
Compositional Language Engineering Using
Generated, Extensible, Static Type-Safe Visitors

Robert Heim1(B), Pedram Mir Seyed Nazari1, Bernhard Rumpe1,2,
and Andreas Wortmann1

1 Software Engineering, RWTH Aachen University, Aachen, Germany
heim@se-rwth.de

2 Fraunhofer FIT, Aachen, Germany
http://www.se-rwth.de

http://www.fit.fraunhofer.de

Abstract. Language workbenches usually produce infrastructure to
represent models as abstract syntax trees (AST) and employ process-
ing infrastructure largely based on visitors. The visitor pattern suffers
from the expression problem regarding extensibility and reuse. Current
approaches either forsake static type safety, require features unavailable
in popular object-oriented languages (e.g., open classes), or rely on pro-
cedural abstraction and thereby give up the object-oriented data encap-
sulation (the AST) itself. Our approach to visitors exploits knowledge
about the AST and generation of statically type-safe external visitor
interfaces that support extensibility in two dimensions: (1) defining new
operations by implementing the interface and (2) extending the under-
lying data structure, usually without requiring adaptation of existing
implemented visitors. We present a concept of visitor development for
language engineering that enables an adaptable traversal and provides
hook points for implementing concrete visitors. This approach is applica-
ble to single DSLs and to language composition. It thus enables a trans-
parent, easy to use, and static type-safe solution for the typical use cases
of language processing.

Keywords: Visitor pattern · Compositional language engineering ·
Language workbenches

1 Introduction

Many language workbenches (LWBs) employ context-free grammars (CFGs) to
describe modeling languages [4]. From these grammars, LWBs derive the abstract
syntax of languages in form of abstract syntax trees (ASTs). Parsers process
models into instances of the ASTs. Processing ASTs requires to define traversal
algorithms on the underlying tree data structure. Separating these algorithms
from operations that perform on the AST liberates from reimplementing traver-
sal strategies for different operations. The visitor design pattern [6] enables such
separation by providing a traversal definition and visit methods that act as
c© Springer International Publishing Switzerland 2016
A. W ↪asowski and H. Lönn (Eds.): ECMFA 2016, LNCS 9764, pp. 67–82, 2016.
DOI: 10.1007/978-3-319-42061-5 5

68 R. Heim et al.

hook points for AST node instances during traversal of the AST. For each vis-
ited AST node the traversal algorithm calls the appropriate visit method which
then performs the specified operations. Thereby, the visitor pattern facilitates
to add new operations on data structures, while adding new types (for instance
when new productions are added to the related languages’ AST) to data struc-
tures is effortful. In the original visitor pattern, visitor implementations must
be extended with an additional visit method for each added data type. The
problem of supporting extensibility in both dimensions is also known as the
expression problem [20]. Approaches to it either require features unavailable in
popular object-oriented languages (e.g., mixins [5] or open classes [3]), demand
advanced type systems [15], forsake static type safety [2,16], or rely on proce-
dural abstraction – and thereby abandon the object-oriented data encapsulation
of the AST [14].

We contribute a concept to generate visitor infrastructures from CFGs that
support language engineers with statically type-safe interfaces to work on the
AST for model analysis and transformation. The visitor infrastructure facili-
tates development of reusable model processing infrastructures for single lan-
guages and supports integration of visitor implementations for combined lan-
guages. It is based on the single-dispatch language Java as the most popular
object-oriented language1 and we demonstrate a realization within the language
workbench MontiCore [10]2.

Section 2 introduces MontiCore and its language processing mechanisms.
Afterwards, Sect. 3 presents the visitor infrastructure generation approach for
single languages and Sect. 4 for combined languages. Section 5 discusses our app-
roach, before Sect. 6 debates related work and Sect. 7 concludes.

2 Preliminaries

MontiCore [10] is a language workbench for the engineering of compositional
modeling languages. It provides an extended CFG format for integrated specifi-
cation of concrete and abstract syntax. From these grammars, MontiCore derives
the Java AST classes of a language and its parsers instantiate these classes to
represent processed models.

We present quintessential concepts of MontiCore’s grammar by the example
of the grammar for class diagrams depicted in Fig. 1: it begins with the keyword
grammar (l. 1), followed by its name and a body in curly brackets. The body con-
tains productions todescribe the structure of theCD language.The grammar’smain
production is CDDef, the definition of a class diagram consisting of the model key-
word classdiagram (everything in quotation marks is part of the concrete syn-
tax only), a name, classes, and associations (l. 2). The production Name is part of

1 http://www.tiobe.com/index.php/tiobe index.
2 MontiCore is open source (https://github.com/MontiCore/monticore) and running

visitor examples as described in this paper are available online
(http://www.se-rwth.de/materials/mcvisitors/).

http://www.tiobe.com/index.php/tiobe_index
https://github.com/MontiCore/monticore
http://www.se-rwth.de/materials/mcvisitors/

Compositional Language Engineering 69

Fig. 1. An exemplary MontiCore grammar for definition of simplified class diagrams.

MontiCore primitives. The body of a class diagram is delimited by curly brack-
ets and contains arbitrary many (denoted by the star operator *) associations and
classes in arbitrary order (via disjunction operator |). The production for classes
begins with the model keyword class, followed by a name, optionally followed by
the keyword extends with another name, and a body delimited by curly brackets
(l. 3). The body contains arbitrary many instances of Method, which is an inter-
face production (l. 4) that is implemented by the production MethodSignature
(l. 5). Thus, MethodSignature can be used whenever a Method is required – for
instance in the Class production (l. 3). This enables to add new implementing
productions to the grammar a-posteriori without modifying the interface pro-
duction itself, which is essential for language inheritance (see Sect. 4). The pro-
duction MethodSignature consists of a type, a name, and a list of parameters.
The ParameterList (l. 6) consists of comma-separated Parameter instances in
brackets3, where each Parameter (l. 7) has a type and a name. From the gram-
mar depicted in Fig. 1, MontiCore generates an AST node class for each produc-
tion. Figure 2 depicts these classes. The names of AST classes begin with “AST”
and are followed by the name of the production they are derived from (such as
ASTCDDef). The non-terminal Name results to a field name of Java type String
in the AST class. MontiCore enables to define the names of AST fields, as for
example via type:Name in the production Parameter. This results in the field
String type of ASTParameter. References to other non-terminals in a produc-
tion become associations between the corresponding AST classes. They have the
same cardinalities as specified in the grammar. For instance, CDDef uses the non-
terminal Class, thus ASTCDDef is associated to ASTClass. For the interface pro-
duction Method, MontiCore generates the interface ASTMethod. As the produc-
tion MethodSignature implements the interface production Method, its AST class
ASTMethodSignature implements ASTMethod as well.

3 Generating the Visitor Pattern as DSL Infrastructure

We exploit knowledge on the automated generation of AST node classes to pro-
duce visitor interfaces for CFGs. These interfaces prescribe separate methods
3 For a production P and a separator s the expression (P || "s")* denotes an arbitrary

count of P separated by s. There is no s at the end.

70 R. Heim et al.

Fig. 2. The AST node classes MontiCore derives from the CD grammar of Fig. 1.

for traversal and visiting that are connected by methods to handle their inter-
action. For each production of the CFG, the generated visitor interface yields
the methods visit, endVisit, and handle to handle operations on these nodes.
For concrete class nodes, we also generate a traverse method for subtree tra-
versal. All methods have default implementations4 and hence do not require an
implementation. Instead, they are best understood as hook points.

Derived from the CD language presented in Fig. 1, the generated visitor inter-
face CDVisitor is as depicted in Fig. 3. The methods visit and endVisit for
an AST node type enable to process instances of that node before and after
its traversal, respectively. By default they do nothing and hence the default
implementation is an empty method body (omitted in Fig. 3).

Fig. 3. The CDVisitor interface generated for the CD language and a concrete visitor.

Reusing a traversal algorithm can be achieved by implementing it in a
super type that is meant to be inherited by concrete visitor implementations.
4 Default implementations are available since Java 8.

Compositional Language Engineering 71

Fig. 4. A CD model and the resulting AST instance with an ASTClass not knowing
that m is of type ASTMethodSignature.

By providing such an implementation in a class it requires software compo-
nents that are based on the visitor infrastructure to extend it. This, however,
contradicts flexibility in software design during language engineering as the com-
ponent then is defined as a specialization of the visitor infrastructure and multi-
inheritance is not supported in Java. Also, with respect to semantics, it is better
to leave the specialization characteristics open to the language engineer. For
example, a pretty printer could specialize an abstract pretty printer that defines
constants regarding whitespaces. To this effect, MontiCore’s visitor infrastruc-
ture is not based on classes but on interfaces which enable easier integration
with other software components. This becomes even more relevant in language
composition (cf. Sect. 4), when concrete visitors require extension and composi-
tion.

The top-right side of Fig. 3 illustrates the default implementations of the
CDVisitor interface: The handle method takes care of visiting and traversal.
The traverse method implements a climb-down strategy (e.g., order) to traverse
the children. This separation enables to easily change the traversal order in
subclasses while shielding the developer from involuntary changing the overall
traversal strategy or missing to call the visit methods. The CDVisitor interface
does not provide traversal methods for AST nodes of interface types derived
from interface productions of the CFG, because interfaces do not have children.
AST nodes of interface types (e.g., ASTMethod) are never instantiated. Instead,
MontiCore enforces that each CFG contains at least one implementation for each
interface production. Consequently, there always exists a concrete AST node
class that implements the interface. Figure 4 elucidates this with a CD model
(left) and the resulting AST instance (right). The CD model contains the class
Prof, which has a method getName(). Although the ASTClass instance c has an
instance of ASTMethodSignature, the class ASTClass knows this instance only
via its interface ASTMethod.

For traversing the children of the ASTClass associated ASTMethod instances
have to be considered. To call the most specific handle method for each of the
children, a mechanism to calculate the most specific type of each child is required.
This mechanism should not make use of type-introspection, but instead dispatch
dynamically by itself. To simulate double dispatch in the single dispatch language
Java, MontiCore generates an interface with a single accept method responsible

72 R. Heim et al.

Fig. 5. All AST node types implement the accept method for the language’s visitor.

Fig. 6. Traversing a class requires identifying the runtime type of the methods in order
to call the most specific handle methods. To this effect, a double dispatch is simulated.

for calling the visitors’ handle methods with the most specific type. Figure 5
shows this interface and its implementations. The purpose of the accept methods
is to dispatch to the most specific handle method of the given CDVisitor for
each AST node type. Consequently, MontiCore generates AST nodes in such a
way that they dispatch on the language’s visitor to the handle method with
themselves as argument (i.e. this). Although the implementation looks similar
among the AST types, it differs in the specific type of this. Thereby, the most
specific handle method is called. The sequence diagram in Fig. 6 illustrates the
double dispatching of ASTMethods when handling the ASTClass shown in Fig. 4.

Until now, it was assumed that defining operations on a language’s AST
always relates to the most specific node types. This, however, is not true: For
example, defining an operation to count all methods should be based on the

Compositional Language Engineering 73

Fig. 7. The inheritance visitor visits nodes also in all their super types.

visit method for ASTMethod, but the double dispatching always calls the most
specific visit hooks during traversal. Hence, such a method counter must hook
into all visit methods for nodes that refine Method. While in the example only
one production (MethodSignature) is effected, MontiCore enables implementing
interface productions multiple times. All specific visit hooks would require to
implement the same code. To prevent such code repetitions, MontiCore provides
an extended visitor interface called inheritance visitor (see Fig. 7). While the
formerly described visitor interface only calls visit hooks for the specific types,
the inheritance visitor exploits knowledge about the grammars and the relation
between their rules to call all visit methods that a node type is applicable for.
This requires casting the nodes (cf. Fig. 7) in the handle methods, but is stat-
ically type-safe and more importantly generated. By extending this inheritance
visitor instead of the common one, operations can be defined on all node types.

Implementing visitors using the presented infrastructure is straightforward
and statically type-safe. It does not require knowledge about the double dispatch
mechanism when depth-first traversal suffices. Adapting traversal requires calling
accept methods and, hence, some knowledge about the visitor pattern.

For example, pretty printers, which transform an AST instance to a string
representation, often are implemented as visitors. Figure 3 (bottom) depicts an
excerpt of a pretty printer for the CD language. The CDPrettyPrinter imple-
ments the visitor interface CDVisitor and thus inherits the default implementa-
tions for traversing and handling a CD AST. By overriding visit and endVisit
methods it hooks into the default traversal to execute operations on specific
nodes.

4 The Visitor Pattern for Compositional Languages

In software language engineering, non-invasive reuse of languages and related
infrastructures can greatly improve development. In this context, extending and
composing visitors is of particular interest. The following section describes an
extension of the CD language and demonstrates how its visitors can be easily
reused in the sub language. Afterwards, we describe how visitors of multiple
super languages can be composed.

74 R. Heim et al.

Fig. 8. The CDWithConstructor language extends the CD language by constructors.

4.1 Extending Concrete Visitors for Language Extension

MontiCore supports language extension [8], where sub languages inherit the
productions of their parents. For instance, Fig. 8 depicts the CDWithConstructor
language, which extends CD (l. 1) and introduces constructors (l. 2). Constructors
implement the interface production Method, enabling to use these whenever an
instance Method is required.

The resulting AST is illustrated in Fig. 9. The AST nodes ASTMethod and
ASTParameterList (not shown in the figure) of CD are reused by the new
ASTConstructorSignature AST node type of CDWithConstructor. MontiCore
also produces the interface CDWithConstructorVisitor for the sub language.
Generated visitor interfaces extend the visitor interfaces of all their super
languages to inherit their default implementations. Here, the visitor interface
CDWithConstructorVisitor extends CDVisitor and adds default implementa-
tions for the new node type ASTConstructorSignature. Using this inheritance
relation all default implementations of the super language’s visitor interface are
reused. Hence, when implementing a visitor for the new language the aggre-
gated default implementations are available. Consequently, the pretty printer for
the sub language (CDWithConstructorPrettyPrinter) can be implemented by
extending the CDPrettyPrinter of the super language (l. 1 of Fig. 10). It thereby
reuses the pretty printing for all nodes of the super language and only adds pretty
printing for constructors. For example, the reused production ParameterList
(l. 2 in Fig. 8) is printed using the inherited implementation of CDPrettyPrinter.

Visitors of a super language are unaware of new AST node classes introduced
in sub languages. For example, the pretty printer of the CD language is able to
handle ASTClass nodes. An AST instance of the sub language (i.e. a model)
reuses the exact same class and hence it is possible to hand this model to the
handle(ASTClass) method of the CDPrettyPrinter. However, double dispatch-
ing the children of type ASTMethod to their specific types is only possible for types
defined in the super language itself. In case of a ASTConstructorSignature the
most specific type known by the super language’s visitor is ASTMethod. Hence
handle(ASTMethod) would be executed. This is unintuitive, because the most
specific type at runtime is ASTConstructorSignature. Consequently, MontiCore
forbids directly applying a visitor implemented for a specific language on any of
its sub languages. A compiler cannot statically check this which leads to Monti-
Cores convention to only run visitors on their own language. This also means that
a concrete visitor implementation must be adjusted to be reused on a sub lan-
guage, even if nothing changes. This, however, is very easy and requires minimal

Compositional Language Engineering 75

Fig. 9. A subset of CD’s and CDWithConstructor’s language infrastructure.

Fig. 10. Extending a concrete visitor of a single super language is straightforward.
Only the additional nodes must be considered. For nodes of the super language, the
super language’s pretty printer CDPrettyPrinter is reused.

glue code. For example, reusing the pretty printer without adding anything is as
easy as defining a class similar to Fig. 10, but with an empty class body.

Another issue with this implementation is that extension of AST types in
sub languages results in an unexpected accept call. For example, the node type
ASTConstructorSignature implements the interface ASTMethod and thereby
inherits CD’s accept method with the visitor parameter being of static type
CDVisitor. The CDWithConstructorVisitor calls this method when traversing
the ASTClass instead of the intuitively expected accept method with parame-
ter of static type CDWithConstructorVisitor This occurs because the inher-
ited traversal is defined in the super language. This traversal calls accept on
the ASTMethod children. While the type of the child is dispatched dynamically,
choosing the accept method within it uses method overloading based on the sta-
tic type of the visitor that defines traversal (i.e. CDVisitor). Consequently, the
wrong accept method is executed. This cannot be solved by simulating another
double dispatch, because the super language never statically is aware of types
of a sub language. Hence, this is a limitation of our approach. Our solution to

76 R. Heim et al.

Fig. 11. The MontiCore grammar for a language to model automata.

this is overriding the accept method for visitor interfaces of super languages in
affected AST types (e.g., accept(CDVisitor) of ASTConstructorSignature).
The generated implementation checks at runtime, whether the given visitor stems
from the correct sub language. In this case, the call is delegated to the correct
accept method by casting the visitor to the specific type. We argue, that this
solution still is a good tradeoff between static type safety and flexibility in reuse,
because (a) the AST types and this mechanism are generated and (b) the visitor
interfaces remain statically type-safe. Implementing as well as reusing concrete
visitors do neither require manual type-introspection nor casts. Also, the former
problem does not occur when reusing non-terminals of super languages as done
with ParameterList. Here, traversal (of ASTConstructorSignature) resides in
the sub language and the generated traversal is aware of relations to the super
language and consequently is statically type-safe.

4.2 Composing Concrete Visitors During Language Embedding

MontiCore enables language embedding by inheritance of grammars and pro-
vides adaptation mechanisms on a symbolic level [8,9]. These adaptation mech-
anisms depend on visitor composition for, e.g., building symbol tables. The same
holds true for other software components such as validation or pretty printers.
In this section we first show the embedding of automata into the CD language
on the grammar level and then demonstrate the resulting visitor interfaces as
well as composing existing pretty printers of both the CD language as well as
the pretty printer of the Automaton language to a new pretty printer for the
integrated language. Figure 11 depicts the Automaton language that describes
automata (l. 2) using states (l. 3) and transitions (l. 4). We assume an imple-
mented AutomatonPrettyPrinter (analogous to CDPrettyPrinter) that imple-
ments the AutomatonVisitor interface to pretty print an automaton.

Figure 12 depicts the MontiCore grammar that embeds automata into class
diagrams. Automata are integrated as methods by implementing the interface
production Method of the CD language. Figure 13 shows the resulting structure.
The ASTAutomatonEmbedding implements the ASTMethod interface of the CD
language and has a ASTAutomaton of Automaton language as child. The visitor
interface of the new language extends both super language’s visitor interfaces to
inherit their default implementations.

Implementing a pretty printer for this language cannot make use of the app-
roach shown in Sect. 4.1, because Java does not allow multi-inheritance of classes

Compositional Language Engineering 77

Fig. 12. The CDWithAutomaton language’s grammar extends the grammars of the lan-
guages CD and Automaton and provides a production that embeds automata as methods.

Fig. 13. A subset of the resulting infrastructure when embedding the Automaton lan-
guage into the CD language.

and hence, it is not possible to extend both languages’ pretty printers. Instead,
MontiCore generates a visitor implementation for the new language, that is
capable of composing visitors of all super languages using a delegator pattern
(cf. CDWithAutomatonDelegatorVisitor in Fig. 13). It provides setters for visi-
tors of all (potentially transitive) super languages. MontiCore exploits knowledge
of the AST model by generating this delegator visitor in such a way that it del-
egates all handle, traverse, and visit calls to the concrete super visitor of
the language that the current node stems from. This behavior is adjustable by
extending this delegator visitor and overriding the corresponding methods.

As this approach to composition is based on delegation, it requires inversion
of control. For example, when handling a node the delegator delegates the han-
dling to the visitor that is registered for that specific node. Executing the visit
hooks and traversal, however, should not directly take place in the delegate, but
the delegator should control these operations as well. In MontiCore this inversion
of control is called the realThis pattern. It describes that in composable objects
(such as concrete visitors) the this reference should not be used, but instead a
realThis reference. A composer then can set this realThis reference to itself
and thereby gain control over all methods within the delegates. Consequently,
a composer must implement a super set of the aggregated interfaces of all com-
posed objects, which holds true for the visitor infrastructure as visitor interfaces

78 R. Heim et al.

Fig. 14. To support composition visitors must always use realThis instead of this.

inherit from the visitor interfaces of all super languages and only visitors of the
corresponding languages are meant to be composed.

To enable such a composition the delegates must always use the realThis
reference. It is accessible through a getRealThis() method defined in a super
interface. In case of visitors this is the visitor interface. A setter for the realThis
reference then enables changing it. The composed delegates must implement
both methods to manage the realThis reference, which initially equals this.
Figure 14 depicts the actual default implementations of the visitor interface that
enable visitor composition by using getRealThis() (ll. 6–8, 13).

For transitive delegation (e.g., composing already composed visitors) a del-
egator must transitively ensure the correct realThis reference when itself gets
composed. This is achieved by transitively setting realThis for all delegates in
case that the own realThis changes.

Figure 15 depicts an example by composing the concrete pretty printer visi-
tors of CD and Automaton to a pretty printer for the new language. The compo-
sition extends the delegator visitor CDWithAutomatonDelegatorVisitor (l. 2)
that provides statically typed methods for the composition (used in ll. 4–5).

Fig. 15. Implementing a pretty printer for the combined language reuses existing pretty
printers of the super languages. For the new AST node ASTAutomatonEmbedding noth-
ing is printed, which is why only an empty implementation is chosen (l. 6).

Compositional Language Engineering 79

A setter for a visitor of the own language (l. 6) ensures that the new AST node
ASTAutomatonEmbedding can be traversed. In this example the pretty printer is
solely based on the pretty printers of the super languages and does not require
any additional output for the embedding production. Hence, an empty visitor
is used that only inherits the default implementation from the visitor interface,
but does not hook into any of its methods.

5 Discussion

The visitor pattern and its derivatives suffer from the expression problem [20]
and so does our approach. Nevertheless, the presented infrastructure makes min-
imal use of type-introspection that is (a) hidden when implementing and com-
posing visitors and (b) automatically generated and, thus, less error prone. To
this effect, our main contribution is enabling language engineers to implement
visitors in a statically type-safe fashion. Also, the generated visitor interfaces
are semantically bound to the languages to support comprehensibility. Experi-
ence with language engineering has shown that depth-first traversal (with the
same order of child traversal as they occur in the grammar) is sufficient for
most model processing tasks. Hence, handcrafted visitor implementations, which
inherit traversal and hooks from the generated interface, usually do not require
adjustments. When necessary, traversal can be adapted in specific visitors by
overriding the inherited default traversal. Being interface-driven, our approach
furthermore does not enforce implementing operations on the AST by extend-
ing visitors, which enables developers to use the inheritance relation to flexibly
integrate visitors with other software components.

The main limitation of the presented visitor infrastructure resides in overrid-
den traversals. While our approach enables adaptation of traversal by overriding
the default implementation, it might require manual adjustments when the CFG
of the language changes.

When a non-terminal is added on the right-hand side of a production, the
corresponding AST node gets a new child that must be traversed. In this case,
manual adaptation of overridden traversals in concrete visitors is required, which
a compiler does not identify statically.

However, removing complete productions or changing their names can be sta-
tically identified and evolution efforts can be minimized by employing refactoring
mechanisms. Nonetheless, our approach is affected by the expression problem as
changing the AST of a language might require adaptation of all its visitors.
When depth-first traversal is sufficient this rarely occurs, because default imple-
mentations are generated.

MontiCore supports overriding non-terminals in sub languages. The full-
qualified names of the generated AST nodes include the languages’ names and
hence are unique. Consequently, the generated visitor interfaces support over-
ridden non-terminals since they are based on the full-qualified names of the
corresponding AST nodes as well.

80 R. Heim et al.

6 Related Work

In contrast to established visitor combinators [18] our solution is statically type-
safe in liberating language developers from manually casting generic types (such
as AnyVisitable [18]) to specific types. Instead, our solution provides a sta-
tically type-safe visitor interface that supports visitor composition. It enables
implementing a concrete visitor by hooking into a predefined traversal for spe-
cific AST nodes, but also enables to adapt the traversal for specific visitors.

The original visitor pattern [6] describes the traversal algorithms as part
of the data structure (within the accept methods). This prohibits adjusting
traversal in specific AST visitors as they all share the same AST implementation.
Oliveira [13] distinguishes between internal visitors that define traversal within
the data structure and external visitors that define it in the visitors. Also, the
original visitor pattern stores the result of a visitor run as state in the visitor.
This imperative calculation is distinguished by Oliveira [13] from a functional
style, where all corresponding methods aggregate and return results. Based on
this categorization MontiCore’s visitor infrastructure is external and imperative.

Various approaches that solve the underlying expression problem rely on
mechanisms not available to popular object-oriented languages: Advanced type
systems can solve the expression problem [15] and enable to implement visitors
as type-safe reusable components. Other approaches employ mixins [5] or open
classes [3] to overcome the expression problem. However, utilizing such features
requires to forsake existing language workbench infrastructure and enforces engi-
neers to learn less supported languages.

To circumvent the cyclic dependency between the visitor interface and the
data structure the Acyclic Visitor pattern [11] splits all visit methods into their
own data-specific visitor interface. Thereby, the different visitor interfaces are
semantically bound to a specific data type, but they require type-introspection
to cast the generic visitor interface to the specific one. Consequently, this app-
roach is similar to the one in MontiCore, with the difference that MontiCore
semantically binds visitor interfaces to a language instead of their concrete nodes.

Another recent solution to the underlying expression problem, that is applica-
ble in common object oriented languages, is given by Object Algebra (OA) [14].
It, however, gives up representation of a language’s AST as types. Instead, using
constructor overloading the AST for a given model is only implicitly constructed
during a concrete calculation on it. It thereby introduces a different approach to
language engineering which requires language engineers to change their under-
standing of DSL implementation in general. Currently, there is limited experience
[7,17,21] about OA’s main advantages and limitations and hence it is not yet
clear whether such investment pays off for language engineers.

Other LWBs, such as Xtext [1], build on the Eclipse Metamodeling Frame-
work (EMF) using Ecore models to describe the AST [12,19]. EMF trees are
traversed using tree iterators5 that require clients to implement the method

5 http://download.eclipse.org/modeling/tmf/xtext/javadoc/2.9/org/eclipse/xtext/
nodemodel/BidiTreeIterator.html.

http://download.eclipse.org/modeling/tmf/xtext/javadoc/2.9/org/eclipse/xtext/nodemodel/BidiTreeIterator.html
http://download.eclipse.org/modeling/tmf/xtext/javadoc/2.9/org/eclipse/xtext/nodemodel/BidiTreeIterator.html

Compositional Language Engineering 81

getChildren(Object), which defines an iterator over all children of the object.
The parameter is of the most generic type Object and returning one iterator for
all children requires to cast them to a common super type as well. Thus, using
this infrastructure depends on type-introspection in client-code to differentiate
between specific AST node types. Commonly, Xtext-based DSLs use Xtend [1]
for implementing code generators. Xtend is a Java dialect that compiles into Java
code and claims to enable multi-dispatching. However, the multi-dispatching is
implemented using type-introspection in switch statements6.

7 Conclusion

We demonstrated a concept to derive visitor infrastructures from context-free
grammars to support language engineers to work with ASTs for model analysis,
transformations, and code generation. It separates AST traversal from opera-
tions that hook into the traversal. In order to define new operations on ASTs, it
provides language engineers with generated statically type-safe visitor interfaces
that foster reuse during language composition and allow for traversal adaptation
if required. With the infrastructure being interface-driven, developers may flexi-
bly integrate other software components with concrete visitor implementations.
To this effect, we described how a sophisticated combination and extension of
software patterns support compositional language engineering and presented a
realization in the language workbench MontiCore.

References

1. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt
Publishing, Birmingham (2013)

2. Carlisle, M.C., Sward, R.E.: An Automatic “Visitor” Generator for Ada. Ada Let-
ters (2002)

3. Clifton, C., Leavens, G.T., Chambers, C., Millstein, T.: MultiJava: modular open
classes and symmetric multiple dispatch for Java. In: Proceedings of the 15th ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications (2000)

4. Erdweg, S., et al.: The state of the art in language workbenches. In: Erwig, M.,
Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp. 197–217. Springer,
Heidelberg (2013)

5. Flatt, M., Krishnamurthi, S., Felleisen, M.: Classes and Mixins. In: Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (1998)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley Professional, Boston (1995)

7. Gouseti, M., Peters, C., van der Storm, T.: Extensible Language Implementation
with Object Algebras (Short Paper). SIGPLAN Not. (2014)

6 https://eclipse.org/xtend/documentation/202 xtend classes members.html.

https://eclipse.org/xtend/documentation/202_xtend_classes_members.html

82 R. Heim et al.

8. Haber, A., Look, M., Mir Seyed Nazari, P., Navarro Perez, A., Rumpe, B., Völkel,
S., Wortmann, A.: Composition of heterogeneous modeling languages. In: Desfray,
P., Filipe, J., Hammoudi, S., Pires, L.F. (eds.) MODELSWARD 2015. CCIS, vol.
580, pp. 45–66. Springer, Heidelberg (2015)

9. Hölldobler, K., Nazari, P.M.S., Rumpe, B.: Adaptable symbol table management
by meta modeling and generation of symbol table infrastructures. In: Proceedings
of the Workshop on Domain-Specific Modeling (2015)

10. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: a framework for compositional devel-
opment of domain specific languages. Int. J. Softw. Tools Technol. Transf. (STTT)
12(5), 353–372 (2010)

11. Martin, R.C., Riehle, D., Buschmann, F. (eds.): Pattern Languages of Program
Design 3. Addison-Wesley Longman Publishing Co., Inc., Boston (1997)

12. Merkle, B.: Textual modeling tools: overview and comparison of language work-
benches. In: Proceedings of the ACM International Conference Companion on
Object Oriented Programming Systems Languages and Applications Companion
(2010)

13. Oliveira, B.C.S.: Genericity, Extensibility and Type-Safety in the Visitor Pattern.
Oxford University, Oxford (2007)

14. Oliveira, B.C.D.S., Cook, W.R.: Extensibility for the masses: practical extensibility
with object algebras. In: Proceedings of the 26th European Conference on Object-
Oriented Programming (2012)

15. Oliveira, B.C.D.S., Wang, M., Gibbons, J.: The visitor pattern as a reusable,
generic, type-safe component. In: SIGPLAN Notices (2008)

16. Palsberg, J., Jay, C.B.: The essence of the visitor pattern. In: Proceedings of the
22Nd International Computer Software and Applications Conference (1998)

17. Rendel, T., Brachthäuser, J.I., Ostermann, K.: From object algebras to attribute
grammars. In: SIGPLAN Notices (2014)

18. Visser, J.: Visitor combination and traversal control. In: SIGPLAN Notices (2001)
19. Vlter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L.,

Visser, E., Wachsmuth, G.: DSL Engineering - Designing, Implementing and Using
Domain-Specific Languages (2013). dslbook.org

20. Torgersen, M.: The expression problem revisited. In: Odersky, M. (ed.) ECOOP
2004. LNCS, vol. 3086, pp. 123–146. Springer, Heidelberg (2004)

21. Zhang, H., Chu, Z., Oliveira, B.C.D.S., Storm, T.V.D.: Scrap Your boilerplate with
object algebras. In: SIGPLAN Notices (2015)

http://dslbook.org/

	Compositional Language Engineering Using Generated, Extensible, Static Type-Safe Visitors
	1 Introduction
	2 Preliminaries
	3 Generating the Visitor Pattern as DSL Infrastructure
	4 The Visitor Pattern for Compositional Languages
	4.1 Extending Concrete Visitors for Language Extension
	4.2 Composing Concrete Visitors During Language Embedding

	5 Discussion
	6 Related Work
	7 Conclusion
	References

