i ′ j ′k′�′ + T0,1

i ′ j ′k′�′T
2,1,v
i jk� )

T2,2,v
i ...�′ 1√

2
(T0,2

i jk�T
2,1,v
i ′ j ′k′�′ + T0,2

i ′ j ′k′�′T
2,1,v
i jk� )

T2,3,v
i ...�′ 1√

2
(T0,1

i jk�T
2,2,v
i ′ j ′k′�′ + T0,1

i ′ j ′k′�′T
2,2,v
i jk� )

T2,4,v
i ...�′

2∑

q,q ′=−2

gv[q,q ′]
2[2,2] T

2,1,q
i jk� T2,1,q ′

i ′ j ′k′�′

T2,5,v
i ...�′ 1√

2
(T0,2

i jk�T
2,2,v
i ′ j ′k′�′ + T0,2

i ′ j ′k′�′T
2,2,v
i jk� )

T2,6,v
i ...�′ 1√

2

⎛

⎝
2∑

q=−2

4∑

q ′=−4

gv[q,q ′]
2[2,4] T

2,1,q
i jk� T4,1,q ′

i ′ j ′k′�′ +
2∑

q ′=−2

4∑

q=−4

gv[q
′,q]

2[2,4] T
2,1,q ′
i ′ j ′k′�′T

4,1,q
i jk�

⎞

⎠

T2,7,v
i ...�′ 1√

2

⎛

⎝
2∑

q,q ′=−2

gv[q,q ′]
2[2,2] T

2,2,q
i jk� T2,1,q ′

i ′ j ′k′�′ +
2∑

q ′,q=−2

gv[q
′,q]

2[2,2] T
2,2,q ′
i ′ j ′k′�′T

2,1,q
i jk�

⎞

⎠

T2,8,v
i ...�′

2∑

q,q ′=−2

gv[q,q ′]
2[2,2] T

2,2,q
i jk� T2,2,q ′

i ′ j ′k′�′

T2,9,v
i ...�′ 1√

2

⎛

⎝
2∑

q=−2

4∑

q ′=−4

gv[q,q ′]
2[2,4] T

2,2,q
i jk� T4,1,q ′

i ′ j ′k′�′ +
2∑

q ′=−2

4∑

q=−4

gv[q
′,q]

2[2,4] T
2,2,q ′
i ′ j ′k′�′T

4,1,q
i jk�

⎞

⎠

T2,10,v
i ...�′

4∑

q,q ′=−4

gv[q,q ′]
2[4,4] T

4,1,q
i jk� T4,1,q ′

i ′ j ′k′�′

T4,1,v
i ...�′ 1√

2
(T0,1

i jk�T
4,1,v
i ′ j ′k′�′ + T0,1

i ′ j ′k′�′T
4,1,v
i jk� )

(continued)
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Table 16.4 (continued)

Tensor Value

T4,2,v
i ...�′

4∑

q,q ′=−4

gv[q,q ′]
4[2,2] T

2,1,q
i jk� T2,1,q ′

i ′ j ′k′�′

T4,3,v
i ...�′ 1√

2
(T0,2

i jk�T
4,1,v
i ′ j ′k′�′ + T0,2

i ′ j ′k′�′T
4,1,v
i jk� )

T4,4,v
i ...�′ 1√

2

⎛

⎝
4∑

q,q ′=−4

gv[q,q ′]
4[2,2] T

2,2,q
i jk� T2,1,q ′

i ′ j ′k′�′ +
4∑

q ′,q=−4

gv[q
′,q]

4[2,2] T
2,2,q ′
i ′ j ′k′�′T

2,1,q
i jk�

⎞

⎠

T4,5,v
i ...�′ 1√

2

⎛

⎝
2∑

q=−2

4∑

q ′=−4

gv[q,q ′]
4[2,4] T

2,1,q
i jk� T4,1,q ′

i ′ j ′k′�′ +
2∑

q ′=−2

4∑

q=−4

gv[q
′,q]

4[2,4] T
2,1,q ′
i ′ j ′k′�′T

4,1,q
i jk�

⎞

⎠

T4,6,v
i ...�′

4∑

q,q ′=−4

gv[q,q ′]
4[2,2] T

2,2,q
i jk� T2,2,q ′

i ′ j ′k′�′

T4,7,v
i ...�′ 1√

2

⎛

⎝
2∑

q=−2

4∑

q ′=−4

gv[q,q ′]
4[2,4] T

2,2,q
i jk� T4,1,q ′

i ′ j ′k′�′ +
2∑

q ′=−2

4∑

q=−4

gv[q
′,q]

4[2,4] T
2,2,q ′
i ′ j ′k′�′T

4,1,q
i jk�

⎞

⎠

T4,8,v
i ...�′

4∑

q,q ′=−4

gv[q,q ′]
4[4,4] T

4,1,q
i jk� T4,1,q ′

i ′ j ′k′�′

T6,1,v
i ...�′ 1√

2

⎛

⎝
2∑

q=−2

4∑

q ′=−4

gv[q,q ′]
6[2,4] T

2,1,q
i jk� T4,1,q ′

i ′ j ′k′�′ +
2∑

q ′=−2

4∑

q=−4

gv[q
′,q]

6[2,4] T
2,1,q ′
i ′ j ′k′�′T

4,1,q
i jk�

⎞

⎠

T6,2,v
i ...�′ 1√

2

⎛

⎝
2∑

q=−2

4∑

q ′=−4

gv[q,q ′]
6[2,4] T

2,2,q
i jk� T4,1,q ′

i ′ j ′k′�′ +
2∑

q ′=−2

4∑

q=−4

gv[q
′,q]

6[2,4] T
2,2,q ′
i ′ j ′k′�′T

4,1,q
i jk�

⎞

⎠

T6,3,v
i ...�′

4∑

q,q ′=−4

gv[q,q ′]
6[4,4] T

4,1,q
i jk� T4,1,q ′

i ′ j ′k′�′

T8,1,v
i ...�′

4∑

q,q ′=−4

gv[q,q ′]
8[4,4] T

4,1,q
i jk� T4,1,q ′

i ′ j ′k′�′

Ci jk�(ρ, θ, ϕ) = C1δi jδk� + C2(δikδ j� + δi�δ jk) +

+ 4π
13∑

m=1

∞∑

t=0

t∑

u=−t

∫ ∞

0
jt (λρ) dZmtui jk�(λ)Sut (θ, ϕ).

Proofs of the above theorems are long but straightforward. They are similar to
those of the two-dimensional case considered in [5].
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Chapter 17
Sensitivity Analysis of Catastrophe Bond
Price Under the Hull–White Interest Rate
Model

Anatoliy Malyarenko, Jan Röman and Oskar Schyberg

Abstract We consider a model, where the natural risk index is described by the
Merton jump-diffusionwhile the risk-free interest rate is governed by theHull–White
stochastic differential equation. We price a catastrophe bond with payoff depending
on finitely many values of the underlying index. The sensitivities of the bond price
with respect to the initial condition, volatility of the diffusion component, and jump
amplitude, are calculated using the Malliavin calculus approach.

Keywords Catastrophe bond · Hedging · Malliavin calculus

17.1 Introduction

Insurance companies require reinsurance to cover damages due to catastrophes like
earthquakes, hurricanes, tornadoes, fall of a big meteorite, etc. Capital in reinsurance
industry is limited relative to the magnitude of damages due to catastrophes. As a
response to these challenges, reinsurance companies issue risk-linked securities in
different forms.

In this paper, we consider catastrophe bonds. This financial instrument is work-
ing as follows. A hedger seeks to transfer the risk of catastrophe to investors who
accept the risk for higher expected returns. The hedger pays the insurance premium
in exchange for a pre-specified coverage if a catastrophic event of a certain mag-
nitude takes place. Investors buy an insurance-linked security for cash. The total
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amount, i.e., premium and cash, is directed to a special fund, the so called special
purpose vehicle. The fund issues the catastrophe bonds to investors and buys safe
securities, like Treasury bonds. If a catastrophic event of a certain magnitude takes
place before the bond matures, the fund compensates the hedger and there is a full
or partial forgiveness of the repayment of principal and/or interest. Otherwise, the
investors receive their principal plus risk-free interest rate plus a risk-premium. Dif-
ferent payoff functions of the catastrophe bond will be considered below. See also
more detailed description in Ma and Ma [20] and Vaugirard [31, 32].

Pricing models for catastrophe bonds can be divided into two classes according to
thefinancialmethodologyused.Econometricmodels follow the theory of equilibrium
pricing and will not be considered there. For their description, see Aase [1], Burnecki
andKukla [3], Cox et al. [5], Cox and Pedersen [6], Loubergé et al. [19].No-arbitrage
models follow the no-arbitrage valuation framework, see Cox and Schwebach [7],
Cummins and Geman [8], Dassios and Jang [9], Geman and Yor [13], Ma and Ma
[20], Nowak and Romaniuk [22], Romaniuk [26], Sondermann [28], Vaugirard [31]
and especially the review paper by Burnecki et al. [4].

In no-arbitrage models, the price of a bond driven by a stochastic process X (t)
and defined by the payoff function ϕ involving the times t1,…, tn is usually presented
as the expectation of a random variable

E[ϕ(X (t1), . . . , X (tn)) | X (0) = x]

under the risk-neutral probability measure P∗
0 and can be computed by Monte Carlo

methods. Applications require not only to compute the price of a bond, but also to
compute its derivatives with respect to the initial condition, drift coefficient, volatility
coefficient, etc. A natural approach is to compute the finite-difference approximation
of the derivative by Monte Carlo simulation. The convergence rate of both price and
sensitivity estimators is n−1/2, where n is the number of simulations. However, by
the result of Glynn [15], the best possible convergence rate is n−1/3, if the central
finite difference is used.

Fournié et al. [11, 12] initiated calculation of Greeks using Malliavin calculus.
They showed that the derivatives of interest can be expressed as

E[πϕ(X (t1), . . . , X (tn)) | X (0) = x],

whereπ is another randomvariable. This approachwas applied to sensitivity analysis
in insurance by Privault and Wei [25] and Roumelioti et al. [27].

More precisely, changes in market come as changes of the probability measure
P∗
0. The variation in price becomes

EP∗ [ϕ(X (t1), . . . , X (tn)) | X (0) = x] − EP∗
0 [ϕ(X (t1), . . . , X (tn)) | X (0) = x]

= E[πϕ(X (t1), . . . , X (tn)) | X (0) = x],
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where

π = dP∗ − dP∗
0

dP∗
0

.

Let P∗ = P∗
λ, where λ runs over a neighbourhood of 0. Then the sensitivity is

d

dλ
E[ϕ(X (t1), . . . , X (tn)) | X (0) = x] = E[πϕ(X (t1), . . . , X (tn)) | X (0) = x],

where

π = d f

dλ
, f = dP∗

λ

dP∗
0

,

i.e., π is the logarithmic derivative of P∗ at P∗
0. It is the Malliavin calculus that

can give exact sense to above considerations. A primer on Malliavin calculus may
be found in Bichteler et al. [2], Di Nunno et al. [10], and Petrou [24]. Our model
combines the approach of Nowak and Romaniuk [22] with that of Petrou [24].

Swedbank uses the Hull–White model to value instruments with some embedding
optionality. It is a difficult task to value and calculate the risk for such instruments
in continuous time, especially if one has the right to exercise the embedded options
during the lifetime of the contract.

Typical instrument is Cancellable Swaps and Bermudan Swaptions. Such instru-
ments can have a high nautili amount and a maturity of 30 years from the day that
contract was bought or sold.

Like in the equity market, American (or Bermudan) option are normally prices
with a Binomial tree and not by use of the Black–Scholes–Merton model. The reason
is the problem due to the boundary condition, since one can exercise such options at
any time during the lifetime.

Similar situation exists in the Fixed Income market. A simple Cancellable Swap
can be seen (replicated) as a plain vanilla Interest Rate Swap (an IRS) and aBermudan
Swaption. Many Cancellable Swaps are also based on a Cross Currency Swap (CCS
or XCCS) where the notional amount is exchanged when entering the contract and
also at the redemption of the contract. If the holder of the optionality decide to call
(or put) back the Swap, i.e., to use the right to exercise the option, the nationals will
be exchanged as well.

The Hull–White model can be represented as a trinomial tree, which made it easy
to handle the optionality described above. The model can also be represented as a
Partial Differential Equation (a PDE) which can be solved by a Crank–Nicholson
method. The PDE can also be transformed to speed up the solution. This is a similar
technique as is done when solving the Black–Scholes PDE. By instead expressing
the PDE in terms of the logarithm of the underlying equity price, the coefficients will
be independent of the underlying price.

The rest of the paper is organised as follows. In Sect. 17.2 we give a complete
description of our model as a system of stochastic differential equations driven by
Wiener processes and an independent compound Poisson process under risk-neutral
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probability measure. In Sect. 17.3 we calculate both the price of a catastrophe bond
and its sensitivities with respect to the initial condition, volatility of the diffusion
component, and jump amplitude. Section17.4 concludes.

17.2 The Model

Let P be a historical probability measure on a σ -field F of events on a set Ω of
possible states of economy. Assume that the probability space (Ω,F,P) carries four
independent sources of randomness: a set of independent and identically distributed
random variables {Uj : j ≥ 1 } with probability distribution μ and finite second
moment taking values in (−1,∞), two Wiener processes W1(t) and W2(t), and a
Poisson process N (t) with intensity λ > 0. The stochastic process W1(t) accounts
for non-catastrophic economical risk, the processW2(t) accounts for the uncertainty
of interest rates, the process N (t) for the occurrences of catastrophes, and the set
{Uj : j ≥ 1 } for the size of catastrophes. The processes are defined on a trading
horizon [0, T ], where T is the maturity of a catastrophe bond. For all t ∈ [0, T ], let
Ft be the σ -field generated by W1(s), W2(s), N (s) for s ∈ [0, t], Uj1{ j≤N (t)}, and
all P-null events. The filtration {Ft : 0 ≤ t ≤ T } satisfies standard assumptions and
represents the information flow available to market players. We also define U0 = 0.

Let
τn = inf{ t ∈ [0, T ] : N (t) = n }, n ≥ 0,

be the time moment when the nth catastrophe occurs. The aggregated catastrophe
losses up to and including the timemoment t are then given by the compound Poisson
process

J (t) =
∞∑

n=1

Un1(τn−1,τn ](t). (17.1)

We assume that the natural risk index I (t) is a right-continuous stochastic process
that satisfies the Merton jump-diffusion model [21], i.e., the stochastic differential
equation

dI (t)

I (t−)
= μ(t) dt + σI (t) dW1(t) + J (t) dN (t),

where μ(t) is the drift parameter, and where σI (t) is the volatility of the Wiener
component of the natural risk index. In particular, the jump of I (t) at time τn is

I (τn) − I (τn−) = I (τn−)Un,

or I (τn) = I (τn−)(1 +Un). A popular choice for the distribution μ is that 1 +Un

are log-normally distributed.
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Denote by F(0, t) the instantaneous forward rate at time 0 for the maturity t .
Assume that the instantaneous risk-free interest rate, r(t), is given under the historical
probability P by the Hull–White model, see Hull and White [17]:

dr(t) = (θ(t) − a(t)r(t) + λ(t, r)σR(t)) dt + σR(t) dW2(t), (17.2)

where λ(t, r) is the market price of interest rate risk. In what follows we assume that
a(t) is a constant. Hull and White [18] proved that the model fits the yield curve if
and only if

θ(t) = ∂F(0, t)

∂t
+ aF(0, t) + 1

2a
σ 2
R(t)(1 − e−2at ).

The next assumption follows Merton [21]:

…the jumps represent “pure” non-systematic risk.

In other words, investors are neutral toward jump risk. The overall economy is
only marginally influenced by localised catastrophes, and the catastrophe losses per-
tain to idiosyncratic shocks to the capital markets. The catastrophic risk associated
with jumps can be diversified away, i.e., the catastrophic shocks will represent “non-
systematic” and have a zero risk premium. On the other hand, we suppose that the
non-catastrophic changes both in the risk index and in interest rates can be replicated
by existing quoted securities.

In mathematical terms, the above assumptions are formulated as follows. Let

D(t, T ) = exp

(
−

∫ T

t
r(u) du

)

be the stochastic discount factor. Let CI be a quoted contingent claim written on I
(in particular, a catastrophe bond). There exist equivalent martingale measures under
which the discounted time t value of the claim, D(t, T )CI (T ), is a martingale. All
such measures have the unique restriction, say P∗, to the σ -field generated by W1(t)
and W2(t), 0 ≤ t ≤ T . The no-arbitrage price for C is

CI (t) = EP∗ [D(t, T )CI (T ) |Ft ]. (17.3)

The dynamics of I and r under P∗ is described by the following system:

dI (t)

I (t−)
= (μ(t) − λ(t)σI ) dt + σI (t) dW

P∗
1 (t) + J (t) dN (t), I (0) = I0, (17.4)

dr(t) = (θ(t) − ar(t)) dt + σR(t) dWP∗
2 (t), r(0) = r0,

where λ(t) is the market price of nature risk, and where WP∗
1 (t) and WP∗

2 (t) are
the P∗-Wiener processes that correspond to P-Wiener processes W1(t) and W2(t).
Specifically,
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dWP∗
1 (t) = λ(t) dt + dW1(t),

dW2(t) = λ(t, r) dt + dWP∗
2 (t),

by the Girsanov theorem [14]. Note that in the case of the natural risk index we
replace the historical probability by the risk-neutral one. The Hull–White model
is usually formulated in the risk-neutral setting, and we used the Girsanov theo-
rem in opposite direction to obtain (17.2). See discussion in the recent paper by
Hull et al. [16].

To investigate existence and uniqueness of solutions of the system (17.4), write it
in the form

dX(t) = a(t,X(t)) dt + σ(t,X(t)) dWP∗
(t) +

∫ ∞

0
(s I (t−), 0)� Ñ (dt, ds),

where

X(t) =
(
I (t−)

r(t)

)
, a(t,X(t)) =

(
I (t−)(μ(t) − λ(t)σI (t))

θ(t) − ar(t)

)
,

σ (t,X(t)) =
(
I (t−)σI (t) 0

0 σR(t)

)
, WP∗

(t) =
(
WP∗

1 (t)
WP∗

2 (t)

)
,

and where
Ñ (dt, ds) = N (dt, ds) − λμ(ds) dt

is the compensated Poisson random measure of the Lévy process (17.1).
By Øksendal and Salem [23, Theorem 1.19], the above system has the unique

solution, if its coefficients satisfy the conditions of at most linear growth: there
exists a positive finite constant C1 such that

x21 (μ(t) − λ(t)σ 2
I )

2 + (θ(t) − ax2)
2 + x21σ

2
I (t) + σ 2

R(t)

+λ

∫ ∞

0
t2ν(dt) ≤ C1(1 + ‖x‖2),

for all x = (x1, x2)� ∈ R
2, and Lipschitz continuity: there exists a positive finite

constant C2 such that

(x1 − y1)
2(μ(t) − λ(t)σI )

2(t) + (θ(t) − a(x2 − y2))
2 + (x1 − y1)

2σ 2
I (t)

+σ 2
R(t) ≤ C2‖x − y‖2,

for all x, y ∈ R
2.
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17.3 Calculating Sensitivities of Bond Price

Currently, there exist essentially two general approaches to calculate the no-arbitrage
price (17.3): the partial integro-differential equations method and the probabilistic
simulation method.

Let L be the infinitesimal generator of the process X(t). Then the function

v(x, t) = E
[
f (X(T )) exp

(
λ

∫ T

t
g(X(s), s) ds

)
|X(t) = x

]

satisfies the equation
∂v

∂t
+ L v + λg(x, t)v = 0

subject to the final condition

lim
t↑T v(x, t) = f (x(T )).

The payoff function of the catastrophe bond, however, depends on the whole
trajectory of the natural risk index process and therefore is not of a form f (x(T )).
Moreover, the operatorL is integro-differential, therefore we obtain a complicated
computational problem. A strategy for pricing components of a Bermudan-style
callable catastrophe bond by sophisticated numerical methods has been realised by
Unger [29, 30]. We will not use this approach here. Instead, we will combine some
closed-type formulae with probabilistic simulation method, following Nowak and
Romaniuk [22] and Vaugirard [31].

Let F be the face value of a zero-coupon catastrophe bondwithmaturity T , and let
v = v(T, F, { J (t) : 0 ≤ t ≤ T }) be its payoff function. By Nowak and Romaniuk
[22, Theorem 1], the no-arbitrage bond price B(0) is

B(0) = EP∗ [D(0, T )]EP∗ [v(T, F, { J (t) : 0 ≤ t ≤ T })].

Note that the first term is the time 0 zero-coupon bond price, P(0, T ).
In the case of constant volatility, σR(t) = σ , the the zero-coupon bond price has

been calculated by Hull and White [18]. If the volatility is not constant, we have the
following result.

Lemma 17.1 The time t zero-coupon price in the Hull–White model with variable
volatility is given by

P(t, T ) = eA(t,T )−B(t,T )r(t),

where
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A(t, T ) = ln
P(0, T )

P(0, t)
+ F(0, t)B(t, T ) + 1

2

∫ T

t
B2(s, T )σ 2

R(s) ds,

B(t, T ) = 1

a
(1 − e(T−t)).

Proof of Lemma 17.1 is similar to Hull and White [18]. Note that in the case of
constant volatility, the integral may be easily calculated and leads to the classical
formula

P(t, T ) = ln
P(0, T )

P(0, t)
+ F(0, t)B(t, T ) − σ 2

R

4a3
(e−aT − e−at )2(e2at − 1).

In other words, in place of a σR , there appears a time integral that includes σR(s).
Vaugirard [31] assumed that the triggering point of a catastrophe bond is the

first passage of the natural risk index I (t) through a level K . If the triggering point
does not occur, then is paid the face value, F , otherwise she receives F(1 − w) with
w ∈ (0, 1).

Nowak and Romaniuk [22] considered two payoff functions vi (T, F, { J (t) : 0 ≤
t ≤ T }), i = 1, 2. They calculated the expectations EP∗ [vi (T, F, { J (t) : 0 ≤ t ≤
T })] in a closed form, see [22, Lemma 1, Lemma 2]. As they note, some terms in
their formulae are often analytically intractable and require probabilistic simulation.

Specifically, the payoff function v1(T, F, { J (t) : 0 ≤ t ≤ T }) is a stepwise one
andmay be described as follows. Let n ≥ 2 be a positive integer. Let 0 ≤ K0 < K1 <

· · · < Kn be a set of reals. Define the set of stopping times { τi (ω) : 1 ≤ i ≤ n } by

τn(ω) = min{inf{ t ∈ [0, T ] : J (t, ω) > Ki }, T }.

Finally, let 0 < w1 < w2 < · · · < wn be a set of reals with w1 + · · · + wn ≤ 1.
If τ1 > T , then the bondholder is paid the face value, F . If τn ≤ T , then she

receives F(1 − w1 − · · · − wn). If τk−1 ≤ T < τk , 1 < k ≤ n, then she receives
F(1 − w1 − · · · − wk−1). Cash payments are made at maturity T . The price of this
bond is

B(0) = P(0, T )F

(

1 −
n∑

i=1

wiΦi (T )

)

,

where

Φi (T ) = 1 − e−λT
∞∑

j=0

(λT ) j

j ! Φ̃ j (Ki ),

and where Φ̃ j is the cumulative distribution function of the sumU0 + · · · +Uj . Note
that Malliavin calculus cannot be applied here to calculate the bond’s sensitivities,
because the payoff function depends on stochastic time moments τ1, …, τn .

The second payoff function considered by Nowak and Romaniuk in [22] is piece-
wise linear:
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v2(T ) = F

⎛

⎝1 −
n−1∑

j=0

min{J (T ), K j+1} − min{J (T ), K j }
K j+1 − K j

w j+1

⎞

⎠ . (17.5)

Denote

ϕm = P{J (T ) ≤ Km}, 0 ≤ m ≤ n,

em = E[J (T )1{Km<J (T )≤Km+1}], 0 ≤ m ≤ n − 1.

The price of this bond is

B(0) = P(0, T )F

⎧
⎨

⎩
1 − (1 − ϕn)

n∑

j=1

wj −
n−1∑

m=0

⎡

⎣(ϕm+1 − ϕm)

m∑

j=1

wj

+ en − Km(ϕm+1 − ϕm)

Km+1 − Km

]}
.

Note that this payoff function depends only on J (T ). We consider a payoff func-
tion similar to (17.5):

v(T ) = F

⎛

⎝1 −
n−1∑

j=0

min{I (T ), K j+1} − min{I (T ), K j }
K j+1 − K j

w j+1

⎞

⎠ .

WecalculateΔ, the derivative of the bond pricewith respect to the initial condition
I0, Γ , the second derivative, ν or vega, the derivative with respect to the volatility
σI , and α, the derivative with respect to the jump amplitude.

Theorem 17.1 Assume that 0 < inf{ σI (t) : 0 ≤ t ≤ T } ≤ sup{ σI (t) : 0 ≤
t ≤ T } < ∞. Then we have

Δ = P(0, T )

T I (0)
E

[
v(I (T ))

∫ T

0
σ−1
I (t)I (t−) dWP∗

1 (t)

]
, (17.6)

Γ = P(0, T )

T 2 I 2(0)
E

[

v(I (T ))

(∫ T

0
σ−1
I (t)I (t−) dWP∗

1 (t)

)2]

,

ν = P(0, T )

T
E

{
v(I (T ))

[(
WP∗

1 (T ) −
∫ T

0
σI (s) ds

) ∫ T

0
σ−1
I (t)I (t−) dWP∗

1 (t)

−
∫ T

0
σ−1
I (t)I (t−) dt

]}
,

α = P(0, T )

T
E

[
v(I (T ))

(∫ t

0

∫ ∞

0
s Ñ (du, ds) − λ

∫ t

0

∫ ∞

0
s2 I (u−)μ(ds) du

)

×
∫ T

0
σ−1
I (t)I (t−) dWP∗

1 (t)

]
.
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Proof Denote by

b(t, I (t−)) = (μ(t) − λ(t)σI (t))I (t−),

σ (t, I (t−)) = σI (t)I (t−),

γ (s, t, I (t−)) = s I (t−),

the coefficients of the first equation in (17.4). The first variation of the process I (t)
[24], Y (t) = ∇ I (t), satisfies the following equation

dY (t) = ∂b(t, I (t−))

∂ I (t−)
Y (t−) dt + ∂σ(t, I (t−))

∂ I (t−)
Y (t−) dWP∗

1 (t)

+Y (t−)

∫ ∞

0

∂γ (s, t, I (t−))

∂ I (t−)
Ñ (dt, ds),

Y (0) = 1,

which becomes

dY (t) = (μ(t) − λ(t)σI (t))Y (t−) dt + σI (t)Y (t−) dWP∗
1 (t) + Y (t−)

∫ ∞
0

s Ñ (dt, ds),

Y (0) = 1.

It follows that

Y (t) = I (t)

I (0)
.

Note that Condition 1 of Theorem17.1means that the diffusion coefficient σI (t) is
uniformly elliptic in the sense of Petrou [24]. The first formula in (17.6) now follows
from [24, Proposition 9].

Note that the second variation of I (t) is equal to Y (t). The second equation in
(17.6) follows.

Consider the perturbed process I ε(t) satisfying the following equation:

dI ε(t) = (μ(t) − λ(t)σI (t))I
ε(t−) dt + (σI (t)I

ε(t−) + εξ(t, I (t−))) dWP∗
1 (t)

+I ε(t−)

∫ ∞

0
s Ñ (dt, ds),

I ε(0) = I (0).

where ε is a real number and ξ(t, x) is a continuously differentiable function with
bounded gradient. Its first variation,

Z ε(t) = ∂ I ε(t)

∂ε
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satisfies the equation

dZε(t) = ∂b(t, I ε(t−))

∂ I ε(t−)
Zε(t−) dt + ∂[σI (t)I ε(t−) + εξ(t, I ε(t−))]

∂ I ε(t−)
Zε(t−) dWP∗

1 (t)

+ξ(t, I ε(t−)) dWP∗
1 (t) + Zε(t−)

∫ ∞
0

∂γ (s, t, I ε(t−))

∂ I ε(t−)
Ñ (dt, ds),

Zε(0) = 0,

which becomes

dZε(t) = (μ(t) − λ(t)σI (t))Z
ε(t−) dt +

[
σI (t) + ε

∂ξ(t, I ε(t−))

∂ I ε(t−)

]
Zε(t−) dWP∗

1 (t)

+ξ(t, I ε(t−)) dWP∗
1 (t) + Zε(t−)

∫ ∞
0

s Ñ (dt, ds),

Zε(0) = 0.

Put ξ(t, I ε(t−)) = I ε(t−). The stochastic differential equation for Z ε(t) takes
the form

dZ ε(t) = (μ(t) − λ(t)σI (t))Z
ε(t−) dt + [σI (t) + ε]Z ε(t−) dWP∗

1 (t)

+I ε(t−) dWP∗
1 (t) + Z ε(t−)

∫ ∞

0
s Ñ (dt, ds),

Z ε(0) = 0.

Denote Z(t) = Z0(t). The solution to this equation when ε = 0 has the form

Z(t) = I (t)

[
WP∗

1 (t) −
∫ t

0
σI (s) ds

]
,

which is easy to check using the multidimensional Itô formula, see Øksendal and
Sulem [23, Theorem 1.16].

Define β(t) = Y−1(t)Z(t). We have

β(t) = I (0)

[
WP∗

1 (t) −
∫ t

0
σI (s) ds

]
.

To use [24, Proposition 10], we have to calculate theMalliavin derivative of β(T ).
By Di Nunno et al. [10, Eq. (3.8)], we have

Dtβ(T ) = I (0)1[0,T ](t).

All conditions of [24, Proposition 10] are satisfied. The above proposition gives
the third equation in (17.6), if we put ζ(t) = T−1.
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Perturb the process I (t) in the following way:

dI ε(t) = (μ(t) − λ(t)σI (t))I
ε(t−) dt + σI (t)I

ε(t−) dWP∗
1 (t)

+I ε(t−)

∫ ∞

0
(s + εξ(t, I ε(t−)))Ñ (dt, ds),

I ε(0) = I (0).

where ε and ξ have the same meaning as before. The first variation of the perturbed
process I ε(t) with respect to ε, Z ε(t), satisfies the equation

dZ ε(t) = ∂b(t, I ε(t−))

∂ I ε(t−)
Z ε(t−) dt + ∂σI (t)I ε(t−)

∂ I ε(t−)
Z ε(t−) dWP∗

1 (t)

+Z ε(t−)

∫ ∞

0

∂[γ (s, t, I ε(t−)) + εξ(t, I ε(t−))]
∂ I ε(t−)

Ñ (dt, ds)

+
∫ ∞

0
ξ(t, I ε(t−))Ñ (dt, ds),

Z ε(0) = 0.

Put ξ(t, I ε(t−)) = I ε(t−). The above equation becomes

dZ ε(t) = (μ(t) − λ(t)σI (t))Z
ε(t−) dt + σI (t)Z

ε(t−) dWP∗
1 (t)

+Z ε(t−)

∫ ∞

0
(s + ε)Ñ (dt, ds) +

∫ ∞

0
I ε(t−)Ñ (dt, ds),

Z ε(0) = 0.

The solution to this equation when ε = 0 is as follows:

Z(t) = I (t)

(∫ t

0

∫ ∞

0
s Ñ (du, ds) − λ

∫ t

0

∫ ∞

0
s2 I (u−)μ(ds) du

)
,

To check this, we use the the multidimensional Itô formula cited above.
The stochastic process β(t) takes the form

β(t) = I (0)

(∫ t

0

∫ ∞

0
s Ñ (du, ds) − λ

∫ t

0

∫ ∞

0
s2 I (u−)μ(ds) du

)
.

To use [24, Proposition 11], we have to calculate theWiener directional derivative
D(0)

t β(T ), see its definition in [24, Definition 1]. By [24, Proposition 2], the Wiener
directional derivative of a random variable that depends only on the Poisson random
measure, is 0. Using [24, Proposition 11] with ζ(t) = T−1, we arrive at the last
equation in (17.6).

To calculate the expectations in (17.6), one can use probabilistic simulation meth-
ods.
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17.4 Concluding Remarks

The above approach may also price catastrophe bonds and calculate sensitivities in
the case when the payoff depends on the values I (t1), I (t2), …, I (tn) of the natural
risk index at finitely many deterministic time moments.

A catastrophe bond with coupon payments may be represented as a portfolio of
zero-coupon bonds with different maturities. Our approach may be used for each
portfolio component independently.

In a forthcoming paper, we will report the results of numerical experiments based
on historical data.
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Chapter 18
Pricing European Options Under Stochastic
Volatilities Models

Betuel Canhanga, Anatoliy Malyarenko, Jean-Paul Murara
and Sergei Silvestrov

Abstract Interested by the volatility behavior, differentmodels have been developed
for option pricing. Starting from constant volatility model which did not succeed
on capturing the effects of volatility smiles and skews; stochastic volatility models
appear as a response to the weakness of the constant volatility models. Constant
elasticity of volatility, Heston, Hull and White, Schöbel–Zhu, Schöbel–Zhu–Hull–
White andmany others are examples of models where the volatility is itself a random
process. Along the chapter we deal with this class of models and we present the
techniques of pricing European options. Comparing single factor stochastic volatil-
ity models to constant factor volatility models it seems evident that the stochastic
volatility models represent nicely the movement of the asset price and its relations
with changes in the risk. However, these models fail to explain the large indepen-
dent fluctuations in the volatility levels and slope. Christoffersen et al. (Manag Sci
22(12):1914–1932, 2009, [4]) proposed a model with two-factor stochastic volatili-
tieswhere the correlation between the underlying asset price and the volatilities varies
randomly. In the last section of this chapter we introduce a variation of Chiarella and
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Ziveyi model, which is a subclass of the model presented in [4] and we use the first
order asymptotic expansion methods to determine the price of European options.

Keywords Financial markets ·Option pricing · Stochastic volatilities ·Asymptotic
expansion

18.1 Introduction

Let (Ω,F,P) be a probability space with risk-neutral probability measure P. Let
{Ft : 0 ≤ t ≤ T } be the filtration generated by a standard d-dimensional Brownian
motion Wt .

LetX = (X1, . . . , Xm)� be the vector of stochastic variables. Assume, that under
P the stochastic variables satisfy the following stochastic differential equation:

dXt = μ(t,Xt ) dt + Σ(t,Xt ) dWt , (18.1)

where μ : [0, T ] × R
m → R

m is the drift, and where Σ : [0, T ] × R
m → R

m×d is
the diffusion. Let r(t,Xt ) be the instantaneous risk-free interest rate, and let g(x) be
the payoff of a financial instrument with maturity T .

By risk-neutral valuation, the price V (t, x) of the instrument is

V (t, x) = E
[
exp

(
−

∫ T

0
r(u, x) du

)
g(XT )|Ft ,Xt = x

]
.

In [1] it is proved that the price V (t, x) satisfies the partial differential equation

∂V

∂t
+

m∑

i=1

μi (t, x)
∂V

∂xi
+ 1

2

m∑

i=1

m∑

j=1

d∑

k=1

Σik(t, x)Σk j (t, x)
∂2V

∂xi∂x j
− r(t, x)V = 0

subject to the terminal value condition V (T, x) = g(x). The seminal Black–Scholes
European option pricingmodel has the assumption that underlying stock price returns
follow a lognormal diffusion process.

Different from the Black–Scholes, for a given stochastic process like the stock
price St , if its variance σt is itself randomly distributed, then (18.1) can be written
for m = d = 2 as

dSt = μ(St , t)dt + σt StdW
1
t , (18.2)

where σt satisfies
dσt = a(σt , t)dt + b(σt , t)dW

2
t ,

and where W 1
t and W 2

t are standard one-dimensional Brownian motions defined
on (Ω,F,P) with the covariance satisfying d(Wi

t ,W
j
t ) = ρi j dt for some constant
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ρi j ∈ [−1, 1] and σt is known as the stochastic volatility or the instantaneous
volatility or the spot volatility. a(σt , t) and b(σt , t) are smooth functions that corre-
spond respectively to the drift and diffusion of the spot volatility. Tomodel derivatives
like European options more accurately, it is better to assume that the volatility of the
underlying price is a stochastic process rather than a constant as it has been assumed
for models based on Black–Scholes formula. The reason is that the latter cannot
explain long-observed features of the implied volatility surface, volatility smile and
skew, which indicate that the implied volatility does not tend to vary with respect to
strike price K and horizon date T .

Definition 18.1 Under anymartingale measureP and the interest rate at time t given
by rt ; a model with the form

dSt = rt Stdt + σt StdW
1
t

dσt = a(σt , t)dt + b(σt , t)dW
2
t

is said to be a stochastic volatility model.

The sections of this chapter present different procedures to price European options
with underlying asset prices governed by Constant Elasticity of Variance, Stochastic
αβρ, Detemple–Tian, Grzelak–Oosterlee–Van Veeren, Jourdain–Sbai, Ilhan–Sircar
and Chiarella-Ziveyimodels.

18.2 The Constant Elasticity of Variance (CEV) Model

The lognormality assumption from the Black–Scholes formula does not hold accu-
rately. The pricing of European options has been studied recently for alternative
diffusion models.

In 1976 Cox and Ross [5] focused their attention on the constant elasticity of
variance diffusion class, and gave the following Constant Elasticity of Variance
(CEV) Model

dSt = μStdt + σ Sβ
t dWt . (18.3)

They considered the driftμ to be constant and the real constant parameters are σ ≥ 0
and β ≥ 0. The parameter β is the main feature of this model and it is known as the
elasticity factor. The relationship between volatility and price described by the CEV
model is controlled by β. The payoff function is defined by g(s) = αsβ for positive
constant α and real positive s.

Remark 18.1 Equation (18.3) becomes theBacheliermodel forβ = 0, and forβ = 1
it becomes the Black–Scholes model.

Remark 18.2 Some say that the CEVmodel is not a stochastic volatility model, but a
local volatility model based on the fact that it does not incorporate its own stochastic
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process for volatility and thus they remove it among the other stochastic volatility
models.

The CEVmodel is used for modelling equities and commodities when attempting
to capture the stochastic volatility and the leverage effect. In commodities markets,
volatility rises when prices rise. This is known as the inverse leverage effect and for
this case β > 1. Whereas in equity markets the volatility of a given stock increases
when its price falls which is known as the leverage effect with β < 1.

Now, for cases where 0 < β < 1, the infinitesimal conditional variance of the
logarithmic rate of return of the stock equals σ 2

t = α2S2(β−1)
t , and thus it changes

inversely with the price. Under this condition the following equations hold:

dvt
dSt

St
vt

= g′(St )St
g(St)

= αβSβ−1
t St

σ Sβ
t

= β, vt = g(St ),

dσt

dSt

St
σt

= f ′(St )St
f (St )

= α(β − 1)Sβ−2
t St

αSβ−1
t

= β − 1.

Equation (18.3) corresponds to the classical Girsanov example in the theory of
stochastic differential equations which is presented in [15, 16]; assuming that μ = 0
then it has a unique solution for any β ≥ 1

2 and this uniqueness fails to hold for values
in the interval (0, 1

2 ).
The CEV model is complete when assuming that the filtrationF is generated by

the driving Brownian motionW 1
t . From this completeness, any European contingent

claim that is FT -measurable and P-integrable, with time t discounting factor Bt ,
possesses a unique arbitrage price given by the risk-neutral valuation formula

v(St , t) = BtEP(B
−1
T h(ST )|Ft ).

By the Feynman–Kac theorem, the option price v(St , t), with v(ST , T ) = h(s)
and h(St ) the inverse of g(St), can be given as the solution of the following partial
differential equation

∂v(St , t)

∂t
+ 1

2

(
αSβ

t

)2 ∂2v(St , t)

∂S2t
+ r St

∂v(St , t)

∂St
− rv(St , t) = 0. (18.4)

18.2.1 European Option Pricing Formulae Under
the CEV Model

Many authors have examined option pricing equations related to the CEV model
among others and mentioned that the transition probability density function for the
stock price governed by the CEV model can be explicitly expressed in term of
the modified Bessel functions. From this, the integration of the payoff function with
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respect to the transition density can be used to find the arbitrage price of anyEuropean
contingent claim.

The European option pricing formula can be derived and let us have a look on a
computational convenient representation of Schroder presented in [18] for the call
price in the CEV model:

Ct (St , T − t) = St

(

1 −
∞∑

n=1

g(n + 1 + γ, K̃t )

n∑

m=1

g(m, F̃t)

)

(18.5)

−Ke−r(T−t)
∞∑

n=1

g(n + γ, F̃t )

n∑

m=1

g(m, K̃t)),

where γ = 1
2(1−β)

and g(p, x) = x p−1e−x


(p) is the density function of the Gamma dis-

tribution. For the forward price of a stock Ft = St
B(t,T )

we have:

F̃t = F2(1−β)
t

2χ(t)(1 − β)2
, K̃t = K 2(1−β)

2χ(t)(1 − β)2
, χ(t) = σ 2

∫ T

t
e2r(1−β)udu

is the scaled expiry of an option.

18.2.2 Implied Volatility Smile in the CEV Model

The presence of parameter β in the CEV model is a big advantage over the classical
Black-Scholes model because it is possible to make a better fit to observed market
prices options with an appropriate choice of α and β. Making β 	= 1 and α 	= 0,
the CEV model yields prices of European options corresponding to smiles in the
Black-Scholes implied volatility surface. Which means that, for a fixed maturity T,
the implied volatility of a call option is a decreasing function of the strike K.

Considering the case when a stock price is governed by (18.3), the forward price
of a stock

Ft = FS(t, T ) = St
B(t, T )

= eμ(T−t)St

under the martingale measure P, satisfies

dFt = α(t)Fβ
t dWt . (18.6)

As presented in [16] the implied volatility σ̂0(T, K ) predicted by (18.6) is

σ̂0(T, K ) = αa

F1−β
a

(
1 + (1 − β)(2 + β)(F0 − K )2

24F2
a

+ (1 − β)2α2
aT

24F2(1−β)
a

+ · · ·
)

.
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σ̂0(T, K ) is the Black implied volatility, Fa = (F0+K )

2 and αa = ( 1
T

∫ T
0 α2(u)du)1/2.

18.3 The Stochastic αβρ (SABR) Model

The SABR model can be seen as a natural extension of the CEV model. When in
[11] Hagan et al. examined the issue of dynamics of the implied volatility smile, they
argued that any model based on the local volatility function incorrectly predicts the
future behaviour of the smile, i.e. when the price of the underlying decreases, local
volatilitymodels predict that the smile shifts to higher prices. Similarly, an increase of
the price results in a shift of the smile to lower prices. It was observed that the market
behaviour of the smile is precisely the opposite. Thus, the local volatility model has
an inherent flaw of predicting the wrong dynamics of the Black–Scholes implied
volatility. Consequently, hedging strategies based on such a model may be worse
than the hedging strategies evaluated for the naive model with constant volatility that
is, the Black–Scholes models.

A challenging issue is to identify a class of models that has the following essential
features: a model should be easily and effectively calibrated and it should correctly
capture the dynamics of the implied volatility smile.

A particular model proposed and analyzed in [11] is specified as follows: under
the martingale measure P, the forward asset price St is assumed to obey the equation

dSt = αt S
β
t dW

1
t , (18.7)

dαt = νtαt dW
2
t , (18.8)

which is the SABR model, where α0 = 0, 1
2 ≤ β ≤ 1, αt 	=0 > 0 and νt is the instan-

taneous variance of the variance process. W 1
t and W 2

t are two correlated Brownian
motions with respect to a filtration F with constant correlation −1 < ρ < 1. Thus,
(18.8) can be written as

dαt = νtαt (ρdW
1
t +

√
1 − ρ2dW 2

t ),

dW 1
t dW

2
t = ρdt, W 2

t = ρW 1
t +

√
1 − ρ2W 2

t .

18.3.1 European Option Pricing Formulae Under
the SABR Model

Let us now assume that the overall volatility αt and the volatility of volatility νt are
very small. At date t , S(t) = s, α(0) = α we can write the value of an European call
option by

V (t, s, α) = E{[S(tex .) − K ]+|S(t) = s, α(t) = α}, (18.9)
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where tex . is the exercise time. As presented in [19] the option price becomes

V (t, s, α) = [s − K ]+ + |s − K |
2
√

π

∞∫

x2
2τex

e−q

(q)3/2
dq, (18.10)

where q = x2

2τ .

18.3.2 Implied Volatility Smile in the SABR Model

After deriving the European call option pricing formula under the SABR model, we
can derive the approximate implied normal volatility and the implied Black volatility
in order to utilize the pricing formula more conveniently.

At-the-money option, it is proven in [16] that the Black implied volatility formula
under the SABR is as follows:

σ̂0(S0, T ) ∼= α

Sβ̂

0

{

1 +
[

β̂2α2

24S2β̂0
+ ρβανt

4Sβ̂

0

+ (2 − 3ρ2)ν2
t

24

]

T

}

, (18.11)

where β̂ = 1 − β.

18.4 The Detemple–Tian Model (DTM)

Different frommost of the models we present in this chapter, the DTM is considering
volatility to be constant but it assumes that the interest rate changes randomly. The
underlying asset price St and the interest rate rt follow the system of stochastic
differential equations bellow:

dSt
St

= (rt − δ)dt + σ1dW1(t), (18.12)

drt = a(r − rt )dt + σ2dW2(t) = [θ(t) − art ]dt + σ2dW2(t), (18.13)

where δ, a, σ1, σ2 are constants, δ is the dividend rate, σ1 is the asset price volatility,
the speed of mean reversion of the interest rate is a and σ2 its volatility. θ(t) is
deterministic function of time and W1, W2 are correlated Brownian motions with
correlation coefficient ρ.

Detemple and Tian in [6] use the model to compute the American option price
and show that the exercise region is depending on the interest rate and dividend yield.
Also the results were used to derive recursively an integral equation for the exercise
region.
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If we define

J (t, T ) = e

(

−
T∫

t

v∫

t
e−a(v−s)θ(s)dsdv+ 1

2 σ 2
2

T∫

t
(1−e−a(T−s))2ds

)

and

G(t, T ) = 1

a

[
1 − e−a(T−t)

]

for the European call, the options price is given by the following formula

V (St , rt , t) = e−δ(T−t)St N (h(St , K ; t, T )) − K P(t, T ) × N (h(St , K ; t, T ) − √
ω(t, T )),

(18.14)

where

h(St , K ; t, T ) = ln(S/K P(t, T )) − δ(T − t)√
ω(t, T )

+ 1

2

√
ω(t, T );

P(t, T ) the pure discount bond price is given by

P(t, T ) = J (t, T )e−rt G(t,T )

and

ω(t, T ) =
∫ T

t
(σ 2

1 + σ 2
2G(u, T )2 + 2ρσ1σ2G(u, T ))du. (18.15)

18.5 Grzelak–Oosterlee–Van Veeren (GOVV) Model

The particular case of (18.1) when the drift and the diffusion are defined for m =
d = 3 is known as GOVVmodel presented by Grzelak et al. in [10]. They considered
that the price of an asset at time t is St and is governed by an stochastic differential
equation with stochastic interest rate rt and stochastic volatility σt of mean reversion
type. The model evolves according to the following system:

dSt = rt Stdt + σ
p
t Std Z

1
t , (18.16)

drt = λ(θt − rt )dt + ηdZ2
t ,

dσt = k(σ − σt )dt + γ σ
1−p
t d Z3

t ,

where p is constant, λ and k are the speed of mean reversion processes, η is the
volatility of the interest rate, γ is the volatility of volatility. θt is the long run mean
of the interest rate and σ is the long run mean of the volatility. Z1

t , Z2
t , Z

3
t are

independent Brownian motions with correlation factors given by
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dZi
t d Z

j
t = ρi j for i, j = 1, 2, 3.

Considering

Z1
t = W 1

t ,

Z2
t = ρ12W

1
t +

√
1 − ρ2

12W
2
t ,

Z3
t = ρ13W

1
t + ρ23 − ρ12ρ13√

1 − ρ2
12

W 2
t +

√

1 − ρ2
13 − (ρ23 − ρ12ρ13)

1 − ρ2
12

W 3
t ,

and using the notation

a = ρ23 − ρ12ρ13√
1 − ρ2

12

, b =
√

1 − ρ2
13 − (ρ23 − ρ12ρ13)

1 − ρ2
12

,

the GOVV model (18.16) can be written as

dSt = rt Stdt + σ
p
t StdW

1
t , (18.17)

drt = λ(θt − rt )dt + η

(
ρ12dW

1
t +

√
1 − ρ2

12dW
2
t

)
,

dσt = k(σ − σt )dt + γ σ
1−p
t

(
ρ13dW

1
t + adW 2

t + bdW 3
t

)
.

If on the above model we consider that the interest rate is constant, the correlation
factors ρ2 j and ρi2 are equal to zero we generate:

• Heston Model, if p = 1
2 . The underlying asset price and volatilities are governed

by the following system

dSt = r + Stdt + √
σt StdW

1
t , (18.18)

dσt = kH (σ H − σt )dt + γ H√
σt

(
ρ13dW

1
t +

√
1 − ρ2

13dW
3
t

)
,

where the superscript H stands for Heston, to indicate long run volatility mean,
speed of mean return and volatility of volatility.

• Schöbel–Zhu–Heston model, if p = 1. The underlying asset price and volatility
are governed by the following system

dSt = rt Stdt + σt StdW
1
t , (18.19)

dσt = kH (σ H − σt )dt + γ H

(
ρ13dW

1
t +

√
1 − ρ2

13dW
3
t

)
.
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• Schöbel–Zhu model; which is a transformation of Schöbel–Zhu–Heston model
that is obtained considering the variance of instantaneous stock σt = √

vt , when
the speed of mean reversion of the volatility process is given by 2k and the long

run mean is represented by −
(
σtσ + γ 2

2k

)
i.e.

dvt = 2
√
vt

(
kH (σ H − σt )dt + γ H

(
ρ13dW

1
t +

√
1 − ρ2

13dW
3
t

))
;

therefore the governing equations of the asset price and its volatility will be

dSt = rt Stdt + vt StdW
1
t , (18.20)

dvt = 2k(vt + σtσ + γ 2

2k
)dt + 2γ

√
vt

(
ρ13dW

1
t +

√
1 − ρ2

13dW
3
t

)
.

• Black–Scholes model, if p = 0.

18.5.1 Pricing European Options for the GOVV Type Models

Assuming that the characteristic function of the logarithm of the underlying asset
price is known; to price an European option one can choose to apply the fast Fourier
transforms in a Carr–Madan technique presented in [2] or use the Fourier–Cosine
explained in [8]. If from one hand Carr–Madan is a forward method and with easy
computations; it requires to use a damping parameter which is only experimentally
determined for some very specific classes of models. The fact that there is no any
scientifically method to determine the damping parameters brings a huge limitation
for the cases when dealing with models with unknown damping parameter. In the
next section the pricing methodology is developed using the Fourier–Cosine method.

18.5.1.1 Pricing Method

Let us present first a theorem that will give us the approximation of the probability
density function in a bounded domain.

Theorem 18.1 For a given bounded domain D = [a1, a2] and a Fourier expansion
with N terms, the probability density function pY (y|St ) can be approximated by

pY (y|St ) =
N∑

n=0

2wn

|D| R
[
φ̃

(
nπ

|D|
)
e
(
−nπ

ia1
|D|

)

cos

(
nπ

y − a1
|D|

)]
,

for w0 = 1
2 , wn = 1, ∀n ∈ R and R denoting the real part.
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The proof of the theorem is presented in [8].
For the European options, the general risk neutral pricing formula shows that

the contingent claim C(t, St ) written at time t on an asset that value is St can
be obtained by calculating the expected value under risk neutral measure P of the
discounted payoff function H(t, St ) at maturity T , given that the information Ft is
known, i.e.

C(t, St ) = EP

⎛

⎝e
−

T∫

t
rsds

H(T, ST )|Ft

⎞

⎠ .

If the probability density function pY (y|St ) is known, the above expectation is
given by

EP

⎛

⎝e
−

T∫

t
rsds

H(T, ST )|Ft

⎞

⎠ =
∫

R

H(T, y)pY (y|St )dy,

where

pY (y|St ) =
∫

R

pY Z (y, z|St )dz,

and

z = −
T∫

t

rsds is the discounting exponent.

Assuming that pY (y|St ) decays fast, it is possible to restrict the integrations to a
closed and bounded domain. Therefore, the contingent claim will be approximated
to

C(t, St ) =
∫

D

H(T, y)pY (y|St )dy, (18.21)

where D = [a1, a2] and |D| = a2 − a1 > 0.
If we set

u = [u, 0, . . . , 0]′ and [ST = St , rt , . . .]

in order to obtain obvious boundary conditions at maturity, the discounted charac-
teristic function is given by

φ(u, St , t, T ) =
∫ ∫

R

ez+iuy pY,Z (y, z|St )dzdy

=
∫

R

eiuy pY (y|St )dy,



326 B. Canhanga et al.

which is the transformation of the probability density function pY (y|St ) according
to Fourier. Moreover, when considering the domainD instead ofR the characteristic
function is approximated to

φ̃(u, St , t, T ) =
∫

D

eiuy pY (y|St )dy,

where the probability density function is determined with the use of the Theorem
18.1. The contingent claim can then be obtained by

C(t, St ) =
∫

D

H(T, y)
N∑

n=0

2wn

|D| R
[
φ̃

(
nπ

|D|
)
e
(
−nπ

ia1
|D|

)

cos

(
nπ

y − a1
|D|

)]
dy

= |D|
2

N∑

n=0

Φn
ζD

n

wn
,

where

Φn =
N∑

n=0

2wn

|D| R
[
φ̃

(
nπ

|D|
)
e
(
−nπ

ia1
|D|

)

cos

(
nπ

y − a1
|D|

)]
,

H(T, y) = max(Key − K ; 0) for y = log

(
S

K

)
,

and ζD

n = 2K
|D| (αn − βn) . αn and βn are defined by

βn = |D|2
|D|2 + (nπ)2

[
cos(a1, a2) + nπ

|D| sin(a1, a2)
]

for

cos(a1, a2) = cos(nπ)ea2 − cos

(−a1nπ

|D|
)

,

sin(a1, a2) = sin(nπ)ea2 − sin

(−a1nπ

|D|
)

,

and

α0 = a2, αn 	=0 = |D|
nπ

[
sin(nπ) − sin

(−a1nπ

|D|
)]

.
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18.5.1.2 Schöbel–Zhu–Hull–White (SZHW) Model

On a probability space (Ω,Ft ,P), when the vector state Xt = [St , rt , σt ] is
Markovian relative to filtrationFt with asset price and volatility defined as in (18.16),
when p = 1 we obtain the so called SZHWmodel, if interest rate process is given by

rt = r0e
−λt + λ

t∫

0

e−λ(t−s)θsds + η

t∫

0

e−λ(t−s)dWP

s .

From the Hull–White decomposition explained in [10], the interest rate process
can be expressed by

rt = r̃t + mt ,

where

mt = e−λt r0 + λ

t∫

0

e−λ(t−s)θsds,

and
dr̃t = −λ̃rtdt + ηdWP

s with r̃0 = 0.

Introducing the notation σt = √
vt , log St = xt = x̃t + ϕt for φt =

t∫

0
msds; the

SZHW model is described in an expanded vector space with the new stochastic
process vt , i.e.

dxt = (̃rt + mt − 1

2
vt )dt + σt dW

1
t ,

dr̃t = −λ̃rtdt + η

(
ρ12dW

1
t +

√
1 − ρ2

12dW
2
t

)
,

dvt = (−2vtk + 2kσtσ + γ 2)dt + 2σtγ
(
ρ13dW

1
t + adW 2

t + bdW 3
t

)
,

dσt = k(σ − σt )dt + γ
(
ρ13dW

1
t + adW 2

t + bdW 3
t

)
.

(18.22)

It is shown in [7] that the characteristic function has the following form:

φSZHW (u,Xt , t, T ) = e
−

T∫

t
msds+iu′[φT , mT , 0, 0]′

eA(u,τ )+B′(u,τ )[̃xt ,̃rt ,vt ,σt ],

where
B(u, τ ) = [Bx (u, τ ), Br (u, τ ), Bv(u, τ ), Bσ (u, τ )],
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for

Bx (u, τ ) = iu,

Br (u, τ ) = (iu − 1)

λ
(1 − ν(−2λ)),

Bv(u, τ ) = β − D

2θ

(
1 − ν(−2D)

1 − ν(−2D)G

)
,

Bσ (u, τ ) =
(

ν(D)

ν2D − G

)[
16kσb sinh2

(
τD

4

)
D−1 + iu − 1

λ
F(u, τ )

]
,

A(u, τ ) =
(β − D)τ − 2 log

(
Gν(−2D)−1

G−1

)

4γ 2
−

− (iu − 1)2(3 + ν(−4λ) − 4ν(−2λ) − 2τλ)

2λ3
,

where

F(u, τ ) = ηρ12iuF1(u, τ ) + 2ηγρ23bF2(u, τ ),

F1(u, τ ) = 2

D
(ν(D) − 1) + 2G

D
(ν(−D) − 1) − 2(ν(D − 2λ) − 1)

D − 2λ
+

+2G(1 − ν(2λ − D))

D + 2λ
,

F2(u, τ ) = 2

D − 2τ
− 4

D
+ 2

D + 2λ
+

+ν(2λ − D)

(
2ν(2λ)(1 + ν(2D))

D
− 2ν(2D)

D − 2λ
− 2

D + 2λ

)
,

F3(u, τ ) =
∫ τ

0
Bσ (u, s)

(
kσ + 1

2
γ 2Bσ (u, s) + ηρ23γ Br (u, s)

)
ds,

and

β = (k − ρ13γ ui), D =
√

β2 − 4αγ , θ = 2γ 2, α = 1

2
u(i + u),

G = β − D

β + D
, ν(x) = e

xτ
2 , b = β − D

2θ
.

Making U = [u, 0, 0, 0] the boundary conditions at maturity will be

φSZHW (u, [̃xt , r̃t , vt , σt ], T, T ) = eiux̃T , Bx (u, 0) = iu,

A(u, 0) = Br (u, 0) = Bσ (u, 0) = Bv(u, 0) = 0.
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This implies that, for the log ST , the discounted characteristic function is

φSZHW (u,Xt , t, T ) = eÃ(u,τ )+Bx (u,τ )xt+Br (u,τ )rt+Bv(u,τ )vt+Bσ (u,τ )σt ,

for

Ã(u, τ ) = −
∫ T

t
msds + iu

∫ T

t
msds + A(u, τ ) = Θ(u, τ ) + A(u, τ ),

Θ(u, τ ) = (1 − iu)

{
log

(
P(0, T )

P(0, t)

)
+ η2

2λ2

(
τ + 2

λ

(
e−2λT−e−2λt

))}
,

and
P(0, t) = e− ∫ t

0 msdseA(0,τ )+Bx (0,τ )x0+Bv(0,τ )v0+Bσ (0,τ )σ0 .

18.6 Jourdain–Sbai Model (JSM)

Another particular case of (18.16) can be obtained by considering constant interest
rate. In this particular model, let us denote volatility by Y

Y p
t = f (Yt ), k(Y − Yt ) = b(Yt ), γY 1−p

t = c(Yt ),

with
Z1
t = ρW 2

t +
√
1 − ρ2W 1

t , Z2
t = W 2

t

for independent correlated Brownian motions W 1
t and W 2

t . Under these conditions,
the underlying asset price is governed the following model:

dSt = r Stdt + f (Yt )St
(
ρdW 2

t +
√
1 − ρ2dW 1

t

)
, (18.23)

dYt = b(Yt )dt + c(Yt )dW
2
t , Y0 = y0.

In [14] the above model was treated considering a particular case of Ornstein–
Uhlenbeck process and introducing higher order discretization schemes. JSM con-
siders function f to be positive and strictly monotonic allowing that the effective
correlation between the asset price and the volatility remain with the same signal
(positive). It also considers that function b and c are also smooth functions. This gen-
eralizes a group of model, for example Quadratic Gaussian, Stein & Stein, Scotts,
Hull and White, Cox and Ross and Detemple–Tian model. When considering the
log-price of the asset return, model (18.23) is transformed to
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dXt =
(
r − 1

2
f 2(Yt )

)
dt + f (Yt )

(
ρdW 2

t +
√
1 − ρ2dW 1

t

)
, (18.24)

dYt = b(Yt )dt + c(Yt )dW
2
t , Y0 = y0.

The goal is to use the second equation of (18.24) into the first equation andmake it
free of the stochastic integral involving the commonBrownianmotionW 2

t . Assuming
that the volatility of volatility is positive, the drift function of the volatility and the
underlying asset volatility are first order differentiable functions with continuous
derivatives, then one can define a primitive

F(y) =
y∫

0

f

c
(z)dz,

and using Ito’s formula, the differential of the primitive is

dF(Yt ) = f

c
(Yt )dYt + 0.5

(
c
∂ f

∂y
− f

∂c

∂y

)
(Yt )dt,

which transforms (18.24) into

dXt = ρdF(Yt ) + h(Yt )dt +
√
1 − ρ2 f (Yt )dW

1
t , (18.25)

dYt = b(Yt )dt + c(Yt )dW
2
t ,

where

h(y) = r − 0.5 f 2(y) − ρ

(
b

c
f + 0.5

(
c
∂ f

∂y
− f

∂c

∂y

))
y.

For simplicity, functions c(Yt ), b(Yy) are denoted by c and b respectively. Bellow
we present the discretization of the SDE satisfied by Yt constructing a scheme which
converges to order 2. The details can be found in [14].

18.6.1 The Weak Scheme of Second Order

In the system (18.25), the integration of both sides of the first integral when time
goes from 0 to t , gives

Xt = log(S0) + ρ [F(Yt ) − F(y0)] +
t∫

0

h(Ys)ds +
√
1 − ρ2

t∫

0

f (Ys)dW
1
t ,



18 Pricing European Options Under Stochastic Volatilities Models 331

which is not dependent on the Brownian motion W 2
t . The challenge now is to solve

one integral with respect to time and another integral with respect to a Brownian
motion W 1

t . This is done using numerical techniques (i.e. numerical integration).
The weak scheme is defined as:

X
N
T = log(S0) + ρ

[
F(Y

N
T ) − F(y0)

]
+ aN

T +
√
1 − ρ2uN

T dW
1
t ,

where

aN
T = δN

N−1∑

k=0

h
(
Y

N
tk

)
+ h

(
Y

N
tk+1

)

2
, δN = T

N
,

uN
T = δN

N−1∑

k=0

f 2
(
Y

N
tk

)
+ f 2

(
Y

N
tk+1

)

2
,

Y
N
0 = y0,

Y
N
tk+1

= e
T
2N V0e

[
(Wtk+1−Wtk )V

]

e
T
2N V0Y

N
tk ,

for

V0 = b(x) − 1

2
c × c′(x) and v = c(x).

The notation etV (x) means the solution of an ordinary differential equation of order
one in the form ζ ′(t) = V (ζ(t)) at time t and starting from x .

On the other hand if Zt = Xt − ρF(Yt ) the system on our scheme will be

dZt = h(Yt )dt +
√
1 − ρ2 f (Yt )dW

1
t , (18.26)

dYt = b(Yt )dt + c(Yt )dW
2
t .

Applying Feynman–Kac theorem the differential operator associated with (18.26)
will be

L v(z, y) = h(y)
∂v

∂z
+ b(y)

∂v

∂y
+ c2(y)

2

∂2v

∂y2
+ 1 − ρ2

2
f 2(y)

∂2v

∂z2
(18.27)

= L1v(z, y) + L2v(z, y),

with

L1v(z, y) = b(y)
∂v

∂y
+ c2(y)

2

∂2v

∂y2
,

L2v(z, y) = h(y)
∂v

∂z
+ 1 − ρ2

2
f 2(y)

∂2v

∂z2
.
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In the case of plain vanilla, the option price is given in [17] by

BSα,T

(

s0e
ρ(F(YT )−F(y0))+aT +

(
(1−ρ2)vT

2T −r

)
T
,
(1 − ρ2)vT

T

)

,

where α is the payoff function depending on the underlying asset and the strike
price. BSα,T (s, v) is the price of a European option with payoff function α which
matures at T , initial stock price s, volatility

√
v, constant interest rate r , given by

Black - Scholes formula. For the case of call or put option, BSα,T is given in a closed
formula and the option price can be approximated by

P(s, T, r, v, K ) ∼= 1

M

M∑

i=1

BSα,T

⎛

⎜
⎜
⎝s0e

ρ(F(Y
N ,i
T )−F(y0))+aN ,i

T +
(

(1−ρ2)vN ,i
T

2T −r

)

T

,
(1 − ρ2)vN ,i

T
T

⎞

⎟
⎟
⎠ ,

where M is the total number of Monte Carlo samples and the index i refers to
independent draws.

18.7 Ilhan–Sircar Model (ISM)

Barrier options are contingent claims that are activated or deactivated if the under-
lying asset price hits the barrier during the life time of the option. These options are
qualified as:

• up in - the underlying asset price in the beginning is lower than the barrier level
and the option will be activated only if before the maturity the asset price hits the
barrier;

• up out - the underlying asset price in the beginning is lower than the barrier level
and the option starts activated. If the asset price hits the barrier before the maturity
the option is deactivated;

• down in - the underlying asset price in the beginning is greater than the barrier
level and the option will be activated only if before the maturity the asset price
hits the barrier;

• down out - the underlying asset price in the beginning is greater than the barrier
level and the option starts activated. If the asset price hits the barrier before the
maturity the option is deactivated.

The activation or deactivation of an barrier option is for its life, meaning that if
the option hits the barrier and is activated or deactivate doesn’t matter if afterwards
it returns to the barrier. For the execution or not is only considered the position the
option took at the first time it hits the barrier level.

In a model presented by Ilhan and Sircar in [13] the stock price process and
the volatility driving process are solutions of the following stochastic differential
equations:
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dSt = μSt dt + σ(t,Yt ) dW
1
t , S0 = xe−rT ,

dYt = b(t,Yt ) dt + a(t,Yt )(ρ dW 1
t + ρ ′ dW 2

t ), Y0 = y,

where ρ is the instantaneous correlation between shocks to S and Y and the symbol ρ ′
denote

√
1 − ρ2. Assuming that a(t,Yt ) and σ(t,Yt ) are bounded above and bellow

away from zero and smoothwith bounded derivatives, and also that b(t,Yt ) is smooth
with bounded derivatives. The utility indifference price of the contingent claim D
at time t = 0 of an investor who has initial wealth z, is the solution h̃(z, D) to the
following equation:

u(z, D) = u(z − erT h̃(z, D), 0).

Let h(z, D) = erT h̃(z, D) be the T -forward value of indifference price. Accord-
ing to

h(z, D) = 1

γ
log

(
u(0, D)

u(0, 0)

)
,

the indifference price does not depend on the initial wealth. Therefore, we omit the
dependence on z in the notation.

According to [13] under some regularity conditions, the optimal static hedging
position exists, is unique, and satisfies the following equation:

h̃′(Bα∗
) = p̃.

It remains to find h̃(Bα).
Let L 0

y be the following differential operator:

L 0
y = 1

2
a2(t, y)

∂2

∂y2
+

(
b(t, y) − ρa(t, y)

μ − r

σ(t, y)

)
∂

∂y
,

and f (t, y) be the solution to the following problem:

∂ f

∂t
+ L 0

y f = (1 − ρ2)
(μ − r)2

2σ 2(t, y)
f, t < T,

f (T, y) = 1.

Denoting

ψ(t, y) = 1

1 − ρ2
log f (t, y),
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for the differential operator L E
x,y defined as:

L E
x,y = L 0

y + ρ′2a2(t, y) ∂ψ

∂y
(t, y)

∂

∂y
+ 1

2
σ 2(t, y)x2

∂2

∂x2
+ ρσ(t, y)a(t, y)x

∂2

∂x∂y
,

if Φ(t, x, y) is the solution to the following problem:

∂Φ

∂t
+ L E

x,yΦ + 1

2
γρ ′2a2(t, y)

(
∂Φ

∂y

)2

= 0, t < T, x > 0,

Φ(T, x, y) = α(K ′ − x)+ − (x − K )−,

and ϕ(t, x, y) the solution to the following problem:

∂ϕ

∂t
+ L E

x,yϕ + 1

2
γρ ′2a2(t, y)

(
∂ϕ

∂y

)2

= 0, t < T, x > Ber(T−t),

ϕ(T, x, y) = α(K ′ − x)+,

ϕ(t, Ber(T−t), y) = Φ(t, Ber(T−t), y),

then, the indifference price at time t = 0 is

h̃(Bα) = e−rTϕ(0, x, y).

18.8 Two Stochastic Volatilities Model

The previous models considered an underlying asset governed by one stochastic
variance. Some models considered stochastic interest rate and others assume interest
rate as constant. We consider here the price evolution of an asset (for example an
equity stock) that is governed by the following stochastic differential equation

dSt = μSt dt + √
V1,t St dW1 + √

V2,t St dW2, (18.28)

where μ is the mean return of the asset, V1,t and V2,t are two uncorrelated and
finite variance processes described by Heston [12] that also change stochastically
according to the following equations

dV1,t = 1

ε
(θ1 − V1,t ) dt + ρ13

√
1

ε
V1,t dW1 +

√
1

ε
(1 − ρ2

13)V1,t dW3, (18.29)

dV2,t = δ(θ2 − V2,t )dt + ρ24

√
δV2,t dW2 +

√
δ(1 − ρ2

24)V2,t dW4.
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Here
1

ε
and δ are the speeds of mean reversion; θ1 and θ2 are the long run means;

√
1

ε
and

√
δ the instantaneous volatilities of V1,t and V2,t respectively and Wi , for

i = {1, 2, 3, 4} are Wiener processes. The correlations between the asset price St

and the variance processes V1,t and V2,t are given respectively by ρ13

√
V1,t

ε
and

ρ24
√
V2,tδ which are chosen as in Chiarella and Ziveyi [3] to avoid the product term√

V1,t V2,t .
In Eq. (18.29) choosing ε and δ to be small and to follow Feller [9] conditions, we

have a fast mean reversion speed for V1,t and a slow mean reversion speed for V2,t .
Therefore in our model the underlying asset price St is influenced by two volatility
terms that behave completely differently. For example, one may change each month
whereas the other one may change twice a day.

The finiteness of the two variances gives guarantee that (18.28) has a solution
under the real-world probability measure. In addition it ensures that there exists an
equivalent risk neutral measure under which the same equation has a solution and
the discounted stock price process under this measure is a martingale. Girsanov
theorem presented in [15] allow to transform the presented environment into risk
neutral probability world. Feynman–Kac theorem also presented in [15], proves that
the option price of the underlying asset described above can be given as the solution
of the following partial differential equation

(r − q)St
∂U

∂St
+

[
1

ε
(θ1 − V1,t ) − λ1V1,t

]
∂U

∂V1,t
+ [δ(θ2 − V2,t ) − λ2V2,t ] ∂U

∂V2,t

+1

2

[

(V1,t + V2,t )S
2
t

∂2U

∂S2t
+ 1

ε
V1,t

∂2U

∂V 2
1,t

+ δV2,t
∂2U

∂V 2
2,t

]

+ 1√
ε
ρ13StV1,t

∂2U

∂St∂V1,t

+√
δρ24StV2,t

∂2U

∂St∂V2,t
= rU − ∂U

∂t
,

subject to the terminal value condition U (T, St , V1,t , V2,t ) = h(St ). λ1 and λ2 are
the market prices of risk; r and q are constant interest rate and dividend factor
respectively. Consider that the solution of the partial differential equationU depends
on the values of ε and δ, i.e. U = U ε,δ; collecting terms with the same power of 1√

ε

and
√

δ will transform the above partial differential equation into

(
1

ε
L0 + 1√

ε
L1 + L2 + √

δM1 + δM2

)
U ε,δ = 0 (18.30)
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for

L0 = (θ1 − V1,t )
∂

∂V1,t
+ 1

2
V1,t

∂2

∂V 2
1,t

, (18.31)

L1 = ρ13StV1,t
∂2

∂St∂V1,t
,

L2 = ∂

∂t
+ (r − q)St

∂

∂St
+ 1

2
(V1,t + V2,t )S

2
t

∂2

∂S2t
− r −

−λ1V1,t
∂

∂V1,t
− λ2V2,t

∂

∂V2,t
,

M1 = ρ24StV2,t
∂2

∂St∂V2,t
,

M2 = (θ2 − V2,t )
∂

∂V2,t
+ 1

2
V2,t

∂2

∂V 2
2,t

.

Our aim is to find the price of a European option with payoff function h(St ) at
maturity T . Taking into account the Markov property and the fact that our system is
considered under the risk neutral probability measure, we can apply Feynman–Kac
theorem to obtain the option price as

U (t, St , V1,t , V2,t ) = e−(T−t)E
[
h(St ) | St = s, V1,t = v1, V2,t = v2

]
.

Calculation of this expectation is very complicated because it involves many para-
meters that have to be clearly measured and applied. To avoid this complication,
we present a perturbation method that approximates the option price by a quan-
tity that depends on much less parameters than those imposed by Feynman–Kac
theorem. From our system and also our partial differential equation, it is clear that
U (t, s, v1, v2) depends on ε and δ. From now on, to make this dependence clear, we
writeU ε;δ(t, s, v1, v2) instead ofU (t, s, v1, v2). Our assumption is that if ε and δ are
small, the associated operators will diverge and be small respectively. Therefore we
use the approach of singular and regular perturbations. Assume that our solution can
be expressed in the following form

U ε,δ =
∑

i≥0

∑

j≥0

(
√

δ)i (
√

ε) jU j,i . (18.32)

Applying this expansion in (18.30) we generate systems of partial differential equa-
tions that can be solved to obtain the prices of European option in the following
form

U ε,δ = UBS + (T − t)
(
A δ + Bε

)
UBS,

where the notationUBS stands for the solution to the corresponding two-dimensional
Black–Scholes model.
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Bε = −Υ ε
2 (v2)D1D2, Dk = xki

∂k

∂xki
, i = 1, 2, Υ ε

2 (v2) = −
√

ερ13

2

〈
v1

∂φ(v1, v2)

∂v1

〉
,

and φ(v1, v2) is the solution of

L0φ(v1, v2) = f 2(v1, v2) − σ 2(v2),

A δ = 1

2

√
δρ24〈v2〉∂σ(v2)

∂v2
, and

σ 2(v2) =
∫

(v1 + v2)Π(dv1),

where 〈·〉 =
∫

· π(s)ds denotes the averaging over the invariant distribution Π of

the variance process V1,t .
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