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Foreword

Software Technologies: Applications and Foundations (STAF) is a federation of
leading conferences on software technologies. It provides a loose umbrella organization
with a Steering Committee that ensures continuity. The STAF federated event takes
place annually. The participating conferences may vary from year to year, but all focus
on foundational and practical advances in software technology. The conferences
address all aspects of software technology, from object-oriented design, testing,
mathematical approaches to modeling and verification, transformation, model-driven
engineering, aspect-oriented techniques, and tools.

STAF 2016 took place at TU Wien, Austria, during July 4–8, 2016, and hosted the
five conferences ECMFA 2016, ICGT 2016, ICMT 2016, SEFM 2016, and TAP 2016,
the transformation tool contest TTC 2016, eight workshops, a doctoral symposium, and
a projects showcase event. STAF 2016 featured eight internationally renowned keynote
speakers, and welcomed participants from around the world.

The STAF 2016 Organizing Committee thanks (a) all participants for submitting to
and attending the event, (b) the program chairs and Steering Committee members of the
individual conferences and satellite events for their hard work, (c) the keynote speakers
for their thoughtful, insightful, and inspiring talks, and (d) TU Wien, the city of Vienna,
and all sponsors for their support. A special thank you goes to the members of the
Business Informatics Group, coping with all the foreseen and unforeseen work (as
usual ☺)!

July 2016 Gerti Kappel



Preface

This volume contains the papers presented at ICMT 2016: the 9th International Con-
ference on Model Transformation held during July 4–5, 2016, in Vienna as part of the
STAF 2016 (Software Technologies: Applications and Foundations) conference series.
ICMT is the premier forum for researchers and practitioners from all areas of model
transformation.

Model transformation encompasses a variety of technical spaces, including mod-
elware, grammarware, dataware, and ontoware, a variety of model representations, e.g.,
based on different types of graphs, and a range of transformation paradigms including
rule-based transformations, term rewriting, and manipulations of objects in general-
purpose programming languages.

The study of model transformation includes transformation languages, tools, and
techniques, as well as properties (such as modularity, composability, and parameteri-
zation) of transformations. An important goal of the field is the development of ded-
icated model transformation languages, which can enable the specification of complex
transformations in a rigorous manner and at an appropriate level of abstraction.

The efficient execution of model queries and transformations by scalable transfor-
mation engines on top of large graph data structures is also a key challenge for an
increasing number of application scenarios. Novel algorithms as well as innovative
(e.g., distributed) execution strategies and domain-specific optimizations are sought in
this respect. To have an impact on software engineering in general, methodologies and
tools are required to integrate model transformation into existing development envi-
ronments and processes.

This year, ICMT received 36 submissions. Each submission was reviewed by an
average of four Program Committee members. After an online discussion period, the
Program Committee accepted 13 papers as part of the conference program. These
papers included regular research, application, and tool demonstration papers presented
in the context of four sessions on model transformation languages, model transfor-
mation tools, developing model transformations, applications of model transforma-
tions, and the future of the field.

Many people contributed to the success of ICMT 2016. We are grateful to the
Program Committee members and reviewers for the timely delivery of reviews and
constructive discussions under a very tight review schedule. We also thank our keynote
speaker Juan de Lara for his excellent talk on approaches to model transformation
reuse. Last but not least, we would like to thank the authors who constitute the heart
of the model transformation community for their enthusiasm and hard work.

July 2016 Pieter Van Gorp
Gregor Engels
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Approaches to Model Transformation Reuse
(Invited Talk)

From Concepts to a-posteriori Typing

Juan de Lara
Modelling and Software Engineering Group
Universidad Autónoma de Madrid, Spain

http://miso.es

Abstract. Models are the main assets of Model-Driven Engineering (MDE), and
hence model transformations are essential to automate the model manipulations
required by MDE. Different kinds of transformations are common in MDE, like
in-place, model-to-model, or model-to-text. In all cases, their definition is based
on the meta-models of the models to be manipulated. However, the proliferation
of meta-models in MDE (e.g., in connection with Domain-Specific Languages,
DSLs) complicates transformation reuse. This is so as transformations are
defined for particular meta-models and are not applicable to other meta-models,
even if they have some commonalities. Therefore, in order to facilitate the
creation of DSL-based MDE solutions, flexible means to reuse transformations
across heterogeneous meta-models are required.

In this presentation, we will explore several approaches to transformation reuse. First,
taking inspiration from generic programming, we propose concepts, gathering the
requirements needed from meta-models to qualify for a model transformation [1]. This
way, transformations are defined over concepts and become reusable by binding the
concept to concrete meta-models. The binding induces an adaptation of the transfor-
mation, which becomes applicable to the bound meta-model.

Concepts can also be interpreted as meta-meta-models defining a set of candidate
meta-models for the transformation. Hence, we will explore multi-level modelling to
express reusable transformations [3]. However, this approach requires using the
domain meta-meta-model to construct the meta-models and prevents unanticipated
reuse. Hence, the talk will end presenting a-posteriori typing. This is as a means to
provide models with additional types beyond their creation meta-model [2], so that
transformations defined for such types become reusable for those models. Moreover,
decoupling object creation from typing permits embedding simple transformations in
the conformance relation.

References

1. de Lara, J., Guerra, E.: From types to type requirements: genericity for model-driven engi-
neering. Softw. Syst. Model. 12(3), 453–474 (2013)

2. de Lara, J., Guerra, E., Cuadrado, J.S.: A-posteriori typing for model-driven engineering. In:
MoDELS, pp. 156–165. IEEE (2015)

3. de Lara, J., Guerra, E., Cuadrado, J.S.: Model-driven engineering with domain-specific meta-
modelling languages. Softw. Syst. Model. 14(1), 429–459 (2015)
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A Domain Specific Transformation Language
to Bridge Concrete and Abstract Syntax

Adolfo Sánchez-Barbudo Herrera1(B), Edward D. Willink2,
and Richard F. Paige1

1 Department of Computer Science, University of York, York, UK
{asbh500,richard.paige}@york.ac.uk
2 Willink Transformations Ltd., Reading, UK

ed@willink.me.uk

Abstract. Existing language workbenches, such as Xtext, support bridg-
ing the gap between the concrete syntax (CS) and abstract syntax (AS)
of textual languages. However, the specification artefacts – i.e. gram-
mars – are not sufficiently expressive to completely model the required
CS-to-AS mapping, when it requires complex name resolution or multi-
way mappings. This paper proposes a new declarative domain specific
transformation language (DSTL) which provides support for complex CS-
to-AS mappings, including features for name resolution and CS disam-
biguation. We justify the value of and need for a DSTL, analyse the chal-
lenges for using it to support mappings for complex languages such as
Object Constraint Language, and demonstrate how it addresses these
challenges. We present a comparison between the new DSTL and the
state-of-the-art Gra2Mol, including performance data showing a signifi-
cant improvement in terms of execution time.

Keywords: Concrete syntax · Abstract syntax · Domain specific trans-
formation language · Xtext · OCL · Gra2Mol

1 Introduction

One of the challenges that Model-Driven Engineering (MDE) tool implemen-
tors face when creating modelling languages is how to effectively bridge the gap
between the concrete syntax (CS) and the abstract syntax (AS) of a language:
the CS must be designed so that end-users have a familiar and accessible syntax,
whereas the AS must be provided behind-the-scenes to enable model manage-
ment and manipulation – and the two artefacts must be related.

Although this is a general challenge addressed by many works in the field,
there are still gaps, particularly for bridging the CS-to-AS (CS2AS) gap for
non-trivial modelling languages like the Object Constraint Language (OCL). To
understand the aims of this research, we introduce its scope and motivation in
the remainder of this section. Section 2 goes deeper into the challenges that arise
when specifying CS2AS bridges for languages like OCL. Section 3 introduces the

c© Springer International Publishing Switzerland 2016
P. Van Gorp and G. Engels (Eds.): ICMT 2016, LNCS 9765, pp. 3–18, 2016.
DOI: 10.1007/978-3-319-42064-6 1



4 A. Sánchez-Barbudo Herrera et al.

proposed solution to overcome these challenges. Section 4 assesses related work,
and we present a more extensive comparative study with Gra2Mol in Sect. 5. We
give final remarks and future work in Sect. 6 and conclude in Sect. 7.

1.1 Scope

Bridging the CS and the AS of a modelling language is a topic with significant
related work (discussed in Sect. 4). We focus on the problem for a subset of
languages:

– Those whose AS is given in the form of an established (possibly standard-
ised) meta-model. In other words, the end user is interested in editing models
conforming to an already existent meta-model.

– Those whose CS is textual and given in the form of a grammar. Although we
are aware of previous work [1–3] that supports for textual concrete syntaxes
without any grammar provision, they are out of this paper scope.

We use OCL [4] to illustrate the ideas of our approach. OCL has a tex-
tual CS and managing instances of it consists of editing models conforming to
the language AS (meta-model). The grammar and meta-model come from the
specification defined by the Object Management Group (OMG).

1.2 Motivation

To clarify the motivation for our approach, we expose a problem with a specific
language workbench: Xtext [5]. Then, we briefly introduce our solution.

Problem. Xtext grammars provide the means to specify bridges between the
CS and the AS. However, this can only be done easily for simple languages.
Consider the following example of an OCL expression:

1 x.y

Figure 1 shows a plausible CS definition. It uses a very simplified OCL gram-
mar and CS with just navigation expressions for ease of presentation.

Fig. 1. Example CS definition

In terms of AS (Clause 8 of [4]), we can be sure that ‘y’ must be a Proper-
tyCallExp. This means, in terms of evaluation (dynamic semantics), that the ‘y’
property must be navigated from the object evaluated from the PropertyCall-
Exp source (i.e. ‘x’ ). ‘x’ could be a VariableExp, whose evaluation uses the value
of the ‘x’ variable (perhaps defined in an outer LetExp). However, in OCL, ‘x’
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could also be another property navigation using the value of the implicit ‘self ’
variable. In other words, the original expression could be shorthand for ‘self.x.y’.

This kind of situation cannot be handled by Xtext grammars. Syntactically,
it is unknown whether the name ‘x’ that precedes the ‘.’ operator is a Variable-
Exp, or a PropertyCallExp. Additional semantic information (static semantics)
is required. Despite enhancing EBNF notation [6] to map the AS from the CS,
Xtext grammars are insufficient to cope with all the required mappings.

Proposed approach. Given such problematic scenarios, we advocate a clear
distinction between the CS specification (i.e. a grammar), from which a CS
meta-model can be straightforwardly derived (as Xtext does), and the AS speci-
fication (i.e. a meta-model). Transition from the CS to the AS is then a matter of
exercising a model-to-model (M2M) transformation. In particular, we propose a
domain specific transformation language (DSTL); our solution entirely operates
in the modelware technological space [7].

The reader may note that the approach itself is not novel. The convenience
of a CS meta-model has been previously published [8], and, as discussed in our
previous work [9], an OCL based informal description is proposed by the own
OCL specification. Gra2Mol [10] demonstrates the same idea of a DSTL to map
grammars to arbitrary AS meta-models. However, we have identified limitations
that have pushed us to come up with a new DSTL, which combines novel fea-
tures from DSLs like NaBL [11], while offering both declarative capabilities and
significant performance improvement (see Sect. 5).

2 Problem Analysis

In this section, we analyse challenges to be addressed when specifying CS2AS
bridges for languages like OCL that require non-trivial CS2AS mappings.

2.1 Challenge 1: Significant Gap Between CS and AS

Previous work [5,12] has proposed how meta-models can be mapped from gram-
mars specification. In OCL, there is an AS meta-model which has been estab-
lished a priori ; there are substantial differences between the CS and AS. When
the mappings between CS and AS elements (e.g. between a grammar non-
terminal and a meta-class) are not direct (1-1 mapping), existing approaches
cannot easily establish the desired CS2AS bridges. In general, the possibility to
create many AS elements from many CS elements (M-N mappings) is required.

In our introductory example we required either a 2-1 or 2-2 mapping.
A NameExpCS and a SimpleNameCS corresponding to the ‘x’ expression, maps
either to a VariableExp for the ‘x’ variable or to a VariableExp for the implicit
‘self ’ variable and a PropertyCallExp for the ‘x’ property.

2.2 Challenge 2: Cross-References Resolution

When creating AS models, graphs are produced rather than trees. This requires
a mechanism to set cross-references at the AS level. For instance, in OCL, the
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AS elements reference their type. We must therefore specify the computation
of these types that may involve identification of a common specialization of
template types.

2.3 Challenge 3: Name Resolution

Name resolution is a particular form of cross-referencing where we use CS infor-
mation such as a name to locate one AS named element in the context of another
AS element to resolve a cross-reference between the AS elements. For instance,
in our introductory example, ‘y’ is used in the context of the PropertyCallExp
to resolve the reference to the Property.

2.4 Challenge 4: Disambiguation Resolution

In the introductory example, we explained how ‘x’ might map to either a Vari-
ableExp for ‘x’ or a VariableExp and PropertyCallExp for ‘self.x’. Syntactically,
we cannot determine which AS should be created. Disambiguation rules are
therefore required whenever a CS element is ambiguous. CS2AS bridges can
specify these CS disambiguation rules as computations involving the CS and/or
AS model elements.

3 Solution

We now propose our solution to the aforementioned challenges.

3.1 Distinct CS and as Meta-Models

The overall approach is depicted in Fig. 2. We advocate introducing distinct CS
and AS meta-models. The AS is the established target meta-model ➌. The CS can

Fig. 2. Overall approach
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be an intermediate meta-model ➋ automatically derived from a grammar defin-
ition ➊. A potentially complex bridge ➍ between the CS and AS of a language
defines mappings between the concepts of the CS and AS meta-models, i.e. defin-
ing a model-to-model (M2M) transformation. Existing tools can generate a CS
meta-model and the parser ➎ capable of producing the conforming CS models
from a given textual input. In this paper we are concerned with the CS2AS bridge
from which we synthesize the M2M transformation solution ➏ that is responsible
for consuming CS models in order to produce the final AS ones.

With the proposed approach we operate in the modelware technological
space. The significant parsing concerns do not affect us and so we are not depen-
dent on a particular parser and/or language workbench technology. For example,
Xtext (and ANTLR [13] based parsers) are suitable for this approach. More gen-
erally, any underlying parser produces CS models conforming to a meta-model
could be used. We could therefore use IMP [14] (and LPG [15] based parsers).

3.2 CS2AS External DSTL

We propose a new external DSTL for the CS2AS definition ➍ in Fig. 2. We use
a new DSTL rather than an existing M2M transformation language, to provide
a more concise declarative language in this domain. The DSTL reuses Essential
OCL as the expressions language. The following characteristics led us to define
it as a DSTL:

One input and output domain. The model transformations involves just one
source input domain and one target output domain. Each domain which may
comprise several meta-models. There is no need to support in-place transforma-
tions.

Specific name resolution related constructs. We add specific constructs to
define name resolution in a declarative manner.

Specific disambiguation rules. The CS disambiguation concern is separated
by providing a dedicated declarative section to specify the disambiguation rules
that drive AS element construction.

The DSTL consists of four different sections: helpers, mappings, name reso-
lution and disambiguation. Each addresses a particular concern of the process of
describing CS2AS bridges, and they are introduced below.

Helpers. The helpers section provides reusable functionality in the form of
helper operations. For instance, Listing 1 depicts a declaration of a helper oper-
ation that retrieves the parent element of a NameExpCS as another NameExpCS.
When the parent element is either null or a non-NameExpCS, null is returned.

1 helpers {
2 NameExpCS::parentAsNameExp() : NameExpCS[?] :=
3 let container = self.oclContainer()
4 in if container.oclIsKindOf(NameExpCS)
5 then container.oclAsType(NameExpCS)
6 else null endif }

Listing 1. Helpers section excerpt
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1 mappings {
2 map PropertyCallExp from NameExpCS
3 when nameRefersAProperty {
4 ownedSource := let parent = self.parentAsNameExp()
5 in if parent = null
6 then VariableExp {
7 referredVariable = trace.lookup(Variable, ’self’); }
8 else parent.trace;
9 endif

10 property := trace.lookupFrom(Property, sName, trace.ownedSource.type)
11 type := trace.property.type }}

Listing 2. Mappings section excerpt

Mappings. The mappings section is the main part of the DSTL. The mappings
declare how AS outputs are created and initialized from CS inputs. The DSTL
includes the basics of declarative M2M transformation languages [16].

Listing 2 depicts an excerpt for our example; we highlight the relevant fea-
tures. Line 3 refers to a disambiguation rule that is specified in the disambigua-
tion section (explained later). Lines 7, 8, 10 and 11 make use of trace expressions,
which let us access the AS domain from CS elements. Lines 7 and 10 make use
of lookup expressions to compute name resolution based cross-references (more
details later).

The mappings section addresses complex CS2AS mappings like that required
by our example. The use of OCL supports complex computation and full navi-
gation of the CS and AS models.

Name resolution. The third section of the DSTL specifies how names are
resolved. Explaining the full capabilities of the language would merit its own
paper. We therefore focus on what is required to explain name resolution in our
example: in particular, how a Property might be located to resolve the Proper-
tyCallExp::referredProperty cross-reference.

1 nameresolution {
2 Property {
3 named-element name-property name; }
4 Class {
5 for all-children -- scopes can be configured for all-children elements
6 nested-scope ownedProperties;
7 exports ownedProperties; }}

Listing 3. Basic name resolution declaration for Property elements lookup.

Listing 3 shows the solution for the simple case. We firstly identify Property as
a named element, the target of name-based lookups (lines 2–3). Basic unqualified
named element lookups are based on the concept of lookup environments (scopes)
propagation (Clause 9.4 of [4]). They are detailed in our previous work [9]. In
our example, we declare how Properties are contributed to lookup scopes. In this
case, it is done by the owning Class (Lines 5–6). Since a property name might
occlude others defined in outer scopes, we use the nested-scope keyword.

Named elements might be the target of lookups out of the scope of the
element that performs the lookup. For instance, a PropertyCallExp may refer to
a Property of a Class that is not the Class defining the expression’s scope. Thus,
we also declare that a Class exports its owned Properties (line 7).
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Finally, we explain how name-based lookups are linked with the mappings
section. In Listing 2, we remarked on two new expressions that enhance OCL:
lookup expressions (line 7) are used to declare a named element lookup in the
current scope. They require the target element type and additional input infor-
mation (the string ‘self ’, in that example); lookupFrom (line 10) expressions
are used to look up exported elements. They require another parameter indi-
cating from which element the lookup is performed (the type of the ownedSource,
in that example).

Disambiguation. The disambiguation section of the DSTL declares CS disam-
biguation rules which can be referred to by mappings declared in the mappings
section. These disambiguation rules act as a guard for the referring mapping.
Listing 4 shows an example of disambiguation rules required by our introductory
example.

1 disambiguation {
2 NameExpCS {
3 nameRefersAVariable :=
4 let asParent = oclContainer().trace
5 in asParent.lookup(Variable, sName) <> null;
6 nameRefersAProperty :=
7 let csParent = parentAsNameExp(),
8 asParent = oclContainer().trace
9 in if parentNameExpCS = null

10 then asParent.lookup(Property, sName) <> null
11 else asParent.lookupFrom(Property, csParent.trace.type, sName) <> null
12 endif; }}

Listing 4. CS disambiguation rules

Our DSTL separates the disambiguation rules from the mappings section.
This lets us solve a typical issue in declarative transformation languages where
mappings applied to the same input type contain non-exclusive guards (two
guards might evaluate to true). For instance, in our example, ‘x’ might be both
a variable to refer in that particular expression scope, and a property of the
‘self ’ variable. In order to address this issue and keep the mappings section
declarative, we enhance the semantics of the disambiguation section so that the
order in which the disambiguation rules are defined is significant: the first disam-
biguation rule that applies for a particular CS element is used. In our example,
and providing the mentioned conflict, ‘x’ disambiguates to a VariableExp, rather
than a PropertyCallExp, since the nameRefersAVariable disambiguation rule is
defined first.

3.3 Implementation

The DSTL has been prototyped using Xtext. The corresponding Eclipse plugins
are publicly available1. The implementation does not include an M2M transfor-
mation engine capable to execute instances of the DSTL, rather it contains an
Xtend-based [17] code generator2 that generates a set of Complete OCL files
conforming to the OCL-based internal DSL described in our previous work [9].

1 https://github.com/adolfosbh/cs2as.
2 Implementation details about the generator are not included in this paper.

https://github.com/adolfosbh/cs2as
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As explained in [9], the actual CS2AS transformation execution is performed
by a generated Java class that uses the Eclipse Modeling Framework and Ecore
meta-models to transform CS models to AS models.

4 Related Work

We now discuss how our approach relates to previous work. Space constraints
prevent a detailed comparison with the very many tools that provide partial
support to the problems identified in this paper, including TEF [18], Spoofax [19]
and Monticore [20]. The state-of-the-art related to this research is Gra2mol [10]
for which we include a detailed comparative study (Sect. 5). Here, we discuss two
particular language workbenches in more detail: Xtext, because it has motivated
this research and we aim to integrate with it; and Spoofax, whose NaBL [11]
sub-language has been a source of inspiration of a part of our DSTL.

4.1 Xtext

The introduction mentioned some of the limitations of Xtext; we now relate the
challenges from Sect. 2 to Xtext’s capabilities.

Challenge 1. Although Xtext grammars provide mechanisms to bridge the CS
and AS of a language, as soon as we move away from simple DSLs to those that
require M-N mappings, Xtext is insufficient.

Challenge 2. Xtext grammars support name resolution for cross-references in
the AS models. They do not support derived resolution such as the types of OCL
expressions.

Challenge 3. Xtext grammars resolve names using simple implicit scoping rules.
More complex scoping scenarios requires customized code.

Challenge 4. Xtext provides no way to declare CS disambiguation rules.

4.2 Spoofax

Spoofax is a language workbench to give support – e.g. parsers, editors – to
textual languages. Although it was not originally intended to create models,
there is work [21] showing that Spoofax can be used for this purpose. We now
relate the challenges from Sect. 2 to Spoofax capabilities.

Challenge 1. Past Spoofax work [21] to generate meta-models from grammars
suffers from the same limitations as Xtext (above). However, Stratego/XT [22]
can be used within Spoofax to address this challenge. Building on its foundations,
we can define transformations from AST elements (i.e., the CS model) produced
by a parser into an AS model.

Challenge 2. Stratego/XT can resolve cross-references in the AS model.
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Challenge 3. Spoofax offers a declarative name resolution language (NaBL
[11]). However, the name resolution descriptions are only aware of the grammar
descriptions (SDF [23]). Cross-references are set when producing the initial AST
obtained from the parser. This inhibits cross-references to external AS models –
e.g. an AS model with no CS. In the case of OCL, many of the external (meta-
)models on which OCL queries operate do not necessarily relate to any textual
CS at all.

Challenge 4. Stratego/XT specifies disambiguation rules using strategy expres-
sions. There is no convenient way to declare CS disambiguation rules relying on
name resolution.

5 Gra2Mol: Comparative Study

We consider Gra2Mol as the-state-of-the-art related to this work. Although it
was originally intended as a text-to-model tool for software modernization, their
DSTL fits in the same scope and objective we present in this paper. To better
assess how our proposed DSTL contributes to the field, we present a comparative
study with Gra2Mol. The study consists of a qualitative evaluation in terms of
features/capabilities and a quantitative evaluation in terms of performance.

5.1 Qualitative Study

In this section we compare Gra2Mol and our DSTL in terms of their features
and capabilities. Due to restricted space, we focus on relevant differences.

Query language. Gra2Mol is based on a tailored structure-shy (like XPath)
query language, and our DSTL is based on the statically typed OCL. The
Gra2Mol query language is less verbose and more concise than OCL; thus,
Gra2Mol instances tend to be smaller. However, Gra2Mol navigation operators
are based on accessing children elements. This forces3 the declaration of deep
navigations from the root element, whenever the information is not contained
by a given CS element. This leads to performance penalties, because the oper-
ators are not as fast as a simple oclContainer() call. Also, the Gra2Mol query
language is designed to work strictly on CS models. This has some advantages
(e.g., conciseness) compared with our DSTL, because the latter requires usage of
trace expressions to access the AS domain. However, navigating the AS domain
(graphs) from the CS one (trees) provides more concise and/or less expensive
navigations to retrieve some particular AS information (e.g. querying the type
– a cross-reference – of a particular expression). More importantly, focusing on
CS navigations prevents CS2AS transformations from working with external AS
models (e.g. a library model with no CS).

Name resolution. Name-based cross-references are declared in Gra2Mol as
another model query. These queries are described as direct searches that consider
3 Gra2Mol has a language extension mechanism to introduce new operators, which

could be used to improve the default built-in functionality.
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where the target element is located in the model. Model queries get significantly
complicated when simulating lookup scopes. In complex languages like OCL,
the declarative nature of our nameresolution section makes name-based cross-
reference declarations concise.

Disambiguation rules. Separating the disambiguation rules away from the
mapping declarations provides additional semantics and overcomes a Gra2Mol
limitation [10]: “If two or more conforming rules exist, their filter conditions must
be exclusive, since only one of them can be applied”. This limitation prevents a
simple Gra2Mol solution to our introductory ‘x.y’ example.

Front-end coupling. Our DSTL is not coupled to a parser technology or
language workbench. The Gra2Mol transformation interpreter is coupled to a
homogeneous CS meta-model they provide, which is incompatible with Xtext
grammars; more generally, integrating Gra2Mol with a language workbench like
Xtext is impractical.

5.2 Quantitative Study

The quantitative study consists of an experiment based on obtaining execu-
tion time measurements for both Gra2Mol and our prototype when executing
CS2AS transformations. We focus on execution time because we aim to integrate
these CS2AS transformations in textual editors, where too-slow execution time
is unacceptable.

Gra2Mol is publicly available with different ready-to-go examples. Our exper-
iment replicates one of them with our prototype and performs a benchmark
involving models of different size and/or topology.

Example. We have picked one of the published Gra2Mol examples that is sim-
ple enough to fit within our space constraints, that requires cross-references
resolution, and provides models of varied topologies.

Figure 3 shows the CS (ANTLR grammar) and AS (Ecore meta-model) of
the modelling language, as defined by the target “101 Companies” example4 [24].
The definition of lexical tokens has been intentionally omitted.

Figure 4 depicts side-by-side excerpts of the artefacts that show how the
CS2AS bridge is specified within both approaches. There are numerous similari-
ties between the CS2AS descriptions, where the main differences are in the model
queries. Our DSTL isolates the name resolution concerns in its own section.

Experiment Setup. We now describe how the experiment is conducted. We
ensure that the CS2AS transformation executions are correct by checking that
the output models produced by both transformations are the same.

We created a tailored model generator for the example, configured by the
following parameters:

4 https://github.com/jlcanovas/gra2mol/tree/master/examples/Grammar2Model.
examples.101companies.

https://github.com/jlcanovas/gra2mol/tree/master/examples/Grammar2Model.examples.101companies
https://github.com/jlcanovas/gra2mol/tree/master/examples/Grammar2Model.examples.101companies
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Fig. 3. CS (left) and AS (right) of the target 101 companies [24] example.

Fig. 4. CS2AS specification in Gra2Mol (left) and our DSTL (right).

Nd : Number of (top level) departments in the company model.
Ns : Number of subdepartments per department/subdepartment.
Ne : Number of employees per department/subdepartment.
Ds : Depth level of (sub)departments.

Element attributes are pseudo-randomly generated, whereas the Employee::
mentor cross-reference is assigned to another random employee with a 0.5 prob-
ability. The input models used in the experiment are characterized by Table 1.

The experiment consists of using both technologies to run the corresponding
CS2AS transformation with each model. With the aim of easing repeatability, we
have set up an experiment environment in the SHARE [25] platform5. The reader
just needs to log in platform, and request access to the prepared virtual machine6.

5 http://share20.eu.
6 http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu

12LTS CS2AS-DSTL—Experiments.vdi.

http://share20.eu
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu12LTS_CS2AS-DSTLhbox {---}Experiments.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu12LTS_CS2AS-DSTLhbox {---}Experiments.vdi
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Table 1. Experiment model characterization

Model ID Size (bytes) Elements Nd Ns Ne Ds

M1 1, 238 22 3 0 3 1

M2 6, 105 97 3 3 4 2

M3 149, 951 701 1 1 3 100

M4 42, 805 708 1 100 3 2

M5 223, 848 3061 4 4 5 4

M6 1, 018, 254 11901 10 4 10 4

M7 9, 794, 276 109341 10 5 10 5

When the access is granted, the user can connect to the remote virtual machine
and access the system using Ubuntu as user name, and reverse as password.
Additional information (README) about how to repeat the experiment, as
well as more details about the environment can be found in the user desktop.

Experiment Results. We now present the results, including observations and
discussion. Figure 5 summarizes the performance results. All the collected data
and graphics are publicly available7.

Fig. 5. Experiment results: execution time.

Overall, Gra2Mol is ten times slower than our prototype with respect to this
example. There is an observed peak in performance when Gra2Mol deals with
M3 (701 model elements). It is unexpected, especially when comparing with M4

(708 model elements) which has a similar number of model elements. If we look
at the model parameters characterization from Table 1, we identify two main

7 https://docs.google.com/spreadsheets/d/16aYZRdKiPOMA z 85zfVFNLqPPe1XM
vNsSdGIw8j7vw/edit?usp=sharing.

https://docs.google.com/spreadsheets/d/16aYZRdKiPOMA_z_85zfVFNLqPPe1XMvNsSdGIw8j7vw/edit?usp=sharing
https://docs.google.com/spreadsheets/d/16aYZRdKiPOMA_z_85zfVFNLqPPe1XMvNsSdGIw8j7vw/edit?usp=sharing
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differences: M3 is a deep model, whereas M4 is a wide one; Despite the similar
number of model elements, M3 is bigger in terms of size (149,951 vs 42,805
bytes). This is explained by the logic used by the model generator to assign
names to model elements: the deeper the named element is inside the model,
the longer the string for the corresponding name. These topology differences
between M3 and M4, makes us conclude that model topology seriously impacts
Gra2Mol performance, whereas this is not the case with our prototype.

In terms of scalability, we observe that neither approach adequately scales
(i.e. bad performance results with big models). Some more comments about this
limitation are given below.

Limitations. Neither Gra2Mol nor our prototype scaled proportionately; we
repeated the experiment but we removed the computation of Employee::mentor
property from both transformations. For the latter, we also removed the model
query required to compute that property. The results are depicted in Fig. 6.

Fig. 6. Execution time when Employee::mentor property is not computed.

We get more reasonable results that lead to the same previous conclusions.
Additionally, we conclude that the bad performance results from the original
experiment come from the expensive query to compute the Employee::mentor
property. In our prototype, when compiling to a Complete OCL document-based
specification [9], the name resolution behaviour is translated as a set of OCL
operations. Given the name resolution defined for the example, the operational
behaviour of these OCL operations implies traversing the whole model every time
name resolution is required. In Gra2Mol the penalty is even worse (transforma-
tion of M7 takes several hours), because the expensive traversal is performed
even though a particular employee is not meant to have a mentor.

Although this an implementation issue, rather than a DSTL one, this is an
important issue to address, and so we aim to address the missing re-computation
cache in the near future.
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6 Remarks and Future Work

In this paper, we have focused on textual CS. However, the proposed solution
works in the modelware technological space. Thus, it might be used, for instance,
with diagrammatic CS, as long as all the corresponding editing facilities produce
a CS model (e.g. figures, colours, etc.). This is something we aim to explore in
future work, e.g., on editors for probabilistic state machines or flexible models.

In this paper, our DSTL establishes mappings from the CS towards the AS.
However, many tools need to obtain the corresponding CS representation of an
AS model, for instance, after a model refactoring. Although the traces between
the CS and AS models are retained, the inverse transformation step is not cur-
rently supported. However, we see no immediate impediment to use the same
DSTL to specify the opposite transformation.

In this paper, we focused on the CS-to-AS transformation step. However, to
add more value to the proposed language, additional tooling to better integrate
with modern workbench languages is required. We have created some Xtext
integration support, so that a generated editor benefits from an enhanced content
assist produced from the name resolution description. Also, the generated outline
view is enhanced to show the structure of the AS model rather than the CS model
one. We want to polish and publish this work in the near future.

When comparing with Gra2Mol, we improved the DSTL’s declarative nature
by incorporating a NaBL-like sub-language to support name resolution based
cross references. We could improve the DSTL further by incorporating an
XSemantics-like [26] sub-language to support type system resolution based cross
references.

7 Conclusions

We have proposed a new DSTL to bridge the CS and AS of languages, in par-
ticular, those whose CS is textual and specified by a grammar, and whose AS
is specified by an established meta-model. We have justified the need for this
language by showing some specific challenges that arise when the CS and AS
bridge is non-trivial, in particular in OCL. The proposed solution operates in
the modelware technological space, and hence does not commit to a particular
parser technology or language workbench.

After a qualitative comparison with Gra2Mol (state-of-the-art), we showed
an experiment whose results provide evidence that our prototype outperforms –
in terms of execution time – Gra2Mol (in the example, ten times fold).

Although there currently are limitations, the proposed solution makes a sub-
stantial step towards providing the required support for complex textual mod-
elling languages (e.g. OCL), by means of specification artefacts such as gram-
mars, meta-models and domain specific transformations.
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Abstract. Mainstream model transformation tools operate on graph
structured models which are described by class-based meta-models. In
the traditional grammarware space, transformation tools consume and
produce tree structured terms, which are described by some kind of alge-
braic datatype or grammar. In this paper we explore a functional style
of model transformation using Rascal, a meta-programming language,
that seamlessly integrates functional programming, flexible static typ-
ing, and syntax-based analysis and transformation. We represent meta-
models as algebraic data types (ADTs), and models as immutable values
conforming to those data types. Our main contributions are (a) REFS
a simple encoding and API, to deal with cross references among model
elements that are represented as ADTs; (b) a mapping from models to
ADTs augmented with REFS; (c) evaluation of our encoding by imple-
menting various well-known model transformations on state machines,
meta-models, and activity diagrams. Our approach can be seen as a first
step towards making existing techniques and tools from the modelware
domain available for reuse within Rascal, and opening up Rascal’s
transformation capabilities for use in model driven engineering scenarios.

1 Model Transformation with Grammarware

There are strong analogies between modelware and grammarware, albeit that
terminology is mostly disjoint. For example, in modelware, a state machine model
can be described by a model described in Ecore and Ecore itself is described
using the Ecore meta-model. In grammarware, a C program can be described
by a grammar of the C language written in BNF notation and BNF notation
itself is described by a BNF grammar. A key difference between these domains is
how models are represented. In the modeling domain models and meta-models
are represented and processed as mutable graphs while immutable, tree-based,
representation prevails in the grammar domain. The focus of this paper is on
analyzing and bridging the impedance mismatch between these graph-based and
tree-based domains. This can bring various cross fertilization benefits:

• The ecosystem of models and modeling tools becomes available for
the grammar-based approaches, e.g., EMF1 (including Ecore2 and

1 See http://www.eclipse.org/modeling/emf/.
2 See http://www.eclipse.org/ecoretools/.
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EMFCompare3), GMF4, and various model repositories. For example, these
and other model-based tools could be used to explore, compare, and evolve
the input and output of grammar-based tools.

• The analysis, transformation and development tools of the grammar-based
approaches (e.g., parser generators, fact extractors, rewriting engines, refac-
toring tools, code generators, and language workbenches) become applicable
to models. For example, mature techniques for refactoring, static analysis and
program transformation become can be leveraged on model-based represen-
tations.

More specifically, we will explore whether and how Rascal—a meta-
programming language that seamlessly integrates functional programming, flex-
ible static typing, algebraic data types (ADTs) and grammar-based analysis and
transformation—can be used as a bridge. A key question is then how to repre-
sent cross references in a tree-based setting that supports only immutable data.
We present a simple framework, Refs, for representing graph-structured mod-
els as immutable values, based on unique identities and structure-shy traversal
(Sect. 2). Refs is illustrated with simple transformations on state machines. We
then show how general, class-based meta-models used in model-driven tools are
mapped to Rascal’s ADTs, augmented with Refs (Sect. 3). We have validated
Refs by implementing a sample of well-known model transformations, ranging
from the ubiquitous example of transforming families to persons, to executing
UML Activity Diagrams (Sect. 4). We discuss results of our experiments and
related work in Sect. 5. The results as presented should be seen as a proof-of-
concept rather than a mature technology for model analysis and transformation
in Rascal. All the code of Refs and the sample of model transformations can
be found online at https://github.com/cwi-swat/refs.

2 Encoding References in Rascal

2.1 Essential Language Features

Rascal5 is a functional programming language targeted at meta-programming
tasks [14]. This includes source code transformation and analysis, code gener-
ation and prototyping of programming languages. Rascal can be considered a
functional language, since all data is immutable: once values have been created
they cannot be modified and the closest one can come to a mutable update is by
creating a new value that consists of the original value with the desired change.
Nevertheless, the language features mutable variables (see below) and in com-
bination with higher-order functions, this enables representing mutable objects
using closures: functions packaged with their variable environment. In addition
to these latter features, the following Rascal features also play an important
role in our proposal.
3 See https://www.eclipse.org/emf/compare/.
4 See http://www.eclipse.org/gmf-tooling/.
5 See http://www.rascal-mpl.org.

https://github.com/cwi-swat/refs
https://www.eclipse.org/emf/compare/
http://www.eclipse.org/gmf-tooling/
http://www.rascal-mpl.org
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Rascal features a static type system which provides (possibly parameterized)
types and a type lattice with void at the bottom and value at the top. Two
features are relevant for the current paper. First, types can be reified, i.e., types
can be represented as and manipulated as values. Second, all user-defined ADTs6

are a subtype of the standard type node. This makes it possible to write generic
functions that are applicable for any ADT. We will use this to define type-safe,
generic, functions for model manipulation.

When analyzing or transforming programs in real programming languages,
many distinct cases have to be considered, one for each language construct, and
the visit order of nested constructs has to be programmed explicitly leading to
a lot of boiler-plate code. Structure-shy matching (only matching the cases of
interest) and traversal (automating the visit of nested constructs) using Rascal’s
visit statement and deep match operator (/) enables matching and replacement
of (deeply) nested subtrees without precisely specifying their surroundings. We
will use this in the implementation of model transformation functions.

Very expressive variable assignments allow seemingly imperative coding style
even though all data is immutable. As a first example, assume variable m is a map
from strings to integers, its type is map[str,int]. The assignment m["model"] = 3

will construct a new map value that reflects this modification and assigns it to m.
Such assignments generalize over field lookup on tuples and constructor values.

Finally, functions and data constructors can be declared with optional key-
word parameters.7 When keyword parameters occur in function or ADT decla-
rations, they should appear after ordinary parameters, and should be initialized
with a default value. Keyword parameters are optional in function and construc-
tor applications since a default value is always available from the corresponding
declaration. The value of a keyword parameter is computed on demand, i.e., not
when the function or constructor is called but at the moment that the para-
meter is retrieved during execution. In pattern matching, keyword parameters
are ignored when left unspecified in a pattern, but matching a specific keyword
parameter value can be done as well. We will exploit this by representing object
identity by a keyword parameter that can be conveniently ignored by the model
programmer and is only explicitly manipulated in our infrastructure.

2.2 Example: State Machines

Figure 1 shows ADTs capturing the structure of state machine models: Machine,
State, and Trans. A machine has a name, and contains a list of states. The last
argument of the machine constructor is a keyword parameter, representing the
identity of the state machine. In this example the uid parameters are initialized
with noId()—a function that throws an error, if the uid is accessed without being
set explicitly. Recall from Sect. 2.1 that the default value is computed on demand.

States are then defined as a separate ADT, again with some arguments, and
an identity. Finally, a transition is modeled as a value containing the triggering
6 Recall that an Abstract Data Type is characterized by a set of values (created using
constructor functions) and a set of functions that define operations on those values.

7 Also known as named parameters or keyword arguments in other languages.
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event name, and a reference to a state to. The generic type Ref[T] is used to
model cross references (i.e., references which are not containment references).
Its representation is not directly relevant for the user and is encapsulated by our
framework.

Model values (e.g., values of the type Machine or State) need to have iden-
tity. Since it is cumbersome to deal with this manually, we introduce the con-
cept of realms: these are spaces that manage sets of models of the same type.
A realm is thus a technical/administrative mechanism that administrates all the
identities of all the elements of all the models that have been created in that
realm. All models are initialized via a realm, which ensures that newly created
model values receive unique identities. For the realm concept, we use a record-
of-closures representation—in this case a one element tuple consisting of the
single closure named new—so that a realm statefully encapsulates unique id gen-
eration. A realm is created using the function newRealm(). A realm can then
be used to initialize model values. For instance, a new Machine can be created
as follows: Machine m = r.new #Machine, machine("someName", [])). The first argu-
ment represents a reified type (similar to Class<Machine> in Java) so that new

creates a value of the right type. The second parameter represents a template
for the model value. Note that the value for uid is not provided; it is precisely
the responsibility of new to create a unique value for uid.

Fig. 1. Definition of state machine models using ADTs

Fig. 2. Creation of a simple statemachine controlling doors in Rascal (left), and its
automatically generated visualization (right)

An example snippet of Rascal code to manually create a simple state machine
is shown in Fig. 2.8 First, two states are created, initialized with empty lists of
8 All visualizations are created automatically: for each meta-model we specify a trans-
formation to a standard graph model. The latter is then visualized using Rascal’s
visualization library.
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transitions. The transitions are added to the transitions field later, because they
need to refer to the states themselves. Referring to another model value is done
using the referTo function, which turns a Rascal value with an uid into an opaque
reference value. Such reference values can be looked up using a generic lookup

function given some root model that acts as the scope of the lookup. In the next
section we show how referTo and lookup are used in model transformations.

2.3 Sample Model Transformations

Fig. 3. State renaming

Renaming Events. A very simple, endogenous, model-
to-model transformation is the renaming of the event
names in the transitions of a state machine. An example
renaming could be achieved by (result shown in Fig. 3):

renameEvent(doors, "open", "OPEN")

This is expressed by the following function declaration:

Machine renameEvent(Machine m, str old, str new)
= visit(m){ case t:trans(old, ) ⇒ t[event = new] };

A visit takes an immutable value (in this case m), traverses it on a case-by-case
basis, and returns a new value with possible local replacements when specific
cases matched and defined a replacement. The single case matches all transi-
tions with the name to be replaced (old), irrespective ( ) of the state they go
to. The matched transition is available as value of local variable t (bound using
the colon :). The replacement for this case first assigns new to t’s event field and
inserts the new value of t in place of the originally matched transition. Every
transition with an event equal to old will be replaced by a transition with a
renamed event. As we already observed in Sect. 2.1, Rascal’s pattern matching
allows us to abstract from the uid keyword parameter, which is, however, auto-
matically propagated to the replacement through t. Note also that Rascal’s
value semantics in combination with transitions having no uids (see the doors
example in Fig. 2), works out extremely well here: the programmer does not
have to worry about unintended sharing or aliasing.

Fig. 4. Reset transition

Adding Reset Transitions. Another simple endoge-
nous model transformation on state machines is the
addition of reset transitions: when a reset event occurs,
the machine should reset to its initial state. An example
is (result shown in Fig. 4):

addResets(doors, {"reset"})

The following function addResets achieves this:9

9 The concept of reset events is inspired by Fowler’s example state machine DSL [5].
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Machine addResets(Machine m, set[str] events) {
resets = [ trans(e, referTo(#State, m.states[0])) | e ← events ];
return visit (m) { case s:state( , ts) ⇒ s[transitions=ts + resets] }

}
The comprehension in the first statement creates a list of transitions on each
event e in events which has a reference to the initial state as target state. The
return-statement creates the result using another visit construct: anywhere there’s
a state, it will be replaced with a state which has the additional transitions.

Flattening Inheritance. Flattening inheritance is a transformation which
pushes down all inherited fields in class based meta-models. In this example
the models are actually meta-models, conforming to the data type shown in
Fig. 5. It is similar, but slightly simpler than meta-modeling formalisms such as
Ecore [20] or KM3 [12]. This data type shows one more convenient feature of
Rascal’s keyword parameters: they can be declared on the ADT itself, which
means that all constructors of that type will get them. So for type Type, both
class, prim and enum value will have a uid. The following function implements
flattening inheritance on meta-models conforming to the ADT of Fig. 5:

Fig. 5. Rascal ADT describing MetaModels

MetaModel flattenInheritance(Realm realm, MetaModel mm) {
Type flatten(Type t) {

supers = [ flatten(lookup(mm, #Type, sup)) | sup ← t.supers ];
t.fields = [ realm.new(#Field, f) | s ← supers, f ← s.fields ] + t.fields;
return t;

}
return visit (mm) { case t:class( , , ) ⇒ flatten(t) }

}
This time, the transformation function receives a realm in addition to the meta-
model to be transformed, since during the transformation new field objects need
to be created: if a field of a super class is pushed down to two distinct subclasses,
each of those new fields has to have its own identity. The local function flatten

within flattenInheritance does the real work. It retrieves a list of supers from the
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type t. Since this is a list of references, the lookup function is used to actually find
the classes corresponding to those super types. These super classes are recursively
flattened. For each of the flattened superclasses in supers a new field is created
and added to the list of fields of t. Note that realm.new(#Field, f) actually clones
the field f: only its identity will be different. Finally, the meta-model mm is
transformed by replacing each class by its flattened version.

2.4 Implementing Refs

We have already shown how Refs can be used, and to eliminate all remaining
mystery we now give a description how its constituents, the types Ref, Realm and
Id, and the functions lookup and referTo can be implemented in Rascal.

Representing References Ref and Id are simply defined as (parameterized)
ADTs:10

data Ref[&T] = ref(Id uid) | null();
data Id = id(int n);

Resolving References. The type-parametric function lookup requires more expla-
nation:

&T lookup(node root, type[&T<:node] t, Ref[&T] r) = x
when /&T x := root, x.uid == r.uid;

Its purpose is to resolve the reference r in a given model (represented as ADT,
hence as a tree) root (root is of type node so all ADTs are acceptable). The
second parameter t is a reified type denoting the type of the model element we
are looking for, and is used to bind the type parameter &T at runtime: it allows
&T to be used inside of pattern matches (see the when-clause). Note that the
type parameter is constrained to be a node, so that we can access its arguments
using the dot (.) notation. The third parameter r represents a reference to model
elements of type &T. Since lookup resolves the reference, this &T is also the return
type.

The actual return value x of lookup is then computed and bound in the when

condition: /&T x := root performs a deep match on the root model and binds x

to every model element of type &T, and then x.uid == r.uid checks that the uid
of the matched element is equal to the uid of the given reference r.

Referring to Model Values. The function referTo turns model values of type &T

into references of type Ref[&T]. To do this, it simply fetches the uid of the given
model element x and creates a new reference to that uid:

Ref[&T] referTo(type[&T<:node] t, &T x) = ref(x.uid);

The primary purpose of this function is to encapsulate the representation of
references.
10 The type parameter of Ref is technically not needed, but allows declarations of Refs

document what they are referring to.
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Realms: Scopes for Creating Model Values. The last component of our Refs
implementation is the type Realm, which is an alias for a single element tuple:

alias Realm = tuple[&T(type[&T<:node], &T) new];

The tuple element is called new, a type-parameterized function with two argu-
ments: a reified type, and an actual value of that same type that acts as a
template for the new value that is created. The only way to construct a realm
is by using the function newRealm:

Realm newRealm() {
int n = −1;
&T new(type[&T<:node] t, &T x) { n += 1; return x[uid=id(n)]; }
return <new>;

}
It creates a closure that wraps a counter n for generating new uids, and a function
new that increments the counter and assigns it as uid to its argument value x. The
returned Realm value is a tuple with the new function as its single element. Since
the local function new captures its environment containing n, every invocation
of the new field of a realm will produce a model value with a new identity.

3 Mapping MetaModels to ADTs

In order to bridge the gap between model-based tools and Rascal, existing meta-
modeling formalisms need to be mapped to ADTs. The previous section focused
on how to encode references using unique ids and 4 helper functions. In this
section we sketch how traditional meta-models can be represented using ADTs
in Refs.

We assume that meta-models are structured similar to the meta-meta-model
of Fig. 5. It defines classes, primitives, and enums. Classes can be abstract or not,
contain a number of fields, and reference zero or more super classes. Each field
has a type (class, primitive or enum), and defines a number of properties, such
as whether it is a collection field, whether it is part of the containment hierarchy,
or whether it is optional or not. Field definitions in meta-models often declare
inverse relations (or “opposites”) to support bidirectional navigation. For the
remainder of this section, however, we leave this information implicit, since in
Refs we have no way to maintain such relations automatically.

The first challenge is to deal with inheritance. ADTs do not support inheri-
tance, so we preprocess a meta-model in two steps:

1. Flatten inheritance: push down all fields from super classes to all concrete
classes (see Sect. 2.3 for an implementation).

2. Generalize type references: replace all references to a class C with a reference
to the largest super class of C.

The first step allows us to represent all subclasses of some top class as a single
ADT. The second step ensures that references to any of the subclasses can be
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typed as (Refs of) that ADT. A consequence is that the meta-model becomes
less restrictive. For instance, the “supers” field of class “Class” in a meta-meta-
model typically is of type “Class”. However, after generalizing type references,
the type of the “supers” field will be “Type”, since that is the largest super class
of “Class”. Although technically, this would allow use to create invalid models,
we find it is an acceptable price to pay in exchange for a simple and direct
encoding.

A preprocessed meta-model can then be translated to an ADT using the
following procedure:

1. For each enum type E, define an ADT dataE = v1(), . . . , vn(), where each
of the values vi is mapped to a nillary constructor vi().

2. For each top class C (a class which has no super classes), define the corre-
sponding ADT with identity data C(Id uid = noId()) = ....

3. For each concrete class C ′ below a top class C define a constructor
dataC=c’ (...).

4. For each field f of C ′, introduce a constructor parameter with the same name,
and determine the type as follows:
(a) If f has an enum type, use the corresponding ADT type.
(b) If f has a class type, use the corresponding ADT type, and apply Table 1

to deal with multiplicity, containment, etc.
(c) If f has a primitive type, use the corresponding Rascal primitive type

and also apply Table 1, assuming that “Containment” is true.

Note that the ADT type for a class in step 4(b) always exists, because of gen-
eralizing type references during preprocessing. Note further that optionality for
contained elements as per Table 1 require the use of the auxiliary Opt data type.
Alternatively, however, for primitive fields, optionality could be represented using
a keyword parameter with a sensible default value.

Table 1 shows how various combinations of field properties are encoded as
Rascal types. An en dash in one of the property columns indicates “for either

Table 1. Deriving the type from meta-model field properties.

Containment Optional Many Unique Ordered Encoding

– – True True True –

True – True True False set[T]

True – True False True list[T]

True – True False False map[T, int]

True True False – – Opt[T]

True False False – – T

False – True True False set[Ref[T]]

False – True False True list[Ref[T]]

False – True False False map[Ref[T], int]

False – False – – Ref[T]
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true or false”. The combination of the first row is unsupported, since Rascal has
no data type for ordered sets. Contained references and primitives are ordinary
child elements of constructors. If they are optional, they are wrapped in a generic
Opt data type. Whenever a field is a non-containment reference, the Ref type is
used. Since Refs contain only unique identities, uniqueness in sets will be based
on reference equality. The same is true for references in multi-sets which are
encoded using maps from value to int. Note that Refs are optional by default, via
the null() constructor (see Sect. 2.4). The mapping above assigns uid fields to all
ADTs. A possible refinement is to omit the uid field whenever there is no cross
referencing field defined anywhere in the meta-model.

4 Exploring Refs for Model Transformation

4.1 Sampling Model Transformations

To validate our Refs solution we have made a selection of model transformations
based on three criteria. First, the transformation should involve cross references.
Without cross references, models are plain trees, which are well supported by the
functional programming paradigm. Second, the examples should exercise various
kinds of model transformations. This includes, Model-to-model (M2M), model-
to-text (M2T) and text-to-model (T2M). But also, endogenous (type preserv-
ing) transformations and exogenous (type transforming) transformations [17].
Finally, the set of transformations should cover different transformation pur-
poses, such as analysis, refactoring, translation, or execution.

Table 2 gives an overview of the defined meta-models with their descrip-
tion and size in SLOC.11 Table 3 gives an overview of name, category (endoge-
nous/exogenous), kind, description and size in SLOC of the implemented trans-
formations. Transformations are grouped according to the source meta-model:
Family and Persons, state machines (Fig. 1), meta-meta-models (Fig. 5), and
UML Activity Diagrams [16].

Table 2. Overview of meta-models defined in Rascal

Meta-model Description SLOC

Family and persons Families of named, male or female members 11

Statemachine Statemachines with states and transitions (Fig. 1) 6

ADT Algebraic Data Types with named constructors 14

Regexp Regular expressions with choice, sequence and
repetition

6

Model Simple meta-models with classes, fields, primitives,
and enumerations (Fig. 5)

13

Graph Graphs with nodes and edges 9

Activity UML Activity diagrams 56

11 Source lines of code, not counting empty lines or comments.
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Table 3. Overview of implemented transformations

Name Cat Kind Description SLOC

family2persons Exo M2M Extract persons from a family 5

family2graph Exo M2M Convert family to graph 34

renameEvent Endo M2M Rename events in SM (Sect. 2.3) 2

addResetTransitions Endo M2M Add transitions to SM (Sect. 2.3) 4

regexp2Statemachine Exo M2M Convert regular expression to SM 44

statemachine2DFA Endo M2M Determinize state machine 35

parallelMerge Endo M2M Merge states in SM 23

statemachine2Graph Exo M2M Convert SM to graph 5

flattenInheritance Endo M2M Push down fields (Sect. 2.3) 9

generalizeTypeRefs Endo M2M Change field types to largest super class 6

metaModel2Relational Exo M2M MM to relational schema 57

metaModel2Java - M2T From MM to Java code (text) 78

metaModel2Graph Exo M2M Convert MM to graph 11

metaModel2ADT Exo M2M Convert MM to ADT 38

source2Activity - T2M Textual activity model to Activity Model 142

activity2Graph Exo M2M Activity model to graph 7

executeActivity Endo M2M Execute Activity Model 258

Although we have not performed a thorough comparison with existing solu-
tions, it can be seen in Tables 2 and 3, that our solutions are very concise. For
instance, family2persons is 41 SLOC in ATL12 versus 5 lines in Rascal. We
claim (but have not validated) that our solutions are at least as readable as the
solutions we compare with. The largest model transformation is execution of
Activity Diagrams, which we will discuss in more detail below.

4.2 Case Study: Executing Activity Diagrams

The transformation executeActivity involves executing activities by transforming a
run-time model. The run-time state is expressed as part of the model itself, and
steps in the execution consequently represent small modifications of the complete
model. The total code size of this implementation is 56 SLOC for the meta-model,
and 258 SLOC for the transformation code. This latter number includes 12 SLOC
consisting of the modular extension of the meta-model ADT to represent runtime
state. Compare this to the Java classes (partially generated from an Ecore meta-
model) of the reference implementation for activity execution, which consists of
3704 SLOC.13

Activity Execution can be considered a pathological case from the perspective
of typical model transformation use cases. The actual run-time state is repre-
sented as an extension of the static activity meta-model. For instance, the chal-
12 See http://www.eclipse.org/atl/atlTransformations/.
13 Can be found on Github at http://bit.ly/1puz0tC.

http://www.eclipse.org/atl/atlTransformations/
http://bit.ly/1puz0tC
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Fig. 6. Modular extension of the Activity ADT to represent runtime state

lenge described in [16] states that variables get an additional currentValue field,
activities maintain a trace of executed nodes, activity nodes are either running or
not, and hold a list of tokens. Finally, activity edges own a list of offered tokens.
In Rascal this extension could be modularly defined through the use of keyword
parameters, as shown in Fig. 6. The existing data types for Activity, ActivityNode,
ActivityEdge and Variable, are simply extended with additional parameters, which
will be available to all constructors of each respective data type. For brevity, we
have omitted the new (run-time only) data types Trace, Token, and Offer.

Every step in the computation “transforms” the model, by changing values
and relations within the augmented model. In the reference implementation (and
many of the solutions submitted to the Transformation Tool Contest [19]), this
is realized by mutating the relevant fields of the model objects in the meth-
ods that implement the interpreter. In our case however, each function really
performs a transformation in that every modification results in a new activity
model! Unfortunately, this also means that for use cases which heavily depend on
frequent mutation of a model, our Refs-based framework is impractically slow.
We have been able to run the tests provided of the TTC’15 case, but for the
performance tests our implementation of activity execution performs extremely
badly. The obvious reason being that every lookup or update of the model,
requires traversing it. These results, however, must be qualified: executing a
model by modifying it directly is very atypical in functional programming style,
where runtime state of an interpreter is typically managed separately (e.g., in
environments and stores).

Nevertheless, our performance experiments suggest two mechanisms for
improvement. First of all, lookup can be memoized.14 In fact, Rascal supports
a @memo attribute which can be attached to any function declaration to enable
memoization. As a result, looking up the same reference on the same model
multiple times avoid traversing the model. Second, another way to avoid tra-
versing the model upon lookup, is to make sure that a mapping of identities to
model values is always available at the root model. This could be implemented
by attaching (immutable) “companion” maps to constructor values (e.g., as a
keyword parameter). Such a map links object identities of contained subterms to
the actual subterms. Whenever a constructor is modified (e.g., a child element
is replaced), the reference maps of the children are propagated to the parent
automatically. As a result, the companion map of the root model can be used
to lookup all defined entities that are contained by it. Although this seems a

14 An optimization technique that caches the result of expensive computations.
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structural solution to the problem of lookup, it would require modifying the
Rascal runtime system to implement the propagation.

5 Discussion and Related Work

Discussion. Relative to the taxonomy of model transformation approaches
of [3], Refs offers an operational, functional, term-based, statically-typed, mod-
ular, non-incremental, model-to-model approach. Refs can also easily accom-
modate template-based model-to-text transformations. Rule application is fully
deterministic and explicit, but the visit construct can be used to automatically
schedule declarative rules as well. As of now, Refs does not support transparant
traceability, as is provided by model transformation languages like ATL [11] or
ETL [15]. Keyword parameters could however be used to transparantly repre-
sent trace information. Inserting such trace links should be performed explic-
itly. The generality of Rascal as a programming language would make auto-
mated support quite challenging: traceability follows from data flow dependen-
cies which can have arbitrary structure. Further work is needed to generalize
existing approaches to origin tracking [10,23].

Looking at the sample of model transformations and case-study, the first
thing to observe is Rascal’s pattern matching facility is a clear win. This enables
structure-shy traversal and transformation using visit, and is very useful for
model transformations. As an added bonus, the unique id field can be ignored
during matching, eliminating some boilerplate code. Furthermore, model values
are what-you-see-is-what-you-get (WYSIWYG): they are fully self contained,
can be written to file, or printed on the console during debugging.

The fact that model values are immutable also implies that mutations always
produce new versions of the model. As a result intermediate stages of the model
during a transformation process can be easily captured, inspected and stored.
Features like “undo”, tracing a transformation, comparing successive states of
model states using difference algorithms, are trivial to realize. In a mutable world
these features would be much harder to achieve.

Finally, an added benefit of immutable models is that model elements that are
never the target of cross references do not need identity. This means that such
model elements behave like proper immutable values. As a consequence there
is no ambiguity regarding equality, or what it means when such an element is
put in a set. For those truly immutable sub parts of a model, the developer of
a model transformation can switch off thinking about references entirely, if so
desired. This is most valuable in models that, for instance, represent expression
languages.

An important difference between existing model transformation languages and
Refs is that in the latter object creation, reference lookup and mutation are
explicitly scoped. For instance, object creation is scoped by a realm. Both lookup
and mutation are scoped by a root model. As a result, these scope “objects” need
to be available whenever objects are created, looked up, or updated. The model
transformations listed in Table 3 explicitly pass these objects through the func-
tions that make up the transformation, or define a (module-level) global variable.
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Even though our experience in writing model transformations in Rascal using
Refs has been largely positive, the interaction between copying assignment and
referential integrity can be subtle. For instance, when an element (with iden-
tity) is removed from a model, this might cause a dangling reference elsewhere,
since the references are essentially symbolic. The programmer needs to manually
ensure that existing references to the elements are nulled or cascade deleted. Of
course, we could provide a generic library function to achieve this.

Another effect of automatic copying of immutable values is the creation of
two different values with the same identity. When both such values are inserted
into a model, then this model accidentally contains two different nodes with
the same identity, which should never happen. It is the responsibility of the
programmer to ensure that two such nodes only exist temporarily, if ever.
A strategy to cope with this problem that is applied quite often in our sample
of model transformations is maintaining tables, indexed on identity, so that the
“modifications” on the map entries are always performed on the same element.

The biggest drawback of our current implementation of Refs is that lookup

requires search. As discussed above, for larger models, with lots of in place
mutation, searching through the model for every reference—even when using
memoization—leads to impractical performance. Note however, that in-place
mutation of models can be considered an anti-pattern in functional program-
ming. For static model transformations which typically traverse the source model
only once, the performance penalty of lookup is much less severe.

Related Work. Bridging grammarware and modelware has received a lot of
attention, especially in how to map grammar based formalisms to meta-modeling
frameworks, see for instance in [8,13,22]. The use of textual representations
of models is generally recognized as being beneficial for productivity and tool
development [8]. Most of this work concerns front-end mappings, i.e., providing
mappings between models represented in worlds based on different modeling con-
cepts. Work on back-end mappings that consider model transformations across
different modeling worlds are scarce. The subject of model transformation using
grammar-based tooling has also been relatively unexplored and this is where
we make a contribution. We can completely focus on the problem of represent-
ing references and model transformations, since the Rascal language workbench
takes care of all other bridging aspects like grammars, parsing, storage, symbol
tables, semantic processing, and IDE support.

For various languages, embedded DSLs exist aiming at model analysis and
transformation. For instance, FunnyQT [9] is a Clojure library providing model
querying and transformation services based on in-place (mutable) transforma-
tions. Another approach is based on embedded DSLs for model transformation
in Scala [6]. All these efforts use some form of mutability to achieve their goals,
while we depend on a strictly immutable representation of models.

Representing References with Immutable Data. A first approach is to see a model
as a graph in the mathematical sense: model elements represent nodes, non-
primitive fields are edges. Such graphs can be easily represented as a (binary)
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relation. Binary relations have the advantage that all operators from relational
algebra like, join, intersection, projection and transitive closure are available
for querying models. The disadvantage, however, is that transformations on the
graph representation are hard to express in a functional style.

A path is a well-known method to describe a connection between two nodes
in a graph or between the root of a tree and one of its (grand)children. In term-
graph rewriting [21] a path is a simple list of integers denoting the indices of edges
to be taken along the path. Paths in the context of model transformation could
be represented as sequences of field accesses and collection indices. A reference
to a model element could be encoded as such a path, starting at the root of the
model. Unfortunately, these paths become out of date as soon as the model itself
is transformed.

Assigning an identity to a graph node is a non-issue in an imperative or
object-oriented setting, where a pointer or an object identity are readily avail-
able. In a database context an automatic primary key can be associated with
records for later reference. Primary keys, however are local to an entity or class
type, so to interpret a foreign key one needs information about the schema. Refs
simulates these models using unique identities, which are scoped relative to a
realm, instead of globally, or locally.

Representing graph structured data in functional programming is a well-
researched problem. Erwig [4] introduces an inductive approach for defining
generic graphs and graph algorithms in Haskell. Claessen and Sands [2] introduce
a simple extension to Haskell based on non-updateable reference cells, together
with an equality test in order to make sharing observable. Gill [7] presents an
alternative solution based on generic reification of values with unobservable shar-
ing to graphs with observable sharing. A more recent approach is based on struc-
tured graphs [18], which uses recursive binders inspired by parametric higher-
order syntax [1] to represent cycles. It is, however, as of yet unclear, how to
express non-trivial model transformations in these styles.

6 Conclusions

A lot of research on bridging modelware and grammarware has been focused
on how to map textual concrete syntax to model-based abstract syntax. In this
paper, have explored a similar bridge from the dual perspective of model trans-
formation. We have presented a simple encoding of cross references in Rascal,
a functional meta-programming language, featuring immutable data. The expe-
rience of implementing a sample of well-known model transformations has been
largely positive: transformations are very concise, and can fully exploit Rascal’s
powerful pattern matching and traversal primitives. However, some directions for
improvements are clearly visible. Performance seems to be adequate for model
transformations in general, but starts to degrade quickly when models are tra-
versed and updated frequently (as happens in the case of model execution).
Further research is also needed into language extensions of Rascal to make
model transformation even more elegant and efficient. The next step is to inves-
tigate mappings from and to meta-model formalisms, so that existing modeling
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technology can be leveraged from within Rascal, as well as the other round,
that Rascal can be applied in model-driven engineering scenarios.
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Abstract. Appropriate test models that can satisfy complex constraints
are required for testing model management programs in order to build
confidence in their correctness. Models have inherently complex struc-
tures and are often required to satisfy non-trivial constraints which
makes them time consuming, labour intensive and error prone to con-
struct manually. Automated capabilities are therefore required, however,
existing fully-automated model generation tools cannot generate mod-
els that satisfy arbitrarily complex constraints. In this paper, we pro-
pose a semi-automated approach towards the generation of such models.
A new framework named Epsilon Model Generator (EMG) that imple-
ments this approach is presented. The framework supports the develop-
ment of model generators that can produce random and reproducible
test models that satisfy complex constraints.

1 Introduction and Motivation

In Model-Driven Engineering (MDE) models are first class artefacts of the soft-
ware development process. The structure of these models is described by meta-
models and can vary depending on their intended usage and properties. Further
external constraints might also be imposed on models in order for them to exhibit
additional desired characteristics. Automated model management programs such
as model-to-model transformation, model validation, model composition, etc.,
consume these models to produce lower-level artefacts or reason about the sys-
tem under development.

Such programs need to be tested in order to find defects (bugs) and assert
their correctness, or benchmarked in order to assess their performance. Both of
these activities require appropriate test data, i.e. models that conform to specific
metamodels, satisfy additional constraints and contain data that is accessed/-
modified by the program.

Manual assembly of test models is error prone, time and labour consum-
ing, hence there is a need to automate the generation process. An ideal model
generator should be able to generate models that conform to a specified meta-
model, and satisfy arbitrarily complex constraints. Within the context of this
paper, complex constraints include those that involves string literals or multiple
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compound first-order OCL operations. The model generator should also exhibit
secondary characteristics such as randomness, repeatability, scalability and easy
parameterization [3,10].

The main motivation for this work is to address the automated generation of
complex models. Complex models are characterised by the complexity of their
structures as specified in the metamodel or the non-trivial nature of constraints
imposed on them or a combination of these two factors. This is a problem for
which existing fully-automated model generators fail.

The rest of the paper is organized as follows: Sect. 2 introduces our running
example, a real-world complex model transformation tool that requires input
models that satisfy a set of non-trivial constraints. Section 3 reviews existing
approaches towards model generation and discusses the inability of current fully-
automated tools to generate models that satisfy complex constraints. Section 4
introduces a semi-automated approach to model generation and presents a frame-
work named Epsilon Model Generation (EMG) that implements this approach.
Section 5 evaluates the framework and Sect. 6 concludes the paper.

2 Running Example: Eugenia

Eugenia [16] is a tool that transforms an appropriately annotated Ecore model
into a set of models from which the Eclipse Graphical Modelling Framework
[7] can generate a complete graphical editor for instances of the model. The
input Ecore model must satisfy a set of Eugenia-specific constraints (e.g. the
“@gmf.diagram” annotation needs to appear in exactly one class in the model)
before the transformation can be executed. Figure 1 provides an overview of
the Eugenia transformation process. Eugenia was chosen as a running example
because it is a complex transformation that pre-dates this research and requires
its input models to satisfy complex constraints.

Fig. 1. Eugenia framework

In total, Eugenia imposes 26 constraints on its input Ecore models (364 lines
of code) specified using Epsilon Validation Language (EVL) [15]. Listing 1.1
illustrates two of these constraints.
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Listing 1.1. Subset of Eugenia Constraints

1 context EPackage {
2 constraint DiagramIsDefined {
3 check : getDiagramClass ( ) . i sDe f i n ed ( )
4 message : ’One class must be specif ied as gmf.diagram ’
5 }
6 constraint NodesAreDefined {
7 guard : s e l f . s a t i s f i e s ( ’DiagramIsDefined ’ )
8 check : getNodes ( ) . s i z e ( )>0
9 message : ’No nodes (gmf.node) have been defined ’

10 }
11 }

Constraint “DiagramIsDefined” specifies that exactly one EClass should be
annotated as “gmf.diagram” while constraint “NodesAreDefined” state that the
EClass annotated as “gmf.diagram” must also have a reference to an EClass that
has been annotated as “gmf.node”. Appropriate error messages are produced
if any of the constraints are not satisfied. The complete set of constraints is
publicly available online1. If an input Ecore model satisfies these constraints,
it is expected that Eugenia can generate the required set of models for GMF
to produce a graphical editor for instances of the input model. Listing 1.2 is an
example of an appropriately annotated Ecore model expressed in the Emfatic
textual notation2.

Listing 1.2. Eugenia-annotated Ecore model in Emfatic

1 @namespace(uri=’filesystem ’ , prefix=”filesystem”)
2 @gmf
3 package f i l e s y s t em ;
4 @gmf.diagram
5 class Fi l e sys tem {
6 val Drive [ ∗ ] d r i v e s ;
7 val Sync [ ∗ ] syncs ;
8 }
9 class Drive extends Folder {

10 }
11 class Folder extends F i l e {
12 @gmf.compartment
13 val F i l e [ ∗ ] contents ;
14 }
15 @gmf. link (source=”source” , target=”target” , style=”dot” ,

width=”2”)
16 class Sync {
17 ref F i l e source ;
18 ref F i l e t a r g e t ;
19 }
1 https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/plain/plugins/org.eclipse.

epsilon.eugenia/transformations/ECore2GMF.evl.
2 http://www.eclipse.org/modeling/emft/emfatic/.

https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/plain/plugins/org.eclipse.epsilon.eugenia/transformations/ECore2GMF.evl
https://git.eclipse.org/c/epsilon/org.eclipse.epsilon.git/plain/plugins/org.eclipse.epsilon.eugenia/transformations/ECore2GMF.evl
http://www.eclipse.org/modeling/emft/emfatic/
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20 @gmf.node( label = ”name”)
21 class F i l e {
22 attr String name ;
23 }
In order to test Eugenia, there is a need to automatically generate Eugenia-
annotated Ecore models (as test cases) and try to identify cases where models
satisfy the tool’s additional 26 constraints but cause the transformation to fail.
These tests are intended to either reveal missing constraints or bugs in the
transformation.

3 Automated Model Generation

This section discusses the work that has been done in automated model gener-
ation. We discuss existing approaches and examine the ability of current tools
based on these approaches to generate models that satisfy complex constraints
such as those discussed in Sect. 2.

3.1 Approaches to Model Generation

Several approaches to model generation within the context of MDE are found
in the literature. The approaches that deal with fully-automated generic model
generation that are not bound to a particular domain can be grouped into three
main classes.

Constraint Satisfaction: This is the most common approach found in the liter-
ature and has been used in [1,11,12,21]. In this approach, the metamodel and
constraints are transformed into a Constraint Satisfaction Problem (CSP) or
a Satisfiable Modulo Theory (SMT). These problems are then solved using a
CSP or SMT solver and the resulting solutions which represent valid instances
of the metamodel are transformed back to a model format. A major challenge
confronting this approach is automatic constraint solving since the constraint
problems are usually heterogeneous and complex. This approach is flexible and
produces valid models but it can only handle simple constraints [2,10,13,20].

Configuration: The Configuration approach [8,23] transforms the metamodel
and the constraints into a configuration model e.g. grammar, with some rules
which are determined by patterns in the metamodel. These rules are used to
guide the generation process and to determine the kind of relationship that
should exist among the model elements. This approach is scalable but it may
produce invalid models [9,10,13].

Tree: In the Tree approach [18], the metamodel is represented as a tree specifi-
cation by mapping the classes and relationships in the metamodel to nodes and
edges in the specification. Large random trees corresponding to the tree specifi-
cation are then generated using the Boltzman algorithm [6]. These trees are then
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transformed back to a model format. This approach is suitable for generating
large number of models but the generated models may be invalid [9,13].

In summary, the Constraint Satisfaction approach is not efficient and can
only handle simple constraints. Both the Configuration approach and the Tree
approach do not consider external constraints, therefore they may be unable to
generate valid models. None of these approaches considers the repeatability of the
generated test models which is useful for confirmation of results and developers
won’t have to exchange - potentially large - models to reproduce problems across
different machines.

3.2 Assessment of Existing Fully-Automated Model
Generation Tools

This section reports our findings on the ability of existing fully-automated tools
to generate models that can satisfy Eugenia constraints. Nine Ecore-based tools
were identified in the literature, however only five of them were available at the
time of writing this paper. The performance of these tools in generating mod-
els that satisfy complex constraints was examined and their ability to repro-
duce exactly the same generated models was also noted. The available tools are:
Grimm [10], EMFtoCSP [12], Cartier (Pranama) [21], RMG [23], MM2GRAGRA
[8]. The unavailable tools include: ASMIG [22], Trust [1], Omogen [4], Tree Spec
[18].

Assessment Process. The first task was to assess whether the available tools
were able to generate Ecore models (instances of Ecore.ecore metamodel) with-
out any additional constraints. However, none of the tools were able to generate
instances of the metamodel because they do not support all the features in the
Ecore metamodel. Although not all features of the Ecore metamodel are required
in order to generate models that satisfy the Eugenia constraints, the tools failed
because they attempted to instantiate every class and feature present in the
metamodel (such as EFactory, EEnum, etc.) even when it was not necessary.

A simplified version of the Ecore metamodel was then developed and all the
tools were able to generate models conforming to this metamodel without any
additional constraints. However, none of the tools was able to reproduce the
exact models generated because they do not provide support for reproducing
generated models. The Eugenia constraints were then translated into different
formats supported by each tool (specified in Table 1) and added as input to
the simplified Ecore metamodel. None of the tools were able to produce a valid
model that satisfies the Eugenia constraints.

Grimm produces a “constraints is unsatisfiable” error because it does not
support the “exists” feature of OCL and assignment of specific values to
attributes therefore constraints such as “DiagramIsDefined” which specifies that
exactly one class should be annotated as “gmf.diagram” could not be satisfied.
EMFtoCSP stopped responding and the program was terminated after about 2
hours. RMG’s (graphical) constraint language is not expressive enough to spec-
ify the Eugenia constraints because it lacks support for bounded constraints,
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Table 1. Analysis of automated model generation tools

Tool Input
meta-
model

Constraints Approach Output Reason for failure

Grimm Ecore OCL Constraints Error: constraint
is unsatisfiable

Does not support
OCL function
“exists”

EMF to
CSP

Ecore OCL Constraints Non-
deterministic

Hangs

RMG Ecore Graphical Configuration Constraints
cannot be
translated to
RMG specifi-
cation

Graphical con-
straint
language
not expressive
enough

Pranama
& Alloy

Ecore OCL Constraints Error String literals not
supported

MM2GR
AGRA

AAG AAG Configuration Error String literals not
supported

existential quantifiers etc. Pranama, formerly called “Cartier”, was combined
with an Alloy CSP solver but Alloy does not currently support string literals.
MM2GRAGRA also produces an error because it does not support string literals.
Table 1 summarises the findings of this exercise.

3.3 Assessment of Other Model Generation Tools

Two other tools that do not implement a fully-automated approach to model
generation have been identified: RandomEMF [20] and ASSL [17]. RandomEMF
[20] is a framework for generating large random models that can be used for
benchmarking. ASSL can be used to generate complex models such as Eugenia
but it has no inbuilt functions for generating primitive types and it cannot
reproduce generated models.

4 Semi-Automated Model Generation

This section discusses recurring tasks in developing a bespoke model generator
and then introduces a semi-automated approach to model generation, which is
aimed at model generation scenarios for which fully-automated solutions cur-
rently fail. Epsilon Model Generation (EMG) framework that implements this
approach is also presented.

4.1 Recurring Patterns in a Bespoke Model Generation

For scenarios in which fully-automated model generators fail, the alternative is
for developers to write bespoke model generators using a programming/model
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management language such as Java, QVTo3 or EOL [19]. Developing a bespoke
model generator from scratch is a challenging endeavour as developers need to
think about properties such as reproducibility, randomness and scalability from
first principles. Randomness is necessary to reduce bias while reproducibility
is essential for repeating a generation scenario which may be required due to a
fault in the process or for confirmation of results. Scalability which in this context
refers to the ability to configure the size of generated models is important so that
the generator can be adapted for diverse purposes (e.g. correctness/performance
testing). In general, model generation involves three recurring tasks.

1. Creation of model elements. For example, in producing a Graph model that
conforms to the Ecore metamodel illustrated in Fig. 4, model elements of
type Graph, Node and Edge need to be created. Two common subtasks asso-
ciated with this task are also identified: specifying the number of instances of
each element type that should be created and (optionally) identifiers for the
elements created.

2. Generation of appropriate (random) values and assignment of these values to
the attributes of the model elements.

3. Linking the model elements together so that the generated model conforms
to the metamodel and satisfies any additional constraints.

4.2 Epsilon Model Generation Framework

The Epsilon Model Generation (EMG) framework is built on top of the Epsilon
platform [19] and implements a semi-automated approach to model generation
by automating recurring tasks in a model generation process and thus simpli-
fying the development of model generators. EMG leverages an existing Epsilon
language (Epsilon Pattern Language [5]) to support the development of model
generators that fulfil the following requirements:

Randomness. Generate random models that conform to an Ecore-based meta-
model.

Parameterization. Characteristics of these models (e.g. how many instances/-
type, values for features) are easily parametrized.

Repeatability. Generated models are reproducible.

Figure 2 shows an overview of the generation framework. The framework takes
as input an Ecore-based metamodel, an optional “seed” parameter and model
generation rules written in the Epsilon Model Generation language (EMG), a
language developed within the context of this work and explained in detail in
Sect. 4.2. Since this is a semi-automated approach, the responsibility for ensuring
that generated models conform to the Ecore metamodel and satisfy the required
constraints lies with the developer of the model generation rules.

3 https://projects.eclipse.org/projects/modeling.mmt.qvt-oml.

https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
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Fig. 2. Overview of the Epsilon Model Generation Framework

Epsilon Model Generation (EMG) Language. The language is a semantic
extension to the Epsilon Pattern Language (EPL) [5], a language for specify-
ing and identifying instances of patterns among model elements. The syntax of
EPL was not changed but its execution semantics have been altered to better fit
the problem of model generation. The frequent activities in a model generation
process identified in Sect. 4.1 have been abstracted into language constructs in
EMG. As such, an EMG program is composed of two types of rules, creation rules
for producing model elements and linking rules for connecting them. Creation
rules produce a configurable number of model elements and an optional identi-
fier associated with them. Linking rules provide support for specifying groups
of elements to be linked together, the constraints they should satisfy, and how
they should be linked together. Annotations are used to add more information
on how the rules should be executed e.g. the “instances” annotation associated
with a creation rule is used for specifying the number of elements to be pro-
duced. In-built operations provide support for generating and assigning values
to model elements while additional user-defined tasks can be automated using
the standard Epsilon Object Language (EOL) operations [14].

Figure 3 provides a graphical overview of the abstract syntax of the EMG
language. A generator specification is organized as an EMGModule, an extension
of EPLModule that contains EOL operations and EPL patterns. EOL operations
are used to implement creation rules while EPL patterns are used for specifying
linking rules. To specify a creation rule for type X, a developer needs to define
an EOL operation named “create”, the context type of which is X. “instances”
and “name” annotations may be used to configure the number of model elements
to be generated and assign an identifier respectively. To specify a linking rule
for elements of type X and Y, an EPL pattern that contains objects of type
X and Y is created. A “guard” condition can be used to restrict the group
of elements to be considered for possible connection by enforcing additional
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Fig. 3. Abstract syntax of an EMG module

constraints. An “onmatch” statement block specifies the actions to be executed
when suitable model elements are found.

Consider the case in which we want to generate models that conform to the
Graph metamodel, where each Graph contains N Nodes which are connected
by Edges, where N is a random Integer greater than two. Each Node is also
expected to be connected to exactly two other Nodes; one as incoming and the
other as an outgoing connection. Figure 4 is the metamodel of the models to be
generated.

Fig. 4. Graph metamodel

Listing 1.3 displays an EMG program that contains rules for generating mod-
els that conform to the Graph metamodel.
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Listing 1.3. EMG Program to Generate a Graph Model

1 operation Graph c r ea t e ( ) {
2 }
3 $instances Sequence{2,maxNodes}
4 operation Node c r ea t e ( ) {
5 s e l f . name= randomString ( ) ;
6 }
7 pattern l i n k
8 graph : Graph , node : Node
9 guard : node . incoming . s i z e ( )<1{

10 onmatch{
11 var edge : Edge = new Edge ;
12 edge . source= node ;
13 edge . t a r g e t=
14 Node . a l l . s e l e c t (n | n . outgoing . s i z e ( )<1) . randomD() ;
15 graph . nodes . add ( node ) ;
16 graph . edges . add ( edge ) ;
17 }
18 }
Two creation rules (lines 1 to 6) and one linking rule (lines 7 to 18) have been
specified. The create operation for Graph (line 1) creates a single element of
the type “Graph”. Lines 3 to 6 create the Nodes; the number of instances to be
created is a random integer between 2 and the parameter called “maxNodes”
(line 3) whose value is specified using a configuration facility provided with the
framework. The “name” property of all the created Nodes are set using strings
generated by the in-built method, randomString() (line 5). The size and format
of the string to be returned can be configured using (optionally) integers or a
string of regular expressions as its argument respectively. The execution of these
operations produces a set of model elements that need to be connected together
as shown in Fig. 5a.

Lines 7 to 16 specify the linking rule for connecting the generated elements.
Each element of type Graph and type Node that is not connected to an incoming
Node (lines 8 and 9) needs to be connected. When a match is found (lines 11 to 14),
the Node is connected to the Graph and a new Edge is created that connects the

Fig. 5. Unconnected and Connected model elements
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Node to another random Node without any outgoing connection. Figure 5b dis-
plays a sample generated model.

The EMG language provides first-class support for:

1. Randomness: In-built random operations of diverse distributions (such as
binomial, uniform, etc.) are provided to ensure randomness of the structure
of the model, generate random values to be assigned to model elements or to
select a random object from a collection.

2. Repeatability: The same random value generation facility with diverse func-
tions and distributions is used throughout the generation process to ensure
that the generated model can be reproduced. The seed of this random value
generator may be specified using the runtime configuration tool provided with
this framework when a particular generated model needs to be reproduced or
it may be randomly generated by the framework for new models.

3. Parameterization: In order to improve the flexibility of the model generators,
some aspects e.g. number of instances of model elements to be generated may
be represented as parameters whose values are provided at runtime.

4. Completeness: The EMG language extends EPL which is a computationally
complete language. Hence, EMG can be used to express arbitrarily complex
model generation logic.

5 Evaluation

A series of experiments have been conducted to evaluate:

1. Whether EMG can be used to generate models that conform to complex
constraints for which fully-automated model generators fail

2. Whether EMG generators are repeatable
3. The robustness of the built-in random functions provided by EMG
4. How EMG-based solutions compare in terms of conciseness and perfor-

mance with equivalent solutions implemented using a similar framework (Ran-
domEMF and ASSL)

5.1 Generation of Models with Complex Constraints

A model generator4 that can produce models that satisfy Eugenia-specific con-
straints has been developed using this framework. Generated models consisting
of about 100 model elements each have been validated to ensure that they fully
exercise and satisfy the Eugenia constraints. Listing 1.4 is a sample EMG pro-
gram that generates models which satisfy a subset of Eugenia constraints dis-
cussed in Listing 1.1. Two creation rules (lines 1 to 8) and one linking rule (lines
9 to 18) have been specified. The first create operation creates a single element of
type “EClass” and annotates it as “gmf.diagram” thereby satisfying constraint

4 https://github.com/sop501/ModelCodes/tree/master/org.eclipse.epsilon.emg.engine/src/

org/eclipse/epsilon/emg/sampleGenerator/Eugenia.emg.

https://github.com/sop501/ModelCodes/tree/master/org.eclipse.epsilon.emg.engine/src/org/eclipse/epsilon/emg/sampleGenerator/Eugenia.emg
https://github.com/sop501/ModelCodes/tree/master/org.eclipse.epsilon.emg.engine/src/org/eclipse/epsilon/emg/sampleGenerator/Eugenia.emg
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“DiagramIsDefined”. The second creation rule (line 4 to 8) creates EClasses that
are annotated as “gmf.node”. Pattern “link” (Lines 7 to 16) specifies the linking
rule by ensuring that the EClass that has been annotated as “gmf.diagram” has
a reference to an EClass that has been annotated as “gmf.node”. The pattern is
executed a random number of times between 1 and the number of “gmf.node”
annotated EClasses as shown by the annotation “$number” (Line 7) thereby
satisfying constraint NodesAreDefined that states that the EClass annotated
as “gmf.diagram” should contain at least one reference to a class annotated as
“gmf.node”.

Listing 1.4. EMG Program to Generate Eugenia Model

1 operation EClass c r e a t e ( ) {
2 s e l f . name= randomString ( ) ;
3 s e l f . annotate (”gmf.diagram”) ;
4 }
5 $instances maxClass
6 operation EClass c r e a t e ( ) {
7 s e l f . name= randomString ( ) ;
8 s e l f . annotate (”gmf.node”) ;
9 }

10 $number Sequence{1,maxNodes}
11 pattern l i n k
12 diagram : EClass , node : EClass
13 guard : diagram . isAnnotatedAs (”gmf.diagram”) and node .

isAnnotatedAs (”gmf.node”) {
14 onmatch{
15 var ref : new EReference ;
16 ref . name= randomString ( ) ;
17 ref . eType= node ;
18 diagram . eS t ruc tu ra lFea tu r e s . add ( ref ) ;
19 }
20 }

5.2 Repeatability and Randomness

The EMG framework has been tested for repeatability and randomness of the
generated models. Two hundred generation cycles of random models that contain
between 2 and 100 classes were used to analyse a Graph model generator devel-
oped using EMG. In one hundred of these generation cycles a seed was specified
to test for repeatability and in the other hundred a randomly generated seed
was used to assess its randomness property. When a seed was specified, exactly
the same model with the same structure and values assigned to model elements
was generated throughout the one hundred cycles. The default uniform distrib-
ution was used as the random function during the other one hundred generation
cycles. Figure 6 shows the number of Nodes created during each cycle. It was
also observed that no two Nodes have exactly the same name throughout the
generation cycle which shows the robustness of the random function used.
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Fig. 6. Number of nodes generated in each cycle

5.3 Comparison with Other Model Generators

RandomEMF [20] and ASSL [17] are two frameworks providing similar function-
alities to EMG. The support for pattern-based element linking makes EMG more
concise than RandomEMF in developing model generators that produce models
that can satisfy complex constraints. In EMG and ASSL, all the required model
elements are first generated before linking them together but in RandomEMF,
the linking is done as soon as an element is created which means the elements
generated later are not considered for the linking operation. However, ASSL is
not repeatable.

The performance of the three frameworks in generating sample Graph mod-
els with no external constraints was also assessed. Both EMG and RandomEMF
generates the appropriate models only while ASSL also validates the generated
models. The result of this exercise as shown in Fig. 7 reveals that EMG per-
formed better than ASSL and also offers better performance than RandomEMF
for models that contain a small number of elements (less than 4,000) while Ran-
domEMF provides a better performance for models with more elements. This is
largely because EMG is an interpreted language while Rcore compiles down to
Java.

Fig. 7. Execution times for EMG, Rcore and ASSL
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Listing 1.5. Rcore Program to Gener-
ate Graph Model

package de . hub . r co r e . graph
import s t a t i c de . hub .

randomemf . runtime .
Random.∗

import s t a t i c de . hub . r co r e .
graph . RandomGraphUtil .∗

generator RandomGraph( i n t
nodeCount , i n t
edgeCount ) f o r graph in
”platform:/ resource/de
.hub. rcore . graph/model/
graph . ecore” {

root : Graph −>
nodes += node#nodeCount
edges += edge#edgeCount
;
node : Node −>
name := LatinCamel (Normal

(4 , 2 ) ) . toFirstLower
;
edge : Edge −>
name := LatinCamel (Normal

(4 , 2 ) ) . toFirstLower
source := @( model . nodes . get

( Uniform (0 , model . nodes .
s i z e ) ) )

t a r g e t := @( r e j e c t ( s e l f .
source )

[ model . nodes . get ( Uniform (0 ,
model . nodes . s i z e ) ) ] )

;
}

Listing 1.6. ASSL Program to Generate
Graph Model

procedure generateGraph (
maxNode : Integer , maxEdge :
Integer )

var graph : Graph , node :
Sequence (Node ) , edge :
Sequence (Edge ) , node1 : Node
, node2 : Node , nt : Integer ,
nw : Integer ;

begin
nt := Any( [ Sequence { 2 . .

maxNode } ] ) ;
nw := Any( [ Sequence { 1 . .

maxEdge } ] ) ;
node := CreateN(Node , [

maxNode ] ) ;
edge := CreateN(Edge , [

maxEdge ] ) ;
graph := Create (Graph ) ;
for p : Node in [ node ]
begin
[ p ] . name := Any ( [ Sequence{

’name1 ’ , ’name2 ’ } ] ) ;
Insert ( nodes , [ graph ] , [ p ] )

;
end ;

for d : Edge in [ edge ]
begin
node1 := Any( [ node ] ) ;
node2 := Any( [ node −> r e j e c t

( [ node1 ] ) ] )
Insert ( edges , [ graph ] , [ d ] )

;
Insert ( source , [ node1 ] , [ d

] ) ;
Insert ( target , [ node2 ] , [ d

] ) ;
end ;

end ;

6 Conclusion

This paper has presented an example of a tool (Eugenia) that requires models
that satisfy complex constraints and the need to automate the generation of
such models. Current approaches to model generation have been analysed and
the inability of existing fully-automated tools to generate models that can satisfy
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non-trivial constraints has been demonstrated. A novel 2-phase semi-automated
approach to model generation has been introduced. A framework that imple-
ments the approach and simplifies the development of model generators that
can produce random and repeatable synthetic models using its generation rules,
has also been presented. This framework has been used to generate random and
repeatable models that satisfy complex constraints.
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Abstract. The ModelJoin language offers the definition of views that
combine information from heterogeneous models. These views are cur-
rently realised by unidirectional transformations. Thus, updates to the
views are not translated back to the models. In this paper, we study
the view-update problem for ModelJoin view definitions. We propose
translation strategies for view updates, and show that generated model
constraints can be used to decide whether updated views can be trans-
lated. We provide a transformation for deriving a set of OCL constraints
to check for translatability. For untranslatable cases that can be made
translatable with minor fixes to the view, we provide algorithms for auto-
matic fixes. The constraints are evaluated in two case study examples.
The evaluation shows the applicability of the translation strategies, and
the algorithms for automatically checking and restoring the translatabil-
ity. Most of the consistent update sequences could be translated, and all
inconsistent updates could be identified.

Keywords: View-based modelling · View-update problem · Editability
of views on models

1 Introduction

In the development process of modern software systems, multiple models are used
to describe different system aspects and abstraction levels, such as component
models, class diagrams, performance and reliability models. Even programme
code can be seen as a software model describing the implementation. View-
centric approaches combine information from one or multiple models into views,
which serve as the single mechanism for displaying and manipulating informa-
tion. To define these views quickly, the view definition language ModelJoin offers
an SQL-like syntax for the specification of both the metamodel of a view (the
view type) and the model transformation for creating the view. ModelJoin’s goal
is to offer the easy creation of custom, always up-to-date and consistent views of
the whole software system. However, the View-Update-Problem arises: How can
updates to a view be translated back to the underlying models?

In this paper, we study the view-update problem ModelJoin. This includes
finding strategies to decide if an update operation on a view can be translated

c© Springer International Publishing Switzerland 2016
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back to the source models, and developing mechanisms to translate view updates
to source model updates. For this purpose, we formalize the view-update prob-
lem for the Ecore metamodel and ModelJoin. Properties for the update translation
must be found, such that the update translation satisfies the users’ expectations.
For example, view updates should not have unexpected side effects, or change the
view in an unwanted way. To specify the effects of model updates, we develop a
formal abstract syntax first. Then, we check the translatability of updated tar-
get models using OCL constraints in the view metamodel, which are derived from
a ModelJoin view definition. To evaluate the applicability of the translatability
check, we have implemented the proposed algorithms prototypically and evalu-
ated them based on two case studies in component-based software development.

This paper is structured as follows: In Sect. 2, we present the foundations,
most notably the ModelJoin language, and formulate the view-update problem
for Ecore. Section 3 describes the scheme for deriving OCL constraints from a
ModelJoin definition. In Sect. 4, we propose algorithms for automatically restor-
ing some of these constraints. The findings are evaluated in Sect. 5. Section 6
contains related work. An outlook on future work and the conlusion (Sect. 7)
complete this paper.

2 Foundations

2.1 Set Notation for Ecore-Based Metamodels and Models

We use the set notation of Ecore-based metamodels and their instances as intro-
duced in our previous work [8], which is based on the set notation for EMOF
as defined in the OCL standard [21]. We will only reproduce the parts here
which are relevant for the remainder of this paper. A metamodel is a structure
M := (Class,Att,Ref, associates,multiplicites,≺), consisting of the sets for
classes, attributes, and references, the function associates, which maps references
to the pair of classes between which the reference exists, the function multiplic-
ities, which assigns multiplicities to features, and a generalization hierarchy ≺.
I(M) is the set of all possible instances of a metamodel M . An actual model is
expressed as a snapshot σ = (σClass, σAtt, σRef). These three functions describe
the instances of classes and values of attributes and references. An instance of a
class c is written as c.

2.2 ModelJoin

ModelJoin [8] is a DSL for the definition of views on heterogeneous models, i.e.,
models that are instances of different metamodels. It draws an analogy between
metamodels and relational databases in the sense that it also offers several join
operators and further operators for projection, selection, and aggregation. Simi-
lar to the way an SQL query defines the table schema of the result set as well as
the contents of a table, a ModelJoin query defines a target metamodel, and the
result set, which is an instance of the target metamodel. In this understanding,
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a view is just a special kind of target model which is defined by a query. The
semantics of ModelJoin have been defined formally [8], but semantics for updates
on views have not been defined yet.

In this paper, we use the same notation as in the ModelJoin specification [7]
with some minor enhancements and changes:

1. We write Ms for the source metamodels and Mt for the target metamodels.
2. We write ms ∈ I(Ms) for source models, and mt ∈ I(Mt) for the target

model.

We introduce a trace model M∼, which is part of the target model. The trace
model is non-editable and should form a explicit representation of the mapping
relation between the source and target class instances. The function mapsTo()
can be used to check whether two elements are mapped by an instance of the
trace model.

Definition 1 (Trace model). We divide the target metamodel into a view
metamodel Mv and a trace metamodel M∼ with Mt = Mv ∪M∼ ∧Mv ∩M∼ = ∅.
The class instances in the models are divided into a view model mv and a trace
model m∼ according to their metamodel membership. For a given target model
mt ∈ I(Mt) we use the following notation: mv = [mt]v ,m∼ = [mt]∼.

2.3 The View-Update Problem for ModelJoin

The view-update problem [2] has been studied extensively for relational data-
bases. In metamodelling, the modifications that can be applied to metamodels
and models can also be described using the standard CRUD operations [6]. To
formally define the semantics of these operations, we adopt the GetPut and
PutGet properties by Foster et al. [13] and Diskin [11].

Definition 2 (View-Update-Problem).The View-Update-Problem VUP(Q)
for a given ModelJoin view definition Q ∈ Ms × Mt is to decide if there exists a
translation ←−q : I(Mt) × I(Ms) → I(Ms) such that the following two properties
hold for all views in V = q [I(Ms)]:

(i) Translating an unmodified target model, does not change the source model:

∀ms ∈ I(Ms) : ←−q (q(ms),ms) = ms (GetPut)

(ii) Translating a modified target model and querying the result, yields the trans-
lated modified target model.

∀ms ∈ I(Ms),∀mt ∈ V : q(←−q (mt,ms)) = mt (PutGet)

A model mt ∈ I(Mt) is called translatable if there exists a translation ←−q that
satisfies the propertiesGetPut andPutGet. In the case of ModelJoin, a transla-
tion ←−q should reflect the semantics of its query function q. If each ModelJoin oper-
ator has a fixed translation semantics, the set of translatable target models forms
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only a subset of all obtainable target models. Fixing the semantics of the transla-
tion function for each ModelJoin operation makes the translation predictable and
comprehensible for the user. Therefore, we want to formulate the View-Update-
Problem for a restricted set of translatable target models.

Definition 3 (Restricted View-Update-Problem). The restricted View-
Update-Problem (rVUP(Q)) for a given ModelJoin view definition Q is to find
a restricted subset Vr : I(Ms) → P(I(Mt)) with the following properties:

(i) A translation ←−q : Vr [I(Ms)] × I(Ms) → I(Ms) for q exists:

〈mt,ms〉 → m′
s (existence)

(ii) Vr contains all unmodified target models:

∀ms ∈ I(Ms) : q(ms) ∈ Vr(ms) (totality)

(iii) ←−q conforms to the GetPut-Property:

∀ms ∈ I(Ms) : ←−q (q(ms),ms) = ms (GetPut)

(iv) ←−q conforms to the PutGet-Property for all views in Vr:

∀ms ∈ I(Ms),∀mt ∈ Vr(ms) : [q(←−q (mt,ms))]v = mt (PutGet)

A set Vr together with a translation ←−q , which solves rVUP(Q) is called a
solution of the problem.

The rVUP(Q) is solvable for all Q because the set Vr(ms) = {q(ms)},
together with the translation ←−q (mt,ms) = ms, is a trivial solution. This solu-
tion does, however, not allow any updates to the target model. Thus, we present
a solution that allows useful target model updates and reflects the semantics of
the ModelJoin operators. To verify these properties, we evaluate our solution in
a case study in Sect. 5.

3 Constraints for Translatable Views

In this section, we will present a scheme to derive a set of OCL constraints from
a ModelJoin view definition, such that the possible instances in the target model
are limited to those that can be translated to a source model. We show that the
fulfilment of these constraints is a sufficient condition for the translatability of
an updated target model. We further show that an unmodified target model
fulfils all constraints.

3.1 Motivating Example

The set of target models q [I(Ms)] of a query function q can be a real subset of
all possible target class instances I(Mt). A target model mt ∈ I(Mt) \ q [I(Ms)]
is not translatable, since no source model ms ∈ I(Ms) with mt = q(ms) exists
(see Fig. 1).
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Fig. 1. The Update operation u is translatable because for m′
t a corresponding source

model m′
s exists. The update operation û is, however, untranslatable, since m̂′

t has no
corresponding source model.

An example for a ModelJoin view definition Q with a real subset relation-
ship q [I(Ms)] ⊂ I(Mt) is given in Listing 1. In this example, the attribute
commons.NamedElement.name of the source class gets mapped to two different
target class attributes: name and alias. The update operation given in Listing 2
cannot be translated, since no source model exists for such a target model.

1 theta join classifiers.Interface with uml.Interface

2 where "classifiers.Interface.name = uml.Interface.name" as jointarget

.Interface {

3 keep attributes commons.NamedElement.name as name

4 keep attributes commons.NamedElement.name as alias

5 }

Listing 1. Example where the views are a real subset of all possible target models.

1 create jointarget.Interface { name: "StoreIf", alias: "Store" }

Listing 2. Untranslatable update operation for the view definition in Listing 1

Such untranslatable update operations shall be forbidden. Therefore,
the metamodel needs to be extended by the constraint σAtt(name)(c) =
σAtt(alias)(c) for all instances c ∈ I(jointarget.Interface). We will formulate such
constraints in OCL. Ideally, the constraints characterize exactly the set q[I(Ms)],
which contains all translatable views. Since we want to fix the translation seman-
tics for each ModelJoin operator in Q, we restrict the set q[I(Ms)] further to a
set Vr like in the definition for rVUP(Q).

3.2 Constraints Creation

3.2.1 Meta Variables. The OCL expressions that characterize the trans-
latable view instances depend not only on the values of attributes in the view
itself, but also to values in the source classes. In the aforementioned example in
Listing 1, the identity of source.name and target.name should be formulated.
Since the source models are not updateable by any operation, a simple OCL
formulation would fix the value of target.name to the original source value and
make it unchangeable. To avoid this issue, we introduce meta variable expres-
sions, which will be replaced with a given definition during the execution of the
query.
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Definition 4 (Meta variable for attributes). Let c ∈ Class be a class and
a : tc′ → t ∈ Att∗

c be an attribute, then the initial value of the meta variable
vara : Exprtc → Exprt is defined as vara(α) = α.a

In addition, we define the interpretation function vara : I(c) → I(t) of vara

as varσ
a(c) = I [[vara(v)]] (〈σ, {v → c}〉).

A meta variable is called correct if it evaluates to the same value as the corre-
sponding attribute of a target model (Get-Equality), and after the translation
to a source model, the corresponding attribute has the same value as the meta
variable (Put-Equality). Meta variables for references are defined analogously.

3.2.2 OCL Expression Rewriting. Some ModelJoin operations, such as
calculate attributes or theta joins, can use OCL expressions to describe the val-
ues or instances of the target model. These expressions depend on values of
source model elements. If we want to reason about the value of this expressions
after the translation without performing the translation, the expressions have
to be rewritten to depend on the values of the corresponding target model ele-
ments. We have defined rewriting rules for updating instances that are already
mapped to source model instances, and for new instances. We have shown that
the rewritten expressions fulfil Get-Equality and Put-Equality if the used
meta variables fulfil these properties. For a given OCL expression θ we write
varθ for the rewritten expression. If the class type of the free variable v in θ
changes from c to ct in the rewritten expression, we write varc→ct

θ,v . The com-
plete definitions and proofs of these properties are omitted here for brevity, but
can be found in [22, Sect. 4.3].

3.2.3 Example: Theta Join. In Listing 3, a generated OCL constraint is
shown for the theta join operator.

1 context c��

2 inv keepMappingPairs:

3 Instancesc1−> forAll(left |Instancesc2−> forAll(right|θ(left, right) = varθ(left,right)))

Listing 3. OCL constraint for keeping mapping pairs

The constraint in Listing 3 ensures that the mapping of source to target
instances does not change when the target model is updated. Therefore, the join
condition θ should hold after the update exactly for those instances for which it
did before the update. Deleted instances must however be excluded.

In case that the meta variable varθ is not defined or not well typed, a con-
straint must be created that forbids new instances of the respective class. If
the target rewrite variables varc1→ct

θ(self,right) and varc2→ct
θ(self,right) are defined and well-

typed, new target classes must satisfy the constraints in Listing 4. For simplicity,
the placeholder isNew(c) denotes an OCL expression checking if the instance c



Translatability and Translation of Updated Views in ModelJoin 61

was newly created in the view, and the placeholder Instancesc denotes an OCL
expression returning all the instances of c that exist after the update.

1 context ct

2 inv newTargetInstancesLeft:
3 isNew(self) implies Instancesc1−>forAll(left|not varc2→ct

θ(left,self),self)

4 inv newTargetInstancesRight:
5 isNew( self ) implies Instancesc2−>forAll(right|not varc1→ct

θ(self,right),self)

6 inv newTargetInstances: isNew(self) implies ct . allInstances−>select(other |
7 c�� . allInstances ()−>select(tj| tj . target = other)−>isEmpty() and other

<> self
8 )−>forAll(other|not varc1→ct,c2→ct

θ(self,other),self,other)

9 inv isJoinConforming: isNew(self) implies let self2 = self in
varc1→ct,c2→ct

θ(self,self2),self,self2

10 −− New instances may only be created if the source class is not mapped
elsewhere:

11 inv noConflictsWithOtherMappings:
12 ∃c′

t ∈ Class(c′
t �= ct ∧ (c1 ∼�� c′

t ∨ c1 ∼�� c′
t) ⇒ c�� . allInstances ()−>

13 select (oj |oj . target = self )−>notEmpty())

Listing 4. OCL constraint for target instances

3.3 Deciding Translatability

A ModelJoin expression is a composition of different subexpressions. We can
show by induction over all subexpressions that two implications are valid. If the
OCL-constraints hold for an target model, then it is translatable. Furthermore,
the OCL-constraints hold for a target metamodel obtained from a query.

The definitions and proofs for all ModelJoin expressions are omitted here for
the sake of brevity and can be found in [22]. We demonstrate at the example of
the theta join operator, the most general operator, how translatability is proven.

Definition 5 (Translation for theta join). Let ��θ= 〈c1, c2, ct〉 be a theta
join operator and ct ∈ σClass(ct) be a target class instance. The instance ct

should be translated according the following rule:

(i) If there exists no trace class instance c
��

∈ σClass(c��) with L(target)(c
��

) =
ct, then the create class instance operations createClass(c1)(V1),
createClass(c2)(V2) with V1 = ∅ and V2 = ∅ are emitted.

(ii) For each c
��

∈ σClass(c��) with L(target)(c
��

) = ∅, the following delete class
instance operations deleteClass(c)(c1) and deleteClass(c)(c2) where c1 ∈
L(left)(c

��
) and c2 ∈ L(right)(c

��
) are emitted. If the deleted class instance

c1 was linked by a reference r = 〈c, c1〉 ∈ Ref of instance c then the update
operation deleteRef(r)(c, c1) should be emitted. The corresponding delete
operation is emitted for deleted instances of class c2.
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Theorem 1 (Induction for theta join). Let q : I(Msource) → I(Mtarget) be a
ModelJoin expression with a set of OCL-Constraints C for which the Induction
statement holds. If q is extended by an arbitrary theta join expression to q′ :
I(Msource) → I(M ′

target) with the set of OCL-Constraints C ′, then the Induction
statement holds for q′ and C ′. More precisely:

(i) For all source model instances ms the resulting target model instance mt =
q′(ms) satisfies all OCL constraints in C ′.

(ii) For all pairs 〈ms,m
′
t〉 ∈ I(Msource)×I(M ′

target) a target model instance m′
t,

that satisfies C ′, is translatable.

Proof. Let c1, c2 ∈ Class be the source classes and ct ∈ Class be the target
class of the theta join operator: ��θ= 〈c1, c2, ct〉.

We first prove (i). Let ms ∈ I(Msource) be a source model instance. mt =
q′(ms) satisfies all constraints in C because all constraints in C do not depend on
instances of ct and all instances of other classes then ct satisfy C according to the
premises. So it just has to be shown that all new constraints in C ′ \C are satisfied.

The keepMappingPairs invariant is true, because of the Get-Equality of
varθ(left,right). All invariants in the context of ct are immediately true, because
the set c��.allInstances()->select(j | j.target = self) in isNew(self)
cannot be empty, since all instances ct ∈ σClass(ct) are a target of a join trace
instance c

��
∈ σClass(c��).

We show (ii) by constructing a translation
←−
q′ and show that ct is translatable.

Let ct be an instance of ct in m′
t. Since ct has no attribute values by default, no

attributes can be changed and the invariant keepMappingPairs ensure that the
mapping between the existing source class instances and the target class instance
does not change by other updates. This follows directly from the Put-Equality
of varθ(left,right).

Consider the case that ct has no corresponding mapping instance c
��

, which
means it was newly created. For new instances, at least one of the following
update operations should be created: createClass(c1)(V1), createClass(c2)(V2)
according to Definition 5. Because of the isJoinConforming invariant and the Put-
Equality of varc1→ct,c2→ct

θ(self,self2),self,self2, we have θ(left, right)σ

left,right
(c1, c2) for the newly

created instances by the create operations, leading to c1 ∼�� ct and c2 ∼�� ct.
Because of the newTargetInstancesLeft and newTargetInstancesRight invariant and
the Put-Equality of varc1→ct

θ(self,right),self, there exists no class instance c′
1 with

θ(left, right)σ

left,right
(c′

1, c2), and no new other joining pairs are created. The same
argument can be given for other class instances c′

2.

4 Automatic Fixes for Untranslatable Views

Executing an update operation on the target model can lead to an untranslat-
able target model if constraints are violated. Further updates are required to
restore translatability. Consider the example in Fig. 2: An update operation û
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ms
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Fig. 2. Fixing an untranslatable target model

creates a new target class instance. The translation of the new instance would
lead to further new target elements, which are not present in the view. The cor-
responding constraints are violated, and m̂′

t is an untranslatable model. These
missing target class instances could be created automatically before translation.
Such an automatic fix ufix could be proposed to the user after the update oper-
ation or before the translation. The user could accept the fix, repair the target
model manually or undo his change, if it was unintended, and gain a translatable
model m′

t. The proposed automatic fix should not undo the update operation,
but apply a minimal set of necessary changes instead to reflect the update in a
translatable target model. In the example, the automatic fix should not delete
the new target class instance, but should create the missing target class instance.

4.1 Automatic Creation of Target Class Instances

The PutGet-Property states that for each source class instance pair, for which
the join condition holds, a corresponding target class instance exists after trans-
lation. In other words, querying the unmodified source model after a translation
does not create any new target class instances. However, the missing target class
instances could be created automatically at update translation, because these
can be derived from the corresponding source class instances.

We will show this again at the example of the theta join. Algorithm 1 fulfils
this purpose: We check for each new target instance if the translation would
lead to new left or right source instances. This is the case if there are no source
instances that map to the new instance. If this is the case, we check if all target
class instances for the new source class exist. In createMissingJoinTargets-
ForNewLeft, we first check for each existing right source instance, for which
the join condition with the new left source instance holds, if there is a new
target instance. If this is not the case, we create a new target instance accord-
ing to the join definition from the updated attribute values and links obtained
from the meta variables. Not only existing right source instances could form new
join pairs with the new left source class, also new created right source instances
could be join partners. Therefore, we collect all new target instances for which
the join condition holds for its right source class in matchingRightTarget. For each
instance in matchingRightTarget, we check if a target instance exists. If not, we
create the missing target class instance with the updated attribute values and
links obtained from the meta variables. The procedure createMissingJoin-
TargetsForNewRight behaves symmetrically.
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Algorithm 1. Create missing target instances for new left source instance
1: procedure createMissingJoinTargetsForNewLeft(left : ct)
2: matchingRight ← c2.allInstances()->select(right | varc2→ct

θ(right,right),right)
3: for right ∈ matchingRight do
4: mappingTargets ← ct.allInstances()->select(target | isNew(target))
5: ->select(target | mapsToct,θ

〈c1,ct〉(left, target) and mapsToθ
〈c2,ct〉(right, target))

6: if mappingTargets->isEmpty() then createNewTargetClassInstance
7: end if
8: end for
9: matchingRightTarget ← ct.allInstances()->select(right |

10: isNew(right) and varc1→ct,c2→ct
θ(left,right),left,right)

11: for right ∈ matchingRightTarget do
12: mappingTargets ← ct.allInstances()->select(target | isNew(target))
13: ->select(target | mapsToct,θ

〈c1,ct〉(left, target) and mapsToct,θ
〈c2,ct〉(right, target))

14: if mappingTargets->isEmpty() then createNewTargetClassInstance
15: end if
16: end for
17: end procedure
18: create new target class instance with source attributes V1, V2 and links L1, L2

according to the definition of ct.
19: procedure createNewTargetClassInstance
20: V1 ← {va — a ∈ Att∗

c1 , va = varct
a (left)}

21: V2 ← {va — a ∈ Att∗
c1 , va = varct

a (right)}
22: L1 ← {lr — r = 〈c1, ĉ〉 ∈ Ref, lr = varct

r (left)}
23: L2 ← {lr — r = 〈c2, ĉ〉 ∈ Ref, lr = varct

r (right)}
24: end procedure

4.2 Further Fixes

In addition to the creation of new target instances, derived model elements can
also be re-calculated automatically. Therefore, they have to be made non-editable
for the user and re-evaluated every time a view update is translated. To preserve
the PutGet property, the fixes are applied before the execution of the transla-
tion through the rewrite mechanisms and meta variables.

Furthermore, changes to attributes in the view can affect further target model
elements that depend on the same source attributes. These updates can be pro-
posed to the user automatically, so that they need not be executed manually.

5 Evaluation

For the evaluation of the approach presented in this paper, we have extended the
ModelJoin prototype.1 Constraints are generated automatically for the target
metamodel. We implemented this functionality as Xpand templates. Using the
standard OCL engines of Eclipse, the translatability of views can be checked by
invoking an OCL validation on the respective model.
1 https://sdqweb.ipd.kit.edu/wiki/ModelJoin.

https://sdqweb.ipd.kit.edu/wiki/ModelJoin
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5.1 Case Studies

Since ModelJoin is not used in industrial applications yet, we use general model-
ing examples instead. For the case study, we have therefore chosen the Common
Component Modelling Example (CoCoME) [15] and the Media Store example
from the upcoming Palladio Book [3].

5.1.1 CoCoME. CoCoME describes a trading system for supermarkets. The
system architecture is described as UML component models, the implementation
in Java [15]. Using the Java Model Parser and Printer (JaMoPP), the Java code
converted from textual representation to a model representation and vice versa.

With ModelJoin, a UML view of the trading system can therefore be extended
with implementation details using the model representation of the source code.
Furthermore, translated updates cannot only update the UML models, but also
the Java source code. We assume the software engineer wants to create a view
containing the interfaces with method signatures from the Java source code
and the providing components from the UML component model, and therefore
creates the ModelJoin view definition. The following actions were evaluated:
changing the name of an interface, adding an interface, and deleting an interface.

5.1.2 MediaStore. As a further example, we use the media store example
from the upcoming Palladio Book [3]. The Media Store example describes a file
hosting system for audio files. There is an example project for Palladio with
System, Execution Environment, Component Allocation and Usage Models.

For the evaluation, we have used the database cache example from the Pal-
ladio Media Store example project. We assume that the caching behavior was
modeled by a UML activity diagram and then the corresponding SEFF was
derived from it. While both models describe the same behavior, they contain
different information. The SEFF contains the branch probabilities, random vari-
ables and hardware resource demands needed for the performance analysis. The
activity diagram contains requirements and details about the behavior to imple-
ment. The following actions were evaluated: renaming an action, deleting an
edge, and creating a new action.

5.2 Conclusion of the Case Studies

For each of the actions, we formulated an expected behaviour and compared it
with the translation generated by our implementation. The case study examples
have confirmed that most of the target model elements are updateable, if the
view definitions are designed with updatability in mind. All update operation
on the view were translatable in the CoCoME case. The constraint checking
prevented the translation of inconsistent or ambiguous updates. In five of the
six cases the actual translation result meets our intuitive expectation.

For the CoCoME case, the translation of the actions leads to the follow-
ing results: Changing the name of the interface was translated to change of the
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corresponding source attributes. Creating a interface with method signatures cre-
ates the component interface and the corresponding interface in the Java model
after translation. It forms, however, no complete compilation unit, and has to be
completed by the user. Deleting the interface and the referenced model elements
was translated to a deletion of the component interface and the Java model
interface, as well as the removing of the links to the corresponding referenced
source model elements. The ModelJoin keep reference operation is problematic:
A keep reference operation only creates target model instances for class instances
included in a given source model reference. Unreferenced class instance are not
present in the target model, so no unreferenced target class instance can exist in
the target model. To fulfill the PutGet-Property, it is not possible to remove
the links to a target class instance without deleting the linked target class as
well. The translation however only removed the linked class instance, but does
not delete the corresponding source class instance.

In the Palladio Media Store example case, the rename and deletion action led
to similar results as in the CoCoME case. The creation of a new action showed
that the translatability of new target class instances is problematic if a source
class is used in multiple join conditions, and not all elements in join conditions
have target elements in the view. Source attribute expressions, as proposed in
[22], are one way to supply the value for missing target attributes, however
there is no construct for references yet. If a join expression uses a value from
a referenced class instance, the expression cannot be rewritten if the reference
itself is not mapped to a target model reference. In this case, the value for the
join expression after the translation cannot be derived, and so the mapping for
the new target class instance to source target class instances is undetermined.
The case studies are described in detail in [22].

5.3 Limitations and Validity

Since ModelJoin is a proposal for a view definition language and there is just an
experimental implementation, it is not yet used in real world cases. Therefore,
the ModelJoin view definitions used in the case study are created specifically for
this case study. We tried to model practical scenarios and therefore used common
model examples. It is however unclear whether the results of this evaluation fulfil
real-world requirements. This requires further evaluation in a real ModelJoin
use case. The expected translation results, used to value the actual translation
results, are not empirical researched and are chosen in an intuitive way by the
authors of this paper.

6 Related Work

EMF views [5] implements a similar approach as ModelJoin for the definition of
queries in a SQL-like manner. Updates to the views can only be translated for
primitive attribute value changes. The EMF-IncQuery approach also supports
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virtual views that can be derived and synchronized incrementally [10]. These
approaches are however limited to views on homogeneous models.

The View-Update-Problem is well studied in the context of relational data-
bases [2,9,20]. An approach for the View-Update-Problem is to target it at
the syntax level of the language used to declare views. Different forms of bi-
directional model transformation approaches have been developed for this pur-
pose. Foster et al. [13] identify three major classes for theses languages: bi-
directional languages, bijective languages, and reversible languages. ModelJoin
with the translation extensions presented in this paper falls into the first cat-
egory. A more comprehensive overview is given in [16]. According to this clas-
sification, ModelJoin is an approach in the technical space of MDE, which is
forward, but not backward functional, has total target coverage, is not turing-
complete, and has a state-based change representation. An investigation of well-
behavedness properties of ModelJoin is subject of future work. The lenses app-
roach by Foster et al. has also been applied to metamodel-based structures [12].
They have also been extended to support editability [17,18]. Triple Graph Gram-
mars can also be used to define bi-directional model transformations [1,14].
These theoretically founded approaches could be applied to metamodels if a
suited theoretical foundation for MOF and Ecore were provided, as suggested in
[23]. For changes to views, change-driven approaches [4,17,19] could serve as a
basis, since the updates are triggered by well-defined change events.

7 Conclusion

We have formulated the view-update problem for ModelJoin views. To check if
an update target model satisfies these properties, we have chosen OCL as a vali-
dation language. We have shown that the target model is translatable if all con-
straints are fulfilled, and that an unmodified target model satisfies all constraints.
Additionally, we have proposed specialized algorithms for fixing untranslatable
target models. These algorithms can be used to make a target model translat-
able after applying an update operation by adapting dependent model elements.
Finally, we have evaluated our approach in two case study examples. All but one
chosen update operations were translatable in the case study example cases.

Our approach introduces a translation semantics for the editability of Mod-
elJoin views. In some cases, it is possible to decide for a given metamodel and
update operation, if the update operation can be translated independent of the
model. It has to be studied if the generated OCL constraints can be used to
show the translatability in general. We have seen that not all updated target
models that fulfil the GetPut-Property can be translated. The generated con-
straints are too restrictive in some cases. In future work, the constraints could
be relaxed more by improving the rewrite function for target class instances and
introducing concepts for changing source references, similar to source attributes
at update translation.
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nization with view triple graph grammars. In: Rubin, J., Cabot, J. (eds.)
ECMFA 2014. LNCS, vol. 8569, pp. 1–17. Springer, Heidelberg (2014).
http://dx.doi.org/10.1007/978-3-319-09195-2 1

2. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans.
Database Syst. 6(4), 557–575 (1981)

3. Becker, S., Reussner, R.H. et al.: Modeling and Simulating Software Architectures –
The Palladio Approach. MIT Press, Cambridge (2016, to appear)

4. Bergmann, G., et al.: Change-driven model transformations. Softw. Syst. Model.
11(3), 431–461 (2012). http://dx.doi.org/10.1007/s10270-011-0197-9
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Abstract. In the last years, the increasing complexity of Model-Driven
Engineering (MDE) tools and techniques has led to higher demands in
terms of computation, interoperability, and configuration management.
Harnessing the software-as-a-service (SaaS) paradigm and shifting appli-
cations from local, mono-core implementations to cloud-based architec-
tures is key to enhance scalability and flexibility. To this end, we propose
MDEForge: an extensible, collaborative modeling platform that provides
remote model management facilities and prevents the user from focussing
on time-consuming, and less creative procedures. This demo paper illus-
trates the extensibility of MDEForge by integrating ATL services for the
remote execution, automated testing, and static analysis of ATL transfor-
mations. The usefulness of their employment under the SaaS paradigm is
demonstrated with a case-study showing a wide range of new application
possibilities.

1 Introduction

Modeling and model management tools are commonly distributed as software
packages that need to be downloaded and installed on client machines, and
often on top of complex development IDEs, e.g., Eclipse1. Given the non-trivial
implicit and explicit interdependencies of such tools, this can often be a burden,
particularly for non-technical stakeholders (e.g., domain experts) with average
IT skills. Moreover, the increasing complexity of the systems to be built and
their high demands in terms of computation, memory and storage, requires more
scalable and flexible MDE techniques.

A first attempt to deal with such challenges is the Modeling as a Service
(MaaS) initiative [6], which proposed the idea of deploying and executing MDE
services over the Internet. This is aligned with the software as-a-service (SaaS)

1 http://www.eclipse.org.
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paradigm, since consumers do not manage the underlying cloud infrastructure
and deal mostly with end-user systems. Even though there are different projects
(e.g., the EU MONDO project2) and approaches [1,9] related to the adoption of
cloud infrastructures for MDE, the area is still at its infancy. In [4], MDEForge
was proposed as an extensible platform enabling the adoption of model manage-
ment tools as SaaS: advanced functionalities like unmanaged clustering of large
metamodel repositories [3], and automated chaining of model transformations
[5], are already part of the core services.

In this demo paper, we show how MDEForge has been extended to enable
the remote execution and analysis of ATL transformations, their automated
testing and static analysis. Section 2 presents an overview of MDEForge and its
core services. The next section introduces the developed extensions to support
ATL transformations. Section 4 presents how to use such services in practice by
exploiting both the Web access and REST APIs. Finally, Sect. 5 draws conclu-
sions and outlines future developments. Additional resources about this demo
paper are available on line3.

2 MDEForge

Fig. 1. Overview of the MDEForge
architecture

MDEForge is an extensible online mod-
eling platform specifically conceived to
foster a community-based modeling repos-
itory, which underpins the development,
analysis and reuse of modeling artifacts.
The MDEForge platform consists of a
number of services that can be used by
means of both Web-based and programmatic interfaces (APIs) that enable their
adoption as SaaS (see Fig. 1). Core services are provided to manage users and
modeling artifacts, e.g., models, and metamodels. Resembling functionalities of
desktop IDEs, like Eclipse, registered users have the possibility to create mod-
eling artifacts and organize them in projects that are, in turn, contained in
workspaces. Projects and artifacts can be shared with users of the same system
installation. Next, we describe the most relevant MDEForge services, shown in
Fig. 2.

CRUDArtifactService. It permits to create, update, query, and delete artifacts in
the repository. An abstract implementation of the service is provided in order to
have a default and common behavior, which can be parametrized by exploiting
Java generics to handle specific kinds of artifacts (e.g., models, metamodels, and
transformations).

2 http://www.mondo-project.org/.
3 http://www.di.univaq.it/diruscio/ICMT2016-MDEForge-tool-demo-accompanying.

pdf.

http://www.mondo-project.org/
http://www.di.univaq.it/diruscio/ICMT2016-MDEForge-tool-demo-accompanying.pdf
http://www.di.univaq.it/diruscio/ICMT2016-MDEForge-tool-demo-accompanying.pdf
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Fig. 2. MDEForge core services

CRUDRelationService. This service permits representing in a megamodel all
the artifacts stored in the repository together with the relations among them.
For instance, for each stored model in the repository, a conformance relation
element exists in the megamodel to refer the corresponding metamodel. Similarly
to CRUDArtifactService, a generic implementation of CRUDRelationService is
given, which is then specialized to manage specific relations such as conformance
(between models and metamodels) and domain conformance (between model
transformations and corresponding metamodels).

UserService. This service provides authentication and authorization functionali-
ties and underpins the management of workspaces, projects, and shared artifacts.

WorkspaceService. It provides CRUD operations to manage user workspaces,
which are used to organize projects and artifacts.

ProjectService. It provides CRUD operations to manage projects with different
kinds of artifacts. Differently to workspaces, projects can be shared between
several users.

GridFileMediaService. In MDEForge we have defined a common layer to handle
physical files. GridFileMediaService provides a set of functions that take as input
artifacts and retrieve physical paths, input/output streams, etc.
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ClusterService. In order to mitigate the difficulties related to manual categoriza-
tion of artifacts, MDEForge provides a clustering technique to group together
mutually similar artifacts depending on a proximity measure (implemented by
SimilarityService), whose definition can be given according to specific search and
browsing requirements [3].

MetricProvider. In order to assess the quality of the stored modeling artifacts,
for each kind of artifact it is possible to define (by implementing the method
calculateMetrics) the corresponding metrics to be calculated [7,8].

SearchProvider. MDEForge provides common methods to search artifacts. By
implementing the createIndex method it is possible to customize the search.

3 MDEForge Extensions for ATL

MDEForge has been extended with support for ATL transformations, includ-
ing reuse, sharing, execution, analysis and testing. In Sect. 3.1 we identify the
functional requirements that have been considered to implement the extensions,
presented in Sect. 3.2.

3.1 Functional Requirements

The functionalities provided by the MDEForge extensions presented in the next
sections have been developed with the aim of fulfilling the requirements described
below.

RQ1 - Create, read, update and delete ATL transformations: like any kind of
artifacts handled by MDEForge, the extension has to permit CRUD operations
on ATL transformations. Moreover, the system should manage transformations
in .xmi and .atl formats. When transformations are uploaded the system should
take care of compiling them and informing the user in case of errors.

RQ2 - Share ATL transformations: in order to promote reuse of existing trans-
formations, the system has to provide sharing facilities similar to those of public
storage services like Dropbox and Google Drive. Thus, when users upload trans-
formations, they can decide if they have to be private, public or shared with
other users.

RQ3 - Manage megamodeling relations: when new ATL transformations are
uploaded, it is necessary to update the megamodel representing all the arti-
facts stored in the repository. Thus, specific domainConformsTo and coDomain-
ConformsTo relations have to be introduced in order to relate the transfor-
mations being uploaded with the corresponding source and target metamodels,
respectively.
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RQ4 - Search ATL transformations: the default MDEForge search methods have
to be extended in order to enable the specification of advanced queries, e.g.,
search all ATL transformations that produce models conforming to a specific
metamodel.

RQ5 - Execution of ATL transformations: in line with the MaaS initiative,
MDEForge has to enable the remote execution of ATL transformations. To this
end, once an already stored transformation has been selected, it is necessary to
upload the source models and validate them with respect to the source meta-
models (RQ5a), execute the transformation (RQ5b), store and return back the
result (RQ5c).

RQ6 - Analysis of ATL transformations: the system should enable the remote
analysis of ATL transformations. According to [11], the evaluation of specific
metrics can give relevant insights and support quality assessment transforma-
tions tasks. In particular, static analysis can efficiently reveal problems with no
need for transformation execution [10]. Additionally, testing mechanisms able to
generate large sets of test input models can play a key role for exercising trans-
formations and detecting faults [2]. Thus, the MDEForge extensions required to
analyse ATL transformations have to enable the calculation of metrics (RQ6a),
and support their static analysis (RQ6b) and testing (RQ6c).

RQ7 - Remote access to the ATL transformation services: all the previously
presented functionalities have to be implemented as services in order to enable
their adoption by means of both specific APIs and the MDEForge Web interface.

3.2 ATL Services in MDEForge

In order to fulfil the abovementioned requirements, MDEForge has been
extended as depicted in Fig. 3. In particular, the added interface ATL-
interfaceTransformationService extends the core CRUDArtifactService
in order to define ATL specific services i.e., executing and analysing
transformations. The implementation of the added interface is given in
the new ATLTransformationServiceImpl class, which extends the core
CRUDArtifactServiceImpl class and implements also the core interfaces
SearchProvider and MetricProvider. The static analysis and the testing ser-
vices are also defined in ATLTransformationServiceImpl by implementing the
new interfaces AnATLyzerService and ATLTransformationTesterService.

The analysis service uses anATLyzer [10], a static analyser for ATL able to
detect over 40 types of errors statically (e.g., rule conflicts, unresolved bind-
ings, uninitialized features). The testing service uses random testing, producing
input models via constraint solving and checking for runtime errors and non-
conforming target models.

In order to enable the use of ATL services in the MDEForge Web client,
the core classes ArtifactPublicWebController and ArtifactPrivate-
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Fig. 3. MDEForge extensions for ATL

WebController have been extended by new controllers. Similarly, the core
REST controllers have been extended to enable the programmatic use of ATL
services.

4 Use of ATL Services

Next, we show how the added ATL services can be used. Figure 4 shows the
MDEForge Web page showing details about the Families2Persons4 transfor-
mation stored in the repository. On the top of the page, general data of the
transformation are shown i.e., the user who has imported it, when it was added
to the repository, and the date of the last change. Moreover, the users the trans-
formation has been shared with are also shown.

The outcome of the analysis services is shown in the sections anATLyzer
Transformations errors and Test service report. In the specific example, the
former shows an error that might occur at run-time because of the access to the
lastName feature that can be undefined. This error has been confirmed by the
test service, which has generated three test models that have raised the error at
run-time. Test models can be downloaded and explored in order to figure out how
to improve the transformations that raised the errors. Model transformations can
be remotely executed from the Execute the Transformation section. From this
section, users can select input models already available in the repository or can
upload new ones. Once the input models are selected, the transformation can be
executed, and the link to download the generated target model is given back to
4 http://www.eclipse.org/atl/atlTransformations/#Families2Persons.

http://www.eclipse.org/atl/atlTransformations/#Families2Persons
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Fig. 4. ATL transformation details page

the user. On the bottom of the page, the system shows metrics calculated over
the considered transformation, which can be used for quality assessment.

The ATL services can also be used in a programmatic way by means of a
Java client, which makes use of specifically designed REST APIs. The execution
of a given ATL transformation can be done as shown in line 23 by exploiting
the ATLTransformationService, which has been initialized in lines 2–3. The
input model to the transformation is retrieved in lines 9–11. To this end, the
EcoreMetamodelService initialized in lines 4–5 is exploited. The analysis ser-
vices can be applied on the loaded transformation as done in lines 18–20. It is
important to remark that the execution of the analysis services can be time con-
suming, thus if the results are already available (because of previous executions)
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then they are given back immediately, otherwise the service executions are sched-
uled and the user is informed as soon as the results are available.

Listing 1.1. Use of ATL services in a programmatic way
1//Init client services
2ATLTransformationService atlClientService =
3 new ATLTransformationService("<server_url>", "<User", "<pw>");
4EcoreMetamodelService ecoreClientService =
5 new EcoreMetamodelService("<server_url>", "<User", "<pw>");
6EcoreMetamodel families= ecoreClientService.getEcoreMetamodelByName("Families")

;
7
8//Create model to be transformed
9Model simpleFamilyModel = new Model();

10simpleFamilyModel.setName("simpleFamilies_Demo");
11simpleFamilyModel.setFile(ModelService.setGridFileMedia("sample-Families.xmi"))

;
12[...]
13//Load Transformation
14ArtifactList models = new ArtifactList();
15ATLTransformation t=atlClientService.getATLTransformationByName("Families_Demo"

);
16
17//Analyze transformation
18List<ATLTransformationError> anATLyzerError = atlClientService.anATLyze(atl);
19List<ATLTransformationTestServiceError> testServiceError =
20 atlClientService.testerService(t);
21
22//Execute transformation
23models.add(simpleFamilyModel);
24List<Model> result = atlClientService.executeATLTransformation(t, models);

5 Conclusions and Future Work

In this paper, we have shown how MDEForge has been extended to add support
for executing and analysing ATL transformations according to the SaaS para-
digm. In the future, we intend to implement further extensions for instance to
support advanced queries on the repository and to support collaborative model-
ing activities. As future work we intend also to investigate issues that are typical
in Cloud computing, e.g., scalability of the platform, and workload management.
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Abstract. Many scenarios require flexible model transformations as
their execution should of course produce models with the best possible
quality. At the same time, transformation problems often span a very
large search space with respect to possible transformation results. Thus,
guidance for transformation executions to find good solutions without
enumerating the complete search space is a must.

This paper presents MOMoT, a tool combining the power of model
transformation engines and meta-heuristics search algorithms. This
allows to develop model transformation rules as known from existing
approaches, but for guiding their execution, the transformation engi-
neers only have to specify transformation goals, and then the search
algorithms take care of orchestrating the set of transformation rules to
find models best fulfilling the stated, potentially conflicting transforma-
tion goals. For this, MOMoT allows to use a variety of different search
algorithms. MOMoT is available as an open-source Eclipse plug-in pro-
viding a non-intrusive integration of the Henshin graph transformation
framework and the MOEA search algorithm framework.

Keywords: Search-Based Software Engineering · Model
transformation · Henshin · MOEA

1 Introduction

Model transformations are the key technology to manipulate models in Model-
Driven Engineering (MDE) [4]. As the applicability of MDE is expanding in soft-
ware engineering and beyond, model transformations have to cope with many
challenges. One of these challenges is how to deal with the large search spaces of
many transformation problems. Of course, one approach is to develop problem-
specific heuristics which allow to deal with the associated search space without
having to enumerate all possible solutions, which is mostly not possible due
to practical space and time restrictions. However, finding such problem-specific
heuristics is challenging. Therefore, an alternative approach is the usage of meta-
heuristics that are problem-independent. This line is investigated by Search-
Based Software Engineering (SBSE) [11], which is a lively research field applying
c© Springer International Publishing Switzerland 2016
P. Van Gorp and G. Engels (Eds.): ICMT 2016, LNCS 9765, pp. 79–87, 2016.
DOI: 10.1007/978-3-319-42064-6 6
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search-based optimization techniques to software engineering problems. Search-
based optimization techniques deal with large or even infinite search spaces in
an efficient manner. Concrete algorithms include local search methods such as
Tabu Search [10] and Simulated Annealing [14], or genetic algorithms [12] such
as NSGA-II [6] and NSGA-III [5]. Especially in recent years, SBSE has been
applied successfully in the area of MDE [13]. Very recently, several approaches
have been proposed to provide more efficient search capabilities for model trans-
formations [1,8,9].

MOMoT is one of these emerging approaches and was first presented in [9]. It
is based on Henshin [2] as base model transformation framework and MOEA1 as
base meta-heuristic search framework. Thus, MOMoT combines different search
techniques with model transformations to produce output models that optimize
one or more potentially conflicting quality criteria. Reusing the existing func-
tionality of these base frameworks as much as possible is the central principle of
our framework. The MOEA framework is an open-source Java library that pro-
vides a set of multi-objective evolutionary algorithms with additional analytical
performance measures and that can be easily extended with new algorithms as
we have already done for introducing local searchers such as Hill Climbing [9].
While in the rest of the paper we discuss our framework in the light of Henshin
and MOEA, the conceptual approach itself is generic so that it may be used for
other framework cobminations.

MOMoT is the subject for the proposed tool demonstration. Therefore, in this
paper we highlight the integration of Henshin and MOEA from an architectural
viewpoint and show the concrete tool support for specifying search-based model
transformations by using the Search Configuration Modeling Language (SCML).

The remainder of this paper is structured as follows. First, we introduce
MOMoT based on its architecture and provided features in Sect. 2. Then, we
present the running example for this paper and the accompanying tool demon-
stration in Sect. 3. Section 4 illustrates how to configure the search at design
time, while Sect. 5 shows the runtime results obtained by MOMoT and how the
results are analyzed. Finally, Sect. 6 concludes this paper with an outlook on
future work.

2 Features and Architecture of MOMoT

MOMoT offers the following features for developing search-based model trans-
formations: (i) a generic way to describe the problem domain and the con-
crete problem instance, (ii) an encoding for the solution of the concrete problem
instance based on model transformation solutions, (iii) a random solution gen-
erator that is used for the generation of an initial, random individual or random
population, and (iv) a set of search-based algorithms to execute the search. To
further support the use of multi-objective evolutionary algorithms, we addition-
ally provide (v) generic objectives and constraints for our solution encoding,
(vi) generic mutation operators that can modify the respective solutions, and
1 http://www.moeaframework.org.

http://www.moeaframework.org
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Fig. 1. Overview of MOMoT’s workflow

(vii) a configuration language that also provides feedback about the specified
search configuration. Since our approach combines MDE techniques with SBSE
techniques, the key building blocks are an environment to enable the creation of
metamodels and models, a model transformation engine and language to manip-
ulate those models and a set of meta-heuristic algorithms that perform a search
to find transformation orchestrations that optimize the given objectives and ful-
fil the specified constraints. Figure 1 shows the typical MOMoT workflow as well
as the involved artifacts which are explained in the following sections.

Fig. 2. MOMoTs architecture

To unify the MDE and SBSE worlds in a
single framework, we bridge the Eclise Mod-
eling Framework (EMF), the Henshin graph
transformation framework, and the MOEA
framework. For realizing the MOMoT’s SCML,
we build on the functionality of XBase for hav-
ing a model-based representation of search con-
figurations to provide dedicated support for
transformation engineers to make use of search-
based algorithms. The resulting technology stack is depicted in Fig. 2. The com-
plete source code of MOMoT with further explanations as well as the case studies
currently realized with MOMoT can be found on our project website2.

3 Running Example

In this section, we introduce the running example for demonstrating MOMoT.
We selected the example from the model quality assurance domain. It is well-
known that the quality of an object-oriented design has a direct impact on the
quality of the code produced. The Class Responsibility Assignment (CRA) prob-
lem [3] deals with the creation of such high-quality object-oriented models. When
solving the CRA problem, one has to decide where responsibilities, under the
form of class methods and attributes they manipulate, belong and how objects
should interact [15].

Modeling the CRA Problem . For this paper, we propose a simplified ver-
sion of the CRA problem. As given elements we have a set of methods and
attributes as well as dependencies between them. Such structure is also referred
to as responsibilities dependency graph (RDG). Based on the RDG, the goal is

2 http://martin-fleck.github.io/momot/.

http://martin-fleck.github.io/momot/
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Fig. 3. RDG/CD metamodel. (Color figure online)

to generate a high-quality class diagram (CD). For this purpose, a RDG2CD
model transformation is needed to evolve a RDG into a CD. Figure 3 depicts
the metamodel that is used to represent both, the RDG and the CD. The RDG
is the subgraph of the metamodel containing only the features and their depen-
dencies (shown in black), while the additional class and relationships are needed
to produce a CD (shown in green).

Transformation Goals. The goal is to produce high-quality CDs from RDGs.
The CRA problem is a problem with a fast growing search space of potential
class partitions given by the Bell number Bn+1 =

∑n
k=0

(
n
k

)
Bk. Already starting

from a low number of features, the number of possible partitions is unsuitable
for exhaustive search, e.g., 15 features yields 190899322 possible ways to create
classes.

For determining the quality of the obtained CDs, we use two common met-
rics for considering the quality of grouping functionality into classes: coupling
and cohesion [3]. Coupling refers to the number of external dependencies a spe-
cific group has, whereas cohesion refers to the dependencies within one group.
Typically, low coupling is preferred as this indicates that a group covers sepa-
rate functionality aspects of a system. On the contrary, the cohesion within one
group should be maximized to ensure that it does not contain parts that are not
part of its functionality. Mapping these definitions to our problem, we can cal-
culate coupling and cohesion as the sum of external and internal dependencies,
respectively. The formulae to calculate all necessary metrics and values are given
below (taken from [15])3. Please note that M(c) and A(c) refer to all methods
and attributes of class c, respectively, and MMI(ci, cj) and MAI(ci, cj) indi-
cate the number of method-method and method-attribute interactions between
classes ci and cj , respectively.

CohesionRatio =
∑

ci∈Classes

MAI(ci, ci)
|M(ci)| × |A(ci)| +

MMI(ci, ci)
|M(ci)| × |M(ci) − 1|

CouplingRatio =
∑

ci,cj∈Classes
ci �=cj

MAI(ci, cj)
|M(ci)| × |A(cj)| +

MMI(ci, cj)
|M(ci)| × |M(cj) − 1|

3 Zero is assigned to the result of a division whenever its denominator is zero.
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Summing up, the challenge of this case study is to find a way to properly orches-
trate transformation rules to optimize the quality of the produced CDs.

4 Developing Transformations with MOMoT

This section describes how transformations are developed with MOMoT based
on the CRA case study.

Transformation Rules. First, MOMoT reuses Henshin to develop the neces-
sary transformation rules. Furthermore, since in our approach we separate the
objectives from the rules, no further adaptations to those rules are necessary.
The rule required for the CRA case study is depicted in Fig. 44. As we start with
a random CRA solution which is improved by running the transformation, we
simply need one rule which is re-assigning the features between different classes.

Fig. 4. Implementation of the reassign rule in Henshin.

Objectives. In addition to the rules, the objectives for the transformation have
to be defined (cf. Listing 1.1). The calculation of the objective values given before
as mathematical formulae have been implemented in Java for computing the
coupling ratio and the cohesion ratio. An alternative provided by MOMoT as
well would be to use OCL directly in the objective definitions. We also provide
default objectives such as done for the solution length, i.e., the length of rule
application sequences of the computed solutions. Moreover, constraints may be
defined for determining the fitness of a solution. However, due to space restriction
we do not further show this aspect for this case study and refer the interested
reader to [9].

Listing 1.1. Specifying the Search Objectives

1 fitness = {
2 objectives = {
3 CouplingRatio : minimize { FitnessCalculator.calculateCoupling(root) }
4 CohesionRatio : maximize { FitnessCalculator.calculateCohesion(root) }
5 SolutionLength : minimize new TransformationLengthDimension } }

4 Please note that MOMoT supports different Henshin transformation units and more
complex transformations. However, for the purpose of the tool demonstration, we
simply use one transformation rule and put the emphasis on the MOMoT specific
features.
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Search Configuration . After defining the objectives, the concrete search con-
figuration used to find solutions best fulfilling the objectives is needed. For tack-
ling this case study, we use three algorithms which are executed sequentially (cf.
Listing 1.2). Specifically, we use NSGA-III and ε-MOEA [7] for multi-objective
search which is needed as we have three partially conflicting objectives (cf. List-
ing 1.1). In addition, we use random search as a baseline comparison to demon-
strate the need for a meta-heuristic search. As we are using population-based
algorithms, we have to configure the population size for each generation as well as
the stopping criteria as maximum evaluations per run. As meta-heuristic search
includes some randomness, one may also define that the algorithms are executed
several times to allow to draw statistical conclusions about the performance of
the different algorithms.

Listing 1.2. Configuring the Search Algorithms and Parameters
1 algorithms = {
2 Random:moea.createRandomSearch()
3 NSGAIII:moea.createNSGAIII()
4 eMOEA:moea.createEpsilonMOEA()}

5 experiment = {
6 populationSize = 100
7 maxEvaluations = 10000
8 nrRuns = 30 }

5 Running and Analysing Transformations with MOMoT

In this section, we show how the developed MOMoT transformation is executed
and discuss the transformation’s output.

Transformation Input . The execution of MOMoT transformations are started
with dedicated run configurations that execute the compiled MOMoT search con-
figurations, as shown in Listing 1.3. Please note that input models are modeled in
EMF and encoded in XMI. In order to allow for an efficient search, a preprocess-
ing is possible to prepare an initial structure beneficial to perform the search (as
done for the CRA case study by adding some new classes with random feature
assignment) or to slice the model to reduce the memory consumption during the
search process.

Listing 1.3. Defining the Transformation Input and Preprocessing

1 model = {
2 file = "problem/Cart_Item.xmi"
3 adapt = { var cm = root as ClassModel
4 for(i:0 ..< cm.features.size - cm.classes.size) ... // add classes
5 for(feature : cm.features) ... // distribute features randomly
6 return cm } }

Transformation Results. MOMoT provides as transformation results: (i) the
set of orchestrated transformation sequences leading to (ii) the set of Pareto-
optimal output models with (iii) their respective objective values. The objective
values may give an overview of how well the objectives are optimized. Listing 1.4
provides an excerpt of this configuration, and in addition, shows how results may
be postprocessed and how specific solutions are selected.
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Listing 1.4. Defining the Transformation Output and Postprocessing

1 results = {
2 adaptModels = { //remove empty classes
3 root.classes.removeAll(cm.classes.filter[c | c.encapsulates.size == 0])}
4 objectives = { outputFile = "output/objectives/objective_values.txt"}
5 solutions = { outputDirectory = "output/solutions/" }
6 models = { outputDirectory = "output/models/" }
7 models = { //select kneepoint models for further inspection
8 neighborhoodSize = maxNeighborhoodSize
9 outputDirectory = "output/models/kneepoints/"}}

Results Analysis. MOMoT produces additional analysis to give more insights
into the computed solutions and the relative algorithm performance (cf. List-
ing 1.5). For instance, we can statistically analyze dedicated performance indica-
tors, such as Hypervolume, to compare the performance of different algorithms.
This data can also be used to plot graphs to give a better overview about the
analysis.

Listing 1.5. Defining the Statistical Analysis Methods

1 analysis = {
2 indicators = [ hypervolume invertedGenerationalDistance ]
3 significance = 0.01
4 show = [ aggregateValues statisticalSignificance individualValues ] ...}

We use three algorithms in our case study, ε-MOEA, NSGA-III and Random
Search (RS), and execute each algorithm 30 times. The results of the analysis
are depicted in Fig. 5. We can clearly see that for the Hypervolume indicator, RS
has the lowest and therefore worst value, while ε-MOEA has the highest value.
A similar result is produced for the inverted generational distance, where lower
values are considered better. The fact that a meta-heuristic search outperforms
RS is a good indicator that the problem is suitable for SBSE techniques. In order
to investigate the results further, MOMoT provides several other features to test
and compare different algorithms [9].

(a) Hypervolume Indicator (b) Inverted Generational Distance

Fig. 5. Statistical analysis for the CRA case study results.
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6 Conclusion and Future Work

In this paper we have shown the search capabilities of MOMoT for the CRA
problem. We also contribute a tool for the scientific community to perform
experimental research focusing on the usage of different meta-heuristic search
algorithms for MDE problems.

While we already provide a wide spectrum of different search algorithms for
orchestrating transformation rules, there is still room for future work. First, as
we currently provide different algorithms but not their combination, we plan to
incorporate Memetic Algorithms which allow for combined usage of global and
local searchers. Second, we would like to explore the combination of search-based
and approximate model transformations [16], i.e., how much precision may be
traded for performance.
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Abstract. Triple graph grammars are a formally well-founded and widely used
technique for model transformation and model synchronization. In previous
work we have shown that basic model transformation results from triple graph
grammars can be extended to multiple models and relations on the basis of a
formalism called graph diagrams. In this paper we extend this theory to model
synchronization by generalizing results from model synchronization for triple
graphs to graph diagrams. This extension is the basis for the implementation and
analysis of model synchronization in future work.

Keywords: Model synchronization � Triple graphs � Model driven engineering

1 Introduction

Model transformation is one of the foundational concepts of model driven engineering.
Model synchronization enables the synchronization of changes between the trans-
formed models. Triple graph grammars (TGG) [14] have been used as basis for model
transformation and synchronization due to their strong formal foundation which
enables the definition and analysis of formal properties [15]. However, triple graphs are
limited to represent two models.

In previous work we extended results from model transformation with TGGs to
more than two models via a formalism called graph diagrams [16]. The TGG results we
generalized have been extended to model synchronization for TGGs by Hermann et al.
[7] following the approach for creating synchronization frameworks from transfor-
mation frameworks by Xiong et al. [22]. In this paper we extend our transformation
approach for graph diagrams along the same line. This requires the generalization of the
respective operations and definitions and the extension of the synchronization algo-
rithm by Xiong et al. to deal with more than two models.

We describe the basic results in model synchronization with triple graph grammars
in Sect. 2 and review related work in Sect. 3. Afterwards, we summarize graph dia-
grams and existing results in Sect. 4. Section 5 builds on these results to extend model
synchronization to graph diagram grammars. Section 6 concludes the paper and dis-
cusses future work. Due to space limitations some formal definitions and proofs had to
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be excluded from the paper. We supply a long version of this paper containing the
additional content as technical report [23].

2 Triple Graph Grammars

This section describes TGGs and model synchronization results that will be generalized
in this paper. Formal definitions of the terms presented here can be found in [4]. As
running example we utilize the ideas of Vogel and Giese for model based run time
adaptation [18]. The approach contains a central model, called source model, which is
synchronized with the software system at run time. The source model contains all
relevant information. Specific adaptation concerns only require a fraction of this
information. This fraction is represented by so-called target models, one for each
adaptation concern. Changes in the running system are monitored, reflected in the
source model and propagated to all target models. Concern-specific adaptation is based
on the target models and synchronized to the source model. In the running example the
source model is a simplified version of an Enterprise Java Bean (EJB) configuration as
proposed by Vogel and Giese [18]. We consider two target models: a component
model, enabling self-healing on a component failure level, and a performance model,
used for optimizing the bandwidth usage of servers. For illustrating triple graphs we
focus on the source model and the component model.

A triple graph represents two related models [14]. These models are represented
by two graphs, called source and target. The relation is represented by a third graph,
called connection or correspondence, and two morphisms. These morphisms relate
each element in the connection to one element in source and target.

The triple graph for the running example is given in Fig. 1. It contains the EJB and
component model, omitting the performance model. The EJB model (left) specifies two
containers. One contains two modules, each providing one session bean implementing
an interface. The component model (right) simplifies this structure as component
platforms, which contain components providing interfaces. Each Ejb Container cor-
responds to a component platform and each module to a component. The interfaces are
also related. This relation is established by the connection (centre) and the morphisms

Fig. 1. The triple graph containing the EJB (left) and component model (right)
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represented as dashed arrows. The component model abstracts from the available
bandwidth of a container (attribute availableBW) and the required bandwidth of a
module (attribute requiredBW).

Triple graphs can be constructed over a variety of modelling languages. For the
running example we use attributed typed graphs to represent models [3]. There is
ongoing research on the transformation of attributes for this modelling language [19].
However, that is of no consequence to the running example.

A triple rule is an injective triple graph morphism that describes the substitution of
pattern L with pattern R. Figure 2 shows a triple rule for the running example. The top
row is the triple graph L and the bottom row the triple graph R. The rule adds a related
EjbModule and Component to an existing EjbContainer and Component Platform.
L specifies that the container, the component platform and an interface are required to
execute the rule. R specifies the added elements.

A triple graph grammar consists of a start object and a set of triple rules. It
defines a language of two related models. The language contains all triples that can be
reached from the start object via repeated application of triple rules. For the purpose of
model synchronization a TGG defines a consistency relation Rel where all triples that
can be produced via the grammar are considered consistent. The purpose of model
synchronization is to synchronize changes to derive a consistent triple. These changes
are called deltas and contain creation and deletion of elements. Formally deltas are
spans of morphisms. In the figures we distinguish them from normal morphisms by a
point in their source. In a concurrent case both models may have changes (DS and DT ).
This problem is formally defined as concurrent synchronization problem in [7].

Definition 1 (Concurrent Synchronization Problem and Framework (Based on
[7]). Given a triple graph grammar TGG, the concurrent synchronization problem is to
construct a left total and nondeterministic operation CSynch : ðRel� DS � DTÞ 
ðRel� DS � DTÞ leading to the signature diagram in Fig. 3, called concurrent syn-
chronization tile with concurrent synchronization operation CSynch. Given a pair
ðprem; solÞ 2 CSynch the triple prem is called premise and sol is called a solution of
the synchronization problem, written sol 2 CSynchðpremÞ. The operation CSynch is
called correct with respect to consistency relation C, if laws (a) and (b) in Fig. 3 are
satisfied for all solutions. Given a concurrent synchronization operation CSynch, the

Fig. 2. A triple rule that adds a related EjbModule and component
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Fig. 3. Signature and laws for correct concurrent synchronization frameworks (taken from 7])

concurrent synchronization framework CSynchF is given by CSynchF ¼ ðTGG;
CSynchÞ. It is called correct, if operation CSynch is correct with respect to the con-
sistency relation induced by TGG.

Hermann et al. synchronize in three steps as proposed by Xiong et al. [22]. They
propagate the changes from the source to the target model (i), merge the changes in the
target model with the propagated changes while resolving conflicts (ii) and propagate
the merged result back to the source model (iii). In step (i) the updated source model is
reduced to a model that can be produced by the TGG via an operation CCS (consis-
tency creation in source). The result is propagated to the target model using an oper-
ation FPpg (forward propagate). Step (ii) merges the changes and resolves conflicts via
operation Res (resolve). The result of the conflict resolution is an updated target model
that needs to be propagated back to the source model (iii). Analogous to (i) the target
model is reduced to a maximal consistent version via operation CCT (consistency
creation in target) and propagated to the source model via an operation BPpg (back-
ward propagate).

A synchronization that starts with the target model can be implemented analo-
gously. Both operations together form the non-deterministic operation CSynch. In the
following we discuss the implementation of the operations.

Hermann et al. propose one potential implementation of Res and point out that other
implementations may exist. All other operations are implemented based on so-called
operational rules that can be derived from the original triple graph rules in the grammar.
The relevant rules for this paper are summarized in Definition 2.

Definition 2 (Derived Triple Rules Based on [6]). Given a triple rule tr ¼ ðSL sL CL

!tL TLÞ ! ðSR sR CR!tR TRÞ, we have the following derived triple rules:

where XT denotes that all elements in X are marked with T and XTL

R denotes that all
elements in XR that are also in XL are marked with T and all others are marked with F.
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A triple graph rule changing both models can be decomposed into a source rule that
only changes the source model and a forward rule that propagates the changes to the
target model. These rules are used in model transformation for creating the source
model via source rules and then executing the transformation via forward rules [4].
Target and backward rules for creating the target model and propagating changes to the
source model can be created analogously.

For the sake of efficiency it often makes sense to parse the source model instead of
creating a new one via source rules. Hermann et al. use translation attributes for this
purpose. These are Boolean attributes T or F that are assigned to denote whether a
model element has already been parsed. A forward translation rule is a version of a
forward rule that remembers the handled elements in the source model by setting their
translation attribute to T. A backward translation rule can be defined analogously. The
consistency creating rule is used for parsing existing models. It does not change model
elements but sets the translation attributes of those model elements to T that would
have been created by the original rule.

The consistency creating operations CCS and CCT use forward and backward
translation rules to mark the source/target model but ignore any creation of elements in
these rules. All elements that cannot be marked with T by these rules are removed to
establish consistency.

The operation FPpg removes all elements from the connection that reference
deleted elements, parses the remaining model structure using consistency creating rules
and translates the remainder of the source model using forward translation rules. The
operation BPpg is implemented analogously using backward translation rules.

The running example could also be implemented as two TGGs, each synchronizing
the source with one target model. However, synchronization can alter both models.
Furthermore, a source model that is consistent in one TGG is not necessarily consistent
in another TGG. Thus, synchronization along either TGG can cause inconsistency in
the other. For the synchronization to terminate it has to be guaranteed that the source
model reaches a stable state so that no further synchronization is necessary. Since both
TGGs operate on only two models this has to be guaranteed externally and may
become complex, e.g., for a large graph of relations containing circles. Graph diagrams
can specify the consistency of all models at the same time and enable the concurrent
synchronization among multiple relations internally.

3 Related Work

Model transformation and synchronization can concern more than two models at a
time. For example, the classification of Mens and Van Gorp uses number of source and
target models as classification criteria [12]. Other examples are the extension of QVT
by Macedo et al. to enable transformation and synchronization of multiple models [11]
and the approach by Weidmann et al. for the synchronization of process models on
multiple levels of abstraction [21].

Several existing modelling frameworks can profit from synchronization of multiple
models. In this paper we use the approach by Vogel and Giese as example [18].
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Another example is UsiXML [10], a framework for the development of user interfaces
that utilizes models on three layers of abstraction.

A variety of synchronization approaches are based on Triple Graphs. Diskin et al.
distinguish between symmetric and the asymmetric synchronization [1]. In the asym-
metric case one model is an abstraction of the other one. In the symmetric case both
models can contain information not reflected in the other model. This additional
information makes symmetric synchronization the harder case [2]. The approach in this
paper deals with the symmetric case for multiple models. In the running example both
target models are asymmetric to the source model but the target models are symmetric
to each other. Diskin et al. also advocate representing changes as deltas, describing the
created and deleted elements, instead of using the result of a change since the same
result can be achieved in multiple ways [1].

Several authors deal with the efficiency of synchronization. Some approaches aim
to be model-incremental, i.e., they avoid recreating the complete target model [9, 13].
Other approaches are effort-incremental, i.e., they depend on the size of changes and
not on the size of the models [5, 17]. The approach generalized in this paper is
model-incremental but not effort incremental. Giese et al. achieve effort-incrementality
via assumptions on TGG rules that enable reasoning about rule application based on the
synchronized changes [5]. In principle the restriction and reasoning could also be
generalized to graph diagrams.

In addition to the basic consistency notion used in this paper several other con-
sistency properties have been defined. Orejas et al. provide an overview of such
properties, their implications and their fulfilment in existing approaches [20]. The
above notion of consistency encompasses consistency and identity. Other properties
include invertibility of update propagation, soundness and maximal preservation of the
synchronized changes. We will consider these properties in future work.

We selected the approach by Hermann et al. for generalization because it is for-
mally well-founded, delta-based, symmetric and model-incremental. Furthermore,
potential extensions of the approach, e.g., to enable analysis of further properties of the
synchronization [8] do exist and can be transferred in future work.

4 Graph Diagram Grammars

This section describes the definition of graph diagrams from [16]. Similar to triple
graphs [4], graph diagrams are defined as diagram category but relax the fixed structure
of triple graphs. They can contain any number of models and relations and relations can
be connected to more than two models. A diagram base prescribes which models and
relations can be contained in a graph diagram. It is defined as follows:

Definition 3 (Diagram Base). A diagram base B ¼ ðC;Models;RelationsÞ consists of
a small category C ¼ ðOC;MCÞ with objects OC and morphisms MC and two dedicated
sets of objects, called Models and Relations, with Models \Relations ¼ ; and
Models [Relations ¼ OC. For all non-identical morphisms o1 ! o2 2 MC the fol-
lowing statement has to hold: o1 2 Relations ^ o2 2 Models.
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A set of models and relations M�OC is called closed if for all relations (r 2 M and
r 2 Relations) and all morphisms e : r ! m 2 MC the model m is also in M.

The diagram base specifies which models and relations are contained in the diagram
and which relations are connected to which models. The structure of a triple graph is a
valid diagram base. It contains two models (source and target), and one relation
(connection) and both morphisms map the relation into one model.

The running example uses one source and two target models. The component
model has already been used to exemplify triple graphs. In the diagram base shown in
Fig. 4 both target models can be contained in one diagram. The EJB Model is the
source model and connected via relations EJB 2 Performance and EJB 2 Component to
the Performance Model and Component Model.

It is possible to base graph diagrams on different modelling languages represented
as M-adhesive category. M-adhesive categories (called weak adhesive HLR categories
in [3]) are a framework in category theory that allows for the application of several
existing formal results. The diagram can be constructed over any category that has been
shown to be M-adhesive, e.g., graphs or attributed graphs [3]. Graph diagrams and
graph diagram morphisms are defined as follows:

Definition 4 (Graph Diagrams, Graph Diagram Morphisms). Given a diagram base
B ¼ ðC;Models;RelationsÞ with category C ¼ ðOC;MCÞ and an M-adhesive category
Cat ¼ ðOCat;MCatÞ with initial object ;, the category of graph diagrams GraphDia-
gramsB is a diagram category of Cat over C. B is called the scheme of the graph
diagram.

A graph diagram with scheme B is a functor ðo;mÞ : C ! Cat where o : OC ! OCat

and m : MC ! MCat.
A graph diagram morphism f between two graph diagrams D1 ¼ ðo1;m1Þ and D2 ¼

ðo2;m2Þ over the same scheme B is a natural transformation consisting of a family of
morphisms in Cat. For each object o 2 OC there is a morphism f ðoÞ : o1ðoÞ ! o2ðoÞ.
For each morphism e : a! b 2 MC the following statement holds: f ðbÞ�m1ðeÞ ¼
m2ðeÞ�f ðaÞ.

Formally a graph diagram is a functor, consisting of two components. They map
objects (o) and morphisms (m) of the diagram base to attributed graphs and attributed
graph morphisms. As in triple graphs, morphisms match the models and relations
component-wise and have to commute with the morphisms in the diagram.

A graph diagram for the running example is shown in Fig. 5. The EJB (centre) and
component model (right) are the same as in the running example for triple graphs in
Fig. 1. The performance model (left) provides another view on the EJB model in which

Fig. 4. The diagram base of the running example
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the distribution of modules among servers and the required and used bandwidth is
reflected. Each EJB Container is represented as a Server in the performance model.
Each EJB Module is represented as a Module.

The definitions of graph diagram rules and graph diagram grammars are analogous
to the respective definitions in triple graphs. A graph diagram rule is defined as
injective graph diagram morphism and a graph diagram grammar contains a start object
and a set of graph diagram rules. The formal definition is given in Definition 5.

Definition 5 (Graph Diagram Rule, Graph Diagram Grammar). A graph diagram

rule tr ¼ L!tr R for a diagram base B consists of graph diagrams L and R with scheme
B and an injective graph diagram morphism tr.

A graph diagram grammar GDG ¼ ðS; TRÞ for a diagram base B consists of a graph
diagram S with scheme B and a set of graph diagram rules TR for B.

The example rule in Fig. 6 is based on the triple graph example. In addition to the
new EJB module and component a module in the performance model is added.

In previous work we generalized basic model transformation results to graph dia-
grams [16]. We adapted the terminology since in graph diagrams there are more than
two models and thus no fixed directions “forward” or backward”. Model rules are the
generalization of source and target rules and transformation rules the generalization of
forward and backward rules. Both refer to a closed set of models and relations rep-
resenting the source part of the transformation. Model rules build up the models in this
set. Transformation rules assume that they already exist and create all other models and
relations.

Fig. 5. The graph diagram of the running example

Fig. 6. A graph diagram rule from the running example
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In the next section we generalize the synchronization problem to graph diagrams
and discuss how the operation CSynch can be lifted based on a generalization of
consistency creating and forward translation rules.

5 Synchronization Framework and Operations

This section describes the generalisation of the synchronization approach. We first
generalize the synchronization problem to more than two models. Afterwards, we
generalize the derived rules, operations and the synchronization algorithm.

The synchronization is based on the consistency relation induced by a graph dia-
gram grammar. All diagrams that can be created by the grammar are considered
consistent. The concurrent synchronization problem consists of related models Rel
(represented as graph diagram) and changes in each model (represented as deltas D1 to
DjMj). The synchronization operation derives deltas that lead to a consistent graph
diagram. This is described in Definition 6.

Definition 6 (Concurrent Synchronization Problem and Framework). Given a
graph diagram grammar GDG, over a diagram base B ¼ ðC;M;RÞ the concurrent
synchronization problem is to construct a left total and nondeterministic operation
CSynch : ðRel� D1 � . . .� DjMjÞ ðRel� D1 � . . .� DjMjÞ leading to the signature
diagram in Fig. 7, called concurrent synchronization tile with concurrent synchroniza-
tion operation CSynch. Given a pair ðprem; solÞ 2 CSynch prem is called premise and
sol is called a solution of the synchronization problem, written sol 2 CSynchðpremÞ.
The operation CSynch is called correct with respect to consistency relation C, if laws
(a) and (b) in Fig. 7 are satisfied for all solutions. Given a concurrent synchronization
operation CSynch, the concurrent synchronization framework CSynchF is given by
CSynchF ¼ ðGDG;CSynchÞ. It is called correct, if operation CSynch is correct with
respect to the consistency relation induced by GDG.

This definition is based on the one for TGGs. The synchronization problem and
operation require changes in all model nodes of the graph diagram. The consistency
laws describe that consistent diagrams with identical updates remain unchanged (a) and
that the result of the synchronization is always consistent (b).

Fig. 7. Signature and laws of concurrent synchronization. Grey boxes with round edges
represent graph diagrams and contain the model nodes.
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Figure 8 depicts the deltas to be synchronized in the running example (top) and the
synchronization result (bottom). Deltas contain deletion of elements (red colour,
annotation <d>) and creation of elements (green colour, annotation <c>). For now we
concentrate on the deltas described in the top part. In the EJB model (centre) moni-
toring of the running system results in an update of the required bandwidth for
Module1. This is reflected in a change of the attribute requiredBW. Simultaneously,
the self-adaptation based on the component model (right) decides to substitute
Component2 with a new Component. The contains link to Component2 is removed and
Component3 is added. The analysis of the performance model (left) decides to move
Module1 to Server1 because Server2 exceeded its bandwidth capacity.

These changes concern aspects that are also reflected in other models. The role of
operation CSynch is to synchronize these changes. In the remainder of this section we
discuss how this operation can be implemented for graph diagrams. The implemen-
tation in TGGs is based on derived rules. We already generalized source, forward,
target and backward rules [16]. Here, we extend this generalization to the consistency
creating, forward translation and backward translation rule.

Consistency creating rules can be used to find the parts of a graph diagram that can
be created via the grammar. The consistency creating rule for a rule r marks elements
that can be created via r with T. It assumes the elements required by r are already
marked. The generalized consistency creating rule is defined as follows:

Definition 7 (Consistency Creating Rule). Given a graph diagram rule tr ¼
ðOL;MLÞðOR;MRÞ the consistency creating rule is trMMod : ðOTL

R ;MTL

R Þ ! ðOT
R;M

T
R Þ

where ðOT
R;M

T
R Þ is the right hand side of tr with all elements annotated with T and

ðOTL

R ;MTL

R Þ is the right hand side of tr with all elements from the left hand side
annotated with T and all other annotated with F.

Fig. 8. Input and output of CSynch in the running example (Color figure online)
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The forward and backward translation rules in TGGs are used to create one model
from the other while keeping track of the already transformed elements via translation
attributes. Since graph diagrams do not have an inherent direction (there is no explicit
source and target model) we name the generalized version translation rules. The source
models of the transformation are defined by a closed set of models and relations. The
translation rules create the remaining models while marking the elements already
transformed in the models in this set. For the operations in this paper this set will
contain one element as we propagate changes from single models. The definition is
based on the transformation rule [16].

Definition 8 (Translation Rule). Given a graph diagram rule tr ¼ ðOL;MLÞ !
ðOR;MRÞ for a diagram base B ¼ ðC;Models;RelationsÞ with category C ¼ ðOC;MCÞ,
the translation rule for a closed set of models and relations M�OC is a rule trMTransl :

ðO0TL

L ;M0T
L

L Þ ! ðOT
R;M

T
R Þ whose structure is the same as in the transformation rule

trMTrans : ðO0L;M0LÞ ! ðOR;MRÞ and whose transformation attributes are set as follows:

ðOT
R;M

T
R Þ is completely marked with T and O0T

L

L ;M0T
L

L

� �
is marked with T for exactly

those elements that occurred in ðOL;MLÞ.

Based on the derived rules we now generalize the consistency creating operations
CCS and CCT , the forward and backward propagation operations FPpg and BPpg and
the merge and conflict resolution operation Res. This paper contains informal
descriptions of these operations. Formal definitions are supplemented in [23].

Since there are no explicit directions in graph diagrams we generalize CCS and
CCT to one operation CC : GraphDiagram�Models� Delta! Delta that, given a
graph diagram, a model node in this diagram and a delta on this model node, produces
another delta for the same model node. The operation alters the original delta to lead to
a consistent version of the changed model. Consistent means, that it can be created via
the graph diagram grammar. Analogous to CCS and CCT this is implemented via
translation rules for the respective model to mark which elements can be created via
graph diagram rules and thus find a maximally consistent submodel by deleting all
elements not marked with T.

The operations FPpg and BPpg are generalized in the propagation operation Ppg
with signature Ppg:GraphDiagram�Models� Delta! GraphDiagram� Modelsð
! DeltaÞ. This operation is based on a graph diagram, one model node in this diagram
and a consistent delta for this model. It propagates this delta and produces an updated
graph diagram. It also produces a map from model nodes to deltas that describes the
changes based on the input graph diagram. These deltas enable to detect and resolve
conflicts via operation Res. Ppg is implemented in the same three steps as FPpg and
BPpg. First, the delta is applied and all elements in relations that are mapped to deleted
elements are also deleted. Second, the diagram is parsed via consistency creating rules
to mark consistent elements. Third, translation rules are used to propagate changes
from the current model to all other models.

In our algorithm the operation Res is used to merge deltas one model at a time. This
can be done by directly using the operation Res:Delta� Delta! Delta from Triple
Graphs. Res merges two deltas M0�M1 and M0�MA from the same model M0.
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For the algorithm we require the result to be a delta based on M1 rather than M0. The
reuse of the operation Res guarantees that alternative or extended implementations of
conflict resolution in TGGs can also be applied in our approach.

These functions are used in the synchronization function synch : Models� !
ðGraphDiagram� Models! Deltasð Þ ! GraphDiagramÞ. This function requires the
order in which to synchronize the deltas, given by a list of model nodes. For the
specified order, given the synchronization problem consisting of a graph diagram and a
delta for each model node, the operation produces the updated diagram. This function
can be implemented as indicated in the pseudo code in Fig. 9.

The algorithm synchronizes the deltas in the given order. It uses two global vari-
ables: diag, the current state of the diagram, initialized by the input diagram (2), and
nodesToProcess, the list of model nodes whose changes have not yet been propagated
(3). The algorithm iterates over each node (5), finds a consistent delta using operation
CC (8) and propagates this delta to all other nodes using Ppg (9). The result of this
propagation is an updated graph diagram (diag) and the deltas from the old diagram to
the new one (newDeltas). These deltas are merged with the original deltas for all nodes
to process (11–13) while also resolving conflicts via operation Res. At the end of the
iteration diag contains a consistent graph diagram produced by Ppg and deltas contains
a delta for each node to process based on its state in diag. After all nodes have been
handled diag is the result of the synchronization and is returned (15).

The operation synch is a generalization of the synchronization method proposed by
Xiong et al. [22] and implemented by Herman et al. [7]. For a graph diagram with triple
graph structure it behaves as the algorithm in triple graphs, where the two possible
orders of two models represent the forward and backward direction.

For the running example we assume the following order: component model ! EJB
model ! performance model. Thus, the deltas in the component model (right) in
Fig. 8 are synchronized first. This delta removes the contains edge for Component2 and
adds Component3. Operation CC creates a consistent submodel that encompasses this
change. We assume that the productions in the grammar only add components to
platforms (as in our example rule in Fig. 6). Thus, Component2 cannot have been
added without the contains link. Since this link is removed Component2 is deleted by

Fig. 9. Pseudo code for the implementation of function synch
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operation CC. Operation Ppg consists of three steps. In the first step operation fAln
removes all correspondence elements that point to deleted elements. During this step
the element of type Module2Component that points to Component2 is deleted. Next,
operation Del removes all elements from the remaining diagram that are inconsistent
with the current change. Again, we assume that all productions in the grammar are
similar to our example production in Fig. 8 in that they only add EjbModules and
Modules that are related to a Component in the component model. In this case the
deletion of Component2 also requires the deletion of Module2 in the EJB (along with
its session bean) and the performance model since they cannot have been created
without Component2. In the third step operation fAdd checks whether new elements
have to be added to account for the added elements in the component model. Since per
our assumption Component3 can only be added together with modules in the EJB
model and performance model the respective elements need to be created in these
models, e.g., by applying the translation rule for the running example rule in Fig. 8.
Summarizing, the first loop handles the component model. It removes the elements
Component2, Module2 in the performance model and Module2 in the EJB model
together with the contained session bean. It creates Module3 in the performance model
and Module3 in the EJB model, together with a contained session bean.

In the second iteration the attribute change in Module1 in the EJB Model (centre) is
propagated. This results in an update of the respective attribute of Module1 in the
performance model. The component model does not reflect the changed attribute.

In the third iteration of the algorithm the changed modules edges from the per-
formance model (left) are propagated to the other models. These changes lead to a
removal and reinsertion of Module1 in the EJB and Component1 in the component
model. Operation Del deletes them along with the deleted modules and contains edges
and fAdd reinserts them while propagating Module1 from the performance model. This
is indicated in the figure by dashed borders around the respective elements.

The order of synchronization influences the result. E.g., if the change of the per-
formance model is synchronized before the change in the EJB model then the (tem-
porary) removal of Module1 conflicts with the change of its attribute which is not yet
propagated. The conflict resolution function Res, depending on its implementation,
may choose to discard the attribute change or keep the deleted version of Module1
alive. The operation CSynch is nondeterministic and contains all possible synchro-
nization orders. They all lead to consistent diagrams. It is the role of synchronization
mechanisms implemented on top of CSynch to select a reasonable option. The oper-
ation and the synchronization framework are defined as follows:

Definition 9 (Concurrent Synchronization Framework). For a graph diagram
grammar GDG the non-deterministic operation CSynch ¼Q

o2orders synch oð Þ is
obtained by joining the concurrent synchronizations operations synchðoÞ for each
possible permutation o of model nodes from the scheme GDG. The concurrent syn-
chronization framework is given by CSynchF ¼ ðGDG;CSynchÞ.

This operation is correct in the sense defined in Definition 6. This is stated in the
following theorem and proven in [23].
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Theorem 1 (Correctness of Synchronization Framework). The concurrent syn-
chronization framework CSynchF (see Definition 9 in [3]) is correct (see Definition 6
in [3]).

6 Conclusion and Future Work

In this paper we extend model synchronization results from TGGs to graph diagram
grammars to enable the synchronization more than two models at a time. For this
purpose we extend the basic results and operations defined by Hermann et al. [6, 7].
The extensions can be seen as generalization – in a graph diagram with the structure of
triple graphs they work as the original operations.

For the presented approach our main result is correctness, as stated in Theorem 1.
The reader should be aware that this notion of consistency is very basic. As discussed
in Sect. 3 a variety of other consistency requirements is observed and discussed in the
context of other approaches based on TGGs. Handing these properties will be part of
future work and may require adaptations/optimizations of the presented approach or
alternate synchronization approaches.

Our approach is also extremely non-deterministic. As discussed above the order of
changes to be synchronized influences the result, although all results provided by the
algorithm are consistent in principal. This is also the case in other synchronization
approaches. Xiong et al. discuss a condition under which the order of synchronization
for two models is independent of the result, but conclude their conditions to be too
restrictive in general [22]. In the scope of a specific modelling framework it is often
possible to select a specific order or to decide on one of the possible results.

Another possible extension involves the generalization of synchronized deltas to
relations. This might be interesting in cases where a developer edits a complete subnet
of models instead of an individual model.

References

1. Diskin, Z., Xiong, Y., Czarnecki, K.: From state- to delta-based bidirectional model
transformations: the asymmetric case. J. Object Technol. 10(6), 1–25 (2011)

2. Diskin, Z., Maibaum, T., Czarnecki, K.: Intermodeling, queries, and kleisli categories. In: de
Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 163–177. Springer, Heidelberg
(2012)

3. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theoretical Computer Science. Springer,
Heidelberg (2006)

4. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information preserving
bidirectional model transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS,
vol. 4422, pp. 72–86. Springer, Heidelberg (2007)

5. Giese, H., Wagner, R.: Incremental model synchronization with triple graph grammars. In:
Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199,
pp. 543–557. Springer, Heidelberg (2006)

104 F. Trollmann and S. Albayrak



6. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Correctness of
model synchronization based on triple graph grammars. In: Whittle, J., Clark, T., Kühne, T.
(eds.) MODELS 2011. LNCS, vol. 6981, pp. 668–682. Springer, Heidelberg (2011)

7. Hermann, F., Ehrig, H., Ermel, C., Orejas, F.: Concurrent model synchronization with
conflict resolution based on triple graph grammars. In: de Lara, J., Zisman, A. (eds.)
Fundamental Approaches to Software Engineering. LNCS, vol. 7212, pp. 178–193.
Springer, Heidelberg (2012)

8. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y., Gottmann, S.,
Engel, T.: Model synchronization based on triple graph grammars – correctness,
completeness and invertibility. Softw. Syst. Model. 14, 241–269 (2015)

9. Lauder, M., Anjorin, A., Varró, G., Schürr, A.: Efficient model synchronization with
precedence triple graph grammars. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G.
(eds.) ICGT 2012. LNCS, vol. 7562, pp. 401–415. Springer, Heidelberg (2012)

10. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.: USIXML: a
language supporting multi-path development of user interfaces. In: Feige, U., Roth, J. (eds.)
DSV-IS 2004 and EHCI 2004. LNCS, vol. 3425, pp. 200–220. Springer, Heidelberg (2005)

11. Macedo, N., Cunha A., Pacheco H.: Towards a framework for multi-directional model
transformations. In: 3rd International Workshop on Bidirectional Transformations - BX
1133 (2014)

12. Mens, T.: A taxonomy of model transformation and its application to graph transformation
technology. In: International Workshop on Graph and Model Transformation (GraMoT
2005) (2005)

13. Orejas, F., Pino, E.: Correctness of incremental model synchronization with triple graph
grammars. In: Di Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568, pp. 74–90.
Springer, Heidelberg (2014)

14. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr, E.W.,
Schmidt, G., Tinhofer, G. (eds.) WG ’94. LNCS, vol. 903, pp. 151–163. Springer,
Heidelberg (1994)

15. Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Ehrig, H., Heckel, R., Rozenberg,
G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214. Springer, Heidelberg (2008)

16. Trollmann, F., Albayrak, S.: Extending model to model transformation results from triple
graph grammars to multiple models. In: Kolovos, D., Wimmer, M. (eds.) ICMT 2015.
LNCS, vol. 9152, pp. 214–229. Springer, Heidelberg (2015)

17. Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Incremental model
synchronization for efficient run-time monitoring. In: Ghosh, S. (ed.) MODELS 2009.
LNCS, vol. 6002, pp. 124–139. Springer, Heidelberg (2010)

18. Vogel, T., Giese, H.: Adaptation and abstract runtime models. In: Proceedings of the 2010
ICSE Workshop on Software Engineering for Adaptive and Self-managing Systems, pp. 39–
48. ACM (2010)

19. Lambers, L., Hildebrandt, S., Giese, H., Orejas, F.: Attribute handling for bidirectional
model transformations: the triple graph grammar case. In: Electronic Communications of the
EASST, vol. 49 (2012)

20. Orejas, F., Boronat, A., Ehrig, H., Hermann, F., Schölzel, H.: On propagation-based
concurrent model synchronization. In: Electronic Communications of the EASST, vol.
57 (2013)

21. Weidmann, M., Alvi, M., Koetter, F., Leymann, F., Renner, T., Schumm, D.: Business
process change management based on process model synchronization of multiple abstraction
levels. In: Proceedings of SOCA, pp. 1–4. IEEE Computer Society (2011)

Extending Model Synchronization Results from TGG to Multiple Models 105



22. Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Synchronizing concurrent model updates based
on bidirectional transformation. Int. J. Softw. Syst. Model. (SoSyM) 12(1), 89–104 (2013).
Springer

23. Trollmann, F., Albayrak, S.: Extending model synchronization results from triple graph
grammars to multiple models – long version. Technical report, TU Berlin (2016, to appear)

106 F. Trollmann and S. Albayrak



Correct Reuse of Transformations is Hard
to Guarantee

Rick Salay1(B), Steffen Zschaler2, and Marsha Chechik1

1 Department of Computer Science, University of Toronto, Toronto, Canada
{rsalay,chechik}@cs.toronto.edu

2 Department of Informatics, King’s College London, London, UK
szschaler@acm.org

Abstract. As model transformations become more complex and more
central to software development, reuse mechanisms become more impor-
tant to enable effective and efficient development of high-quality trans-
formations. A number of transformation-reuse mechanisms have been
proposed, but so far there have been no effective attempts at evaluat-
ing the quality of reuse that can be achieved by these approaches. In
this paper, we build on our earlier work on transformation intents and
propose a systematic approach for analyzing the soundness and com-
pleteness of a given transformation reuse mechanism with respect to the
preservation of transformation intent. We apply this approach to ana-
lyze transformation-reuse mechanisms currently proposed in the litera-
ture and show that these mechanisms are not sound or complete. We
show why providing sound transformation reuse mechanisms is a hard
problem, but provide some evidence that by limiting ourselves to spe-
cific families of transformations and modeling languages the problem can
be simplified. As a result of our exploration, we propose a new research
agenda into the development of sound (and possibly complete) transfor-
mation reuse mechanisms.

1 Introduction

As model transformations become more complex and more central to software
development, automated reuse mechanisms become more important to enable
effective and efficient development of high-quality transformations. However,
while automating the reuse mechanism is a good first step, it is only useful if it
ensures transformations are reused correctly; that is, for their intended purpose.

Currently proposed mechanisms for transformation reuse mainly fall into the
following two categories: (1) Model typing/sub-typing techniques establish rules
for sub-typing relationships between meta-models that can be applied automat-
ically to judge whether a transformation expressed over meta-model MMA can
be executed over meta-model MMB. Examples of approaches in this area are
given in [1,2]. (2) Model concepts and related techniques require that develop-
ers wanting to reuse a model transformation defined over meta-model MMA

for meta-model MMB provide an explicit binding or morphism between the
c© Springer International Publishing Switzerland 2016
P. Van Gorp and G. Engels (Eds.): ICMT 2016, LNCS 9765, pp. 107–122, 2016.
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two meta-models. Examples of this approach can be seen in [3,4]. The work of
Pham [5,6] bridges both worlds in that it is based on model typing, but allows
the explicit provision of bindings through a dedicated mapping DSL.

In previous work, we have critiqued these approaches and attempted to
address some of their shortcomings with respect to correctness. In [7], Zschaler
proposes an interface specification approach for correct reuse through modu-
lar composition of transformation components. In [8], we argued that correctly
reusing a transformation must take into account the intent of the transforma-
tion. Specifically, a proposed reuse of a transformation can only be considered to
be correct if it has the same intent, i.e., it serves the same purpose as the original
transformation, albeit in a new context with different kinds of models. We know
of no other work attempting to address the question of correct reuse, although
the work of Kuehne [9] moves in this direction by giving a theoretical discussion
of the varieties of sub-type-like relationships that could support transformation
reuse.

In this paper, we explore the theme of transformation intent for correct reuse
further. Specifically, we make the following contributions:

– We define the conditions of soundness and completeness of a reuse mechanism
with respect to intent and show that existing reuse mechanisms fail to satisfy
these conditions.

– We identify reasons why these conditions are difficult to satisfy in general.
– We propose some strategies for mitigating this difficulty by restricting atten-

tion to specific families of transformation or modeling languages.

Paper Organization. In Sect. 2, after reviewing the notion of transformation
intent, we establish some formal notation and define the key conditions of sound-
ness and completeness of a reuse mechanism. Section 3 contains an analysis of
existing reuse mechanisms relative to these conditions. In Sect. 4, we discuss the
difficulty with satisfying these conditions and then, in Sect. 5, we suggest two
strategies for mitigating these difficulties. We conclude in Sect. 6.

2 What is Correct Transformation Reuse?

In this section, we introduce the notion of transformation intent, establish some
formal notation for it and then define the key correctness properties of a reuse
mechanism with respect to intent.

2.1 Transformation Intent

Informally, we take the intent of a transformation to be properties that char-
acterize its general, reusable purpose. For example, consider the transformation
minimize : SM → SM that minimizes a state machine. ‘Minimization’ is meaning-
ful also for other model types, so clearly is part of the intent of this transfor-
mation. Here we assume that the purpose of a transformation comes from the
creator of the transformation and not the user. Thus, the notion of “correct use”
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of a transformation is that it is used “as intended”. This justifies the notion of
“correct reuse” as that of preserving the intent.

In previous work [10], we have cataloged some abstract transformation intents
such as Refactoring, Translation, Analysis, etc. that seemed to recur in MDE
practice and characterized each intent using a set of properties. That is, every
transformation with a given intent must satisfy the corresponding properties.
Although our objective in the current paper is not to define abstract intents but
instead to capture the intent of particular transformations we wish to reuse, the
same approach applies – i.e., we must characterize intent using properties.

Although intent can be characterized by properties, not all properties of
transformation are part of its intent. Consider the following properties, listed in
order of increasing specialization (Pi(f) ⇒ Pi−1(f)), where f is a transformation:

– P1(f) := f preserves well-formedness
– P2(f) := f does model minimization
– P3(f) := f does behavioural model minimization
– P4(f) := f does state machine minimization
– P5(f) := f does minimization using the implication table method [11]

The transformation minimize clearly satisfies all five properties. Despite this,
only P2, P3 and P4 could be considered to be the intent of minimize. Although the
general property P1 holds, it clearly doesn’t capture anything significant about
the purpose of the transformation. At the other end of the specificity spectrum,
P5 seems to obscure the intent by being too focused on an implementation detail
(making it type dependent). These observations suggest the following.

Definition 1 (Transformation Intent). The intent of transformation F is
the reusable part of the specification of F that is independent of the type of F .

The example above also points to the fact that properties that do characterize
intent can be ordered in terms of generality. With regard to transformation reuse,
we take intent preservation to be defined in terms of the least general common
intent between the source and target. For example, if we modify minimize to
reuse it as minimize′ for Labeled Transition Systems (LTS), then we expect
minimize′ to satisfy P3 and not the more specific P4. Similarly, if we are able to
find a way to reuse minimize for UML Class Diagrams as minimize′′, it should
satisfy P2 to be a correct reuse.

To our knowledge, no formal criteria have been proposed to distinguish prop-
erties that characterize intent from those that do not, and we consider this kind
of analysis beyond the scope of this paper. Thus, in this paper, we assume that
intent properties have been provided by the transformation developer.

2.2 A Formal Framework

Let Σ be the set of types. For simplicity, we assume that a type T ∈ Σ can
either represent a set of models (i.e., the usual idea of a type) or a metamodel
defining such a set of models and what we mean should be clear from the con-
text. Furthermore, Σ includes simple types, product types, function types, etc.
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as needed. Let Ω be the set of transformations of interest and let the function
type : Ω → Σ assign a type to each transformation. Note that we treat a trans-
formation as a function rather than as a program that implements a function so
two transformations that have the same I/O behaviour are the same transforma-
tion. Without loss of generality we limit our discussion to transformations with
single input and output types. Thus, we assume that for all F ∈ Ω, type(F ) has
form T → T1 where each of T and T1 are types. For the purposes of this paper,
we define a transformation reuse mechanism as follows:

Definition 2 (Transformation ReuseMechanism). A transformation reuse
mechanism R is a tuple 〈M, src, tgt, ρ〉 where M is a set of specifications called
type mappings, functions src, tgt : M → Σ extract the source and target types
of a mapping and ρ : Ω × M → Ω is a partial function called the reuse trans-
formation such that if ρ(F,M) is defined then src(M) = type(F ) and tgt(M) =
type(ρ(F,M)).

Thus, we reuse a transformation F for a new transformation type T ′ → T ′
1

by supplying type mapping M having the new type as the target and then
computing ρ(F,M) to produce the new transformation. Note that since ρ is a
partial function, it can limit the possibilities for reuse. For example, if ρ(F,M)
is not defined for any M ∈ M where tgt(M) = T ′ → T ′

1, then we interpret this
as the reuse mechanism asserting that it cannot be used to reuse F for this new
type.

Definition 3 (Intent Order). The intent order 〈Ψ,�〉, where Ψ is the set of
transformation intents of interest, is a partial order such that for every pair
of intents I1, I2 ∈ Ψ , if they have a common upper bound then there exists a
least upper bound designated I1 ∨ I2 ∈ Ψ . The function intent : Ω → Ψ assigns
to each transformation its most specific intent in Ψ . The relation ∼⊆ Ω × Ω
called transformation similarity satisfies the condition that for all transforma-
tions, F, F ′ ∈ Ω, F ∼ F ′ iff intent(F ) ∨ intent(F ′) exists.

The ordering relation � captures the generalization hierarchy of intents where
I1 � I2 means that I2 is a more general intent than I1. Thus, in our example
above, P4 � P3 � P2. Note that not all pairs of intents typically have a common
upper bound and in particular, we assume the intent order has no top element. To
compare intents of different transformations we use a transformation similarity
relation. Thus, two transformations are considered similar if they share the same
intent at some level of generality. We can now define some key properties of a
transformation reuse mechanism using transformation similarity.

Definition 4 (Sound and Complete Reuse). Let R = 〈M, src, tgt, ρ〉 be a
transformation reuse mechanism and 〈Ψ,�〉 be the intent order. We define the
following properties of R:

– (soundness) R is a sound reuse mechanism iff for all F ∈ Ω,M ∈ M, if
ρ(F,M) is defined then F ∼ ρ(F,M).
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– (strong completeness) R is a strongly complete reuse mechanism iff for all
F, F ′ ∈ Ω, if F ∼ F ′ then there exists M ∈ M such that ρ(F,M) = F ′.

– (weak completeness) R is a weakly complete reuse mechanism iff for all
F, F ′ ∈ Ω, if F ∼ F ′ then there exists M ∈ M such that type(ρ(F,M)) =
type(F ′).

Soundness says that the reuse transformation always preserves intent. The reuse
mechanism is strongly complete when every transformation that shares an intent
with F can be a reuse target. It is weakly complete when for every transformation
type with a transformation sharing an intent with F , there is a reuse target with
this type. Note that soundness and completeness is relative to the choice of Ω.

Since we understand the correct reuse of a transformation to mean that it
shares an intent with the original transformation, a reuse mechanism must be
sound to guarantee correct reuse. In addition, it can be complete, under either
definition of completeness. Completeness concerns the scope of applicability of a
reuse mechanism (and thus the flexibility it offers). For example, a reuse mecha-
nism that can only allow the reuse of the identity transformation (i.e., makes no
change to the input) on a model type is trivially sound but its incompleteness
makes it useless in practice. At the other end of the spectrum, a reuse mechanism
that allows arbitrary Java “adapter code” to be specified to change the behav-
iour of a given transformation is trivially complete but is clearly not sound since
one can write an adapter to use any transformation in ways it was not intended.

3 Analysis of Some Existing Transformation Reuse
Mechanisms

In this section, we analyze existing transformation reuse approaches in the litera-
ture and assess whether they satisfy the soundness and completeness conditions
defined in Sect. 2. We focus on the two main classes of work reviewed in the
Sect. 1 and conclude with general comments about other approaches.

3.1 Model Typing

The paper “On Model Typing” [[1] later refined in [2]] is one of the earliest
proposals for transformation reuse based on sub-type substitutability using the
following argument: Let F : T1 → T be a transformation and T ′

1 be some model
type. Then we can reuse F without alteration, on inputs of type T ′

1 iff some type
matching condition match(T ′

1, T1) holds [1].
Figure 1 shows five state machine metamodels reproduced from [1]. Meta-

model M0 is the base type and the remaining four are variants of this. According
to the type matching condition, all variants except M1 with multiple start states
satisfy the matching condition. The authors argue that if a transformation writ-
ten for M0 navigated the initialState reference it would expect (at most) one
State object but if it was reused with models of type M1 then it could find
multiple State objects and thus “break”.
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Fig. 1. Five state machine variants: M0: base; M1: multiple start states; M2: mandatory
start state; M3: composite states; M4: final states.

Analysis. Using Definition 2, let R1 = 〈M1, src1, tgt1, ρ1〉 be the reuse mecha-
nism used in this approach and assume we are reusing transformation F : T1 → T
for new input type T ′

1. According to the definition of type matching used, no
additional mapping information is required other than the metamodels of the
source and target types T1 and T ′

1. Thus, we let M1 = Σ × Σ store the source
and target types and define src1 and tgt1 to extract the first and second compo-
nents of this pair, respectively. Finally, ρ1(F, 〈T1, T

′
1〉) is defined iff match(T ′

1, T1)
holds and when it is defined, ρ1(F, 〈T1, T

′
1〉) is the same transformation as F but

restricted to inputs of type T ′
1. Thus, type(ρ1(F, 〈T1, T

′
1〉)) = T ′

1 → T as required.
We now show that R1 is both unsound and incomplete.
While no formal specification is given, the transformation given as an exam-

ple in the paper is described as follows: “Takes as input a state machine and
produces a lookup table showing the correspondence between the current state,
an arriving event, and the resultant state.” We take this to be our designated
transformation F . Since no other statement about the intent of the transforma-
tion was given, we considered two possible intents:

(I1) To produce a tabular representation of all the state-state transitions.
(I2) To produce a tabular representation of the state machine (i.e., it encodes

the same set of traces but as a table).
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Intent I1 is a direct restatement of the definition of the transformation while
I2 attempts to abstract from the implementation to capture the underlying pur-
pose of the transformation.

The intent is preserved for all instances except variant M3 with intent I2.
The transformation reuse fails to preserve intent here because variant M3 has
composite states and the simple algorithm given in the transformation definition
ignores the containment relation between states and hence cannot fully capture
its semantics.

Thus, for intent I2, we have that ρ1(F, 〈M0, M3〉) is defined but F �∼
ρ1(F, 〈M0, M3〉). Thus, by Definition 4, R1 is unsound. To show that it is also
incomplete, we must find a transformation F ′ that does preserve intent while
not being producible via ρ1. Recall that variant M1 is an example of a state
machine that does not satisfy match and so ρ1(F, 〈M0, M1〉) is not defined. How-
ever, it is clear that both intents I1 and I2 would be preserved if a transformation
F ′ defined as given for F was applied to variant M1. That is, a plausible algorithm
for producing the table could be created by enumerating through the transitions
and never navigating the InitialState reference. Thus, the issue of multiplicity
would not affect this algorithm. This shows that R1 is incomplete and that the
definition of match is unduly restrictive.

Guy et al. [2] have extended the work of Steel and have proposed more sophis-
ticated approaches to sub-typing based reuse; however, all of their proposals can
be shown to be unsound with respect to intent following a similar line of reason-
ing as given above. Only one of their proposals, non-isomorphic subtyping, may
be complete, because it allows arbitrary adaption transformations to be applied
to models of type T ′

1 before being given as input to F . Thus, in principle, F
could be reused for any input type this way. The cost of allowing this flexibility
is to make soundness even more difficult to guarantee.

3.2 Model Concepts

The main alternative approach to transformation reuse has been proposed by
Rose et al. [4], de Lara and Guerra [12]. Their approach is based on the definition
of explicit bindings between elements of a concrete meta-model and a so-called
concept (an abstract meta-model that the transformation to be reused is defined
over) instead of a generic type mapping.

Analysis. At first, it may appear that this resolves the problem we have iden-
tified in Sect. 3.1: after all, to reuse a transformation and its intent, we only
have to define a suitable binding that will ensure intent preservation. However,
Rose and de Lara’s work defines a set of conditions that characterise “valid”
bindings. We should then ask whether these conditions are sound or complete
wrt intent preservation. We, again, note that in their papers they do not actually
say explicitly what intents should be preserved by the transformation reuse.

Hence, following Definition 2, let R2 = 〈M2, src2, tgt2, ρ2〉 be the reuse
mechanism used in this approach and assume we are reusing transformation
F : T2 → T for new input type T ′

2. A type mapping consists of a source
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Person
+age: int

Player
+age: int
+level:int

a

b

ConceptMeta-model

Fig. 2. Example of two different valid bindings of the same meta-model and a model
concepts.

and target meta-model as well as a set of bindings (essentially, a morphism
between the two). Thus, we let M2 = Σ × Σ × (Σ → Σ) to store the source
and target types and the binding and define src2 and tgt2 to extract the first
and second components, respectively. binding : M2 → (Σ → Σ) is defined
to be a function extracting the last component. Finally, ρ2(F,M) is defined iff
src2(M) = T2 and tgt2(M) = T ′

2 and binding(M) is valid as per the rules for
validity defined in [4,12]. When it is defined, ρ2(F,M) is the same transforma-
tion as F but with a coercion from T ′

2 models to T2 models injected before the
transformation execution. This coercion is generated as described in [12]. Thus,
type(ρ2(F,M)) = T ′

2 → T as required.
An important point to note is that the conditions for the validity of bindings

are completely syntactic and may in fact allow a range of different concrete
bindings between the same concrete meta-model and concept. Figure 2 shows
an example of this. Both the green binding labeled a and the orange binding
labeled b would be valid based on the rules given in [3,4]. They would both
lead to syntactically correct transformations preserving syntactic properties such
as, for example, the preservation of wellformedness rules. However, they would
clearly lead to very different transformation semantics (and intents) of the reused
transformations. So, generally, we would expect R2 to be unsound because it is
too flexible.

Rose et al. [4] give a different example, which focuses on a single specific
binding: they introduce a TokenHolder concept to represent abstractly the key
concepts in Petri-Net-like modelling languages. They then define a number of
transformations (and, in fact, model management operations) over this concept
and proceed to show how these can be reused over a proper Petri-Net model
as well as models of production-line systems (using a simple type mapping MC

binding parts to tokens, conveyors etc. to holders and machines to processes). An
interesting transformation that they discuss is one that refactors TokenHolder
models by removing any Process elements connecting the same set of Holder
elements. If we analyse this transformation in a similar way to Sect. 3.1, we can
identify two possible intents:

(I3) The transformation keeps the syntactic structure of the token holder model,
but removes syntactically duplicate elements;

(I4) The transformation maintains the observable semantics of the token holder
model.
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While the former intent is trivially preserved by the reuse mechanism, the situa-
tion is less obvious for the latter intent. For example, for production-line models
removing a machine might remove important options for processing parts. Even
though machines might take parts from the same trays and place processed parts
onto the same conveyors they may actually do very different things with these
parts. Additionally, in a production-line design multiple machines feeding from
the same trays and sending parts to the same conveyors might be an impor-
tant performance or reliability optimisation. Thus, for intent I4 we have that
ρ2(F,MC) is defined, but F �∼ ρ2(F,MC). Thus, by Definition 4, R2 is unsound.

3.3 Other Transformation Reuse Approaches

So far, we have focused on “black box” reuse mechanisms, which aim to enable
reuse of a transformation without deep knowledge of its implementation. Other
techniques have been explored for transformation reuse. Kusel et al. [13,14]
provide a good overview and empirical evaluation of some of these approaches.

“Black box” approaches can be extended to external transformation compo-
sition by transformation chaining [15]. Here, the transformation is often executed
over models instantiating exactly the same meta-models over which the trans-
formation was defined. As a result, the semantics of the transformation does
not change at all, and the original transformation intents are trivially preserved.
However, while this makes the reuse mechanism sound, it also makes it quite
incomplete as there are potentially a large number of similar meta-models for
which the transformation intents could be preserved, but for which the transfor-
mation cannot be reused. This insight has been the driver behind the work on
model typing and model concepts [1–4,12].

More invasive, “white box” compositions of transformations (e.g., [16]) are
expected to change the intent. However, we would likely want to retain some
control over which parts of the intent should be preserved. A preliminary attempt
to address this problem through the notion of parameterized transformation
semantics has been given in [17], but more work is required.

4 Why Intent Preservation is Hard to Achieve

In the previous section, we showed that soundness (i.e., intent preservation) is a
difficult goal to achieve for a reuse mechanism. In this section, we discuss why
this is the case.

As we discussed in Sect. 2, a natural way to characterize intent formally is
as a property that the transformation must satisfy. In that case, all transforma-
tions satisfying this property would also carry the same intent. Then, ρ(F,M)
with mapping M is a correct reuse of F iff PI(F ) ⇒ PI(ρ(F,M)), where PI is
the property that characterizes the intent of F . In [8], we explored this simple
hypothesis and found a flaw – that it is typically not possible to find a single
property that is checkable across different transformations.
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For example, consider the transformation minimize : SM → SM that produces
a state machine with the same semantics as the input state machine but with a
minimum number of states. We could define this intent by property:

P
SM
min(f) := ∀x : SM · BisimSM(x, f(x)) ∧ (∀x′ : SM · BisimSM(x′, f(x)) ⇒ |x′| ≥ |f(x)|)),

where f is the transformation, BisimSM is the predicate that checks bisimilarity,
and the size function | | returns the number of states.

Let minimize′ = ρ(minimize, M) represent a reuse of minimize for LTSs.
That is, type(minimize′) = LTS → LTS. If ρ is sound, we expect it to pre-
serve intent and thus preserve such characteristic properties. However, this
preservation condition cannot be expressed simply as the requirement that
PSMmin(minimize) ⇒ PSMmin(minimize′). The reason is that PSMmin is defined with
respect to type SM → SM but since the type of minimize′ is LTS → LTS, the
expression PSMmin(minimize′) is not well-defined. What we really need is a defini-
tion for the property PLTSmin that characterizes the intent of minimization for LTSs
and then prove that PSMmin(minimize) ⇒ PLTSmin(minimize′).

In [8], we proposed an approach for producing PLTSmin using parameterized
properties to characterize intent. In the case of minimization, we define the
parameterized property as follows:

P
〈T 〉
min(f) := ∀x : T · SemEqT (x, f(x))∧

(∀x′ : T · SemEqT (x′, f(x)) ⇒ SizeT (x′) ≥ SizeT (f(x))), (1)

where f is the transformation, SemEqT is the semantic equivalence relation
for models of type T and SizeT is a function that measures the relevant size
attribute of models of type T . In our example, we get PLTSmin by providing predi-
cates SemEqLTS (i.e., bisimilarity for LTSs) and SizeLTS to get:

PLTSmin(f) := ∀x : LTS · SemEqLTS(x, f(x))∧
(∀x′ : LTS · SemEqLTS(x′, f(x)) ⇒ SizeLTS(x′) ≥ SizeLTS(f(x)))

We can now state a general procedure for ensuring that ρ(F, M) is a correct
reuse of transformation F : TT → TT1:

1. Provide a parameterized property P 〈T,T1〉 that characterizes the intent of F
in terms of one or more type-specific predicates Q

〈T,T1〉
i , i = 1 . . . n.

2. For each potential reuse target type TT′ → TT′
1,

(a) provide the type-specific predicates Q
〈TT′,TT′

1〉
i , i = 1 . . . n; and

(b) prove that P〈TT,TT1〉(F) ⇒ P〈TT′,TT′
1〉(ρ(F, M)).

Now we can see why showing that a reuse mechanism is sound is difficult. To
do so, we would have to show that whenever we reuse a transformation using the
mechanism, the proof obligation in step (2b) is guaranteed to be satisfied. For
automation, this requires theorem proving support and is, in general, undecid-
able. We observe that techniques similar to those for showing valid refinements
may be usable and we discuss this briefly in Sect. 6. However, in addition to
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this, steps (1) and (2a) require type-specific information to be provided for each
source and target type in a reuse case. For example, this information could be
provided as part of the mapping M .

Our conclusion is that while soundness of a reuse mechanism is a desirable
goal, achieving it for the general case may not be practical. In the next section,
we consider special cases where soundness can be guaranteed.

5 Sound Reuse Strategies

In this section, we give preliminary proposals of two strategies that could help
achieve sound transformation reuse.

5.1 Reuse Across Transformation Families

Our view of intent similarity using ∼ suggests that sound reuse occurs with
respect to more general intents that are shared by many transformations. For
example, the property P

〈T 〉
min in Eq. 1 is an intent shared by many minimization

transformations. This observation points to the following potential strategy for
sound reuse: define generic transformations that implement the general intent
and instantiate these transformations to produce specific concrete transforma-
tions with a more specialized intent. We illustrate this idea using the model
minimization intent.

Equation 1 above gives a parameterized property describing the intent of
minimize transformations. This reflects the fact that, in the most abstract case,
doing minimization requires a partial order relation (here, ≥ over sizes is mea-
sured by SizeT ) and checking semantic equivalence requires an equivalence rela-
tion (implemented by predicate SemEqT). We can use these to define an abstract
minimization transformation minimize〈T 〉 shown in Fig. 3. This simple algorithm
enumerates all models of type T with size smaller than the input model X (lines
1–6) until it finds one that is semantically equivalent to X and returns it (line 4).
The algorithm is guaranteed to terminate assuming that SizeT (X) is bounded
by the number of elements in X, and S in line 2 only includes non-isomorphic
models.

Algorithm: Minimize model
Params: 〈SizeT , SemEqT 〉
Input: Model X : T
Output: Minimal model X ′ : T

1: for (i = 0 to SizeT (X)) do
2: Let S = {Y |SizeT (Y ) = i}
3: for (Z ∈ S) do
4: if SemEqT (X,Z) then return Z
5: endfor
6: endfor
7: return X

Fig. 3. Algorithm of abstract model minimization transformation minimize〈T 〉.
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The algorithm is clearly naive; however, we can instantiate it for any model
type that can provide the parameters. Furthermore, each such transformation
instance clearly must satisfy the minimization intent property P

〈T 〉
min. This fact

ensures that every reuse of minimize〈T 〉 is sound in the sense of Definition 4.

Generalizing the Approach. We can view this transformation family app-
roach to reuse as a reuse mechanism according to Definition 2. Let Rtf =
〈Mtf, srctf, tgttf, ρtf〉 be the transformation family-based reuse mechanism. We
assume that Rtf is limited to the reuse of parameterized transformations F 〈T 〉

that are, as with the case of minimize〈T 〉, implemented by refining the defini-
tion of the corresponding parameterized property characterizing the intent of F 1.
To reuse such a parameterized transformation for a specific type T′, a mapping
M ∈ Mtf must be supplied consisting of a set of T′-specific predicates corre-
sponding to the formal parameters of F 〈T 〉 as well as the metamodel T′ itself.
The functions srctf and tgttf extract T → T and T′ → T′, respectively, from
the mapping. Finally, ρtf performs the instantiation operation that generates
the specific concrete transformation. Thus, F T′

= ρtf(F 〈T 〉,M) is obtained by
substituting the formal parameters of F 〈T 〉 for their values given in M .

The soundness of Rtf, according to Definition 4 follows directly from the fact
that the parameterized transformation F 〈T 〉 is designed to be sound for any
substitution of the type-specific predicates, as long as the given predicates are
correct for the type. Thus, F 〈T 〉 ∼ ρtf(F 〈T 〉,M) as required.

Discussion. The transformation family approach can be seen as a special case of
Generic Programming [18] – a technique in which parts of a concrete algorithm
are abstracted as parameters to an abstract algorithm. Since the model-concepts
approach to reuse discussed in Sect. 3.2 also cites generic programming as an
inspiration, it is important to discuss why that approach fails our soundness test
whereas the transformation family approach succeeds.

With model concepts, the genericity comes from defining the reusable trans-
formation relative to a generic meta-model. The notion corresponding to instan-
tiation is the binding from the concrete meta-model to the generic one. Since
this binding is limited to meta-models, it is purely syntactic (and so are the
conditions on ‘valid’ bindings) and there is no way to access richer type-specific
information – such as, for example, conditions for semantic equivalence – as
part of the instantiation process. Thus, for a certain class of purely syntactic
transformations, the model concepts approach may be sound, but for general
transformations, the additional semantic coherence of the transformation family
approach is required to ensure soundness.

5.2 Reuse Across Model Type Families

In the transformation family approach to reuse, we showed how generic parame-
terized transformations could be developed by expressing intent using parame-
terized properties. While this technique provides a sound reuse strategy, much

1 We leave details of this refinement procedure for future work.
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of the reuse complexity may be pushed into the type-specific parameters. For
example, for minimize〈T 〉, the predicate SemEqT may be non-trivial to define. As
discussed in Sect. 4, this undermines the quality of “effort reduction” implied by a
reuse mechanism. A second issue is that while generic parameterized transforma-
tions may be broadly applicable, they may not be able to exploit the efficiencies
available to specific classes of model types. In the special case of transformation
reuse across a family of closely-related model type variants, it may be possible
to mitigate these problems.

We illustrate these issues with the example of state machine variants dis-
cussed in Sect. 3.1. Assume that the parameters for the base state machine
variant M0 in Fig. 1 are defined as follows:

– SemEqM0(X,X ′) holds iff state machine X is bisimilar to X ′.
– SizeM0(X) is defined as the number of states in state machine X.

We can think of the state machine variants as forming a model type fam-
ily with the base variant M0 as the core representative. All our variants are
state machines and are based on the same semantic interpretations as M0. Thus,
semantic equivalence for any variant is still defined as bisimilarity. Furthermore,
state machine size, for the purposes of minimization, is also defined as the num-
ber of states for all variants. Thus, the parameters of the minimization intent
property P

〈T 〉
min, for any model type in this family, are the same as those for M0,

allowing these parameters to be defined only once for the entire family. If we
use the parameterized transformation minimize〈T 〉, we can also use the com-
mon model type parameter values for any member of the family to instantiate
minimize〈T 〉 – the only parameter that varies in each case is the metamodel of
the model type. Thus, using the state machine family reduces reuse effort while
retaining soundness.

Now since the only part of the transformation that varies among all the mem-
bers of the state machine family is the metamodel of the particular state machine
type to which it is applied, this raises the question of whether the transformation
algorithm itself can be refined for the state machine family. For example, consider
the implication table method [11] – a minimization method designed specifically for
(finite) state machines. A more efficient minimization transformation using this
could be developed to implement the intent “state machine minimization” rather
than the general intent “model minimization”. Furthermore, if we can show that
this transformation is semantically equivalent to the instantiation of our naive
transformation in Fig. 3, then we have created a more efficient transformation that
is soundly reusable within the state machine family.

Generalizing the Approach. The model type family strategy is not a reuse
mechanism itself but rather a way to mitigate some of the difficulties with the
transformation family strategy. As a result, it can be viewed as an extension of
the transformation family reuse mechanism.

Assume we wish to reuse the parameterized transformation F 〈T 〉. We sum-
marize the steps of the model type family strategy as follows. First we define a
model type family over which all the parameters of F 〈T 〉, except the metamodel
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of T , have the same value. This makes the instantiation of F 〈T 〉 across the model
type family dependent only on the metamodel, i.e., we have effectively the same
transformation that works for any member of the model type family. Second,
now that we know that a transformation that can be soundly reused across the
family exists, we consider whether we can define a more efficient transformation,
that is semantically equivalent to this one.

Discussion. The model type family strategy combined with transformation fam-
ilies provides two sources of benefits. First, effort is reduced because the same
parameter values can be used to instantiate the transformation for any mem-
ber of the family. Second, the commonalities in the family can point to more
refined and efficient generic implementations of a transformation. While there
exist methods for defining families of models (e.g., product lines), defining one for
which all members have the same parameter values clearly may be non-trivial,
and we consider methods for this to be future work.

6 Conclusion

In this paper, we investigate the need for model-transformation reuse mecha-
nisms to ensure correctness of transformation reuse. Specifically, we define a for-
mal framework for the analysis of transformation reuse mechanisms with respect
to intent preservation. We define reuse mechanisms as consisting of mappings
between modeling languages that induce a translation of model transformations.
We say that a reuse mechanism is sound if it preserves the intent of all trans-
formations it translates and it is complete if it can produce all intent-preserving
translations of a transformation. We then showed that none of the currently
proposed transformation reuse mechanism are sound and that completeness is
only currently achieved by completely ignoring model semantics through allow-
ing arbitrary adaptations of transformations.

To address this gap, we began by showing that correct transformation reuse
is hard to guarantee because it requires verifying non-trivial semantic properties
across modeling languages. We then showed that we could ensure correct reuse
of a transformation if it was derived from a formal expression of intent and
parameterized with language-specific information. While this provides a sound
reuse mechanism, it may not lead to reused transformations that are efficient.
In a next step, we showed that limiting transformation reuse to a semantically
coherent family of modeling languages can further simplify the problem and
allow for efficient transformations.

Our work brings us one step closer to an “algebra of model management”
by providing the formal basis for studying transformation reuse. We invite the
research community to help us in working on this research agenda and answering
the following research questions: (1) How can intents be described effectively? We
have explored the use of parameterized formalizations, but have also indicated
the need for limiting the genericity of transformation intents. Consequently,there
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is a need for a formal language for expressing transformation intents in a precise
manner. (2) What are the precise sufficient conditions for simple, correct trans-
formation reuse within families of modeling languages? (3) Can we define a reuse
calculus for specific classes of intents and transformations that enables coupling
the refinement of intents and the refinement of transformation implementations?
(4) What are mechanisms and languages for constructing concrete, sound (and
possibly complete) reuse mechanisms from descriptions of classes of intents?
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10. Lúcio, L., Amrani, M., Dingel, J., Lambers, L., Salay, R., Selim, G.M.,
Syriani, E., Wimmer, M.: Model transformation intents and their properties.
SoSym 1–38 (2014)

11. Paull, M.C., Unger, S.H.: Minimizing the number of states in incompletely specified
sequential switching functions. IRE Trans. Electron. Comput. EC-8(3), 356–367
(1959)

12. de Lara, J., Guerra, E.: Towards the flexible reuse of model transformations: a
formal approach based on graph transformation. J. Logical Algebraic Methods
Program. 83(5–6), 427–458 (2014)
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Abstract. Model Transformations (MT) are central building blocks of
Model Driven Engineering (MDE). The size and complexity of model
transformations grows as they see more wide-spread use in industry.
As a result, systematic approaches to the development of high-quality
and highly reliable model transformations become increasingly impor-
tant. However, because little is known about the context in which model
transformations are developed, it is very difficult to know what would be
required from such systematic approaches. This paper provides some ini-
tial results and analysis of an interview-based study of requirements engi-
neering (RE) in MT developments. We have interviewed industry experts
in MT development, with the goal of understanding the contexts and
ways in which transformations are developed and how their requirements
are established. The types of stakeholders of transformations were iden-
tified, as well as their role in the transformation development. We also
discovered a possible differentiation amongst the development of model
transformation projects and general software development projects.

1 Introduction

Model transformations (MTs) are central to model-driven engineering (MDE)
[10]. They can be used for a range of purposes, including to improve the quality
of models, to refactor models, to migrate or translate models from one represen-
tation to another, and to generate code or other artifacts from models [6]. Model
transformations either transform one model into another or generate text (such
as code) from a model. In any case, they aim to automate repetitive development
tasks, ensuring different situations are treated in a generalised manner.

As MDE is being used more intensively [4], systematic development of the
transformations becomes more important [2]. However, as Selic argues [9]: “we are
far from making the writing of model transformations an established and repeat-
able technical task”. The software engineering of model transformations has only
recently been considered in a systematic way, and most of this work has focussed
on design and verification rather than on requirements engineering (RE).

We are interested in understanding what requirements engineering for model-
transformation development should look like. To this end, we need to understand
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the context in which model transformations are typically developed and what,
if any, requirements-engineering techniques are already applied. This will help
us understand how existing RE techniques might be applied (or may have to be
adapted) for the context of MT development.

In this paper, we report on the results of an exploratory interview-based
study with five industry experts in model-transformation. We discuss the types
of projects often seen in model-transformation development, their embedding in
the context of other projects and organisations, the roles of stakeholders, and
the requirements engineering techniques employed in practice, and we consider
future research directions.

The remainder of this paper is structured as follows: After a brief discussion
of our methodology in Sect. 2 and related work in Sect. 3, we present some of
our findings from the interviews. We begin with a discussion of the types of
projects identified in Sect. 4, followed by a discussion of stakeholders involved
in Sect. 5. Section 6 discusses the requirements engineering techniques identified
by our participants, followed by a brief analysis of project outcomes in Sect. 7.
Finally, we conclude and discuss future research directions.

2 Methodology

This paper is a result of an exploratory interview-based study based on industrial
model transformation projects. The aim of this study is to explore transforma-
tion projects from a requirements engineering perspective. Specifically, we are
interested in finding out what requirements engineering techniques, if any, are
applied in model-transformation development.

We identified five participants that are experts in the MT development field
and have industrial experience. The selection was based on participants experi-
ence and the work that they have done. Our participants have between eight to
twenty years of experience in MT development. We asked participants to focus
their responses on self-selected recent projects. All participants had a leading
role in these projects. Participants were interviewed regarding the project(s) in
which they were involved (seven projects in total), and their views regarding the
requirements engineering process in relation to these projects.

We conducted semi-structured interviews of approximately one hour dura-
tion. The same questions in the same order were given to all participants. The
questions concerned the project context and scale, the stakeholders, the require-
ments engineering techniques and process used, and the project outcomes.

Our approach is, thus, qualitative investigating in depth the ‘why’ and ‘how’
of decision making for particular requirements engineering techniques and activi-
ties in model-transformation development. More information about the interview
prompts can be found via the link in footnote1.

Threats to the validity of conclusions drawn from the interviews include: (i)
that the interviewees and examined cases are not representative of transformation

1 http://www.inf.kcl.ac.uk/pg/tehrani/form.pdf.

http://www.inf.kcl.ac.uk/pg/tehrani/form.pdf
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developers and projects; (ii) that interviewees selected unrepresentative projects;
(iii) that interview questions were aimed at elicitating a particular response.

We tried to avoid problem (i) by requesting interviews with a wide range of
MT experts. The candidates for interview were selected from our previous litera-
ture surveys of RE in MT. 12 candidates were approached, of whom 5 agreed to
be interviewed. These represent a diverse range of organisations, and the projects
cover a range of domains: embedded systems, finance, re-engineering, defence
and business. Regarding (ii), projects with poor outcomes, such as 3 and 6,
were included in addition to successful projects. Regarding (iii), the ques-
tionnaire and methodology was examined by an expert committee for ethi-
cal approval. The survey will be extended with further interview subjects and
projects where possible.

3 Related Work

There has been very limited empirical research into model-transformation devel-
opment. The only relevant studies have been based on MDE in general, such as
that of [4,14], which used interviews as well as a questionnaire-based survey. The
main aim of this study was to capture the success and failure factors for MDE
based on industry evidence. They conducted 22 interviews with MDE practition-
ers. The survey found that some use of MDE is made in a wide range of companies
and industry sectors, however this use tended to be based on Domain-Specific
Languages (DSLs) and modelling of narrow specialised domains. Transforma-
tions were used to generate artefacts from the DSL models, however code gen-
eration was not itself a primary benefit of MDE, instead the benefits came from
the ability to abstract system architectures and concepts into models. The evi-
dence from this survey suggests that transformations are often developed based
on the expert knowledge of software developers, to encode and automate previ-
ously manual procedures. A high degree of domain knowledge appears essential
for the successful construction of the transformations. The survey of [7] consid-
ered in depth four companies adopting MDE, but did not specifically consider
requirements engineering. One concern of the companies in [7] was the cost of
developing transformations, a factor which could be improved by more system-
atic RE for MT.

In our work, we focus specifically on model transformation developments,
whether as part of an MDE process or as independent developments. For MT
developments, we examine how RE techniques and the RE process is carried out.

4 Transformation Development Projects

In this section, we will describe the MT projects which our participants focused
on in their descriptions. All of our interviewees are either the sole developers
or the lead developers for these projects. Each project has been categorised
according to the MT field that it belongs to. The scale, developers time and
effort for some of these projects will also be described.
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Seven MT development projects were considered in this study:

1. Automated generation of documentation for international stan-
dards: this transformation concerns the generation of standard documen-
tation text from meta-models, to ensure consistency of the documentation.
The source meta-models are of the order of 600 meta-classes. The develop-
ment effort was not available.

2. Reverse-engineering and re-engineering of banking systems and
web-services: the idea of this project was to build transformations to con-
struct models of existing applications, and to forward-engineer these models
to new platforms. The scale of the finance system re-engineering is approxi-
mately three million LOC extracted from 100 million LOC legacy code, the
scale of the web services re-engineering is approx 15 million LOC. The re-
engineering process must be done in a way that not only reveals the actual
functionality of the system, but also enables further analysis according to
system requirements. The development effort was not available.

3. Code-generation of embedded software from DSLs: in this project
transformations are defined to map between embedded system DSLs forming
C extensions, and from these DSLs to C code. These extensions are used by
embedded software developers. More than 25 different DSLs are involved, and
approx 30 person-years of effort.

4. Petri-net to statechart mapping: this model transformation maps Petri-
net models to statecharts, in order to analyse the Petri-nets. It involves both
refactoring and migration aspects. The transformation is intended to map
large-scale models with thousands of elements. Effort was three person-months.

5. Big Data analysis of IMDb: the Internet Movie Database (www.imdb.
com) can be regarded as a Big Data case. It has information about the title
of movies, names of actors, rating of movies and actors playing roles in which
movies. In this case, a model transformation was developed to implement
IMDb searches by users. Effort was 3 person-months.

6. UML to C++ code generator: this case involved the construction of
a transformation for the generation of multi-threaded/multi-processor code
from UML. The transformation generates C++ code as well as providing a
run-time layer to support the generator. Effort was four person-years.

7. Reverse-engineering of a code generator: This MT project was an
example of re-engineering of an existing transformation. In this case study
an existing code-generation transformation was analysed and re-engineered
to improve its functionality. Effort was four person-months.

4.1 Type of Projects

Software development projects can be classified into several types [13]:

Greenfield vs Brownfield. In a greenfield type of project, the system is com-
pletely new, therefore the developers have to start from scratch and build
the system from the beginning. On the other hand, in brownfield projects, a
system already exists but it has to be further developed and improved.

www.imdb.com
www.imdb.com
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Customer vs Market Driven. Software could be either a solution for a par-
ticular type of client in the market (customer driven) or a solution which
would cover the need of a large percentage of the market (market driven). In
customer-driven types of projects, the software is designed according to the
needs of a specific type of client, whereas in market-driven projects, a larger
scope of solution is considered covering more than just one particular type
of client.

In-House vs Outsourced. A project could be regarded either an in-house
project where it is assigned to a particular organization in order to carry
out all the project’s life-cycle processes or it could be outsourced where it is
assigned to different companies according to different project phases. In an
in-house type of project, one team/company will carry out all the phases in
the project, whereas in an outsourced project, usually once the requirements
have been identified different teams from different companies will carry out
the different phases such as design, implementation, testing, etc.

Single Product vs Product Line. The outcome of a project could have only
one version which would satisfy the customer’s need or it could have different
versions each of which would cover particular needs in a large organisation.
“In a single-product project, a single product version is developed for the
target customer(s). In a product-line project, a product family is developed
to cover multiple variants” [13].

According to our interviews, one of the seven projects can be regarded as a
brownfield project (Project 7). Six projects were greenfield as the transforma-
tion had to be written from scratch, because either the transformation project
was completely new, or because developers wanted to use their own tools and
technology.

All projects were customer-driven as they were specified for particular
client(s). All the projects were in-house, single-product projects. The projects
were assigned to a particular company to do all the transformations, therefore
there was no need of outsourcing, and only a single version of the project was
developed.

MT development often occurs within a wider software development project
(e.g., Projects 2, 4, 6, 7), although there are also cases where MT development
is the main part of software development (e.g., Projects 1, 3, 5).

As a result, it is important to differentiate explicitly between properties of
the transformation-development project and the project this was embedded in.
For example, while most of containing projects were brownfield projects, most
of the transformation-development projects were greenfield as no previous trans-
formation existed for the specific purpose required.

5 Stakeholders

In general, the term stakeholder can be defined as an individual or an organisa-
tion/group of people who is either affected by or has an effect on the outcome
of a given project [8]. It is essential to fully identify all the stakeholders of
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Fig. 1. Onion model of stakeholder general relationship [1]

the project as an initial step prior to any other action, because by missing an
important group of stakeholders, there is a major risk of missing a whole set
of requirements of the system. A good participation of stakeholders in the soft-
ware development cycle not only would result in a better understanding of the
actual problem, but also help to build that which is required according to the
stakeholders’ needs. The onion model of project stakeholders (e.g., [1], see Fig. 1)
has been used to describe different types of stakeholders and their relation to
the system under development. In this model, stakeholders are categorised into
three different types. Operational stakeholders have a direct interaction with the
system. Stakeholders in the containing business area somehow benefit from the
system. The wider environment area contains stakeholders which have an effect
on or interest in the system, but only an in-direct influence.

More specifically, sponsors are stakeholders that have the responsibility to
pay for the developed product. Customer(s) buy the product. Sometimes it can
be the case where the customer is also the end user of the developed product.
The normal operators are the people who will eventually operate and use the
developed product. The maintenance operators are the people from which the
maintainability requirements can be discovered. The core development team con-
sists of developers that are in charge of developing the product. Subject matter
experts could consist of “internal and external consultants, may include domain
analysts, business consultants, business analysts, or anyone else who has some
specialized knowledge of the business subject” [8].

We have adapted the onion model to classify the stakeholders in MT devel-
opment based on our participants’ descriptions. We can identify that the core
development team consisted of the transformation developers for all of the MT
projects. The customer(s) consisted of the committee that were interacting with
the transformation developers in order to explain the problem space and what is
needed. The sponsor(s) were the companies which were represented by the cus-
tomers, and do not interact with MT developers directly. Finally, the normal and
maintenance operator consisted of the people who were going to use the result of
the transformations as end users. Table 1 presents the sponsors, customers and
the operators of the MT projects.

As discussed earlier, the MT projects that we analysed are typically embed-
ded within wider projects. As a result, the role of stakeholders of the wider
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Table 1. Stakeholders of model transformation projects

Case Sponsor and customer Normal and maintenance operator

1 Technology standards consortium Users of the standards

2 Financial/telecom organisations Users of re-engineered systems

3 Commercial companies Embedded software developers

4 External customer Users of the output model

5 External customer Users searching the data

6 Government & defence industries Users of C++ application

7 Commercial client Users of the code generator

project was changed according to the embedded MT project. For example, in
one case (Project 2) the members of the core development team of the wider
project turned into the customers interacting with transformation developers
for technical issues. Therefore, the transformation developers were facing two
types of customer for this project: one to explain the general requirements of the
overall system and one to deal with more detailed requirements and technical
difficulties of the transformation.

Similarly, the impact of other stakeholders of the containing project (e.g.,
from the containing business or wider environment) on the transformation devel-
opment has become more indirect. Understanding fully the role of these stake-
holders in the context of transformation development seems important for suc-
cessfully developing requirements engineering techniques for MT development
and will be part of our focus for future work. For example, the indirect nature
of contact with the stakeholders of the enclosing development project is likely
to impact on the use of RE techniques that require stakeholder interaction.
Figure 2 is a first attempt at showing some of the relationships amongst the MT
developers and general stakeholders in a generalised onion model.

Fig. 2. Onion model of MT stakeholder relationship
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6 Requirements Engineering Process

In this section, we will discuss our findings regarding the requirements engineer-
ing process applied in the projects we discussed in our interviews. We start by
discussing the overall RE process used, before focusing on requirements elicita-
tion and cataloguing typical RE techniques employed.

6.1 Overall Requirements Engineering Process

Requirements engineering for any type of software development is specialized
and model transformation is not an exception. There are some key issues which
cause this uniqueness:

Type of System. Critical systems need a complete and consistent set of require-
ments that can be analysed in advance. For business systems, work can start
with an outline of the requirements that are then refined during development.

Type of Development Process. Plan-based processes require all requirements
to be available at the start of the project, whereas in an agile approach,
requirements are developed incrementally.

The Environment Where the System will be Deployed. In some cases,
users and other stakeholders are available to provide information about the
requirements; in others they are not. These require different approaches to
RE to get a starting point for implementation.

The Extent to Which Other Systems are Reused in a System Being
Developed. Generally, requirements for the reused systems are not available.
Thus, the RE process needs to reverse engineer these requirements from the
existing system [12].

Sommerville and Kotonya [11] have proposed a process model for the RE
process. It is widely accepted by researchers and professional experts. In this
study, we used this model as our template to investigate the MT projects. The fol-
lowing are the most important phases of RE which have to be applied: (i) Domain
analysis and requirements elicitation; (ii) Evaluation and negotiation; (iii) Spec-
ification and documentation; (iv) Validation and verification.

The initial step in the RE process is the act of obtaining detailed knowledge
regarding the domain of the current problem, the organization/company con-
fronting the problem and the existing system that is facing the problem. Once
the required knowledge has been acquired, a draft document could be provided
which would help the system developers to understand the context of the actual
problem as well as to identify the stakeholders’ actual needs and requirements. At
the stage of evaluation and negotiation, it is assumed that the previous stage,
requirements elicitation, has been performed effectively. The evaluation stage
identifies inconsistencies and conflicts between requirements. The likelihood of
such conflicts will increase if the requirements have been gathered from mul-
tiple and different stakeholders. Negotiation with stakeholders takes place to
resolve conflicts and potentially infeasible requirements. The specification and
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documentation phase of the RE process begins with the specification process,
which makes precise a set of agreed statements by all relevant sides of the project
such as: requirements, assumptions, and system properties. Based on the speci-
fication, the requirements documentation can be drafted. At the validation and
verification stage, the specifications are analysed. They should be validated by
stakeholders to ensure that they satisfy their actual needs. Also, the specifica-
tion should be verified in order to check its consistency and to avoid conflicts
and omissions. Any potential error and flaw must be fixed during this phase and
before the actual development in order to save cost, effort and time.

Table 2 shows the requirements engineering processes that were used in the
examined MT development projects. Every MT project has been divided into
four stages (elicitation, evaluation, specification and validation) regarding the
requirements engineering process. The detailed RE process used was as follows
in each project:

Project 1: Document mining, prototyping and interviews were used to obtain
requirements. Daily meetings or conference calls with the stakeholders were used
to resolve issues. Conflict resolution was used during evaluation, and a UML and
QVT/OCL specification was defined. This was validated by inspection.

Project 2: Brainstorming and interviews were used to elicit requirements and
decide on the project scope and priorities, together with exploratory prototyp-
ing to show the customer what the MT developers intended to develop. An
agile process with frequent customer liason was used. During evaluation there
were joint requirements development sessions, and negotiation over unrealistic,

Table 2. Requirements engineering techniques in MT projects

Case Elicitation Evaluation Specification Validation

1 Document mining,
prototyping,
interviews

Informal conflict
resolution

UML/OCL Inspection

2 Brainstorming,
interviews
exploratory
prototyping

Impact analysis,
negotiation

UML, graphs Testing

3 Informal techniques,
prototyping

Negotiation Informal Testing

4 Exploratory
prototyping

Scenario analysis UML/OCL Testing, inspection,
proof

5 Exploratory
prototyping

Scenario analysis UML/OCL Testing, inspection

6 Exploratory
prototyping

Goal decomposi-
tion negotiation

UML/metamodelling Testing

7 Reverse-engineering Goal decomposition Formal/logic Proof
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conflicting or impractical requirements. Impact analysis was used. Semi-formal
specifications were used. Testing was used for validation.

Project 3: Brainstorming and prototyping were used, but no formal RE tech-
nique was applied. Requirements were categorised and prioritised. Communica-
tion with the stakeholders via screencasts were used to resolve issues. An agile
process was followed, and implementation was commenced at an early stage.
Informal specifications were constructed, and testing used for validation.

Project 4: Document mining of the existing text requirements was used, together
with exploratory prototyping to understand the requirements. The requirements
were decomposed into separate mapping and refactoring scenarios, expressed in
concrete grammar sketches, and then formalised in a UML/OCL specification.
This was validated and refined by inspection and testing.

Project 5: Document mining of the existing text requirements was used, together
with exploratory prototyping to understand the requirements. The require-
ments were categorised and prioritised. The functional requirements were decom-
posed into separate mapping scenarios. Client feedback via email and a forum
enabled the refinement of these scenarios. The transformation was formalised
in a UML/OCL specification. This was validated and refined by inspection and
testing.

Project 6: Interviews and exploratory prototyping were used to elicit the require-
ments, followed by goal decomposition and then confirmation with the clients.
The transformation was specified in UML. Testing was used for validation.

Project 7: Reverse-engineering of the existing transformation was used to obtain
requirements for the revised transformation. In some cases it was difficult to
identify if these were correct, and discussion with the customer was necessary.
A logical specification of the new transformation was defined, which supported
formal proof of correctness.

Requirements change is a common occurrence during project development.
This can be due to stakeholder’s change of mind/circumstances or the introduc-
tion of some additional requirements to the existing one(s). Based on our study,
we realised that transformation developers experienced similar events where they
had to deal with requirements modifications, unrealistic requirements and con-
flict amongst the requirements.

“Never do what you are told, and always do what is needed” (Study
participant).

In Table 3, we have identified MT developer’s responses when confronted with
common problems that may occur during the MT development. As can be seen,
these revision activities generally require stakeholder interaction, or understand-
ing of their real needs, and hence may be more difficult for MT projects where
the project is embedded within a larger MDE project.
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Table 3. Requirements revision in MT projects

Project Problem Reaction, paraphrased from participant
comments

1, 2, 3, 4, 6, 7 Unrealistic requirements -Implementing “what is needed” rather
than what is wanted

-Implementing “the underlying system”

1, 2, 3, 6, 7 Change of requirements -Agile provides sufficient time via weekly
deployments

-Confirming the requirements at the
beginning of every iteration

-Charging extra for the additional
requirement(s)

1, 2, 3, 4, 5 Requirements Conflict -Resolving the conflict by common sense

-Trade-off amongst the conflict
requirements

2, 3, 4, 5, 6, 7 Requirements uncertainty -Contacting the stakeholders for
clarifications

6.2 Requirements Elicitation

According to our investigation, the requirements elicitation process in MT devel-
opment often begins with an initial meeting with customers. Their input is cen-
tral to the process at this stage.

“It is the process and an engagement that starts with customer” (Study
participant).

Customers often only have a very high-level view of what they need the
transformation to achieve. For instance, a customer may only be aware of the
language that his/her company want the code to be generated into or the kind
of platform.

“Stakeholders are not very technical but they know what they need to see
out of the system at the end” (Study participant).

Therefore, transformation developers can suggest joint sessions with the
stakeholders to be explicit about the system. During these sessions interviews
and brainstorming methods are applied to confirm the functional and non-
functional requirements and specifications in more detail.

Customers often leave it up to the MT developers to flesh out the nature of
those high-level requirements based on their expertise. The task of requirement
elicitation and requirements engineering in general is done by developers. Not
only are they in charge of implementation, but also eliciting the requirements
are done by them as well.
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“Stakeholders give high level goals and it is for you to decide how to get
there and what to use” (Study participant).

Therefore, initially the customer provides the developers with some high-level
goals. Next, developers decompose the goals into sub requirements and once they
have analysed them then they meet the customers again for a confirmation. Once
there is an initial confirmed draft of the requirements of the overall system then
the implementation phase is started. During the implementation, at the end of
every stage developers provide prototypes for stakeholders.

“It starts with customer, proof of concept than taking some code from
the customer and presenting what can be done by prototyping, by a tool
which provide analysis on code” (Study participant).

Once the prototype is delivered to the stakeholders, they can raise an issue
in case something is wrong or missing, otherwise the next stage of implementa-
tion will start. Prototypes were very popular amongst the model transformation
projects that we analysed, as these help both developers and stakeholders to
understand the problem space.

Table 4. RE techniques in MT projects

Category RE technique Project Rationale

Human commu-
nication

Online conference 1, 2, 3, 6 - Distribution of stakeholders

- Lack of accessibility

- Conveniency

Brainstorming 1, 2, 3, 6 - Clarifying both stakeholders
and developers to understand
each other as well as the
requirements

Process
techniques

Joint requirements
development
session

2 - Resolving any possible issue
which is not clear

Categorisation 1, 2, 3, 4 5, 6, 7 - Identifying functional and
non-functional requirements

Knowledge
development

Prototype 1, 2, 3, 4, 5, 6, 7 - Receiving feedback based on
the prototype

- Informing the stakeholders
from the progress

Negotiation 2, 3, 6 - To prioritize the requirements

- Trade-off

Requirement doc-
umentation

Diagram 1, 2, 3, 4, 5, 6, 7 - Providing a general view of the
system

Documentation 1, 2, 3, 4, 5, 6, 7 - Presenting the system formally

- Providing a guidline for

stakeholders



Requirements Engineering in Model-Transformation Development 135

6.3 RE Techniques

There are several methods and techniques proposed by the requirements engi-
neering community, however selecting an appropriate set of requirements engi-
neering techniques for a project is a challenging issue. Most of these methods
and techniques were designed for a specific purpose and none could cover the
entire RE process. Researchers have classified RE techniques and categorised
them according to their characteristics. For instance, Hickey and Davis [3] pro-
posed a selection model of elicitation techniques, Maiden and Rugg [5] came
up with a framework that provide requirements acquisition’s method and tech-
niques. According to our study, in MT projects, RE techniques are selected and
applied mainly based on personal preference, or on a company policy, rather
than on the characteristics and specifications of a project.

There exist several different requirements engineering techniques from a vari-
ety of sources that can be employed during MT development. Here we present
some of those that were more widely used in the MT projects. We have cate-
gorised RE techniques into groups of human communication, process technique,
knowledge development and requirements documentation. Table 4 summarises the
RE techniques that were used in the MT development projects. In the first col-
umn a general category is defined followed by RE techniques and the MT projects
in which they were applied. In the rationale column, the selection criteria of the
techniques are described by interviewees.

7 Outcome

In evaluating the outcomes of the MT projects, the development effort and prob-
lems encountered are considered, together with the degree to which the delivered
transformation achieved the customer expectations. We use a qualitative five
point scale (Very Low, Low, Moderate, High, Very High) for both factors based
on the transformation size, business value and customer satisfaction. Table 5
summarises the outcomes of the different MT projects.

Table 5. Outcomes of MT projects

Project Transformation scale Development cost Customer

satisfaction

1 High Moderate High

2 Very high Moderate High

3 High High: specifications too procedural,
hard to analyse or modularise

Moderate

4 Low Moderate High

5 Moderate Moderate Moderate

6 High High: complex and detailed semantics Moderate

7 Moderate Moderate High



136 S.Y. Tehrani et al.

Of particular note are Project 2, which was the largest of the case studies
in scale, with over 1500 transformation rules, and very large scale source data.
This project also had the most systematic RE process, with good communication
between the developers/analysts and the customers, and effective negotiation
over requirements. There has been good acceptance of the project results by the
customers, so we classify this as High satisfaction.

In contrast, Project 3 was also of large scale, but the transformation language
used (a Java-based syntax tree processor) was too procedural in style, which
made analysis difficult, and in particular obstructed analysis of the semantic
interaction between different transformations (code generators) which may be
used together. There was a lack of systematic RE processes, and this led to
high costs in reworking the translators when errors were discovered. The cus-
tomer was unwilling to participate in any structured requirements engineering
process.

Whilst Project 6 had a more systematic RE process than Project 3, the
semantic complexity of the target language and platforms caused the develop-
ment effort and costs to be significantly higher than for other code generators.
The complexity of the resulting generator has hindered its adoption, which has
been limited. Thus, we give a rating of Moderate for customer acceptance in
this case.

8 Conclusions and Future Work

In this paper, we have reported on the results of an exploratory study of require-
ments engineering for model-transformation development. We have reported on
our initial findings from five semi-structured interviews with industrial experts
in the field. Clearly, more research is needed, but some interesting points have
already emerged from this study and are worth closer attention: First, we have
been able to identify that model-transformation projects are typically individ-
ual projects that are embedded in wider software-development projects. We have
briefly commented on how this impacts the identification of and communication
with stakeholders in the transformation development. The projects we have dis-
cussed are almost exclusively greenfield projects, which is different from the
wider software-development reality. This may be because model transformations
are still a relatively young technology in industrial practice.

The interaction between the needs of the wider project and the highly tech-
nical nature of model-transformation development seems to have an impact on
the requirements elicitation process in particular. We have seen that while pro-
totyping and example-based generalisation seem to play an important role in
understanding the requirements on model transformations, no more systematic
process seems to be followed. Although developers apply some requirements
engineering techniques in transformation projects this is often based on their
experience and common sense as there is no specific requirements engineering
process designed for model transformation development. At the moment, the
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focus of transformation development is mainly on the specification and imple-
mentation stages and the development team is responsible for all development
process activities including the requirements engineering process.

More understanding of the context in which transformations are developed
is required and we will, consequently, continue our empirical work in this area.
In parallel, we have started work on defining a more systematic process for
requirements engineering in the context of MT development [15].
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Abstract. Code and model generators that are employed in model-
driven engineering usually face challenges caused by complexity and tight
coupling of generator implementations, particularly when multiple meta-
models are involved. As a consequence maintenance, evolution and reuse
of generators is expensive and error-prone.

We address these challenges with a two fold approach for genera-
tor composition, called GECO, which subdivides generators in fragments
and modules. (1) fragments are combined utilizing megamodel patterns.
These patterns are based on the relationship between base and aspect
metamodel, and define that each fragment relates only to one source and
target metamodel. (2) fragments are modularized along transformation
aspects, such as model navigation, and metamodel semantics.

We evaluate our approach with two case studies from different
domains. The obtained generators are assessed with modularity and
complexity metrics, covering architecture and method level. Our results
show that the generator modularity is preserved during evolution utiliz-
ing GECO.

1 Introduction

Models play a central role in Model-driven engineering (MDE). They are used
to specify the different views and aspects of a software system separately in a
more abstract way than programming code [35]. Models conform to metamodels,
which define, supplemented by constraints, the abstract syntax and semantics
of models. Domain-specific languages (DSLs) are used to create models. They
provide a corresponding concrete syntax and semantics for metamodels [7].

The notion of different views and aspects is addressed in both multi-view
modeling (MVM) [3,23] and aspect-oriented modeling (AOM) [25]. Both model-
ing approaches use separate models and metamodels to specify different parts of
a software system, like data structures, architecture, behavior, and monitoring.
These models are considered source models. They are transformed into target
models including program code by generators [28]. In our context, a generator is
an exogenous and vertical transformation [28] supplemented by model serializa-
tion and deserialization. Therefore, they are essential for MDE [27]. Especially
c© Springer International Publishing Switzerland 2016
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in AOM and MVM, generators may have to process multiple source models, rep-
resenting different aspects and views, integrate their information and store the
result in target models. This makes generators complex artifacts, particularly if
a generator depends on multiple source and target metamodels.

Software systems evolve over time to accommodate changes in requirements,
platform and environment. Each change can affect the syntax and semantics of
source and target metamodels, requiring generators to be adapted and modified.
While DSLs can be altered quickly and reused in other software projects [7], the
complexity of generators makes changes to them cumbersome and can result
in architecture degradation. This also applies to solutions where metamodel
changes are handled by supplemental transformations and model adapters. The
iterative addition and modification of such adapters would also lead to a complex
architecture. This hinders the evolution and reuse of generators.

Present approaches address architecture degradation either with transforma-
tions chains composed of small transformations [36], or with partitioning trans-
formations along arbitrary boundaries [8]. However, chains do not address the
diversity of different source metamodels and the partitioning focuses only on
single model inputs. Furthermore, these approaches do not discuss evolution.

We circumvent these limitations with our technology-independent generator
composition approach (GECO) [18] by

(a) partitioning generators into generator fragments along the types of views
and aspects of the application domain,

(b) modularizing the fragments along language features, e.g., typing, and
(c) providing a method to combine the output of fragments.

GECO uses our approach for metamodel evolution [22] which divides and
organizes metamodels along views, aspects, and metamodel semantics. Further-
more, we supplemented GECO with tooling and libraries (see also [20]) to support
its design principles and methods, which were also used in the evaluation.

We assessed GECO with two case studies. The first is based on the information
system of the Common Component Modeling Example (CoCoME) [31] specified
with multiple DSLs and incorporates an existing generator. The second is based
on an industry project for electronic railway control centers, named MENGES
[13]. In both, we evolved the DSLs and adapted the generators accordingly.

The remainder of this paper is organized as follows: Sect. 2 introduces
AOM as foundation of GECO. Section 3 provides the running example. Section 4
explains our approach. Section 5 reports on the evaluation. Section 6 discusses
the related work. Finally, Sect. 7 provides our conclusion and outlook.

2 Aspect-Oriented and Multi-view Modeling

The GECO approach is founded on aspect-oriented (AOM) and multi-view mod-
eling (MVM) together with a categorization and decomposition of metamodels
based on semantic properties. Therefore, we briefly introduce these four topics.
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Metamodels defined with EMOF [30] use classes and references between classes
to express concepts. References can express containment, association and aggre-
gation [22]. Depending on the purpose of a metamodel, specific patterns occur
to express type structures (e.g., component types, states of workflow graphs),
expressions, mappings, queries, and many more [22]. GECO uses these patterns to
decompose metamodels and suggest module boundaries for generator fragments.

MVM focuses on the different views an engineer has on a software system,
like architecture, component types, interaction, behavior, and data models [3,
23]. Each view can have its own metamodel covering only the concepts of the
specific view. Views may relate to other views [3]. For example, a behavior model
expresses the interpretation and manipulation of data. Therefore, it must be able
to access the data model. In this example, the behavior model depends on the
data model while the data model is independent (cf. Fig. 1). These properties of
dependence and independence can either be seen from a project point of view
for all metamodels used in a software project or be limited on two individual
metamodels. From the general perspective most metamodels depend on others,
e.g., architecture depends on component types, which depend on data types. For
GECO, we focus on the relationship of metamodel pairs and interpret dependence
and independence as two roles a metamodel can have [22]. In each relationship,
we require that one metamodel is the independent and the other is the dependent
one. Furthermore, we discourage the use of cyclic dependencies of metamodels
representing different views, as it results in more complex generators. However,
such dependencies can be addresses with additional fragments realizing partial
transformations and intermediate models (cf. [8]).

AOM addresses the modeling of main and cross-cutting concerns. The main
concern of a software system is its primary function, e.g., performing a purchase
operation. A cross-cutting concern is a concern which must be introduced at
different places in the main concern. For example, in performance monitoring
logging functionality must be added to record entry and exit times of operations.
In AOM, cross-cuttings concern are expressed in a separated aspect model and
the main concern is defined in a base model [4,23]. The aspect can further be
distinguished in a pointcut and advice. which define the points fo extension and
the extension, respectively. In general, the pointcut model comprises of references
to the advices and queries over the base model to identify elements which are to
be extended [24]. The collected references to elements are called join points.

Similar to MVM, the distinction in advice and base metamodel describe
two roles in a relationship [22]. For example, there are three metamodels for
application behavior, access control, and monitoring, where access control is an
aspect applied to the behavior and monitoring is applied to access control. In
this case, access control has different roles depending on the context.

Weaving. In aspect-oriented programming, the language of the advice represents
a subset of the base language which allows to directly introduce the advice into
the main function before execution. This introduction is called weaving. In AOM,
a similar process can be used when the advice metamodel is a subset of the base
metamodel. Weaving approaches, like the Kermeta weaver [29] and AMW [9], go



144 R. Jung et al.

even further and do not only define additions, but also specify which elements
must be replaced or removed and how references must be fixed.

3 Illustrative Example

We use as an illustrative example, an excerpt of the generator design used in
our first case study. The case study implements the enterprise part of a software
system for a supermarket chain, called Common Component Modeling Example
(CoCoME) [14]. CoCoME comprises cash desks in stores, multiple stores with a
store server, and a central enterprise server. It covers typical use cases of software
systems and incorporates embedded and enterprise software.

We modeled CoCoME with the Palladio Component Model (PCM) [5]. PCM
is a metamodel for architecture description and performance prediction. It covers
views for component type specification and assembly, which we used in the case
study. The PCM is supplemented with a DSL for Behavior, allowing to model
operations declared in a PCM model. For persistence and data modeling, we
created a data type language (DTL). We monitored CoCoME for a performance
evaluation with the instrumentation aspect language (IAL) [21].

We describe these metamodels, their relationship and the associated trans-
formations in Fig. 1, which is also called a megamodel [11]. In Fig. 1, metamodels
are depicted as boxes. The edges between the boxes represent references (arrow
with open tip ) and transformations (arrow with filled tip ).

References between metamodels are labeled to indicate their purpose. Essen-
tially, they are the aggregate of references between classes of two metamodels
with the same direction, e.g., the reference from IAL to PCM represent references
to PCM-operations. Transformations are labeled with the letter T and a subscript
name corresponding to the implementing generator fragment. For example, the
fragment named TDTL generates Java entity classes from DTL specifications.

The ProtoCom generator (TProtoCom) [12] is used to generate stubs for Enter-
prise Java Beans and Java Servlets from PCM component declarations. These
stubs are complemented by code snippets provided by TBehavior. As Fig. 1 illus-
trates, the operations references are mapped to methods references. Subse-
quently, the weaver TJW weaves snippets and stubs. The monitoring is realized

Fig. 1. Generator megamodel excerpt with the main fragments, metamodels, and their
relationships. The labels P2 and P4 refer to patterns introduced in Sect. 4.1.
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with two fragments for sensors (TSensor) and pointcuts (TPointcut), respectively.
The sensors are Java classes and the pointcuts are stored in a file for the AspectJ
weaver (Tajc). As the weaver operates on byte code, classes are first compiled
and then woven. For reasons of brevity we express these two steps with Tjavac,ajc.

4 The GECO Approach

The GECO approach addresses generator development and mitigates issues, such
as architecture and code degradation, which harm the evolution and reuse of gen-
erators. GECO is technology agnostic, as it can be applied to any modeling and
generation technology and paradigm. It covers both code and model generators.
However, for our evaluation, we primarily used the Xtend templating language
and EMF to realize metamodels and models.

We designed GECO with AOM [23] and MWM [3] approaches in mind. In
both references point from one metamodel to another (see Sect. 2). For reasons
of brevity, we mostly refer to the term AOM in the remainder of this paper.

In GECO, generators are modularized on two levels. They are split up into
smaller generators, called fragments, which are further subdivided into mod-
ules. Each fragment is defined with only one source and target metamodel, and
can often be realized with one transformation. As metamodels may not be self-
contained and may cover multiple views and aspects, fragments can be designed
for only a partition of a source metamodel, especially for partitions that fulfill
the criteria of an aspect or base metamodel [22]. This implies that it is not
necessary to have de facto multiple metamodels to developed with GECO. It is
sufficient to be able to partition the metamodel along the relationships of base
and aspect models, and independent and dependent views, respectively.

The key challenges for GECO are the decomposition of generators along con-
cerns reflected in metamodels and partitions of metamodels, the mapping of
source to target model join points, the construction of model traces used to
construct this mapping, and the modularization of fragments.

4.1 Basic Generator Megamodel Patterns

In GECO, code generation is realized by a set of fragments which are combined
to provide code generation for the different models and metamodels used in
a software project. The actual integration of fragments depends on the used
technology and the way models are passed on from fragment to fragment. In
our example, fragment execution is controlled by the Eclipse build system and
models are passed via the file system as serialized models.

The modularization of a generator in GECO depends on the partitioning
of metamodels into views and aspects, like Behavior and the IAL in our exam-
ple (see Fig. 1). Both reference the PCM as their independent view and base
model, respectively. In projects with multiple metamodels, like our example,
code generation involves multiple fragments processing and combining informa-
tion from different models. All these fragments can be interrelated, resulting in
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Fig. 2. Four megamodel patterns for base and aspect metamodel with their respective
transformations and target metamodels (trace models omitted).

a web of metamodels, their relationships, and fragments which can be repre-
sented with a megamodel [11], like the one in Fig. 1. In this paper, we disentan-
gle these relationships of metamodels and fragments based on four megamodel
patterns, depicted in Fig. 2. We deduced these megamodel patterns from a set
of minimal patterns involving at most two source and two target metamodels.
The fragments are represented by transformations to abstract from technical
details.

Pattern P1 is a simple transformation with one source and one target model.
It is used to express independent transformations. Pattern P2 describes that
source model references are mapped to target model references preserving that
information. In our example, this pattern is used four times (cf. Fig. 1). Pattern
P3 reflects the situation where the direction of references is inverted from source
to target level. This may happen to express aspect invocations on the target
model level when the target metamodel does not support aspect weaving. Pattern
P4 covers weaving of aspect and base model. As GECO is technology agnostic,
different weavers can be used, e.g., the weaver of Kermeta [29].

4.2 Combining Aspect and Base Model Fragments

In patterns P2 and P3 model traces must be exchanged between fragments to
compute references on the target model level (see Fig. 3). Trace models (TRM )
are used for this exchange. Depending on the transformation language, the TRM
generation must be explicitly implemented, or can be added automatically [17].

Pattern P2. The fragments TBM and TAM produce main output models conform-
ing to a target base metamodel (TBM ) and a target aspect metamodel (TAM ),

Fig. 3. Illustration of generator fragment compositions
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respectively. As the references between SAM and SBM must be mapped to the
target level, TAM requires a trace model relating TBM to SBM nodes. The
TRM can be generated by TBM as a second output, or can be computed by
a surrogate transformation TRBM . Such surrogate is necessary when adding a
second output to TBM is not feasible, e.g., the source code is not available.

In our example, TProtoCom provides a trace model and TDTL uses the package
structure of the source model also for the target model which makes a trace
model obsolete, as TBL can use the package information for the source model.

Pattern P3. In contrast to P2, the reference direction is inverted and then
mapped to the target model level. Therefore, model traces from the aspect and
join point information must be generated and passed to TBM . The trace model
is produced by TAM or a surrogate TRAM . Similarly, join points are computed
by TAM or a surrogate TJPM . The join points are required to infer the inverse
reference origins which are placed in the target base model. The trace model is
used to compute the reference destinations in the target aspect model nodes.

Achieving Model Traceability. Model traces can be represented as relations
between source and target model nodes, e.g., TRM ⊆ SBM × TBM . They
can be produced with constructive and recovery approaches [37]. The latter
use either deterministic algorithms or heuristics [33] to find matches. Heuris-
tics do not have predictable output and deterministic approaches use attribute
value similarities to find matches, which may result in wrong and missing traces.
Therefore, only constructive approaches can be used to create trace models for
GECO. They are generated either by the fragment itself or by a supplement trace
model transformation. The first approach can lead to a more complex fragment
source code, except for transformation languages which allow to add this fea-
ture automatically [17]. The second approach circumvents this complexity issue
with a separate transformation and allows to integrate legacy generators where
code alterations are not feasible. However, then two transformations must be
maintained.

4.3 Computing Target Join Points

In aspect-oriented metamodels, join points can be expressed as direct references
[22] or they can be specified with pointcuts [21,29] which are used to compute
joint points. In P2 and P3 these join points must be translated from source to
target level. Due to space constraints we only describe their computation for
pattern P2. However, the computation for P3 can be achieved in a similar way.

This translation is achieved in two steps where source level join points
(JPS ⊆ SAM × SBM ) are translated into their target counterparts (JPT ⊆
TAM × TBM ). First, for each reference destination dsi in (ss, ds) ∈ JPS a
set of intermediate join points is computed JPIi = {(ssi , nt)|(ns, nt) ∈ TRM ∧
dsi = nt}. Second, during the transformation of SAM to TAM , TAM infers trace
information which is used to compute target level join points from all JPIi .
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As trace models may contain traces to nodes with different semantics which
might not be well suited for weaving, the remaining set JPT must be checked
accordingly. For example, a component type is transformed into a class with
attributes and access methods. A join point representing an injection of a mon-
itoring sensor should reference the methods and not the attributes. Therefore,
JPT must be filtered for target nodes conforming to method declarations.

4.4 Internal Structure of Fragments

The megamodel patterns address the combination of fragments. In contrast, the
inner structure of fragments also affects reuse and evolution [32], which can be
improved with modularization. We propose a twofold approach to achieve mod-
ularization along the two dimensions functionality and metamodel semantics.

(a) Functionality. Fragments can be modularized along common functionality
(see Fig. 4), like source model query, aggregation and evaluation, state, target
model creation, name resolving and trace handling, and control (cf. [8,28]).

The advantage of this decomposition is that it can be applied to any fragment
regardless of the actual transformation. It also follows the decomposition of
software along concerns. Furthermore, it allows to improve and test functionality
separately. Its disadvantage is caused by metamodel evolution. For example, we
add database queries to the Behavior DSL (cf. Sect. 3). This affects almost every
module from model query to target model creation (see Fig. 4). However, the
central idea of modularization is to keep modifications local, which is not the
case in the example metamodel change and similar alterations.

(b) Semantics. Alternatively, fragments can be decomposed along the catego-
rization of metamodel semantics [8,22], like expressions, typing and initializa-
tion. Adding database queries to the Behavior language, like above, would affect
only those modules related to expression and statement handling. The query
generation itself could even be implemented in a separate module keeping the
modifications in the other modules minimal (cf. [19]).

Fig. 4. General functional decomposition of a transformation (cf. [8,28])
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5 Evaluation

In this evaluation we focus on the generator evolution for two reasons: (a)
According to a qualitative industry survey we conducted, evolvability is more
important than reuse [19]. (b) Evaluation of reuse requires multiple case studies
sharing common metamodel parts, like product lines. Furthermore, reuse and
evolution both depend on modularization which is addressed in our evaluation.

5.1 Evaluation Approach

We concentrate on two main goals addressing the overall feasibility and effi-
ciency of the approach focusing on development and evolution based on two
case studies. First, we evaluate the feasibility of our approach by using GECO
to implement the given case studies. Second, we evaluate the efficiency of our
approach from the perspective of a developer, focusing on the support GECO
provides for construction and evolvability of generators.

For generator construction, as for any software architecture, modularization
[16] is the key concept used to divide a larger problem into simpler modules that
address only one concern of the complete generator. Therefore, modularity is
important to support construction. Evolution requires modularity, extensibility,
and changeability of modules [16], as new features are introduced, altered, and
removed over time. Modularity supports extensibility and changeability due to
the lower complexity of the modules and low coupling [16]. To show that GECO
helps to keep the modularity of generators intact, we must evaluate how multiple
iterations of extending and changing effect the modularity of a generator.

The modularity of a software system is determined by the cohesion, coupling
and complexity [1,2]. Good modularity of a system is indicated by high inner
cohesion and low inter-module coupling [16]. The greater the distance between
complexity and coupling of the system, the better the modularity, as complexity
refers to the complete system and coupling only to the inter-module dependen-
cies. Extensibility and changeability are affected by modularity and the inner
complexity of modules [16]. Lower complexity improves code readability, improv-
ing code comprehension, which reduces the potential for code degradation.

To determine the three properties, modularity, extensibility and changeabil-
ity, we measure complexity, module cohesion and coupling. These measurements
depend on many factors including size and complexity of the requirements real-
ized in each evolution step. Therefore, it is impossible to define fixed levels to
indicate a good quality. However, we can compare different generator revision
and implementations, which allow us to evaluate whether the alterations affected
complexity, cohesion, and coupling.

We utilize (hyper)graph based entropy metrics [1,2] and cyclomatic complex-
ity [26] on code level. The entropy metrics allow us to focus on the information
density of software which is considered to be a close approximation of the cog-
nitive effort necessary to understand the software (cf. [2]). The entropy metrics
measure only classes, which are represented as modules, methods (nodes), and
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method calls (hyperedges). This allows to hide complexity inside method bod-
ies which are not represented in the hypergraph. Therefore, we monitor the
method complexity with the cyclomatic complexity metric to detect changes,
which indicate an complexity transfer. We are aware of the limitation of cyclo-
matic complexity applied to complete software systems [34]. However, we only
test whether the complexity of a method has changed (number of branches and
loops). Therefore, the rationale of [34] does not apply in our case.

5.2 Setup of Case Studies

The first case study involves an information system. It evaluates the integra-
tion of existing generators with newly written fragments, and the evolution of
fragments. The second case study focuses on evolution by reproducing the imple-
mentation of a generator from an industry project.

Information System Case Study. This case study is based on CoCoME (see
Sect. 3). We defined the generator’s architecture for CoCoME based on the meg-
amodel patterns, indicated by the labels P2 and P4 in Fig. 1. For the evaluation,
the megamodel from Fig. 1 is extended by a DSL and fragment for monitoring
event types [21] and different sensor technologies. The fragments used in this
case study are implemented with Xtend [7].

For the evaluation, we created an initial version of the Behavior DSL and
generator. Iteratively, the first version was extended to support different com-
ponent types, and database access. For all revisions, we measured complexity,
cohesion and coupling as explained above. In addition, we counted the number
of class files, modules, nodes, and edges of the hypergraph.

Control System Case Study. The control system case study is based on MENGES
which comprises DSLs and a generator for the domain of railway control cen-
ters based on programmable logic controllers (PLC) [13]. The goal of MENGES
was to provide developers with DSLs which fit their abstractions used in pre-
vious railway control center implementations. This includes architecture, com-
munication protocols, conversion of external signal into discrete internal values,
behavior (automata and workflows), data types, and configuration. The origi-
nal DSLs were developed with Xtext and its generator with the transformation
and templating language Xtend. The original generator produces code for the
PLC language Structured Text (ST) [15] and serializes it in an XML file. For the
evaluation, we reimplemented this old generator using GECO. To avoid imple-
menting more efficient algorithms than the original developers, we reused their
code adapted to the module and fragment structure of the new generator.

During the development of the old generator (Gold), language features were
added, removed, and changed based on user feedback and tests of the DSLs
and the generator. In the evaluation, we used the original documentation and
code to extract features for 14 revisions of the generator. As we simulated the
development of the new generator (Gnew ), it was necessary to extract only those
features and changes of Gold which happened in the next revision. Therefore,
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we extracted the features of Revision 1 of the Gold and implemented these in
Gnew . Then we went to the next revision and repeated the process. Through this
process, the developers of Gnew gained only knowledge of features and changes
the original developers had implemented in the corresponding revision.

Initially, the generator supported type structures (Revision 1–4). Later it
was extended to support expressions, statements, and automata. The output is
a combination of an XML-DOM and function implementations in ST. Therefore,
the generator combines model-to-text and model-to-model transformations. Gold

and Gnew mainly differ in the modularization. Details can be found in [19].

5.3 Information System Case Study Results

This case study assesses the feasibility of GECO to model the combination of
different fragments and the construction and evolution of a fragment. The first
part is shown by modeling the composed generator for CoCoME with GECO
(cf. Fig. 1). The second part is described in this section by evolving the TBehavior

fragment in four revisions. The columns of Table 1 show the code revision, the git
revision tag, the number of classes, excluding data types, frameworks, and anony-
mous classes. The number of modules refer to the number of classes mapped to
the hypergraph. This includes anonymous and framework classes used by the
fragments. The nodes represent the fragment and the used framework meth-
ods, and the edges express method calls and access to shared data objects. The
remaining columns depict values for the entropy metrics.

For this case study, we implemented an initial version of TBehavior and per-
formed three evolution steps on the language and fragment. Revision r1 supports
the specification of operation bodies operating on input data and internal state.
In revision r2, we added support to mark a component as stateful or stateless,
which has significant effects on the scalability of components. To support this
new feature one template method had to be extended. Revision r3 added sup-
port for special methods called on initialization and destruction of components.
Finally, we added constructs for database access to the DSL, supporting JPA.

The measurements [19] (see Table 1) show, adding features increase size and
complexity of the overall system. We can see that the intra module cohesion
changes are minimal for the first three revisions, which indicates that the inner
structure of the modules was not changed significantly. Only the support for
database access has a significant effect. This is due to the fact that the new
statements were added to the expressions module instead to a separate module.

Table 1. Measurements of the behavior generator fragment of the CoCoME case study

TBehavior Revision git # of class Modules Nodes Edges Size Complexity Cohesion Coupling

r1 be2dafbc53a 6 16 56 125 314.25 802.70 0.043709 594.93

r2 83acc26830d 6 17 57 127 321.54 813.99 0.043965 605.90

r3 0961df26eb7 6 17 58 134 328.86 873.37 0.043965 654.83

r4 0c87a9e84c4 6 17 64 156 373.23 1041.43 0.042075 781.88
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5.4 Control System Case Study Results

In this case study we performed 14 evolution steps and measured the number of
classes, modules, nodes, and edges (counting metrics), as well as, size, complexity,
coupling, and cohesion (entropy metrics) for both the old and the new genera-
tor (cf. replication package [19]). Due to size constraints, we selected the most
significant counting and entropy metrics. We choose module and edge count, as
the module count includes classes and the edge count represents the intercon-
nectedness of the hypergraph. Furthermore, we omitted the cohesion metric, as
it shows a steady difference between both generators (Gold has only 60.29 % of
Gnew ’s cohesion in Revisions 7 to 14).

Figure 5 shows slow growth in all measures over the first 4 revisions. The
growth of Gnew is minimal, as it starts with dedicated classes for each kind of type
the DSLs provide. In Revision 5, MENGES added support for expressions which
is a complex endeavor, especially as the DSLs provide object-oriented constructs,
but the target language is only imperative. In Gold , this effort resulted in many
more modules (Revisions 4 to 6) and triggered a large refactoring step (Revision 6
to 8), which resulted in a minor fluctuation in the number of modules (Revisions
6, 7, 8). For Gnew , this was not necessary at this point.

The remaining Revisions (8 to 14) show for both generators continuous
growth. However, the increase in size, complexity, and coupling are smaller for
Gnew than for Gold . The only difference is the number of modules, which increase
in Gnew after Revision 10, which is caused by factoring out the generation of
actions and predicates in separate fragments. Gold decreases due to refactoring.

Overall, Gnew has better (lower) values for all metrics over the complete
evaluation than Gold . As we reused method implementations from the original
code in Gnew to avoid a result bias based on a different coding style, these
better values are not based on coding style. In the end Gold was 2.08 times
more complex, 2.17 times more intensely coupled, used 1.40 times more nodes,
and 1.75 times more edges. This allows the conclusion that GECO has a positive
effect on generator development and evolution.

Fig. 5. Counting (left) and information (right) measurements of the control center case
study; filled and empty symbols represent Gold and Gnew , respectively
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6 Related Work

AOM is an actively researched topic in MDE. Many generation approaches focus
on the definition of aspects and the weaving of models, which are collected in a
mapping study [27]. Most prominent are approaches based on the Formal Design
Analysis Framework [6], UML, and reusable aspect models [29]. They use the
UML as source language, and Java and AspectJ as target languages. They aim
for the reusability of aspect models and generators. While some approaches use
stereotypes or profiles to identify aspects, they neither support profiles for their
base and aspect models nor address domain-specific languages. The weaving of
aspects is controlled by direct references or model-subgraphs formulating point-
cuts. Unlike our approach, theirs do not address the construction of generators.

In a recent survey on aspect-oriented domain specific languages (AODSL), 22
different AODSLs with generators were analyzed [10]. A key challenge of these
DSLs is the integration of their aspect generator in the base language generator.
Some approaches extend a base language generator in an ad-hoc manner, hinder-
ing reuse of the AODSL generator and maintainability of both generators [10].
Two AODSL frameworks use an extensible base language generator for additions
by AODSL generators. However, they have multiple shortcomings compared to
GECO: (a) they do not address the integration of multiple AODSLs and cascad-
ing scenarios with multiple weaving stages, which appear in our example (see
Sect. 3) and case study. (b) they support only their own base language. (c) they
do not provide a modularization approach for fragments. (d) they introduce their
own frameworks making them not framework and technology agnostic.

Finally, various approaches exist which address the modularization of trans-
formations. They primarily focus on small transformations in a chain. One excep-
tion is the approach of Etien et al. [8] which modularizes transformations along
specific tasks and purposes. This approach is largely complementary to GECO
for two reasons: (a) they argue that larger transformations can be composed of
small localized transformations. This correlates with fragment modularization
(see Sect. 4.4). (b) they focus on modularization, but do not discuss the impact
of metamodels. And (c) they do not define concrete methods for modularizing
large transformations. With GECO we provide such methods.

7 Conclusion

We present an approach to support the construction and evolution of generators
used in the context of MDE. Key contributions of GECO are megamodel patterns
to guide the combination of fragments to complex generators, and a concept for
the modularization of fragments to reduce the inner complexity of generators.
We evaluated GECO with two case studies representing information systems and
embedded control systems. The first integrated existing and new generators, and
focused on feasibility of GECO. The second re-executed the development and
evolution of a generator with GECO and compared it to the original generator
project. In addition, we support fragment development and composition with a
library of reusable modules supplemented by a DSL and generator [20].
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Our future work will explore two primary avenues of investigation. First, we
will extend our evaluation based on additional evolution steps for both case stud-
ies. Second, we will compare costs (time to realize alterations) for the second case
study based on logged duration information. Third, we intend to evaluate code
quality and performance of GECO generators, however, this requires larger mod-
els to be transformed. And finally, it would be interesting to compare generators
for profile base approaches with aspect DSL generators.
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Abstract. Software maintenance consumes an increasing proportion of
industrial software engineering budgets. Over time the technical debt
grows, until it becomes unavoidable to rejuvenate the legacy software to
a new design, while preserving the valuable domain logic. In this paper,
we explore the feasibility of a model-based rejuvenation approach for use
in an industrial context. The approach is based on existing open-source
parsers and a combination of models and model transformations, some
of which are generic and others are tailored to the specific applications.
We illustrate similar techniques on two industrial cases with different
goals. Afterwards we extract some lessons learned, like the choice between
extracting the domain logic or eliminating the implementation details.

1 Introduction

Embedded software is often reused in product lines that are developed over a
long period of time. Software maintenance is crucial to keep up with technology
change and obsolescence. This maintenance of existing functionality consumes
an increasing proportion of software engineering budgets, and hence hinders the
development of new innovative features with added value to customers [18].

Over time the technical debt [6] of legacy software grows, until it becomes
unavoidable to perform a rejuvenation that goes beyond a gradual refactoring
[19]. Although such a rejuvenation has many benefits [13], it is often postponed
due to the risks and costs involved [14]. Our goal is to investigate techniques that
enable the cost-effective rejuvenation of legacy software in industrial practice.

Rejuvenation is also called re-engineering [4], which is the examination and
alteration of a subject system to reconstitute it in a new form. Re-engineering
generally includes some form of reverse engineering (to achieve a more abstract
description), followed by some form of forward engineering or restructuring.

In particular we focus on how to preserve the valuable domain logic that is
usually encoded [5,20] inside the legacy software. Our vision is a generic reju-
venation tool-set that can easily be tailored by experienced developers to their
specific applications. Our previous rejuvenation experience [18] with the field-
service procedures from Philips Healthcare has benefited from XML models in
the legacy code base. In the current paper, we focus on domain logic encoded in
general-purpose programming languages such as C++ and Delphi.
c© Springer International Publishing Switzerland 2016
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Approach: The semantics of modern programming languages is quite complex.
We do not aim for automated interpretation of the legacy code, but exploit the
syntactic constructs used by humans to reason about the domain logic.

To process the legacy code, we need to select a parser. To facilitate tailoring,
we have evaluated several open-source parsers for the programming languages
used in the legacy code bases, and developed a list of selection criteria. Parsers
typically produce an Abstract Syntax Tree (AST) model with a Visitor pattern
[10] for custom model analysis and transformation. Given the industrial famil-
iarity with design patterns and programming languages like C# and Java, we
have not considered dedicated transformation languages such as [12,21].

Afterwards, we use a combination of models and transformations, some of
which are generic and others are tailored to the specific application. If the domain
logic requires a limited degree of variability, we aim to extract a domain-specific
model. Otherwise we aim to incrementally introduce more abstractions into the
legacy code, similar to an API or an internal DSL [22]. The resulting code could
be used for further development, or as a base for introducing domain-specific
models later on. The latter looks like a domain-specific variant of [24], where
generic code refactoring is applied before extracting a generic model.

In terms of refactoring [17], we use graph transformation and program slicing
[16]. In terms of architecture reconstruction [8], our approach is bottom-up from
source code, and semi-automatic as we combine manual (e.g., pattern definition)
steps and automated (e.g., pattern recognition and transformation) steps.

We use automation to apply complex transformations on a large scale, in a
quick and consistent way. It also reduces the risk of blocking regular development
work: the transformations can be developed in parallel with the regular work,
and afterwards be applied instantly to the latest version of the legacy code.

Cases: We investigate this model-based rejuvenation approach using two indus-
trial cases. The first case is about a set of calibration procedures used in the
electron microscopes developed by FEI Company. Over time these procedures
have evolved from a simple research tool to a valuable part of the commercial
product. To support further development and maintenance, a software redesign
is required. The goal is to disentangle and decompose the legacy code, while
preserving the valuable domain logic about microscope calibration.

The second case is about the elimination of COM (Component Object Model)
related glue code from parts of the interventional X-Ray scanners developed by
Philips Healthcare. Microsoft COM technology is used to decompose software
into reusable components that communicate via an interface standard. However,
it has introduced technology dependencies on Microsoft platforms, and has also
led to large amounts of glue code (related to the involved Adapter and Facade
patterns [10]). The goal is to reduce the amount of code, by fusing certain pairs
of components and eliminating the glue code between them.

Overview: In Sects. 2 and 3 we discuss the two industrial rejuvenation cases.
Afterwards, in Sect. 4, we combine our experiences into lessons learned. Finally,
in Sect. 5 we discuss related work, and in Sect. 6 we draw some conclusions.
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2 Case 1: Calibration Procedures

In this section we explore how to disentangle and decompose the calibration
procedures from FEI Company. Their legacy implementation consists of a core
routine for each calibration procedure, in combination with supporting routines
for user interaction, image acquisition and image processing. The core routines
contain the valuable domain logic to be preserved, and hence this is the focus of
the automated rejuvenation. Any changes in the supporting routines are manual,
like in our rejuvenation in [18]. Although we need a general understanding of the
legacy code, we do not try to understand the intricate calibration logic itself.

We have considered extracting a domain-specific model from the code, but it
is not yet clear how much variability it should support. In the following subsec-
tions we explain how we incrementally reduce the code’s complexity and intro-
duce more abstractions using AST models of the code.

2.1 Parser Selection for Delphi Code

The legacy code is developed in Delphi, which is an object-oriented version of
Pascal. To efficiently process Delphi code in a model-based way, we have to obtain
a suitable Abstract Syntax Tree (AST). After some exploratory experiments with
Free Pascal (a compiler for Pascal and Object Pascal) and DGrok1 (a Delphi
parser in C#), we have selected DGrok to compute a Concrete Syntax Tree
(CST) and implemented our own transformation from the CST to an AST.

In the legacy code that we consider, we have observed a lot of useful code
comments and code layout (in particular, empty lines that separate groups of
statements) that we want to preserve; see also [21]. Parsers typically ignore these,
but as DGrok is open-source, we have made our own CST extensions. As the
DGrok project itself is inactive, we have not contributed back these changes.

In addition we have implemented a serializer that generates readable code
from the AST, and a simple CST comparison tool. This basic infrastructure was
realized in a couple of days. To validate it, we reparse the Delphi code generated
by the serializer, and use the CST comparison tool to check that the CSTs only
differ in the order of declarations. The general idea is to parse the legacy code,
apply transformations to the AST, and generate new code from the AST.

We have implemented the AST using the Composite [10] pattern and explicit
parent references. To implement transformations on AST models we use both
the Visitor and the Interpreter pattern [10]. The quantitative comparison of [11]
indicates that an implementation based on the Visitor pattern is more maintain-
able than one based on the Interpeter pattern. We have used a different kind of
criterion to decide between the use of these two patterns:

– Interpreter pattern: only for a limited number of transformations (e.g., the
serializer) that need specific code for almost all node types.

– Visitor pattern: for many transformations that need to traverse the AST, but
only need specific code for a few node types.

1 http://dgrok.excastle.com/.

http://dgrok.excastle.com/
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We have also developed a variant on the Visitor pattern where the visit-methods
return an AST node in order to allow on-the-fly changes in the structure of the
AST. The AST and all model transformations are developed in C#.

2.2 Code Analysis

The automated and manual transformations are developed by a human devel-
oper. To support his work, we extract the following information from the AST:

– Usage of Variables: in which routines are the variables read or written;
– Shadowing Variables: which nested variables shadow each other’s visibility;
– Routine Invocations: call graphs for subsets of the routines;
– Exception Structure: in which routines exceptions can be raised and caught.

2.3 Code Disentangling

The legacy code combines the core calibration logic with all kinds of software
engineering concerns. Based on our variant of the AST visitors described in
Sect. 2.1, we incrementally disentangle the code as illustrated in Fig. 1.

The two if statements in the legacy code show that there is a built-in sim-
ulation mode. In the new design, the built-in simulation mode is replaced by a
manually developed external simulator. We have developed an automated trans-
formation that replaces variable InSimulation by false, simplifies the boolean
expressions, and eliminates trivial if statements.

Several routine calls are surrounded by a CheckResult routine call, which
checks the return value and (if necessary) raises an exception with a custom error
message. The new design has generated wrapper layers that ensure consistent

(a) Legacy Code (b) New Code

Fig. 1. Example calibration procedure: disentangling
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error messages, and hence we have developed an automated transformation that
removes the corresponding CheckResult calls.

The two AddToLog statements provide custom logging of parameters Shift1
and Shift2 of the FilteredCrossCorrelation calls. The new design has generated
wrapper layers that ensure consistent logging of routine parameters, and hence
we have developed an automated transformation that removes these custom
loggings. In addition, the transformation extracts the knowledge about pretty-
printing the parameters in human-readable form for use in the wrapper layers.

Finally, the parameters for routine AcquireCcdImage refer to many attributes
of a single record-type variable. The new software design combines such unneces-
sarily split records and removes unused arguments. Such changes (incl. grouping
routines into modules) in the supporting routines are made manually, but their
use in the calibration procedures is modified in an automated way. In addition
we have developed an automated transformation that replaces OleVariant data
types by normal data types in some typical usage scenarios, consisting of explicit
type casts and extra variables with normal data types. OleVariant is a generic
data type to represent data passed over a COM interface; it requires additional
data conversions that are not desired inside the core calibration logic.

2.4 Code Patterns

The legacy code exploits useful abstractions, but we have manually identified
several coding patterns that could be simplified. We have developed automated
transformations to replace such patterns by simpler code or by new helper func-
tions. Figure 2(a) shows an example code pattern that looks somewhat like a
Singleton pattern [10]. Similarly, we have also replaced larger domain-specific
coding patterns by new code fragments to introduce more abstractions.

Although some complex transformations must be expressed directly in terms
of the AST, in other cases it is not so appropriate due to the conceptual distance
between the AST and the manipulated code [21]. In our experience, direct AST
transformations can be quite laborious and error-prone. In many cases, the use of
code snippets with placeholders speeds up the development and understanding
of many transformations. Like [2], we prefer to be able to combine code snippets

(a) Source pattern (b) Target pattern

Fig. 2. Example transformation using code snippets
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and AST patterns. In particular, we have noticed that in about a day one can
develop a simple AST pattern matcher for code snippets with placeholders.

Wherever possible, we describe the source patterns of the automated transfor-
mations as code snippets with placeholders; see Fig. 2(a). One underscore (e.g.,
knob0 ) indicates any AST node; two underscores (e.g., stat1 ) indicates any
list of statements. Our AST pattern matcher finds occurrences of such source
patterns in the AST, including the AST nodes for the placeholders. In addition
there can be additional checks like whether placeholders knob0, knob1 and
knob2 have identical values. For the target patterns of the transformations, we
also prefer to use code snippets wherever possible. In this case, the code snippets
can refer to placeholders from the source pattern; see Fig. 2(b).

2.5 Code Decomposition

Despite the large collection of supporting routines, the applied disentangling and
the introduced abstractions, each specific calibration procedure in the legacy
code is still quite long (e.g., 1000 lines of code). The challenge is to highlight the
overall structure of such a long fragment of code. Looking at the specifics of the
calibration procedures, we observe that the code involves a mix of:

– User interactions, especially waiting for the user to press a GUI button;
– Computations, such as image acquisition and image processing.

After a few rapid exploratory iterations, we have decided to treat calibration
procedures as series of user interactions, with computations in between.

We have first extracted a flow graph model in terms of user interactions,
choices that impact the user interactions, and computations. This has resulted
in a flow graph (see Fig. 3(a)) with a nice visual structure, but the corresponding
linear textual code contains many undesired non-local jumps.

To avoid this problem we have abandoned the graph structure, and directly
modified the code structure by outsourcing code fragments to new subroutines.
The resulting structure is based on programming constructs (see Fig. 3(b, c)).
Thus we have revealed a hierarchical structure with three levels:

(a) Graph (b) Code: Top-level (c) Code: Flow-level

Fig. 3. Example calibration procedure: decompositions
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– 1 top: focusing on the overall structure, but without user interactions;
– several flows: focusing on the order of user interactions (FUI.WaitFor* );
– many steps: focusing on computations without user interaction.

The top can invoke flows and steps, and the flows can also invoke steps. To hide
as many computations, we make the steps as large as possible. To obtain a good
separation between top and flows, we ensure that the flows contain at least one
user interaction that is outside any if /while/repeat/try statement.

We have developed an automated transformation to apply this domain-
specific decomposition. In particular we ensure that exit statements are never
outsourced to another subroutine (see Fig. 3(b)), and that break and continue
statements stay within their loop context. To handle Delphi’s implicit result vari-
able (for the return value of a routine), we have introduced a variable tResult ;
see Fig. 3(b). Finally we eliminate useless indirections by inlining the steps and
flows that consist of only one atomic statement (but this is not visible in Fig. 3).

This decomposition mechanism preserves the branching structure developed
by the original developers, which we consider as part of the valuable domain
logic. This differs from generic mechanisms in compiler optimization, e.g., for
transforming unstructured branches into structured form, like hammock graphs
[24,25]. In parallel to our preparations of this software rejuvenation, regular
development continues on the legacy code base. It turns out that recent changes
in the legacy code have no effect on the revealed structure. This is useful when
preparing a list of understandable names for the flow/step subroutines. Moreover,
the revealed structure is close to the result of a manual restructuring attempt.

3 Case 2: COM-Related Glue Code

In this section we explore how to remove COM-related glue code in components
from Philips Healthcare. A typical software component that is based on COM
technology consists of three internal layers (see the left-hand side of Fig. 4):

– Presentation: external COM interface to expose the internal C++ interfaces;
– Functional: core functionality in terms of internal C++ interfaces.
– Abstraction: internal C++ interfaces to access other COM components.

Fig. 4. Merging two COM components into one COM component
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The presentation layer follows the Adapter [10] pattern, and the abstraction
layer follows the Facade [10] pattern.

In what follows we use the term glue layer to denote such an abstraction or
presentation layer. Each glue layer may internally be decomposed into multiple
glue layers. The most atomic glue layers that we consider consist of a class with
several public methods. Figure 5(a) shows an example of such a method.

To incrementally remove COM-related glue code, we have focused on merging
one pair of COM components, as depicted in Fig. 4. The idea is to combine the
abstraction layer of one of the components with the presentation layer of the
other component. If the net effect of this combined layer is not void, then a
new combined layer must be inserted in the merged component. In the following
subsections we explain our approach in which we first extract domain-specific
models from each individual glue layer, and afterwards try to combine them.

3.1 Glue Layer Models

Typical glue layers have very limited functionality. To automatically reason
about (combinations of) them, we have developed a Domain-Specific Language
(DSL, [22]) using Xtext2. We model each public method of a typical glue layer
as a mapping. Each mapping follows the following basic structure:

1. data conversions applied to the input parameters;
2. forwarding call to a method in the next layer;
3. data conversions applied to the output and return parameters.

Sometimes there is a conditional forwarding to different methods, or decoupling
of the call chain using a buffer. Moreover, within a layer sometimes locks are used
for mutual exclusion between methods, and sometimes parameters are stored for
later use by other methods (for example, to determine the callback interface).
A basic example of a glue layer method and its corresponding model can be
found in Figs. 5 and 6(a, b, d) show an example with decoupling (“decoupled”)
and data conversions (“target#2 = CString(source#2)”).

(a) Glue Code (b) Model Fragment

Fig. 5. Example glue layer: basic

2 https://eclipse.org/Xtext/.

https://eclipse.org/Xtext/
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(a) Glue Code: Decoupling (Part 1)

(b) Glue Code: Decoupling (Part 2)

(c) Model Fragment: Synchronous

(d) Model Fragment: Decoupling

(e) Model Fragment: Conditional

(f) Model Fragment: Combined

Fig. 6. Example glue layer: advanced

Such models abstract from implementation details such as logging/tracing,
assert statements, try-catch blocks, accessing other COM-based components,
memory allocation, parameter names and types, and implementation code for
decoupling. Given the focus on the computations applied to the input and output
variables, our glue models could be considered as a kind of program slice [16].

3.2 Parser Selection for C++ Code

The glue layers that we consider consist of C++ code, developed in Visual Stu-
dio. The C++ language is known to be difficult to parse [23], for example due
to ambiguities in the grammar. To make our rejuvenation approach effective,
we decided to use an existing parser for C++. After some exploratory exper-
iments with C-Lang, GCC, and Eclipse CDT3, we have selected Eclipse CDT
and used Ricardo Rufino’s example4 on how to access the AST in a standalone
way without using an editor. All model transformations are developed in Java.

3.3 Extract Glue Layer Models from Code

To extract glue models, we have developed an automated transformation from
the AST. The relevant coding patterns that can be observed in the legacy code
have been identified manually; to save efforts, we do not try to make the patterns
much more generic than necessary. We have incrementally extended the set of

3 http://www.eclipse.org/cdt/.
4 https://github.com/ricardojlrufino/eclipse-cdt-standalone-astparser.

http://www.eclipse.org/cdt/
https://github.com/ricardojlrufino/eclipse-cdt-standalone-astparser
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processed files and recognized patterns. The starting points are basic cases like
Fig. 5(a), which are transformed into the model shown in Fig. 5(b). Later on we
consider decoupling which requires a combination of methods like Fig. 6(a, b),
which are transformed into the model shown in Fig. 6(d).

The automated pattern recognition is based on tree traversal and visitor
patterns. The patterns are expressed directly in terms of the AST of the legacy
code; in contrast to [24] we do not need to pre-process the code to introduce
more structure using source code refactorings. We have considered two possible
strategies to recognize patterns in the AST of a given legacy method:

– single AST traversal, trying to match each single node to a pattern;
– phased series of AST traversals, to find the occurrences of specific patterns.

The first approach can easily guarantee that all AST nodes are covered, but
it needs to collect and store all required information in one go. The second
approach looks for one pattern at a time, and hence can process the information
in a more phased way. However, a separate check is necessary to guarantee that
all AST nodes match one of the defined patterns. The second approach needs
to traverse the AST multiple times, but the execution times have not been any
problem, and the extra phases may help to improve the understandability.

We have applied the second approach. The first AST traversal determines
the forwarding call and whether a decoupling pattern is used. The next AST
traversal processes the assignments and functions that relate the parameters of
the original method with those of the forwarding call. Additional AST traversals
are used to detect whether a lock is used. Finally we compare the non-processed
nodes with heuristic patterns of statements that can safely be ignored. In this
way we have discovered four exceptional glue methods that have more than one
forwarding call, whereas our glue models were based on the assumption of having
at most one (conditional) forwarding call which is usually the case.

3.4 Combine and Simplify Glue Layer Models

After extracting glue layer models from each individual glue layer, we combine
them and try to simplify them. The simplification repeatedly tries to combine
two matching mappings, e.g., if method A forwards to method B, and method B
forwards to method C, then we combine this as method A forwards to method C.
In addition we combine the data conversions, and the locking and decoupling
flags. After combining the data conversions, we try to simplify them by removing
conversions that cancel each other, and by removing operations that effectively
only copy a full record or array/list structure. We do not automatically interpret
the data conversion functions, but we use a manually-defined list of data con-
versions that cancel each other. The other reasoning steps are automated. As an
example, Fig. 6(f) is obtained from the model fragments in Fig. 6(c, d, e) and the
links between them; in particular note that the data conversions CComBSTR
and CString are automatically eliminated.

For the pair of components that we consider, we have finally processed 26
glue layers. The complexity of the resulting simplified model gives an indication
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whether a logical set of layers was selected. Our simplified model contains only
two important data conversions and two methods that should not be forwarded.
In addition, the model extraction had revealed four methods that need multiple
forwarding calls. We have manually developed and integrated the new combined
glue layer code, as this is likely to be too specific to invest in automation.

3.5 Integration

Before replacing any COM interface by a native C++ interface, the COM com-
ponents must be put into a single process. In Fig. 4, the dashed blocks indicate
process boundaries; each COM component corresponds to a process boundary.
It took a week of manual effort to put our two COM components inside a single
process, which was caused by issues like modifying the COM settings, resolving
name clashes, changing project structures, etc.

These issues are largely due to removing COM incrementally, starting with
one pair of components. This means that we cannot remove the COM-related
code completely, but need to modify parts of the COM-related code, as it is still
necessary for the interactions with other components. As further work it would
be interesting to consider an alternative big step approach, in which we focus on
all the functional layers that we want to preserve, and completely redesign the
glue between them (based on the automated analysis techniques described).

4 Discussion

In this section we reflect on the two industrial cases described in Sects. 2 and 3.
The achieved results in both cases look promising. For the calibration procedures,
a few more iterations are needed to determine the new software design. For the
COM-related glue code, it needs to be explored whether it must be removed
incrementally. In what follows we discuss some general observations.

4.1 Parser Selection

To extract models from source code in general-purpose programming languages,
one of the first activities is finding or developing an appropriate parser. We have
used the following list of criteria for selecting a parser:

– parsing the specific language dialect used by the legacy code;
– processing files without processing their (missing) dependencies;
– giving access to a sufficiently abstract parse tree (e.g., AST);
– preserving abstractions such as macros (when possible);
– preserving code comments and code layout (such as empty lines);
– expected learning curve for industrial rejuvenation projects.

One way to obtain such a parser is using a generic parser generator (e.g.,
Lex/Yacc, ANTLR, Xtext, etc.). However, developing your own grammar for a
real industrial programming language is a challenging task [23]. Another option
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is to use a full open-source compiler, but it may be difficult to understand it and
to trim it down. Moreover full compilers may shift too quickly to low-level code
whereas we try to lift the abstraction level from code to model. In our experience,
open-source compiler front-ends provide a more effective starting point.

To speed-up the way of working, it would be nice to have an integrated tool
chain combining parsers, tree transformers, code generators, etc. The MoDisco
framework [3] seems to have similar goals, but the supported technologies (Java
and XML, at the time of writing) were not applicable for us.

4.2 Risk Control

Software rejuvenation has a big impact on the source code. To consistently apply
complex transformations at an industrial scale, we use automation. To control
the serious risks involved in any rejuvenation, we use a couple of mechanisms.
As recommended by [14], we do not rely only on testing the rejuvenated code.

First of all, we work incrementally using small steps. This applies both to
the amount of processed legacy code, and the number of applied model trans-
formations. In particular we always try to re-parse any piece of generated code,
and regularly compare successive versions of the generated code (e.g., using diff
tools) to check the effect of new or modified transformations.

Secondly, we prefer readable transformations that can easily be reviewed and
maintained, over slightly better performing ones. As we are not developing a full
compiler, we do not aim for fully generic transformations, as this is often risky
in the corner cases. Instead, we explicitly check their restrictions during their
application, and we manually inspect parts of the AST that unexpectedly are
not covered by any defined pattern.

Finally, a good testing environment is crucial to validate the rejuvenated
code. As our industrial cases deal with embedded systems, we have used virtual
machines with hardware simulators to test the rejuvenated code in early stages.
Note that the legacy code and redesigned code are usually not supposed to
be identical in all aspects, for example because of performance improvements,
modified logging or minor implementation issues that are resolved on the fly.

4.3 Extract Domain Logic or Eliminate Implementation Details

The focus in our industrial cases varies from extracting valuable domain logic
to eliminating implementation details. For example, the model extractions in
Sect. 3.3 and our rejuvenation in [18] are driven by a target model that can
capture the domain logic. In [18] the domain model is based on the new soft-
ware design, whereas in Sect. 3.3 it is based on the required model reasoning in
Sect. 3.4. In both cases the model has been extended in a few iterations, but it
was immediately clear that the domain logic requires only a limited number of
variability points.

The code transformations in Sects. 2.3 and 2.4 are driven by the desire to
eliminate certain implementation details from the source code. As there was no
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clear idea about a kind of model, attempts to immediately extract models would
probably require a large degree of variability, perhaps even close to a general-
purpose language. On the other hand, these sections can be seen as a stepping
stone towards incrementally discovering what a proper domain-specific model
could be in the future.

Note that we have made different choices for distinguishing between domain
logic and implementation details. In Sect. 3.3 we eliminate intermediate vari-
ables from the data conversions, whereas in Sect. 2 we preserve them in complex
computations and consider them as a deliberate choice from the domain expert.

4.4 Required Knowledge

Comparing the two cases with our rejuvenation in [18], we conclude that for a
serious rejuvenation, the following three types of knowledge need to be combined:

– vision on the design and implementation of the new software;
– insight into the design and implementation of the legacy software;
– insight into (partially) automated rejuvenation techniques.

In addition, it may be useful to include people with an outsider’s perspective on
the software to be rejuvenated.

The development of a new software design and domain model requires a good
understanding of the real system requirements, not just the legacy code. Insight
in the legacy software is needed to develop transformation patterns. Techniques
like [8] recover the structure of a software implementation, but it is further work
to investigate whether this identifies the right information for a rejuvenation.

In comparison to our previous rejuvenation in [18], the deep insight into the
legacy design was not easily available in the current two cases. As a consequence
we notice that the focus has shifted a bit from one big redesign step to many
smaller incremental steps. Nevertheless, this may still yield a code improvement,
or even act as a stepping stone towards a model-based solution at a later stage.

5 Related Work

Several published case studies consider code transformations, including conver-
sions to object-oriented programming languages as described in, e.g., [20]. The
industrial cases from [9,18] can already benefit from some kind of model as start-
ing point for a migration. In our current work, we aim to extract from legacy
code the valuable domain logic, e.g., in terms of models, like in [5], where control
and data flow analysis is applied to a selected set of “business variables”.

Like in our approach, [1] builds transformation tools on top of open-source
compilers. [14] also promotes to reuse all kinds of common analyzers. In contrast,
[15] advocates to develop partial parsers and grammars that are tailored to
specific transformations. Recovery techniques are used to obtain such grammars
based on language reference manuals, example code and existing compilers.
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Syntax retention is an important concern [14,21], which includes issues like
not unfolding any macros, and preserving the code comments and code layout
(such as spacing). To achieve this, [15] uses partial parsers and [7] uses a recon-
struction algorithm. Case studies like [14] address syntax retention using a lexical
approach, but the required transformations in our industrial cases need a more
general grammar-based approach. In terms of code layout, in our industrial cases
only the empty lines needed to be preserved; it was even considered to be an
advantage that the other spacing became homogeneous.

6 Conclusions and Further Work

We have discussed the rejuvenation of two industrial cases that differ in terms of
rejuvenation goals and source languages. The required transformations include
generic and domain-specific ones, and are more complex than lexical renaming or
search-and-replace. We have illustrated a similar approach based on open-source
parsers and general-purpose programming languages.

Although it sounds attractive to extract models from legacy code, initially it
may not be clear what the models should look like. When the code’s functionality
is limited (e.g., glue layers), it seems easy to develop a restricted model (that
can be extended incrementally). When it is not so clear how to capture the
functionality in a domain-specific model (e.g., calibration procedures), a useful
intermediate step is to incrementally introduce abstractions inside the code. This
approach gives many opportunities for early validation of the abstractions, and
may lead to insights for introducing domain-specific models later on.

In our experience it is very important to exploit the abstractions that the
original developers have introduced. Although parsers typically ignore comments
and layout aspects such as empty lines, it is valuable information that may be
useful to preserve. This also applies to syntactic abstractions such as intermediate
variables and helper functions. They may not be perfect, but they are a useful
starting point. In our experience, many macros can also be treated as helper
functions, and in this case should not be unfolded by a pre-processor.

Although we have achieved nice results with the chosen tools, we notice some
effort duplication due to the two parsers involved. As further work, it would be
useful if open integrated frameworks like MoDisco [3] grow to the level that they
provide the basic infrastructure (including parsing, AST, reference resolving,
handling missing dependencies, etc.) for multiple languages and the facilities for
model transformations and code generation. We also like to investigate partially
automated techniques that support industrial developers to get insight in legacy
software, for example, to be able to define good rejuvenation patterns.
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Abstract. To optimally support continuous model evolution in model-
based software development, adequate tool support for model version
management is needed. Instead of reporting model differences to the
developer line-by-line or element-wise, their grouping into semantically
associated change sets helps in understanding model differences. Edit
operations are the concept of choice to group such change sets. Con-
sidering visual models in particular, edit operations preserve a basic
form of consistency such that changed models can still be viewed in
a standard editor. Using edit operations for the version management of
domain-specific models requires tool developers to specify all necessary
edit operations in order to produce or replicate every possible change on a
model. However, edit operations can be numerous and their manual spec-
ification is therefore tedious and error-prone. In this paper, we present a
precise approach to specify a complete set of consistency-preserving edit
operations for a given modeling language. The approach is supported by
a generator and has been evaluated in four case studies covering several
visual modeling languages and standard editors.

Keywords: Model-driven engineering · Model consistency · Model
editing · Meta-model

1 Introduction

Model-driven engineering (MDE) raises the level of abstraction in engineering
by using models as primary development artifacts. In particular, domain-specific
modeling languages (DSMLs) promise to increase productivity and quality of
developments. The increase of productivity highly depends on the quality of the
provided tool environment, which has to be customized to the DSML.

To optimally support model evolution, developers need adequate tools for
model versioning tasks, including comparison, patching, and merging of mod-
els. Currently available tools mostly display and operate with low-level model
changes which assume a textual or graph-based internal model representation.
Such low-level changes are hard to understand for average tool users and often
confusing [2]. Moreover, patching and merging those low-level changes may lead
c© Springer International Publishing Switzerland 2016
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to inconsistent models [19]. Version management of visual models may trap into
particular pitfalls: It can happen that the synthesized result model can no longer
be opened in visual editors and must be corrected based on a serialized data for-
mat (e.g. XML) by using textual editors, which is obviously not attractive or
even no option at all.

Recent advances in model versioning [20,21] address this problem by lifting
model versioning concepts and tools to higher-level edit operations. Edit com-
mands in visual editors are typical forms of edit operations. They are better
suited to explain changes or to resolve conflicts since they cluster semantically
associated low-level changes and thus raise the abstraction level of model version
management. Edit operations are consistency-preserving in the sense that they
always lead to model versions that can be further displayed and edited. There-
fore, they are a promising solution to the problem that patching and merging
can fail at any point of time.

In model editors, specifications of the available edit operations are typically
hidden in the tool implementation. However, explicit declarative specifications
of edit operations are required as configuration parameter for the calculation of
model differences in [20,21]. In-place model transformations are well-suited for
that purpose [20–22]. In [20], edit operations are specified by model transfor-
mation rules, called edit rules. A set of edit rules must meet three challenging
requirements. To be a suitable basis for model patching and merging, edit rules
must preserve the level of consistency being enforced by the editor, i.e. synthe-
sized results can always be opened and corrected if needed (R1). In order to
obtain model differences which capture the changes between model versions cor-
rectly, a set of edit rules must be complete for a given DSML in the sense that
every model modification can be expressed by using rules of this set (R2). To be
understandable by tool users, edit rules should mimic the behavior of visual edi-
tors for the given DSML (R3). The specification of an edit rule set which meets
these requirements is a tedious and error-prone task when done manually.

Figure 1 outlines a methodology to deduce a suitable set of edit rules in a
step-wise manner. The meta-model of a given DSML serves as initial input of
this process. Such a meta-model is usually perfect in the sense that it specifies
valid models with well-defined semantics, which can be successfully processed
by code generators or model interpreters. The perfect meta-model may be stan-
dardized or stem from an authority such as a research standardization group
or tool vendor. The further processing is based on two general observations.
Firstly, many modeling editors do not fully comply with the standard, i.e., cer-
tain language features are not supported. Secondly, visual editors usually do not
enforce all consistency constraints defined in their DSMLs. These observations
apply to, e.g., UML editors such as Magic Draw [23], RSA [16] and EMF-based
editors [8]. Thus, the original meta-model is reduced to a meta-model effectively
used by the editor (Step 1 in Fig. 1). For this reduction, parts of the meta-
model related to unsupported language features can be deleted. To make the
effective notion of consistency explicit, certain multiplicities can be relaxed and
unsupported well-formedness rules (typically formulated using the OCL) can be
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Fig. 1. Process for creating a set of consistency-preserving edit operations

dropped. The obtained effective meta-model forms the basis for Step 2, the auto-
mated specification of all elementary edit rules. In Step 3, these rules may be
further composed to specify more complex edit operations such as refactorings.

In previous work [26] we sketched our ideas and focused on their implemen-
tation and tooling. In this paper, we focus on the second step of the workflow
outlined in Fig. 1. The contributions over previous work are the following: (1) We
present an algorithm for generating edit rules from a meta-model with restricted
multiplicities, which we claim to be a sufficient degree of consistency for most
effective meta-models. (2) We argue that our approach is able to generate a
complete set of consistency-preserving edit rules, i.e. it meets requirements R1
and R2. (3) Concerning requirement R3, we show empirically that our approach
is meaningful from a practical point of view.

The paper is structured as follows: We start with an example in Sect. 2.
The formal basis for this work are graphs and graph transformations, they are
recalled in Sect. 3. The generation of a complete set of consistency-preserving
edit rules is presented in Sect. 4. Our approach is evaluated in Sect. 5. Sections 6
and 7 present the related work and the conclusion.

2 Running Example

Fig. 2. Effective meta-model of simple UML
state machines

In this section, we informally
present how a simplified meta-
model for state machines [14,24]
is used to generate a complete
set of consistency-preserving edit
operations. The meta-model is
shown in Fig. 2. It contains the
main model element types of
state machines such as State
and Transition as well as inter-
relations like source and target.
Moreover, it contains multiplic-
ities requiring, e.g., that each
transition must have a source and a target state. In addition, correct state
machines have to fulfill further constraints, e.g. transitions are not allowed to
connect states of two parallel regions. Usual visual editors can load and edit
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models which do not satisfy these advanced constraints. Thus we do not consider
them here, i.e. the meta-model in Fig. 2 is effective; it can serve as underlying
meta-model for all models to be edited, but is less restrictive than the UML
standard meta-model for state machines.

A total of 25 edit rules are generated, they are available on the accompanying
website of this paper [1]. Due to space limitations, we focus on the creation rules
here and neglect all other kinds of rules. A subset of the generated creation rules
is illustrated in Fig. 3. We present the rules in an integrated form: the left- and
right-hand sides of a rule are merged into one graph following the visual syntax
of the model transformation language Henshin [3]. The left-hand side of a rule
comprises all model elements stereotyped by delete and preserve. The right-hand
side contains all model elements annotated by preserve and create.

The following rules are generated: The rule create StateMachine creates the
root node. Since it has a mandatory child of type Region, a model element of that
type has to be created as well. Moreover, there are rules create FinalState state,
create State state, create Region region and create Region subregion (not shown in
Fig. 3). The rule create Transition transition creates a transition and immedi-
ately connects it to its source and target states, which are so-called manda-
tory neighbors. Since the edge types source and target are parallel and both
have a multiplicity [1..1] (s. Fig. 2), we get a second variant of this rule: cre-

ate Transition transition 1. This variant creates edges of types source and target
referencing the same State node, i.e. it creates a “loop” in the visual representa-
tion. Note that attribute declarations are conceptually handled as special edge
types with a fixed multiplicity of [1..1]. Thus, attribute values are treated as
mandatory neighbors as well. This implies that all attributes have to be set in
newly created nodes.

Fig. 3. Subset of generated creation rules for UML state machines
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3 Background

The formal underpinning of edit rule generation is based on graphs and graph
transformation as presented in [4]. Here, we recall all needed concepts from [4]
in a semi-formal way.

3.1 Graph-Based Representation of Models

Graphs are a natural means to formally define models and meta-models. While
a meta-model defines the allowed types formalized by type graphs, models are
considered as instances of meta-models and formally treated as typed graphs.
Hence, we abstract from the graphical layout of visual models here and concen-
trate on the underlying structure. In this sense, we consider models and graphs
as synonyms. A graph consists of a set of nodes, a set of edges, each one running
from source to target node.

A meta-model is basically a graph containing all type information including
a type hierarchy to represent the inheritance relation, a set of abstract types, a
containment relation between type nodes and a relation of opposite edge types.
Moreover, multiplicities can be attached to edge types. A multiplicity is a pair
[lb, ub] with lb ≤ ub or ub = ∗. An edge type et is called required if et.lb > 0,
bounded if et.ub �= ∗, fixed if et.lb = e.ub, and many if (et.ub > 1) or et.ub = ∗.
Note that these properties are not mutually exclusive. A node type without
incoming containment edge types and without super types having incoming con-
tainment edge types is called root type. Attributes are usually single-valued, i.e.,
neither null-values nor multiple values are allowed. I.e., a multiplicity of [1..1]
is implicitly assigned to each attribute declaration in a type graph.

An edge with containment type is called containment edge. Its source and
target nodes are referred to as parent (or container) and child, respectively. The
target node of a non-containment edge is called a neighbor of the respective
source node. Target nodes of edge types with multiplicity property required are
also referred to as mandatory neighbors and mandatory children [28].

3.2 Consistency of Models

A model M is considered (syntactically) consistent w.r.t. a meta-model MM if it
is properly typed over MM and if it meets the consistency constraints specified in
MM . We distinguish among basic consistency constraints, multiplicity invariants
and further well-formedness rules.

Basic consistency constraints correspond to fundamental conditions imposed
by EMOF-based modeling frameworks. A formal treatment of basic consistency
constraints can be found in [4]; they can be summarized as follows: (1) The model
graph is correctly typed w.r.t. a given type graph deduced from a meta-model.
(2) Each node has at most one container and cycles of containment edges do not
occur. (3) There are no parallel edges of the same type. Edges are parallel if they
have the same source and target node. (4) For all pairs of opposite edge types
(et1, et2): If there is an edge of type et1 then there is also an edge of type et2
linking the same nodes in the opposite direction, and vice versa.
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3.3 Specification of Edit Operations

In our approach, we use in-place model transformation techniques which are
based on graph transformation concepts [10]. This enables us to precisely spec-
ify edit operations as declarative transformation rules which we call edit rules.
An edit rule specifies (i) the conditions under which the rule is applicable and
(ii) a set of change actions which are to be performed when the rule is applied.
Each change action corresponds to a primitive graph operation, i.e., the cre-
ation/deletion of a model element or the setting of an attribute value.

A rule r = (L ⊇ K ⊆ R, TG,NAC,PAC) consists of three model graphs
L, K and R typed over TG. They are called left-hand side (L), intersection
(K), and right-hand side (R). In addition, there are NAC and PAC, two sets
of negative and positive application conditions. They are used to restrict rule
applications by forbidding or requiring context patterns. Examples for rules are
given in Fig. 3.

A rule r can have several matches (“occurrences”) in a model M . A match
is a copy of L in M . Actual rule arguments form a partial match that has to be
completed. Rule nodes may have more general types than corresponding graph
nodes. A rule r is applicable at match m if m fulfills the dangling condition:
If model nodes are deleted by a rule, all their incident edges have to be in the
match as well. Moreover, the match can be extended by each positive application
condition in PAC but not by any negative one in NAC. The effects of applying a
rule r using match m in M can be described as follows: All elements in m(L\K)
are deleted and a new copy of R \K is added. In addition, attribute values may
be changed by instantiating attribute expressions of the right-hand side R and
evaluating them.

Several rules can be composed to one rule such that their actions are per-
formed concurrently. Therefore, the composed rule is called concurrent rule.
Roughly speaking, a concurrent rule combines all actions of the original rules.
Sequences of two actions that create and subsequently delete the same element,
however, are factored out. Application conditions of subsequent rules are shifted
to the beginning. If an application condition cannot be checked at the beginning
(since an element is missing), it does not occur in the concurrent rule. Details
of the construction of concurrent rules can be found in [10].

4 Generation of Edit Rules

In this section, we describe how to derive a set R of elementary edit rules from a
given meta-model which we assume to be the effective meta-model w.r.t. a par-
ticular model editor. We define four kinds of edit rules for the creation, deletion,
moving and changing of model elements. In the following, we mainly focus on
the generation of creation rules since their generation process is most complex.
The main design decision of our approach is that all generated edit rules are
consistency-preserving w.r.t. the effective meta-model, i.e., if applied to consis-
tent models, the resulting models are consistent as well. A consistency-preserving
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node creation rule usually comprises a number of primitive operations which,
altogether, create a minimal graph pattern leading again to a consistent model.

In the following, we describe how creation rules are generated for a given
meta-model. We begin with the generation of basic node creation rules. Subse-
quently, we show how these rules are to be supplemented such that mandatory
children (see Sect. 3.1) are also created and all created nodes are connected to
their mandatory neighbors in a single step.

Fig. 4. Generation of basic node creation rules

Creation Rules. For each non-
abstract root type B, a node
creation rule is generated.
This rule creates a single node
of type B (see meta-model
pattern P0 in Fig. 4).

For each node type B
with an incoming contain-
ment edge type b, a rule
according to pattern P1 in
Fig. 4 is generated. This rule
creates a node of type B - if
non-abstract - and connects it immediately to its container. The notation B*
means that we derive such a rule for each concrete subtype of B as well.

If containment edge type b has a bounded multiplicity with upper bound l a
NAC with l outgoing edges of type b is generated; it checks whether the parent
node p has already the maximum number of outgoing edges of type b. If b has
an associated opposite edge type a, edges of types b and a are created in pairs.
Note that all figures show only the largest pattern/rule variants.

Basic node creation rules have to be extended by mandatory children since a
node can recursively have (indirect) mandatory children and since our intention
is to create all mandatory children by a single rule application. The supplemen-
tation is performed by subroutine supplementMcCreation(Rule r, Node n),
s. Fig. 5. Each creation rule r for a node of type B is supplemented for each
(inherited) outgoing containment edge type c of B with a multiplicity property

Fig. 5. Supplementing the creation of mandatory children
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required referencing a concrete node type C (see meta-model pattern P2). Rule r
is then further extended such that all mandatory children mc 1, ..., mc k of n are
created as well. Additionally, created nodes mc 1, ..., mc k are immediately con-
nected to their parent n via the respective containment edges of type c. Opposite
edges are created if necessary. This subroutine has to be recursively executed to
cover all (indirectly) connected mandatory children.

Rule create StateMachine in Fig. 3 is an example of an mc-supplemented rule.
Initially, a node of type StateMachine is created. It has to be supplemented with
a node of type Region and a containment edge of type region since this type is
required.

In order to preserve multiplicity invariants defined by the effective meta-
model, each created node must be immediately connected to its manda-
tory neighbors. We refer to extended rules which create these connections as
mn-supplemented node creation rules. This supplementation is performed by
subroutine supplementMnConnection(Rule r, Node n, EdgeType c), see
Fig. 6. If edge type c has an opposite edge type b, opposite edges are created
in pairs. Moreover, a NAC is created for each mandatory neighbor mn i (with
i ∈ {1, ..., k}) prohibiting a connection of mn i to m nodes of type B via edges
of type b. Furthermore, values of (inherited) attributes of created nodes are
set within a node creation rule since we conceptually treat them like manda-
tory neighbors. This supplementation has to be applied for all nodes created in
a node creation rule. An example for this kind of supplementation is rule cre-

ate Transition transition which does not only create a new transition, but also edges
of type source and target to its mandatory neighbors as well as their opposites.

Since all generated rules are assumed to be applied injectively, there may
be models that cannot be created with the generated rules so far. Missing rules
can be generated by merging nodes of the same type if multiplicities do allow
this variant. This merge construction is done after supplementation. Each merge
variation leads to a further node creation rule. A simple example is shown by rule

Fig. 6. Supplementing the connection of mandatory neighbors
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Fig. 7. A critical multiplicity

create Transition transition 1 in Fig. 3, a variant of
rule create Transition transition. A transition is cre-
ated whose edges of types source and target lead
to the same State node, i.e. this rule creates a
“loop” pattern. Moreover, it can happen that a
required containment edge type points to a tar-
get node type with subtypes. Such a type graph
cannot be flattened without using additional well-
formedness rules. This requires a concrete rule variant for each possible combi-
nation of concrete types. In Fig. 7, we need at least k containment edges of type
b. Their targets, however, can have types B, C and D. The rule variants have to
cover all possibilities.

To cover occasionally occurring meta-model patterns like cycles or parallel
paths (i.e. two paths having the same source and target node) consisting of a
mixture of required non-containment edges and non-required containment edges
(see Sect. 3.2), we need a final post-processing step. For each identified cycle or
parallel path, we identify the set of creation rules that cover it. These rules are
brought into a suitable order according to causal dependencies and are composed
to a concurrent rule. An example can be found in [1].

If a non-containment edge type b does not have a fixed multiplicity, then an
edge creation rule is derived. Such a rule takes two parameters as input, namely
the source and target nodes s and t of the new edge. If necessary, an opposite
edge is also created. Additional NACs ensure that upper bounds have not already
been reached.

Fig. 8. A sample deletion rule

Further Kinds of Edit Rules. For
each creation rule an inverse rule
is generated, performing deletion. To
invert a rule, its left and right-hand
sides are exchanged. NACs which pro-
hibit exceeding upper bounds are not
needed. Instead, PACs are generated
to ensure lower bounds, i.e., nodes and
edges may be deleted as long as lower
bounds are met. An example node deletion rule is shown in Fig. 8. It deletes a
Region from a StateMachine. In order to not violate the lower bound of edge
type region (which has a multiplicity of [1..*], see Fig. 2), the selected Region
can only be deleted if the StateMachine contains at least one other Region.

Move and change rules re-structure the relations between existing model
nodes. While a move rule moves an instance node from container to another
one, a change rule just changes a link of a node. Lower and upper bound checks
are inserted to ensure no-lower-bound-violation of the old reference links and
no-upper-bound-violation of the new reference links.

Limitations of the Approach. In general, there are combinations of multiplicities
which cannot be instantiated (examples are shown in [15,29]). For meta-models
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that cannot be instantiated because of certain required-cycles, our generation
algorithm does not terminate. Since we want to have a clear and efficient (in par-
ticular terminating) generation approach, we require an easy to check criterion
which is not too limited to cover effective meta-models occurring in practice: We
do not allow meta-models having edge cycles with multiplicity pattern required,
irrespectively of edge directions. Such cycles do not allow a clear order of ele-
ment creation and would lead to large creation rules, if any. Those rules would
hardly specify edit operations. Small cycles of size ≤ 2, however, are supported
(as already described above, see rule create Transition transition 1 in Fig. 3). They
are meaningful in effective meta-models. In the following, we restrict our con-
siderations to meta-models obeying the restriction above, i.e., we also assume a
corresponding restriction of type graphs.

Consistency-Preservation and Completeness of Generated Rules. Given a type
graph T with restricted multiplicities, a rule is consistency-preserving if it trans-
forms each consistent model graph to which it is applicable into a consistent
model graph again. Our generator produces consistency-preserving rules only.
An argumentation for this result can be found in Sect. 7.3.4 in [18].

A modeling language is defined by a set of models. Let L(T ) be the language
consisting of all models that are consistent w.r.t. T . A set RCre of creation rules
is complete w.r.t. T if every consistent model M ∈ L(T ) can be constructed from
the empty model ∅ by exclusively using rules available in RCre. Vice versa, a set
RDel of deletion rules is complete w.r.t. T if every consistent model M ∈ L(T )
can be reduced to the empty model ∅ by exclusively using rules available in RDel.
Our generator produces a complete set of creation rules since every model graph
of L(T ) can be partitioned into smaller graph fragments such that there is a
sequence of rule applications creating the graph structure fragment-by-fragment.
A detailed argumentation can be found in Sect. 7.4 in [18].

5 Evaluation

Our objective is to support tool developers at specifying consistency-preserving
edit operations to be used to adapt MDE tools to domain-specific needs. This
task should be highly automated. Moreover, the obtained edit rules should
specify operations for conveniently editing domain-specific visual models. Conse-
quently, we have evaluated our approach w.r.t. the following two research ques-
tions: Q1: How limiting are our meta-model restrictions? Q2: Are the generated
edit rules meaningful from the developer’s point of view?

Case Studies. We studied four modeling languages for which (1) a perfect meta-
model and (2) a visual editor are available. Table 1 presents an overview of
the selected case studies. Ecore models can be considered as design-level class
diagrams. They are widely used for various purposes in the Eclipse Modeling
Project [8], a visual editor is available within the Ecore Tools [9]. The Simple
Web Modeling Language (SWML) [5] is a domain-specific language which aims
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Table 1. Overview of the selected case studies

Standard MM Effective MM

Modeling Lang. Visual editor #nt. #et. #wf. #nt. #et. #wf.

I Ecore EcoreTools 3.0.1 19 26 37 16 15 5

II SWML Gen. with GMF 1.6.0 11 10 − 11 10 −
III Feature models FeatureIDE 2.6.1 8 12 3 6 8 2

IV UML state mach MagicDraw 18.1 14 21 17 14 19 11

at defining platform-independent models for a specific kind of web applications.
Feature models are typically used to define variability in software product line
engineering. They have an intuitive tree-like syntax which is supported by the
widely used feature modeling environment FeatureIDE [30]. A meta-model is
presented in [6]. Concerning UML state machines, we selected the subset shown
in Fig. 15.2 of the UML Superstructure Specification [24] and analyzed how
elements of these types are edited in MagicDraw [23]. Details of the case studies
can be found in [1].

Evaluation Setup. For each case study, we constructed the effective meta-model
by reducing the perfect meta-model according to the effective level of consis-
tency implemented by the respective visual editor. A typical reduction is the
relaxation of multiplicities. E.g., the feature-related meta-model presented in [6]
states that a feature group comprises at least two features by a multiplicity [2..*].
Although this is reasonable from a conceptual point of view, FeatureIDE offers
the capability to create a group with a singleton feature only. Thus, the respec-
tive lower bound has been relaxed to [1..*]. Most notably, however, most of the
additional well-formedness rules (#wf.) are neglected in effective meta-models
(see Table 1). Many rules address the well-formedness of String expressions such
as Boolean formulas over feature variables. Moreover, editors often do not sup-
port all language constructs defined by a DSML. In such a case, the effective
meta-model is incomplete w.r.t. to the perfect meta-model in the sense that
some node types (#nt.) and edge types (#et.) are not included (see Table 1).
FeatureIDE, for example, does not support the visual modeling of cross-tree con-
straints as intended by its perfect meta-model. Using effective meta-models as
input, our generator produces edit rules implemented in Henshin [3].

Limitations of the Approach (Q1). For Q1, we are interested in whether effec-
tive meta-models contain consistency constraints which are not supported by
our approach. If so, we are further interested in the manual effort which is
required to manually adapt a generated rule set. As shown by Table 2 in column
#Unsp.Mult., none of the studied effective meta-models contains unsupported
combinations of multiplicities, i.e. required-cycles, which are not supported by
our generation algorithm, never occur. The number of generated edit rules is
listed in column #Gen., column #Man. lists the number of rules which have to
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Table 2. Overview of the evaluation results

Q1 Q2

#Unsp. Mult. #Gen. #Man. #(R ∩ E) #(R ∩≈ E) #(R \ E) #(E \ R)

I – 67 6 64 1 4 8

II – 38 − 30 6 − 2

III – 16 3 8 3 8 5

IV – 66 18 57 18 2 27

be adjusted after the generation. The reason for manual adaptations of the gen-
erated rules is that well-formedness rules expressed in OCL are not yet supported
by our algorithm. A few of them are still present in effective meta-models (see the
last column of Table 1). An overview of the amount of manually adapted rules, on
average 13 %, is presented in Table 2. Typically, a few of the generated edit rules
have to be complemented by additional application conditions. In FeatureIDE,
e.g., features and feature groups must be organized in a strictly hierarchical way,
violations of this well-formedness constraint have to be prevented.

Suitability of the Obtained Edit Rules (Q2). Concerning Q2, we compare the set
R of elementary edit rules finally obtained by our approach with the set E of
rules specifying edit commands which are offered by the respective editor. We
assume that these are meaningful from a modeler’s point of view. Note that we
specified the rules in E by hand. Table 2 summarizes the results. Columns R∩E
and R ∩≈ E show the amount of identical and similar edit operations. Columns
R\E and E\R summarize the amount of edit rules which are exclusively available
in R and E , respectively.

Most edit rules in E are specified by edit rules available in R. Some of them,
usually deletion rules, are not completely identical but lead to slightly different
effects. A few deletion operations are rather complex in the sense that they delete
larger model fragments consisting of an element and its mandatory children. For
example, if an EClass is deleted in the Ecore diagram editor, EAttributes and
EOperations contained by this EClass as well as outgoing and incoming ERef-
erences to other EClasses are deleted as well. In contrast to that, our deletion
rule assumes that an EClass can only be deleted if it is empty and has no
inter-relations. A complex deletion rule, however, can be generated by inverting
creation rules (see Sect. 4). Moreover, we found some operations in E which are
not covered by R (E \ R). These rules can be considered as optional since their
effect can also be achieved by applying a sequence of edit rules in R. For exam-
ple, FeatureIDE offers the possibility to create a new feature above a selected
one. Using edit rules of R, we create a new feature as a leaf node and then move
the created feature to the designated position within the feature tree. Finally,
there are some edit rules in R not having correspondents in E (R\E). Typically,
only a small subset of move operations is implemented in visual editors. The
Ecore diagram editor, for instance, offers the possibility to move an EAttribute
to another EClass while moving EClasses between EPackages is not supported.
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Threats to Validity. A threat to the external validity of our results is that the
selected case studies may not be representative. However, we selected modeling
languages which differ significantly from each other and cover a broad range of
application domains. Moreover, we selected visual editors having substantially
different origins; from the open source community (Ecore diagram editor), from
academia (SWML and FeatureIDE) and a commercial product (MagicDraw).
An internal threat to validity is our manual deduction of edit rules from existing
editors. Likewise, the reduction of a perfect meta-model to become the effective
is done manually, too.

6 Related Work

We consider other approaches for edit rule generation on the one hand and, w.r.t.
creation rules, compare to further approaches for creating meta-model instances
on the other hand.

The work closest to ours has been presented in the context of delta-oriented
implementation of model-based software product lines (SPLs). Products of an
SPL are generated by applying one or several deltas to the core version. A
delta is basically a patch which consists of a sequence of edit commands. For
a given DSML, a delta modeling language [13] must be engineered; it contains
basically a set of edit operations (called “delta operations”) for this DSML. To
that end, Seidl et al. [27] present an approach and a supporting tool known
as DeltaEcore to generate executable delta operations from EMOF-based meta-
models, however, with different goals and assumptions compared to our work.
In particular, they assume that the application of a delta will never fail and that
SPL developers are responsible for specifying consistency-preserving deltas. In
particular, they do not support any kind of multiplicities in meta-models.

Ehrig et al. [11] deduce graph grammar rules from meta-models. The gen-
erated set of rules is organized in three layers: Layer 1 rules create instances
of meta-model classes, Layer 2 establishes mandatory relationships between ele-
ments. In this step additional elements are also created when necessary. Finally,
Layer 3 rules establish optional relationships. Taentzer [29] extends the app-
roach from restricted multiplicities to arbitrary ones. Using the concept of lay-
ered graph grammars obviously leads to inconsistent intermediate states since
instance models are created in small steps. Hence, the generated rules do not
implement consistency-preserving edit operations. Moreover, other kinds of edit
rules are not generated in that approach at all.

Hoffmann and Minas [15] describe how to translate a class diagram into a
so-called adaptive star grammar. Their generated rules use non-terminal symbols
to direct the generation process. Small steps are performed leading to intermediate
graphs with non-terminals. In the same vein, Fürst et al. [12] present an approach
for generating meta-model instances using graph grammars with non-terminals.

Edit operations are indirectly addressed in some approaches which aim
at generating instance models for a given meta-model. Virtually all of these
approaches are based on the idea to systematically enumerate meta-model
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instances. Brottier et al. [7] describe an enumeration algorithm which is based
on model fragments that must be specified manually. Other approaches use
SAT-solvers such as the Alloy Analyzer [17] to systematically enumerate valid
instances in a restricted search space. However, they do not identify which edit
operations have to be applied to obtain instances.

7 Conclusion

In this paper, we present the main concepts for a rule generator which
takes a meta-model with restricted multiplicities and yields a complete set of
consistency-preserving edit rules. Their main purpose is to raise the abstraction
level in model versioning. Concerning meta-models which are effectively used
by model editors, our evaluation shows that the established meta-model restric-
tions are not severely limiting in practice. It also outlines possible directions
for future work: The generator shall be extended to accept meta-models with
well-formedness rules. Radke et al. [25] present how OCL constraints can be
translated to application conditions, using nested graph constraints as interme-
diate representation. That work may be used to generate edit rules which also
take well-formedness rules into account. The vision is the automated specifica-
tion of a complete set of consistency-preserving edit operations for any effective
meta-model which may be valuable not only for specific model versioning tasks
but for model change management in general.
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Abstract. Cloning is a convenient mechanism to enable reuse
across and within software artifacts. On the downside, it is also a prac-
tice related to significant long-term maintainability impediments, thus
generating a need to identify clones in affected artifacts. A large variety
of clone detection techniques has been proposed for programming and
modeling languages; yet no specific ones have emerged for model trans-
formation languages. In this paper, we explore clone detection for graph-
based model transformation languages. We introduce potential use cases
for such techniques in the context of constructive and analytical quality
assurance. From these use cases, we derive a set of key requirements. We
describe our customization of existing model clone detection techniques
allowing us to address these requirements. Finally, we provide an exper-
imental evaluation, indicating that our customization of ConQAT, one
of the existing techniques, is well-suited to satisfy all identified require-
ments.

1 Introduction

Model transformation is of paramount importance to Model-Driven Engineer-
ing. Like all software artifacts, model transformation systems undergo a life-cycle
including at least two main phases: an initial creation phase, followed by a long-
term maintenance phase. Cloning, the development of transformations in the
copy-paste-modify paradigm, provides key benefits for the creation phase; it is a
fast, easy, and universally applicable practice. Still, cloning is related to substan-
tial maintainability drawbacks. For instance, once a bug is found, many affected
transformation rules may have to be updated correspondingly, a tedious and
error-prone process. As maintenance tasks are estimated to account for 60 % of
all software costs [1], it seems advisable to address this trade-off explicitly.

The drawbacks of cloning are well-known from research on the more general
issue of software clones. Yet, despite a substantial body of research [2], there is
no universally accepted directive for how to proceed with clones. In the seminal
work by Fowler [3], clones are deemed one particular kind of “bad smell”. In
this view, a refactoring towards a better suited abstraction is generally recom-
mended. Empirical studies lead to a more nuanced view: Kim et al. [4] identify
c© Springer International Publishing Switzerland 2016
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different types of clones, some of them warranting a refactoring towards suitable
abstractions, others rendering such efforts clearly unjustified. Still, despite con-
troversy on the question of how to proceed with clones, there appears to be a
consensus that software clones “should at least be detected” [5].

While numerous automated clone detection techniques for programming and
modeling languages have been proposed [6], no specific ones have emerged for
model transformation languages. The lack of such techniques is particularly sur-
prising since existing model transformations may be affected heavily by cloning:
Unlike in the case of most programming languages, reuse mechanisms for model
transformations are just starting to become available [7]. Clone detection can
be an enabling technology for the evolution of existing transformations towards
these reuse mechanisms. But the variety of potential use cases for clone detection
is even broader. It includes the quality assessment of existing transformations,
performance optimizations, and even the identification of new design patterns.

The combination of different model transformation paradigms and clone
detection use cases leads to a considerable design space for clone detection tech-
niques. The goal of this paper is to approach this design space from a spe-
cific angle: We focus on graph-based transformation languages, one of the main
model transformation paradigms [8]. Graph-based languages are popular since
they allow to specify behavior in a high-level and intuitive manner.

Fig. 1. Rules affected by cloning (from [9]).

Example. Consider three in-
place model transformation rules
expressed in a graph-based lan-
guage. The rules, shown in Fig. 1,
specify variants of the move
method refactoring : Rule A de-
scribes the basic relocation of
a method between two classes
related through a field. Rule B
additionally creates a “wrapper”
method as a delegate for this
method. Rule C adds an annota-
tion to mark the wrapper as dep-
recated.

Such rule sets are often cre-
ated by copying a seed rule and
modifying the copies. If a rule
set contains many copied rules,
maintaining it may be daunt-
ing and error-prone. It is advis-
able to provide dedicated sup-
port for the editing of such rules.
For instance, the rules could be
unified using a reuse concept
provided by the transformation
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language. Alternatively, the consistent editing of the rules could be facilitated
by tool support. In each case, clones need to be detected first.

Contributions. In this paper, we make the following contributions:

• We discuss use cases of clone detection for model transformation languages.
The discussion is informed by recent developments in research on model trans-
formations and software clones.

• Based on these use cases, we identify five key requirements for a clone detection
technique for graph-based model transformations.

• We propose a customization of existing model clone detection techniques to
address these requirements. To explore the feasibility of this idea, we provide
experimental data and experiences.

This work is the first to investigate clone detection for model transformations
systematically. While we have applied clone detection in an ad-hoc manner in
a recent work [9,10], the outlined contributions, in particular the experimental
data from adapting and applying different clone detection techniques, are new.

The rest of this paper is structured as follows. In Sect. 2, we outline the identi-
fied use-cases. In Sect. 3, we fix preliminaries. In Sect. 4, we propose requirements
derived from the use-cases. We discuss our customization of existing techniques
in Sect. 5 and our evaluation of this approach in Sect. 6. After discussing related
work in Sect. 7, we conclude and suggest future research directions in Sect. 8.

2 Use Cases

In this section, we introduce potential use cases. In each case, we pair a descrip-
tion of the use case with an account of the research state of the art.

Clone refactoring. The replacement of clones with a suitable reuse mechanism
is a typical refactoring process [3]. Its outcome is a semantically equivalent, yet
syntactically refined representation of the input artifacts. In the case of model
transformations, reuse approaches such as rule inheritance [11], refinement [12]
or variability-based rules [13] have emerged recently and are now available to
developers. For instance, the rules in Fig. 1 can be expressed as one base rule
with two sub-rules, or as one variability-based rule. Usually, such refactorings
are performed manually. In legacy transformations with hundreds of rules, such
a task is daunting and error-prone. An automated clone detection technique is
an important prerequisite for automating this process.

Clone management. A suitable clone refactoring may not always be available.
Even if the language provides a reuse mechanism, this mechanism may not match
the scale or granularity of affected clones. For instance, an external reuse mech-
anism [7] does not help avoiding duplications in the same rule set, such as that
shown in Fig. 1. We explore this issue further in Sect. 4. Furthermore, a refac-
toring may not always be desirable: It has been observed that expert developers
create software clones intentionally with specific maintainability-related benefits
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in mind [5]. In these situations, the remaining maintainability drawbacks can be
mitigated by tool support: A recent idea is to manage clones, using a system
to monitor all clones constantly and to update affected artifacts automatically
when one of them is edited [14,15].

Assessing specifications and languages. Clone detection can be used dur-
ing the assessment of transformation specifications, for instance, in a quality
assurance process or during the evaluation of solutions in a student assignment.
Furthermore, the number of detected clones might be an indicator that the reuse
mechanisms of the employed model transformation language are not adequate or
not used enough. The detection of frequent patterns in transformation specifica-
tions can even lead to the identification of new design patterns and antipatterns.
In contrast to object-oriented programming languages, where a catalog of fun-
damentally accepted patterns is available, the identification of transformation
patterns is a recent idea [16]. Clone detection may contribute to this emerging
branch of research by supporting the discovery of new design patterns.

Usability improvements. The level of support offered by most transformation
editors to developers is below that offered by programming language IDEs. For
instance, none of these editors benefits from advanced auto-complete function-
ality. Detecting clones introduced during an editing step could help providing
such functionality by asking the developer if the reuse of an existing element
is preferred. The clone detection algorithm would run in the background, much
like the Java compiler runs in the background of Eclipse.

Performance improvements. While the impact of software clones on main-
tainability has been studied intensively, maintainability is by no means the only
quality concern affected by cloning. Creating a large set of mutually similar
rules may also entail a substantial computational effort during the application
or analysis of these rules. As a result, cloning may give rise to longer execution
times or even render entire transformations infeasible. Blouin et al. report on a
case where a rule set of 250 similar rules was too large for execution [17]. While
most existing performance optimizations for model transformations focus on
accelerating the application of individual rules, clone detection might be highly
useful in improving the performance of a whole model transformation system.

3 Preliminaries

In this section, we present formal preliminaries for clones in graph-based model
transformation systems. To address the requirements identified later in this work,
we extend our formalization from [9] by the distinction of full and incomplete
clones, as well as scopes. We leave the notion of “graph” unspecified, which allows
us to insert a graph kind with certain desired features. For instance, meta-model
conformance and attributes can be expressed using typed attributed graphs [18].

Definition 1 (Rule). A rule r = L
le←− I

ri−→ R consists of graphs L, I and R,
called left-hand side, interface graph and right-hand side, respectively, and two
embedding morphisms, le and ri. A transformation system is a set of rules.
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The rules in Fig. 1 conform to this definition, representing it in an integrated
form: Elements of I are annotated with the action preserve, elements of L \ I
and R \ I with the actions delete and create.

Our definition of clone reflects the idea that rules specify structural patterns:
The left-hand side is a pattern to be matched in the source model. The right-
hand side is a pattern specifying actions to derive the target model. Thus, we
define “clone” as common sub-pattern being present in a set of rules. Such a
sub-pattern is a fully formed rule itself, an idea captured by the concept of
subrules.

Definition 2 (Subrule). Given a pair of rules r0 = (L0
le0←− I0

ri0−→ R0)
and r1 = (L1

le1←− I1
ri1−→ R1) with embeddings lei, rii for i ∈ {0, 1}, a subrule

morphism s : r0 → r1, s = (sL, sI , sR) comprises injective morphisms sL : L0 →
L1, sI : I0 → I1 and sR : R0 → R1 s.t. (1) and (2) in Fig. 2 commute and

(i) the intersection of sL(L0) and le1(I1) is isomorphic to I0,
(ii) the intersection of sR(R0) and ri1(I1) is isomorphic to I0, and
(iii) L1 − (sL(L0) − sL(le0(I0))) is a graph.

L0 I0 R0

L1 I1 R1

r0 =

r1 =

le0 ri0

le1 ri1

sL sI sRs (1) (2)

Fig. 2. Subrule morphism.

Conditions (i)-(iii) ensure that a
subrule always performs the same
actions on related elements as the orig-
inal rule.

For example, in Fig. 1, A is a sub-
rule of B since A can be injectively
mapped to B and the actions on
the original and mapped elements are
identical.

Given a set of rules, a clone is a
subrule that can be embedded into a subset of this rule set.

Definition 3 (Clone). Given a set R = {ri|i ∈ I} of rules, a clone CR =
(rc, C) over R consists of rule rc and set C = {cj |j ∈ J, J ⊂ I} of subrule
morphisms ci : rc → rj. A clone CR induces a set of affected rules Raff(CR) =
{r ∈ R | ∃c ∈ C : rc → r}.
In the example, any subrule of rule A is a clone over the entire rule set {A, B, C}
since it can be embedded in each of these rules.

We discern full clones from partial clones. A full clone is a largest subrule,
i.e., one not fully covered by another clone over the same subset.

Definition 4 (Full and partial clone). A clone CR = (rc, C) over a set R
of rules is a full clone iff there is no clone C ′

R = (r′
c, C′) over R with a subrule

mapping i : rc → r′
c such that i �= id. Non-full clones are called partial clones.
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Table 1. Full clones in the
running example.

Name Rules Size
C1 {B, C} 10
C2 {A, B, C} 8

The full clones present in the example rules are
listed in Table 1. Clones are given by their size, cal-
culated as the total number of involved nodes and
edges. In particular, C2 represents all nodes and
edges found in rule A. In addition, C1 incorporates
the nodes and edges present in B, but not in A. All
subrules of A except for the complete rule are par-
tial clones. Please note that we omit attributes here
for simplicity.

In the established taxonomy of software clones [2], our definition includes Type
I and II clones, identical and almost identical (except for naming) duplications.
Furthermore, depending on the selected base graph kind, the definition may
extend to Type III or near-miss clones, differing just in the presence or absence
of certain attributes. In contrast, Type IV or semantic clones cannot be cap-
tured using syntactic properties, as we do. Identifying semantic clones in rule sets
requires to analyze their behavior, an interesting avenue for future work.

We further distinguish clones based on their scope.

Definition 5 (Scope). The scope of a clone is either Micro, Internal or
External.

scope(CR) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Micro |Raff(CR)| = 1
Internal |Raff(CR)| ≥ 2 and ∃ transformation system T

s.t. Raff(CR) ⊂ T
External else

This definition is illustrated in Fig. 3. Micro-clones are pattern duplications
within the same rule. In the case of code clones, an effect has been observed that
the last in a set of micro-clones is particularly prone to errors [19]. Internal clones,
as exemplified in our running example, extend to multiple rules within the same
model transformation system. Transformation systems are prone to internal
clones if they capture multiple variants of a rule: Some included actions may be
common to all variants, others optional. External clones shared between multiple
transformation systems may occur if a system or parts of it are adapted for a
new purpose, for instance in exogenous transformations: The target language of
the transformation may be replaced while retaining the source language.

Fig. 3. Granularity of clones in model transformation systems.
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The reuse mechanisms found in transformation languages [7] correspond to
these scopes. Micro-clones can be avoided by specifying multiplicity at the level
of individual graph nodes and edges [20]. Internal clones can be replaced using
reuse mechanisms such as rule inheritance [11], refinement [12], or variability-
based rules [13]. A suitable alternative to the creation of external clones are
external reuse approaches, such as generic model transformations [21].

4 Requirements

In this section, we present key requirements for a clone detection technique for
graph-based model transformations. The requirements were identified from the
use cases introduced in Sect. 2. We summarize them in Table 2.

Table 2. Key requirements for clone detection techniques in the identified use cases:
Clone refactoring (U1), clone management (U2), assessment (U3), usability improve-
ment (U4), performance improvement (U5). � = Hard requirement, � = Soft require-
ment, � = Not required.

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

(R1) Pattern-based. In accordance with our definition of clones, the iden-
tification of structural patterns is a hard requirement in all identified use
cases. A detection technique capable of identifying cloned patterns is required,
rather than one aimed at identifying pairs of similar elements. The latter typi-
cally assumes that individual elements contain a significant amount of informa-
tion, such as names [22]. In rules, conversely, nodes and edges usually express
only limited amounts of information, such as just a type and an action. More-
over, for the performance improvement use case, it is crucial to find patterns;
individual elements in isolation are hard to handle efficiently during rule appli-
cation [23].

(R2) Performance. Clone detection needs to support scenarios with many rules
and large individual rules – arguably situations where maintainability is prob-
lematic [24]. In such scenarios, performance becomes a significant challenge. The
task at hand is pattern-mining, the identification of structurally corresponding
subgraphs, which boils down to the NP-complete sub-graph isomorphism prob-
lem [25]. Clearly, a high execution time in the range of hours or days would
not be beneficial for use cases that are applied constantly, such as refactorings.
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Still, a high latency may be acceptable if clone detection is to be used in a nonre-
curring manner: Performance optimizations can be carried out statically before
running the transformation. Clone management may require a one-time setup of
the transformation system. Yet even in such cases, execution time is not the only
issue – a large search space may lead to memory-related program terminations.

(R3) Exhaustiveness. To deal with the computational cost, a clone detection
tool might trade-off performance for exhaustiveness: It may apply a heuristic
to trim its search space. As a result, certain duplications may not be consid-
ered, leading to the reporting of partial clones (Definition 4). In three use cases,
this kind of outcome is problematic: In clone refactoring, using partial clones
as a starting point leads to unnatural results that retain certain duplications.
A clone management tool that only propagates arbitrary updates to correspond-
ing instances is undesirable. The quality of a specification may be assessed incor-
rectly if the full extent of cloning is not discovered. In contrast, exhaustiveness
plays no evident role in auto-completion features and performance optimizations
that normally operate on a best-effort basis.

(R4) Scope. Since all identified use cases operate on a specific scope, a clone
detection technique needs to match this scope. For instance, during clone refac-
toring, it is essential that the upfront clone detection step operates in a scope
where a suitable reuse mechanism is available for refactoring. The refactoring of
internal clones requires an internal reuse mechanism, while that of external clones
requires an external reuse mechanism (see the discussion after Definition 5).

(R5) Tool integration. It is best to enable the exploration of clones in the
environment familiar to maintainers, that is, their transformation editor. Even in
scenarios where clone detection is an upfront step to an automated refactoring,
developers need to inspect the reported clones to influence the refactoring result.
This requirement can be neglected in performance optimizations since they are
usually transparent to the user, and to some extent in usability-oriented recom-
mender systems that use clone detection as a background technique only.

5 Adapting Existing Clone Detection Techniques

In this section, we explore the idea that existing clone detection techniques can
be adapted to the requirements of graph-based model transformations.

Since patterns are abstractions of model structures, the most suitable can-
didate techniques are those focusing on model clone detection. We consider two
techniques, eScan [26] and ConQAT [27], as they allow us to address R1, the
identification of identical patterns in their input models. Both techniques were
originally devised for the domain of Simulink models. It is noteworthy that they
may not seem a natural fit for our purpose: Simulink models are structured based
on control flow, while rules do not prescribe a specific navigation order.

Both techniques apply the same basic process: First, a suitable encoding is
provided as input. Second, the actual clone detection takes place. Third, the
results are post-processed to retain only the most useful results.
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Phase 1: Creating an encoding. Both eScan and ConQAT assume a directed,
labeled graph as input data structure. We devised a suitable encoding of graph
transformation rules: (i) To represent the graph spans constituting a rule as
one graph, we use the integrated representation indicated in Fig. 1. The action
assigned to an element is reflected in its label. This encoding allows us to cap-
ture the subrule relation: For instance, a clone never includes the left-hand side
instance of a preserve node while neglecting the right-hand side counterpart,
which would lead to invalid results during clone refactoring. (ii) To preserve
the typing information of an element, we encode its type as part of the label.
(iii) We represent attributes as additional elements in the graph. Each attribute
becomes a pair of a node and an edge, labeled with the attribute value, type and
action. Encoding attributes as distinct elements allows us to account for reuse
mechanisms that accommodate the attribute level.

Phase 2: Clone search. We use the search phases of the considered approaches
in a black-box manner. For completeness, we still give a brief account of the
internal workings of these approaches. Details are found elsewhere [26,27].

ConQAT proceeds by finding pairs of nodes with the same label and com-
bining these node pairs to clone pairs. A clone pair represents two isomorphic
sub-graphs of the input graph. To group only promising node pairs together, a
heuristics is applied. To this end, a similarity function is used, comparing the
neighborhoods of two input nodes. Starting with one of the node pairs with the
highest similarity value, ConQAT executes a breadth first search to find a clone
pair of the largest possible size, i.e., number of included node pairs. In each step,
one of the node pairs of highest similarity is used to extend the clone pair.

In the example, there are 26 relevant node pairs.1 The “src” nodes in Rules B
and C are determined most similar as they share the largest number of common
adjacent nodes and edges. Starting at this pair, phase 2 produces six clone pairs,
four of size 4 (rule A with corresponding parts of rule B and C, and reversed)
and two of size 5 (rule B with the corresponding part of rule C, and reversed).

eScan works by systematically deriving all clone fragments, i.e., sub-graphs
with an isomorphic counterpart, contained in the input graph. Starting with
sub-graphs comprising of just one edge and its source and target node, eScan
produces larger sub-graphs incrementally. In each iteration, given the cloned sub-
graphs with k edges, eScan finds the set of (k+1) edge sub-graphs by including
additional edges from the graph. Sub-graphs without isomorphic counterparts
are discarded. Isomorphy between sub-graphs is detected by comparing their
canonical labels, an encoded representation of their elements. An optimization
ensures that each sub-graph is used as a starting point just once.

In the example, the input graph contains 15 sub-graphs of size 1: four in rule
A, five in rule B and six in rule C (see footnote 1). With the exception of the
annotations edge in rule C, each of these sub-graphs is a clone fragment and is
consequently used to derive sub-graphs of size 2. After termination, there are 14
clone fragments of size 1, 16 of size 2, 16 of size 3, 11 of size 4, and 2 of size 5.

1 In favor of simplicity, we neglect attributes and their encoding in these illustrations.
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Phase 3: Post-processing. In both approaches, the result of phase 2 is clus-
tered, producing sets of isomorphic subgraphs. The result may contain sets that
are completely covered by other sets. For instance, in the eScan result, the groups
containing the sub-graphs of size 1, 2 and 3 are completely covered by the group
of size 4. Covered groups are discarded since they are typically not useful to
developers. Furthermore, ConQAT and eScan report only connected sub-graphs.
Larger unconnected ones may be assembled from connected ones. To obtain
clones (Definition 3), we map the results of phase 2 back to the rules.

In the example, both approaches produce the output shown in Table 1. In
general, the employed strategy during Phase 2 may have implications for the
exhaustiveness of the result (R3). Since eScan eventually produces every possible
sub-graph, it finds all full clones (Definition 4) – assuming unlimited memory and
time. In practice, eScan has been shown not to scale up to larger models in the
Simulink domain [27]. In contrast, ConQAT shows good scalability behavior, yet
the employed heuristic might lead to some detected clones being incomplete.

6 Evaluation

In this section, we present an evaluation of our approach. We address the follow-
ing research question: Can the requirements for graph-based model transforma-
tion clone detection be satisfied by adapting existing clone detection techniques?

Methods and Materials. Using our customization of ConQAT and eScan,
described in Sect. 5. we addressed the requirements as follows:

– ConQAT and eScan are pattern-based (R1) by design. Since this requirement
is important in all identified use-cases, we selected these particular techniques
to investigate clone detection in model transformation rules.

– To study performance (R2), we applied each technique on rule sets from real
model transformation systems and measured execution time.

– While eScan guarantees exhaustiveness (R3) by design, we devised a cus-
tom set-up to study the exhaustiveness of ConQAT: We fed the largest
clones reported by ConQAT as input to eScan-Inc [26], an incremental variant
of eScan that allows continuing the clone search from clones of a given size.
This method, called ScanQAT, can find full clones missed by ConQAT. The
number of full clones missed by ConQAT gives an indication of its exhaustive-
ness.

– To study scope (R4), we discuss how our customization of the existing tech-
niques accounts for the different scopes of clones.

– To study tool integration (R5), we report on our experience with integrating
the studied techniques in the existing tool environment of the Henshin model
transformation language [28].

In the experiments for R2 and R3, we used rule sets from two transforma-
tion systems. The rule sets were chosen since they represent realistic, non-trivial
rule sets available to the authors (convenience sampling). Ocl2Ngc is a set of
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Table 3. Sample rule sets with number of rules (#R) and average number of nodes
(#N), edges (#E), and attributes (#A) in each rule.

rules from an OCL to nested graph constraint translator [29]. FmEdit is a set
of editing rules for feature models, used in the context of model differencing
[30]. We present statistical information on both rule sets in Table 3. The rules in
Ocl2Ngc are organized in sets of 4 to 7 rules. The rules in FmEdit are orga-
nized in sets of 2 to 11 rules. In the case of Ocl2Ngc, we selected small, average,
and large rules as samples for our experiments, presenting them in the table. In
the case of FmEdit, we studied all rule sets. These sets provide a semantic
grouping of the transformations without prescribing a particular control flow. In
fact, the Ocl2Ngc transformation exhibits an elaborate control flow expressed
using units, an activity-diagram-like control mechanism, which we neglected as
it was orthogonal to the grouping into rule sets. To explore scalability, we also
applied the considered techniques to the entire rule sets.

We created an implementation prototype for our experiments, implementing
the customization outlined in Sect. 5. For Phase 2 and the clustering step of
Phase 3, in the case of ConQAT we used the publicly available implementation2.
We created our own implementation of eScan as no existing one was available
to us. We ran all experiments on a Windows 7 system (3.4 GHz; 8 GB of RAM).

Results and Discussion. We applied the techniques on all rule sets, yielding
the results shown in Table 4. For each combination of technique and rule set, we
show the largest and the broadest clone. The largest clone is the one with the
greatest number of common elements. The broadest clone is the one found in
the greatest number of input rules; ties are broken by selecting the one with the
greatest number of common elements.

Performance. ConQAT took between 1 and 544 msec for each individual rule
set. For the full rule sets, it took 26.5 s and 783 msec. Our ScanQAT and eScan
implementations took between 2 msec and 13.5 s for smaller rule sets. On the
larger ones, they terminated with memory overflow errors or did not terminate
within one hour. While our implementations could be flawed, this experience is
in accordance with earlier experiments in the Simulink domain [27].
2 https://www.cqse.eu/en/products/conqat/install/.

https://www.cqse.eu/en/products/conqat/install/
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Table 4. Results. For each rule set, the largest (first row) and the broadest (second
row) clones found are detailed with their number of rules (R) and number of nodes (N),
edges (E), and attributes (A). “—” denotes memory-related program exits or execution
times longer than one hour.

Exhaustiveness. Where available, the clones reported by ConQAT, ScanQAT
and eScan were identical in size. Only in the case of two larger individual sets
and the entire rule sets, both ScanQAT and eScan did not scale up. In these
cases, we cannot evaluate the exhaustiveness of ConQAT. In all other cases, the
largest and broadest clones reported by ConQAT were full clones. The largest
clones found by ConQAT for all rules were larger than those in the individual
rule sets – these clones spanned over several rule sets. In sum, it is indicated
that ConQAT is generally suitable to address the exhaustiveness requirement.

Scope. The encoding described in Sect. 5 can be used to apply the considered
techniques on all desired scopes: The input graph provided to the technique
may represent one rule as well as multiple rules from the same or different trans-
formation systems. An interesting edge case we observed in the larger rules of
Ocl2Ngc includes clones that cover other clones of a separate scope: Internal
clones may exhibit multiple embeddings to the same rule, i.e., cover a micro-
clone. The preferable directive in this case depends on the use case. For instance,
if adequate reuse concepts are available, clones can be refactored incrementally,
first explicating the reuse inside the rule and then that across multiple rules.

Tool integration. To explore the integration with existing tools, we designed and
implemented an Eclipse plug-in on top of the Henshin language [28]. We devised
a custom Clone Detection view as an extension to the Henshin transformation
editor, listing reported clones. When the user selects an entry in this view, the
corresponding elements are highlighted in the editor. This view can be combined
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with most considered use-cases, for instance, by serving as an entry point for a
clone refactoring. We describe the use of this plug-in in another work [31].

Threats to validity. A threat to external validity is our limited sample size of
rule sets from two transformation systems. While the studied scenarios are het-
erogeneous, more examples are required to justify extensive generality claims.
A threat to construct validity concerns our study of exhaustiveness. We have not
compared the results against a list of known clones, which would be the most
reliable strategy. Unfortunately, such lists are hard to produce manually for
large rule sets. Furthermore, we focus on largest clones, neglecting smaller ones.
While more comprehensive exhaustiveness studies are desirable, large clones are
arguably the most relevant in refactorings and performance optimizations.

Conclusions. In conclusion, ConQAT, ScanQAT and eScan were on par with
regards to all identified requirements except performance, where ConQAT out-
performed the other approaches. Notably, the promising exhaustiveness results
for ConQAT complement the findings from our recent work where we used this
technique to construct rules in a performance optimization scenario [9]. This
finding indicates that ConQAT is potentially useful in all considered use-cases,
a hypothesis that still needs to be validated for larger industrial examples.

7 Related Work

Several more techniques for model clone detection have been proposed. While
the approaches by Störrle [22,32] and Ekanayake et al. [33] enable the iden-
tification of groups of similar elements in UML and business process models,
respectively, we focus on the detection of identical patterns. Liang et al. [34]
propose a suitable technique based on identifying longest sub-sequences in paths
through the input models. The technique shows a comparable accuracy to that
of ConQAT while yielding a runtime improvement. We focus on ConQAT due to
its publicly available implementation that fully satisfied the requirements in our
experiments. The approach by Alalfi et al. [35] focuses on Type III clones in
Simulink models.

A number of quality assurance approaches for model transformations
are related. Van Amstel et al. [36] propose a variety of analytical methods, such as
metrics and dependency graphs. Without mentioning specifics, they also foresee
the use of clone detection. Kapová et al. [37] propose a set of quality metrics to
evaluate QVT-R transformations; number of clones is mentioned as one metric.
Wimmer et al. [38] introduce a refactoring catalog to improve the quality of M2M
transformations; duplicate code is mentioned as a bad smell. Gerpheide et al. [39]
present a quality model for QVT-O comprising 37 quality properties and four
quality goals: functionality, understandability, performance, and maintainability.

8 Conclusion and Future Work

In this work, we present the first approach to address clone detection for
model transformations, focusing on the graph-based transformation paradigm.
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We considered Type I and II clones, which are routinely produced when rules are
created in a copy-and-paste manner. Our experiments indicate that our adapta-
tion of ConQAT, a technique from the Simulink domain, is well-suited to satisfy
the requirements of clone detection in graph-based model transformations.

There are several directions for future work. To validate the hypothesis that
transformation developers can benefit from clone detection, a user experiment
based on our prototypical tool is appropriate. Moreover, we aim to broaden the
scope of our work towards additional transformation and clone detection fea-
tures. First, to extend the expressiveness of the considered language, control flow
and NACs can be addressed. Second, as our work focuses on graph-based model
transformation, we aim to establish whether similar results can be obtained for
other paradigms. Desirable clone detection features include support for Type
III and IV clones and, addressing the performance optimization and usability
improvement use cases, an incremental execution mode that reuses earlier results.
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18. Heckel, R., Küster, J.M., Taentzer, G.: Confluence of typed attributed graph trans-
formation systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G.
(eds.) ICGT 2002. LNCS, vol. 2505, pp. 161–176. Springer, Heidelberg (2002)

19. Beller, M., Zaidman, A., Karpov, A.: The last line effect. In: International Confer-
ence on Program Comprehension, pp. 240–243. IEEE Press (2015)

20. Bauer, J., Boneva, I., Kurbán, M.E., Rensink, A.: A modal-logic based graph
abstraction. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT
2008. LNCS, vol. 5214, pp. 321–335. Springer, Heidelberg (2008)

21. Cuadrado, J.S., Guerra, E., De Lara, J.: Generic model transformations: write
once, reuse everywhere. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol.
6707, pp. 62–77. Springer, Heidelberg (2011)
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