
Isolating and Reusing Template
Instances in UML

Matthieu Allon1(B), Gilles Vanwormhoudt1,2,
Bernard Carré1, and Olivier Caron1

1 University of Lille, CRIStAL Lab. (UMR CNRS 9189), Villeneuve-d’ascq, France
Matthieu.Allon@etudiant.univ-lille1.fr,

{Gilles.Vanwormhoudt,Bernard.Carre,Olivier.Caron}@univ-lille1.fr
2 Mines-Telecom Institute, Villeneuve-d’ascq, France

Abstract. In MBE, design of systems can be improved and accelerated
thanks to reusable models which are made available in model repositories
or libraries. One answer for designing reusable models is parameterization
as offered by UML templates and their binding relationship. The stan-
dard aims at embracing under the same constructs two distinct kinds of
template usages, namely template instantiation and aspectual binding.
Template instantiation is concerned with the capacity of UML templates
to model generic components (like C++ templates or Java generics) and
produce new models from their binding. Aspectual binding is much more
concerned with the capacity of UML templates to specify functionalities
to inject into models of systems (contexts) which must conform to a
required parameter model. In this paper, we focus on the generative
interpretation of UML template binding. On the basis of a deep analy-
sis of the standard, it will be shown that template binding consists in
template instantiation plus context merging. This allows to isolate the
capacity of instantiating templates (under their generative view) to get
reusable models coming from applicative contexts. Then the possibility
of partial instantiation inspired by partial binding as promoted by the
standard is studied. At a practical level, related functionalities are offered
within Eclipse.

Keywords: UML templates · Aspectual templates · Template binding ·
Partial binding · Template instantiation

1 Introduction

In Model-based Engineering, model reuse is a big challenge that aims to facilitate
the capitalization of technology independent design efforts and logics (“off-the-
shelves” model components libraries [8]) then to accelerate system design and
improve their quality via early checking, by the reuse of proved models. Besides
the composition of model pieces [10,16], another way to face this challenge is
model parameterization [3,9], that is the capacity for a model to expose some
of its elements as parameters, then produce other models through parameter
c© Springer International Publishing Switzerland 2016
A. W ↪asowski and H. Lönn (Eds.): ECMFA 2016, LNCS 9764, pp. 173–187, 2016.
DOI: 10.1007/978-3-319-42061-5 11



174 M. Allon et al.

substitution. This allows to capitalize models of a higher kind which capture
recurrent structure, so that they can be applied (reused) in multiple modeling
contexts.

The UML standard answer to this need is the “template construct” and its
binding relationship. This construct is general enough to support MBE reuse
practices ranging from the representation at a model level of generic software
components (such as C++ templates or Java generics) to the weaving of reusable
functionalities into models, mainly the way aspect-, pattern- and view-oriented
modeling do. In our prior work [18], we contributed to this research by enhancing
the semantics of UML Templates for their aspectual interpretation. This leads to
so called “aspectual templates” whose parameters must form a model of systems
in which to inject the functionalities. This semantics enhancement ensures the
“parameters as a model” requirement and its consistency throughout substitu-
tion and composition mechanisms, notably when binding is partial. Thanks to
this enhancement, UML templates can be better controlled for their aspectual
usage, particularly in case of complex assembly.

In this paper, we concentrate on template instantiation which underlies MBE
practices related to their generative usage, that is the creation of new models
from their generic modeling structure. This calls for the isolation of template
instantiation from standard binding. Given this, consequences on template para-
meters, particularly when they form a model, need to be examined and we do
so by the proper identification of template constituents as submodels. It will be
shown that instantiation can be applied on any templates being aspectual or
not. Similarly to partial binding, partial instantiation is provided when not all
parameters are substituted. A study of this feature is offered and its interest for
producing models with pieces from multiple contexts is presented. More gener-
ally, the isolation of template instances as stated here contributes to increase
UML templates reusability and to enrich template-based MDE facilities [1].

The rest of the paper is structured as follows. After providing background
on UML templates, we present an analysis of template binding in Sect. 3. This
analysis will lead to the isolation of template instantiation. Then, Sect. 4 exam-
ines how instantiation relates to template parameters. Partial instantiation is
studied in Sect. 5. Section 6 describes application of the results in modeling tools.
Before concluding with perspectives, Sect. 7 discusses template instantiation in
existing works.

2 Background on UML Templates

In this section, a reminder on UML templates and their aspectual enhancement
[18] are presented to ground the study.

2.1 UML Template and the Binding Relationship

In UML [13], a template is a model which exposes some of its model elements
as formal parameters using a signature (list of formal parameters). Examples



Isolating and Reusing Template Instances in UML 175

are class or package templates. Graphically, the signature is contained in a small
dashed rectangle on the top right-hand corner of the template symbol. Templates
can be applied, and thus reused to produce other models thanks to parameter
substitution, through the standard binding relationship1. It links a bound model
to a template (from which it was obtained) via a parameter substitution set that
associates formal parameters of the template to actual elements of the bound
model. Constraints of the standard only impose that the type of each actual
model element must be a subtype of the corresponding formal parameter.

Fig. 1. UML package template example

Figure 1 shows an example of UML template and its binding for extending
the model of a system. It shows a package template used to model the observer
pattern parameterized by the Subject and Observer classes, the value property,
the T type and the observers association. The system where the pattern must
be applied represents a car rental agency with its clients and cars. In the figure,
the ObserverPattern template is used to introduce the observer functionality
between Agency and Clients for capacity observation by clients. This design
choice is specified by the binding relationship between the CarHiringSystem
model and the ObserverPattern template with the specified set of substitutions.
As a result of the binding, CarHiringSystem includes the model structure of the
ObserverPattern with respect to substitutions.

Finally, UML allows partial binding. Partial binding occurs when not all
formal template parameters are substituted. For that, the UML specification
states that the unsubstituted formal template parameters are formal template
parameters of the bound element, which is itself a template as a consequence.
Partial binding will be specifically studied in Sect. 5.

2.2 Parameters as a Model

Regarding template parameters, the standard does not require any structuring
between them. The only constraint imposed by UML is the inclusion of the set of
parameters into the set of template elements. Although this choice is permissive,
it is underspecified to capture structuring constraints expected from candidate
models to correctly apply the template functionality.

1 Informally specified in [13], p. 650.



176 M. Allon et al.

value : T

Subject

Fig. 2. Set of parameters vs model of parameters

Figure 2 illustrates the issue. On the left of the figure, a variant of the
Observer template compliant with UML is presented. As expected, all the para-
meters are model elements of the template core but one can observe that they
do not form a consistent model. Indeed, the value property is exposed without
its owning class whereas the latter is required to enable its mapping with a prop-
erty contained in a context class. Similarly, the observers association exposed
as parameter is underspecified because one of its ends (the Subject class) is not
declared as a parameter.

In our previous work [18], we deeply studied the aspectual interpretation of
UML templates with the requirement that parameters have to form a well formed
modeling structure to which candidate models must have to conform. Following
this requirement, we stated a semantical enhancement of UML templates which
consists in enforcing templates to have a full model as parameter. Its aim is
to improve the consistency of templates, notably for aspectual usages, but also
to better specify the model of systems to which the functionalities will apply.
Following this enhancement, the (partial) binding mechanism has been adapted
to enable substitution of the model parameter by a conforming substructure of
the base model.

Right of Fig. 2 gives the enhanced version of the Observer template. One can
observe that the template parameters (see the superimposed dashed box) form
a full model. One can also verify that the structure of this model parameter is
well preserved by the substituted elements of the binding in Fig. 1.

3 Towards Explicit Template Instantiation

In this section, we analyze template binding. We will see that template binding
underlies template instantiation. This analysis will serve to motivate our pro-
posal which consists in isolating template instantiation separately from template
binding. Constraints that template instantiation imposes on the parameters and
the specific case of partial template instantiation will be studied in the next
sections.

In UML, the semantics of the binding relationship is specified as follows:

“The presence of a TemplateBinding relationship implies the same seman-
tics as if the contents of the template owning the target template signature



Isolating and Reusing Template Instances in UML 177

were copied into the bound element, substituting any elements exposed as
a formal template parameter by the corresponding elements specified as
actual parameters in this binding.” ([13], p. 650)

Following this semantics, the bound model resulting from a template bind-
ing can be seen as the merging of an applicative context with the content of
the template after substitutions were made. Figure 3 presents this construction
principle on the scenario presented in Fig. 1. It makes explicit (upper-right in the
figure) the applicative context (car agency) to which both the template and the
intermediate model apply, instance of the template (ObserverPatternInstance
upper-left). It is the context that provides actual elements for the binding.

Fig. 3. Template binding = instantiation + context merging

As represented in Fig. 3, the bound model (ObservableCarHiringSystem) con-
tains all the content of the template instance plus the content of the context.
This can be captured using the standard “merge” relationship from the bound
model to the template instance and the context:

template binding = instantiation + context merging

Following this, once template instances have been isolated, they can be pro-
moted as valuable artifacts of their own and then be reused. This new capacity is
of interest when designers are much more concerned by the construction of new



178 M. Allon et al.

models from templates instead of enriching existing ones. This calls for giving a
much more active role to template instantiation in the modeling space and its
related processes.

As a consequence, we propose to isolate template instantiation from template
binding. For representing template instantiation, we use a relationship named
instantiate. Like the binding relationship, this relation requires a template, a
source modeling context plus a set of parameter substitutions. Its semantics
consists in copying the content of the template and replacing the parameters by
corresponding copies of actual elements from the source model.

Fig. 4. Template instantiation

Figure 4 illustrates template instantiation with the same template and a
source model equal to the context used in Fig. 3. The result of this instanti-
ation is the template instance (ObserverPatternInstance) presented in Fig. 3.
Regarding substitution specified in the instantiate relationship, substituted ele-
ments from the context model must conform to the modeling structure formed
by the parameters. In Fig. 4, one can verify that it is actually the case.

Finally, to isolate the instantiate relationship, we showed the treatment of
template with a well formed parameter model. More generally, how instantiation
relates to the structure of templates needs to be deeply examined. It is the intent
of the next section.

4 Instantiation Regarding Kinds of Templates

To study how instantiation relates to template structure, we decompose a tem-
plate into two complementary constituents: its parameter and its specific sub-
models. Main questions are: which constituent provides the template structure



Isolating and Reusing Template Instances in UML 179

Fig. 5. Template model = parameter + specific submodels

and what are the requirement on template parameters when instantiation is
considered ?

Consider a template with a well formed parameter submodel. It is this sub-
model which provides the modeling structure of the template core. This is illus-
trated in Fig. 5. In this situation, the lack of well-formedness for the specific
model is due to the fact that classes owning the register and update methods are
parameters, so are not part of the specific model.

The observation regarding the well-formedness of template constituents raises
the question of alternative cases. It can be questioned whether a parameter
submodel that is not well formed (respectively a specific model that is well
formed) is of interest and what are the specific usages. Indeed, depending on
the well-formedness or not of each template constituent, other cases can be
considered in addition to the previous one, whether the parameter submodel

Fig. 6. Possible forms of template constituents



180 M. Allon et al.

is well formed or not. Cases when the parameter model is not well formed are
shown in Fig. 6.

Not well formed parameter model, well formed specific model : This case is shown
on top of Fig. 6. Here, it is the specific submodel that is well formed and therefore
provides the modeling structure of the template.

Not well formed parameter model, not well formed specific model : This last case
is illustrated in bottom of Fig. 6. Compared to the previous case, this one has
both submodels which are not well formed. Here, the structure of the template
content is in the template in its entirety.

Table 1 gives a summary of all possible cases of template constituents.

Table 1. Possible forms of template constituents

Specific Model

well formed not well formed

Parameter Model well formed Case 1 Case 2

not well formed Case 3 Case 4

These cases being identified, they can be analyzed with regard to template
instantiation. It is done in the following.

Let us consider cases 1 and 2 corresponding to a well formed parameter
submodel. The situation was examined in Sect. 3. It leads to a resulting model
where the well-formedness of its structure is brought by substituted elements
of the context model. So, similarly to aspectual template binding, instantiation
can be applied to any template having a well formed parameter submodel. This
is an interesting result for the reuse of templates. It means that any template
having this property can be applied both for aspectual and generative usages
depending on the modeling needs.

Let us continue with the two remaining cases corresponding to the situations
where the submodel parameter is not well formed (Fig. 6), regardless of its spe-
cific submodel. Figure 7 shows an example of template instantiation for case 3,
accompanied with the resulting model. As can be observed, the parameter sub-
model is not well formed contrary to the specific model. Thus, in this case, the
template structure is provided by the specific model. Concerning case 4, similar
comments can be made regarding template instantiation. Even if both template
submodels are not well formed, the template they form can be instantiated. To
be convinced, it suffices to modify the status of the Subject class as parameter in
Fig. 7. Despite this change, such a template continues to be applicable through
an instantiate relationship.

The last two cases typically occur when modeling generics (e.g. C++ or Java)
but also in partial template instantiation. Thus, it is important to handle them
and ensure they are treated consistently through template instantiation. The



Isolating and Reusing Template Instances in UML 181

Fig. 7. Template instantiation with a not well formed parameter model

following section specifically studies partial instantiation and concludes on the
comparison between aspectual binding and template instantiation.

5 Partial Instantiation

UML templates allow partial binding when not all parameters are substituted
and unsubstituted ones remain parameters in the resulting model which is there-
fore a template. Partial binding is a powerful feature that allows modelers to
obtain richer templates through the composition of templates. It was deeply
studied in our preceding work [18] for aspectual templates. Following UML prin-
ciples concerning parameter substitution and propagation of the unsubstituted
parameters, partial instantiation can be offered to benefit from additional capac-
ities. It gives the ability to produce new templates from instantiated ones and,
thus, sequences of instantiations. It also enables instantiation in multiple con-
texts.

Figure 8 gives an example of a partial instantiation between the Observer-
Pattern template and the CarHiringSystem model. In this example the Subject,
value and T parameters are bound in the substitution set of the instantiate
relationship while the observers and Observer parameters are unbound. This
figure also shows the result of this partial instantiation which is a new template
named ObservableAgency. For this template, the parameter model contains the
unbound observers and Observer, following the propagation strategy of UML for
unsubstituted parameters.

One observation can be made concerning the propagation of unsubstituted
parameters in the new template. This propagation is achieved with respect to
specified substitution causing adaptation of method parameters. See for example
the substitution of Observer by Resource in the register method of the Agency
parameter, in the ObservableAgencyResource template instance. Depending on



182 M. Allon et al.

Fig. 8. Partial instantiation

the substituted parameters, the resulting template may have a well formed model
as parameter or not.

Templates resulting from partial instantiation can be further applied. They
can help to construct other parts of the same system or serve as valuable artifacts
in order to build parts of new systems. For applying a template resulting from
partial instantiation to a new context, complete or partial instantiation can be
used. Additionally, such a template can also be bound for aspectual usages as
long as their parameter model is well formed. In our example, only instantiation
is enabled because the parameter model is not well formed. Figure 8 shows a
partial instantiation of the obtained template ObservableAgency to get Observ-
ableAgencyResource. This instantiation takes place in a new applicative context
related to stock management. In this instantiation, the Observer and observers
are substituted in order to produce a final model that combines ingredients
from the two modeling contexts. Such a model can be useful for observing state
changes between the two parts.

In this example, it is interesting to highlight that the same result could be
obtained through an alternative sequence of instantiations: first, partially instan-
tiating the ObserverPattern template in the StockManagement context and then
instantiating the intermediate result in the CarHiringSystem context. Moreover,
obtaining the same ObservableAgencyResource model with a complete instanti-
ation would require merging CarHiringSystem and StockManagement models



Isolating and Reusing Template Instances in UML 183

into a single model followed by a complete instantiation of ObserverPattern to
this merged model. These equalities emphasize the compatibility between partial
and complete instantiation and, thus, their consistency.

The preceding example also illustrates successive template instantiations
from an initial template. Along a sequence of instantiations, the set of para-
meters decreases in intermediate templates. This may cause relaxation of struc-
tural constraints on the parameters. Such relaxation has the effect to enlarge
the set of potential elements for substituting parameters in instantiation. This
flexibility at the level of substitution is visible in the previous example. In the
obtained template ObservableAgency, Observer and observers parameters form
a less-constrained structure than their counterpart in the initial template. This
enables mapping them on a larger set of candidate elements when compared
with the initial template.

Table 2 summarizes the situations studied in this paper. It characterizes
applicability and results of examined relationships depending on whether the
template is aspectual or not. This table should help to have a better understand-
ing of the UML Template modeling space, particularly in case where parameters
form a model.

Table 2. Template applicability and kinds of resulting models

Aspectual Template Not Aspectual Template

(Well formed Parameter Model) (Not Well formed Parameter Model)

Applicable ? Kind of Resulting Model Applicable ? Kind of Resulting Model

Aspectual Binding Yes Model No No Resulting Model

Instantiation Yes Model Yes Model

Partial Aspectual Binding Yes Aspectual Template No No Resulting Model

Partial Instantiation Yes Template Yes Template

6 Tool Support

A software environment dedicated to template based model engineering in
Eclipse was previously implemented [18]. This environment2 is composed of plu-
gins which are based on the official EMF (Eclipse Modeling Framework), UML
and OCL plugins. These plugins offer core functionalities to specify and verify
aspectual templates well-formedness but also apply their binding in a compliant
way with the UML plugin thanks to a specific profile. In addition, the plugins
provide general and original facilities to support other modeling tasks targeting
templates or user assistance such as automatic completion of template signature
and binding inference. All the plugins functionalities are reusable in modeling
tools that handle model templates.

2 Eclipse plugins and modeling tool snapshots are available at http://www.cristal.
univ-lille.fr/caramel/MBE Template/

http://www.cristal.univ-lille.fr/caramel/MBE_Template/
http://www.cristal.univ-lille.fr/caramel/MBE_Template/


184 M. Allon et al.

Following the present work, this environment has been extended to include
the capacity of instantiating templates. For that purpose, we added the following
enhancements to existing plugins :

– An adaptation of OCL constraints for checking the consistency of template
parameters and their substitutions when instantiation is applied. The con-
straints applied in that case are a subset of the ones for checking aspectual
templates. These constraints mainly enforce that parameters and the substi-
tuted elements involved in a template instantiation have a compatible struc-
ture.

– An implementation of total and partial instantiation. The implemented algo-
rithm proceeds by copying the core of the template into a new model and
replacing copied parameters by substituted elements from the context model.
Thanks to their compatibility with instantiation, this implementation is also
applicable to aspectual templates.

– An extension of the current profile dedicated to templates with a new stereo-
type related to template instantiation, i.e., InstantiationBinding. It special-
izes the TemplateBinding UML metaclass and provides an OCL context for
applying constraints due to template instantiation.

7 Related Works

This study started from UML template and showed that this concept is a general
construct both for aspect-oriented and generative modeling based on parameter-
ized models. A detailed review of related works regarding aspectual templates
can be found in our previous work [18]. In these works, instantiation is sometimes
mentioned as an underlying mechanism for binding aspectual templates [2,9,15]
but it is not isolated as a full-right mechanism, as studied here. In the following,
we review existing works that explicitly support template instantiation since it
is the focus of this paper.

As already indicated, one motivation for template instantiation is the mod-
eling of generic classes. [5] is a work that studies this need in UML by means
of template classifier. The authors mainly focus on mechanism offered by this
construct for expressing constraints on type parameters of represented generic
classes and checking their substitutability in bindings. The work presented in [7]
addresses the similar modeling need but aims to offer a stronger conformance
for the binding of template classifiers. For that purpose, it proposes a set of
well-formedness rules, additional to that of UML, to enforce the correctness of
bound attributes and methods regarding their types, their membership and some
of their meta-attributes. By offering generic classes similar to Java, Ecore (the
metamodel of EMF) [17] can also be cited as a work dealing with this need.
Thanks to this feature, models expressed in Ecore can contain declaration of
generic classes or use instantiation of generic classes for typing attributes and
methods. This feature also improves the capacities delivered by EMF for code
generation (i.e., generate generic code).



Isolating and Reusing Template Instances in UML 185

The Catalysis approach [6] proposes model frameworks in order to design
reusable packages. A model framework is a form of parameterized package con-
taining placeholders which are names that can be substituted with actual type
names when the framework is instantiated. Each instantiation of the framework
provides its own substitution of the placeholders. The names of attributes and
associations of placeholder types are themselves placeholders. This approach,
based on string substitution, is realized in the XMF tool.

[14] studies the support of genericity in component models. This work pro-
poses a structural pattern to extend an existing component model with con-
cepts for genericity. With this pattern, a component model can be made generic
through parametrization. Elements that can be exposed as parameters are types
of input and output ports, types of component implementation and the number
of nested subcomponents. This work also introduces an algorithm to instantiate
a generic component model. The use of the pattern is demonstrated by extending
the SCA component model.

In [11], the authors present a notion of model template and its instantiation
mechanism in the context of the MetaDepth framework. In this work, a model
template specifies its generic modeling structure by means of the “concept” con-
struct which is a separate model expressing both the parameters and a set of
structural requirements on these parameters. In some way, the “concept” con-
struct is related to the notion of “parameters as a model” and has a similar
purpose but it is not part of the template body. Instantiation of a model tem-
plate is done by importing substituted elements from a model conforming to the
concept into a new model constructed from the template body.

Compared to these works, the present contribution differs on several main
points. First, only one of the existing works [5] takes place inside the scope of
standard UML but only for template classifiers. Second, all these works except
[11] do not consider template parameters as a fully structured model. As dis-
cussed in the paper, this requirement allows us to overcome possible inconsisten-
cies when instantiating templates. It also provides a way to better characterize
and control the usages of templates during processes. A last difference between
the present work and existing ones is related to partial instantiation. To our
knowledge, no existing approach offers capacities comparable to this feature. As
a result, interesting capacities are enabled like instantiation of template in mul-
tiple contexts or the construction of complex assembly, mixing aspectual and
generative usages of templates through partial binding and instantiation.

8 Conclusion

Starting from UML templates and their binding relationship, this work isolated
instantiation of templates with “parameters as a model”. As a consequence, new
capacities were offered for the reuse of templates and the construction of new
models from their complete or partial instantiation. This work also provided a
characterization of the resulting UML Template modeling space. More generally,
it contributes to enrich template-based MDE capacities.



186 M. Allon et al.

In future work, we plan to focus on order and equivalence of instantiation
sequences, the way we did in one of our works [12] for aspectual binding. Another
interesting perspective to investigate is the study of alternative strategies for
unsubstituted parameters, like no propagation or the use of default values for
them. Lastly, we are working on the formalization of the template construct by
exploiting our previous work on model inclusion and the notion of submodel
[4]. We expect this formalization will help to achieve a better theoretical under-
standing and generalization of template for the quest of model reuse.

Acknowledgement. We would like to thank the anonymous reviewers for their work
and comments in order to improve the presentation of the results.

References

1. Allon, M., Vanwormhoudt, G., Carré, B., Caron, O.: Template based MDE.
In: 4ème Conférence en Ingénierie du Logiciel (CIEL 2015) (2015). https://hal.
archives-ouvertes.fr/hal-01162652

2. Berg, H., Møller-Pedersen, B.: Type-safe symmetric composition of metamodels
using templates. In: Haugen, Ø., Reed, R., Gotzhein, R. (eds.) SAM 2012. LNCS,
vol. 7744, pp. 160–178. Springer, Heidelberg (2013)

3. Bottoni, P., Guerra, E., de Lara, J.: A language-independent and formal approach
to pattern-based modelling with support for composition and analysis. Inf. Softw.
Technol. 52(8), 821–844 (2010)

4. Carré, B., Vanwormhoudt, G., Caron, O.: From subsets of model elements to sub-
models, a characterization of submodels and their properties. Softw. Syst. Model.
14, 861–887 (2015)

5. Cuccuru, A., Radermacher, A., Gérard, S., Terrier, F.: Constraining type para-
meters of UML 2 templates with substitutable classifiers. In: Schürr, A., Selic, B.
(eds.) MODELS 2009. LNCS, vol. 5795, pp. 644–649. Springer, Heidelberg (2009)

6. D’Souza, D., Wills, A.: Catalysis: Objects, Components, and Frameworks with
UML. Object Technology Series. Addison-Wesley, Boston (1998)

7. Farinha, J., Ramos, P.: Extending UML templates towards computability. In: Pro-
ceedings of the 3rd International Conference on Model-Driven Engineering and
Software Development (MODELSWARD 2015), pp. 122–133. SciTePress, Febru-
ary 2015

8. Herrmannsdörfer, M., Hummel, B.: Library concepts for model reuse. Electr. Notes
Theoret. Comput. Sci. 253(7), 121–134 (2010)

9. Klein, J., Kienzle, J.: Reusable aspect models. In: 11th Aspect-Oriented Modeling
Workshop, Nashville. Citeseer (2007)

10. Whittle, J., Jayaraman, P., Elkhodary, A., Moreira, A., Araújo, J.: MATA: a uni-
fied approach for composing UML aspect models based on graph transformation.
In: Katz, S., Ossher, H., France, R., Jézéquel, J.-M. (eds.) Transactions on Aspect-
Oriented Software Development VI. LNCS, vol. 5560, pp. 191–237. Springer, Hei-
delberg (2009)

11. de Lara, J., Guerra, E.: From types to type requirements: genericity for model-
driven engineering. Softw. Syst. Model. 12(3), 453–474 (2013)

12. Muller, A., Caron, O., Carré, B., Vanwormhoudt, G.: On some properties of para-
meterized model application. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA
2005. LNCS, vol. 3748, pp. 130–144. Springer, Heidelberg (2005)

https://hal.archives-ouvertes.fr/hal-01162652
https://hal.archives-ouvertes.fr/hal-01162652


Isolating and Reusing Template Instances in UML 187

13. OMG: Auxiliary Constructs Templates, Chap. 17. UML 2.4.1 Superstructure Spec-
ification (2011)

14. Bigot, J., Pérez, C.: Increasing reuse in component models through genericity.
In: Edwards, S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS, vol. 5791, pp. 21–30.
Springer, Heidelberg (2009)

15. Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., McEachen, N.,
Song, E., Georg, G.: Directives for composing aspect-oriented design class models.
In: Rashid, A., Akşit, M. (eds.) Transactions on Aspect-Oriented Software Devel-
opment I. LNCS, vol. 3880, pp. 75–105. Springer, Heidelberg (2006)

16. Melnik, S., Bernstein, P.A., Halevy, A., Rahm, E.: A semantics for model manage-
ment operators. Microsoft Technical report, pp. 1–12 (2004)

17. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling
Framework. Addison-Wesley, Reading (2008)

18. Vanwormhoudt, G., Caron, O., Carré, B.: Aspectual templates in UML. In:
Software and Systems Modeling, pp. 1–29 (2015). http://dx.doi.org/10.1007/
s10270-015-0463-3

http://dx.doi.org/10.1007/s10270-015-0463-3
http://dx.doi.org/10.1007/s10270-015-0463-3

	Isolating and Reusing Template Instances in UML
	1 Introduction
	2 Background on UML Templates
	2.1 UML Template and the Binding Relationship
	2.2 Parameters as a Model

	3 Towards Explicit Template Instantiation
	4 Instantiation Regarding Kinds of Templates
	5 Partial Instantiation
	6 Tool Support
	7 Related Works
	8 Conclusion
	References


