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Abstract. Many applications in Model-Driven Engineering involve
processing multiple models or metamodels. A good example is the com-
parison and merging of metamodel variants into a common metamodel
in domain model recovery. Although there are many sophisticated tech-
niques to process the input dataset, little attention has been given to
the initial data analysis, visualization and filtering activities. These are
hard to ignore especially in the case of a large dataset, possibly with out-
liers and sub-groupings. In this paper we present a generic approach for
metamodel comparison, analysis and visualization as an exploratory first
step for domain model recovery. We propose representing metamodels in
a vector space model, and applying hierarchical clustering techniques to
compare and visualize them as a tree structure. We demonstrate our app-
roach on two Ecore datasets: a collection of 50 state machine metamodels
extracted from GitHub as top search results; and ∼100 metamodels from
16 different domains, obtained from AtlanMod Metamodel Zoo.

Keywords: Model-Driven Engineering · Model comparison · Vector
space model · R · Hierarchical clustering

1 Introduction

Model-Driven Engineering (MDE) promotes the use of models and metamod-
els as first-class artefacts to tackle the complexity of software systems [15]. As
MDE is applied for larger problems, the complexity, size and variety of models
increase. With respect to model size, the issue of scalability has been pointed
out by Kolovos et al. [15]. However, scalability with respect to model variety
and multiplicity (i.e. dealing with a large number of different models) is also an
important issue, and has been diagnosed by Klint et al. as an interesting aspect
to explore [14]. There are many approaches to fundamental operations such as
model comparison [25] and matching [16]; applied to problems such as model
merging [8], versioning [3] and clone detection [9]; however those mainly focus
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on pairwise and ‘deep’ comparison of models to achieve high accuracy for a very
small number of models. [23] further discusses the inadequacy of pairwise com-
parison for multiple models and proposes an N-way model merging algorithm.

Indeed, many problems in MDE involve processing a potentially large num-
ber of models. Some good examples are domain model recovery from several
candidate (meta-)models [14], metamodel recovery [13] and family mining for
Software Product Lines (SPL) from model variants [11]. A further problem can
be given in the context of our ongoing project for a flexible multiphysics engineer-
ing simulation framework, where the domain contains an overwhelming number
of tools [5], making it difficult to extend manual model extraction efforts such
as in [6] to cover the whole domain.

We are interested in the case where a common (meta-)model is reverse engi-
neered out of several candidate (meta-)models. For this paper we focus par-
ticularly on metamodel comparison and clustering; however our techniques are
generic and thus applicable for the general model comparison and clustering
problems. In essence, we treat metamodels as instances of the meta-metamodel.
Having said that, the rest of the paper uses this convention. We argue that, as
the number and variety of input metamodels gets larger, the initial data analysis
and preprocessing step gets more and more relevant and necessary. This in turn
calls for a need to inspect the dataset for an overview, identify potential rela-
tions between them such as proximities, cluster formations, outliers, etc. This
information can be used potentially for filtering noisy data, for grouping meta-
models, or even for determining the order of processing for a pairwise metamodel
merging or SPL generation algorithm (see [23] for a discussion on how pairwise
comparison order affects the outcome of merging multiple models).

In this paper, we present a continuation of our previous study [4]. We propose
hierarchical clustering for comparative analysis and visualization of the dataset
as a first explorative step in domain model recovery. We apply techniques from
the Information Retrieval (IR) and unsupervised machine learning domains in
the MDE context. In IR, a vector space model (VSM) is used to represent text
documents, with vector elements corresponding to word occurrence (incidence)
or frequency. We borrow this concept to represent metamodels as vectors of
the unigrams from metamodel element identifiers. We apply an array of NLP
techniques and weighting schemes to further improve the VSM and reduce the
metamodel comparison problem into distance calculation between points in the
vector space. We then use the R statistical software [20] to hierarchically cluster,
analyse and visualize the dataset as a hierarchical structure. We demonstrate our
approach on two Ecore datasets: a collection of 50 state machine metamodels
extracted from GitHub as top search results, and ∼100 metamodels from 16
different domains, obtained from AtlanMod Metamodel Zoo.

Objectives. The purpose of this study is to answer the following questions:

– RQ1. How can we represent metamodels for large-scale comparative analysis?
– RQ2. How can we analyse, compare and visualize a large set of metamodels?



Hierarchical Metamodel Clustering 5

2 Preliminaries: Information Retrieval and Clustering

Information Retrieval [19] has a long history of developments in dealing with
effectively indexing, analyzing and searching various forms of content including
natural language text documents. As a first step for document retrieval in gen-
eral, documents are collected and indexed via some unit of representation. Index
construction can be implemented using models ranging from boolean indices to
complex neural networks. One such model is the vector space model (VSM) with
the following major components:

– A vector representation of (binary) occurrence of the vocabulary in a docu-
ment, named term incidence;

– Optionally zones (e.g. ‘author’ or ‘title’ zones separate from the text bodies),
– Optionally weighting schemes to be used as multipliers such as:

• inverse document frequency (idf) (see Sect. 3.1) to increase the discrimi-
native effect of rare words,

• zone weights, e.g. higher for important zones,
– Optionally Natural Language processing (NLP) techniques such as:

• methods for handling compound terms, e.g. tokenization or multi-word
similarity measures,

• methods for detecting synonyms, hyponyms, and semantically related
words, e.g. use of a stemmer or WordNet1.

The VSM allows transforming each document into an n-dimensional vector,
thus resulting in an m × n matrix where m is the number of documents and n
is the size of the vocabulary.

Once the VSM is constructed, the similarity of documents can be defined as
the distance between these vectors. There exist several distance a.k.a. similarity
measures, such as Euclidian, Cosine or Manhattan, to be chosen considering the
underlying problem domain and dataset. VSM with a selected distance measure
is the prerequisite for identifying similar groups of documents in the vector space.
This unsupervised machine learning technique is called clustering. Among many
different clustering methods [12,19], there is a major distinction between flat
clustering and hierarchical clustering. Flat clustering needs a pre-specified num-
ber of clusters and results in a flat assignment of each document into one cluster.
Hierarchical clustering, on the other hand, does not require a pre-specified num-
ber of clusters, and outputs a hierarchy of proximities; it thus is more flexible and
informative than flat clustering. Specifically, hierarchical agglomerative cluster-
ing (HAC) outputs a nested tree structure called dendrogram, which is suitable
for visualization and manual inspection. As can be seen in Fig. 3, the leaves of
the dendrogram represent data points, and each merge is represented by a hor-
izontal line. The height of the merge point corresponds to the distance (inverse
similarity) of the data points and/or subclusters.

The HAC algorithm calculates the pairwise distances of all the points in the
dataset. In a bottom-up manner, it starts with each data point in a separate

1 https://wordnet.princeton.edu/.

https://wordnet.princeton.edu/


6 Ö. Babur et al.

Fig. 1. Overview of our approach.

cluster and recursively merges similar points/clusters into bigger clusters. There
is a further parameter for HAC for determining how this merge is decided with
respect to the inter-cluster distance: single-link assumes cluster distance is the
maximum similarity of any individual points in two clusters, while complete and
average-link are the correspondingly minimum and average similarity.

3 Method for Metamodel Clustering

In this section, we elaborate our approach on a small example. The method is based
on that in [4], extended with various features. We put emphasis on NLP aspects
and real datasets, and as a result choose to use unigrams (item 2(a) below) rather
than bigrams (sequence of two related unigrams, e.g. a class X with its attribute
Y). The readers are referred to Sect. 5.1 for a short discussion on this choice. An
overview of our approach is given in Fig. 1 with the main steps as:

1. Obtaining input dataset
(a) Obtaining a set of metamodels with the same type, e.g. Ecore metamodels

in our case, to be analyzed,
2. Creating VSM representation
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(a) Generating the unigram vocabulary (i.e. the element identifiers) from the
input metamodels and the unigram types (similar to zones in IR) from the
meta-metamodel (the generic Ecore meta-metamodel in our case, rather
than lower level domain-specific ones),

(b) Expanding the unigrams with tokenization, and then filtering e.g. stop-
words,

(c) Detecting synonyms and relatedness amongst tokens,
(d) Utilizing a synonym and type matching mechanism/threshold,
(e) Utilizing an idf and type-based weighting scheme,
(f) Calculating the term incidence matrix,

3. Clustering
(a) Picking a distance measure and calculating the vector distances,
(b) Applying hierarchical clustering over the VSM,
(c) Visualizing the resulting dendrogram for manual inspection.

A Small Example Dataset. Here we introduce a small dataset of Ecore-based
metamodels. In contrast to [4], we build this work directly on Ecore, though
we extract a subset of the metamodel elements (see Sect. 3.1). Here we gather
4 metamodels related to state machines, selected from our first case study
(Sect. 4.1). The dataset, depicted in Fig. 2, consists of two plain finite state
machine (FSM) metamodels; one hierarchical FSM metamodel (the latter has
the package name FSM though); and one data flow metamodel.

3.1 Representation as VSM

Generating the unigram vocabulary. From the input metamodels and Ecore
meta-metamodel, we construct a typed unigram vocabulary. We adopt a bag
of words representation for the vocabulary, where each item in the vocab-
ulary is considered individually, discarding the context and order. The type
information comes from Ecore ENamedElements, i.e. identifiers: we get the
set {EPackage, EDataType, EClass, EAttribute, EReference, EEnum,
EEnumLiteral and EDataType}. Next, we use the EMF Reflexive API (in
Java) to recursively go over all the content for each metamodel element to extract
the union of unigrams. The first metamodel in Fig. 2 would yield Metamodel 1
= {FSM(EPackage), StateMachine(EClass), transitions(EReference),
states(EReference), name(EAttribute), . . . }. Note that several parts of
Ecore are deliberately not included in the unigram generation such as EAnno-
tations and OCL constraints. These are negligible in our case studies, might
require further techniques, and are left as future work.

Vocabulary expansion with tokenization, and then filtering. As identifiers in the
metamodels typically are compound names (similar to source code identifiers),
we apply tokenization and turn compound names into their tokens to include the
vocabulary. We use the Identifier Name Tokenization Tool2 for implementing this

2 https://github.com/sjbutler/intt.

https://github.com/sjbutler/intt
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(a) Metamodel 1 (b) Metamodel 2

(c) Metamodel 3 (d) Metamodel 4

Fig. 2. Example dataset.

functionality. The types of the original identifiers are retained in the tokens. The
expansion of StateMachine(EClass) for instance would yield State(EClass)
and Machine(EClass) unigrams. Afterwards we apply a set of filters for the
tokens: removal of stop words such as ‘of ’ and ‘from’, removal of overly short
tokens (< 3 characters) and ones consisting of only digits. Note that having done
this tokenization step, we use term and token interchangeably for this paper. It
is also noteworthy to mention that tokenization reduces the vector space for
large datasets significantly: e.g. from 7507 to 5842 for case study 2 (Sect. 4.2).
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This contributes to the scalability of the approach with respect to the growing
size of the dataset.

NLP techniques for synonym and relatedness detection. For the synonym and
relatedness detection, we use another array of techniques after normalizing all
the tokens into lower case. First of all, we use a Porter Stemmer (Java imple-
mentation3) for comparing word stems (e.g. ‘located’, ‘location’ and ‘locations’
have the common stem ‘locat’ and therefore are considered synonyms. Next we
measure the normalized Levenshtein distances of the tokens, and consider close
words (< 0.1 difference) as synonyms. This allows for approximate string match-
ing, tackling e.g. small typos. Finally, tokens which have a WordNet4 WuP sim-
ilarity score above a certain threshold (0.8 for the examples here) are considered
synonyms. We use the WS4J Java library5 for this calculation.

Unigram matching scheme. We further use a type matching and synonym match-
ing scheme. When comparing two typed unigrams, we add a reducing multiplier
of 0.5 for non-exact type matches and use the similarity score as a reducing multi-
plier for synonym matching. As an example a typed unigramname(EAttribute)
would yield 1 when matched against itself, while yielding 0.5 ∗ 0.88 = 0.44 against
label(EReference), where 0.88 is the WordNet WuP similarity score of ‘name’
and ‘label’. As mentioned before, a detailed evaluation of different values and para-
meter settings is out of scope for this paper and left as future work.

Idf and type weighting scheme. The similarity calculation described above gives
a score in the range [0, 1] for each metamodel-token pair. On top of this, we
apply a weighting scheme on the term incidence matrix, which includes two
multipliers: an inverse document frequency (idf) and a type (zone) weight. The
idf of a term t is used to assign greater weight to rare terms across metamodels.
Idf as the normalized log is defined as:

idf(t) = log10

(
1 +

# total metamodels
# metamodels with the term t

)
(1)

Furthermore, a type weight is given to the unigrams representing their seman-
tic importance. We use a similar scheme as in [4], this time for all the Ecore
ENamedElements listed above. We claim, for instance, that classes are seman-
tically more important than attributes, thus deserve a greater weight. We have
used this experimental scheme for this paper:

typeWeight(t, w) : {EPackage → 1.0,EDataType → 0.2,EClass → 1.0,
EReference → 0.5,EAttribute → 0.3,EEnum → 1.0,

EEnumLiteral → 1.0,EOperation → 0.5,EParameter → 0.1}
3 http://tartarus.org/martin/PorterStemmer/.
4 https://wordnet.princeton.edu/.
5 https://github.com/coriane/ws4j.

http://tartarus.org/martin/PorterStemmer/
https://wordnet.princeton.edu/
https://github.com/coriane/ws4j
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A part of the resulting matrix where all the preprocessing steps above have
been done, and the term incidences have been multiplied by idf and weights, is
given in Table 1.

Table 1. Idf and type weighted term incidence matrix.

Metamodel FSM State Machine source label Initial Channels . . .

M1 0.35 0.15 0.15 0.09 0.05 0.15 0 . . .

M2 0 0.15 0.15 0.09 0.05 0.15 0 . . .

M3 0 0.15 0.15 0.09 0.04 0.15 0 . . .

M4 0 0.15 0.15 0 0.04 0.15 0.18 . . .

3.2 Clustering

Picking a distance measure and calculating the distance matrix. As the next step
of our approach, we reduce the metamodel similarity problem into a distance
measurement of the corresponding vector representations of metamodels. We
had previously suggested to pick Manhattan distance [4]. In common natural
language text retrieval problems however, cosine distance is used most frequently.
Based on the empirical comparisons between the two and the fact that cosine
distance is a length normalized metric in the range [0, 1] (while Manhattan
is not), we choose to use cosine distance for our current work. A quantitative
evaluation of the various framework parameters such as distance measure and
their effect on clustering is left as future work. p and q being two vectors of n
dimensions, cosine distance is defined as:

cosineDistance(p, q) = 1 − p · q
‖ p ‖‖ q ‖ = 1 −

∑n
i=1 piqi√∑n

i=1 p
2
i

√∑n
i=1 q

2
i

. (2)

To be used by the hierarchical clustering, we calculate the pairwise distance
matrix of all the models. The distance matrix for the example dataset is given
in Table 2. We use the lsa package in R for this computation [27].

Hierarchical clustering and visualization. We apply agglomerative hierarchical
clustering over the VSM to obtain a dendrogram visualization. We used the
hclust function in the stats package [20] with average linkage to compute the
dendrogram. The interpretation of this diagram depicted in Fig. 3 is as follows:
the red and green dotted line at heights 0.3 and 0.6 (manually inserted by us)
denote horizontal cuts in the dendrogram. Metamodel 4, which stays far above
the cut, can be considered as a clear outlier. Depending on the requirements
and interpretation of the user, Metamodels 1–3 can be considered to be in one
single cluster (i.e. dendrogram cut at height = 0.6) or just Metamodels 2 and 3
(i.e. cut at height = 0.3).
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Table 2. Pairwise distance matrix.

M1 M2 M3

M2 0.61

M3 0.56 0.10

M4 0.72 0.81 0.79
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Fig. 3. Dendrogram of the examples.
(Color figure online)

4 Case Studies

We introduce two case studies to demonstrate the feasibility of our approach.

4.1 Case Study 1 - GitHub Search Results

Dataset design. For this case study, we searched GitHub6 on 11.02.2016 for
Ecore metamodels using the search terms ‘state machine extension:ecore’ and
extracted the top 50 results out of 1089 (code) results in total, sorted by Best
Match criteria. The search facility of GitHub has an internal mechanism for
indexing and retrieving relevant text files. Although the intention of this search
is to obtain various types of state machine metamodels, we expect to get a
heterogeneous dataset, and apply clustering to give an overview of the results.

Objectives. This case study aims to demonstrate the applicability of our app-
roach in a large dataset of a single domain (i.e. state machines), with possi-
ble duplicates, outliers, and subdomains. We are eventually interested in large
(i.e. > 3 data points) groups of closely similar (e.g. cosine distance < 0.8) meta-
models and wish to exclude the outliers. The fact that the we obtain metamodels
through searching in GitHub also leads to a secondary objective of metamodel
searching and exploration (e.g. for reuse, in the sense of traversing a reposi-
tory/search results and finding the desired metamodels).

Results. Figure 4 shows the resulting dendrogram. We have visually identified
and labelled the clusters from 1 to 5. Cluster 1 composes of two very similar
(distance < 0.1) groups of duplicate metamodels (distance = 0) as basic FSMs
with states, transitions and associations. In Cluster 2, there are two groups of
UML-labelled metamodels with controller elements, triggers, etc. Cluster 3 has
metamodels with specializations such as initial and final states, while Cluster 4
6 https://github.com.

https://github.com
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Fig. 4. Dendrogram of the first dataset.

has hierarchical state machines with composite states (Metamodel 23 is a false
positive: it is labelled NHSM - non-hierarchical and is yet put in this cluster).
Cluster 5 has duplicate metamodels labelled as AUIML with agents, messages,
etc. and is clearly separate from the rest of the clusters. Outliers include a
metamodel with identifiers in French (22), a train behaviour metamodel (2),
the dataflow metamodel as given in the example dataset (34) and so on. The
models 45, 46, 39 and 41 are deliberately not considered as a cluster due to the
requirements we set above regarding cluster size and maximum distance.

4.2 Case Study 2 - AtlanMod Metamodel Zoo

Dataset design. For this case study, we used a subset of the Ecore metamodels
in the AtlanMod Ecore Metamodel Zoo7. The Zoo is a collaborative open repos-
itory of metamodels in various formalisms including Ecore, intended to be used
as experimental material by the MDE community. The repository itself has a
wide range of metamodels from different domains; e.g. huge metamodels for pro-
gramming languages or small class diagram examples for specific problems. We
manually selected a subset of 107 metamodels, from 16 different domains. The
domain labels are mostly retained as labelled in the repository. Table 3 depicts
the domain decomposition. The cell below each domain shows the total number
of metamodels in that domain, and the corresponding identifiers used in the
resulting dendrogram in Fig. 5.

Objectives. This case study aims to demonstrate the applicability of our app-
roach in a large dataset of multiple domains and subdomains. The domains are
chosen to be in a wide range, hence the clustering is meant to show the groups

7 http://web.emn.fr/x-info/atlanmod/index.php?title=Ecore.

http://web.emn.fr/x-info/atlanmod/index.php?title=Ecore
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Table 3. Number of metamodels in each domain in case study 2

Bibliography Conference Business process Bug tracker Multi-agent ADL

8(1–8) 14(9–22) 6(23–28) 3(29–31) 2(32–33) 15(34–48)

Build Tool Data Warehouse Database Office Performance SBVR

5(49–53) 6(54–59) 5(60–64) 10(65–74) 3(75–77) 4(78–81)

Soft. Process State Machine Petri Net Use Case Total

3(82–84) 8(85–92) 11(93–103) 4(104–107) 107

and subgroups in the dataset in a bird’s eye point of view. The fact that the
metamodels reside in a well-known repository also leads to a side-objective of
model repository management and exploration.

Results. Figure 5 shows the resulting dendrogram. We have visually identified
and labelled the clusters from 1 to 16. Let us summarize a part of this dendro-
gram. Cluster 1 (multi-agent) is recognizable as a separate small cluster from the
rest of the dataset. Clusters 2 (petri nets) and 3 (state machines) reside as sib-
ling branches. Similarly, clusters 4 (bibliography) and 5 (conference) are clearly
detectable as sibling clusters. Cluster 6 and to some extent 8 are a mixture of
individual metamodels from different domains, therefore are erroneous according
to our initial categorization. Cluster 7 is of build tools. Cluster 9 (database) is in
close proximity to the big cluster 10 (office), the latter of which can be decom-
posed into two subclusters (left subtree as Word, and right as Excel). Clusters
11–16 correspond to various remaining domains with varying percentages of false
positives.

As an external measure of cluster validity, we employ the F0.5 measure. Given
k as the cluster labels found by our algorithm, l as the reference cluster labels
and cluster pairs as the pairs of data points in the same cluster, F0.5 can be
defined as:

F0.5(k, l) =
1.25 ∗ Precision(k, l) ∗ Recall(k, l)
0.25 ∗ Precision(k, l) + Recall(k, l)

(3)

Precision(k, l) =
| cluster pairs in k ∩ cluster pairs in l|

| cluster pairs in k| (4)

Recall(k, l) =
| cluster pairs in k ∩ cluster pairs in l|

| cluster pairs in l| (5)

The reason for selecting this measure is that the Fβ measure is more common
than e.g. purity or the Rand index in the software engineering community, and
that we value precision higher than recall; hence the F0.5 variant. According to
this formula, and using the R package clusteval [21] for the co-membership
table computation, we obtain an F0.5 score of 0.73 for our manual clustering.
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Fig. 5. Dendrogram of the second dataset.
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5 Discussion

This paper improves our previous work in [4] considerably, in terms of NLP fea-
tures and case studies on real datasets. Based on the two case studies, we confirm
our previous claim that a statistical perspective on the comparative analysis
and visualization of large datasets seems promising. We make a step towards
the handling of large datasets. Using VSM allows a uniform representation of
metamodels for statistical analysis, while the accompanying idf and type-based
weighting scheme yields a suitable scaling in the vector space (RQ1). Using
a distance measure and hierarchical clustering over VSM, many characteristics
and relations among the metamodels, such as clusters, subclusters and outliers,
can be analyzed and visualized via a dendrogram (RQ2).

Particularly for the first case study, it is clearly noticeable that there are
distinct outliers and groupings in the search results. This information can be
used for instance by a domain model recovery tool to improve the quality of the
domain model. Furthermore, the model search functionality, either in GitHub
or a specialized model search engine such as [18], can improve the navigation or
precision of the search results. The second case study, on the other hand, deals
with a heterogeneous set of domains and allows identifying domains, subdomains
and also the proximities between related ones. We achieve a F0.5 score of 0.73
from our manual clustering, which can be considered quite high for such a het-
erogeneous dataset. This grouping information can be used for domain model
recovery as well as model repository management scenarios.

An advantage of our approach is the scalability and tool support. The algo-
rithm complexities range from linear (e.g. VSM construction) to polynomial
(hierarchical clustering) with respect to the size of the dataset and of the meta-
models in it. Indeed this technique, and more advanced versions thereof, have
already been in widespread use in IR for document retrieval and clustering of
large collections of data. Moreover, R provides a plethora of efficient and flexi-
ble statistical libraries for analysis. (Meta-)metamodel-based construction of the
unigram vocabulary and tokenization provides a good amount of reduction in
vector space, improving over basic IR indexing. Finally we would like to repeat
and emphasize that, although we used the term ‘metamodel’ clustering through-
out the paper (because of the datasets we chose), we regard the metamodels as
instances of the Ecore meta-metamodel, thus simply as models. Thus we deal
with the generic problem of model comparison and clustering.

5.1 Threats to Validity

There are several threats to validity for this study. First of all, the NLP tech-
niques employed might not be accurate enough and need to be improved with
features such as context-sensitivity and a domain-specific thesaurus. The fact
that we regard metamodel identifiers as bag of words and unigrams, thus ignor-
ing structural relations such as containment and inheritance and semantics, could
reduce the accuracy and applicability of our approach in some scenarios. Ignor-
ing the multiplicities and modifiers (e.g. abstract) of model elements also might
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lead to a similar shortcoming. Furthermore, the datasets we used are assembled
by us; actual datasets that are used in domain model recovery or SPL extrac-
tion should be investigated to compare the results. The visualization and manual
inspection approach could limit our approach (as it is now) for larger datasets
(e.g. > 1000 items) and further reduction and visualization techniques might be
needed. Last but not the least, the quantitative comparison of the accuracy of
different combinations of parameters/components in virtually every step of our
approach, and automation of this process would relieve the user from the effort
of trial-and-error exploration of the parameters.

6 Related Work

Only a few model comparison techniques consider the multiplicity of input
models without doing pairwise comparisons, such as N-way merging based on
weighted set packing [23]. Feature model extraction [24] and concept mining [1]
use NLP to cluster features/concepts. Another technique proposes building
domain ontologies as the intersection of graphs of APIs [22], but does not focus
on the statistical dimension of problem. Metamodel recovery [13] is another
approach which assumes a once existing (but somehow lost) metamodel, and
does not hold for our scenario. A technique similar to ours is applied specifi-
cally for business process models using process footprints [10], and thus lacks
the genericness of our approach. Note that a thorough literature study beyond
the technological space of MDE, for instance regarding data schema matching
and ontology matching/alignment, is out of scope for this paper and is therefore
omitted.

Clustering is considered in the software engineering community mostly within
a single body of code [17] or model [26]. A related technique uses clustering for
the visualization of Simulink model clones according to the percentage differences
and patterns among clones [2]. A very recent approach, which we encountered
after publishing our early work, is presented by Basciani et al. [7]. They share
most of our objectives, though focusing on repository management. Moreover
they use cosine distance of term vectors representing models and HAC for visu-
alization of metamodel repositories. However, they do not report in detail the
NLP techniques (e.g. synonym checking) or IR techniques (e.g. weighting) they
use. It is left as future work to compare their approach with ours.

7 Conclusion and Future Work

In this paper, we have presented a new perspective on the N-way comparison
and analysis of models as a first step in domain model recovery. We have pro-
posed a generic approach using the IR techniques VSM and tf-idf enhanced with
NLP techniques to uniformly represent multiple metamodels, and apply hierar-
chical clustering for comparative analysis and visualization of a large dataset.
We demonstrated our approach on two real datasets; one of top search results
from GitHub and another from the AtlanMod Metamodel Zoo. The results, both
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qualitatively for both case studies and quantitatively for the second case study,
indicate that our generic and scalable approach is a promising first step for
analysing large datasets of models or metamodels.

As future work, we definitely wish to address the points listed as threats to
validity. Most notably, the efficiency of different parameters and components of
our approach such as various weighting and idf schemes, distance measures and
clustering algorithms can be quantitatively evaluated and compared. Another
crucial improvement is to incorporate into the analysis both structure and con-
text information (either as n-grams, or tree/graphs) as well as semantics of the
metamodel elements. Furthermore, one could investigate the application of our
approach for different formalisms such as UML models, and different problems
such as model versioning, model merging and model clone or pattern detection.
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