
Experiences with Model-Driven Engineering
in Neurorobotics

Georg Hinkel(B), Oliver Denninger, Sebastian Krach, and Henning Groenda

Software Engineering, Forschungszentrum Informatik (FZI),
Haid-und-Neu-Straße 10-14,

Karlsruhe, Germany
{hinkel,denninger,krach,groenda}@fzi.de

Abstract. Model-driven engineering (MDE) has been successfully
adopted in domains such as automation or embedded systems. How-
ever, in many other domains, MDE is rarely applied. In this paper, we
describe our experiences of applying MDE techniques in the domain of
neurorobotics – a combination of neuroscience and robotics, studying
the embodiment of autonomous neural systems. In particular, we par-
ticipated in the development of the Neurorobotics Platform (NRP) – an
online platform for describing and running neurorobotic experiments by
coupling brain and robot simulations. We explain why MDE was cho-
sen and discuss conceptual and technical challenges, such as inconsistent
understanding of models, focus of the development and platform-barriers.

1 Introduction

The field of neurorobotics uses insights from neuroscience to build robot con-
trollers using neural networks. Of particular interest is the combination of bio-
logically plausible spiking neural networks with robots. This enables neurophysi-
ologists to study how brains can be connected to bodies, neuroscientists to study
brain models in the real world and robotic scientists to perform locomotion or
perception tasks – which are hard to solve with classical robot controllers – using
the neural networks’ ability to learn and adapt.

Building spiking neural networks is increasingly understood by domain
experts. Robotics has a long experience of modelling robots and building robot
controllers. However, establishing a closed loop between both artifacts – this
means transferring sensor information from a robot to a brain and control infor-
mation from the brain back to the robot – is still an open question. Few scientists
know both neural network simulation and robotics well enough in order to per-
form adequate experiments.

As a consequence, most existing experiments in neurorobotics are hand-
crafted simulation scripts, able to perform only a tightly defined experiment
without variations. Such scripts may easily get obsolete when the interface of
the components from either domain changes.

Therefore, it is necessary to abstract from the technical implementation
details and allow neuroscientists to describe the interconnection between neural
c© Springer International Publishing Switzerland 2016
A. W ↪asowski and H. Lönn (Eds.): ECMFA 2016, LNCS 9764, pp. 217–228, 2016.
DOI: 10.1007/978-3-319-42061-5 14



218 G. Hinkel et al.

networks and robots in a formal model. The simulations gain flexibility as
common operations such as pausing, stopping, resetting or interacting with the
simulation can be implemented once, based on the formal model. Flexibility in
accessing the model is crucial as users want to build and run experiments interac-
tively as well as non-interactively. The interactive style is well-known to robotics
where experiments are built iteratively with visualization close to real-time. In
contrast, neural network simulation experiments are typically run as batch jobs.

Raising the abstraction level in order to limit the description of a system
to domain concepts rather than implementation details is also one of the major
goals of model-driven engineering (MDE). Hence, we have adopted MDE tech-
niques in the development of the Neurorobotics-Platform (NRP), an integrated
simulation platform to allow neuroscientists to specify a neurorobotics simula-
tion on a high level of abstraction.

In this paper, we present our experiences in applying model-driven techniques
in the domain of neurorobotics that we gained during the development of the
NRP. We observed inconsistencies in the understanding of models that imply
communication problems bringing together experts of the involved matters.
A lack of good test concepts for the code generators has made us shift function-
ality towards the target platform and keep code generators as small as necessary.
For the choice of generators or any other tools, we faced a platform barrier. Our
agile Scrum development process seemed incompatible with the upfront initial
effort implied by the model-driven software development approach we took.

The remainder of this paper is structured as follows: Sect. 2 briefly introduces
the NRP. Section 3 discusses the potential advantages offered by MDE in neuro-
robotics. Section 4 details on the lessons learned during the development of the
NRP. Finally, Sect. 5 concludes the paper.

2 The Neurorobotics Platform in a Nutshell

The Neurorobotics Platform (NRP) is developed as part of the Human Brain
Project1 to run coupled neuronal and robotics simulations in an interactive plat-
form. Whereas there are multiple neuronal simulators (e.g. Neuron [1], NEST
[2]), robotics and world simulations (e.g. Gazebo [3]), the NRP aims to offer
a platform uniting the two fields. A core part of the NRP is the Closed-Loop-
Engine (CLE) that allows to specify the data exchange between the brain simu-
lation and the robot in a programmatic manner and orchestrates the simulations.

The key concept of the NRP is offering scientists an easy access to a sim-
ulation platform using a state-of-the-art web interface. Scientists are relieved
from the burdensome installation process of scientific simulation software and
are able to leverage large-scale computing resources. Furthermore, support for
monitoring and visualizing the spiking activity of the neurons or joint states of
the robot is offered as well as the camera image perceived by the robot.

1 https://www.humanbrainproject.eu/.

https://www.humanbrainproject.eu/


Experiences with Model-Driven Engineering in Neurorobotics 219

Fig. 1. Screenshot showing a Braitenberg vehicle inspired experiment in the Neuroro-
botics Platform (NRP). Upon perception of red color in the camera image, the robot
moves forward, otherwise it keeps turning on the spot. A plot at the top shows velocity
of the robot wheels while a plot at the bottom shows spiking activity of neurons. (Color
figure online)

To give an impression on how the platform looks like, a screenshot of an
experiment inspired by Braitenberg vehicles [4] using a Husky2 robot is depicted
in Fig. 1.

The different users of the NRP are depicted in Fig. 2. The NRP basically
targets three science communities with overlapping fields of interest: neurosci-
entists, neurophysicists and roboticists. Neuroscientists are able to visualize brain
models through embodiment. Neurophysiologists leverage the coupling mecha-
nism of both simulations to analyze or validate models on signal transmission
between perception, brain activity and motor control. Roboticists are able to
validate and compare the performance of neuronal control compared to classic
robot control approaches.

The platform aims to be usable by scientists with little programming knowl-
edge. Based on templates, users can instantiate new experiments and adapt
them at runtime using techniques familiar to the respective communities. Data
interchange between a simulated brain and a robot is transcribed as so-called
Transfer Functions using an internal Python-based DSL [5]. We use the Python
programming language as it is generally accepted by neuroscientists and actively
used for specifying brain models.

Figure 3 depicts the Closed-Loop-Engine which implements the core of the
NRP. The CLE controls the neuronal and the world simulation, and realizes

2 http://www.clearpathrobotics.com/husky/.

http://www.clearpathrobotics.com/husky/


220 G. Hinkel et al.

Fig. 2. The actors and their intentions of using the NRP

Fig. 3. A closed loop between a robotics simulation and a neural network

a lightweight simulation data interchange mechanism. Neuronal and robotics
simulation are iteratively run in parallel for the same amount of time, after
which the transfer functions are executed periodically. Communication with the
brain is realized through recording and injecting spike data. Interfacing with
the robot simulation is done using the middleware (ROS [6]). In order to ensure
reproducibility, data exchange is conducted in a deterministic fashion.

Complex brain simulations require large scale computing resources and often
exceed the capacities researchers have at hand. Furthermore, effectively lever-
aging computing resources provided by data centers is only available to neu-
roscientists with the appropriate competences or support from the computer
scientific domain. The NRP provides a unified access to high-performance com-
puting resources of different institutions. The shared infrastructure in particular



Experiences with Model-Driven Engineering in Neurorobotics 221

offers the possibility to run simulations using specifically designed neuromorphic
hardware, which is currently not widely available.

Neuronal simulation in data centers are usually run as non-interactive batch
jobs whose execution is scheduled once and runs to completion before report-
ing results to the neuroscientist. The scientist has no means of influencing the
simulation after the job has been scheduled and errors can only be detected
by analyzing the results. The NRP is designed to enable interactive manipula-
tions of the neuronal network, the simulated environment or the robot. Thus,
erroneous behavior can be detected very quickly.

3 The Potential of Model-Driven Engineering
in Neurorobotics

In this section, we discuss why MDE is a suitable approach for developing a
simulation platform such as the NRP. As the NRP aims to support the specifi-
cation of data transfers between neural networks and robots accessible also by
users with little programming expertise, the process of assembling the simula-
tion code and its goals are very similar to model-driven software development.
While a frequent rationale of model-driven software development (MDSD) is to
reduce the development effort, we regard the higher abstraction level even as an
enabling technology for users with little programming experience.

The artifacts for a model-driven software development process as introduced
by Völter and Stahl [7] are depicted in Fig. 4.

The idea of model-driven software development is to divide the code of an
application into three parts, (i) the platform, (ii) schematic repetitive code and
(iii) individual code. From the repetitive code, a metamodel is extracted. Appli-
cation models are then created as instances of this metamodel through a domain-
specific language (DSL) and are transformed to the repetitive code by means of
a model transformation.

Fig. 4. Artifacts of model-driven software development as defined by Völter and
Stahl [7]



222 G. Hinkel et al.

The advantage is that the application model is very focused on domain con-
cepts whereas technical implementation details are encoded in either the plat-
form, the model transformation or the individual code. A goal of MDSD is clearly
to keep the individual code as small as possible. The application models are thus
usually specified in DSLs, either textual or graphical.

Understanding an experiment as an application, this model is also well suited
to describe neurorobotics simulations of these experiments. Here, the ability
to describe simulations in terms of domain concepts independent of technical
implementation details allows also neuroscientists without a strong experience
in programming languages to design and run experiments. At the same time,
the technical implementation details can be exchanged in order to support new
simulators. This is important as there is currently a multitude of neural network
simulators available.

Another important aspect is the validation of experiments. As the involved
neural networks become large, neurorobotics simulations require a large amount
of resources. Additionally, especially in a web-based simulation platform accessi-
ble through the internet, simulations are run with an identity of the service host
rather than the user. This raises security concerns in order to avoid the NRP to
execute malicious code. Here, formal models can help by validating the models,
whereas the code ultimately executed is generated and therefore can be trusted.

Finally, especially in neurorobotics, large assets of the experiments are likely
to be reused. Hardly any neuroscientist will create both the robot, the neural
network and its connection but rather reuse existing robots and potentially also
neural networks and couple them in an experiment. This requires an introspec-
tion of both neural networks and robots for the neuroscientists to understand
details of these artifacts such as e.g. the topology of the network or the kinematic
of the robot.

These analyses, validations for security and potential mistakes as well as
introspection, can be done independently of a running simulator if the experi-
ment is available as a formal model. In this sense, the problems are similar to
embedded systems, where formal models allow a verification, before a transfor-
mation converts them to integrated circuits.

We applied techniques and tools from model-driven engineering. In partic-
ular, we created formal metamodels to specify the connection between neural
networks and robots, designed a DSL for it and created a transformation to
generate the code to simulate an experiment [5].

4 Lessons Learned

In this section, we summarize our experiences applying model-driven techniques
to the development of the NRP. These descriptions cover the domain analysis,
development, tools, development process and project-internal communication.
The selection of experiences presented here are the outcome of a brainstorming
session reflecting on our experiences that we though could be interesting for
others.



Experiences with Model-Driven Engineering in Neurorobotics 223

4.1 Inconsistent Understanding of Models

Though the notion of models has been clearly defined as early as 1973 by
Stachowiak [8] and models are omnipresent in both robotics and neuroscience,
there is a diversity of opinions how models should be implemented. Furthermore,
as models always have a purpose, modeling standards of the same physical enti-
ties exist that incorporate abstractions for different usage scenarios.

In robotics, many modeling standards have been established. In the NRP, we
came along Collada to describe the robots’ appearance as a 3D-mesh, SDF, used
in the Gazebo robotics simulator and the Unified Robot Description Format
(URDF), used in the middleware ROS. While all of these standards are based
on XML, neither of them complies to the XMI standard usually used in MDE.
This has the consequence that tools such as generated parsers based on the XML
Schema are not usable as the implied object-oriented class structure does not
properly reflect the model. The framing XML language at least allows to reuse
some functionality when writing parsers and allows some degree of validation.

Reusing these existing modeling standards seems appealing as this means
that existing models can be easily reused, raising acceptance among users. How-
ever, one has to be very careful selecting the right model as it is hard to revoke
this decision once the modeling standard used turns out to miss important
aspects. For example, the SDF standard is used for simulation only and does
not allow to inspect a robot model in terms of how it can be controlled. This is
because the model contains references to packages that encapsulate the control
channels offered to a potential neural control architecture. From such a descrip-
tion, it is close to impossible to restore a mapping of joints to robot topics, as
this information is buried in controllers, only available in compiled form.

In the domain of neuroscience, the situation is very different. Here, an impor-
tant question is the level of abstraction, a neuron is interpreted. While some
approaches investigate the connection of entire regions of a neuronal network
consisting each of hundreds or thousands of neurons, other approaches inves-
tigate the compartments inside a single neuron. Existing formal approaches to
model neuronal networks such as NineML [9] or NeuroML [10] try to combine
these diverse levels of abstraction and provide a uniform format to catalog knowl-
edge. However, this makes them unusable for simulation purposes as there is no
simulator that spans all these levels of abstraction. Most simulators we have
been facing in the development of the NRP simulate neural networks at the
level of point-neurons, meaning that each neuron is considered to be an opaque
box whose behavior is described by a set of differential equations. These neuron
models can be modeled in a formal way [11].

When it comes to simulating neural networks, the common format to pass in
a model of a neural network to a simulator is a Python script that creates the
model inside the simulator. To raise the compatibility between the simulators,
there is an abstraction layer PyNN [12] which provides an interface that can be
used to create the neural network independently of the used simulator, such that
network scripts can be used with multiple simulators with only few modifications.



224 G. Hinkel et al.

This very low degree of formalization implies some challenges as it makes
it very hard to inspect neural networks without loading them into a simulator.
This applies even to very simple analyses such as checking whether a given
neuron or population exists at all. One of the reasons is that currently there are
many neural networks that use a multitude of control structures and loops when
creating the network. Hence, any formal model that does not allow such control
structures has a risk of a low acceptance. If control structures are supported,
there is a risk to end up with a formal metamodel that does not add much
to the Python syntax. Furthermore, because Python scripts are so popular, this
raises expectations that any new approach also supports them. As a result and to
avoid an enforced language adoption [13], we created an internal DSL in Python
[5], allowing to specify the coupling between a neural network and a robot in
Python, but without the requirement that a simulator is already loaded. A formal
metamodel on top of this internal DSL has not yet gained acceptance. We hope
this will change when we can provide a graphical editor for it.

These very different understandings of models imply a communication chal-
lenge when bringing together experts of different fields. While for some in the
team, the term model implicitly means the robots mesh, the term is bound to
Python scripts or neuron models when speaking to others. Especially in the neu-
roscience domain, the level of formalization is currently very low, which makes
it very hard to establish formal modeling standards.

As a possible reason, both in robotics and in neuroscience, models are often
validated through simulation or even execution. A model is considered valid if
its execution completes without failures and produces the intended behavior.
However, it is difficult to specify when such a behavior is valid. This is different
for the coupled simulation of both a robot and a neural network where one
would like to ensure that for a given connection between the simulators, both
the involved neurons or neuron populations as well as the involved sensors and
actuators exist and have the expected format.

4.2 Focus the Platform, Not the Generator

Following a model-driven approach as depicted in Fig. 4, a very important ques-
tion is whether a given functionality should be implemented in the target plat-
form or the generator, if both are developed in the same team. Applying the
approach of Völter and Stahl [7], we started with creating a reference simulation
script after creating an initial version of the platform. We then extracted a code
generator that would generate exactly this simulation script based on a given
reference model.

However, this soon turned out to cause problems in the quality assurance.
Generators are very hard to test in terms of unit testing. While an integration
test is desirable, the resources necessary to run these makes it infeasible to cover
large parts of the code through integration tests and make unit tests inevitably
required, but ensuring that the produced simulation scripts are correct is com-
plex and far beyond a usual unit test. Furthermore, we lack the tools to measure
whether the code generator complied to our goal of 90 % coverage by unit tests.



Experiences with Model-Driven Engineering in Neurorobotics 225

Therefore, we only tested the generated output for a few example models by
comparing with a predefined expectation and further created usual unit tests for
any functionality called from the generator. However, this leads to highly fragile
unit tests. Many changes in the target platform had an influence onto the code
generator and as a result, the test cases had to be adjusted. Thus, developers
started to simply copying all the generated output for the changed generator
to the test oracle and peer-reviewers spent less attention as the code was only
generated.

Therefore, we eventually decided to minimize the amount of code that is being
generated and tried to drag as much code as we could into the target platform as
Python modules. As a result, this code is subject to our continuous integration
infrastructure and thus, many code checks are automatically performed by static
code analysis that would otherwise have to be done by tests. The generator
now only generates artifacts that are very hard to create by non-generating
approaches such as expressions composed from model elements. While this could
also be done through model interpretation at runtime, it would mean a less clear
syntax (which is made visible to the user and therefore important) and degrade
the performance.

An artifact that has helped a lot minimizing the generated code is our internal
Python DSL PyTF [5]. Despite a syntax familiar to Python developers (which
is why we created the language in the first place), it also helped us minimize
the code generator transforming our formal model into PyTF. PyTF itself can
then be executed directly.

4.3 Model-Driven Tooling Based on Java Platform

As of today, many of the tools available to support model-driven engineering are
still based on Java, more specifically on the Eclipse Modelling Framework. The
components that we used in the NRP are based on C++ and Python. As we
also decided to create a Python interface for users to specify their connection
between selected neural networks and robots, the simulation backend is also
based on Python to avoid inter-process communication.

However, this decision puts a platform barrier that hampers the adoption of
model-driven techniques since most available tools cannot be used, unless the
involved developers install a Java IDE next to their Python or C++ environ-
ment. As suggested by Meyerovich [13], many developers do not like the idea
of adopting a new language which yields a strong argument against the intro-
duction of such tools. Indeed, our experience was that many developers tried to
avoid Java as much as they could.

Therefore, the more pragmatic solution for us was to use XML technology.
That is, we created the formal metamodel as an XML Schema. Though this has
the drawback that XML has no direct support for typed cross-references (only
ID and IDREF), this can be circumvented by designing the metamodel appropri-
ately. In favor of XML, like most languages, Python includes tools to generate
parsers based on a XML schema so that we can easily load and save models.
Furthermore, XML Schema allows a basic validation of instance documents.



226 G. Hinkel et al.

This validation is not as powerful as OCL and harder to specify but suffices for
many applications. More advanced validation, such as checks whether a reference
to a particular neuron or robot sensor is valid, has to be done separately anyhow
since the data is not available in a formal model (cf. Sect. 4.1).

A promising approach was to use EMF tools to generate the XML Schema
from an Ecore metamodel, but this turned out to be not a long-term solution.
EMF by far does not export all validations done on models into the XML Schema.
As we tend to include as much validation as we can, this quickly meant that we
maintained the XML Schema manually. However, as long as the Schema complies
to the XMI standard, the interoperability to modeling frameworks such as EMF
is still given as these frameworks also use XMI.

This interoperability is important, as it allows to use editor technologies such
as e.g. XText3 or Sirius4 and consume the created models in other languages.
However, in our case, this is difficult as we need our editors to be web-based.

To generate code, we used Jinja25, normally used to generate HTML pages,
though we generate Python code. This allows to use template-based code gen-
eration without additional effort. Nevertheless, these templates do not comply
with static code analysis and as a result, the acceptance of these code generators
among the developers is low. As a result, we have reduced the code genera-
tion to a minimum, meaning that we do not generate anything else than our
Python DSL.

4.4 Customer Value of Model-Driven Artifacts in a Scrum Process

Though set up as a research project, the NRP is developed according to a dis-
tributed Scrum process in sprints of three weeks length. Model-driven software
development introduces a high initial effort to set up the metamodel, transfor-
mations and editors. This seemingly contradicts the idea of Scrum where all
items of the backlog should be user stories that add some value to the user.

On the other hand, it is the user that specifies models of a simulation in the
final platform. Therefore, the typical development artifacts of a classical model-
driven project are in fact parts of the ready-made platform and therefore do
add a value to the user, hence fit into the format of a user story. For example,
metamodels are created with a user story similar to “As a user, I want to have a
clear specification how x is defined”. This gives the developer one sprint to create
an initial metamodel and possibly generate a visualization of it to show that to
the (expert) user. Further documentation of the metamodel, accessible also to
the non-expert user as well as other artifacts such as a DSL on top, generators
or editors are then developed in subsequent sprints.

Slightly more problematic are evolution scenarios as there is a risk that new
features are not introduced into all artifacts simultaneously. Therefore, the meta-
model may diverge from subsequent artifacts such as the DSL. As there are few

3 https://eclipse.org/Xtext/.
4 http://www.eclipse.org/sirius/.
5 http://jinja.pocoo.org/.

https://eclipse.org/Xtext/
http://www.eclipse.org/sirius/
http://jinja.pocoo.org/


Experiences with Model-Driven Engineering in Neurorobotics 227

tools to detect this in a dynamic language such as Python, we rely on code-
reviews. Though such evolution scenarios appear more often in agile methods,
this problem is not limited to them as it is unlikely to have an optimal metamodel
at the first attempt.

Overall, we think that the agile Scrum methodology met our needs creating
a model-driven platform very well.

4.5 Missing Baseline for MDE Benefits

Although we already noted the multitude of potential benefits brought by MDE
in Sect. 3, quite a number of people in the project are still skeptical on MDE.
This is partially due to problems we discussed in the earlier sections, but also
because the benefits are not obvious. We see having a formal representation of
domain concepts used in the NRP as the key benefit. But as we are developing
both the formal metamodel and the target platform on which it is executed in
parallel and in the same team, it is hard to distinguish whether the metamodel
has influenced the platform development or vice versa.

As a consequence, it is easy to claim that the formal metamodel just formal-
izes the concepts implemented in the platform anyway. After all, abstractions
can also be employed without MDE techniques in place. It is hard to proof this
wrong as the usage of proper abstractions does not strictly require MDE. We
believe that even if some of the models are supplied very informally, attempts to
formalize these models still improved our domain understanding and helped us
to ask domain experts the right questions. However, further research is required
to analyze and show potential advantages and disadvantages.

5 Conclusion

In this paper, we reported our experience applying MDE in the development
of the Neurorobotics Platform, a web-based simulation platform to run experi-
ments coupling spiking neural networks with robots. Though we identified large
potential given the overlap of defining and running such an experiment on the
one side and model-driven software development on the other, there are a couple
of challenges and obstacles that make the application difficult.

We expect that our lessons learned of these challenges can help others who
want to apply model-driven techniques in the area of neurorobotics and help
to identify obstacles in the future development of the model-driven approach as
a whole. An inconsistent understanding of models means that few assumptions
can be made on how a model is specified and many models are only available
rather informal. Especially in neuroscience, people are used to Python, making
it infeasible to use model-driven tools, often based on Java. As the support for
validating generated Python code is limited, we limited code generation to the
places where it is absolutely necessary. The compatibility with the Scrum process
we are following could be solved. However, the overall benefit of MDE was not
as clear for other developers, making arguments in favor of it difficult.



228 G. Hinkel et al.

Acknowledgment. The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7/2007-2013) under grant
agreements no. 604102 (Human Brain Project) and 610711 (Cactos).

References

1. Hines, M.L., Carnevale, N.T.: The NEURON simulation environment. Neural Com-
put. 9(6), 1179–1209 (1997)

2. Gewaltig, M.-O., Diesmann, M.: NEST (NEural Simulation Tool). Scholarpedia
2(4), 1430 (2007)

3. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an opensource
multi-robot simulator. In: Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), vol. 3, pp. 2149–2154. IEEE (2004)

4. Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT press,
Cambridge (1986)

5. Hinkel, G., Groenda, H., Vannucci, L. et al.: A domain-specific language (DSL) for
integrating neuronal networks in robot control. In: Joint MORSE/VAO Work-
shop on Model-Driven Robot Software Engineering and View-based Software-
Engineering (2015)

6. Quigley, M., Conley, K., Gerkey, B. et al.: ROS: an open-source Robot Operating
System. In: ICRA Workshop on Open Source Software, vol. 3, p. 5 (2009)

7. Völter, M., Stahl, T.: Model-Driven Software Development. Wiley, New York
(2006)

8. Stachowiak, H.: Allgemeine Modelltheorie. Springer, Heidelberg (1973)
9. Raikov, I., Cannon, R., Clewley, R., et al.: NineML: the network interchange for

neuroscience modeling language. BMC Neurosci. 12(Suppl 1), 330 (2011)
10. Gleeson, P., Crook, S., Cannon, R.C., et al.: NeuroML: a language for describing

data driven models of neurons and networks with a high degree of biological detail.
PLoS Comput. Biol. 6(6), e1000815 (2010)

11. Plotnikov, D., Blundell, I., Ippen, T. et al.: NESTML: a modeling language for
spiking neurons. In: Modellierung (2016, to appear)

12. Davison, A.P., Brüderle, D., Eppler, J.M., et al.: PyNN: a common interface for
neuronal network simulators. Front. Neuroinformatics 2(11), 1–10 (2009)

13. Meyerovich L.A., Rabkin, A.S.: Empirical analysis of programming language adop-
tion. In: Proceedings of the ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages & Applications, pp. 1–18. ACM (2013)


	Experiences with Model-Driven Engineering in Neurorobotics
	1 Introduction
	2 The Neurorobotics Platform in a Nutshell
	3 The Potential of Model-Driven Engineering in Neurorobotics
	4 Lessons Learned
	4.1 Inconsistent Understanding of Models
	4.2 Focus the Platform, Not the Generator
	4.3 Model-Driven Tooling Based on Java Platform
	4.4 Customer Value of Model-Driven Artifacts in a Scrum Process
	4.5 Missing Baseline for MDE Benefits

	5 Conclusion
	References


