
 123

LN
CS

 9
76

4

12th European Conference, ECMFA 2016
Held as Part of STAF 2016
Vienna, Austria, July 6–7, 2016, Proceedings

Modelling Foundations
and Applications

Andrzej Wasowski
Henrik Lönn (Eds.)

Lecture Notes in Computer Science 9764

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Andrzej Wąsowski • Henrik Lönn (Eds.)

Modelling Foundations
and Applications
12th European Conference, ECMFA 2016
Held as Part of STAF 2016
Vienna, Austria, July 6–7, 2016
Proceedings

123

Editors
Andrzej Wąsowski
IT University of Copenhagen
Copenhagen
Denmark

Henrik Lönn
Volvo Group Trucks Technology
Gothenburg
Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-42060-8 ISBN 978-3-319-42061-5 (eBook)
DOI 10.1007/978-3-319-42061-5

Library of Congress Control Number: 2016943463

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Foreword

Software Technologies: Applications and Foundations (STAF) is a federation of
leading conferences on software technologies. It provides a loose umbrella organization
with a Steering Committee that ensures continuity. The STAF federated event takes
place annually. The participating conferences may vary from year to year, but all focus
on foundational and practical advances in software technology. The conferences
address all aspects of software technology, from object-oriented design, testing,
mathematical approaches to modeling and verification, transformation, model-driven
engineering, aspect-oriented techniques, and tools.

STAF 2016 took place at TU Wien, Austria, during July 4–8, 2016, and hosted the
five conferences ECMFA 2016, ICGT 2016, ICMT 2016, SEFM 2016, and TAP 2016,
the transformation tool contest TTC 2016, eight workshops, a doctoral symposium, and
a projects showcase event. STAF 2016 featured eight internationally renowned keynote
speakers, and welcomed participants from around the world.

The STAF 2016 Organizing Committee thanks (a) all participants for submitting to
and attending the event, (b) the program chairs and Steering Committee members of the
individual conferences and satellite events for their hard work, (c) the keynote speakers
for their thoughtful, insightful, and inspiring talks, and (d) TU Wien, the city of Vienna,
and all sponsors for their support. A special thank you goes to the members of the
Business Informatics Group, coping with all the foreseen and unforeseen work (as
usual ☺)!

July 2016 Gerti Kappel

Preface

The European Conference on Modelling Foundations and Applications (ECMFA) is
dedicated to advancing the state of knowledge and fostering the industrial application
of model-based engineering (MBE) and related methods. By model-based engineering
we understand an approach to the design, analysis, and development of software and
systems that relies on exploiting high-level models and computer-based automation to
achieve significant boosts in both productivity and quality.

The 12th edition of ECMFA was held during July 6–7, 2016, in Vienna as part
of the Software Technologies: Applications and Foundations (STAF) federation of
conferences. The Program Committee received 47 submissions. Each submission was
reviewed by at least three Program Committee members. The committee decided to
accept 16 papers, 12 papers for the Foundations Track and four papers for the
Applications Track, resulting in an overall acceptance rate of 34 %. Papers on a wide
range of MBE aspects were accepted, including topics such as foundations for mod-
eling semantics, model management and evolution, model transformation, modeling
tools, and model-driven engineering in neurorobotics.

We thank Krzysztof Czarnecki and Stefan Voget for interesting talks on the use of
MDE in the automotive domain and other areas of embedded systems engineering.
Furthermore, we are grateful to all the Program Committee members and all additional
reviewers for providing their expertise and quality while reviewing the submitted
papers. Their helpful and constructive feedback is most appreciated. We thank the
STAF organization for providing an excellent framework in which ECMFA can con-
tinue to exist. Last but certainly not least, we thank all authors who submitted papers to
ECMFA 2016, contributing to this important research area.

July 2016 Andrzej Wąsowski
Henrik Lönn

Organization

Program Committee

Andreas Abele Robert Bosch GmbH
Shaukat Ali Simula Research Laboratory, Norway
Behzad Bordbar University of Birmingham, UK
Goetz Botterweck Lero, University of Limerick, Ireland
Marco Brambilla Politecnico di Milano, Italy
Ruth Breu University of Innsbruck, Austria
Jean-Michel Bruel IRIT, France
Jordi Cabot ICREA - UOC (Internet Interdisciplinary Institute), Spain
Marsha Chechik University of Toronto, Ontario, Canada
Federico Ciccozzi Mälardalen University, Sweden
Benoit Combemale IRISA, Université de Rennes 1, France
Nancy Day University of Waterloo, Canada
Juergen Dingel Queen’s University, Canada
Maged Elaasar JPL, USA
Sebastien Gerard CEA, LIST, France
Sudipto Ghosh Colorado State University, USA
Martin Gogolla University of Bremen, Germany
Jeff Gray University of Alabama, USA
Esther Guerra Universidad Autónoma de Madrid, Spain
Oystein Haugen Østfold University College, Norway
Regina Hebig Chalmers — Gothenburg University, Sweden
Thomas Hildebrandt IT University of Copenhagen, Denmark
Ekkart Kindler Technical University of Denmark
Dimitris Kolovos University of York, UK
Thomas Kuehne Victoria University of Wellington, New Zealand
Vinay Kulkarni Tata Consultancy Services, India
Philip Langer EclipseSource, Austria
Roberto Erick

Lopez-Herrejon
Institute for Systems Engineering and Automation,

Johannes Kepler University, Austria
Ralf Lämmel Universität Koblenz-Landau, Germany
Henrik Lönn Volvo, Sweden
Shahar Maoz Tel Aviv University, Israel
Ileana Ober IRIT - Université de Toulouse, France
Rolf-Helge Pfeiffer DMI, Denmark
Daniel Ratiu Siemens Corporate Technology, Munich, Germany
Charles Rivet Zeligsoft, Canada
Bernhard Rumpe RWTH Aachen University, Germany

Houari Sahraoui DIRO, Université De Montréal, Canada
Rick Salay University of Toronto, Canada
Ina Schaefer Technische Universität Braunschweig, Germany
Bernhard Schaetz TU München, Germany
Andy Schürr TU Darmstadt, Germany
Michal Smialek Warsaw University of Technology, Poland
Perdita Stevens University of Edinburgh, UK
Harald Störrle Danmarks Tekniske Universitet, Denmark
Gabriele Taentzer Philipps-Universität Marburg, Germany
Ramin Tavakoli

Kolagari
Nuremberg Institute of Technology, Germany

Francois Terrier CEA, LIST, France
Juha-Pekka Tolvanen MetaCase, Finland
Antonio Vallecillo Universidad de Málaga, Spain
Mark Van Den Brand Eindhoven University of Technology, The Netherlands
Hans Vangheluwe University of Antwerp, Belgium and McGill University,

Canada
Daniel Varro Budapest University of Technology and Economics,

Hungary
Stefan Voget Continental Automotive GmbH
Andrzej Wąsowski IT University of Copenhagen, Denmark
Manuel Wimmer Business Informatics Group, Vienna University

of Technology, Austria
Steffen Zschaler King’s College London, UK

Additional Reviewers

Babur, Önder
Baller, Hauke
Bayha, Andreas
Berardinelli, Luca
Bergmayr, Alexander
Bucaioni, Alessio
Bürdek, Johannes
Canovas Izquierdo, Javier Luis
Clarisó, Robert
Corley, Jonathan
Debreceni, Csaba
Degueule, Thomas
Disenfeld, Cynthia
Doan, Khanh-Hoang
Garcia-Dominguez, Antonio
Gönczy, László
Haeusler, Martin

Heinz, Marcel
Hili, Nicolas
Härtel, Johannes
Jäger, Alexandra
Karsten, Sohr
Kelter, Udo
Kluge, Roland
Kowal, Matthias
Kulcsár, Géza
Kusmenko, Evgeny
Martínez, Salvador
Mayerhofer, Tanja
McKinna, James
Mengerink, Josh
Morelli, Matteo
Nguyen, Phu
Salay, Rick

X Organization

Seidl, Christoph
Selim, Gehan
Strüber, Daniel
Sutii, Ana-Maria
Tzoref-Brill, Rachel

Wang, Shuai
Weckesser, Markus
Wei, Ran
Whiteside, Iain

Organization XI

Keynotes

A Model-Based Driver’s License
for Self-Driving Cars:

Challenges and Future Directions

Krzysztof Czarnecki

University of Waterloo, Canada
czarnec@gsd.uwaterloo.ca

Abstract. Vehicles with limited self-driving capabilities are already on the
market and some car makers have promised products capable of autonomous
driving in an urban setting in 2020. Self-driving cars will eventually completely
transform the automotive industry, replacing private car ownership by service-
based products such as robotic cabs. The deployment of large-scale self-driving
vehicle fleets will reduce the number of crashes and crash severity, reduce
emissions, allow commuters to use their time more effectively, and free up
spaces occupied by parked cars. The engineering of self-driving cars requires
sophisticated models of the environment and the electronic driver system in
order to develop the necessary perception and motion planning and control
functions. While current self-driving technologies have improved immensely in
recent years, a major challenge is assuring the safe operation of an autonomous
vehicle in all traffic situations and all road conditions. I will present a reference
architecture for self-driving cars and use it to describe the types of models used
in engineering of such systems. I will then focus on the challenges of assuring
model-based engineering of self-driving cars. I will close by outlining promising
directions to address these challenges.

Usage of Domain Specific Modeling Languages
in the Automotive Industry

Stefan Voget

Continental Automotive GmbH
stefan.voget@continental-corporation.com

Abstract. Before the introduction of model based engineering, the answer for
the language question within the automotive industry was simple: use C. The
idea of model based engineering is to shift the complexity out of a textual
representation of the code (the source code in C) to a model. Here, the question
about language comes up again. This time, it revolves around the decision which
language to use to represent the model. Today, the answer is not that simple
anymore. Within the automotive industry nearly each project uses it’s own
representation. Often the representation is determined by the architectural tool
used in the project. To become independent from these “tool languages”, more
and more domain specific modeling languages come up, most of which end up
as project specific modeling languages, i.e. specific languages used only in a
very dedicated context. In the keynote I will present a motivation for the defi-
nition and usage of domain specific modeling languages by using two examples.
The first example integrates the development lifecycle of a SW developer with
the one of a responsible for functional safety. The second example describes a
unified approach for the configuration of different software platforms. Both
examples and their motivations are quite different from each other, but show the
needs for comprehensive common languages and the importance of model to
model transformations to interact between them.

Contents

Multi- and Many Models

Hierarchical Clustering of Metamodels for Comparative Analysis
and Visualization . 3

Önder Babur, Loek Cleophas, and Mark van den Brand

Advanced Local Checking of Global Consistency in Heterogeneous
Multimodeling . 19

Harald König and Zinovy Diskin

Supporting the Linked Data Approach to Maintain Coherence Across Rich
EMF Models . 36

Jad El-Khoury, Cecilia Ekelin, and Christian Ekholm

Stress-Testing Centralised Model Stores . 48
Antonio Garcia-Dominguez, Konstantinos Barmpis,
Dimitrios S. Kolovos, Ran Wei, and Richard F. Paige

Language Engineering

Compositional Language Engineering Using Generated, Extensible,
Static Type-Safe Visitors . 67

Robert Heim, Pedram Mir Seyed Nazari, Bernhard Rumpe,
and Andreas Wortmann

Demystifying Ontological Classification in Language Engineering. 83
Colin Atkinson and Thomas Kühne

Example-Based Generation of Graphical Modelling Environments. 101
Jesús J. López-Fernández, Antonio Garmendia, Esther Guerra,
and Juan de Lara

UML and Meta-modeling

Associations in MDE: A Concern-Oriented, Reusable Solution 121
Céline Bensoussan, Matthias Schöttle, and Jörg Kienzle

Automated Metamodel/Model Co-evolution Using a Multi-objective
Optimization Approach . 138

Wael Kessentini, Houari Sahraoui, and Manuel Wimmer

http://dx.doi.org/10.1007/978-3-319-42061-5_1
http://dx.doi.org/10.1007/978-3-319-42061-5_1
http://dx.doi.org/10.1007/978-3-319-42061-5_2
http://dx.doi.org/10.1007/978-3-319-42061-5_2
http://dx.doi.org/10.1007/978-3-319-42061-5_3
http://dx.doi.org/10.1007/978-3-319-42061-5_3
http://dx.doi.org/10.1007/978-3-319-42061-5_4
http://dx.doi.org/10.1007/978-3-319-42061-5_5
http://dx.doi.org/10.1007/978-3-319-42061-5_5
http://dx.doi.org/10.1007/978-3-319-42061-5_6
http://dx.doi.org/10.1007/978-3-319-42061-5_7
http://dx.doi.org/10.1007/978-3-319-42061-5_8
http://dx.doi.org/10.1007/978-3-319-42061-5_9
http://dx.doi.org/10.1007/978-3-319-42061-5_9

Enabling OCL and fUML Integration by Transformation 156
Massimo Tisi, Frédéric Jouault, Zied Saidi, and Jérome Delatour

Isolating and Reusing Template Instances in UML 173
Matthieu Allon, Gilles Vanwormhoudt, Bernard Carré,
and Olivier Caron

Experience Reports and Case Studies

MBF4CR: A Model-Based Framework for Supporting an Automated
Cancer Registry System . 191

Shuai Wang, Hong Lu, Tao Yue, Shaukat Ali, and Jan Nygård

Metamodeling vs Metaprogramming: A Case Study on Developing Client
Libraries for REST APIs . 205

Markus Scheidgen, Sven Efftinge, and Frederik Marticke

Experiences with Model-Driven Engineering in Neurorobotics 217
Georg Hinkel, Oliver Denninger, Sebastian Krach,
and Henning Groenda

Variability and Uncertainty

Supporting Variability Exploration and Resolution During Model Migration . . . 231
Davide Di Ruscio, Juergen Etzlstorfer, Ludovico Iovino,
Alfonso Pierantonio, and Wieland Schwinger

Understanding Uncertainty in Cyber-Physical Systems:
A Conceptual Model . 247

Man Zhang, Bran Selic, Shaukat Ali, Tao Yue, Oscar Okariz,
and Roland Norgren

Author Index . 265

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-42061-5_10
http://dx.doi.org/10.1007/978-3-319-42061-5_11
http://dx.doi.org/10.1007/978-3-319-42061-5_12
http://dx.doi.org/10.1007/978-3-319-42061-5_12
http://dx.doi.org/10.1007/978-3-319-42061-5_13
http://dx.doi.org/10.1007/978-3-319-42061-5_13
http://dx.doi.org/10.1007/978-3-319-42061-5_14
http://dx.doi.org/10.1007/978-3-319-42061-5_15
http://dx.doi.org/10.1007/978-3-319-42061-5_16
http://dx.doi.org/10.1007/978-3-319-42061-5_16

Multi- and Many Models

Hierarchical Clustering of Metamodels
for Comparative Analysis and Visualization

Önder Babur1(B), Loek Cleophas1,2, and Mark van den Brand1

1 Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
{O.Babur,L.G.W.A.Cleophas,M.G.J.v.d.Brand}@tue.nl
2 Stellenbosch University, Matieland 7602, South Africa

Abstract. Many applications in Model-Driven Engineering involve
processing multiple models or metamodels. A good example is the com-
parison and merging of metamodel variants into a common metamodel
in domain model recovery. Although there are many sophisticated tech-
niques to process the input dataset, little attention has been given to
the initial data analysis, visualization and filtering activities. These are
hard to ignore especially in the case of a large dataset, possibly with out-
liers and sub-groupings. In this paper we present a generic approach for
metamodel comparison, analysis and visualization as an exploratory first
step for domain model recovery. We propose representing metamodels in
a vector space model, and applying hierarchical clustering techniques to
compare and visualize them as a tree structure. We demonstrate our app-
roach on two Ecore datasets: a collection of 50 state machine metamodels
extracted from GitHub as top search results; and ∼100 metamodels from
16 different domains, obtained from AtlanMod Metamodel Zoo.

Keywords: Model-Driven Engineering · Model comparison · Vector
space model · R · Hierarchical clustering

1 Introduction

Model-Driven Engineering (MDE) promotes the use of models and metamod-
els as first-class artefacts to tackle the complexity of software systems [15]. As
MDE is applied for larger problems, the complexity, size and variety of models
increase. With respect to model size, the issue of scalability has been pointed
out by Kolovos et al. [15]. However, scalability with respect to model variety
and multiplicity (i.e. dealing with a large number of different models) is also an
important issue, and has been diagnosed by Klint et al. as an interesting aspect
to explore [14]. There are many approaches to fundamental operations such as
model comparison [25] and matching [16]; applied to problems such as model
merging [8], versioning [3] and clone detection [9]; however those mainly focus

The research leading to these results has been funded by EU programme FP7-NMP-
2013-SMALL-7 under grant agreement number 604279 (MMP).

c© Springer International Publishing Switzerland 2016
A. W ↪asowski and H. Lönn (Eds.): ECMFA 2016, LNCS 9764, pp. 3–18, 2016.
DOI: 10.1007/978-3-319-42061-5 1

4 Ö. Babur et al.

on pairwise and ‘deep’ comparison of models to achieve high accuracy for a very
small number of models. [23] further discusses the inadequacy of pairwise com-
parison for multiple models and proposes an N-way model merging algorithm.

Indeed, many problems in MDE involve processing a potentially large num-
ber of models. Some good examples are domain model recovery from several
candidate (meta-)models [14], metamodel recovery [13] and family mining for
Software Product Lines (SPL) from model variants [11]. A further problem can
be given in the context of our ongoing project for a flexible multiphysics engineer-
ing simulation framework, where the domain contains an overwhelming number
of tools [5], making it difficult to extend manual model extraction efforts such
as in [6] to cover the whole domain.

We are interested in the case where a common (meta-)model is reverse engi-
neered out of several candidate (meta-)models. For this paper we focus par-
ticularly on metamodel comparison and clustering; however our techniques are
generic and thus applicable for the general model comparison and clustering
problems. In essence, we treat metamodels as instances of the meta-metamodel.
Having said that, the rest of the paper uses this convention. We argue that, as
the number and variety of input metamodels gets larger, the initial data analysis
and preprocessing step gets more and more relevant and necessary. This in turn
calls for a need to inspect the dataset for an overview, identify potential rela-
tions between them such as proximities, cluster formations, outliers, etc. This
information can be used potentially for filtering noisy data, for grouping meta-
models, or even for determining the order of processing for a pairwise metamodel
merging or SPL generation algorithm (see [23] for a discussion on how pairwise
comparison order affects the outcome of merging multiple models).

In this paper, we present a continuation of our previous study [4]. We propose
hierarchical clustering for comparative analysis and visualization of the dataset
as a first explorative step in domain model recovery. We apply techniques from
the Information Retrieval (IR) and unsupervised machine learning domains in
the MDE context. In IR, a vector space model (VSM) is used to represent text
documents, with vector elements corresponding to word occurrence (incidence)
or frequency. We borrow this concept to represent metamodels as vectors of
the unigrams from metamodel element identifiers. We apply an array of NLP
techniques and weighting schemes to further improve the VSM and reduce the
metamodel comparison problem into distance calculation between points in the
vector space. We then use the R statistical software [20] to hierarchically cluster,
analyse and visualize the dataset as a hierarchical structure. We demonstrate our
approach on two Ecore datasets: a collection of 50 state machine metamodels
extracted from GitHub as top search results, and ∼100 metamodels from 16
different domains, obtained from AtlanMod Metamodel Zoo.

Objectives. The purpose of this study is to answer the following questions:

– RQ1. How can we represent metamodels for large-scale comparative analysis?
– RQ2. How can we analyse, compare and visualize a large set of metamodels?

Hierarchical Metamodel Clustering 5

2 Preliminaries: Information Retrieval and Clustering

Information Retrieval [19] has a long history of developments in dealing with
effectively indexing, analyzing and searching various forms of content including
natural language text documents. As a first step for document retrieval in gen-
eral, documents are collected and indexed via some unit of representation. Index
construction can be implemented using models ranging from boolean indices to
complex neural networks. One such model is the vector space model (VSM) with
the following major components:

– A vector representation of (binary) occurrence of the vocabulary in a docu-
ment, named term incidence;

– Optionally zones (e.g. ‘author’ or ‘title’ zones separate from the text bodies),
– Optionally weighting schemes to be used as multipliers such as:

• inverse document frequency (idf) (see Sect. 3.1) to increase the discrimi-
native effect of rare words,

• zone weights, e.g. higher for important zones,
– Optionally Natural Language processing (NLP) techniques such as:

• methods for handling compound terms, e.g. tokenization or multi-word
similarity measures,

• methods for detecting synonyms, hyponyms, and semantically related
words, e.g. use of a stemmer or WordNet1.

The VSM allows transforming each document into an n-dimensional vector,
thus resulting in an m × n matrix where m is the number of documents and n
is the size of the vocabulary.

Once the VSM is constructed, the similarity of documents can be defined as
the distance between these vectors. There exist several distance a.k.a. similarity
measures, such as Euclidian, Cosine or Manhattan, to be chosen considering the
underlying problem domain and dataset. VSM with a selected distance measure
is the prerequisite for identifying similar groups of documents in the vector space.
This unsupervised machine learning technique is called clustering. Among many
different clustering methods [12,19], there is a major distinction between flat
clustering and hierarchical clustering. Flat clustering needs a pre-specified num-
ber of clusters and results in a flat assignment of each document into one cluster.
Hierarchical clustering, on the other hand, does not require a pre-specified num-
ber of clusters, and outputs a hierarchy of proximities; it thus is more flexible and
informative than flat clustering. Specifically, hierarchical agglomerative cluster-
ing (HAC) outputs a nested tree structure called dendrogram, which is suitable
for visualization and manual inspection. As can be seen in Fig. 3, the leaves of
the dendrogram represent data points, and each merge is represented by a hor-
izontal line. The height of the merge point corresponds to the distance (inverse
similarity) of the data points and/or subclusters.

The HAC algorithm calculates the pairwise distances of all the points in the
dataset. In a bottom-up manner, it starts with each data point in a separate

1 https://wordnet.princeton.edu/.

https://wordnet.princeton.edu/

6 Ö. Babur et al.

Fig. 1. Overview of our approach.

cluster and recursively merges similar points/clusters into bigger clusters. There
is a further parameter for HAC for determining how this merge is decided with
respect to the inter-cluster distance: single-link assumes cluster distance is the
maximum similarity of any individual points in two clusters, while complete and
average-link are the correspondingly minimum and average similarity.

3 Method for Metamodel Clustering

In this section, we elaborate our approach on a small example. The method is based
on that in [4], extended with various features. We put emphasis on NLP aspects
and real datasets, and as a result choose to use unigrams (item 2(a) below) rather
than bigrams (sequence of two related unigrams, e.g. a class X with its attribute
Y). The readers are referred to Sect. 5.1 for a short discussion on this choice. An
overview of our approach is given in Fig. 1 with the main steps as:

1. Obtaining input dataset
(a) Obtaining a set of metamodels with the same type, e.g. Ecore metamodels

in our case, to be analyzed,
2. Creating VSM representation

Hierarchical Metamodel Clustering 7

(a) Generating the unigram vocabulary (i.e. the element identifiers) from the
input metamodels and the unigram types (similar to zones in IR) from the
meta-metamodel (the generic Ecore meta-metamodel in our case, rather
than lower level domain-specific ones),

(b) Expanding the unigrams with tokenization, and then filtering e.g. stop-
words,

(c) Detecting synonyms and relatedness amongst tokens,
(d) Utilizing a synonym and type matching mechanism/threshold,
(e) Utilizing an idf and type-based weighting scheme,
(f) Calculating the term incidence matrix,

3. Clustering
(a) Picking a distance measure and calculating the vector distances,
(b) Applying hierarchical clustering over the VSM,
(c) Visualizing the resulting dendrogram for manual inspection.

A Small Example Dataset. Here we introduce a small dataset of Ecore-based
metamodels. In contrast to [4], we build this work directly on Ecore, though
we extract a subset of the metamodel elements (see Sect. 3.1). Here we gather
4 metamodels related to state machines, selected from our first case study
(Sect. 4.1). The dataset, depicted in Fig. 2, consists of two plain finite state
machine (FSM) metamodels; one hierarchical FSM metamodel (the latter has
the package name FSM though); and one data flow metamodel.

3.1 Representation as VSM

Generating the unigram vocabulary. From the input metamodels and Ecore
meta-metamodel, we construct a typed unigram vocabulary. We adopt a bag
of words representation for the vocabulary, where each item in the vocab-
ulary is considered individually, discarding the context and order. The type
information comes from Ecore ENamedElements, i.e. identifiers: we get the
set {EPackage, EDataType, EClass, EAttribute, EReference, EEnum,
EEnumLiteral and EDataType}. Next, we use the EMF Reflexive API (in
Java) to recursively go over all the content for each metamodel element to extract
the union of unigrams. The first metamodel in Fig. 2 would yield Metamodel 1
= {FSM(EPackage), StateMachine(EClass), transitions(EReference),
states(EReference), name(EAttribute), . . . }. Note that several parts of
Ecore are deliberately not included in the unigram generation such as EAnno-
tations and OCL constraints. These are negligible in our case studies, might
require further techniques, and are left as future work.

Vocabulary expansion with tokenization, and then filtering. As identifiers in the
metamodels typically are compound names (similar to source code identifiers),
we apply tokenization and turn compound names into their tokens to include the
vocabulary. We use the Identifier Name Tokenization Tool2 for implementing this

2 https://github.com/sjbutler/intt.

https://github.com/sjbutler/intt

8 Ö. Babur et al.

(a) Metamodel 1 (b) Metamodel 2

(c) Metamodel 3 (d) Metamodel 4

Fig. 2. Example dataset.

functionality. The types of the original identifiers are retained in the tokens. The
expansion of StateMachine(EClass) for instance would yield State(EClass)
and Machine(EClass) unigrams. Afterwards we apply a set of filters for the
tokens: removal of stop words such as ‘of ’ and ‘from’, removal of overly short
tokens (< 3 characters) and ones consisting of only digits. Note that having done
this tokenization step, we use term and token interchangeably for this paper. It
is also noteworthy to mention that tokenization reduces the vector space for
large datasets significantly: e.g. from 7507 to 5842 for case study 2 (Sect. 4.2).

Hierarchical Metamodel Clustering 9

This contributes to the scalability of the approach with respect to the growing
size of the dataset.

NLP techniques for synonym and relatedness detection. For the synonym and
relatedness detection, we use another array of techniques after normalizing all
the tokens into lower case. First of all, we use a Porter Stemmer (Java imple-
mentation3) for comparing word stems (e.g. ‘located’, ‘location’ and ‘locations’
have the common stem ‘locat’ and therefore are considered synonyms. Next we
measure the normalized Levenshtein distances of the tokens, and consider close
words (< 0.1 difference) as synonyms. This allows for approximate string match-
ing, tackling e.g. small typos. Finally, tokens which have a WordNet4 WuP sim-
ilarity score above a certain threshold (0.8 for the examples here) are considered
synonyms. We use the WS4J Java library5 for this calculation.

Unigram matching scheme. We further use a type matching and synonym match-
ing scheme. When comparing two typed unigrams, we add a reducing multiplier
of 0.5 for non-exact type matches and use the similarity score as a reducing multi-
plier for synonym matching. As an example a typed unigramname(EAttribute)
would yield 1 when matched against itself, while yielding 0.5 ∗ 0.88 = 0.44 against
label(EReference), where 0.88 is the WordNet WuP similarity score of ‘name’
and ‘label’. As mentioned before, a detailed evaluation of different values and para-
meter settings is out of scope for this paper and left as future work.

Idf and type weighting scheme. The similarity calculation described above gives
a score in the range [0, 1] for each metamodel-token pair. On top of this, we
apply a weighting scheme on the term incidence matrix, which includes two
multipliers: an inverse document frequency (idf) and a type (zone) weight. The
idf of a term t is used to assign greater weight to rare terms across metamodels.
Idf as the normalized log is defined as:

idf(t) = log10

(
1 +

total metamodels
metamodels with the term t

)
(1)

Furthermore, a type weight is given to the unigrams representing their seman-
tic importance. We use a similar scheme as in [4], this time for all the Ecore
ENamedElements listed above. We claim, for instance, that classes are seman-
tically more important than attributes, thus deserve a greater weight. We have
used this experimental scheme for this paper:

typeWeight(t, w) : {EPackage → 1.0,EDataType → 0.2,EClass → 1.0,
EReference → 0.5,EAttribute → 0.3,EEnum → 1.0,

EEnumLiteral → 1.0,EOperation → 0.5,EParameter → 0.1}
3 http://tartarus.org/martin/PorterStemmer/.
4 https://wordnet.princeton.edu/.
5 https://github.com/coriane/ws4j.

http://tartarus.org/martin/PorterStemmer/
https://wordnet.princeton.edu/
https://github.com/coriane/ws4j

10 Ö. Babur et al.

A part of the resulting matrix where all the preprocessing steps above have
been done, and the term incidences have been multiplied by idf and weights, is
given in Table 1.

Table 1. Idf and type weighted term incidence matrix.

Metamodel FSM State Machine source label Initial Channels . . .

M1 0.35 0.15 0.15 0.09 0.05 0.15 0 . . .

M2 0 0.15 0.15 0.09 0.05 0.15 0 . . .

M3 0 0.15 0.15 0.09 0.04 0.15 0 . . .

M4 0 0.15 0.15 0 0.04 0.15 0.18 . . .

3.2 Clustering

Picking a distance measure and calculating the distance matrix. As the next step
of our approach, we reduce the metamodel similarity problem into a distance
measurement of the corresponding vector representations of metamodels. We
had previously suggested to pick Manhattan distance [4]. In common natural
language text retrieval problems however, cosine distance is used most frequently.
Based on the empirical comparisons between the two and the fact that cosine
distance is a length normalized metric in the range [0, 1] (while Manhattan
is not), we choose to use cosine distance for our current work. A quantitative
evaluation of the various framework parameters such as distance measure and
their effect on clustering is left as future work. p and q being two vectors of n
dimensions, cosine distance is defined as:

cosineDistance(p, q) = 1 − p · q
‖ p ‖‖ q ‖ = 1 −

∑n
i=1 piqi√∑n

i=1 p
2
i

√∑n
i=1 q

2
i

. (2)

To be used by the hierarchical clustering, we calculate the pairwise distance
matrix of all the models. The distance matrix for the example dataset is given
in Table 2. We use the lsa package in R for this computation [27].

Hierarchical clustering and visualization. We apply agglomerative hierarchical
clustering over the VSM to obtain a dendrogram visualization. We used the
hclust function in the stats package [20] with average linkage to compute the
dendrogram. The interpretation of this diagram depicted in Fig. 3 is as follows:
the red and green dotted line at heights 0.3 and 0.6 (manually inserted by us)
denote horizontal cuts in the dendrogram. Metamodel 4, which stays far above
the cut, can be considered as a clear outlier. Depending on the requirements
and interpretation of the user, Metamodels 1–3 can be considered to be in one
single cluster (i.e. dendrogram cut at height = 0.6) or just Metamodels 2 and 3
(i.e. cut at height = 0.3).

Hierarchical Metamodel Clustering 11

Table 2. Pairwise distance matrix.

M1 M2 M3

M2 0.61

M3 0.56 0.10

M4 0.72 0.81 0.79

M
4

M
1

M
2

M
3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Cluster Dendrogram

H
ei

gh
t

Fig. 3. Dendrogram of the examples.
(Color figure online)

4 Case Studies

We introduce two case studies to demonstrate the feasibility of our approach.

4.1 Case Study 1 - GitHub Search Results

Dataset design. For this case study, we searched GitHub6 on 11.02.2016 for
Ecore metamodels using the search terms ‘state machine extension:ecore’ and
extracted the top 50 results out of 1089 (code) results in total, sorted by Best
Match criteria. The search facility of GitHub has an internal mechanism for
indexing and retrieving relevant text files. Although the intention of this search
is to obtain various types of state machine metamodels, we expect to get a
heterogeneous dataset, and apply clustering to give an overview of the results.

Objectives. This case study aims to demonstrate the applicability of our app-
roach in a large dataset of a single domain (i.e. state machines), with possi-
ble duplicates, outliers, and subdomains. We are eventually interested in large
(i.e. > 3 data points) groups of closely similar (e.g. cosine distance < 0.8) meta-
models and wish to exclude the outliers. The fact that the we obtain metamodels
through searching in GitHub also leads to a secondary objective of metamodel
searching and exploration (e.g. for reuse, in the sense of traversing a reposi-
tory/search results and finding the desired metamodels).

Results. Figure 4 shows the resulting dendrogram. We have visually identified
and labelled the clusters from 1 to 5. Cluster 1 composes of two very similar
(distance < 0.1) groups of duplicate metamodels (distance = 0) as basic FSMs
with states, transitions and associations. In Cluster 2, there are two groups of
UML-labelled metamodels with controller elements, triggers, etc. Cluster 3 has
metamodels with specializations such as initial and final states, while Cluster 4
6 https://github.com.

https://github.com

12 Ö. Babur et al.
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

22 2
32

17 16 14 12 11 8 10 15 9 13
47

43 42 40 38 37 35 36 50 48 49
1

45 46
39 41

29 33 31 26 27
30

28 24 25 18 21 19 20
23 44

34
7 6 5 3 4

Fig. 4. Dendrogram of the first dataset.

has hierarchical state machines with composite states (Metamodel 23 is a false
positive: it is labelled NHSM - non-hierarchical and is yet put in this cluster).
Cluster 5 has duplicate metamodels labelled as AUIML with agents, messages,
etc. and is clearly separate from the rest of the clusters. Outliers include a
metamodel with identifiers in French (22), a train behaviour metamodel (2),
the dataflow metamodel as given in the example dataset (34) and so on. The
models 45, 46, 39 and 41 are deliberately not considered as a cluster due to the
requirements we set above regarding cluster size and maximum distance.

4.2 Case Study 2 - AtlanMod Metamodel Zoo

Dataset design. For this case study, we used a subset of the Ecore metamodels
in the AtlanMod Ecore Metamodel Zoo7. The Zoo is a collaborative open repos-
itory of metamodels in various formalisms including Ecore, intended to be used
as experimental material by the MDE community. The repository itself has a
wide range of metamodels from different domains; e.g. huge metamodels for pro-
gramming languages or small class diagram examples for specific problems. We
manually selected a subset of 107 metamodels, from 16 different domains. The
domain labels are mostly retained as labelled in the repository. Table 3 depicts
the domain decomposition. The cell below each domain shows the total number
of metamodels in that domain, and the corresponding identifiers used in the
resulting dendrogram in Fig. 5.

Objectives. This case study aims to demonstrate the applicability of our app-
roach in a large dataset of multiple domains and subdomains. The domains are
chosen to be in a wide range, hence the clustering is meant to show the groups

7 http://web.emn.fr/x-info/atlanmod/index.php?title=Ecore.

http://web.emn.fr/x-info/atlanmod/index.php?title=Ecore

Hierarchical Metamodel Clustering 13

Table 3. Number of metamodels in each domain in case study 2

Bibliography Conference Business process Bug tracker Multi-agent ADL

8(1–8) 14(9–22) 6(23–28) 3(29–31) 2(32–33) 15(34–48)

Build Tool Data Warehouse Database Office Performance SBVR

5(49–53) 6(54–59) 5(60–64) 10(65–74) 3(75–77) 4(78–81)

Soft. Process State Machine Petri Net Use Case Total

3(82–84) 8(85–92) 11(93–103) 4(104–107) 107

and subgroups in the dataset in a bird’s eye point of view. The fact that the
metamodels reside in a well-known repository also leads to a side-objective of
model repository management and exploration.

Results. Figure 5 shows the resulting dendrogram. We have visually identified
and labelled the clusters from 1 to 16. Let us summarize a part of this dendro-
gram. Cluster 1 (multi-agent) is recognizable as a separate small cluster from the
rest of the dataset. Clusters 2 (petri nets) and 3 (state machines) reside as sib-
ling branches. Similarly, clusters 4 (bibliography) and 5 (conference) are clearly
detectable as sibling clusters. Cluster 6 and to some extent 8 are a mixture of
individual metamodels from different domains, therefore are erroneous according
to our initial categorization. Cluster 7 is of build tools. Cluster 9 (database) is in
close proximity to the big cluster 10 (office), the latter of which can be decom-
posed into two subclusters (left subtree as Word, and right as Excel). Clusters
11–16 correspond to various remaining domains with varying percentages of false
positives.

As an external measure of cluster validity, we employ the F0.5 measure. Given
k as the cluster labels found by our algorithm, l as the reference cluster labels
and cluster pairs as the pairs of data points in the same cluster, F0.5 can be
defined as:

F0.5(k, l) =
1.25 ∗ Precision(k, l) ∗ Recall(k, l)
0.25 ∗ Precision(k, l) + Recall(k, l)

(3)

Precision(k, l) =
| cluster pairs in k ∩ cluster pairs in l|

| cluster pairs in k| (4)

Recall(k, l) =
| cluster pairs in k ∩ cluster pairs in l|

| cluster pairs in l| (5)

The reason for selecting this measure is that the Fβ measure is more common
than e.g. purity or the Rand index in the software engineering community, and
that we value precision higher than recall; hence the F0.5 variant. According to
this formula, and using the R package clusteval [21] for the co-membership
table computation, we obtain an F0.5 score of 0.73 for our manual clustering.

14 Ö. Babur et al.

0.0 0.2 0.4 0.6 0.8 1.0

3233999495 989697 102101100103 9192 87908889 47 8123 6151617182219202113141112 910 51448586 59353504952 821061076064 5562616373727174 656769686670 302931 238384 7576 80817879 4146433642 37403839 2627 242528 35484777 344557585659 54104105

Fig. 5. Dendrogram of the second dataset.

Hierarchical Metamodel Clustering 15

5 Discussion

This paper improves our previous work in [4] considerably, in terms of NLP fea-
tures and case studies on real datasets. Based on the two case studies, we confirm
our previous claim that a statistical perspective on the comparative analysis
and visualization of large datasets seems promising. We make a step towards
the handling of large datasets. Using VSM allows a uniform representation of
metamodels for statistical analysis, while the accompanying idf and type-based
weighting scheme yields a suitable scaling in the vector space (RQ1). Using
a distance measure and hierarchical clustering over VSM, many characteristics
and relations among the metamodels, such as clusters, subclusters and outliers,
can be analyzed and visualized via a dendrogram (RQ2).

Particularly for the first case study, it is clearly noticeable that there are
distinct outliers and groupings in the search results. This information can be
used for instance by a domain model recovery tool to improve the quality of the
domain model. Furthermore, the model search functionality, either in GitHub
or a specialized model search engine such as [18], can improve the navigation or
precision of the search results. The second case study, on the other hand, deals
with a heterogeneous set of domains and allows identifying domains, subdomains
and also the proximities between related ones. We achieve a F0.5 score of 0.73
from our manual clustering, which can be considered quite high for such a het-
erogeneous dataset. This grouping information can be used for domain model
recovery as well as model repository management scenarios.

An advantage of our approach is the scalability and tool support. The algo-
rithm complexities range from linear (e.g. VSM construction) to polynomial
(hierarchical clustering) with respect to the size of the dataset and of the meta-
models in it. Indeed this technique, and more advanced versions thereof, have
already been in widespread use in IR for document retrieval and clustering of
large collections of data. Moreover, R provides a plethora of efficient and flexi-
ble statistical libraries for analysis. (Meta-)metamodel-based construction of the
unigram vocabulary and tokenization provides a good amount of reduction in
vector space, improving over basic IR indexing. Finally we would like to repeat
and emphasize that, although we used the term ‘metamodel’ clustering through-
out the paper (because of the datasets we chose), we regard the metamodels as
instances of the Ecore meta-metamodel, thus simply as models. Thus we deal
with the generic problem of model comparison and clustering.

5.1 Threats to Validity

There are several threats to validity for this study. First of all, the NLP tech-
niques employed might not be accurate enough and need to be improved with
features such as context-sensitivity and a domain-specific thesaurus. The fact
that we regard metamodel identifiers as bag of words and unigrams, thus ignor-
ing structural relations such as containment and inheritance and semantics, could
reduce the accuracy and applicability of our approach in some scenarios. Ignor-
ing the multiplicities and modifiers (e.g. abstract) of model elements also might

16 Ö. Babur et al.

lead to a similar shortcoming. Furthermore, the datasets we used are assembled
by us; actual datasets that are used in domain model recovery or SPL extrac-
tion should be investigated to compare the results. The visualization and manual
inspection approach could limit our approach (as it is now) for larger datasets
(e.g. > 1000 items) and further reduction and visualization techniques might be
needed. Last but not the least, the quantitative comparison of the accuracy of
different combinations of parameters/components in virtually every step of our
approach, and automation of this process would relieve the user from the effort
of trial-and-error exploration of the parameters.

6 Related Work

Only a few model comparison techniques consider the multiplicity of input
models without doing pairwise comparisons, such as N-way merging based on
weighted set packing [23]. Feature model extraction [24] and concept mining [1]
use NLP to cluster features/concepts. Another technique proposes building
domain ontologies as the intersection of graphs of APIs [22], but does not focus
on the statistical dimension of problem. Metamodel recovery [13] is another
approach which assumes a once existing (but somehow lost) metamodel, and
does not hold for our scenario. A technique similar to ours is applied specifi-
cally for business process models using process footprints [10], and thus lacks
the genericness of our approach. Note that a thorough literature study beyond
the technological space of MDE, for instance regarding data schema matching
and ontology matching/alignment, is out of scope for this paper and is therefore
omitted.

Clustering is considered in the software engineering community mostly within
a single body of code [17] or model [26]. A related technique uses clustering for
the visualization of Simulink model clones according to the percentage differences
and patterns among clones [2]. A very recent approach, which we encountered
after publishing our early work, is presented by Basciani et al. [7]. They share
most of our objectives, though focusing on repository management. Moreover
they use cosine distance of term vectors representing models and HAC for visu-
alization of metamodel repositories. However, they do not report in detail the
NLP techniques (e.g. synonym checking) or IR techniques (e.g. weighting) they
use. It is left as future work to compare their approach with ours.

7 Conclusion and Future Work

In this paper, we have presented a new perspective on the N-way comparison
and analysis of models as a first step in domain model recovery. We have pro-
posed a generic approach using the IR techniques VSM and tf-idf enhanced with
NLP techniques to uniformly represent multiple metamodels, and apply hierar-
chical clustering for comparative analysis and visualization of a large dataset.
We demonstrated our approach on two real datasets; one of top search results
from GitHub and another from the AtlanMod Metamodel Zoo. The results, both

Hierarchical Metamodel Clustering 17

qualitatively for both case studies and quantitatively for the second case study,
indicate that our generic and scalable approach is a promising first step for
analysing large datasets of models or metamodels.

As future work, we definitely wish to address the points listed as threats to
validity. Most notably, the efficiency of different parameters and components of
our approach such as various weighting and idf schemes, distance measures and
clustering algorithms can be quantitatively evaluated and compared. Another
crucial improvement is to incorporate into the analysis both structure and con-
text information (either as n-grams, or tree/graphs) as well as semantics of the
metamodel elements. Furthermore, one could investigate the application of our
approach for different formalisms such as UML models, and different problems
such as model versioning, model merging and model clone or pattern detection.

References

1. Abebe, S.L., Tonella, P.: Natural language parsing of program element names for
concept extraction. In: 2010 IEEE 18th International Conference on Program Com-
prehension (ICPC), pp. 156–159. IEEE (2010)

2. Alalfi, M.H., Cordy, J.R., Dean, T.R.: Analysis and clustering of model clones:
an automotive industrial experience. In: 2014 Software Evolution Week-IEEE
Conference on Software Maintenance, Reengineeringand Reverse Engineering
(CSMR-WCRE), pp. 375–378. IEEE (2014)

3. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning
approaches. Int. J. Web Inf. Syst. 5(3), 271–304 (2009)

4. Babur, Ö., Cleophas, L., Verhoeff, T., van den Brand, M.: Towards statistical com-
parison and analysis of models. In: Proceedings of the 4th International Conference
on Model-Driven Engineering and Software Development, pp. 361–367 (2016)

5. Babur, Ö., Smilauer, V., Verhoeff, T., van den Brand, M.: Multiphysics and mul-
tiscale software frameworks: an annotated bibliography. Technical report 15-01,
Dept. of Mathematics and Computer Science, Technische Universiteit Eindhoven,
Eindhoven (2015)

6. Babur, Ö., Smilauer, V., Verhoeff, T., van den Brand, M.: A survey of open source
multiphysics frameworks in engineering. Procedia Comput. Sci. 51, 1088–1097
(2015)

7. Basciani, F., Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio, A.: Automated
clustering of metamodel repositories. In: Nurcan, S., Soffer, P., Bajec, M., Eder,
J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 342–358. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-39696-5 21

8. Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N., Sabetzadeh, M.: A
manifesto for model merging. In: Proceedings of the 2006 International Workshop
on Global Integrated Model Management, pp. 5–12. ACM (2006)

9. Deissenboeck, F., Hummel, B., Juergens, E., Pfaehler, M., Schaetz, B.: Model
clone detection in practice. In: Proceedings of the 4th International Workshop
on Software Clones, pp. 57–64. ACM (2010)

10. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of
business process models: metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)

http://dx.doi.org/10.1007/978-3-319-39696-5_21

18 Ö. Babur et al.

11. Holthusen, S., Wille, D., Legat, C., Beddig, S., Schaefer, I., Vogel-Heuser, B.:
Family model mining for function block diagrams in automation software. In:
Proceedings of the 18th International Software Product Line Conference: Com-
panion Volume for Workshops, Demonstrations and Tools, vol. 2, pp. 36–43. ACM
(2014)

12. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall Inc.,
Englewood Cliffs (1988)

13. Javed, F., Mernik, M., Gray, J., Bryant, B.R.: Mars: a metamodel recovery system
using grammar inference. Inf. Softw. Tech. 50(9), 948–968 (2008)

14. Klint, P., Landman, D., Vinju, J.: Exploring the limits of domain model recovery.
In: 2013 29th IEEE International Conference on Software Maintenance (ICSM),
pp. 120–129. IEEE (2013)

15. Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S.,
De Lara, J., Ráth, I., Varró, D., Tisi, M., Cabot, J.: A research roadmap towards
achieving scalability in model driven engineering. In: Proceedings of the Workshop
on Scalability in Model Driven Engineering, BigMDE 2013, pp. 2:1–2:10. ACM,
New York (2013). http://doi.acm.org/10.1145/2487766.2487768

16. Kolovos, D.S., Ruscio, D.D., Pierantonio, A., Paige, R.F.: Different models for
model matching: an analysis of approaches to support model differencing. In: ICSE
Workshop on Comparison and Versioning of Software Models, 2009. pp. 1–6. IEEE
(2009)

17. Kuhn, A., Ducasse, S., Gı́rba, T.: Semantic clustering: identifying topics in source
code. Inf. Softw. Technol. 49(3), 230–243 (2007)

18. Lucrédio, D., de M. Fortes, R.P.: Moogle: a metamodel-based model search engine.
Softw. Syst. Model. 11(2), 183–208 (2012)

19. Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to Information
Retrieval, vol. 1. Cambridge University Press, Cambridge (2008)

20. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2014). http://www.R-project.
org/

21. Ramey, J.A.: clusteval: Evaluation of Clustering Algorithms (2012). http://CRAN.
R-project.org/package=clusteval, r package version 0.1

22. Ratiu, D., Feilkas, M., Jürjens, J.: Extracting domain ontologies from domain spe-
cific apis. In: 12th European Conference on Software Maintenance and Reengineer-
ing, 2008, CSMR 2008, pp. 203–212. IEEE (2008)

23. Rubin, J., Chechik, M.: N-way model merging. In: Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, pp. 301–311. ACM (2013)

24. She, S., Lotufo, R., Berger, T., Wøsowski, A., Czarnecki, K.: Reverse engineering
feature models. In: 2011 33rd International Conference on Software Engineering
(ICSE), pp. 461–470. IEEE (2011)

25. Stephan, M., Cordy, J.R.: A survey of model comparison approaches and applica-
tions. In: Modelsward, pp. 265–277 (2013)

26. Strüber, D., Selter, M., Taentzer, G.: Tool support for clustering large meta-models.
In: Proceedings of the Workshop on Scalability in Model Driven Engineering, p. 7.
ACM (2013)

27. Wild, F.: LSA: Latent Semantic Analysis (2015). http://CRAN.R-project.org/
package=lsa, r package version 0.73.1

http://doi.acm.org/10.1145/2487766.2487768
http://www.R-project.org/
http://www.R-project.org/
http://CRAN.R-project.org/package=clusteval
http://CRAN.R-project.org/package=clusteval
http://CRAN.R-project.org/package=lsa
http://CRAN.R-project.org/package=lsa

Advanced Local Checking of Global Consistency
in Heterogeneous Multimodeling

Harald König1(B) and Zinovy Diskin2,3

1 University of Applied Sciences, FHDW Hannover, Hanover, Germany
harald.koenig@fhdw.de

2 NECSIS, McMaster University, Hamilton, Canada
3 Generative Software Development Lab, University of Waterloo, Waterloo, Canada

zdiskin@uwaterloo.ca

Abstract. Software design requires deployment of interdependent mod-
els conforming to different metamodels. This set of models is called a
multimodel, and it must satisfy a set of global constraints regulating
interaction of the multimodel components. A straightforward approach
to global consistency checking would require merging component meta-
models modulo their overlap, adding, perhaps, new global constraints to
this merge, merging component models modulo their overlap, and check-
ing the latter merge against the constraints in the former one. Being
a natural definition for global consistency, these steps can not be used
algorithmically because of two major practical drawbacks: they involve
costly (meta)model matching to specify overlaps, and require building
big and unfeasible merged metamodels and models.

The present paper makes two contributions. First, it presents a new
algorithm to check each global constraint individually, and as local as
possible, i.e., only using those (meta)model elements that affect the valid-
ity of the constraint. Second, it develops a mathematical foundation that
allows us to formally prove that this individual local consistency checking
is sound and complete w.r.t. the definition of global consistency.

1 Introduction

Modeling a complex system normally results in a multimodel, i.e., a set of het-
erogenous models each one conforming to its own metamodel. A fundamental
fact about multimodeling is that the merge of legal local models can result in
a model violating global constraints declared in the integrated metamodel. This
can be easily observed even for the simple homogeneous case, when all local
models, and hence their merge, are instances of the same metamodel. For exam-
ple, suppose that the metamodel of a domain says that persons in the domain
are uniquely identified by their names, i.e., attribute ‘name’ is a key to class
‘Person’. Then the merge of two perfectly legal local instances can violate the

This work is supported by the Automotive Partnership Canada via the Network on
Engineering Complex Software Intensive Systems (NECSIS).

c© Springer International Publishing Switzerland 2016
A. W ↪asowski and H. Lönn (Eds.): ECMFA 2016, LNCS 9764, pp. 19–35, 2016.
DOI: 10.1007/978-3-319-42061-5 2

20 H. König and Z. Diskin

constraint, if there are different persons with the same name but they do not
appear in the same instance.

Heterogeneous multimodeling expands the issue of global consistency enor-
mously. For example, consider a metamodel M1 that extends the class Person
above with attribute ‘birthdate’, and a metamodel M2 that extends ‘Person’
with reference ‘drives’ to class ‘Car’ owning attribute ‘carType’. Suppose that
the domain is subject to the constraint that persons with age under 25 only drive
sporty cars. This global constraint cannot be declared in either of the metamod-
els (the first one knows nothing about cars, the second one does not know ages of
persons), yet checking its validity for a multimodel (A1, A2) with A1,2 being legal
instances of M1,2 is important. A more complex example is consistency between
a UML sequence diagram specifying collaborative behavior, and a statechart
specifying a state machine protocol for that behavior. An obvious consistency
requirement that traces specified by the sequence diagram should be allowed by
the statechart is again global and cannot be declared in either of the local meta-
models. Following [6], we call such requirements inter-metamodel constraints.

A straightforward approach to global consistency checking would require
merging component metamodels Mi modulo their overlap (class ‘Person’ with
attribute ‘name’ in the example above), adding, perhaps, new global constraints
to this merge (‘young persons drive sporty cars’), merging component models Ai

modulo their overlap, and checking the model merge A+ against the constraints
over the metamodel merge M+. In fact, this specification can be regarded as a
definition of global consistency of a multimodel [6]. However, using this definition
algorithmically as a specification of a workflow for global consistency checking
would be impractical because of (a) costly (meta)model matching needed to
specify the overlaps, and (b) necessity to build big and unfeasible merges of
metamodels and models. A more efficient approach proposed in [2,6] prescribes
to do matching, merging and checking not for entire component models but for
their projections to the respective metamodel overlaps, hence, the name local
consistency checking. It was a conjecture (not proven formally) that the local
approach is sound and complete w.r.t. (i.e., equivalent to) the above mentioned
definition of global consistency.

The present paper makes two essential contributions to the local approach.
The first is pushing the local checking idea even further up to its extreme: we
propose to check each global constraint C individually, and correspondingly
do matching and merging as minimally as required for checking C, i.e., only
using those (meta)model elements that affect the validity of C. Based on this
technique, we can control the granularity of consistency checking by combining
constraints into groups checked separately. (The two extremes are a multitude
of groups having one global constraint each, and one big group embracing all
global constraints.) Thus, while the original local approach of [6] reduces one
huge global consistency check to a set of several lesser but still significant checks
(with the correspondingly significant matches and merges), in this paper we
propose an approach with a set of small checks (based on respectively easy
matches and merges) in a size-controllable way. Correspondingly, we call the

Advanced Local Checking of Global Consistency 21

former local approach to consistency collective, while the latter one individual.
Besides reduced matching and merging workload, additional advantages of the
local-individual approach are (a) better tailored and stepwise model repairing
(in the per constraint fashion), and (b) possibilities to realize the living with
inconsistency paradigm [9], when non-urgent consistency repairs (together with
the respective matching and merging) can be postponed.

Our second contribution to local checking is an accurately defined mathemat-
ical framework that allows us to prove that individual consistency checking is
sound and complete w.r.t. the definition of global consistency, and is equivalent
to collective checking of [6]. Having specification (definition) and implementa-
tion (algorithms) separated is always useful as the former defines an optimization
space for the latter. In addition, although conditions for our equivalence results
are not too restrictive, they are not absolutely universal and (as we will show)
can be violated if the global constraint to be checked badly interacts with inter-
model correspondence specification involving queries against component models.

The paper is structured as follows: Constraint checking in general is contained
in Sects. 2.1 and 2.2. Multimodels are introduced in Sect. 2.3. Section 3 combines
these two topics: it explains how global constraint declarations are managed
and states the main theorem, which precisely formulates the above mentioned
equivalence. Section 4 is devoted to related work, Sect. 5 concludes.

2 Background

Metamodels are usually specified by UML class diagrams. The compact syntax
of the latter hides many details that need to be explicated and formalized to
allow our machinery to work. In this section, we show how it can be done in
the formal framework of typed graphs (e.g., [8]) and diagrammatic constraints.
The formalism of diagrammatic constraints, first developed under the cryptic
name of generalized sketches [3,5], and then promoted as the Diagram Predicate
Framework, DPF [18,19], is less known, and we present in Sect. 2.2 its basics in
the amount needed for our work in the paper to make it self-contained. Finally,
Sect. 2.3 introduces multimodels.

2.1 From Class Diagrams to Graphs, I: Typing

The left lower quadrant of Fig. 1 presents a fragment of a simplified metamodel
for UML class diagrams with several constraints declared. Three multiplicity
constraints are depicted in the usual UML style. They prescribe each operation
to have a name and belong to at most one class, and prohibit multiple inheri-
tance. A more complex OCL-constraint is specified in the top right corner of the
metamodel box and says that if there is no superclass, there should be at least
one interface implementation and vice versa (which shall guide the developers
to code their programs in a polymorphic style). The left upper quadrant shows
a class diagram (model) instantiating the metamodel. To use our machinery, we

22 H. König and Z. Diskin

Fig. 1. UML model and metamodel represented as typed graph

need to translate the metamodel, the model, and the conformance relation into
formal objects.

The right half of the figure shows the first step of the translation. The
metamodel is presented by a pair M = (GM , CM) with GM a type graph
and CM a set of four constraint declarations. Each of them consists of a con-
straint name given in square brackets, and the constraint scope shown by dashed
lines, i.e., set of elements over which the constraint is declared. The model
is a pair A = (GA, τA) with GA a data graph, and τA : GA → GM a typ-
ing mapping between graphs, which assigns types to every data element, e.g.
τA(Order) = Class, τA(op1) = Operation, τA(getCustomer) = String, as well
as τA(1: implmnts) = implmnts, τA(1: super) = super and so on. Model A is a
typed graph and we will also say that A is typed over M , and often write a: T (read
“element a is of type T”) if τ(a) = T . A standard formalization of the notion of
graphs and mappings between them is briefly described below. Constraints and
conformance of a model to constraints is specified in Sect. 2.2.

A (directed multi-)graph G = (VG, EG, s, t) consists of a set V of vertices (or
nodes), a set E of edges, and two functions s : E → V, t : E → V that assign
to each edge its source and target. Writing x ∈ G means that x is a node or
an edge of G. We depict graph vertices by ellipses (or circles) and edges by
arrows from their source to their target vertex, cf. Fig. 1, graphs GA and GM .
A graph mapping or morphism f : G → G′ is a pair of functions fV : V → V ′

and fE : E → E′ preserving the incidence between vertices and edges. Since the
definition of f on an edge e determines its values for e’s source and target, we
will often omit the latter from the mapping definition.

2.2 From Class Diagrams to Graphs, II: Diagrammatic Constraints

A key feature of constraints used in metamodeling is their diagrammatic nature:
the set of elements over which a constraint is declared is actually a diagram of
some shape specific for the constraint. For example, the shape of any multiplicity

Advanced Local Checking of Global Consistency 23

constraint is a single arrow, while the shape of the or-constraint is two arrows
with a common source, see Table 1.

Table 1. Sample constraints

Name Shape

[0..1] 1
12

2

[or] 1 0
0201

2

To declare a constraint over a metamodel
graph GM , we recognize the constraint shape
in the graph and visualize it as was shown in
Fig. 1. Formally, this recognition is a graph map-
ping δ : Sc → GM (called (shape) binding) from
the shape Sc of a constraint with name c to
graph GM . E.g. in Fig. 1, we have constraint [or]
declared by binding δ : S[or] → GM (S[or] is
shown in Table 1) with δ(01) = implmnts, δ(02) = super, i.e. δ(1) = Interface,
δ(0) = Class = δ(2). The set of elements in GM the shape is mapped to, is
called the image of the binding. In the example, the image of δ consists of ver-
tices Interface and Class, and edges implmnts and super.

Fig. 2. Three constraint declarations

The pair (c, δ) is a con-
straint declaration. The bind-
ings of all relevant constraints of
graph GM are shown in detail
in Fig. 2. Note the practicality
of the DPF framework: for the
[0..1]-declarations in GM we can
reuse shape S[0..1] in two differ-
ent bindings: one of them maps
edge 12 to edge super, the other
maps 12 to edge class. Thus, val-
idation logic is encapsulated and
can be reused for all constraint
declarations of type [0..1]. In the
sequel, we write a pair (c, δ) as
c@δ, meaning constraint c is imposed on metamodel GM at the image of
binding δ.

In order to check consistency of model A, i.e. typed graph A = (GA, τA),
against a fixed constraint declaration c@δ, we need to define c’s semantics irre-
spective of A. This is done by programming a function validatec(B:Model):
boolean which has input typed graph B = (GB , τB) where τB : GB → Sc, i.e.
B is a model typed over c’s shape only. For example, function validate[or]
acts on models typed over S[or] (cf. Table 1): it returns true for a model
X = (GX , τX : GX → S[or]), iff each element of type 0 in GX has an outgo-
ing edge to some element of type 1 or to some element of type 2.

So defined semantics is used in the check function:

check(A: Model, c@δ: Constraint): boolean

24 H. König and Z. Diskin

which, basically, performs three steps:

1. Restrict A to elements, whose types are in the image of δ in GM .
2. Retype elements of this new structure to formal typing over Sc. This yields

typed graph B = (GB , τB).
3. Return the result of validatec(B).

We say that A satisfies c@δ and write A |= c@δ, if check(A, c@δ)=true. Model
A is a legal model over metamodel M , if it satisfies all constraints declared in M .
For example, checking constraint declaration [or]@δ is shown in Fig. 3. The image
of δ is shown in the lower right part (elements not in the image are greyed out),
the restriction GA is in the top right quadrant, and B = (GB , τB : GB → S[or]) is
the corresponding retyping. As validate[or](B) = true, we conclude A |= [or]@δ.
Note the copy procedure during retyping: for each class-instance in the restriction
of GA, we have to create two vertices in GB , because we must incorporate their
two possible roles as subclass (source of edge super) and superclass (target of
edge super). This is a general procedure: each vertex or edge in GA has to be
represented n times in GB , if its type in GM has n preimages under δ. In this
way, we can consider elements in all possible occupied roles. This “role-based”
retyping procedure is actually carried out via the general mathematical pullback
construction [1,13].

Fig. 3. How function check works

2.3 Multimodeling

Modeling a complex system normally results in a multimodel, i.e., a set of het-
erogenous models each one conforming to its own metamodel. Besides class dia-
grams, other types of UML diagrams are produced, for instance sequence dia-
grams, statecharts, activity diagrams, etc. Even class diagrams may conform

Advanced Local Checking of Global Consistency 25

to different metamodels: Business analysts may use behavioural specifications
only [10] with no attributes or associations, M1 in Fig. 4, whereas for another
modeling team, class models are more technically oriented and associations and
attributes are used (M2). In all cases, the models collectively represent a single
system to be build, and any formal treatment has to consider overlaps, i.e. the
definitions of common terminology in different models. E.g., the (meta) concept
class occurs in both of the above-mentioned metamodels. Names of common con-
cepts, however, may differ: one team may use the term String, while the other
may use Text, yet speaking of the same concept.

Fig. 4. Multimodel and merge

In the binary case (two meta-
models M1 and M2), overlaps can
be specified by two graph map-

pings M1 M12
r1�� r2 �� M2

in which M12 contains all com-
mon concepts. Any pair x1 ∈ M1

and x2 ∈ M2 is declared to be the
same, if there is x ∈ M12 such
that r1(x) = x1 and r2(x) =
x2. We call this configuration of
metamodels and mappings a mul-
timetamodel M and write M =
(M1,M2,M12, r1, r2) or shorter
M = (r1, r2), if domain and
codomain of r1 and r2 are clear
from the context.

In the sequel, all (meta)models will be (typed) graphs, such that we simplify
notation by using letters M (metamodels) and A (models) with subscripts to
distinguish different graphs. A multimetamodel M is shown in Fig. 4: M1 was
already used in Sect. 2.1, Fig. 1. M2 is the above mentioned technical metamodel.
The overlap specification M12 declares Class together with its super-relation
to be the same and, since r1(Str Txt) = String and r2(Str Txt) = Text, it
declares sameness of String and Text (see the shaded vertices). The merge (union)
M+ of the two components of M is shown in the lower half of Fig. 4. We introduce
merges in Sect. 3.

3 Managing Global Constraints

In the present section we analyse global constraints, i.e., constraints that reside
in neither of the component metamodels alone, and thus involve elements from
several metamodels. Correspondingly, we use the name inter-metamodel con-
straints that accurately describes the case. In Sect. 3.1, we will state a definition
of global satisfaction against an inter-metamodel constraint. The definition treats
the binary case only, but the generalization for the N-ary case is straightfor-
ward. Models typed over different metamodels are said to be globally consistent
if they satisfy all imposed inter-metamodel constraints. We will argue that it is

26 H. König and Z. Diskin

impractical to use this definition as an algorithm for global consistency checking.
Hence, in Sect. 3.2, we introduce another algorithm, in which global satisfiabil-
ity against an inter-metamodel constraint is checked locally, and illustrate its
advantages with a running example. Section 3.3 compares the global satisfaction
definition of Sect. 3.1 with the local algorithm of Sect. 3.2 and, additionally, with
the collective method of [6]. Finally, equivalence of all three methods is stated
(main theorem).

3.1 Global Consistency

Global inter-metamodel constraints are spread over different components of a
multimetamodel. Consider e.g. the binary multimetamodel in Fig. 4 with the
following constraint declaration C (a standard requirement for Java Beans):

For each attribute named “n” there must be an accessor operation with name
“getN”!
to be checked for models A1 over metamodel M1 and A2 over metamodel M2.

In the diagrammatic constraint framework, to declare C, we need to find a
corresponding constraint c and binding mapping δ : Sc → M . For this, we take
for M the merge M+ of M1 and M2 w.r.t. overlap M12. This is shown in the lower
half of Fig. 4. Basically, it is the union of M1 and M2 modulo M12: Since Class
is common to both components, it appears only once in the merge. The same
is true for String and Text being represented by Str Txt in M+. However, the
two edges labelled name in M1 and M2 are not unified: They are not declared
the same in the overlap (one is an operation’s name, the other the name of an
attribute). r1 : M1 → M+ and r2 : M2 → M+ map all elements of M1 and M2

to the corresponding elements in the merge. Now we can impose c to M+ via
binding map δ. This is shown in Fig. 5.

c’s intended semantics is controlled by function validatec (cf. Sect. 2.2),
which has input graph B = (GB , τB) typed over Sc. If Sc is bound as shown in
Fig. 5, it will return true if and only if for each own class attribute with name n,
there is an owned operation with name getN in the same class. Note that the
super relation is not included in the image of δ, because getters shall exist for
own attributes only (inherited attributes already yield respective get-methods).

In Sect. 2.3, we described two modeling teams. Assume the first team creates
legal model (one or more class diagrams) A1 typed over metamodel M1, and the
other team creates legal model A2 typed over metamodel M2. Global consistency
requires validity of the name alignment constraint c@δ introduced above. Con-
joint treatment of models requires their matching, i.e., specifying their common
concepts. But model overlap might not be possible to be inferred automatically:
e.g., entity Onl(ine)Order in model A1 may be called Onl(ine)Purchase Order
in A2, cf. Fig. 6. In general, cross-(meta)model terminology may be very hetero-
geneous, and the structure of models may vary significantly while still reflecting
identical concepts. Given a significant size of practical models, model matching
can be a costly procedure that needs special tools and user input.

Advanced Local Checking of Global Consistency 27

Fig. 5. Imposing global constraint on merged multimodel

Formally – and similarly to metamodels – one must determine two graph

mappings A1 A12

r′
1�� r′

2 �� A2 that are compatible with typing1. We call
this configuration of models and mappings a multimodel A over multimetamodel
M and write A = (r′

1, r
′
2)

2. Only now is it possible to merge multimodel A, which,
basically, is performed in the same way as for metamodels: One constructs the
union GA+ of the data graphs of A1 and A2 wrt. to A12. This yields a unique
typing mapping τA+ : GA+ → M+ (this can formally be proved, because merging
is a special case of the universal construction of pushouts [1]) and hence model
merge A+ = (G+, τA+).

Definition 1 (Global Consistency [6,20]). Let c@δ be an inter-metamodel
constraint over multimetamodel M = (r1, r2). We say that multimodel A =
(r′

1, r
′
2) over M satisfies c@δ, if the above constructed model merge A+ satisfies

c@δ over M+. If A satisfies all inter-metamodel constraints imposed on M, we
call A globally consistent.

We remark that the binary case can be generalized to the N-ary case by con-
structing M+ as colimit, a categorical construction encompassing binary merging
[6,20].

Unfortunately, practical consistency checking along the lines of this defini-
tion, i.e., constructing globally typed data before checking, has major disadvan-
tages:

1. One has to deal with the entire union of data (usually a huge structure) -
independent of whether there is only a small portion being affected by the
constraint.

2. To specify overlaps of typed data structures, this enormous collection of data
has to be traversed manually or at least semi-automatically. Overlaps have
to be complete, i.e. they are not specific to the given constraint declaration.

1 Formally, r′
i (i ∈ {1, 2}) map the data graph of A12 and respect behavior of ri, i.e.

r′
i; τi = τ12; ri.

2 Again assuming domain and codomain of r′
1 and r′

2 to be clear from the context.

28 H. König and Z. Diskin

Fig. 6. Multimodel: models with overlap

Consider e.g. Fig. 6: A1 contains owned operations and implemented interfaces
of the order classes. A2 represents the same order classes. Shaded nodes and
their : super-links are in the overlap A12, i.e. OnlOrder and OnlPurchaseOrder
are declared to be the same classes despite their different names. Besides own
attributes, A2 contains the shop assistant who processed the offline order (via a
directed association). A+ is the union of all these elements w.r.t. the overlap. It
is not reprinted due to lack of space.

If we want to check whether A = (r′
1, r

′
2) satisfies constraint c@δ, the above

mentioned disadvantages manifest as follows:

1. Although c@δ only “talks” about classes and names of their attributes and
operations, we have to deal with interface implementations and operation’s
reference to its class (from A1), as well as (usually many) associations (from
A2) but also with superclass relations (in the overlap).

2. The user must search the set of all classes and all their superclass relations for
identical concepts. In the example he must specify sameness of OnlOrder and
OnlPurchaseOrder, the other two identities Order and OfflOrder may auto-
matically be proposed based on identical naming, yet have to be confirmed
by the user. The user also has to declare several superclass relations to be
the same although the constraint declaration does not talk about inheritance
relation.

Both aspects become more severe, if there is a big number of diagrams, probably
stored with different techniques. Moreover, our examples are small compared
with real diagrams, where the proportion of matching (i.e. overlap specification)
of non-relevant data (being outside the fragment that matters for checking) will
be significantly bigger.

3.2 Local-Individual Checking

Is there a technique for checking inter-metamodel constraints that would be
more efficient than a direct execution of the definition (Definition 1 in Sect. 3.1)
as proposed in [20]? A better approach would be to consider only those pieces of

Advanced Local Checking of Global Consistency 29

data and models and their overlaps that matter for checking, i.e., make checking
constraints as local as possible:

Definition 2. The following algorithm for global consistency checking is called
local-individual checking. Let A = (A1, A2, A12, r

′
1, r

′
2) be a multimodel over

multimetamodel M = (M1,M2,M12, r1, r2). Let r1 and r2 be inclusion maps
of M1 and M2 into the metamodel merge M+ as is Fig. 4. An inter-metamodel
constraint c@δ is verified as follows (the following four steps will be illustrated
afterwards by way of example):

1. Let M c
1 , M c

2 , and M c
12 consist of all elements of M1, M2, and M12, resp.,

which are mapped to the image of δ by r1, r2, and r1; r1 (= r2; r2), resp.3
2. Restrict models A1 and A2 to those elements being typed over M c

1 and M c
2

resp. Call this data Ac
1 and Ac

2.
3. Determine overlap Ac

12 of Ac
1 and Ac

2.
4. Apply check(Ac

+, c@δ), where Ac
+ is the local merge of Ac

1 and Ac
2.

Fig. 7. Individually local consistency checking: steps 1 to 3

We illustrate application of the algorithm for our running example, where
multimodel (r′

1, r
′
2) from Fig. 6 will be checked against constraint declaration

c@δ from Fig. 5. Steps 1 to 3 are illustrated in Fig. 7:

Step 1 : M c
1 ,M c

2 , and M c
12 are depicted in the lower half. Once the complete

overlap M12 is known, they are automatically derived from the scope of the
constraint. Shaded vertices again depict overlap. The important improvement
is that Interfaces together with their operations and interface implementations
now vanish. In the same way, class membership of operations can be omitted.
Since the constraint declaration does not involve superclass relations, they can
be omitted, too. Moreover, we need not care about associations and their source
and targets.
3 We still consider c@δ to be imposed on the merge M+ of M1 and M2, i.e. δ : Sc →

M+. Recall that the image of δ is the set of those elements in M+, the shape of c is
mapped to.

30 H. König and Z. Diskin

Step 2 : The upper half shows appropriately narrowed Ac
1 and Ac

2. Again, this
step can be carried out automatically (similar to the retype step of function
check as described in Sect. 2.2). Note that OnlPurchaseOrder is omitted since
it does not possess own attributes and hence automatically satisfies constraint
declaration c@δ.

Step 3 : The only manual activity is overlap specification. It is now reduced to the
selection of classes Order and OfflOrder. We do not have to deal with superclass
relations and classes without attributes in the overlap. Additionally, no text
matching is necessary, since model structures simplify accordingly. Moreover,
declaration of OnlOrder-OnlPurchaseOrder-identity is no longer necessary.

Fig. 8. Local consistency checking: step 4

Step 4 : Calculation of local merge Ac
+ is again an automatic procedure. In Fig. 8,

it is depicted together with the part M c
+ of the integrated metamodel that mat-

ters for checking. The resulting data space (Ac
+) now contains no superfluous

elements. It is reduced to four involved classes only: OnlOrder still appears (but
now only as automatic leftover from A1). The other three classes can easily be
traversed. Function check has input a narrowed model (only those model ele-
ments typed over elements in the image of the binding). In the example it detects
satisfaction for classes Order and OfflOrder but violation for class Employee (grey
rectangles).

The reader may compare the unstructured contents of Fig. 6 with the reduced
data in the upper half of Fig. 7. The presented technique obviously reduces model
merging and matching workload, if constraints shall be checked in the per con-
straint fashion. It can also be applied, if it is temporarily possible to live with
inconsistency, i.e. with delayed non-urgent consistency repairs [9].

It remains to ensure global-local-equivalence, i.e. the algorithm must always
yield the same result as the global definition (cf. Definition 1). This equivalence
may seem obvious, but it can be invalid for model structures richer than simple

Advanced Local Checking of Global Consistency 31

typed graphs. For instance, assume that (meta)models can be augmented with
derived associations: if class C1 has an association a to C2 and C2 has association
b to C3, then there is a derived association /ab from C1 to C3 (note dashed arrow
in M+ in Fig. 9). In Fig. 9, model M+ is the merge of M1 and M2, in which class
C2 is assumed to be common in both metamodels.

Fig. 9. Derived association

Now consider a constraint declara-
tion “Each object instantiating C1 must
reference at least one C3-object via an
/ab-link.” Its binding map δ has image
consisting of the derived association and
classes C1 and C3. Then the global
check procedure of Definition 1 for mul-
timodel A with models (A1, A2) that
share the object : C2 (in Fig. 9, object
identifiers are omitted) will construct
the whole model merge with a derived
/ab-link from the C1-object to the C3-
object. Hence, A is consistent w.r.t.
Definition 1.

However, the local algorithm (Definition 2) hides class C2 in step 1, because
C2 is not in the image of the constraint declaration. Hence, the restricted model
Ac

1 only contains object :C1, and Ac
2 only contains :C3 (step 2), and we then

necessarily have an empty overlap (step 3). The local merge (step 4) does not
contain any association, and hence no derived one. Thus, in contrast to the global
check, the local check returns false!

This mismatch shows that investigation of global-local equivalence must be
carried out carefully, specifically, when dealing with correspondences involving
derived elements [6]. However, in the next section we show that the equivalence
always holds in the framework of typed graphs without derived elements.

3.3 Global-Local-Equivalence

In order to ensure that all proposed algorithms are correct in the context of
typed graphs, we have to prove (a) that the new local-individual approach is
correct w.r.t. the original definition of global consistency in Sect. 3.1, and (b) that
local-individual checking is equivalent to the local-collective grouping technique
proposed in [6], where special portions of the metamodel are determined such
that constraint groups imposed on this portion can be checked simultaneously.

We include a short proof sketch of the global-local-equivalence theorem,
which is stated in the end of this section (a detailed proof is given in [13]):
both, the above definition and the invented algorithm contain a merging step:
one for the entire metamodel (which yields M+) and one for only those parts that
matter for the constraint (which yields M c

+). In the proof of our theorem we com-
pare both approaches by - virtually - carrying them out in parallel: We use the
fact that these simultaneous merges can be controlled with the so-called Van

32 H. König and Z. Diskin

Kampen Property [8], whenever one of the two graph mappings r1 and r2 is injec-
tive4. It is an exactness property for typed graphs, which guarantees that both
operations, merge and restriction, behave and interact well. It fails in categories
where augmentation effects as described above occur. Basically, one can show
that the well-behavedness of the simultaneous metamodel merge (M+ and M c

+)
carries over to the model level (A+ and Ac

+). Then it is not difficult to deduce
that check(A+, c@δ) = validatec(retype(Ac

+)), where retype performs Step 2
of function check in Sect. 2.2. Global-local-equivalence then follows, since, by
construction, Ac

+ is the restriction of A+ (Step 1 of function check).
It is also important to compare the approach with the local-collective method

of [6], in which checking the global consistency of multimodel A against a group
of constraints C = {c1@δ1, . . . , cn@δn}, which is locally satisfied by component
models, is reduced to checking consistency against C at the model overlap. It
is not difficult to show that this setting can be seen as a special case of our
framework, in which a global constraint declaration c@δ encodes the entire group
C: constraint c is a logical conjunction of constraints ci in some precisely defined
sense, and the image of δ is the union of images of δ1, . . . , δn. Then collective
checking of group C is equivalent to individual checking of constraint c@δ.

From all these considerations we deduce our main theorem:

Main Theorem. Let metamodels be graphs, models be typed graphs, and model

mappings are typed graph morphisms. Let M = (M1 M12
r1�� r2 �� M2) be

a multimetamodel with r1 or r2 injective, A = (A1 A12

r′
1�� r′

2 �� A2) be a
multimodel over M, and c@δ be an inter-metamodel constraint declaration over
the merged metamodel M+. Then the following statements are equivalent:

– A satisfies c@δ according to Definition 1.
– The local-individual algorithm of Definition 2 returns true for c@δ.
– If c@δ encodes a group C of constraint declarations, then A satisfies C accord-

ing to the local-collective approach of [6]. ��

4 Related Work

Approaches to heterogeneous multimodeling can be roughly divided into global
and local. For the former, heterogeneity is managed by relating all local models
to one global model, and checking consistency wrt. this global model. In contrast,
there is no global model in local approaches.

The most direct (and most well-known) global approach to consistency check-
ing is via monitoring satisfiability of consistency rules. All local models are
considered as instances of some all-embracing global model given a priori, and
inter-model consistency is given by rules specified in a special language “under-
standing” all local models. A representative of this approach is described in [15]:

4 All examples in the present paper are such that both r1 and r2 are injective.

Advanced Local Checking of Global Consistency 33

inter-metamodel constraints are called inter- or multi-feature rules, and are inves-
tigated in the context of feature-oriented software development. Inconsistency
detection, for instance, is performed by mapping feature models to propositional
logic. Different to our approach, matching is only allowed when elements have
same types and same names. Hence, matching can well be automated. A mini-
survey of similar approaches can be found in [6].

Another global approach is consistency checking via merging (CCVM) pro-
posed in [20] for homogeneous structural modeling, and earlier discussed in [7]
for behavioral modeling; in [6], it was generalized for the heterogeneous case.
The global model is not given a priori but is computed by merging all local
models modulo their correspondences; the latter must be explicitly specified. An
essential advantage of CCVM approaches over monitoring consistency rules is
that complex types of model matching are allowed. Contributions of the present
paper into CCVM were discussed in the introduction in detail.

For local approaches, explicit specification of inter-model correspondences is a
central issue, and different types of notation and techniques were developed [17].
Besides the usual distinction between manual and (semi-)automatic procedures,
e.g. [23], more sophisticated approaches have been elaborated [12]. A distinctive
feature of our approach is that the set of correspondences is reified as a special
model endowed with correspondence mappings – a span. This is a standard
categorical idea, which was repeatedly employed in homogeneous multimodeling
frameworks based on category theory, the most prominent being [21], where
spans are themselves subject of evolution. The most difficult issue is indirect
correspondences, when sets of elements in different models are related but their
relationships cannot be specified by equating the elements. Such correspondences
are usually specified by correspondence rules [17], but their formal treatment
needs the machinery of Kleisli mappings [4]; incorporating the latter into the
framework developed in this paper is our important future work.

Finally, the Van Kampen property (originally invented in algebraic topology)
reveals a remarkable correspondence between software engineering and a math-
ematical method for inferring properties of a global structure from its known
local characteristics, cf. [8,22]. Since our work is also about interconnection of
the local and the global, it is not surprising that the Van Kampen property is
fundamental for our framework as well.

5 Conclusion

We presented a new approach for local checking of constraints imposed on hetero-
geneous multimodels, which significantly reduces model matching and merging
workload. Our second contribution is a formal underpinning of global consis-
tency, which essentially employs the diagrammatic nature of constraint. In this
framework, we were able to prove the equivalence of two local approaches to the
global consistency definition, so that the latter provides an optimization space
for the former.

34 H. König and Z. Diskin

The most important direction for future research is to generalize the pro-
posed binary overlapping algorithm together with a necessary equivalence the-
orem for the general N-ary overlapping case considered in [6]. Moreover, view
definitions (on metamodels) and view execution (on models) [6] should also be
taken into consideration. The challenge will be to find appropriate generaliza-
tion and extensions of our mathematical machinery for model correspondences
involving derived elements. Another direction of future research is to extend the
scope of underlying graphical structures beyond simple directed (typed) graphs
and include, e.g., attributed graphs [8]. Obviously, this also requires a general-
ization of the underlying diagrammatic framework.

We also plan to evaluate the algorithm in the tooling framework developed
at Bergen University College [14,16]. Our idea is to enhance DPF editors to
make them inter-metamodel aware. Alternatively, we can try to integrate our
approach with another constraint checking tools, e.g. USE, a tool to specify and
check OCL constraints [11].

Acknowledgement. We are sincerely grateful to anonymous reviewers for useful
comments and suggestions. Financial support was provided by Automotive Partner-
ship Canada via the Network on Engineering Complex Software Intensive Systems
(NECSIS).

References

1. Barr, M., Wells, C.: Category Theory for Computing Sciences. Prentice Hall, New
York (1990)

2. Diskin, Z.: Towards generic formal semantics for consistency of heterogeneous mul-
timodels. Tech. Rep. GSDLAB 2011–02-01, University of Waterloo (2011)

3. Diskin, Z., Kadish, B., Piessens, F., Johnson, M.: Universal arrow foundations for
visual modeling. In: Anderson, M., Cheng, P., Haarslev, V. (eds.) Diagrams 2000.
LNCS (LNAI), vol. 1889, pp. 345–360. Springer, Heidelberg (2000)

4. Diskin, Z., Maibaum, T., Czarnecki, K.: Intermodeling, queries, and kleisli cat-
egories. In: de Lara, J., Zisman, A. (eds.) Fundamental Approaches to Software
Engineering. LNCS, vol. 7212, pp. 163–177. Springer, Heidelberg (2012)

5. Diskin, Z., Wolter, U.: A diagrammatic logic for object-oriented visual modeling.
In: Proceedings of the Second Workshop on Applied and Computational Category
Theory (ACCAT 2007), pp. 19–41. ENTCS (2007)

6. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying overlaps of heterogeneous models
for global consistency checking. In: Dingel, J., Solberg, A. (eds.) MODELS 2010.
LNCS, vol. 6627, pp. 165–179. Springer, Heidelberg (2011)

7. Easterbrook, S.M., Chechik, M.: A framework for multi-valued reasoning over
inconsistent viewpoints. In: ICSE, pp. 411–420 (2001)

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformations. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (2006)

9. Fickas, S., Feather, M., Kramer, J.: Proceedings of ICSE 1997 Workshop on Living
with Inconsistency, Boston, USA (1997)

10. Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading
(1997)

Advanced Local Checking of Global Consistency 35

11. Gogolla, M., Büttner, F., Richters, M.: USE: a UML-based specification environ-
ment for validating UML and OCL. Sci. Comput. Program. 69(1–3), 27–34 (2007).
http://dx.doi.org/10.1016/j.scico.2007.01.013

12. Kessentini, M., Ouni, A., Langer, P., Wimmer, M., Bechikh, S.: Search-based meta-
model matching with structural and syntactic measures. J. Syst. Softw. 97, 1–14
(2014). http://dx.doi.org/10.1016/j.jss.2014.06.040

13. König, H., Diskin, Z.: Individually local checking of global consistency in hetero-
geneous multimodeling: the categorical story behind the scenery. Tech.rep., Uni-
versity of Applied Sciences, FHDW Hannover (2016). http://fhdwdev.ha.bib.de/
public/papers/02016-01.pdf

14. Lamo, Y., Wang, X., Mantz, F., Bech, Ø., Sandven, A., Rutle, A.: DPF workbench:
a multi-level language workbench for MDE. Proc. Est. Acad. Sci. 62, 3–15 (2013)

15. Lopez-Herrejon, R.E., Egyed, A.: Detecting inconsistencies in multi-view models
with variability. In: Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA
2010. LNCS, vol. 6138, pp. 217–232. Springer, Heidelberg (2010)

16. Rabbi, F., Lamo, Y., Yu, I., Kristensen, L.: A diagrammatic approach to model
completion. In: 4th Workshop on Analysis of Model Transformations Co-Located
with MODELS 2015, pp. 56–65 (2015)

17. Romero, J., Jaen, J., Vallecillo, A.: Realizing correspondences in multi-viewpoint
specifications. In: EDOC, pp. 163–172. IEEE Computer Society (2009)

18. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A diagrammatic formalisation of
MOF-based modelling languages. In: Oriol, M., Meyer, B. (eds.) Objects, Com-
ponents, Models and Patterns. LNBIP, vol. 33, pp. 37–56. Springer, Heidelberg
(2009). http://dx.doi.org/10.1007/978-3-642-02571-6 4

19. Rutle, A., Wolter, U., Lamo, Y.: A diagrammatic approach to model transforma-
tions. In: Proceedings of the 2008 Euro American Conference on Telematics and
Information Systems (EATIS 2008), pp. 1–8. ACM (2008)

20. Sabetzadeh, M., Nejati, S., Liaskos, S., Easterbrook, S.M., Chechik, M.: Consis-
tency checking of conceptual models via model merging. In: RE, pp. 221–230. IEEE
(2007)

21. Schürr, A.: Specification of graph translators with triple graph grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903. Springer,
Heidelberg (1995)

22. Soboczińsky, P.: Deriving process congruences from reaction rules. Tech. Rep. DS-
04-6, BRICS Dissertation Series (2004)

23. de Sousa Jr., J., Lopes, D., Claro, D.B., Abdelouahab, Z.: A step forward in semi-
automatic metamodel matching: algorithms and tool. In: Filipe, J., Cordeiro, J.
(eds.) Enterprise Information Systems. LNBIP, vol. 24, pp. 137–148. Springer,
Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-01347-8 12

http://dx.doi.org/10.1016/j.scico.2007.01.013
http://dx.doi.org/10.1016/j.jss.2014.06.040
http://fhdwdev.ha.bib.de/public/papers/02016-01.pdf
http://fhdwdev.ha.bib.de/public/papers/02016-01.pdf
http://dx.doi.org/10.1007/978-3-642-02571-6_4
http://dx.doi.org/10.1007/978-3-642-01347-8_12

Supporting the Linked Data Approach
to Maintain Coherence Across Rich

EMF Models

Jad El-Khoury1(&), Cecilia Ekelin2, and Christian Ekholm2

1 Department of Machine Design, KTH Royal Institute of Technology,
Stockholm, Sweden
jad@kth.se

2 Advanced Technology and Research, Volvo Group Trucks Technology,
Gothenburg, Sweden

{cecilia.ekelin,christian.ekholm}@volvo.com

Abstract. In many development environments, Model-Driven Engineering
(MDE) may well be limited to parts of the complete product development
process due to the lack of interoperability mechanisms that connect the product
data across the model-based engineering tools being used. This is especially the
case if the tools are not designed to work tightly together, and/or if they do not
share a common technological basis. In this paper, we investigate the use of the
OASIS OSLC interoperability standard to facilitate the integration of models
from different languages into a single coherent view. We evaluate a
fully-automated code generator that provides OSLC interfaces for EMF-based
modelling tools, allowing the exposure of modelling elements from any rich
modelling language. We argue that such a generator is a critical component for
reducing the cost of providing rich and specialized tool interfaces, generally
needed when integrating modelling tools. The study is based on a case study that
addresses the development process – and the corresponding integrated software
engineering environment - at Volvo Trucks used when developing a new
electronic architecture including heavy vehicle functions.

Keywords: Linked data � OSLC � Tool integration � Tool interoperability �
EMF � Code generation � Model-driven engineering

1 Introduction

Model-driven engineering (MDE) is leading the effort of migrating engineering focus
from text-based documentation to a digital representation of product data. Besides a
model’s ability to facilitate communication between individuals and teams, information
conveyed in a model – when made electronically accessible – serves as a basis for
analysis and synthesis activities throughout the product development life-cycle.

ThisMDE promise is currently best achievedwith development activities constrained
within a certain modelling tool, or a package of tools designed to work together. A first
challenge arises with the need to maintain the MDE approach between activities relying
on disparate tools. For example, the modelling tool MATLAB/Simulink [1] works well

© Springer International Publishing Switzerland 2016
A. Wąsowski and H. Lönn (Eds.): ECMFA 2016, LNCS 9764, pp. 36–47, 2016.
DOI: 10.1007/978-3-319-42061-5_3

with its own toolboxes, as well as with tightly integrated external products such as
TargetLink from dSPACE [2]; while its integration with a UML tool is not so clearly
defined. In the best case, this challenge can be handled if the tools happen to share
common technologies (such as a modelling framework, storage technologies, etc.),
making their integration readily possible. However, considering the variety of modelling
technologies encountered during the life-cycle of a typical product development process,
it is most likely that the effort needed tomaintain theMDE approach across such activities
becomes no longer sustainable. As a result,MDE and its benefits are typically constrained
to a subset of the development life-cycle.

One approach to expand this subset is to impose the same technological space on
tools throughout the development process, leading to the adoption of a more centralized
platform (such as PTC Integrity [3] or MSR-Backbone [4]). While this may be feasible
at a smaller scale, such centralized platforms cannot scale to handle the complete
heterogeneous set of data sources normally found in a large organization. Such plat-
forms may also be less flexible for changes over time, when additional tools need to be
introduced.

A second approach is to integrate models across technologies, as advocated by
solutions such as ModelBus [5]. In a sense, such solutions also assume a common
technological space (that of the integration platform), which all models need to be
mapped to, before they can be integrated. Typically, this relies on model transforma-
tions, leading to the risk of data duplication, and the challenge of maintaining the data
synchronized and consistent across the tool chain.

In this paper, we investigate a third alternative, where one attempts to work in a
technology-agnostic way, focusing instead on the model data that need to be integrated,
while disregarding how the data is managed within each modelling tool. We apply the
Linked Data principles [6], and in particular its manifestation in the OASIS OSLC [7]
tool interoperability standard, to enable the cohesion of MDE across modelling tools.

In the next subsection, we give an overview of Linked Data and the OASIS OSLC
standard, followed by an argument for our approach in adopting the standard for MDE.
In Sect. 2, we present a case study performed at Volvo Trucks to investigate and
validate our approach. Section 3 then presents the developed underlying infrastructure
that was necessary to carry out the use case. A discussion of related work is presented
in Sect. 4, before concluding the paper in Sect. 5.

1.1 Linked Data and the OASIS OSLC Standard

Linked Data is an approach for publishing structured data on the web, such that data
from different sources can be connected, resulting in more meaningful and useful
information. Linked Data builds upon standard web technologies such as HTTP, URI
and the RDF family of standards.

OASIS OSLC is a standard that targets the integration of software tools. It builds
upon the Linked Data principles, and its accompanying standards, by defining common
rules and patterns to access, manipulate and query resources managed by the different
tools in the tool chain.

Supporting the Linked Data Approach to Maintain Coherence 37

This Linked Data approach to tool interoperability promotes a distributed archi-
tecture, in which each tool autonomously manages its own product data, while pro-
viding RESTful services through which other tools can interconnect. This leads to low
coupling between tools, by reducing the need for one tool to understand the deep data
of another. Moreover – like the web – the approach is technology-agnostic, where tools
can differ in the technologies they use to handle their data. That is, both the data as well
as the technology is decentralized.

Figure 1 illustrates a typical architecture of an OSLC tool interface, and its relation
to the tool it is interfacing. With data exposed as RESTful services, such an interface is
necessarily an “OSLC Server”, with the connecting tool defined as an “OSLC Client”.
A tool interface can be provided natively by the tool vendor, or through a third-party as
an additional adaptor. In either case, a mapping between the internal data and the
exposed RDF resources needs to be done. Such mapping needs to deal with the
differences in the technologies used. In addition, a mapping between the internal and
external vocabulary is needed, since the vocabulary of the resources being exposed is
not necessarily the same as the internal schema used to manage the data.

OSLC defines domain specifications, which include domain vocabularies (or
information models) for specific lifecycle domains. The standardized domain specifi-
cations are minimalistic, focusing on the most common concepts within a particular
domain, while allowing different implementations to extend this common basis. For an
example of relevance to modelling tools, the Architecture Management Specification
[8] only defines two resources Architecture Management and Link Type, where the
former is used to represent any type of modelling elements such as a UML Class, Use
Case, or Business Process Diagram.

OSLC
Technological
Space

OSLC
Server

Change Request

Tool
Technological
Space

Mapping Tool
Instance bug1 AssignedTo

Bug2

Resources & services

Foaf:Person

Fig. 1. Typical tool architecture, with an OSLC Server.

38 J. El-Khoury et al.

1.2 Approach

While we agree with the minimalistic principle of the OSLC standard, it becomes
apparent from our case study that a more detailed and specialized vocabulary is nec-
essary to deal with the rich semantics generally available in many modelling tools.
Modelling languages, such as UML, contain tens and hundreds of modelling artefacts
that - depending on the tool usage scenarios - may need to be exposed. Moreover, these
artefacts are hierarchically structured and contain relationships among themselves,
creating a web structure that may also need to be exposed. As will be explained in the
case study in Sect. 2, a typical integration scenario that require the exposure of many
fine-grained resources is the linking of information across models at a fine level of
details (for example, tracing a requirement to a specific class instead of a complete
model or class diagram).

This needs not necessarily conflict with the minimalism of OSLC. As illustrated in
Fig. 2, the rich and specialized vocabularies of MDE modelling languages (For a
legible representation of EAST-ADL models the reader is referred to [12]), can build
on the small but common foundation provided by OSLC domain specifications (such as
Architecture Management [8] and Requirements Management [9]), which themselves
build on the even more common OSLC Core vocabularies [10]. For ease of adoption
and management, a common vocabulary needs to stay minimal; while a more spe-
cialized language can afford to be more detailed.

OSLC Common Properties & Resources
Properties Resources
shortTitle Service Provider

modifiedBy Resouce Shape
property Creation Factory

range Query Capability
….

Fig. 2. The minimal and common basis of OSLC forms a foundation for the increasingly
specialized and rich MDE modelling languages.

Supporting the Linked Data Approach to Maintain Coherence 39

However, the development of an OSLC interface for a rich and specialized MDE
tool may be potentially costly. First, a richer vocabulary - with the many fine-grained
artefacts to be exposed at the interface - requires a larger development effort. Second, a
specialized tool has normally few end-users upon which development costs can be
shared. On the other hand, in the case when the metamodel of the artefacts is available
in a digital format, it ought to be possible to automate the process of creating this OSLC
interface. Such an approach is very advantageous since the same automation process
can be reapplied to similar tools with similar technological basis, further lowering the
threshold needed to adopt OSLC across the tool chain.

In this paper, we propose a fully-automated code generator that provides an OSLC
interface for EMF-based modelling tools, allowing the exposure of modelling elements
from any rich modelling language. Such a generator forms part of the tool support
critical for reducing the cost of providing rich and specialized tool interfaces, generally
needed when integrating modelling tools.

2 Case Study

AUTOSAR [11] and EAST-ADL [12] define two complementary and compatible
metamodels for capturing design information for automotive embedded systems. They
moreover define XML-based data exchange formats based on the metamodels. Despite
the similarities of the two metamodels, no interface yet exists that allows the combi-
nation of these metamodels into a single coherent view across tools. That is, previous
approaches typically focus on combining the metamodels in a single tool or framework.
For example, Papyrus [13] supports an EAST-ADL profile and it would be possible to
also define an AUTOSAR profile in order to support views based on the linking
capabilities of EAST-ADL. Moreover, tools like EATOP [14] and ARTOP [15], both
being based on Eclipse, could potentially offer view functionality by hosting their
models in the same framework. It is however unnecessarily restrictive to assume that all
EAST-ADL and AUTOSAR models will be based on a single tool or framework.
Therefore, as part of the CRYSTAL [16] EU research project, an interface without such
restrictions is being developed and assessed for tools dealing with AUTOSAR and
EAST-ADL information.

A major delivery of the CRYSTAL project is the so called interoperability spec-
ification (IOS) [17] that describes common tool interoperability concepts. A foundation
for the IOS is the OASIS OSLC standard. It was therefore inherent that also the
EAST-ADL and AUTOSAR interfaces would be based on OSLC. This would allow
data to be seamlessly linked and/or exchanged in order to form a global view and to
maintain consistency in a manner more efficient than offered by file exchange.

In order to address the interface development properly, a case study containing data
linking and exchange between EAST-ADL models and AUTOSAR models is defined.
The case study addresses the development process – and the corresponding software
engineering environment - at Volvo Trucks used when developing a new electronic
architecture including heavy vehicle functions. This involves enabling data exchange –
with the support of OSLC - for EAST-ADL and AUTOSAR models. A use case
diagram for exchanging and linking EAST-ADL and AUTOSAR models is shown in

40 J. El-Khoury et al.

Fig. 3a. Color coding is used to improve readability of the diagram, where red rep-
resents AUTOSAR, blue represents EAST-ADL and green represents analysis com-
bining both EAST-ADL and AUTOSAR. A typical usage scenario is illustrated in
Fig. 3b, in which a Modeller and Implementer create EAST-ADL and AUTOSAR
models respectively. The Modeller then uses the AUTOSAR OSLC adaptors to query
and select a particular AUTOSAR model element (in particular a Software Component)
and link it to a particular EAST-ADL element (DesignFunctionPrototype).

3 Auto Generation of OSLC Interfaces for EMF-Based
Models

A major cornerstone in realizing the above scenario is the ability to expose elements of
the EAST-ADL and AUTOSAR models, as Linked Data resources and according to
the OSLC standard. This requires the development of OSLC adaptors for the
EAST-ADL and AUTOSAR tools managing their respective models.

Fig. 3. (a) Use case diagram (b) A typical scenario for exchanging and linking EAST-ADL and
AUTOSAR models (Color figure online)

Supporting the Linked Data Approach to Maintain Coherence 41

The EAST-ADL and AUTOSAR metamodels contain hundreds of unique classes,
with a complex hierarchy of multiple inheritances, and many associations between
them. Early in the course of the project, it was concluded that a manual development of
OSLC interfaces to expose these classes is prohibitive. Instead, the ability to automate
the interface development is necessary. Several methods of automatic generation of
OSLC adaptors were investigated, finally selecting the Eclipse Lyo Code Generator
[18], which generates an OSLC adapter based on a specification model.

3.1 Overall Architecture of the EMF4OSLC Generator

The current Lyo code generator builds upon the Lyo OSLC4J SDK. While OSLC4J
targets the implementation phase of adaptor implementation, the generator comple-
ments the SDK with a model-based development approach, which allows one to work
at a higher level of abstraction, with models used to specify the adaptor design, without
needing to deal with all the technical details of the OSLC standard (such as Linked
Data, RDF, etc.). The generator can then be used to synthesis the specification model
into a running implementation. The software consists of the following components:

• Adaptor meta-model – The adaptor meta-model allows for the graphical and intu-
itive specification of the OSLC adaptor functionality. It is designed to be loyal to
the OSLC standard. It is built based on the EMF Ecore framework [19].

• Lyo code generator – generating the OSLC adaptor based on an instance of the
adaptor meta-model.

The code generator produces most – but not all – of the code necessary for a complete
ready-to-run adaptor interface, according to the OSLC standard. Only a set of methods
that communicate with the source tool to access its internal data remain to be manually
implemented (the dotted arrows “mapping” in Fig. 1 above). This communication is
reduced to a simple set of methods to (a) get (b) create (c) search and (d) query each
serviced resource. So, for a complete generation of the adaptor, the current generator
needs to be complemented with two additional features:

• The automatic creation of the adaptor specification.
• The automatic generation of the necessary code to access and manipulate the data in

the backend tool.

An additional component – EMF4OSLC - is hence developed that builds on top of this
existing generator, in order to provide these two features. Given that the targeted
modelling tools are EMF-based, EMF technologies can be readily used to (1) transform
EAST-ADL/AUTOSAR metamodels into an adaptor specification model; and (2) pro-
vide the necessary Java code to access EMF model data at runtime. Figure 4 illustrates
how this component fits with the current generator – as a separate component. Instead of
tightly integrating the new component into the code generator, we envisage a pattern
where additional components (the top-level dotted components in Fig. 4) can similarly
build upon the current general-purpose generator. For example, another model generator
can produce instances of the adaptor meta-model for SQL-based tools, and hence
allowing for complete adaptor generation for such technologies. This naturally leads to

42 J. El-Khoury et al.

the better interoperability between EMF-based tools and SQL-based tools, based on the
technology-agnostic web services of Linked Data. Relating to the layers of Fig. 2, while
the existing generator supports the OSLC core and domain specifications, the
EMF4OSLC extends this support to cover the richer layers needed by EMF-based tools.

3.2 Adaptor Implementation

This section presents the implementation details of the EMF4OSLC component. While
the process is identical for both EAST-ADL and the AUTOSAR metamodels, we will
exemplify using the former. Figure 5 illustrates the resulting EAST-ADL data
exchange infrastructure, where the model elements are handled in the tool EATOP. To
implement a working OSLC adaptor from an EMF metamodel, as argued in Sect. 3,
five steps are carried out, and will be described in the following subsections.

Step 1: Generating OSLC resource definitions.
As a first step, the EMF4OSLC generator imports an ECORE representation of the

EAST-ADL metamodel (Version 2.1.12) [12] and traverses its elements (EClasses,
EAttributes, etc.) in order to produce the corresponding OSLC Resource definitions
according to the following mapping logic:

Fig. 4. The layered approach of the Lyo generator, building upon the Lyo OSLC4J SDK, and
allowing for the proposed EMF4OSLC model generator.

Fig. 5. EAST-ADL data exchange infrastructure

Supporting the Linked Data Approach to Maintain Coherence 43

• Every EClass in the EMF metamodel is mapped to an OSLC Resource.
• Every EAttribute is mapped to an OSLC ResourceProperty, defined to be a Literal

(i.e. a Property with oslc:valueType set to a literal). While the most common
EAttribute types (such as Boolean, Integer and String) are supported by OSLC,
EMF contains a richer set of EAttribute types that have no direct equivalent in
OSLC (for example, EChar).

• Every EReference is mapped to an OSLC ResourceProperty, with oslc:valueType
set to “Resource”. The type of the EReference is mapped to the oslc:range of the
corresponding ResourceProperty.

• For both EAttribute and EReference elements, the cardinality defined using the
“lower bound” and “upper bound” properties are simply mapped to an equivalent
OSLC cardinality description using the oslc:occurs of a ResourceProperty.

• Every EEnum enumeration type is mapped to an OSLC Property with an oslc:
allowedValue set to the corresponding enumeration values.

As an example, the EClass VehicleFeature, found in the EAST-ADL metamodel, is
translated to the OSLC resource definition VehicleFeature as illustrated in Fig. 6. In
this example, the VehicleFeature Eclass inherits from another resource Feature. The
resource definition also maps to four ResourceProperties. Each such ResourceProperty
is in turn defined through constraints such as its range and cardinality.

Step 2: Manual configuration of services.
Once the resource definitions are created, it is necessary to define the OSLC Ser-

vices (such as query capabilities, creation factories, and the RESTful operations) that
are needed for the relevant resources. Not all resources would require such services,
and the identification of the necessary services would depend on the usage scenario of
the interfaces. For this reason, it remains a manual step to define the required services,
through the graphical modelling support already provided by the base Lyo code
generator.

Step 3: Definition of backend connection code.
When dealing with a big meta-model that contains hundreds of resources, writing

the code connecting the OSLC adaptor with the backend tool (in this case EATOP)

Fig. 6. The corresponding OSLC resource for the VehicleFeature EClass, showing (a) resource
properties and inheritance structure (b) constraints defining each property.

44 J. El-Khoury et al.

would be a laborious task. In this step, the EMF4OSLC component produces code
templates for each of the Get/Create/Query methods of each serviced resource. The Lyo
Generator in turn uses these templates to produce the appropriate final java methods.
Figure 7 shows an example template for the Get-method of a resource.

Step 4: Automatic generation of the OSLC adaptor.
Once the resources are defined, and their corresponding services are configured, the

OSLC adaptor is generated through the standard existing Lyo code generator
functionality.

Step 5: Building and running the OSLC adaptor.
Steps 1-4 result in a fully functioning Eclipse project that is ready to run as an

embedded OSLC web server. Such server can then be reached by an OSLC client using
any of the OSLC defined discovery capabilities.

4 Related Work

The prototype proposed in [21] maps between EMF objects and RDF Resources, based
on a mapping language between the EMF domain model and the corresponding RDF
ontology. More generally, [20, 22] are representatives of a flora of solutions that
attempt to translate between the RDF data model and the more traditionally encoun-
tered technologies. In particular, [20] provides a library for accessing RDF data from
the dynamic object-oriented Ruby programs, while [22] provides a solution to publish
relational databases as RDF graphs. While such approaches are crucial in defining the
basic mapping between RDF and EMF, our work is dedicated towards the more
specific OSLC standard, which is of most relevance to tool interoperability and MDE.

The work presented here is similar to the solution in [23], where an OSLC-based
integration of EMF models is proposed in the Rational Software Architect Design
Manager (DM) tool. DM allows its EMF-based models to be exposed as OSLC
resources. This however assumes that the EMF models are defined and used within the
DM tool itself. Instead, our approach provides a generic infrastructure that supports
models from different EMF-based tools, and without necessarily knowing the internal
mechanisms of the tools. This facilitates the integration of models across tools
(EMF-based and/or otherwise). To ensure sustainability, we also desire an approach
that builds on an established code generator for OSLC technologies, and which can be
further extended to support other technologies as discussed in Sect. 3.1.

Fig. 7. Resource get-method template code, where template parameters are marked in bold

Supporting the Linked Data Approach to Maintain Coherence 45

5 Conclusion

In this paper, we identified the need for efficient support in the development of tool
interfaces in order to expose the rich and specialized semantics normally found in
modern MDE tools. It is argued that such support can best be made possible by
adopting the technology-agnostic Linked Data approach (and OSLC standard) to tool
interoperability. In addition, one can take advantage of the digital access in
model-based tools to automate the process of producing the needed interfaces.

A core component of such tool support is the proposed fully-automated code
generator that provides an OSLC interface for EMF-based modelling tools, allowing
the exposure of fine-grained elements from any rich modelling language. This approach
was validated in an automotive case study at Volvo Trucks, using the EAST-ADL and
AUTOSAR metamodels. Such metamodels contain hundreds of unique classes - with a
complex hierarchy of multiple inheritances – that can now be exposed as OSLC
resources for other tools to integrate with. Naturally, such mapping between the dif-
ferent paradigms (the classical object-oriented model of EMF and the RDF data model
of Linked Data) is necessarily accompanied with complexities and compromises that
one needs to deal with. The work presented here does not attempt to provide such a
formal mapping, taking instead an initial hands-on approach. A discussion of the
substantial differences in the underlying data models can be found in [20]. A practical
issue from our own case study highlighted that while EAttributes and EReferences are
defined within the context of their EClass, properties in Linked Data are stand-alone
first-class entities that can be reused across many resources. In the case of rich mod-
elling languages, this leads to an explosion in the number of properties that have no
natural structuring entity. In addition, while the proposed generator allows for the
exposure of the complete complex structure of an EMF model, the capability to con-
figure and limit the hierarchy of artefacts being exposed would be desired.

While we have demonstrated our solution for the EMF technology, automation
support is necessary for other technologies in order to ensure interoperability between a
wider range of modelling tools. On-going work is under way to support SQL-based
tools. By building upon the Lyo code generator and the architecture of Fig. 4, this
further reduces the threshold of integrating modelling tools in a tool chain.

Acknowledgement. The research leading to these results has received partial funding from the
European Union’s Seventh Framework Program (FP7/2007-2013) for CRYSTAL – Critical
System Engineering Acceleration Joint Undertaking under grant agreement No. 332830 and from
Vinnova under DIARIENR 2012-04304.

References

1. MathWorks MATLAB/Simulink, April 2016. http://se.mathworks.com/products/simulink/
2. dSPACE TargetLink, April 2016. https://www.dspace.com/en/inc/home/products/sw/pcgs/

targetli.cfm
3. PTC Integrity, April 2016. http://www.ptc.com/application-lifecycle-management/integrity

46 J. El-Khoury et al.

http://se.mathworks.com/products/simulink/
https://www.dspace.com/en/inc/home/products/sw/pcgs/targetli.cfm
https://www.dspace.com/en/inc/home/products/sw/pcgs/targetli.cfm
http://www.ptc.com/application-lifecycle-management/integrity

4. Weichel, B., Herrmann, M.: A backbone in automotive software development based on
XML and ASAM/MSR. In: SAE Technical Papers (2004). doi:10.4271/2004-01-0295

5. Hein, C., Ritter, T., Wagner, M.: Model-driven tool integration with modelbus. In:
Workshop Future Trends of Model-Driven Development (2009)

6. Berners-Lee, T.: Linked data design issues, April 2016. http://www.w3.org/DesignIssues/
LinkedData.html

7. OASIS OSLC, April 2016. http://www.oasis-oslc.org/
8. OSLC architecture management specification version 2.0, 2011, April 2016. http://open-

services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-
Version-2.0/

9. OSLC requirements management specification version 2.0, 2012, April 2016. http://open-
services.net/bin/view/Main/RmSpecificationV2

10. OSLC core specification version v2.0, 2013, April 2016. http://open-services.net/bin/view/
Main/OslcCoreSpecification

11. AUTOSAR: automotive open system architecture, April 2016. http://www.autosar.org
12. EAST-ADL: electronic automotive systems architecture description language, April 2016.

http://www.east-adl.info/
13. Papyrus - modeling environment, April 2016. https://eclipse.org/papyrus
14. EATOP EAST-ADL tool platform, April 2016. http://www.eclipse.org/eatop/
15. AUTOSAR tool platform (Artop), April 2016. https://www.artop.org/
16. CRYSTAL - critical system engineering acceleration - an artemis project, April 2016. http://

www.crystal-artemis.eu/
17. Loiret, F., et al.: Draft proposal on EAST-ADL/AUTOSAR for IOS, in Interoperability

Specification (IOS) - V2, CRYSTAL deliverable D601.022, 2015, pp. 183–188. http://www.
crystal-artemis.eu/fileadmin/user_upload/Deliverables/CRYSTAL_D_601_022_v1.0.pdf

18. Eclipse Lyo code generator, April 2016. https://wiki.eclipse.org/Lyo/AdaptorCodeGenerator
Workshop

19. Eclipse modeling framework project (EMF), April 2016. https://eclipse.org/modeling/emf/
20. Oren, E., Heitmann, B., Decker, S.: ActiveRDF: embedding semantic web data into object

oriented languages. In: Web Semantics: Science, Services and Agents on the World Wide
Web (2008)

21. Hillairet, G., Bertrand, F., Lafaye, J.Y.: Bridging EMF applications and RDF data sources.
In: 4th International Workshop on Semantic Web Enabled Software Engineering (2008)

22. Bizer, C., Cyganiak, R.: D2R server: publishing relational databases on the SemanticWeb.
In: Proceedings of the International SemanticWeb Conference (2003)

23. Elaasar, M., Neal, A.: Integrating modeling tools in the development lifecycle with OSLC: a
case study. In: Proceedings of the 16th International Conference on Model Driven
Engineering Languages and Systems, MODELS, pp. 154–169 (2013)

Supporting the Linked Data Approach to Maintain Coherence 47

http://dx.doi.org/10.4271/2004-01-0295
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.oasis-oslc.org/
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/
http://open-services.net/bin/view/Main/RmSpecificationV2
http://open-services.net/bin/view/Main/RmSpecificationV2
http://open-services.net/bin/view/Main/OslcCoreSpecification
http://open-services.net/bin/view/Main/OslcCoreSpecification
http://www.autosar.org
http://www.east-adl.info/
https://eclipse.org/papyrus
http://www.eclipse.org/eatop/
https://www.artop.org/
http://www.crystal-artemis.eu/
http://www.crystal-artemis.eu/
http://www.crystal-artemis.eu/fileadmin/user_upload/Deliverables/CRYSTAL_D_601_022_v1.0.pdf
http://www.crystal-artemis.eu/fileadmin/user_upload/Deliverables/CRYSTAL_D_601_022_v1.0.pdf
https://wiki.eclipse.org/Lyo/AdaptorCodeGeneratorWorkshop
https://wiki.eclipse.org/Lyo/AdaptorCodeGeneratorWorkshop
https://eclipse.org/modeling/emf/

Stress-Testing Centralised Model Stores

Antonio Garcia-Dominguez(B), Konstantinos Barmpis,
Dimitrios S. Kolovos, Ran Wei, and Richard F. Paige

Department of Computer Science, University of York, York, UK
{antonio.garcia-dominguez,konstantinos.barmpis,

dimitrios.kolovos,ran.wei,richard.paige}@york.ac.uk

Abstract. One of the current challenges in model-driven engineering is
enabling effective collaborative modelling. Two common approaches are
either storing the models in a central repository, or keeping them under
a traditional file-based version control system and build a centralized
index for model-wide queries. Either way, special attention must be paid
to the nature of these repositories and indexes as networked services: they
should remain responsive even with an increasing number of concurrent
clients. This paper presents an empirical study on the impact of certain
key decisions on the scalability of concurrent model queries, using an
Eclipse Connected Data Objects model repository and a Hawk model
index. The study evaluates the impact of the network protocol, the API
design and the internal caching mechanisms and analyzes the reasons for
their varying performance.

1 Introduction

Model-driven engineering (MDE) has received considerable attention due to its
demonstrated benefits of improving productivity, quality and maintainability.
However, industrial adoption has ran into various challenges regarding the cur-
rent maturity and scalability of MDE.

In their 2012 study [1], Mohagheghi et al. interviewed four companies and
noted that they considered that the tools at the time did not scale to the large
projects that would merit the use of MDE. Several ways in which MDE practice
could learn from widely-used programming environments to handle large models
better were pointed out in [2], with a strong focus on the need for modularity
in modelling languages to improve scalability and simplify collaboration. Three
categories of scalability issues in MDE were identified in [3]: model persistence
issues, model querying and transformation issues, and collaborative modelling
issues.

Focusing on collaborative modelling, one common approach is storing the
models in a model repository that keeps track of revisions and resolves conflicts
between users. Another approach is using a file-based version control system for
storage and version control and creating a model index that can efficiently answer
model-wide queries and provide integrated views of all the model fragments.
These tools are typically deployed as a service within a network, in order to
make the models available from any device within the organisation.
c© Springer International Publishing Switzerland 2016
A. W ↪asowski and H. Lönn (Eds.): ECMFA 2016, LNCS 9764, pp. 48–63, 2016.
DOI: 10.1007/978-3-319-42061-5 4

Stress-Testing Centralised Model Stores 49

There are strong implementations of both approaches, but little attention
has been paid to their inherent nature as networked services: most studies have
either focused on local scenarios where the client and the server reside in the
same machine, or considered only the simple case with a single remote user. It
can be argued that even with the right features, a collaborative system that is
not responsive under load would not be widely adopted.

In this empirical study we evaluate the impact of several design decisions
in one functionality common to both model repositories (e.g. CDO) and model
indices (e.g. Hawk): querying remote models. The study aims to inform devel-
opers and end users of remote model stores on the real tradeoffs between several
common choices: which network protocol to use, how to design the API and
which types of caches are most effective.

The rest of this work is structured as follows: Sect. 2 provides a discussion
on existing work on model repositories and model indices, Sect. 3 introduces
the research questions and the design of the experiment, Sect. 4 discusses the
obtained results and Sect. 5 presents the conclusions and future lines of work.

2 Background and Related Work

Persisting and managing large models has been extensively investigated over the
past decade. This section presents the main state-of-the-art tools and technolo-
gies and briefly describes the two tools used in this empirical study.

2.1 File-Based Model Persistence

One of the most common approaches to storing models is serializing them to
a textual file-based form. Tools like the Eclipse Modeling Framework (EMF)
[4], ModelCVS [5], Modelio1 and MagicDraw2 all use XML-based model serial-
ization. While this approach offers a structured platform-independent way for
storing models, it has been shown by various works such as [3,6] to lack scalabil-
ity as it requires loading the entire text file in order to retrieve any information
needed from the model.

2.2 Database-Backed Model Persistence

In light of the scalability limitations resulting from storing models as text files,
various database-backed model persistence formats have been proposed. Teneo/
Hibernate3 allows EMF models to be stored in relational databases. NeoEMF [6]
and MongoEMF4 all use NoSQL databases to store EMF models. Database
persistence allows for partial loading of models as only accessed elements have
to be loaded in each case. Furthermore, such technologies can leverage the use of
database indices and caches for improving element lookup performance as well
as query execution time.
1 https://www.modelio.org/.
2 http://www.nomagic.com/products/magicdraw.html#Collaboration.
3 http://wiki.eclipse.org/Teneo/Hibernate.
4 https://github.com/BryanHunt/mongo-emf/wiki.

https://www.modelio.org/
http://www.nomagic.com/products/magicdraw.html#Collaboration
http://wiki.eclipse.org/Teneo/Hibernate
https://github.com/BryanHunt/mongo-emf/wiki

50 A. Garcia-Dominguez et al.

2.3 Model Repositories

When collaborative modeling is involved, simply storing models in a scalable
form such as inside a database stops being sufficient; in this case issues such
as collaborative access and versioning need to also be considered. Examples
of model repository tools are Morsa [7], ModelCVS5, Connected Data Objects
(CDO)6, EMFStore [8], Modelio, MagicDraw and MetaEdit+7. Model reposito-
ries offer capabilities for allowing multiple developers to manage models stored
in a centralized repository by ensuring the models remain in a consistent state,
while persisting the models in a scalable form, such as in a database.

CDO in particular is one of the most mature solutions, having been devel-
oped for over 7 years as an Eclipse project and being currently maintained by
Obeo8. It implements a pluggable storage architecture, being able to use vari-
ous solutions such as relational databases (H2, MySQL) or document-oriented
databases (MongoDB), among others. CDO includes Net4j, a messaging library
that provides bidirectional communications over TCP, HTTP and in-memory
connections, and uses it to provide a remote API that exposes remote models as
EMF resources. In addition to storing models, CDO includes a CDOQuery API
that makes it possible to run queries remotely on the server and retrieve directly
the results, reducing the necessary bandwidth.

2.4 Heterogeneous Model Indexing

An alternative to using model repositories for storing models used in a collab-
orative environment is to store them as file-based models in a classical version
control system. As discussed in [9] this leverages the benefits of widely-used
file-based version control systems such as SVN and Git, but retains the issues
file-based models face. To address this issue a model indexer can be introduced
that monitors the models and indices them in a scalable model index. The model
index is synchronized with the latest version of the models in the repository and
can be used to perform efficient queries on them, without having to check them
out or load them into memory.

Hawk is an example of such a technology: it can maintain a graph database
with the contents of one or more version control systems and perform very
efficient queries on them. More recently, Hawk has been embedded into a server
that provides a service-oriented API based on the Apache Thrift9 library.

3 Experiment Design

As mentioned in the introduction, effective collaborative modelling requires not
only having the right features, but also making sure that the system stays respon-
sive as the number of clients increases. This section presents the design of an
5 http://www.modelcvs.org/versioning/index.html.
6 http://wiki.eclipse.org/CDO.
7 http://www.metacase.com/.
8 As stated in http://projects.eclipse.org/projects/modeling.emf.cdo.
9 http://thrift.apache.org/.

http://www.modelcvs.org/versioning/index.html
http://wiki.eclipse.org/CDO
http://www.metacase.com/
http://projects.eclipse.org/projects/modeling.emf.cdo
http://thrift.apache.org/

Stress-Testing Centralised Model Stores 51

empirical study that evaluates the impact of several factors in the performance
of remote queries on a model repository (CDO) and a model index (Hawk).

3.1 Research Questions

RQ1. What is the impact of the network protocol on remote query times and
throughputs?

In order to connect to a remote server, two of the most popular options are using
raw TCP connections (for the sake of performance and flexibility) or sending
HTTP messages (for compatibility with web browsers and interoperability with
proxies and firewalls). Both Hawk and CDO support TCP and HTTP.

Properly configured HTTP servers and clients can reuse the underlying TCP
connections with HTTP 1.1 pipelining and avoid repeated handshakes, but the
additional overhead imposed by the HTTP fields may still impact the raw per-
formance of the tool.

RQ2. What is the impact of the design of the remote query API on remote query
times and throughputs?

Application protocols for network-based services can be stateful or stateless.
Stateful protocols require that the server keeps track of part of the state of the
client, while stateless protocols do not have this requirement. In addition, the
protocol may be used mostly for transporting opaque blocks of bytes between
server and client, or it might have a well-defined set of operations and messages.

While a stateful protocol may be able to take advantage of the shared state
between the client and server, a stateless protocol is generally simpler to imple-
ment and use. Service-oriented protocols need to also take into account the gran-
ularity of each operation: “fine” operations that do only one thing may be easier
to recombine, but they will require more invocations than “coarse” operations
that perform a task from start to finish.

CDO implements a stateful protocol on top of the Net4j library, which essen-
tially consists of sending and receiving buffers of bytes across the network. On
the other hand, Hawk implements a stateless service-oriented API on top of
the Apache Thrift library, exposing a set of specific operations (e.g. “query”,
“send object” or “register metamodel”). The Hawk API is generally coarse:
most queries only require one pair of HTTP request/response messages.

While the stateful CDO clients and servers may cooperate better with each
other, the simpler and less granular API in Hawk may reduce the total network
roundtrip for a query by exchanging less messages.

RQ3. What is the impact of the internal caching and indexing mechanisms on
remote query times and throughputs?

Database-backed systems generally implement various caching strategies to keep
the most frequently accessed data in memory, away from slow disk I/O. At the
very least, the DBMS itself will generally keep its own cache, but the system

52 A. Garcia-Dominguez et al.

might use additional memory to cache especially important subsets or to keep
them in a form closer to how it is consumed.

Another common strategy is to prepare indices in advance, speeding up
queries. DBMSs already provide indices for common concepts such as primary
keys and unique values, but these systems may add their own application-specific
indices that precompute parts of the queries to be run.

3.2 Experiment Setup

In order to provide answers for the above research questions, a networked envi-
ronment was set up to emulate increasing numbers of clients interacting with
a model repository (CDO 4.4.1.v20150914-0747) or a model index (Hawk 1.0.0.
201602231713) and collect query response times. The environment is outlined in
Fig. 1, and consists of the following:

Fig. 1. Network diagram for the experimental setup

– One “Controller” machine that supervises the other machines through
SSH connections managed with the Fabric Python library10. It is responsible
for starting and stopping the client and server processes, monitoring their
execution, and collecting the measured values. It does not run any queries
itself, so it has no impact on the obtained results.

– Two “Client” machines that invoke the queries on the server, fetch the
results and measure query response times. The two client machines were run-
ning Ubuntu Linux 14.04.3, Linux 3.19.0-47-generic and Oracle Java 8u60 on
an Intel Core i5 650 CPU, 8GiB of RAM and a 500 GB SATA3 hard disk.
The client machines had two client programs installed: one for CDO and one
for Hawk. Only one of these programs ran at a time. Each of these programs
received the address of the server to connect to, the size of the Java fixed

10 http://www.fabfile.org/.

http://www.fabfile.org/

Stress-Testing Centralised Model Stores 53

thread pool to be used, the number of queries to be distributed across these
threads and a template for the query to be run.

– One “Server” machine that hosts the CDO model repository and the
Hawk model index, and provides TCP and HTTP ports exposing the standard
CDO and Hawk APIs for remote querying. The server machine had the same
configuration as the client machines.

The server machine had two server programs installed: one for CDO and
one for Hawk. Again, only one of these programs ran at a time. Both server
programs were Eclipse products based on Eclipse Mars and used the same
embedded HTTP server (Eclipse Jetty 9.2.13). Both systems were configured
to use up to 4096 MB of memory (-Xmx4096m -Xms2048m)11.

In particular, the CDO server was based on the standard CDO server
product, with the addition of the experimental HTTP Net4j connector. No
other changes were made to the CDO configuration. The database backend
was H2, the most mature and feature-complete option at the time of writing.

– One 100Mbps network switch that connected all machines together in
an isolated local area network.

As the study was intended to measure query performance results with increas-
ing numbers of concurrent users, the client programs were designed to first warm
up the servers into a steady state. Query time was measured as the time required
to connect to the server, run the query on the server and retrieve the model ele-
ment identifiers of the results over the network. Queries would be run 1000 times
in all configurations, to reduce the impact of variations due to external factors
(CPU and I/O scheduling, Java just-in-time recompilation, disk caches, virtual
memory and so on).

Several workloads were defined. The lightest workload used only 1 client
machine with 1 thread running 1000 queries in sequence. The other workloads
used 2 client machines, each running 500 queries, with increasingly large pools
of 2, 4, 8, 16, and 32 threads. These workloads would simulate between 1 and
64 clients running queries concurrently.

3.3 Queries Under Study

After defining the research questions and preparing the environment, the next
step was to populate CDO and Hawk with the contents to be queried, and to
write equivalent queries in their back-end independent languages: OCL for CDO
and the Epsilon Object Language [10] (EOL) for Hawk.

CDO and Hawk were populated through the MoDisco use case titled
SharenGo Java Legacy Reverse-Engineering12 that was presented at the Gra-
BaTs 2009 contest [11]. This use case involved reverse-engineering increasingly
large Java codebases in order to extract knowledge models. The largest codebase

11 The Neo4j performance guide suggests this amount for a system with up to 100M
nodes and 8GiB RAM, to allow the OS to keep the graph database in its disk cache.

12 http://www.eclipse.org/gmt/modisco/useCases/JavaLegacyRE/.

http://www.eclipse.org/gmt/modisco/useCases/JavaLegacyRE/

54 A. Garcia-Dominguez et al.

Listing 1. GraBaTs query written in OCL (OQ) for evaluating CDO.

1 DOM::TypeDeclaration.allInstances()→select(td |
2 td.bodyDeclarations→selectByKind(DOM::MethodDeclaration)
3 →exists(md : DOM::MethodDeclaration |
4 md.modifiers
5 →selectByKind(DOM::Modifier)
6 →exists(mod : DOM::Modifier | mod.public)
7 and md.modifiers
8 →selectByKind(DOM::Modifier)
9 →exists(mod : DOM::Modifier | mod. static)

10 and md.returnType.oclIsTypeOf(DOM::SimpleType)
11 and md.returnType.oclAsType(DOM::SimpleType).name.fullyQualifiedName
12 = td.name.fullyQualifiedName))

Listing 2. GraBaTs query written in EOL (HQ1) for evaluating Hawk.

1 return TypeDeclaration.all.select(td|
2 td.bodyDeclarations.exists(md:MethodDeclaration|
3 md.returnType.isTypeOf(SimpleType)
4 and md.returnType.name.fullyQualifiedName == td.name.fullyQualifiedName
5 and md.modifiers.exists(mod:Modifier|mod.public==true)
6 and md.modifiers.exists(mod:Modifier|mod.static==true)));

in the case study was selected, covering all the org.eclipse.jdt projects and
producing over 4.9 million model elements. The H2 and Neo4j databases in CDO
and Hawk grew to 1.4 GB and 1.9 GB, respectively.

These model elements conformed to the Java Development Tools AST
(JDTAST) metamodel, which is described in works such as [3] or [7]. Some
of the types within the JDTAST metamodel include the TypeDeclarations
that represent Java classes and interfaces, the MethodDeclarations that rep-
resent Java methods, and the Modifiers that represent Java modifiers on the
methods (such as static or public).

Based on these types, task 1 in the GraBaTs 2009 contest required defining
a query (from now on referred to as the GraBaTs query) that would locate
all possible applications of the Singleton design pattern in Java [12]. In other
words, it would have to find all the TypeDeclarations that had at least one
MethodDeclaration with public and static modifiers that returned an
instance of the same TypeDeclaration.

To evaluate CDO, the GraBaTs query was written in OCL as shown in
Listing 1. The query (named OQ after “OCL query”) filters the TypeDecla-

Listing 3. GraBaTs query written in EOL (HQ2) using derived attributes on the
MethodDeclarations for evaluating Hawk.

1 return MethodDeclaration.all.select(md |
2 md.isPublic and md.isStatic and md.isSameReturnType
3).collect(td | td.eContainer).asSet;

Stress-Testing Centralised Model Stores 55

Listing 4. GraBaTs query written in EOL (HQ3) using derived attributes on the
TypeDeclarations for evaluating Hawk.

1 return TypeDeclaration.all.select(td|td.isSingleton);

rations by iterating through their MethodDeclarations and their respective
Modifiers.

To evaluate Hawk, we used the three EOL implementations of the GraBaTs
query of our previous work [13]. The first version of the query (“Hawk query 1”
or HQ1, shown in Listing 2) is a translation of OQ to EOL, and follows the same
approach.

The second version (HQ2), shown in Listing 3, assumed that the
user instructed Hawk to extend MethodDeclarations with three derived
attributes: isStatic (the method has a static modifier), isPublic (the method
has a public modifier), and isSameReturnType (the method returns an instance
of its TypeDeclaration). The query starts off from the MethodDeclara-
tions so Hawk can take advantage of the fact that derived attributes are also
indexed, so Hawk can use lookups instead of iterations to find the methods of
interest. A detailed discussion about how derived attributes are declared in Hawk
and how they are incrementally re-computed upon model changes is available in
our previous works [9,14].

The third version (HQ3), shown in Listing 4, assumed instead that Hawk
extended TypeDeclarations with the isSingleton derived attribute, setting it
to true when the TypeDeclaration has a static and public MethodDec-
laration returning an instance of itself. This derived attribute eliminates one
more level of iteration, so the query only goes through the TypeDeclarations.

The GraBaTs query has been translated to 1 OCL query (OQ) and 3 possible
EOL queries (HQ1 to HQ3). It must be noted that since CDO does not support
derived attributes like Hawk, it was not possible to rewrite OQ in the same way
as HQ1. Since the same query would be repeatedly run in the experiments, the
authors inspected the code of CDO and Hawk to ensure that neither tool cached
the results of the queries themselves: this was verified by re-running the queries
while adding unique trivially true conditions, and comparing execution times.

4 Results and Discussion

The previous section described the research questions to be answered, the envi-
ronment that was set up for the experiment and the queries to be run. This
section will present the obtained results, answer the research questions (with
the help of additional data in some cases) and discuss potential threats to the
validity of the work.

56 A. Garcia-Dominguez et al.

Fig. 2. OQ execution times (CDO, OCL)

4.1 Measurements Obtained

The obtained results for OQ, HQ1, HQ2 and HQ3 are shown in Figs. 2, 3, 4 and
5. These are notched box plots that show the distribution of query execution
times over n = 1000 samples, using a logarithmic scale on the y axes. Results are
faceted over the total number of client threads (from 1 to 64) and then separated
by protocol (TCP or HTTP). Each figure also includes a data table with the
median query execution times in milliseconds by thread count and protocol,
for direct numerical comparison between the alternatives. Shapiro-Wilk tests
rejected the null hypothesis (“the sample comes from a normal distribution”)
with p-values < 0.01 for almost all combinations of query, protocol and thread
count. This was confirmed with Q-Q plots as well. For the purposes of this study,
we will assume that the query execution times are not normally distributed and
use non-parametric tests.

The box plots include dots with the outliers detected among the 1000 sam-
ples: these are the values above and below 1.5 times the interquartile distance
(IQR) from the third and first quartile, respectively. These outliers are assumed
to originate from thread ramp-up and ramp-down and from variations in the
I/O and CPU schedulers of the operating system and the underlying caches.

While they are not formal statistical tests, the notches serve as approximate
confidence intervals for the real median, based on median ± IQR/

√
n [15].

Stress-Testing Centralised Model Stores 57

Fig. 3. HQ1 execution times (Hawk, EOL, no derived attributes)

Most configurations (CDO with TCP, all versions of Hawk) ran all queries
correctly, producing the expected 164 results. However, CDO with HTTP
resulted in several queries failing to respond or returning incorrect results with
4 threads (3 out of 1000), 8 (8), 16 (22), 32 (18) and 64 (2). CDO with HTTP
also produced four especially notable outliers: 2 took 268.5 s, one took 535.5 s
and the last one took 590.5 s.

4.2 RQ1: Impact of Protocol

Regarding the impact of the protocol on the performance and throughput of the
remote queries, both CDO and Hawk confirm that there is a certain overhead
involved in using HTTP rather than TCP. However, the actual overhead is very
different depending on the tool and the query:

– OQ (Fig. 2) shows that CDO over HTTP has a striking overhead with low
thread counts, taking nearly 8 times as much time per query as CDO over
TCP for only 1 client thread. Kruskall-Wallis tests confirm significant differ-
ences for all thread counts (all p-values are < 0.01).

– HQ1 (Fig. 3) over HTTP has a consistent overhead over using TCP, but
not as striking as CDO’s case for OQ. Comparing the medians between
TCP and HTTP, using HTTP increased query times between 17.74% and

58 A. Garcia-Dominguez et al.

Fig. 4. HQ2 execution times (Hawk, EOL, extended MethodDeclarations)

23.45%. Kruskall-Wallis tests confirmed significant differences for all num-
bers of threads, with p-values < 0.01.

– The lower query times for HQ2 (Fig. 4) and HQ3 (Fig. 5) reduce CPU con-
tention and make HTTP and TCP more alike. However, there are still signifi-
cant differences, with Kruskall-Wallis p-values slightly higher but consistently
below 0.02 for all numbers of threads.

4.3 RQ2: Impact of API Design

One striking observation from RQ1 was that CDO over HTTP had much higher
overhead than Hawk over HTTP. Comparing the medians of OQ and HQ1
with 1 client thread, CDO+HTTP took 635.66% longer than CDO+TCP, while
Hawk+HTTP only took 23.17% longer than Hawk+TCP. This contrast showed
that CDO and Hawk used HTTP to implement their APIs very differently.

To clarify this issue, the Wireshark packet sniffer was used to capture the
communications between the server and the client for one invocation of OQ and
HQ1. These captures showed quite different approaches for an HTTP-based API:

– CDO involved exchanging 58 packets (10203 bytes), performing 11 different
HTTP requests. Many of these requests were very small and consisted of
exchanges of byte buffers between the server and the client, opaque to the
HTTP servlet itself.

Stress-Testing Centralised Model Stores 59

Fig. 5. HQ3 execution times (Hawk, EOL, extended TypeDeclarations)

Most of these requests were either within the first second of the query
execution time or within the last second. There was a gap of approximately 6
seconds between the first group of requests and the last group. Interestingly,
the last request before the gap contained the OCL query and the response
was an acknowledgment from CDO. On the first request after the gap, the
client sent its session ID and received back the results from the query.

The capture indicates that these CDO queries are asynchronous in nature:
the client sends the query and eventually gets back the results. While the
default Net4j TCP connector allows the CDO server to talk back to the
client directly through the connection, the experimental HTTP connector
relies on polling for this task. This has introduced unwanted delays in the
execution of the queries. The result suggests that an alternative solution for
this bidirectional communication would be advisable, such as WebSockets.

– Hawk involved exchanging 14 packets (2804 bytes), performing 1 HTTP
request and receiving the results of the query in the same response. Since its
API is stateless, there was no need to establish a session or keep a bidirectional
server–client channel: the results were available as soon as possible.

While this synchronous and stateless approach is much simpler to imple-
ment and use, it does have the disadvantage of making the client block until
all the results have been produced. Future versions of Hawk could also imple-
ment asynchronous querying in a similar way to what was suggested for CDO.

60 A. Garcia-Dominguez et al.

One side note is that Hawk required using much less bandwidth than CDO:
this was due to a combination of using fewer requests, using gzip compression
on the responses and taking advantage of the most efficient binary encoding
available in Apache Thrift (Tuple).

In summary, CDO and Hawk use HTTP in very different ways. The CDO API
is stateful and consists of exchanging pending buffers between server and client
periodically: queries are asynchronous and results are sent back through polling.
The Hawk API is service-oriented, stateless and synchronous: query results are
sent back immediately. These results suggest that systems may benefit from
supporting both synchronous querying (for small or time-sensitive queries) and
asynchronous querying (for large or long-running queries), and that asynchro-
nous querying must be carefully implemented to avoid unnecessary delays.

4.4 RQ3: Impact of Tool Internals

This section will focus on the results from the TCP variants, since they out-
performed all the HTTP variants in the previous tests. Comparing the results
produced by the four queries, there are several key observations to make:

O1. OQ ran faster than HQ1 with 1 and 2 threads.
O2. HQ1 ran faster than OQ between 8 and 64 threads.

O1 was somewhat unexpected: it was assumed that the join-free adjacency
of the Neo4j graph database used in Hawk would give it an edge over the default
H2 relational backend in CDO. Enabling the SQL trace log in CDO showed that
after the first execution of OQ, later executions only performed one SQL query
to verify if there were any new instances of TypeDeclaration.

Previous tests had already rejected the possibility that CDO was caching the
query results. Instead, an inspection of the CDO code revealed a collection of
generic caches. Among others, CDO keeps a CDOExtentMap from EClasses
to all their EObject instances, and also keeps a CDORevisionCache with the
various versions of each EObject. In comparison, Hawk only uses the DBMS
cache and an internal type cache, so it needs to retrieve the objects from the
DBMS every time they are needed.

On the other hand, O2 shows that the lighter caching and Neo4j backend
of Hawk allow it to scale better with demand: with 8 threads, the median time
with Hawk is 4.64 s instead of the 5.37 s of CDO.

O3. HQ2 ran faster than HQ1 and OQ for all thread counts.
O4. HQ3 ran faster than HQ2 for all thread counts.

O3 and O4 confirm the findings of our previous work in scalable querying [9,
14]: adding derived attributes to reduce the levels of iteration required in a
query speeds up running times by orders of magnitude, while adding minimal
overhead due to the use of incremental updating. These derived attributes can
be seen as application-specific caches that precompute parts of a query, unlike
the application-agnostic caches present in CDO.

Stress-Testing Centralised Model Stores 61

In particular, HQ3 takes two orders of magnitude less time than OQ and
HQ1 for 1 thread, and is still faster than the best results of OQ and HQ1
even when handling 64 threads. While the isSingleton derived attribute in HQ3
might be considered too specialized for most cases, the isStatic, isPublic and
isSameReturnType attributes in HQ2 are more generally useful and still produce
significant time savings over OQ and HQ1.

4.5 Limitations and Threats to Validity

The presented study has several limitations that may threaten the internal and
external validity of the results. Regarding the internal validity of the results:

– There is a possibility that CDO or Hawk could have been configured or used
in a more optimal way. Since the authors developed Hawk, this may have
allowed them to fine-tune Hawk better than CDO. However, the servers did
not show any undesirable virtual memory usage, excessive garbage collection
or disk I/O. The H2 backend was chosen for CDO due to its maturity in
comparison to the other backends, and the Neo4j backend has consistently
produced the best results for Hawk according to previous work. Finally, the
authors contacted the CDO developers regarding how to compress responses
and limit results by resource, to make it more comparable with Hawk, and
were informed that these were not supported yet13.

– The queries for CDO and Hawk were written in different languages, so part
of the differences in their performance may be due to the languages and not
the systems themselves. The aim in this study was to use the most optimized
language for each system, since Hawk does not support OCL and CDO does
not support EOL. Analytically, we do not anticipate that this is likely to have
a strong impact on the obtained results as both languages are very similar in
nature and are executed via mature Java-based interpreters. A future study
could extend CDO or Hawk to fully address this issue.

As for the external validity of the results, this first study has not consid-
ered running several different queries concurrently, and has only considered one
particular configuration for Hawk and CDO. While this configuration would be
quite typical in most organisations, further studies are needed that mix different
queries running in different models concurrently, and configure Hawk and CDO
with different backends, memory limits, and model sizes.

5 Conclusions and Further Work

The results from the study suggest that the network protocol can have very
different impacts on the performance of the model repository or model index,
depending on how it is used: while CDO over HTTP had a dramatic overhead

13 https://www.eclipse.org/forums/index.php?t=rview\&goto=1722258 and https://
www.eclipse.org/forums/index.php?t=rview\&goto=1722096.

https://www.eclipse.org/forums/index.php?t=rview&goto=1722258
https://www.eclipse.org/forums/index.php?t=rview&goto=1722096
https://www.eclipse.org/forums/index.php?t=rview&goto=1722096

62 A. Garcia-Dominguez et al.

of 640 %, Hawk over HTTP had a more reasonable 20 %. The 20 % overhead
is a reasonable price to pay for the simpler operation across firewalls and its
availability from Web browsers. A packet capture revealed that the problem
with CDO over HTTP was the näıve way in which server-to-client communica-
tions had been implemented, which used simple polling instead of state-of-the-
art approaches such as WebSockets. The study also showed that while CDO’s
extensive application-agnostic caching was somewhat faster than Hawk with no
derived attributes, Hawk with derived attributes (a form of application-specific
caching) could outperform CDO by two orders of magnitude and still be faster
for large numbers of concurrent clients. As a general conclusion, this study con-
firms that the apparent performance of a highly efficient model access API can
be severely degraded by minor details in the communications layer, and that hav-
ing a few and well-placed application-specific caches can be much more effective
than a comprehensive set of application-agnostic caches.

We plan to extend the present study to cover more situations, with more
configurations of Hawk and CDO, a wider assortment of queries and a larger
number of clients. Another direction of future work is analyzing the queries to
split the work in a query efficiently between the client and the server, using the
server for model retrieval and using the client to transform the retrieved values.

Acknowledgments. This research was part supported by the EPSRC, through the
Large-Scale Complex IT Systems project (EP/F001096/1) and by the EU, through the
MONDO FP7 STREP project (#611125).

References

1. Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez, M.A.: An empirical study
of the state of the practice and acceptance of model-driven engineering in four
industrial cases. Empirical Softw. Eng. 18(1), 89–116 (2012)

2. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Scalability: the holy grail of model
driven engineering. In: Proceedings of the Workshop on Challenges in MDE, Col-
located with MoDELS 2008, Toulouse, France (2008)

3. Barmpis, K., Kolovos, D.S.: Evaluation of contemporary graph databases for effi-
cient persistence of large-scale models. J. Object Technol., 13–3: 3: 1–26, July 2014.
doi:10.5381/jot.2014.13.3.a3

4. Paternostro, M., Steinberg, D., Budinsky, F., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley Professional, Reading (2008)

5. Kramler, G., Kappel, G., Reiter, T., Kapsammer, E., Retschitzegger, W.,
Schwinger, W.: Towards a semantic infrastructure supporting model-based tool
integration. In: Proceedings of the 2006 International Workshop on Global Inte-
grated Model Management, GaMMa 2006, pp. 43–46. ACM, New York (2006)

6. Gómez, A., Tisi, M., Sunyé, G., Cabot, J.: Map-based transparent persistence for
very large models. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033,
pp. 19–34. Springer, Heidelberg (2015)

7. Pagán, J.E., Cuadrado, J.S., Molina, J.G.: A repository for scalable model man-
agement. Softw. Syst. Model., 1–21 (2013). doi:10.1007/s10270-013-0326-8

http://dx.doi.org/10.5381/jot.2014.13.3.a3
http://dx.doi.org/10.1007/s10270-013-0326-8

Stress-Testing Centralised Model Stores 63

8. Koegel, M., Helming, J.: EMFStore: a model repository for EMF models. In: Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software Engineer-
ing, vol. 2, pp. 307–308. ACM (2010)

9. Barmpis, K., Shah, S., Kolovos, D.S.: Towards incremental updates in large-scale
model indexes. In: Taentzer, G., Bordeleau, F. (eds.) ECMFA 2015. LNCS, vol.
9153, pp. 137–153. Springer, Heidelberg (2015)

10. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Object Language (EOL).
In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006)

11. GraBaTs. 5th Int. Workshop on Graph-Based Tools (2009). http://is.tm.tue.nl/
staff/pvgorp/events/grabats2009/. Accessed 29 Feb 2016

12. Sottet, J.-S., Jouault, F.: Program comprehension. In: Proceedings of the 5th
International Workshop on Graph-Based Tools (2009). http://is.tm.tue.nl/staff/
pvgorp/events/grabats2009/cases/grabats2009reverseengineering.pdf. Accessed 29
Feb 2016

13. Barmpis, K., Kolovos, D.S.: Towards scalable querying of large-scale models. In:
Cabot, J., Rubin, J. (eds.) ECMFA 2014. LNCS, vol. 8569, pp. 35–50. Springer,
Heidelberg (2014)

14. Barmpis, K., Kolovos, D.S.: Towards scalable querying of large-scale models. In:
Cabot, J., Rubin, J. (eds.) ECMFA 2014. LNCS, vol. 8569, pp. 35–50. Springer,
Heidelberg (2014)

15. Chambers, J.M., Cleveland, W.S., Tukey, P.A., Kleiner, B.: Graphical Methods for
Data Analysis, 1st edn. Duxbury Press, Boston (1983). ISBN 978-0-534-98052-8

http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2009reverseengineering.pdf
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2009reverseengineering.pdf

Language Engineering

Compositional Language Engineering Using
Generated, Extensible, Static Type-Safe Visitors

Robert Heim1(B), Pedram Mir Seyed Nazari1, Bernhard Rumpe1,2,
and Andreas Wortmann1

1 Software Engineering, RWTH Aachen University, Aachen, Germany
heim@se-rwth.de

2 Fraunhofer FIT, Aachen, Germany
http://www.se-rwth.de

http://www.fit.fraunhofer.de

Abstract. Language workbenches usually produce infrastructure to
represent models as abstract syntax trees (AST) and employ process-
ing infrastructure largely based on visitors. The visitor pattern suffers
from the expression problem regarding extensibility and reuse. Current
approaches either forsake static type safety, require features unavailable
in popular object-oriented languages (e.g., open classes), or rely on pro-
cedural abstraction and thereby give up the object-oriented data encap-
sulation (the AST) itself. Our approach to visitors exploits knowledge
about the AST and generation of statically type-safe external visitor
interfaces that support extensibility in two dimensions: (1) defining new
operations by implementing the interface and (2) extending the under-
lying data structure, usually without requiring adaptation of existing
implemented visitors. We present a concept of visitor development for
language engineering that enables an adaptable traversal and provides
hook points for implementing concrete visitors. This approach is applica-
ble to single DSLs and to language composition. It thus enables a trans-
parent, easy to use, and static type-safe solution for the typical use cases
of language processing.

Keywords: Visitor pattern · Compositional language engineering ·
Language workbenches

1 Introduction

Many language workbenches (LWBs) employ context-free grammars (CFGs) to
describe modeling languages [4]. From these grammars, LWBs derive the abstract
syntax of languages in form of abstract syntax trees (ASTs). Parsers process
models into instances of the ASTs. Processing ASTs requires to define traversal
algorithms on the underlying tree data structure. Separating these algorithms
from operations that perform on the AST liberates from reimplementing traver-
sal strategies for different operations. The visitor design pattern [6] enables such
separation by providing a traversal definition and visit methods that act as
c© Springer International Publishing Switzerland 2016
A. W ↪asowski and H. Lönn (Eds.): ECMFA 2016, LNCS 9764, pp. 67–82, 2016.
DOI: 10.1007/978-3-319-42061-5 5

68 R. Heim et al.

hook points for AST node instances during traversal of the AST. For each vis-
ited AST node the traversal algorithm calls the appropriate visit method which
then performs the specified operations. Thereby, the visitor pattern facilitates
to add new operations on data structures, while adding new types (for instance
when new productions are added to the related languages’ AST) to data struc-
tures is effortful. In the original visitor pattern, visitor implementations must
be extended with an additional visit method for each added data type. The
problem of supporting extensibility in both dimensions is also known as the
expression problem [20]. Approaches to it either require features unavailable in
popular object-oriented languages (e.g., mixins [5] or open classes [3]), demand
advanced type systems [15], forsake static type safety [2,16], or rely on proce-
dural abstraction – and thereby abandon the object-oriented data encapsulation
of the AST [14].

We contribute a concept to generate visitor infrastructures from CFGs that
support language engineers with statically type-safe interfaces to work on the
AST for model analysis and transformation. The visitor infrastructure facili-
tates development of reusable model processing infrastructures for single lan-
guages and supports integration of visitor implementations for combined lan-
guages. It is based on the single-dispatch language Java as the most popular
object-oriented language1 and we demonstrate a realization within the language
workbench MontiCore [10]2.

Section 2 introduces MontiCore and its language processing mechanisms.
Afterwards, Sect. 3 presents the visitor infrastructure generation approach for
single languages and Sect. 4 for combined languages. Section 5 discusses our app-
roach, before Sect. 6 debates related work and Sect. 7 concludes.

2 Preliminaries

MontiCore [10] is a language workbench for the engineering of compositional
modeling languages. It provides an extended CFG format for integrated specifi-
cation of concrete and abstract syntax. From these grammars, MontiCore derives
the Java AST classes of a language and its parsers instantiate these classes to
represent processed models.

We present quintessential concepts of MontiCore’s grammar by the example
of the grammar for class diagrams depicted in Fig. 1: it begins with the keyword
grammar (l. 1), followed by its name and a body in curly brackets. The body con-
tains productions todescribe the structure of theCD language.The grammar’smain
production is CDDef, the definition of a class diagram consisting of the model key-
word classdiagram (everything in quotation marks is part of the concrete syn-
tax only), a name, classes, and associations (l. 2). The production Name is part of

1 http://www.tiobe.com/index.php/tiobe index.
2 MontiCore is open source (https://github.com/MontiCore/monticore) and running

visitor examples as described in this paper are available online
(http://www.se-rwth.de/materials/mcvisitors/).

http://www.tiobe.com/index.php/tiobe_index
https://github.com/MontiCore/monticore
http://www.se-rwth.de/materials/mcvisitors/

Compositional Language Engineering 69

Fig. 1. An exemplary MontiCore grammar for definition of simplified class diagrams.

MontiCore primitives. The body of a class diagram is delimited by curly brack-
ets and contains arbitrary many (denoted by the star operator *) associations and
classes in arbitrary order (via disjunction operator |). The production for classes
begins with the model keyword class, followed by a name, optionally followed by
the keyword extends with another name, and a body delimited by curly brackets
(l. 3). The body contains arbitrary many instances of Method, which is an inter-
face production (l. 4) that is implemented by the production MethodSignature
(l. 5). Thus, MethodSignature can be used whenever a Method is required – for
instance in the Class production (l. 3). This enables to add new implementing
productions to the grammar a-posteriori without modifying the interface pro-
duction itself, which is essential for language inheritance (see Sect. 4). The pro-
duction MethodSignature consists of a type, a name, and a list of parameters.
The ParameterList (l. 6) consists of comma-separated Parameter instances in
brackets3, where each Parameter (l. 7) has a type and a name. From the gram-
mar depicted in Fig. 1, MontiCore generates an AST node class for each produc-
tion. Figure 2 depicts these classes. The names of AST classes begin with “AST”
and are followed by the name of the production they are derived from (such as
ASTCDDef). The non-terminal Name results to a field name of Java type String
in the AST class. MontiCore enables to define the names of AST fields, as for
example via type:Name in the production Parameter. This results in the field
String type of ASTParameter. References to other non-terminals in a produc-
tion become associations between the corresponding AST classes. They have the
same cardinalities as specified in the grammar. For instance, CDDef uses the non-
terminal Class, thus ASTCDDef is associated to ASTClass. For the interface pro-
duction Method, MontiCore generates the interface ASTMethod. As the produc-
tion MethodSignature implements the interface production Method, its AST class
ASTMethodSignature implements ASTMethod as well.

3 Generating the Visitor Pattern as DSL Infrastructure

We exploit knowledge on the automated generation of AST node classes to pro-
duce visitor interfaces for CFGs. These interfaces prescribe separate methods
3 For a production P and a separator s the expression (P || "s")* denotes an arbitrary

count of P separated by s. There is no s at the end.

70 R. Heim et al.

Fig. 2. The AST node classes MontiCore derives from the CD grammar of Fig. 1.

for traversal and visiting that are connected by methods to handle their inter-
action. For each production of the CFG, the generated visitor interface yields
the methods visit, endVisit, and handle to handle operations on these nodes.
For concrete class nodes, we also generate a traverse method for subtree tra-
versal. All methods have default implementations4 and hence do not require an
implementation. Instead, they are best understood as hook points.

Derived from the CD language presented in Fig. 1, the generated visitor inter-
face CDVisitor is as depicted in Fig. 3. The methods visit and endVisit for
an AST node type enable to process instances of that node before and after
its traversal, respectively. By default they do nothing and hence the default
implementation is an empty method body (omitted in Fig. 3).

Fig. 3. The CDVisitor interface generated for the CD language and a concrete visitor.

Reusing a traversal algorithm can be achieved by implementing it in a
super type that is meant to be inherited by concrete visitor implementations.
4 Default implementations are available since Java 8.

Compositional Language Engineering 71

Fig. 4. A CD model and the resulting AST instance with an ASTClass not knowing
that m is of type ASTMethodSignature.

By providing such an implementation in a class it requires software compo-
nents that are based on the visitor infrastructure to extend it. This, however,
contradicts flexibility in software design during language engineering as the com-
ponent then is defined as a specialization of the visitor infrastructure and multi-
inheritance is not supported in Java. Also, with respect to semantics, it is better
to leave the specialization characteristics open to the language engineer. For
example, a pretty printer could specialize an abstract pretty printer that defines
constants regarding whitespaces. To this effect, MontiCore’s visitor infrastruc-
ture is not based on classes but on interfaces which enable easier integration
with other software components. This becomes even more relevant in language
composition (cf. Sect. 4), when concrete visitors require extension and composi-
tion.

The top-right side of Fig. 3 illustrates the default implementations of the
CDVisitor interface: The handle method takes care of visiting and traversal.
The traverse method implements a climb-down strategy (e.g., order) to traverse
the children. This separation enables to easily change the traversal order in
subclasses while shielding the developer from involuntary changing the overall
traversal strategy or missing to call the visit methods. The CDVisitor interface
does not provide traversal methods for AST nodes of interface types derived
from interface productions of the CFG, because interfaces do not have children.
AST nodes of interface types (e.g., ASTMethod) are never instantiated. Instead,
MontiCore enforces that each CFG contains at least one implementation for each
interface production. Consequently, there always exists a concrete AST node
class that implements the interface. Figure 4 elucidates this with a CD model
(left) and the resulting AST instance (right). The CD model contains the class
Prof, which has a method getName(). Although the ASTClass instance c has an
instance of ASTMethodSignature, the class ASTClass knows this instance only
via its interface ASTMethod.

For traversing the children of the ASTClass associated ASTMethod instances
have to be considered. To call the most specific handle method for each of the
children, a mechanism to calculate the most specific type of each child is required.
This mechanism should not make use of type-introspection, but instead dispatch
dynamically by itself. To simulate double dispatch in the single dispatch language
Java, MontiCore generates an interface with a single accept method responsible

72 R. Heim et al.

Fig. 5. All AST node types implement the accept method for the language’s visitor.

Fig. 6. Traversing a class requires identifying the runtime type of the methods in order
to call the most specific handle methods. To this effect, a double dispatch is simulated.

for calling the visitors’ handle methods with the most specific type. Figure 5
shows this interface and its implementations. The purpose of the accept methods
is to dispatch to the most specific handle method of the given CDVisitor for
each AST node type. Consequently, MontiCore generates AST nodes in such a
way that they dispatch on the language’s visitor to the handle method with
themselves as argument (i.e. this). Although the implementation looks similar
among the AST types, it differs in the specific type of this. Thereby, the most
specific handle method is called. The sequence diagram in Fig. 6 illustrates the
double dispatching of ASTMethods when handling the ASTClass shown in Fig. 4.

Until now, it was assumed that defining operations on a language’s AST
always relates to the most specific node types. This, however, is not true: For
example, defining an operation to count all methods should be based on the

Compositional Language Engineering 73

Fig. 7. The inheritance visitor visits nodes also in all their super types.

visit method for ASTMethod, but the double dispatching always calls the most
specific visit hooks during traversal. Hence, such a method counter must hook
into all visit methods for nodes that refine Method. While in the example only
one production (MethodSignature) is effected, MontiCore enables implementing
interface productions multiple times. All specific visit hooks would require to
implement the same code. To prevent such code repetitions, MontiCore provides
an extended visitor interface called inheritance visitor (see Fig. 7). While the
formerly described visitor interface only calls visit hooks for the specific types,
the inheritance visitor exploits knowledge about the grammars and the relation
between their rules to call all visit methods that a node type is applicable for.
This requires casting the nodes (cf. Fig. 7) in the handle methods, but is stat-
ically type-safe and more importantly generated. By extending this inheritance
visitor instead of the common one, operations can be defined on all node types.

Implementing visitors using the presented infrastructure is straightforward
and statically type-safe. It does not require knowledge about the double dispatch
mechanism when depth-first traversal suffices. Adapting traversal requires calling
accept methods and, hence, some knowledge about the visitor pattern.

For example, pretty printers, which transform an AST instance to a string
representation, often are implemented as visitors. Figure 3 (bottom) depicts an
excerpt of a pretty printer for the CD language. The CDPrettyPrinter imple-
ments the visitor interface CDVisitor and thus inherits the default implementa-
tions for traversing and handling a CD AST. By overriding visit and endVisit
methods it hooks into the default traversal to execute operations on specific
nodes.

4 The Visitor Pattern for Compositional Languages

In software language engineering, non-invasive reuse of languages and related
infrastructures can greatly improve development. In this context, extending and
composing visitors is of particular interest. The following section describes an
extension of the CD language and demonstrates how its visitors can be easily
reused in the sub language. Afterwards, we describe how visitors of multiple
super languages can be composed.

74 R. Heim et al.

Fig. 8. The CDWithConstructor language extends the CD language by constructors.

4.1 Extending Concrete Visitors for Language Extension

MontiCore supports language extension [8], where sub languages inherit the
productions of their parents. For instance, Fig. 8 depicts the CDWithConstructor
language, which extends CD (l. 1) and introduces constructors (l. 2). Constructors
implement the interface production Method, enabling to use these whenever an
instance Method is required.

The resulting AST is illustrated in Fig. 9. The AST nodes ASTMethod and
ASTParameterList (not shown in the figure) of CD are reused by the new
ASTConstructorSignature AST node type of CDWithConstructor. MontiCore
also produces the interface CDWithConstructorVisitor for the sub language.
Generated visitor interfaces extend the visitor interfaces of all their super
languages to inherit their default implementations. Here, the visitor interface
CDWithConstructorVisitor extends CDVisitor and adds default implementa-
tions for the new node type ASTConstructorSignature. Using this inheritance
relation all default implementations of the super language’s visitor interface are
reused. Hence, when implementing a visitor for the new language the aggre-
gated default implementations are available. Consequently, the pretty printer for
the sub language (CDWithConstructorPrettyPrinter) can be implemented by
extending the CDPrettyPrinter of the super language (l. 1 of Fig. 10). It thereby
reuses the pretty printing for all nodes of the super language and only adds pretty
printing for constructors. For example, the reused production ParameterList
(l. 2 in Fig. 8) is printed using the inherited implementation of CDPrettyPrinter.

Visitors of a super language are unaware of new AST node classes introduced
in sub languages. For example, the pretty printer of the CD language is able to
handle ASTClass nodes. An AST instance of the sub language (i.e. a model)
reuses the exact same class and hence it is possible to hand this model to the
handle(ASTClass) method of the CDPrettyPrinter. However, double dispatch-
ing the children of type ASTMethod to their specific types is only possible for types
defined in the super language itself. In case of a ASTConstructorSignature the
most specific type known by the super language’s visitor is ASTMethod. Hence
handle(ASTMethod) would be executed. This is unintuitive, because the most
specific type at runtime is ASTConstructorSignature. Consequently, MontiCore
forbids directly applying a visitor implemented for a specific language on any of
its sub languages. A compiler cannot statically check this which leads to Monti-
Cores convention to only run visitors on their own language. This also means that
a concrete visitor implementation must be adjusted to be reused on a sub lan-
guage, even if nothing changes. This, however, is very easy and requires minimal

Compositional Language Engineering 75

Fig. 9. A subset of CD’s and CDWithConstructor’s language infrastructure.

Fig. 10. Extending a concrete visitor of a single super language is straightforward.
Only the additional nodes must be considered. For nodes of the super language, the
super language’s pretty printer CDPrettyPrinter is reused.

glue code. For example, reusing the pretty printer without adding anything is as
easy as defining a class similar to Fig. 10, but with an empty class body.

Another issue with this implementation is that extension of AST types in
sub languages results in an unexpected accept call. For example, the node type
ASTConstructorSignature implements the interface ASTMethod and thereby
inherits CD’s accept method with the visitor parameter being of static type
CDVisitor. The CDWithConstructorVisitor calls this method when traversing
the ASTClass instead of the intuitively expected accept method with parame-
ter of static type CDWithConstructorVisitor This occurs because the inher-
ited traversal is defined in the super language. This traversal calls accept on
the ASTMethod children. While the type of the child is dispatched dynamically,
choosing the accept method within it uses method overloading based on the sta-
tic type of the visitor that defines traversal (i.e. CDVisitor). Consequently, the
wrong accept method is executed. This cannot be solved by simulating another
double dispatch, because the super language never statically is aware of types
of a sub language. Hence, this is a limitation of our approach. Our solution to

76 R. Heim et al.

Fig. 11. The MontiCore grammar for a language to model automata.

this is overriding the accept method for visitor interfaces of super languages in
affected AST types (e.g., accept(CDVisitor) of ASTConstructorSignature).
The generated implementation checks at runtime, whether the given visitor stems
from the correct sub language. In this case, the call is delegated to the correct
accept method by casting the visitor to the specific type. We argue, that this
solution still is a good tradeoff between static type safety and flexibility in reuse,
because (a) the AST types and this mechanism are generated and (b) the visitor
interfaces remain statically type-safe. Implementing as well as reusing concrete
visitors do neither require manual type-introspection nor casts. Also, the former
problem does not occur when reusing non-terminals of super languages as done
with ParameterList. Here, traversal (of ASTConstructorSignature) resides in
the sub language and the generated traversal is aware of relations to the super
language and consequently is statically type-safe.

4.2 Composing Concrete Visitors During Language Embedding

MontiCore enables language embedding by inheritance of grammars and pro-
vides adaptation mechanisms on a symbolic level [8,9]. These adaptation mech-
anisms depend on visitor composition for, e.g., building symbol tables. The same
holds true for other software components such as validation or pretty printers.
In this section we first show the embedding of automata into the CD language
on the grammar level and then demonstrate the resulting visitor interfaces as
well as composing existing pretty printers of both the CD language as well as
the pretty printer of the Automaton language to a new pretty printer for the
integrated language. Figure 11 depicts the Automaton language that describes
automata (l. 2) using states (l. 3) and transitions (l. 4). We assume an imple-
mented AutomatonPrettyPrinter (analogous to CDPrettyPrinter) that imple-
ments the AutomatonVisitor interface to pretty print an automaton.

Figure 12 depicts the MontiCore grammar that embeds automata into class
diagrams. Automata are integrated as methods by implementing the interface
production Method of the CD language. Figure 13 shows the resulting structure.
The ASTAutomatonEmbedding implements the ASTMethod interface of the CD
language and has a ASTAutomaton of Automaton language as child. The visitor
interface of the new language extends both super language’s visitor interfaces to
inherit their default implementations.

Implementing a pretty printer for this language cannot make use of the app-
roach shown in Sect. 4.1, because Java does not allow multi-inheritance of classes

Compositional Language Engineering 77

Fig. 12. The CDWithAutomaton language’s grammar extends the grammars of the lan-
guages CD and Automaton and provides a production that embeds automata as methods.

Fig. 13. A subset of the resulting infrastructure when embedding the Automaton lan-
guage into the CD language.

and hence, it is not possible to extend both languages’ pretty printers. Instead,
MontiCore generates a visitor implementation for the new language, that is
capable of composing visitors of all super languages using a delegator pattern
(cf. CDWithAutomatonDelegatorVisitor in Fig. 13). It provides setters for visi-
tors of all (potentially transitive) super languages. MontiCore exploits knowledge
of the AST model by generating this delegator visitor in such a way that it del-
egates all handle, traverse, and visit calls to the concrete super visitor of
the language that the current node stems from. This behavior is adjustable by
extending this delegator visitor and overriding the corresponding methods.

As this approach to composition is based on delegation, it requires inversion
of control. For example, when handling a node the delegator delegates the han-
dling to the visitor that is registered for that specific node. Executing the visit
hooks and traversal, however, should not directly take place in the delegate, but
the delegator should control these operations as well. In MontiCore this inversion
of control is called the realThis pattern. It describes that in composable objects
(such as concrete visitors) the this reference should not be used, but instead a
realThis reference. A composer then can set this realThis reference to itself
and thereby gain control over all methods within the delegates. Consequently,
a composer must implement a super set of the aggregated interfaces of all com-
posed objects, which holds true for the visitor infrastructure as visitor interfaces

78 R. Heim et al.

Fig. 14. To support composition visitors must always use realThis instead of this.

inherit from the visitor interfaces of all super languages and only visitors of the
corresponding languages are meant to be composed.

To enable such a composition the delegates must always use the realThis
reference. It is accessible through a getRealThis() method defined in a super
interface. In case of visitors this is the visitor interface. A setter for the realThis
reference then enables changing it. The composed delegates must implement
both methods to manage the realThis reference, which initially equals this.
Figure 14 depicts the actual default implementations of the visitor interface that
enable visitor composition by using getRealThis() (ll. 6–8, 13).

For transitive delegation (e.g., composing already composed visitors) a del-
egator must transitively ensure the correct realThis reference when itself gets
composed. This is achieved by transitively setting realThis for all delegates in
case that the own realThis changes.

Figure 15 depicts an example by composing the concrete pretty printer visi-
tors of CD and Automaton to a pretty printer for the new language. The compo-
sition extends the delegator visitor CDWithAutomatonDelegatorVisitor (l. 2)
that provides statically typed methods for the composition (used in ll. 4–5).

Fig. 15. Implementing a pretty printer for the combined language reuses existing pretty
printers of the super languages. For the new AST node ASTAutomatonEmbedding noth-
ing is printed, which is why only an empty implementation is chosen (l. 6).

Compositional Language Engineering 79

A setter for a visitor of the own language (l. 6) ensures that the new AST node
ASTAutomatonEmbedding can be traversed. In this example the pretty printer is
solely based on the pretty printers of the super languages and does not require
any additional output for the embedding production. Hence, an empty visitor
is used that only inherits the default implementation from the visitor interface,
but does not hook into any of its methods.

5 Discussion

The visitor pattern and its derivatives suffer from the expression problem [20]
and so does our approach. Nevertheless, the presented infrastructure makes min-
imal use of type-introspection that is (a) hidden when implementing and com-
posing visitors and (b) automatically generated and, thus, less error prone. To
this effect, our main contribution is enabling language engineers to implement
visitors in a statically type-safe fashion. Also, the generated visitor interfaces
are semantically bound to the languages to support comprehensibility. Experi-
ence with language engineering has shown that depth-first traversal (with the
same order of child traversal as they occur in the grammar) is sufficient for
most model processing tasks. Hence, handcrafted visitor implementations, which
inherit traversal and hooks from the generated interface, usually do not require
adjustments. When necessary, traversal can be adapted in specific visitors by
overriding the inherited default traversal. Being interface-driven, our approach
furthermore does not enforce implementing operations on the AST by extend-
ing visitors, which enables developers to use the inheritance relation to flexibly
integrate visitors with other software components.

The main limitation of the presented visitor infrastructure resides in overrid-
den traversals. While our approach enables adaptation of traversal by overriding
the default implementation, it might require manual adjustments when the CFG
of the language changes.

When a non-terminal is added on the right-hand side of a production, the
corresponding AST node gets a new child that must be traversed. In this case,
manual adaptation of overridden traversals in concrete visitors is required, which
a compiler does not identify statically.

However, removing complete productions or changing their names can be sta-
tically identified and evolution efforts can be minimized by employing refactoring
mechanisms. Nonetheless, our approach is affected by the expression problem as
changing the AST of a language might require adaptation of all its visitors.
When depth-first traversal is sufficient this rarely occurs, because default imple-
mentations are generated.

MontiCore supports overriding non-terminals in sub languages. The full-
qualified names of the generated AST nodes include the languages’ names and
hence are unique. Consequently, the generated visitor interfaces support over-
ridden non-terminals since they are based on the full-qualified names of the
corresponding AST nodes as well.

80 R. Heim et al.

6 Related Work

In contrast to established visitor combinators [18] our solution is statically type-
safe in liberating language developers from manually casting generic types (such
as AnyVisitable [18]) to specific types. Instead, our solution provides a sta-
tically type-safe visitor interface that supports visitor composition. It enables
implementing a concrete visitor by hooking into a predefined traversal for spe-
cific AST nodes, but also enables to adapt the traversal for specific visitors.

The original visitor pattern [6] describes the traversal algorithms as part
of the data structure (within the accept methods). This prohibits adjusting
traversal in specific AST visitors as they all share the same AST implementation.
Oliveira [13] distinguishes between internal visitors that define traversal within
the data structure and external visitors that define it in the visitors. Also, the
original visitor pattern stores the result of a visitor run as state in the visitor.
This imperative calculation is distinguished by Oliveira [13] from a functional
style, where all corresponding methods aggregate and return results. Based on
this categorization MontiCore’s visitor infrastructure is external and imperative.

Various approaches that solve the underlying expression problem rely on
mechanisms not available to popular object-oriented languages: Advanced type
systems can solve the expression problem [15] and enable to implement visitors
as type-safe reusable components. Other approaches employ mixins [5] or open
classes [3] to overcome the expression problem. However, utilizing such features
requires to forsake existing language workbench infrastructure and enforces engi-
neers to learn less supported languages.

To circumvent the cyclic dependency between the visitor interface and the
data structure the Acyclic Visitor pattern [11] splits all visit methods into their
own data-specific visitor interface. Thereby, the different visitor interfaces are
semantically bound to a specific data type, but they require type-introspection
to cast the generic visitor interface to the specific one. Consequently, this app-
roach is similar to the one in MontiCore, with the difference that MontiCore
semantically binds visitor interfaces to a language instead of their concrete nodes.

Another recent solution to the underlying expression problem, that is applica-
ble in common object oriented languages, is given by Object Algebra (OA) [14].
It, however, gives up representation of a language’s AST as types. Instead, using
constructor overloading the AST for a given model is only implicitly constructed
during a concrete calculation on it. It thereby introduces a different approach to
language engineering which requires language engineers to change their under-
standing of DSL implementation in general. Currently, there is limited experience
[7,17,21] about OA’s main advantages and limitations and hence it is not yet
clear whether such investment pays off for language engineers.

Other LWBs, such as Xtext [1], build on the Eclipse Metamodeling Frame-
work (EMF) using Ecore models to describe the AST [12,19]. EMF trees are
traversed using tree iterators5 that require clients to implement the method

5 http://download.eclipse.org/modeling/tmf/xtext/javadoc/2.9/org/eclipse/xtext/
nodemodel/BidiTreeIterator.html.

http://download.eclipse.org/modeling/tmf/xtext/javadoc/2.9/org/eclipse/xtext/nodemodel/BidiTreeIterator.html
http://download.eclipse.org/modeling/tmf/xtext/javadoc/2.9/org/eclipse/xtext/nodemodel/BidiTreeIterator.html

Compositional Language Engineering 81

getChildren(Object), which defines an iterator over all children of the object.
The parameter is of the most generic type Object and returning one iterator for
all children requires to cast them to a common super type as well. Thus, using
this infrastructure depends on type-introspection in client-code to differentiate
between specific AST node types. Commonly, Xtext-based DSLs use Xtend [1]
for implementing code generators. Xtend is a Java dialect that compiles into Java
code and claims to enable multi-dispatching. However, the multi-dispatching is
implemented using type-introspection in switch statements6.

7 Conclusion

We demonstrated a concept to derive visitor infrastructures from context-free
grammars to support language engineers to work with ASTs for model analysis,
transformations, and code generation. It separates AST traversal from opera-
tions that hook into the traversal. In order to define new operations on ASTs, it
provides language engineers with generated statically type-safe visitor interfaces
that foster reuse during language composition and allow for traversal adaptation
if required. With the infrastructure being interface-driven, developers may flexi-
bly integrate other software components with concrete visitor implementations.
To this effect, we described how a sophisticated combination and extension of
software patterns support compositional language engineering and presented a
realization in the language workbench MontiCore.

References

1. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt
Publishing, Birmingham (2013)

2. Carlisle, M.C., Sward, R.E.: An Automatic “Visitor” Generator for Ada. Ada Let-
ters (2002)

3. Clifton, C., Leavens, G.T., Chambers, C., Millstein, T.: MultiJava: modular open
classes and symmetric multiple dispatch for Java. In: Proceedings of the 15th ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications (2000)

4. Erdweg, S., et al.: The state of the art in language workbenches. In: Erwig, M.,
Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS, vol. 8225, pp. 197–217. Springer,
Heidelberg (2013)

5. Flatt, M., Krishnamurthi, S., Felleisen, M.: Classes and Mixins. In: Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (1998)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley Professional, Boston (1995)

7. Gouseti, M., Peters, C., van der Storm, T.: Extensible Language Implementation
with Object Algebras (Short Paper). SIGPLAN Not. (2014)

6 https://eclipse.org/xtend/documentation/202 xtend classes members.html.

https://eclipse.org/xtend/documentation/202_xtend_classes_members.html

82 R. Heim et al.

8. Haber, A., Look, M., Mir Seyed Nazari, P., Navarro Perez, A., Rumpe, B., Völkel,
S., Wortmann, A.: Composition of heterogeneous modeling languages. In: Desfray,
P., Filipe, J., Hammoudi, S., Pires, L.F. (eds.) MODELSWARD 2015. CCIS, vol.
580, pp. 45–66. Springer, Heidelberg (2015)

9. Hölldobler, K., Nazari, P.M.S., Rumpe, B.: Adaptable symbol table management
by meta modeling and generation of symbol table infrastructures. In: Proceedings
of the Workshop on Domain-Specific Modeling (2015)

10. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: a framework for compositional devel-
opment of domain specific languages. Int. J. Softw. Tools Technol. Transf. (STTT)
12(5), 353–372 (2010)

11. Martin, R.C., Riehle, D., Buschmann, F. (eds.): Pattern Languages of Program
Design 3. Addison-Wesley Longman Publishing Co., Inc., Boston (1997)

12. Merkle, B.: Textual modeling tools: overview and comparison of language work-
benches. In: Proceedings of the ACM International Conference Companion on
Object Oriented Programming Systems Languages and Applications Companion
(2010)

13. Oliveira, B.C.S.: Genericity, Extensibility and Type-Safety in the Visitor Pattern.
Oxford University, Oxford (2007)

14. Oliveira, B.C.D.S., Cook, W.R.: Extensibility for the masses: practical extensibility
with object algebras. In: Proceedings of the 26th European Conference on Object-
Oriented Programming (2012)

15. Oliveira, B.C.D.S., Wang, M., Gibbons, J.: The visitor pattern as a reusable,
generic, type-safe component. In: SIGPLAN Notices (2008)

16. Palsberg, J., Jay, C.B.: The essence of the visitor pattern. In: Proceedings of the
22Nd International Computer Software and Applications Conference (1998)

17. Rendel, T., Brachthäuser, J.I., Ostermann, K.: From object algebras to attribute
grammars. In: SIGPLAN Notices (2014)

18. Visser, J.: Visitor combination and traversal control. In: SIGPLAN Notices (2001)
19. Vlter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L.,

Visser, E., Wachsmuth, G.: DSL Engineering - Designing, Implementing and Using
Domain-Specific Languages (2013). dslbook.org

20. Torgersen, M.: The expression problem revisited. In: Odersky, M. (ed.) ECOOP
2004. LNCS, vol. 3086, pp. 123–146. Springer, Heidelberg (2004)

21. Zhang, H., Chu, Z., Oliveira, B.C.D.S., Storm, T.V.D.: Scrap Your boilerplate with
object algebras. In: SIGPLAN Notices (2015)

http://dslbook.org/

Demystifying Ontological Classification
in Language Engineering

Colin Atkinson1 and Thomas Kühne2(B)

1 University of Mannheim, B6, C2.11, Mannheim, Germany
atkinson@informatik.uni-mannheim.de

2 Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
Thomas.Kuehne@ecs.victoria.ac.nz

Abstract. The introduction of ontological classification to support
domain-metamodeling has been pivotal in the emergence of multi-level
modeling as a dynamic research area. However, existing expositions of
ontological classification have only used a limited context to distinguish
it from the historically more commonly used linguistic classification. In
important areas such as domain-specific languages and classic language
engineering the distinction can appear to become blurred and the role of
ontological classification is obscured, if not fundamentally challenged. In
this paper we therefore examine critical points of confusion regarding the
distinction and provide an expanded explanation of the differences. We
maintain that optimally utilizing ontological classification, even for tasks
that traditionally have only been viewed as language engineering, is crit-
ical for mastering the challenges in complex systems modeling including
the validation of multi-language models.

Keywords: Ontological classification · Linguistic classification ·
Semantic classification · Language engineering · Metamodeling · Multi-
paradigm modeling

1 Introduction

Ontological classification was originally suggested in conjunction with linguistic
classification as part of a dual classification scheme to address inconsistencies
in the original four-layer architecture associated with the UML [8]. Without an
improved understanding of the precise nature of the four layers and the rela-
tionships between them, it was not possible to reconcile the intended linear
organization of the layers [28] with the overall architecture’s claims to strict-
ness [3]. Recognizing two different classification principles and combining them
in a dual classification architecture turned out to be the key to allow strictness
to be enforceable in two orthogonal dimensions [7].

Being explicit about the ontological and linguistic classification dichotomy
also proved to be useful for achieving a better understanding of tool infrastruc-
ture choices [9], and most importantly, provided a foundation for deep model-
ing, i.e., the idea of explicitly using multiple ontological classification levels for
c© Springer International Publishing Switzerland 2016
A. W ↪asowski and H. Lönn (Eds.): ECMFA 2016, LNCS 9764, pp. 83–100, 2016.
DOI: 10.1007/978-3-319-42061-5 6

84 C. Atkinson and T. Kühne

domain modeling. This approach helped shift the focus from metamodeling as
a tool building technique to a user-centered, ontological modeling paradigm [8].
Often found in combination with various forms of deep characterization [6], dual
classification has therefore become the foundation for a number of research tools
[4,14,21,22,32], and a growing research community [1].

In this regard, dual classification (i.e., the distinction between ontological and
linguistic classification and their combined usage), has been a success. However,
while the distinction between the two classification flavors is straightforward in
certain architectures and application contexts [7], recognizing the two flavors
and fully utilizing their strengths can be challenging in less clear-cut contexts.
For instance, at first sight there does not appear to be a difference between
a linguistically defined domain-specific language and an ontological multi-level
model for the same domain. Some tools hence allow, if not promote, the use
of ontological classification levels for doing what would widely be regarded as
language engineering [5,23] even though such practice seems at odds with the
ontological versus linguistic dichotomy. Such apparent interchangeability of lin-
guistic and ontological classification makes it very difficult to judge which form
of classification is, or should be, used for particular purposes, and ultimately
challenges the foundations of the distinction.

In this paper we first briefly summarize the existing main expositions of onto-
logical and linguistic classification (Sect. 2) and then elaborate the previously
alluded to points of confusion (Sect. 3). Subsequently we present an expanded
explanation of the distinction (Sect. 4) to then show how it can resolve all points
of confusion (Sect. 5). We conclude by arguing that a proper use of both onto-
logical and linguistic classification will be pivotal in addressing modern modeling
challenges (Sect. 6).

2 Background

Figure 1 illustrates a classic, clear-cut application of dual classification in the
OCA [7]. A linguistic type model comprising the linguistic types (in the right-
hand side level labeled “Linguistic Types”) plays the role of a traditional lan-
guage definition which controls the form of entities and their relationships in user
models (in the middle-column “Model . . . ” levels). In contrast, the ontological
types in the user type model level (middle-top “Model Types” level) represent
domain classifiers, such as the Platonic idea of “Track Piece” (light bulb in
the “Universe of Discourse” (UoD)). Classification relationships (labeled “onto-
logical”) between elements in adjacent user model levels represent respective
classification relationships in the UoD.

Existing descriptions of the dual classification approach referred to the lin-
guistic types as controlling “form” and the ontological types as controlling “con-
tent” [9]. Furthermore, linguistic types (such as Object) directly classify elements
of language usage (such as main47), whereas ontological types (such as Track-

Piece) only classify elements of language usage (such as main47) via proxy with
respect to the UoD, meaning that ontological classification relationships are

Demystifying Ontological Classification in Language Engineering 85

length = 100

Class

attributes

length : Integer

Object

slots

co
m

pl
ie

s
w

ith

ontological

main47

length = 100

type
instance

TrackPiece

length : Integer

linguistic

linguistic

linguistic

Linguistic
Types

Model
Types

Model
Instances

Universe of
Discourse

Fig. 1. Classic dual classification example

always motivated by respective classification in the UoD [20]. Linguistic types
have therefore been characterized as giving rise to a notation/language whereas
ontological types have been understood as reflecting classifiers in the domain
(which may or may not exist and which may or may not have types themselves,
depending on the domain).

We may observe that linguistic classification, as described above, has a long
tradition in computer science. A classic language grammar can be regarded as lin-
guistically classifying the allowed sentences of a language [19] and most so-called
“metamodels” [28] are linguistic type models of the models they support the gen-
eration of [20]. Figure 1 is not an attempt to accurately reflect part of the UML
“metamodel” but intentionally uses a simplified approach to illustrate that Track-
Piece and main47 can be regarded as modeling elements created from linguistic
typesClass andObject respectively. Such language definitions may incorporate well-
formedness constraints that go beyond simple syntactic construction rules (static
semantics [16]), but typically defer the definition of the semantics of a language
(dynamic semantics [16]) to a separate transformation (Kermeta being one of the
notable exceptions [27]).

We may further observe that ontological classification is intended to accu-
rately capture the relationship between the meanings of a user-created type (here
a UML class TrackPiece) and a user-created instance (here a UML object main47).
The user-created type does not linguistically classify the user-created instance –
i.e., it does not give the latter the ability to have a name, slots, and links – but
rather just constrains the compliance of the content of the main47 object to the
content of the TrackPiece class.

86 C. Atkinson and T. Kühne

When the distinction between the two classification flavors is described as
above it seems that they form a true dichotomy and the task of telling them
apart is a trivial one. However, in the next section we will enumerate several
situations which seem to challenge this assumption in order to identify points of
confusion that may easily occur when applying dual classification.

3 Points of Confusion

The apparent blurring of the distinction between ontological and linguistic classi-
fication appears in scenarios that differ from the use of multi-level domain models
to describe naturally occurring classification hierarchies, i.e., the scenario typi-
cally used to explain dual classification. In the following we will consider three
such scenarios of particular significance to modelers:

1. Domain-Specific Languages.
2. Classic Language Engineering.
3. Dichotomy-Ambivalent Modeling.

3.1 Domain-Specific Languages

In Fig. 2 we use the standard OCA coloring of levels to illustrate a case when
TrackPiece is used as a linguistic type. Such a scenario occurs when a language
engineer uses a metacase tool like AtoMPM [30] or just a classic textual grammar
approach [19] to define a domain-specific language which aims at specifically
representing elements of interest to the language user, in this example a language
for train control. We are not excluding the possibility that the language engineer
may also associate a domain concept “Track Piece” with the type TrackPiece they
are including in their language definition, but the tool choice and the modeler’s
primary intent – to create signs/tokens such as main47 that are devoid of meaning
unless a semantics is associated with them via a transformation – technically
makes TrackPiece a linguistic type (cf. Sect. 2).

However, this interpretation of TrackPiece creates a tension with the prior
understanding of TrackPiece as being an ontological type (cf. Fig. 1). TheTrackPiece
types in Figs. 1 and 2 are indistinguishable from each other, including the choice
of attributes. Apparently the choice of a domain-specific language, rather than a
general-purpose language that contains more generic types such as Object, made

linguisticmain47

length = 100

TrackPiece

length : Integer
length = 100

Language DefinitionModel ElementsUniverse of Discourse

Fig. 2. A domain-specific modeling language fragment for train control

Demystifying Ontological Classification in Language Engineering 87

the previously distinct difference between ontological and linguistic classification
dissolve.

This raises the question as to whether ontological classification is just a way
of introducing domain-specificity into general purpose languages and, hence,
whether it is then worth maintaining a dual classification scheme. At the very
least the examples shown in Figs. 1 and 2 illustrate that a modeler may find it
hard to ascertain whether TrackPiece should be regarded as an ontological or a
linguistic type.

3.2 Classic Language Engineering

length = 100

main47

length = 100

Model
Instances

Language Semantics Model Types

Object
slots

ontological
…

…

…

Fig. 3. Defining notation within ontological levels

Figure 3 depicts the case of
using ontological levels (i.e.,
“Model Types” and “Model
Instances”) to perform clas-
sic language engineering, i.e.,
to define a language (here, in
level “Model Types”) to be
used for some purpose (here
in level “Model Instances”, to
represent a track piece). Note
that in this scenario the pur-
pose of Object is not to rep-
resent a domain concept but
merely to create tokens such
as main47 so that the latter
can subsequently be used for
purposes like analysis, simu-
lation, and code generation.
Therefore we did not associate
the usual light bulb with Object but just an extension of all notational elements
classified by Object. This, however, can be regarded as shortcut for a light bulb
concept in the semantic domain of “language semantics” that has the set shown
in Fig. 3 as its extension. This approach is consistent with the traditional asso-
ciation of a so-called “extensional semantics” for types like Object.

Tools like Melanee and MetaDepth have been shown to be usable for language
engineering purposes [5,23], so it seems that Fig. 3 visualises the corresponding
scenario of using ontological classification for what appears to be linguistic control.

Note that element main47 is presented using a user-friendly concrete syntax.
Instead of showing the underlying representation – a slot list containing an entry
that has a length name and a 100 value – main47 is presented in a manner that
focuses on the content rather than the representation. Such presentation choices
can go as far as rendering main47 as an icon that looks like a track piece [5]. The
availability of presentation alternatives contributes to blurring the distinction
between ontological classification and linguistic classification because it makes it

88 C. Atkinson and T. Kühne

appear that the former can now be perfectly used in place of the latter in order
to perform language engineering.

However, if the use of ontological classification is not in conflict with such
examples then how is it possible to determine whether a type like Object truly is
a linguistic classifier or an ontological classifier?

3.3 Dichotomy-Ambivalent Modeling

The scenario shown in Fig. 4 is meant to show a multi-level model whose inter-
pretation is ambiguous. On the one hand, the model could be read as a domain-
model representing agent activities, concepts that govern those activities, and
meta-concepts that govern the latter. In this case, the classification relationships
between levels should be characterized as “ontological” (cf. Sect. 2).

Model Types

Model Instances

ActivityType
duration2 : Integer

BobCreatesDesign

duration = 5.3

CreateDesign

duration : Integer

Model Metatypes

Fig. 4. Dichotomy-Ambivalence

On the other hand, the model could be
read as an example of two-tier, classic lan-
guage engineering. In the example shown, a
process definition language is defined at the
“Model Types” level and is itself the result of
using a process metamodeling language. The
fact that the model uses deep characterization
(a potency-two attribute duration) does not rule
out a language definition scenario, but rather
illustrates how deep characterization can also
be useful when defining (families of) languages.
In any event, as the intention in language
engineering is to control form, the classifica-
tion relationships between the levels in Fig. 4
therefore appear to be best characterized as
“linguistic”.

Both of the aforementioned interpretations
of Fig. 4 appear to be equally valid depending
on perspective and purpose. This implies that even if one interpretation was
intended at the time of creation of the model, re-purposing it for the opposing
interpretation seems to be seamlessly supported. Hence, it could be argued that
tools like Melanee or MetaDepth that are regularly used for defining languages
as well as for domain modeling [5,23] could be regarded as not only supporting a
dual purpose but, beyond that, enabling modelers to be ambivalent about their
actual purpose, thus freeing the modeler from difficult deliberations. Arguably,

– the same classification compliance rules can be used for both classification
flavors,

– user interactions with classifiers are the same regardless of their flavor, and
– types like ActivityType apparently can be equally given an ontological as well

as a linguistic reading.

Demystifying Ontological Classification in Language Engineering 89

Therefore, the questions arise as to

1. how one can claim that the classification flavors form a dichotomy, and
2. why one should burden users of multi-level tools with difficult deliberations

about which classification principle they intend, if ambivalence even seems
preferable?

That said, there is of course still a fundamental question of whether the use
of ontological levels for defining languages is in accordance with the principles
of dual classification (cf. Sect. 2) and, if not, whether that suggests that the
principles of dual classification are a hindrance to optimal modeling pragmatics.

Summarizing, all three scenarios presented in this section strongly suggest
that ontological and linguistic classification do not appear to form a long-implied
“black and white” dichotomy. If types like TrackPiece and Object can interchange-
ably appear in both ontological and linguistic type levels and it seems best to
not assign a flavor to types like “Process Type” then on what basis can anyone
decide which classification flavor a type should have?

In order to answer this question in the next section, we describe the basis for
the dual classification principle at a deeper level.

Legal Tender
value: Dollar

$1
value = 1

Linguistic
Types

value = 1
worth = 2262

co
m

pl
ie

s
w

ith

Model
Types

Model
Instances

$

Meaning

UML Class
attributes

worth : Cents

worth : Cents

value { 1, 5, 10, …}

shaped by

shaped by

shaped by

instance of

meaning

modeling

language use

“metamodeling”

value = 1
worth = 67

Fig. 5. Dual classification

90 C. Atkinson and T. Kühne

4 Illuminating Dual Classification

Figure 5 attempts to shed more light on the distinction between linguistic and
ontological classification by

– using an example that better highlights the fundamental differences, and
– illustrating a differentiating aspect that publications on the OCA have hith-

erto neglected.

We deliberately presented the model in Fig. 5 in a manner that allows two
readings:

1. a real world scenario in which the four modeling elements dollar bill, coin,
banknote mold, and coin mold can be regarded as real-world items.

2. a multi-language model that uses a domain-specific presentation for some of
its modeling elements.

The idea behind the first “real world” reading of Fig. 5 is to view items of legal
tender, such as a dollar bill or a dollar coin, as being formed by bill printing
and coin minting molds respectively. The formed tokens (bills and coins) are
then assigned “meaning”, in this example their purchasing power. Note that in
the real world dollar bills and coins indeed play the role of models, i.e., they
are placeholders for their meaning. Purchasing power is referred to as “value” in
Fig. 5 and amounts to “$1” for both bill and coin. This value of a legal tender
item is distinguished from its material worth. Typically the material worth is
lower (e.g., in case of the dollar bill) but it can also be higher (e.g., in the case
of special collector variants of coins).
The intention behind allowing the first reading is to make it unequivocally clear
that

– linguistic types can be regarded as molds. They are used in a constructive
mode in the vast majority of cases to coin model elements. They simply
produce tokens which are to be interpreted in a second step. The tokens have
no intrinsic meaning and may have rather different meanings depending on
the context. For instance, the four characters “GIFT” may mean “present”
(in English) or “poison” (in German).

– generated model elements are signs/tokens which have their own intrinsic
properties, independently of their meaning. In the example of Fig. 5 the mate-
rials used for the bank note are assumed to be worth 67 cents whereas the
dollar coin is a silver seated liberty dollar whose melt value is $22.62. We
deliberately chose an example for Fig. 5 in which the meaning of “value” is
overloaded in the sense that it could apply (linguistically) to the value of the
model element itself, or (ontologically) to the value assigned to the model
element via an interpretation. This resolvable overloading illustrates that one
must be careful to identify the subject, i.e., either the model element itself or
its meaning, when attributing properties.

Demystifying Ontological Classification in Language Engineering 91

– generated model elements may have various meanings. In descriptive models
they represent elements in the UoD but they can also have a prescriptive role,
e.g., prescribing a system to be built, or simply be assigned some semantics,
i.e., execution semantics. Sometimes such additional semantics are referred to
as interpretations [29]. In the example in Fig. 5, the ontological interpretation
of the items of legal tender is an abstract “$1” concept that only exists due
to the notion of legal tender, i.e., nowadays “fiat money”.

– the semantic domain of a model can reasonably be thought of containing (Pla-
tonic) ideas [7]. In the example we again use a light bulb to denote the logical
idea which specifies the requirements on legal tender. Such ideas are repre-
sented by model elements at the “Model Types” level. Note that they do not
specify properties of model elements, i.e., in the example LegalTender neither
characterizes the dollar bill nor the dollar coin. In particular, LegalTender is
not a generalization of all model element types that characterize legal tender
tokens. Rather LegalTender characterizes the abstract money concept of “$1”
and, of course, other amounts.

The above elaborations help to re-iterate the fact that ontological types do not
directly characterize model instances. Ontological types rather represent ideas
which in turn characterize instances, with the latter being represented by model
instances. Linguistic types, on the other hand, directly describe properties of the
tokens they produce. For example in “Love is a four-letter word” the predicate
“four-letter word” applies to the word “love” itself, i.e., is a linguistic charac-
terization. From an ontological viewpoint, the classification of “love” should be
“Love is an emotion”, i.e., refer to the meaning of the word “love”.

With the above in mind, we may now observe that Fig. 5 illustrates an aspect
of ontological classification that has so far not been mentioned in previous pub-
lications on the OCA:

– Ontological classification does not require literal conformance, i.e., in con-
trast to linguistic types, ontological types do not have to stipulate syntactic
compliance.

In the example of Fig. 5, the seated liberty dollar absolutely must have cer-
tain physical properties, otherwise it could not be considered to be a linguistic
instance of the minting mold that coined it. As the minting mold imprints all
its features on all coins, they are all guaranteed to have the respective features.
In the example we are assuming that the same materials will always be used in
production hence every coin will feature the same material worth.

In contrast, the ontological type LegalTender specifies a requirement – i.e., for
all instances to have a certain purchasing power – that is not directly expressed
in its instances. None of the LegalTender instances directly carry a value feature.
Whether or not they have a value is determined by looking up what they rep-
resent in the semantic domain. Only through referencing the meaning of model
instances do we obtain the knowledge that both dollar bill and coin are instances
of LegalTender with the value “$1” (hence the arrows from “$1” to the “value =

1”-properties in Fig. 5).

92 C. Atkinson and T. Kühne

The fact that legal tender items have their intended value printed on them
should not be mistaken with an expression of “meaning” as a physical property.
For instance, if dollar bills were taken out of circulation then they would still
claim a nominal face value of “$1” but their meaning would be “$0”.

In the light of the above, we can therefore confirm that ontological instan-
tiation can be regarded as semantically-founded and does not require literal
compliance between model instances and their model types. We may thus alter-
natively refer to ontological classification as “semantic classification”, whereas
linguistic classification may be referred to as “syntactic classification”. A lin-
guistic type should be thought of syntactically classifying tokens (which may
be given meaning in a subsequent step) whereas an ontological type should be
thought of as semantically classifying tokens by representing a domain concept
which in turn has domain instances which are represented by said tokens.

In practice, it makes sense for most ontological (semantic) classification rela-
tionships to rely on syntactic conformance as well, i.e., be no more flexible than
linguistic classification. A syntactic conformance check is trivial to implement
while a true semantic check would require an explicit representation of a seman-
tic domain, the definition of a corresponding mapping, and the definition of a
semantic check within the semantic domain. This significant difference in com-
plexity explains why simple syntactic checking is almost universally accepted
as a shortcut for semantic checking. Arguably, however, some languages like
Eiffel [25] and JML [24], attempt to approximate a semantic check for objects
by allowing the specification of pre- and post-conditions, albeit only in terms of
a testing semantics. This latter limitation of ambition highlights another prob-
lem with a full semantic check: in general, its computation may be intractable
or even undecidable.

5 Points of Confusion Clarified

Equipped with the above clarifications, we are now in a position to revisit the
points of confusion around the dual classification principle identified in Sect. 3.

5.1 Ontological Types Used for Linguistic Classification

The first challenge we elaborated upon in Sect. 3 stemmed from the fact that
any domain model involving types and instances can be regarded as a (domain-
specific) language definition (model types) with its corresponding language use
(model instances).

However, with the function of linguistic classifiers confirmed as merely pro-
ducing tokens that do not carry any inherent meaning within themselves, it
becomes clear that even though types in a domain-specific language definition
could have the appearance of ontological types, they do not in any way fulfill
the same function.

The linguistic TrackPiece type with its attribute “length : Integer” in Fig. 2
only creates a token (placeholder) that is able to capture a value for the key

Demystifying Ontological Classification in Language Engineering 93

“length”. The ontological type TrackPiece in Fig. 1, on the other hand, denotes
the existence of the Platonic idea “Track Piece” as part of a railway system where
the “length” of a piece has implications for the trains that run on it, giving rise
to pieces that may or may not allow collisions of trains, etc. While the actual
semantics associated with the ontological TrackPiece and its main47 instance may
be rather simple or may even not have a representation at all, at least in terms
of potential the ontological type TrackPiece signifies something entirely different
to the linguistic type TrackPiece (cf. the “value” discussion in Sect. 4).

More specifically, while the two occurrences of TrackPiece in Figs. 1 and 2
look identical and interchangeable, this observation only holds with respect to
their form outside a particular context. Just as a UML class diagram may be
read as a type model (e.g., with its types classifying elements in the UoD) or
as a token model (e.g., with its types being tokens which represent respective
Java classes) [20], it is possible to read one and the same TrackPiece type as a
linguistic type or as an ontological type.

This room for interpretation, however, must not be confused with arbitrari-
ness or a fuzzy demarcation line. Just as with the type model versus token model
analogy, it is not possible to ascertain the nature of a type’s classification prin-
ciple from the type alone. In the absence of any knowledge regarding the role
the type is playing, it is not possible to make any statement about its func-
tion and/or nature. However, once the role is known, it is no longer possible to
mistake one role with the other.

As a result, arguably the choice of name for the linguistic TrackPiece type is
a poor one. After all, the type actually classifies model elements, i.e., tokens, as
opposed to track pieces themselves. Strictly speaking, the appropriate name for
the linguistic TrackPiece type should be “TrackPieceToken” (or similar).

Note that in contrast the name for the ontological type TrackPiece should not
be “TrackPieceObject” (or similar). In the ontological dimension the intent is to
actually classify the domain instances themselves. Model elements such as main47

(referred to as “instance specifications” in the UML) represent domain instances
but whenever they are referenced, e.g., as instances of TrackPiece, one intends to
refer to their meaning, i.e., the domain instances themselves. The importance of
understanding the different functions of linguistic versus ontological types, and
hence the significance of proper naming, can be illustrated by analyzing what
the respective types fix and what they leave open. Figure 5 illustrates a scenario
where two different tokens (coin and bill) have the same meaning, i.e., could be
regarded as being synonyms. In this example, linguistic diversity is supported
but semantic ambiguity is ruled out.

However, there are also homonyms, i.e., signs that are indistinguishable from
each other but have different meanings. For example the sentence “I seem
to be having tremendous difficulty with my lifestyle” has only one linguistic
type (e.g., “Sentence”) but depending on its ontological type (e.g., “Casu-
ally Muttered Phrase” versus “Dreadful Insult In The Vl’Hurg Tongue”), it
could either represent a personal self-reflection or an insult that leads to the
decimation of an entire galaxy [2]. It therefore becomes obvious that knowing

94 C. Atkinson and T. Kühne

main47’s linguistic type amounts to entirely different knowledge compared to
knowing its ontological type, even though the two can seem indistinguishable on
the surface.

Despite their arguably somewhat misleading naming choices (i.e. using
“TrackPiece” rather than “TrackPieceToken”), classic language engineers are
obviously aware that their types only define a notation, rather than capture
semantic properties. After all, they use the term “metamodel” whenever they
use a linguistic type model to define the syntax of a language. In contrast, a reg-
ular UML modeler would not refer to a UML class diagram which only contains
simple types that represent domain concepts as a “metamodel”, even though
the class diagram could be regarded as a model of other models, i.e., object
diagrams.

As mentioned before, we are not excluding the possibility that a language
engineer may also associate a domain concept “Track Piece” with their linguis-
tic type, thus giving more credence to their naming choice. However, as the
above analysis shows, it is important to keep the two different purposes apart.
Unconsciously confounding them is akin to failing to acknowledge the differ-
ence between the properties of real world elements and the properties of model
elements that model them [17].

5.2 Linguistic Types Used in Ontological Levels

In Sect. 3 we observed an apparent conflict due to the fact that it seemed possible
to view a linguistic type like Object as an ontological type (cf. Fig. 3). Closer
scrutiny reveals that two ingredients are necessary for this apparent conflict to
arise:

1. the ability to choose “language engineering” as the semantic domain, and
2. the possibility to reinterpret a classification relationship.

Ontological classification between model elements mirrors logical instantiation
in the domain, so when one chooses a domain in which language elements playing
the role of instances are classified by language elements playing the role of types
then the respective classification relationships give rise to respective ontological
classification. In short, a notation and its definition can be given a structural
semantics which in turn gives rise to semantic classification between the nota-
tion and its definition. This first ingredient therefore stems from the fact that
any language definition combined with its corresponding language use can be
regarded as a domain model with types (the language definition) and instances
(the language use). In other words, a “linguistic meaning” is one of the many
meanings ontological classification can embody.

Yet, this does not constitute any conflicts regarding the nature of a classifier.
The ontological classifier Object in Fig. 3 has a linguistic purpose, i.e., to control
the form (not the meaning) of main47. However, it achieves this purpose through
ontological classification, i.e., by representing the Platonic concept of a token
type (here Object).

Demystifying Ontological Classification in Language Engineering 95

There are two options for making this token type control instances (e.g.,
main47): First, the semantic domain of the token type is defined to be the onto-
logical level where the target instances (e.g., main47) reside. This would amount
to hosting actual linguistic types in ontological levels as the characteristic “com-
pliance” relationship (cf. Fig. 5) would be missing. The second option is to choose
the semantic domain of the token type to be in the same “Language Semantics”
domain as the token type and defining the meaning of the target instances to be
that of their counterparts in the semantic domain. A semantic check within the
semantic domain validates whether there is syntactic compliance and if the latter
is established then it confirms the ontological “instance of” relationship between
main47 and its ontological type Object. This would support a pure ontological
understanding of the form control exerted by the token type. This approach
could readily be supported by any tool featuring ontological levels and the abil-
ity to map their contents into a semantic domain with an associated semantic
checking function.

The fact that semantic (ontological) classification can be “downgraded” to
effectively fall back to a syntactic (linguistic) check as in option 2 above, makes
it impossible to judge the ultimate purpose of a type by just looking at it, even
when its ontological role is known. However, any ambiguity is resolved when the
context is provided. With the intended universe of discourse or semantic domain
known, the type’s purpose will be revealed to either classify the domain instances
or the model elements.

It is worth pointing out that not every ontological type can play the role of
a linguistic classifier for its model instances. While the ontological type Track-

Piece in Fig. 1 could indeed play the role of a linguistic classifier for main47, the
ontological type LegalTender could not play the role of a linguistic classifier for a
coin, as the latter does not have a physical “value” property (only a “worth” and
a mapping to a semantic domain that assigns it a value). This suggests a par-
tial litmus test for ontological types: If the conformance between model instance
and its type is not literal, i.e., not a plain syntactic conformance, then the type
cannot be a linguistic type.

Since ontological classification entails an inherent ambiguity regarding the
ultimate purpose (in the absence of any knowledge about the intended semantic
domain), it would seem advisable to use some notation to signify the purpose
of ontological types (i.e. domain modeling versus notation definition), similar to
a clef in musical notation which clarifies the absolute pitch of the notes that
follow it.

5.3 Postponing Role Assignments

The conclusions from section Sect. 4 and the previous analyses established that
a dual interpretation of types is possible but that the respective meanings asso-
ciated with the different roles are fundamentally different. Of course, this has
implications for the idea of a perspective-based interpretation of types and/or
the flexible re-purposing of types in approaches/tools that aim to allow users to
be ambivalent about the type roles.

96 C. Atkinson and T. Kühne

The premise that both ontological and linguistic classification can be sup-
ported by a tool assuming a single classification principle is correct in the sense
that the types as such do not imply a commitment. Even if such a tool essentially
only supports structural control over instances then it will obviously support lan-
guage engineering, as well as domain modeling. However, there are disadvantages
to such an approach:

Lack of Semantic Typing. True semantic checking which involves transfor-
mations into the semantic domain and a subsequent check within the semantic
domain is not supported. That leaves modelers with the limited expressiveness
and flexibility of syntactic typing, denying them the additional abstraction that
semantic typing affords.

Only Simple Language Support. Ontological classification hierarchies are lin-
ear by nature. If language engineering is restricted to a linear hierarchy, however,
it is difficult to cleanly support languages with a built-in notion of classification.
Enabling a nesting of levels to accommodate language engineering would also be
at oddswith the premise that no commitment to a classification role is ever required
since nesting would not make sense for an ontological interpretation.

Ambiguity Considered Harmful. Arguably, it makes sense for a modeler to
be conscious about what classification flavor they have in mind. The choice of
features and their names, for example, can depend on whether one intends a
semantic or a syntactic commitment (cf. Sect. 4, regarding the overloading of
“value” for coins). Also, in the case of a semantic commitment description logics
could be used to capture semantic knowledge in the domain whereas in the case
of a syntactic classification only, simple attributes are sufficient as a specification.
Finally, if a modeler is not clear about the intended role, they may mix linguistic
and ontological roles in a single model without realizing the inconsistencies. In
one type an attribute may be labeled “nameString” (indicating a linguistic intent)
whereas an associated type could use “name” (indicating an ontological intent).

The first issue from above could be addressed by choosing an ontological
interpretation as the default and viewing applications of language engineering as
ontological modeling with respective structural checks performed in the semantic
domain. The second issue, however, points out a real limitation of tools support-
ing linear classification levels with respect to defining languages that feature a
notion of instantiation. While it is possible to model such instantiation relation-
ships, the tool would not be able to recognize and support their significance. The
last point suggests that future work should clarify which kinds of ambivalence
are welcomed as supporting re-purposing and which may be considered harmful
as they mask fundamental differences.

6 Conclusion

Linguistic classification has an undisputed role in computer science as the basis
for formalization and classic language engineering. While the recognition of

Demystifying Ontological Classification in Language Engineering 97

ontological classification has helped to spawn a research field, its previous exposi-
tions have also created misunderstandings [10] and made it difficult to distinguish
it from linguistic classification in certain scenarios (cf. Sect. 3).

In order to clarify the role of ontological classification, in this paper we identi-
fied critical differences between linguistic and ontological classification that have
not been highlighted before. We observed that

– “semantic classification” could be an alternative name for ontological clas-
sification as it emphasizes the inherent reference to a UoD or a semantic
domain.

– ontological classification does not require literal conformance as it captures
semantic properties of subject instances, as opposed to creating carriers for
semantics.

– the use of the name “linguistic classification” should not be construed to
imply that all language definition must exclusively occur through linguistic
classification.

Earlier publications on the ontological versus linguistic dichotomy only dealt
with straightforward scenarios and hence did not highlight the above aspects.
In this paper we furthermore made the key observation that in order to avoid
confusion one must reject the assumption that a type is intrinsically either an
ontological or a linguistic type. We clarified that one and the same type may
play an ontological role in one context and a linguistic role in another context
(cf. Sect. 4). We thus emphasized that a type’s purpose in a particular context
is important to understand its role and that the dichotomy therefore does not
apply to types themselves, but to the roles they play.

Yet, even if an ontological role is confirmed, e.g. by applying respective lit-
mus tests (cf. Sect. 5.2), the intended use of the type may not be entirely clear.
In Sect. 5.2 we noticed that this stems from the fact that a semantic test can
boil down to a structural conformance check and that the respective ontologi-
cal classification can hence be indistinguishable from linguistic classification, in
terms of its effect and in the absence of knowledge about the semantic domain.

Section 3.3 made the case that such ambiguity could be the basis for an
approach that promotes dichotomy ambivalence as a feature. However, we also
pointed out a list of limitations associated with linear hierarchies built on this
principle (cf. Sect. 5.3). We believe future work should provide a comprehen-
sive analysis of the trade-offs involved in using the “ambivalent classification”
approach. On the one hand it appears to liberate modelers from potentially
difficult deliberations, but on the other hand modeler obliviousness may cause
inconsistencies and even inappropriate modeling (cf. Sect. 5.1). There is no imme-
diate resolution to this issue since – as we mentioned in Sect. 3.1 – the defini-
tion of a notation need not always be in conflict with simultaneously capturing
domain semantics. Hence, the options of banning ontological classification from
only exerting form control, explicitly distinguishing within ontological hierar-
chies between domain semantics versus form control, or promoting ambivalence
or even agnosticism should be evaluated in future work.

98 C. Atkinson and T. Kühne

Undoubtedly, however, we expect ontological classification to play an inte-
gral role in the future of modeling when used with the expanded interpretation
we have offered in this paper. First, by exploiting the liberation from syntactic
conformance it is possible to accommodate more flexible classification relation-
ships based on meaning rather than syntax. For example, immaterial differences,
such as different naming choices like “diameter” versus “width”, do not pre-
vent instances from being recognized as belonging to the same category (e.g.,
“Shape”). Such emphasis on the meaning rather than the structure of data is
the underpinning for the “Semantic Web” and its associated “Web Ontology
Language”.

Second, ontological classification provides a new means of injecting semantics
into modeling. In contrast to Barroca et al. [11] who use ontological types to
support the reuse of property definitions (e.g. “liveliness”, “safety”, etc.) that are
otherwise often captured with additional property specification languages [26],
we suggest that ontological types should also incorporate domain semantics for
natural types such as “SpecialistWorker”, etc. In other words while we support
the use of ontological (property) types to represent so-called “appredicators”,
we believe ontological types will also prove to be very useful for representing
so-called “(eigen-)predicators”.

We thus advocate ontological types as a bridge [18] between the semantically-
oriented world of ontology engineering [12] and the syntactically-oriented word of
classic language engineering [19]. Enhancing traditional language definitions with
semantic properties that advanced tools will be able to validate through checks
ranging from simple conformance checking involving name mapping, through
simulations, to model-checking and automated proofs, will make modeling more
meaningful than it has been in the context of software engineering. The sys-
tems modeling community has a longer tradition of associating semantics to
languages [26] but even for this community the use of user-defined semantics
represented with ontological types is a novel concept.

We support the view taken by Vangheluwe et al. that tackling the chal-
lenges involved in modeling complex systems, such as cyber-physical sys-
tems [15], requires the use of multiple languages/formalisms and the incorpo-
ration of semantics [13,31]. Introducing semantic properties, validating them,
and demanding their preservation in modeling transformations will be a crucial
tool to master the complexity of modeling and generating contemporary systems.

In this paper we have not attempted to identify the optimal architecture for
supporting multiple languages along with a semantic perspective on the UoD.
However, we hope that our clarification of the distinction between ontological
classification and linguistic classification will contribute towards identifying use-
ful roles for ontological classification in the context of classic language engineer-
ing. It is in this light that we emphasize there are no grounds for the assumption
that claiming a difference between ontological and linguistic classification creates
more problems than it solves. On the contrary, we believe ontological classifica-
tion should be given more consideration in classic language engineering than it
has been given to date.

Demystifying Ontological Classification in Language Engineering 99

References

1. MULTI-LEVEL MODELING WIKI (2014). http://homepages.ecs.vuw.ac.nz/
Groups/MultiLevelModeling/

2. Adams, D.: The Hitchhiker’s Guide to the Galaxy. Del Rey, September 1995
3. Atkinson, C.: Meta-modeling for distributed object environments. In: Enterprise

Distributed Object Computing, pp. 90–101. IEEE Computer Society, October 1997
4. Atkinson, C., Gerbig, R.: Melanie: multi-level modeling and ontology engineering

environment. In: Proceedings of Modeling Wizards 2012. ACM (2012)
5. Atkinson, C., Gerbig, R., Kennel, B.: Symbiotic general-purpose and domain-

specific languages. In: Proceedings of the 34th International Conference on Soft-
ware Engineering, ICSE 2012, pp. 1269–1272. IEEE Press, Zurich, Switzerland
(2012)

6. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: Gogolla, M.,
Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 19–33. Springer, Heidelberg
(2001)

7. Atkinson, C., Kühne, T.: Model-driven development: a metamodeling foundation.
IEEE Softw. 20(5), 36–41 (2003)

8. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastructure. ACM Trans.
Model. Comput. Simul. 12(4), 290–321 (2003)

9. Atkinson, C., Kühne, T.: Concepts for comparing modeling tool architectures. In:
Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 398–413.
Springer, Heidelberg (2005)

10. Atkinson, C., Kühne, T.: In defence of deep modelling. Inf. Softw. Technol. 64,
36–51 (2015)

11. Barroca, B., Kühne, T., Vangheluwe, H.: Integrating language and ontology engi-
neering. In: Proceedings of the 8th Workshop on Multi-Paradigm Modeling, vol.
1237, pp. 77–86. CEUR-Workshop Proceedings, September 2014

12. Carvalho, V.A., Almeida, J.P.A., Fonseca, C.M., Guizzardi, G.: Extending the
foundations of ontology-based conceptual modeling with a multi-level theory. In:
Johannesson, P., Lee, M.L., Liddle, S.W., Opdahl, A.L., López, O.P. (eds.) ER
2015. LNCS, vol. 9381, pp. 119–133. Springer, Heidelberg (2015)

13. Combemale, B., Deantoni, J., Baudry, B., France, R., Jézéquel, J.M., Gray, J.:
Globalizing modeling languages. Computer 47, 68–71 (2014)

14. Demuth, A., Lopez-Herrejon, R.E., Egyed, A.: Cross-layer modeler: a tool for flex-
ible multilevel modeling with consistency checking. In: 19th Symposium on the
Foundations of Software Engineering (FSE), Szeged, Hungary, pp. 452–455 (2011)

15. Derler, P., Lee, E.A., Sangiovanni-Vincentelli, A.: Modeling cyber-physical sys-
tems. Proc. IEEE (special issue on CPS) 100(1), 13–28 (2012)

16. Harel, D., Rumpe, B.: Modeling languages: Syntax, semantics and all that stuff
- part I: The basic stuff. Technical report MCS00-16, The Weizmann Institute of
Science, Israel, September 2000

17. Jackson, M.: Some basic tenets of description. SoSyM 1(1), 5–9 (2002)
18. Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger,

W., Schwinger, W., Wimmer, M.: Lifting metamodels to ontologies: a step to
the semantic integration of modeling languages. In: Wang, J., Whittle, J., Harel,
D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 528–542. Springer,
Heidelberg (2006)

19. Klint, P., Lämmel, R., Verhoef, C.: Toward an engineering discipline for grammar-
ware. ACM Trans. Softw. Eng. Methodol. 14(3), 331–380 (2005)

http://homepages.ecs.vuw.ac.nz/Groups/MultiLevelModeling/
http://homepages.ecs.vuw.ac.nz/Groups/MultiLevelModeling/

100 C. Atkinson and T. Kühne

20. Kühne, T.: Matters of (meta-) modeling. SoSyM 5(4), 369–385 (2006)
21. Lamo, Y., Wang, X., Mantz, F., MacCaull, W., Rutle, A.: DPF workbench: a dia-

grammatic multi-layer domain specific (meta-)modelling environment. In: Lee, R.
(ed.) Computer and Information Science 2012. SCI, vol. 429, pp. 37–52. Springer,
Heidelberg (2012)

22. de Lara, J., Guerra, E.: Deep meta-modelling with MetaDepth. In: Vitek, J. (ed.)
TOOLS 2010. LNCS, vol. 6141, pp. 1–20. Springer, Heidelberg (2010)

23. Lara, J., Guerra, E., Cuadrado, J.S.: Model-driven engineering with domain-
specific meta-modelling languages. Softw. Syst. Model. 14(1), 429–459 (2015)

24. Leavens, G.T., Baker, A.L.: Enhancing the pre- and postcondition technique for
more expressive specifications. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM
1999. LNCS, vol. 1709, pp. 1087–1106. Springer, Heidelberg (1999)

25. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice Hall, Upper
Saddle River (1997)

26. Meyers, B., Wimmer, M., Vangheluwe, H., Denil, J.: Towards domain-specific prop-
erty languages: the promobox approach. In: Proceedings of DSM 2013, pp. 39–44.
ACM (2013)

27. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving executability into object-
oriented meta-languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005.
LNCS, vol. 3713, pp. 264–278. Springer, Heidelberg (2005)

28. OMG: Unified Modeling Language Infrastructure Specification, Version 2.0 (2004)
29. Seidewitz, E.: What models mean. IEEE Softw. 20(5), 26–32 (2003)
30. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Mierlo, S.V., Ergin, H.:

AToMPM: a web-based modeling environment. In: Joint Proceedings of MODELS
2013 and ACM Student Research Competition, pp. 21–25 (2013)

31. Vangheluwe, H., de Lara, J., Mosterman, P.: An introduction to multi-paradigm
modelling and simulation. In: Proceedings of the AIS 2002 Conference, Portugal,
pp. 9–20 (2002)

32. Volz, B., Jablonski, S.: OMME - a flexible modeling environment. In: Proceedings
of SPLASH Workshop on Flexible Modeling Tools (FlexiTools) (2010)

Example-Based Generation
of Graphical Modelling Environments

Jesús J. López-Fernández(B), Antonio Garmendia,
Esther Guerra, and Juan de Lara

Universidad Autónoma de Madrid, Madrid, Spain
jesusj.lopez@uam.es

Abstract. Domain-Specific Languages (DSLs) present numerous ben-
efits like powerful domain-specific primitives, an intuitive syntax for
domain experts, and the possibility of advanced code generation for nar-
row domains. While a graphical syntax is sometimes desired for a DSL,
constructing graphical modelling environments is a costly and highly
technical task. This relegates domain experts to play a passive role in
their development and hinders a wider adoption of graphical DSLs.

Targeting a simpler DSL construction process, we propose an example-
based technique for the automatic generation of modelling environments
for graphical DSLs. This way, starting from examples of the DSL likely
provided by domain experts using drawing tools like yED, our system
is able to synthesize a graphical modelling environment that mimics the
syntax of the provided examples. This includes a meta-model for the
abstract syntax of the DSL, and a graphical concrete syntax support-
ing spatial relationships like containment or attachment. The system is
implemented as an Eclipse plugin, and we demonstrate its usage on a
running example in the home networking domain.

Keywords: Domain-specific modelling languages · Graphical modelling
environments · Example-based meta-modelling · Flexible modelling

1 Introduction

Model-Driven Engineering (MDE) is founded on the use of models to describe
the systems to be built. Often, these models are defined using Domain-Specific
Languages (DSLs) tailored to a particular field [7]. Hence, the need to create
DSLs and their associated modelling environments is recurring in MDE projects.

The concrete syntax of a DSL may be graphical or textual, though in this
paper we focus on graphical DSLs [10]. Many tools have emerged along the years
to build environments for graphical DSLs [3,5,6,10,11,17]. However, building
such environments still remains a technical, complex and time-consuming task.
For example, building a graphical editor with Graphiti [5] requires manual pro-
gramming based on a large Java API. In the case of GMF [6] and Sirius [17],
it is necessary to describe the different aspects of the editor by building one or
more models. These models may become very detailed, large and hard to build
c© Springer International Publishing Switzerland 2016
A. W ↪asowski and H. Lönn (Eds.): ECMFA 2016, LNCS 9764, pp. 101–117, 2016.
DOI: 10.1007/978-3-319-42061-5 7

102 J.J. López-Fernández et al.

and maintain for non-experts – especially for DSLs beyond toy examples – and
frequently they must be constructed using unhandy tree-based editors.

Apart from the technical difficulties, a salient issue with most graphical
language workbenches is the need to construct a meta-model upfront, and to
describe the features of the concrete syntax and the modelling environment
using a technical language or notation. This hinders the active participation
of domain experts in the DSL construction process, who might find more famil-
iar working with examples than with meta-models [1,12] and might lack the
technical knowledge to define complex environment specifications. However, the
active involvement of domain experts is crucial for the success of the DSL to be
built [9].

To avoid these difficulties, we propose a novel technique for the automatic
generation of graphical modelling environments starting from examples of the
DSL. Hence, instead of building a meta-model first and describing its concrete
syntax at the meta-model level, our proposal is to collect examples built by
domain experts using drawing tools like Powerpoint, Dia or yED. Our framework
processes the provided examples to induce a meta-model by using the techniques
presented in [12], and it also extracts a description of the graphical concrete
syntax that includes graphical forms for classes (svg files), edge styles, and spatial
relations like containment or attachment. This information is used to synthesize
a graphical modelling environment that mimics the graphical syntax used in the
examples, but in addition, it enforces the well-formedness rules of the DSL and
enables the creation of models (in contrast to drawings) that can be manipulated
using MDE technology (e.g., transformations and code generators). As a result, a
graphical DSL environment is generated with no need to code or create complex
technical specifications. Our proposal is backed by a working prototype, available
as an Eclipse plugin at http://miso.es/tools/metaBUP.html.

Paper Organization. Section 2 presents an overview of our approach and a
running example. Section 3 introduces example-based meta-modelling. Section 4
shows our approach to extract concrete syntax information from graphical exam-
ples. Section 5 describes the synthesis of graphical modelling environments from
the extracted information. Section 6 presents tool support. Finally, Sect. 7 dis-
cusses related research and Sect. 8 concludes the paper.

2 Overview and Running Example

Figure 1 outlines our process for the example-based generation of graphical mod-
elling environments. It involves two roles: the Domain Expert, who provides
graphical examples and ultimately validates the generated environment, and the
Modelling Expert, who monitors the meta-model induction process from which
the desired DSL environment is derived.

The core part of our process, gray-shaded in Fig. 1, is iterative. Here, the
domain expert provides input examples made with tools like yED, portraying
how models should look like (label 1). These examples may represent complete
models, or they may focus on a particular aspect of interest and therefore be

http://miso.es/tools/metaBUP.html

Example-Based Generation of Graphical Modelling Environments 103

Fig. 1. Bottom-up graphical DSL development process.

partial, in which case we call them fragments. Then, the examples are auto-
matically parsed into models, which are more amenable to manipulation (label
2). The parsed models are represented textually, making explicit the existing
objects, attributes and relations in the examples, annotated with information
regarding their graphical rendering (e.g., spatial relationships between objects
or line styles). The modelling expert can edit this textual representation (label
3) to set more appropriate names to the derived relations, or to trigger refactor-
ings in the meta-model induction process which takes place next (label 4). Thus,
an iteration step finishes when the meta-model under construction is evolved to
accept the revised fragment.

After processing all provided examples, the modelling expert can export the
induced meta-model to a suitable format (Ecore in our current implementation,
label 5), and invoke our editor generator to obtain a fully operating editor mim-
icking the concrete syntax of the examples (label 6). Moreover, the examples are
migrated into models and can be edited and visualized in the generated editor.
The domain expert can validate the editor (label 7), perhaps based on the con-
verted examples, and if necessary, he can refine the DSL by providing further
examples and re-generating the editor.

2.1 Running Example

As a running example, we develop a DSL in the home networking domain. In
this DSL, we would like to represent the contracts that internet service providers
(ISPs) hold with customers, the possible configurations of home networks, and
their connection with the ISP infrastructure. Customer homes are connected via
cable modems to the ISP network. Typically, each home has a (normally Wi-Fi-
enabled) router to which the landline phone is connected, and with a number
of Ethernet cable ports. Wi-Fi networks are password protected and work in a
frequency range. Moreover, each home may have both cabled (e.g., PCs, printers
or laptops) and wireless devices (e.g., smartphones, tablets or laptops).

Using our approach, domain experts provide example fragments that illus-
trate interesting network configurations and depict the desired graphical repre-

104 J.J. López-Fernández et al.

Fig. 2. Fragment showing a connection between customer homes and an ISP.

sentation for them. As an example, Fig. 2 shows one fragment built with yED1,
representing the connection between some customer homes and the ISP through
cable modems. The elements in the drawing define some properties, like the
ipBase of cable modems, the name of the home owner, the tier and location of the
ISP network, and the name of the ISP. The legend to the right assigns a name
to every picture used in the drawing.

3 Example-Based Meta-modelling

In [12], we introduced a bottom-up meta-modelling technique that enables the
automatic induction of a meta-model starting from sketches2, built using draw-
ing tools. In order to facilitate the meta-model induction process, sketches are
complemented by a legend that assigns a name to each different symbol in the
drawing, as shown in Fig. 2. Such names are used as identifiers for the induced
meta-model classes.

The meta-model induction process starts by parsing the provided fragment
into a textual internal representation that is easier to manipulate by the mod-
elling expert. The fragment, once revised by the modelling expert, is fed into our
system. This may produce an update of the current version of the meta-model
so that it “accepts” the provided fragment. For example, if a fragment contains
objects of an unknown type, this type is incorporated into the meta-model. Sim-
ilarly, if an object has new features not present in its type, then its meta-class
is extended with these new features. Fragments have an open-world semantics:
they only convey the relevant information for the scenario, and may omit addi-
tional information that will be given in further sketches. As explained in Sect. 2,
examples are a special kind of fragments used to represent complete models, and
they have a closed-world semantics.

1 https://www.yworks.com/products/yed.
2 We call these examples sketches to distinguish them from models conformant to a

meta-model, though they are not hand-drawn but made with diagramming tools.

https://www.yworks.com/products/yed

Example-Based Generation of Graphical Modelling Environments 105

For instance, Listing 1 shows the textual model obtained from parsing the
fragment in Fig. 2. Every object (e.g., h1 in line 2) receives a type as indicated
in the legend (e.g., Home), and may contain slots (e.g., name in line 3) and links
(e.g., modem in line 6) according to the original fragment.

1 fragment fragment1 {
2 h1 : Home {
3 attr name =”Elliott Smith”
4 @overlapping
5 @composition
6 ref modem = cm3
7 }
8 isp1 : InternetServiceProvider {
9 attr name = ”lemon”

10 ref infrastructure = ispn1, ispn2
11 }
12 h2 : Home {
13 attr name = ”Damien Jurado”
14 @overlapping
15 @composition
16 ref modem = cm2
17 }
18 h3 : Home {
19 attr name = ”Laura Marling”
20 @overlapping
21 @composition
22 ref modem = cm1
23 }

24 cm1 : CableModem {
25 attr ipBase = ”251.12.211.6”
26 ref isp = ispn1
27 }
28 cm2 : CableModem {
29 attr ipBase = ”251.12.210.56”
30 ref isp = ispn1
31 }
32 cm3 : CableModem {
33 attr ipBase = ”251.12.210.48”
34 ref isp = ispn2
35 }
36 ispn1 : ISPNetwork {
37 attr tier = 3
38 attr location = ”MAD”
39 }
40 ispn2 : ISPNetwork {
41 attr tier = 3
42 attr location = ”BCN”
43 }
44 }

Listing 1. Textual representation of the fragment in Fig. 2

Fig. 3. Meta-model induced from
the fragment in Listing 1.

Figure 3 shows the meta-model induced
from this fragment. As this is the first frag-
ment, the meta-model was initially empty,
and so four new classes are added, each con-
taining the necessary attributes for the slots
in the class’ objects. We use simple heuristics
to type primitive attributes, like setting the
type to int when all slots within a fragment
are compatible with that type (e.g., tier in
the example). If a subsequent fragment inval-
idates such an assumption, then the type will
be changed to String. References are assigned cardinality * as soon as an object
points to two or more objects using edges with the same style (e.g., infrastructure).
We also detect spatial relations between objects, like overlapping and contain-
ment, in which case compositions are created in the meta-model. In the exam-
ple, the system detects overlapping between each CableModem object and a Home

object.
Objects, slots and links in the textual fragment can be annotated manually

by the modelling expert. Such annotations can provide design or domain infor-
mation accounting for well-formedness constraints of the DSL (see [12]), or they
can refer to concrete syntax details. In addition, some concrete syntax annota-
tions are automatically produced by the fragment importer. In Listing 1, the
importer added annotation @overlapping in lines 4, 14, and 20, to convey the fact

106 J.J. López-Fernández et al.

that Home and CableModel objects overlap each other. We will detail the use of
this kind of annotations in Sect. 4. In [12], we reported on another use of anno-
tations, as a means to encode meta-model integrity constraints, like @composition

in lines 5, 15, and 21. As we will see in Sect. 4, the @composition annotation was
heuristically added due to the existence of overlapping.

The meta-model changes after each fragment is processed may trigger recom-
mendations (refactorings). For example, if two classes have similarities (common
attributes or references pointing to the same class) the system suggests applying
the extract superclass refactoring, to factor out the common information [12].

Our technique is incremental, as new examples and fragments can be provided
to make the meta-model evolve. Moreover, it fosters the active participation of
domain experts in the meta-model construction process, as they can contribute
with fragments (sketches) which are no longer passive documentation, but they
are used to derive a meta-model. Up to now, our technique has been only able to
derive the abstract syntax of the DSL [12]. In the following, we elaborate on the
main contribution of this paper, which is the extension of our approach to derive
a concrete syntax for the DSL (Sect. 4) and to synthesize a graphical modelling
environment that emulates the syntax of the fragments (Sect. 5).

4 Example-Based Concrete Syntax Inference

We take advantage from the graphical information already encoded in sketches
for both minimising the job of the modelling expert and deriving a concrete
syntax close to the domain expert’s conception.

Figure 4 shows the graphical properties that we extract from sketches and use
to derive the concrete syntax of the DSL. Some are explicit features from the
icons in the drawing, like their colour or size. Other properties are implicit rela-
tionships concerning the relative position of icons, like overlapping or adjacency,
and are derived automatically by studying the size and location of each icon. For
adjacency, we check both the direction (e.g., two objects adjacent left-to-right)
and if in addition they are aligned and how (e.g., at the bottom).

Graphical properties are encoded as annotations of the corresponding objects
and links in the textual fragment. Then, these annotations are transferred to the
appropriate meta-model classes and references when the fragment is processed.
Figure 4 shows the correspondence between the graphical properties and the
elements they can annotate.

Next, we explain how we extract and manipulate this graphical information.

4.1 Detection of Icons and Line Styles

We retrieve each icon employed in the provided sketches, since this is the most
relevant aspect of the appearance that the domain expert expects from the final
DSL. Since the drawing tools we work with demand the definition and usage
of palettes with all available icons, technically, we provide a directory where we
store a copy of the files containing the icons as they are added to the palette.

Example-Based Generation of Graphical Modelling Environments 107

Fig. 4. Graphical properties inferable from sketches, and corresponding annotations.

These files are employed both in the serialization of fragments and in the gener-
ation of the concrete syntax, and are named according to the icon they contain.
For instance, Fig. 5 shows to the right the Legend folder that contains the svg
files used to represent each domain object in the fragment to its left.

Fig. 5. Fragment with spatial features (left). Content of the legend folder (right).

Additionally, we detect and classify the style of edges in sketches. This feature
can be deactivated if the edge style is irrelevant for the domain. If active, we
identify and record the colour, line width, style (e.g., dotted) and source and
target decorations of edges. As an example, Fig. 5 contains an edge linking a
Router and a Cable modem. When the fragment is imported, the link is annotated
with the identified style (lines 26–28 in Listing 2).

108 J.J. López-Fernández et al.

1 fragment fragment2 {
2 Home 1 : Home {
3 attr phoneNo = 5550225
4 attr name = ”Phil Ochs”
5
6 @overlapping
7 @composition
8 ref modem = CableModem 1
9

10 @containment
11 @composition
12 ref electronicDevices = Router 1
13
14 @containment
15 @composition
16 ref phones = FixedPhone 1
17
18 @containment
19 @composition
20 ref wifiNetworks = WifiNetwork 1
21 }
22 Router 1 : Router {

23 @adjacency(side = bottom)
24 ref ports = Port 1, Port 2
25 @composition
26 @style (color = ”#000000”, width = 3,
27 line = dashed, source = none,
28 target = crows−foot−many)
29 ref ’00000 3 dashed none crows−foot−many’
30 modem = CableModem 1
31 }
32 FixedPhone 1 : FixedPhone { }
33 WifiNetwork 1 : WifiNetwork {
34 attr name = ”myWifi”
35 attr password = ”myPw”
36 }
37 Port 1 : Port { attr portNo = 2 }
38 Port 2 : Port { attr portNo = 1 }
39 CableModem 1 : CableModem {
40 attr ipBase = ”251.12.211.16”
41 }
42 }

Listing 2. Textual representation of the fragment in Fig. 5

Note that the name inferred for this link was not modem, but the one struck
out (see lines 29–30 in Listing 2). Because we allow the modelling expert to
edit the text fragments, he has replaced the inferred name with one closer to
the domain. What is interesting about this operation is that, from this moment
on, each time a link with the same style between a router and a cable modem is
imported, it will be automatically named modem. If the modelling expert renames
the feature in the future, he will be offered two options: either to replace the
previous name modem with the new one, or creating a new reference in class
Router which would coexist with the feature modem.

The annotations with the graphical information of links will be transferred to
the corresponding meta-model references, and eventually, to the concrete syntax
generator. On the contrary, meta-classes do not carry any graphical information
with them, since we store their exact representation in the legend folder.

4.2 Detection of Spatial Relationships

Sometimes, spatial relationships between graphical objects have a meaning in
the domain and need to be modelled. It is even likely that the domain expert
is unaware of whether layout implies domain requirements. We automatically
detect spatial relationships in sketches, and leave the modelling expert to keep
or discard them by editing the textual fragments. We currently support three
kinds of spatial relationships:

– Containment: a graphical object is within the bounds of another.
– Adjacency: two graphical objects are joined or very close. The maximum dis-

tance with which adjacency is to be considered is user-defined (0 by default).
Two optional properties are likewise detected: the side(s) from which objects
are attached to each other, and alignment, a special type of adjacency.

– Overlapping: two graphical objects are superimposed (but not contained).

Detecting one of these relationships implies adding a reference to the meta-
model. In the case of containment, the reference goes from the container to the

Example-Based Generation of Graphical Modelling Environments 109

containee. For adjacency and overlapping, we use this heuristic: if an object o

overlaps (or is adjacent) to more than one object of the same kind, the reference
stems from o’s class; otherwise, the reference stems from the class of the bigger
object. The rationale is that, frequently, the different parts of bigger objects are
represented as smaller affixed elements (e.g., a component with affixed ports).

The fragment in Fig. 5 illustrates all supported spatial relationships, which
are automatically detected when the fragment is imported (see Listing 2). On one
hand, the Home contains a Router, a Fixed Phone and a Wifi Network in the sketch;
hence, in the textual representation, the Home object has three links annotated
as @containment (lines 12, 16 and 20). The Home overlaps with a Cable Modem

in the sketch, being the Home icon bigger; hence, the Home object is added a
link annotated as @overlapping (line 8). Finally, the Router has two adjacent Ports
to the bottom side; since there are multiple ports, the Router is added a link
annotated as @adjacency (line 24). The side parameter of this annotation could
be removed in case the side of the adjacency is irrelevant to the domain.

In addition to creating explicit links for the detected spatial relationships,
our importer heuristically adds @composition annotations to the created links (see
lines 7, 11, 15, 19 and 25). This helps in organizing and realising only a sufficient
set of spatial relationships. For example, both Ports are contained in the Home,
but this relation is not made explicit because they are already adjacent to the
Router, which is inside the Home. In this case, we use the @composition annotation
of the abstract syntax to infer that they are indirectly contained in Home objects.

Figure 6 shows the resulting meta-model after processing this second frag-
ment, including the annotations for style properties and spatial relationships.
The new features with respect to Fig. 3 appear gray-shaded.

Fig. 6. Updated meta-model after processing the fragment of Listing 2.

5 Generation of Graphical Modelling Environments

Our approach to synthesize the graphical editor proceeds in two steps: we
first convert the information gathered from the sketches into a technology-
neutral graphical representation, and then, this representation is translated into
a technology-specific editor specification. We currently target Sirius [17], but

110 J.J. López-Fernández et al.

other technologies like EuGENia [11] could be easily targeted as well. Figure 7
outlines this process, where three transformations take place: one generates the
meta-model with the abstract syntax of the DSL, another takes care of the con-
crete syntax and synthesizes the modelling environment, and the last one con-
verts the provided sketches into models conformant to the induced meta-model.
Next, we describe the main features of the GraphicRepresentation neutral meta-
model and how it is used to produce a modelling environment for the DSL.

Fig. 7. Technical process: generating a (Sirius) graphical editor from examples.

Figure 8 shows the meta-model we have developed to represent graphical
concrete syntaxes. It is an extended version of the one presented in [4], where
we have added further features like layers, spatial relationships, reutilization
through node inheritance, abstract nodes, and support for figures and edge styles.

Fig. 8. Excerpt of the neutral GraphicRepresentation meta-model.

Thus, we convert the concrete syntax information induced from sketches into
this intermediate meta-model to be independent from the target technology, but

Example-Based Generation of Graphical Modelling Environments 111

also, to be able to refine this information, e.g., by specifying palette information,
organize elements in layers, or select labels for nodes. Graphical elements are
organized into layers (abstract class Layer). A graphical representation has one
DefaultLayer where all graphical elements belong by default, and zero or more
AdditionalLayers. Layers contain graphical elements, which can be either Node-
like or Edge-like. In both cases, they hold a PaletteDescription with information
on how the element is to be shown in the palette. Nodes may be represented
as geometrical shapes (Rectangle, Ellipse, etc.) or as image figures (class Figure).
They can also display a label either inside or outside the node, being possible
to configure its font style (class LabelAttribute). In addition, some nodes may
need to be displayed in a relative position with respect to other nodes in the
diagram, like being adjacent to (class Adjacency) or being contained in (class
Containment) other nodes. Edges can specify a line style like solid, dash, dot or
dash-dot (class EdgeStyle). Finally, we enable the reuse of graphical properties by
means of relation parents and attribute isAbstract in class Node, so that graphical
properties defined for a node are inherited by its children nodes.

The generation of the modelling environment requires establishing a corre-
spondence between the abstract syntax meta-model of the DSL and the concrete
syntax meta-model in Fig. 8. Node-like elements have a direct correspondence
(e.g., meta-classes are mapped to a Node and a Shape). References are mapped
into Edges, while their concrete syntax annotations are mapped into an EdgeStyle.
Both Nodes and Edges keep a cross-reference to the corresponding class or refer-
ence in the abstract syntax meta-model (omitted in the figure). In addition, if the
references are annotated with @containment, @adjacency or @overlapping, they get
assigned a Containment, Adjacency or Overlapping object respectively. All created
elements are included in the default layer and receive a PaletteDescription.

To generate the modelling environment, we first synthesize an ecore meta-
model with the definition of the DSL abstract syntax, and then, we transform the
obtained GraphicRepresentation model into a Sirius model (*.odesign) describing
the graphical syntax and its correspondence to the ecore meta-model. This latter
transformation is implemented using ATL.

6 Tool Support

The architecture of our solution encompasses the drawing tool yED, and two
Eclipse plug-ins: metaBup [12] and EMF Splitter [4]. While metaBup supports
the whole bottom-up abstract syntax construction process, we provide a specific
metaBup exporter that wraps the resulting meta-model and passes it to EMF
Splitter, which produces a fully operational graphical modelling environment
from it. In the following, we explain how these two tools are integrated to support
the presented approach, as well as the extensibility mechanisms of the tools.

112 J.J. López-Fernández et al.

6.1 Tool Support for the Generation Process

Fig. 9. Sketch drawn in yED.

Domain experts can create sketches with
yED as shown in Fig. 9. Once an initial set
of examples is ready, the modelling expert
creates a new metaBup project. This will
initially contain a blank meta-model file
with mbup extension, and empty fragments
and legend folders. The yED sketches are
imported one by one, and converted into
text fragment models in the shell console of
metaBup. Once parsed, the modelling expert
can modify the fragments if needed. The
revised fragments are fed to the meta-model
induction process, which may trigger refac-
torings on the meta-model. Figure 10 shows the tool once the sketch of Fig. 9
has been parsed, and the current meta-model (accessible on the second tab of
the editor). Technically, we need to copy the images used in the yED palette
(right side of Fig. 9) into our legend folder.

Fig. 10. metaBup tool: (1) Legend folder, (2) Fragments folder, (3) Parsed sketch in
textual format, (4) Current version of meta-model, (5) Generated Ecore meta-model,
(6) Java code generated from Ecore meta-model, (7) Generated Sirius project, (8) Sirius
editor model, (9) Models transformed from the initial sketches.

Example-Based Generation of Graphical Modelling Environments 113

After each iteration (i.e., addition of a fragment), a text version of the draw-
ing is stored in the fragments folder of the project. These fragments are validated
upon each meta-model change, so that they will be error-flagged if they become
inconsistent after a meta-model modification.

After processing all sketches, the modelling expert can produce the Sirius-
based editor by just clicking on a button. In this way, first some necessary EMF
artefacts are automatically generated, like the ecore and genmodel files (label 5
in Fig. 10), and the generated meta-model Java classes (label 6). These resources
contain the equivalent representation to our working meta-model in EMF. The
modelling expert is prompted to type a file extension for the models built with
the new editor (“ext” in our example).

Then, a new Sirius Viewpoint Specification project is automatically cre-
ated by internally using EMF Splitter (label 7 in Fig. 10). This created project
includes two key elements: (i) an odesign file, the core resource of a Sirius editor,
describing the DSL concrete syntax and its mapping to the DSL abstract syn-
tax, and (ii) a folder named models containing models equivalent to those in the
fragments folder, but now in xmi format. These files actually serve as validation
units, since they are expected to be represented in the new editor similarly to
the original sketches. The generated Sirius project can then be run, and Fig. 11
shows the resulting editor with one model coming from an initial sketch.

Fig. 11. Sirius graphical modelling environment for the running example.

114 J.J. López-Fernández et al.

Altogether, for the running example, we synthesized a graphical DSL using
4 fragments, with 13 object types, 4 edge styles and using 3 spatial relation-
ships (containment, overlapping and adjacency, but not alignment). The system
automatically induced a meta-model with 16 classes, 16 attributes, 13 references
and 8 inheritance relationships. Finally, the generated Sirius odesign model con-
tains 178 objects. The details of this case study, and some other examples, are
available at http://miso.es/tools/metaBUP.html.

6.2 Extension Mechanisms

Our tools can be extended (via Eclipse extension points) in different parts of the
process, as shown in Fig. 12. First, there is the possibility to contribute new frag-
ment importers (label 1). For this purpose, we provide a platform-independent
“pivot” meta-model to represent sketch information [12], from which we pro-
duce the internal textual representation shown in the paper. We currently have
importers from Dia and yED, but other drawing tools could be supported as
well. Additionally, we provide a meta-model for modelling the graphical proper-
ties explained in Sect. 4 (see Fig. 4). As spatial relationships between objects are
automatically inferred from fragments, it is necessary to save object locations
(attributes width, height, x and y in Fig. 4).

Fig. 12. Extension points: (1) Sketching platform, (2) Meta-model refactorings, (3)
Exporter, (4) Editor platform.

New meta-model refactorings can be added to metaBup (label 2 in Fig. 12).
As the meta-model grows, the modelling expert is suggested suitable refactorings
to be performed on the meta-model. We natively cover basic rules like pluralizing
multi-target reference names or generalizing common features to abstract classes,
but also give the chance to create custom meta-model modifications [12]. The
tool can also be extended with meta-model exporters (label 3), like the one we
have presented for EMF Splitter. Finally, EMF Splitter currently targets the
generation of Sirius-based editors, but other technologies like EuGENia could
also be targeted (label 4 in the figure).

http://miso.es/tools/metaBUP.html

Example-Based Generation of Graphical Modelling Environments 115

7 Related Work

While MDE is founded on the ability to process models with a precisely defined
syntax, some authors have recognised the need for more flexible and informal
ways of modelling. This is useful in the early phases of system design [14,16,18],
or as a means to promote an active role of domain experts in DSL development [2,
19], as we advocate in this paper. Next, we review works aiming at both goals.

There are two orthogonal design choices enabling flexible modelling in DSL
development: (i) the use of examples to drive the construction process, and (ii)
the explicit generation of a meta-model and a modelling tool different from the
drawing tool used to build the initial examples.

Regarding the first design choice, “by-demonstration” techniques have been
applied to several MDE artefacts, like model transformations [8], but their use
is not so common to describe graphical modelling environments. The closest
work to ours is [2], which describes a system atop Microsoft Visio to derive
DSLs by demonstration. Given a single example, the system derives the concrete
syntax from the icons in the palette, and some abstract syntax constraints, e.g.,
concerning the connectivity of elements. This information is recorded and used
within Microsoft Visio. Instead, we derive an explicit meta-model, infer spatial
relationships like containment and overlapping, and generate a modelling tool.
Moreover, our induced meta-model supports modelling concepts like abstract
classes, inheritance, compositions and attributes, which are not found in [2].

The approach in [19] uses yED to draw examples of the DSL. Types are
assigned to elements on the basis of labels, and some predefined functions check
for shape overlapping, colour or proximity. All modelling is performed within
yED, and no meta-model or dedicated modelling environment are generated.

We believe that creating a meta-model and a modelling environment on top
of a meta-modelling framework has some benefits. First, it guides the user in
filling slot values, which otherwise should be done via tags in a diagramming tool
like Visio. Moreover, slots and links have a type, which enables type-checking.
Second, the created models can be manipulated by standard model management
languages for model transformation or code generation.

Some tools for DSL development are based on generating an external mod-
elling tool. For instance, EuGENia live [15] is a tool for designing graphical DSLs
that runs on the browser. The tool supports on-the-fly meta-model editing while
the user is editing a sample model and its concrete syntax. The tool can export
an Ecore meta-model enriched with concrete syntax annotations, which can be
used to generate an Eclipse GMF-based environment.

Finally, some modelling tools promote flexibility in the early phases of sys-
tem design by offering sketching capabilities similar to pen-and-paper drawing.
For instance, SKETCH [16] provides an API to enable sketch-based editing on
Eclipse. Calico [14] is a sketching tool designed for electronic whiteboards, where
the sketched elements can be scrapped and reused in other parts of the diagrams.
FlexiSketch [18] derives simple meta-models from sketches, but the extracted
meta-model does not support conceptual modelling elements like class inheri-
tance, abstract classes or different association types (e.g., compositions).

116 J.J. López-Fernández et al.

Altogether, our approach is novel as it enables the creation of graphical DSL
editors based on drawings produced by domain experts, generating a meta-model
and a dedicated modelling environment. This approach helps in transitioning
from informal modelling in a diagrammatic tool, to formal modelling in a mod-
elling tool, where models are amenable to automated manipulation.

8 Conclusions and Future Work

This paper has presented our approach to the example-based generation of
graphical modelling environments. In our approach, domain experts contribute
with sketches built with diagramming tools, and our system induces a meta-
model and a graphical modelling environment, currently based on Sirius. The
paper has shown the advantages of the approach, like: (i) there is no need to
code or create editor specifications; (ii) it lowers the barrier to build graphi-
cal environments, which is a highly technical task requiring expert knowledge;
(iii) it bridges the gap between drawing tools (likely used by domain experts
in early phases of the development) and modelling tools (useful for automated
model manipulation); and (iv) drawings can be transformed into models and be
manipulated using MDE technology (transformations and code generators).

In the future, we plan to perform a user study to evaluate the construction
process and the generated editor. To facilitate the validation of the final editor by
the domain experts, we plan to integrate our mmXtens language [13], which is able
to generate “interesting” example models using constraint solving. We also plan
to improve our support for the editor evolution. For instance, a common scenario
might be the manual modification of the Sirius editor model. To avoid overriding
these manual changes, we may employ techniques similar to [11], where manual
changes are described as a program that is reapplied when re-generation occurs.

Acknowledgements. Work supported by the Spanish Ministry of Economy and
Competitivity (TIN2014-52129-R), the Madrid Region (S2013/ICE-3006), and the EU
Commission (FP7-ICT-2013-10, #611125).

References

1. Bak, K., Zayan, D., Czarnecki, K., Antkiewicz, M., Diskin, Z., Wasowski, A.,
Rayside, D.: Example-driven modeling: model = abstractions + examples. In:
ICSE, pp. 1273–1276. IEEE/ACM (2013)

2. Cho, H., Gray, J.G., Syriani, E.: Creating visual domain-specific modeling lan-
guages from end-user demonstration. In: MiSE@ICSE, pp. 22–28 (2012)

3. de Lara, J., Vangheluwe, H.: AToM3: a tool for multi-formalism and meta-
modelling. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306,
pp. 174–188. Springer, Heidelberg (2002)

4. Garmendia, A., Pescador, A., Guerra, E., de Lara, J.: Towards the generation of
graphical modelling environments aided by patterns. In: Sierra-Rodŕıguez, J.-L.,
Leal, J.-P., Simões, A. (eds.) SLATE 2015. CCIS, vol. 563, pp. 160–168. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-27653-3 16

http://dx.doi.org/10.1007/978-3-319-27653-3_16

Example-Based Generation of Graphical Modelling Environments 117

5. Graphiti. https://eclipse.org/graphiti/
6. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)

Toolkit. Addison-Wesley Professional, Reading (2009)
7. Hutchinson, J., Whittle, J., Rouncefield, M.: Model-driven engineering practices

in industry: social, organizational and managerial factors that lead to success or
failure. Sci. Comput. Program. 89, 144–161 (2014)

8. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model
transformation by-example: a survey of the first wave. In: Düsterhöft, A., Klettke,
M., Schewe, K.-D. (eds.) Conceptual Modelling and Its Theoretical Foundations.
LNCS, vol. 7260, pp. 197–215. Springer, Heidelberg (2012)

9. Kelly, S., Pohjonen, R.: Worst practices for domain-specific modeling. IEEE Softw.
26(4), 22–29 (2009)

10. Kelly, S., Tolvanen, J.: Domain-Specific Modeling - Enabling Full Code Generation.
Wiley, New Jersey (2008)

11. Kolovos, D.S., Rose, L.M., Abid, S.B., Paige, R.F., Polack, F.A.C., Botter-
weck, G.: Taming EMF and GMF using model transformation. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp.
211–225. Springer, Heidelberg (2010)

12. López-Fernández, J.J., Cuadrado, J.S., Guerra, E., de Lara, J.: Example-driven
meta-model development. Softw. Syst. Model. 14(4), 1323–1347 (2015)

13. López-Fernández, J.J., Guerra, E., de Lara, J.: Example-based validation of
domain-specific visual languages. In: SLE, pp. 101–112. ACM (2015)

14. Mangano, N., Baker, A., Dempsey, M., Navarro, E.O., van der Hoek, A.: Software
design sketching with calico. In: ASE, pp. 23–32. ACM (2010)

15. Rose, L.M., Kolovos, D.S., Paige, R.F.: Eugenia live: a flexible graphical modelling
tool. In: XM, pp. 15–20. ACM (2012)

16. Sangiorgi, U.B., Barbosa, S.D.: SKETCH: modeling using freehand drawing in
eclipse graphical editors. In: FlexiTools @ ICSE (2010)

17. Sirius. https://eclipse.org/sirius/
18. Wuest, D., Seyff, N., Glinz, M.: Flexisketch team: collaborative sketching and nota-

tion creation on the fly. In: ICSE, vol. 2, pp. 685–688 (2015)
19. Zolotas, A., Kolovos, D.S., Matragkas, N.D., Paige, R.F.: Assigning semantics to

graphical concrete syntaxes. In: XM@MoDELS. CEUR Workshop Proceedings,
vol. 1239, pp. 12–21. CEUR-WS.org (2014)

https://eclipse.org/graphiti/
https://eclipse.org/sirius/

UML and Meta-modeling

Associations in MDE:
A Concern-Oriented, Reusable Solution

Céline Bensoussan(B), Matthias Schöttle, and Jörg Kienzle

School of Computer Science, McGill University, Montreal, Canada
{Celine.Bensoussan,Matthias.Schoettle}@mail.mcgill.ca,

Joerg.Kienzle@mcgill.ca

Abstract. Associations play an important role in model-driven soft-
ware development. This paper describes a framework that uses Concern-
Oriented Reuse (CORE) to capture many different kinds of associations,
their properties, behaviour, and various implementation solutions within
a reusable artifact: the Association concern. The concern exploits aspect-
oriented modelling techniques to modularize the structure and behaviour
required for enforcing uniqueness, multiplicity constraints and referential
integrity for bidirectional associations. Furthermore, it packages different
collection implementation classes that can be used to realize associations.
For each implementation class, the impact of its use on non-functional
qualities, e.g., memory consumption and performance, has been deter-
mined experimentally and formalized. We show how the class diagram
notation, i.e., its metamodel and visual representation, can be extended
to support reusing the Association concern, and present enhancements
to automate feature selection and customization mappings to maximally
streamline the reuse process in modelling tools.

1 Introduction

Model-Driven Engineering (MDE) [6] is a unified conceptual framework in which
software development is seen as a process of model production, refinement, and
integration. To reduce the accidental complexity and the effort needed to move
from a problem domain to a software-based solution, MDE advocates the use
of different modelling formalisms, i.e., modelling languages, to represent and
analyze the system from multiple points of view. For each level of abstraction,
the modeller uses the best formalism that concisely expresses the properties
of the system that are important to that level. During development, high-level
specification models are refined or combined with other models to include more
solution details, such as the chosen architecture, data structures, algorithms,
and finally even platform and execution environment-specific properties. The
manipulation of models is achieved by means of model transformations, ideally
automated by model transformations tools [8].

In the context of MDE, associations play an important role. During the
requirements engineering phase, they are used at a high level of abstraction
to formalize relationships among domain concepts in so-called domain models.
c© Springer International Publishing Switzerland 2016
A. W ↪asowski and H. Lönn (Eds.): ECMFA 2016, LNCS 9764, pp. 121–137, 2016.
DOI: 10.1007/978-3-319-42061-5 8

122 C. Bensoussan et al.

In later development phases, as the architecture of the software and the solu-
tion it implements begin to take form, properties are attached to the associa-
tions, e.g., ordering, uniqueness, multiplicity, and navigability. Finally, during
the implementation phase, concrete data structures, such as arrays, linked lists
or hash tables, are used to realize associations with multiplicity greater than one.

Because associations are widely used in MDE, modelling tools with code
generators have to generate code from models that contain associations. How-
ever, most current code generators do not provide adequate support for associ-
ations [2,4,9,11,12]. For example, the properties of associations specified in the
model, e.g., multiplicity constraints and bidirectionality, are rarely enforced in
the generated code. Furthermore, there are many ways of implementing associa-
tions with multiplicity greater than one using different collection data structures.
Each data structure has different run-time behaviour, and therefore affects the
non-functional qualities of the software that is being developed, such as perfor-
mance and memory use. Current modelling tools, however, shield the modeller
from implementation details. As a result, they do not document or quantify the
impact on non-functional qualities that underlying implementations for associ-
ations have. As a result, code generators typically resort to default implemen-
tation strategies for associations that do not take into account high-level goals
and non-functional requirements of the application that is being built.

In this paper we describe a framework for dealing with associations in the
context of MDE. We show how we used Concern-Oriented Reuse (CORE) [3] to
capture many different kind of associations, their properties, behaviour, and vari-
ous implementation solutions within a reusable artifact: the Association concern.
The Association concern encapsulates models for many association variants, and
exploits aspect-oriented modelling techniques to modularize the structure and
behaviour required for enforcing uniqueness, multiplicity constraints and refer-
ential integrity for bidirectional associations. Furthermore, it packages several
collection implementation classes that can be used to realize associations. For
each provided implementation class, the impact of its use on memory consump-
tion and performance has been experimentally determined and formalized within
the concern.

The remainder of the paper is structured as follows. Section 2 reviews the
essential background on CORE. Section 3 describes how we designed the Associ-
ation concern. Section 4 presents how to streamline the reuse of the Association
concern within a modelling tool. Section 5 discusses related work, and the last
section draws our conclusions.

2 Background on Concern-Oriented Reuse

CORE [3] is a new software development paradigm inspired by the ideas of multi-
dimensional separation of concerns [22]. It builds on the disciplines of MDE,
software product lines (SPL) [18], goal modelling [13], and advanced modular-
ization techniques offered by aspect-orientation [15,19] to define flexible software
modules that enable broad-scale model-based software reuse called concerns.

Associations in MDE: A Concern-Oriented, Reusable Solution 123

A CORE concern is a unit of reuse that groups together software artifacts
(models and code, henceforth called simply models) that address a recurring
domain of interest in software development. The models encapsulated within a
concern capture in a generic way the structural properties and behaviour of all
relevant variations and ways of dealing with the domain of interest at all rele-
vant levels of abstraction. Building a concern is a non-trivial, time consuming
task, done by the concern designer, who is an expert of the concern’s domain.
Deep understanding of the nature of the concern is required to be able to iden-
tify its user-relevant features, to model the common properties and differences
of all features of a concern at all relevant levels of abstraction, and to express
the impact of the different variants on high level stakeholder goals and qualities.
This is ensured by creating requirements, design and implementation models that
(i) realize the features of the concern using the most appropriate modelling nota-
tions and programming languages, and (ii) are eventually refined into executable
specifications.

2.1 The CORE Reuse Process

The concern designer elaborates three interfaces [3] for a concern:

• The Variation Interface describes the available variations of the concern and
the impact of different variants on high-level stakeholder goals, qualities, and
non-functional requirements. The variations are typically represented with a
feature model [14] that specifies the individual, user-relevant features that
a concern offers, as well as their dependencies, e.g., optional, alternative,
requires, and excludes. The impact of choosing a feature is specified with
impact models, which are based on GRL [13].

• The realization of each variant of a concern is described as generally as possi-
ble to increase reusability. Therefore, some model elements are only partially
specified and need to be complemented with concrete modelling elements
stemming from the application models that intend to reuse the concern. These
generic elements are exposed in the Customization Interface.

• The Usage Interface describes how the application can finally access the struc-
ture and behaviour provided by the concern, similar to what the set of public
operations represents for a class in the object-oriented paradigm.

The concern user reuses an existing concern through three simple steps:

1. The concern user first selects the set of feature(s) (called a configuration)
with the best impact on relevant stakeholder goals and system qualities from
the variation interface of the concern based on impact analysis provided by
the CORE tool. Using this configuration, the CORE tool then composes the
models that realize the selected features to yield new models of the concern
corresponding to the desired configuration.

2. Next, the concern user adapts the generated realization models to the appli-
cation context by mapping customization interface elements to application-
specific model elements. Again, the CORE tool helps to establish correct

124 C. Bensoussan et al.

mappings based on the signatures of the model elements that have to be
customized, and subsequently generates customized realization models.

3. Finally, the concern user uses the functionality exposed in the usage interface
of the customized realization models within his application models.

To demonstrate our framework, we use TouchCORE1 [21], a multi-touch enabled,
software design modelling tool that supports feature and impact models, as well
as realization models expressed using class, sequence, state diagrams, and Java
implementations.

3 Designing the Association Concern

In this section we present the design of the Association concern, which encap-
sulates all relevant variants of dealing with unidirectional, binary associations
between two entities in MDE2. We start by describing the variation, customiza-
tion and usage interfaces of the concern, follow up with an overview of the
structural and behavioural realization models encapsulated within the concern,
and finally describe the experiments that we ran to determine the impact of
different association realization on memory use and performance.

3.1 Association Variation Interface

Coming up with a variation interface for a concern requires (i) breaking down
the domain into distinct features, i.e., modules that provide well-defined user-
relevant structure, functionality and/or properties, and organizing the features
and their relationships in a feature model, and (ii) identifying the non-functional
qualities that the realizations of the features might impact. Usually, the variation
interface of a concern is not elaborated in a top-down manner. Rather, the
expert domain knowledge of a concern designer typically allows her to sketch
an initial variation interface, which is then refined as more insight is gained
while realizing the features. Figure 1 shows the final variation interface of the
Association concern.

Structure: The first mandatory sub-feature, Structure, differentiates between
an association with a maximum multiplicity of One (single object) and associ-
ations with a multiplicity of more than one, i.e., Many (collection of objects).
The feature One is therefore used for multiplicities of 0..1 and 1..1. Among
the associations with multiplicity many, there are qualified associations, where
objects in the association are retrieved using a key (feature KeyIndexed), and
Plain associations, which can be Ordered or Unordered. The leaf features finally
encapsulate different data structures and algorithms that implement the collec-
tions with the corresponding properties, namely ArrayList, LinkedList and Stack

1 http://touchcore.cs.mcgill.ca.
2 Bidirectional associations are supported as well by using two unidirectional associa-

tions between the same elements in opposite direction.

http://touchcore.cs.mcgill.ca

Associations in MDE: A Concern-Oriented, Reusable Solution 125

for Ordered collections, HashSet and TreeSet for Unordered ones, and HashMap
and TreeMap for KeyIndexed.

Association Properties: Associations are Bidirectional when they are navi-
gable in both directions, in which case referential integrity must be enforced.
For associations with multiplicity Many, it makes sense to decide whether the
same element can be part of the association more than once or not. The optional
feature Unique ensures that adding an object to an association is only allowed
if the object is not already part of the association. Since the implementation
data structures that we use for unordered collections—HashSet and TreeSet—
do not support duplicate insertion of the same object (i.e., they implement Sets
and not Bags), we specified the constraints that TreeSet requires Unique, and
HashSet requires Unique within the feature model. Finally, the Minimum and
Maximum features constrain the behaviour of insertion/removal operations to
enforce minimum and maximum multiplicity constraints. They are sub-features
of Plain, because they cannot be used in combination with qualified associations.

Impacts: The different variations of association implementations encapsulated
inside the Association concern have an impact on memory use and performance.
We modelled the impacts with the following goals: Minimize Memory Footprint,
Increase Insertion Performance, Increase Iteration Performance, Increase Access
Performance and Increase Removal Performance, as shown on the right side of
Fig. 1. To determine the weights that drive the evaluation of the impacts based
on a feature selection, we ran an extensive set of experiments that are described
in Subsec. 3.6.

Fig. 1. Screenshot of variation interface of the Association concern

126 C. Bensoussan et al.

3.2 Customization Interface

The customization interface of a concern exposes the model elements that define
only partial structure/behaviour. They need to be adapted by the concern user to
the reuse context by mapping them to concrete model elements in the application
model. To easily identify model elements that have to be customized by a concern
user, the names of these public partial model elements are prefixed with a vertical
bar (“|”).

In a directed association, partial structural elements are the class of origin,
i.e., the class that holds the association end, and the destination class. We named
the class of origin |Data and the destination class |Associated as shown in Fig. 2
on the right. For qualified associations, the customization interface includes an
additional partial |Key class as shown in Fig. 2 on the left.

|Associated|Data|Value|Data |Key

Fig. 2. Customization interface for feature KeyIndexed (left) and others (right)

3.3 Usage Interface

Fig. 3. Usage Int. for ArrayList

The usage interface is defined by the pub-
lic elements in the concern that can be
used by the application. In the case of the
Association concern, the usage interface
is composed of the |Data class and its
public operations. The features of the con-
cern do not have a common usage inter-
face, as the operations of |Data vary with
the properties of the collection. When
|Data holds a single object reference (fea-
ture One), the usage interface consists
of a getter and a setter operation. When
|Data holds a collection (feature Many),
it provides operations to add and remove

elements. For ordered associations (feature Ordered), additional operations to
add and remove at a specific index are provided. For example, the usage inter-
face for the feature ArrayList is shown in Fig. 3. For qualified associations, the
add and remove operations take as an additional parameter a key.

Since |Data is part of the customization interface, it is mapped by the user
to the class holding the association. As a result, the operations belonging to the
usage interface of |Data are added to the mapped class, ready to be used. The
operations, though, are not part of the customization interface, i.e., they do not
have to be mapped. However, the user may want to rename the operations for
better usability, for example, rename add to addUser.

Associations in MDE: A Concern-Oriented, Reusable Solution 127

3.4 Structural Realization of Associations

In CORE, each feature is associated with realization models that describe its
structural and behavioural properties at different levels of abstraction using dif-
ferent modelling formalisms. When a concern user makes a feature selection,
the CORE tool incrementally composes all realization models associated with
the selected features to create user-tailored realization models. In this subsec-
tion, we describe class diagrams encoding different structural variations of the
Association concern.

The realization model of the root feature of the concern simply defines the
two classes |Data and |Associated that we already introduced above. The
realization model of the feature One, which is used when the upper multiplicity
bound of an association end is 1, declares a reference myAssociated pointing
from |Data to |Associated. It also defines a getter and a setter operation for
this reference. On the other hand, the realization model for the feature Many,
which is used when the upper bound of the association is greater than 1, defines
a ¦CollectionOfAssociated class that is contained in the class |Data. It is
marked as concern partial with a discontinuous vertical bar (“¦”), which means
that it is incomplete just like model elements that are part of the customization
interface of the concern. However, it has to be completed within the concern,
i.e., by other realization models. The realization model of Many also defines the
operations contains, size and getAssociated.

The structure is further refined by the realization model of feature
Plain, which defines operations to add and remove elements to/from the
¦CollectionOfAssociated class. Continuing, the realization model of Ordered
adds operations to add, remove and get elements at a certain index. Finally, the
realization model for features representing concrete implementation data struc-
tures map the ¦CollectionOfAssociated class to a concrete Java class, e.g.,
ArrayList.

3.5 Behavioural Realization

Fig. 4. Base behaviour of add

We modelled the behaviour of operations
using sequence diagrams. Figure 4 shows
the add operation defined in Plain, which
calls add of the contained collection.

Some features of the Association con-
cern may affect the behaviour of other
features. For example, the feature Unique
affects the behaviour of insertion opera-
tions: before adding, a check is performed
to determine whether the element is already in the collection. Maximum also
impacts insertion operations: if the maximum is already reached, the operation
returns false and the addition is not performed. Minimum impacts removal
operations: if the collection already contains the minimum number of elements,

128 C. Bensoussan et al.

it returns false and the element is not removed. Bidirectional ensures referen-
tial integrity. It impacts constructors, setters, insertion and removal operations.
When an element is added to a collection and the association is bidirectional,
depending on whether the opposite side is one or many, the element needs to be
set or added on the opposite side.

CORE uses aspect-oriented techniques to augment the behaviour of other
realization models. For example, Fig. 5 shows how Maximum extends the behav-
iour of Fig. 4 to verify that the maximum has not been reached before executing
the original behaviour of add (represented by a white box containing a “*”).

Fig. 5. Aspect sequence diagram Maximum

Additional complexity stems from the
fact that there are some behavioural
feature interactions inside the Associ-
ation concern that need to be taken
care of. For example, the behaviour of
the feature Bidirectional requires that
before a new object is associated with
a current object, the object might first
need to be removed from other associ-
ations, and the current object has to
be added to the opposite association

of the new object, and only then the new object can be added to the association
of the current object. However, the operations that need to be called to deal with
the opposite end of the association depend on the multiplicity constraints on the
opposite end. In certain cases, setter operations should be invoked, in other
cases, add/remove operations. These different behaviours had to be specified in
so-called feature interaction resolution realization models, which are linked to
the features they deal with, so that the CORE tool can apply them automatically
when needed.

Fig. 6. Interaction Res. Plain/
OneOpposite

For example, Fig. 6 shows the feature
interaction resolution model for Plain and
OneOpposite, which ensures that for bidi-
rectional 0..1 <-> 0..* associations a new
|Associated object a is only then added to
the collection in the target object |Data,
if target was successfully set as the oppo-
site associated object of a. To ensure that
this resolution is combined in the cor-
rect order with the behavioural modifica-
tion that realizes Maximum, as shown pre-
viously, an additional feature interaction
model has to be defined that first applies
Plain/OneOpposite, and then Maximum.

Associations in MDE: A Concern-Oriented, Reusable Solution 129

3.6 Determining the Impacts of Association Realizations

In order to provide the modeller with guidance on which of the association
features to choose, we conducted a series of experiments to determine the impact
that the different realizations have on memory use and performance.

Experimental Setup: We ran our experiments on a machine with a 2,4 GHz
Intel Core i5 processor and 16 GB 1600 MHz DDR 3 memory. The machine was
running Mac OS X 10.9.5. The Java SE Runtime (v1.8.0 20-b26) was config-
ured with 384 MB heap space. The model that was used for the experiment was
the simplest possible model, i.e., a model with a directed association myB with
multiplicity 0..* between classes A and B.

Impact on Memory Use: To determine the amount of memory used by the
different realizations, we created n instances of B (n = 10 (small), n = 100
(medium), n = 1,000 (large) and n = 10,000 (extra-large), and added them to
the association between A and B by successively calling a.addMyB(bi). We used
the Heap Walker of JProfiler [7] to determine the amount of memory used by the
collection implementation class realizing the association. The results are shown
on the left side of Fig. 7.

Fig. 7. Memory usage in bytes and corresponding impact model

The relative measured memory use is approximately consistent across differ-
ent orders of magnitude of number of elements. We therefore used the measured
number of KB for 1000 elements directly as negative contribution values in the
corresponding CORE impact model (see the right side of Fig. 7). This means
that ArrayList and Stack (with contribution -5) are from a memory use point
of view the best choice, whereas HashMap and TreeMap (with contribution -54)
are the worst choice, i.e., they use approximately 10 times more memory.

Impact on Performance: To measure the impact on performance, we used an
approach similar to the one described in Ahuja [1]. Again, we ran experiments
with associations of different orders of magnitude (#elements = n), and mea-
sured the time t it took to execute each operation op n times from within a loop.
Measuring Java performance is not trivial, because of various factors involving

130 C. Bensoussan et al.

the virtual machine, the garbage collector, actual heap size at runtime and asso-
ciated non-determinism [10]. To minimize external influences, we refrained from
measuring the first runs to avoid accounting for time spent loading/initializing
code, and then collected measurements of 50 runs. From those runs we calcu-
lated the median as well as the 10th and 90th percentile to minimize effects of
the garbage collector.

The performance measurements for adding/appending n objects to an associ-
ation are shown in Fig. 83. Some implementations perform consistently well, e.g.,
ArrayList and LinkedList, and others consistently bad, e.g., TreeSet. However,
the relative performance of some varies depending on the order of magnitude of
the number of elements in the association. For example, HashSet and HashMap
perform well for a small number of elements, but then performance worsens
for larger associations. We therefore decided to create separate impact models
for each order of magnitude using the median values from the experiments as
negative weights for the impact models.

Fig. 8. Insertion performance of different collection implementations (Color figure
online)

Discussion: Impact models in CORE are currently exclusively specified using
the goal modelling notation [13]. Goal models work well in the context of CORE,
because they allow vague, hard-to-measure system qualities to be evaluated, e.g.,
user convenience or security, in addition to more quantifiable qualities, e.g., cost
and number of messages exchanged. Unfortunately, impact models as they are
defined currently can not be parameterized with dynamic information from the
reuse context. As a result, our impact models can not be used for predicting the
actual memory use or the actual performance of the final application. Rather,

3 The results for the other operations, i.e., access performance, iteration, and removal,
are not shown for space reasons. They are available in [5], which also describes addi-
tional experiments that we ran to compare performance on different Java execution
platforms.

Associations in MDE: A Concern-Oriented, Reusable Solution 131

they are intended to help the modeller make design decisions by quantifying the
impacts that one selection has over another relatively speaking. There exist ded-
icated performance modelling languages that offer advanced performance simu-
lation and prediction capabilities [17], but how to exploit these in the context of
CORE is out of the scope of this paper.

3.7 Association Concern Design Summary

In the end, the Association concern we designed encapsulates 26 features, spec-
ifies 5 impacts, contains 10 class diagrams, and 25 sequence diagrams (3 of
which are feature interaction resolution models). The feature model allows for
225 possible selections, from which the TouchCORE tool can create 225 differ-
ent user-tailored realization models by combining the corresponding realization
models in different ways to suit the exact needs of the concern user.

4 Using the Association Concern

The complexity of associations (different variations and implementation classes,
impacts, behaviour ensuring maximum, minimum, uniqueness, and bidirection-
ality,and additional behaviour addressing feature interactions) is now encapsu-
lated behind the variation, customization and usage interface of the Association
concern and ready to be reused.

The standard CORE reuse process, outlined in Subsect. 2.1 and implemented
in the TouchCORE tool, is general, i.e., it is applicable when reusing any concern.
It can therefore also be used for reusing the Association concern. Unfortunately,
due to its general nature, the process is unnecessarily tedious for Association. In
TouchCORE, it involves the following effort for the modeller:

1. The modeller first needs to indicate the desire to reuse Association. This
involves searching through the reusable concern library to find the Association
concern, which typically involves navigating down the folder hierarchy.

2. When the Association variation interface is displayed, the modeller must
make a selection of the desired variant. The feature model of Association is
large, in particular because of the features that deal with ensuring the correct
behaviour for bidirectional associations. It takes cognitive effort to visually
browse through it and make the desired selection.

3. When the customization interface is displayed, the modeller has to manually
establish the mappings of the source and destination classes of the associa-
tion: |Data and |Associated have to be mapped, as well as |Key in case
of qualified associations. The mappings of the operations are not required,
but in case the modeller desires to rename the generic names of operations
to more specific names, e.g., add to addUser, mappings have to be specified
for each operation that is to be renamed.

Finally, a bidirectional association requires reusing the Association concern
twice. This not only constitutes a duplication of effort, but it is also a potential

132 C. Bensoussan et al.

source of inconsistencies. In order to avoid errors, the modeller must make sure
to select the right sub-feature of Bidirectional that correctly represents the type
of the opposite association (one, many, ordered, or key-indexed).

In light of these usability issues, we devised a domain-specific language (DSL)
inspired by the concrete syntax for associations defined in UML to streamline
the reuse of the Association concern for modellers. The DSL minimizes the effort
involved and eliminates any risk of mis(re)use. We then integrated this DSL into
the TouchCORE tool in order to facilitate the reuse of the Association concern
while modelling with class and sequence diagrams.

4.1 DSL for Applying the Association Concern

UML already defines a visual notation for associations [16]. A line that connects
two classes represents an association, arrowheads on the association ends depict
navigability, and inclusive intervals of non-negative integers on the association
ends specify a lower bound and a (possibly infinite) upper bound for multiplici-
ties. The default properties for associations in UML are unique and unordered.
It is possible to specify deviations from the default by annotating the association
ends with textual constraints, i.e., {ordered} and/or {nonunique}. For qualified
associations, the UML syntax dictates that the type of the model element used
for lookup is specified in a rectangular box at the border of the originating class.

Since the graphical notation in UML already covers our features Bidirec-
tional, Minimum, Maximum, Unique, Ordered, Unordered, and KeyIndexed, we
simply defined additional textual constraints to allow the modeller to specify
the concrete implementation classes, i.e., ArrayList, LinkedList, Stack, HashSet,
TreeSet, HashMap and TreeMap. This list is automatically extended whenever
additional implementation classes are added to the Association concern.

4.2 Modifications to the Class Diagram Metamodel

In the CORE metamodel [20], the COREReuse class represents reuses. From a
COREReuse one can get to the COREConfiguration, i.e., the set of selected fea-
tures of the reuse. The CORECompositionSpecification, i.e., the set of customiza-
tion mappings can be retrieved through the COREModelReuse, which specifies
the compositions of a reuse for a particular model. To use the Association con-
cern consistently, every navigable association end has to have a corresponding
model reuse of the Association concern. Hence, a directed association between
AssociationEnd, i.e., the class that represents association ends in the class dia-
gram metamodel, to COREModelReuse is needed. The backend of TouchCORE
was updated to create a COREReuse and COREModelReuse (for the design
model) whenever an association end between two classes becomes navigable.

4.3 Automated and Consistent Feature Selections

TouchCORE was adapted in such a way that whenever the modeller manipulates
the graphical representation of an association, e.g., by changing the multiplicity

Associations in MDE: A Concern-Oriented, Reusable Solution 133

or navigability, the selected features of the reuse of Association are updated
automatically as follows:

• When the upper multiplicity bound is 1, One is selected, otherwise Many.
• When the upper multiplicity bound is greater than 1 and not many (*),
Maximum is selected.

• When the lower bound is 1 or greater and the upper bound is greater than
1, Minimum is selected.

• When the association is navigable in both directions and the upper bound on
the multiplicity of the opposite end is 1, OneOpposite is selected.

• When the association is navigable in both directions and the upper bound
on the multiplicity of the opposite end is greater than 1, ManyOpposite is
selected.

Additionally, the GUI of TouchCORE was extended to display textual con-
straints, e.g., {ordered} or {ArrayList} on association ends. If the modeller clicks
on the textual constraint, they are presented with a simplified variation interface
of the Association concern. All automatically selected features are not shown,
so the modeller can maximally focus on exploring the impact of the available
implementation classes and to eventually select the most appropriate one.

4.4 Generation of Mappings and Operation Renaming

When a modeller draws a directed, navigable association from class Source
to class Destination, the customization mappings for the Association concern
are automatically created. |Data is mapped to Source, and |Associated to
Destination. For qualified associations, TouchCORE displays a rectangular box
at the association end that allows the modeller to specify the qualifier type. Based
on the modeller’s input, the corresponding mapping for |Key is created.

Additionally, for every operation that is in the usage interface of |Data, a
mapping is created that renames the operation by appending the name of the
association end specified by the modeller. For instance, for a directed association
from class User to class Account with multiplicity 0..* named myAccounts, the
add operation would be renamed to addToMyAccounts.

5 Related Work

To our knowledge, the concern-orientated reuse paradigm is currently the only
modelling approach that supports the encapsulation of different structural and
behavioural designs and implementations and their impacts within one reusable
model. As a result, most modelling tools provide only basic, “UML-like” support
for modelling with associations. However, there is a substantial amount of related
work on code generation optimized for and dedicated to associations.

134 C. Bensoussan et al.

5.1 Existing Code Generation Approaches for Associations

Harrisondescribes a technique for generating Java implementation code fromUML
diagrams [12]. The authors suggest generating an interface for dealing with the
behaviour of associations (creating, deletion) in a manner transparent to the user.
They propose the creation of an interface and its implementation for each associa-
tion end. The interface extends both the destination class and the association class,
if one was modelled. It ensures referential integrity and multiplicity constraints,
but does not provide support for different collection implementation data struc-
tures. A similar approach is adopted by Gessenharter [11], who proposes that asso-
ciations be implemented as classes. To implement an association betweenA andB,
a class AB is created which holds a list of AB links. Both class A and B have an
addB and addA operation, respectively, that call a static method inAB to establish
a new link.

Génova presents some principles for mapping UML associations to Java
code [9]. They demonstrate that it is unreasonable to ensure the minimum mul-
tiplicity constraint at any moment on a mandatory association end as it reduces
usability. Therefore, they make the user responsible for initializing the system
to a consistent state, and for maintaining it. Akehurst introduces Java code gen-
eration patterns from UML models with dedicated support for associations [2].

5.2 MouseTrap

Motorola has developed its own automatic code generation tool suite called
Mousetrap [23]. The Mousetrap tool suite takes as input design models using
SDL, UML, ASN.1, and ISL (a proprietary protocol language) and produces
highly optimized C code customized for a product platform and a set of perfor-
mance constraints. Mousetrap is a rule-based code transformation system driven
by a vast programming knowledge base.

Section 5.4 of [23] on Abstract Data Types (ADT) is most related to our
work. In their approach, code generation for associations involves the selection
of a concrete implementation of an ADT. Where most code generators simply
pick a default implementation, theirs analyzes the behaviour of the model and
determines the specific ADT that leads to a better tradeoff between memory
usage and performance. For example, if the collection is often being iterated
over, the system would favour a linked list, as linked lists have superior iteration
performance due the lack of repeated indexing, a fact that our own benchmark
measurements confirmed.

5.3 UMPLE

UMPLE (UML Programming Language) is a textual design modelling tool sup-
porting class diagrams and state diagrams [4]. It has a powerful code generator
that handles multiplicity constraints and referential integrity for associations
just like we do.

Associations in MDE: A Concern-Oriented, Reusable Solution 135

From a user’s point of view, the main differences between UMPLE and Touch-
CORE with the Association concern is that UMPLE always translates a many
association to a fixed implementation data structure (ArrayList in Java, a Vec-
tor in C++, an array in Ruby) without determining the best fit or letting the
user decide. As a result, UMPLE does not provide the property unique, and all
generated association implementations are ordered (since they all translate to a
list in the code). However, UMPLE does provide sorted associations, and allows
the modeller to specify the attribute that is to be used for sorting.

5.4 Discussion

One could argue that an advantage of the code generator approach over the
CORE approach is that it clearly separates design decisions, which are made
at the model level, from implementation decisions, which are made by the code
generator (or by a platform expert that configures code generation options before
running the code generator). However, this is not the case here, as the CORE
reuse process allows a modeller to make partial selections. For example, it is
acceptable for a designer to choose the feature Ordered, and defer the decision
of which mandatory child feature from the XOR group—ArrayList, LinkedList
or Stack—should be used in the realization. This decision can be made at a
later point, potentially by a different developer, e.g., a platform expert. Ideally,
the decision could even be automated based on some user-defined optimization
criteria. Currently, though, the developer has to perform his own tradeoff analysis
and opt for faster execution time or decreased memory usage depending on his
preference. In the near future we are planning to build an automated reasoning
system into the TouchCORE tool that exploits the impact information from
the concern’s variation interface to perform automated optimization of non-
functional requirements according to the developer’s priorities.

In the end, the main difference between addressing associations at the mod-
elling level as done in CORE compared to dealing with associations during code
generation is that if one desires to change the way that associations are handled
or to support new association implementations, the latter approach requires
understanding and modifying the code generator. In contrast, in our CORE
approach the modeller can simply update the structural and/or behavioural
realization models of existing features of the Association concern, or add new
features and new realization models, if needed. There is no need to modify the
code generation, nor modify any code in the TouchCORE tool.

Finally, while the code generators discussed in this section address the max-
imum, minimum, uniqueness and bidirectionality properties of associations just
as well as we do, they typically do not support qualified associations as we do
through the feature KeyIndexed. Finally, with the exception of Mousetrap, they
do not take into account the non-functional impacts of different concrete data
structure implementations.

136 C. Bensoussan et al.

6 Conclusion

In this paper we described a framework for dealing with associations in the
context of MDE. We designed a reusable CORE concern named Association
that encapsulates design models for different association variants, and exploits
aspect-oriented modelling techniques to modularize the structure and behav-
iour required for enforcing uniqueness, multiplicity constraints, and referential
integrity for bidirectional associations. Furthermore, it supports the use of differ-
ent collection implementation classes used to implement associations and doc-
uments their impacts on memory consumption and performance. We showed
how class diagrams, i.e., the metamodel and visual notation used in the Touch-
CORE tool, can be extended to support reusing the Association concern, and
presented enhancements to automate feature selection and customization map-
pings to maximally streamline the reuse process.

References

1. Ahuja, K.V.: Technical Whitepaper: Performance Evaluation | Java Col-
lections Framework (2008). http://scrtchpad.files.wordpress.com/2008/10/java-
collections-performance-evaluation.pdf

2. Akehurst, D., Howells, G., McDonald-Maier, K.: Implementing associations: UML
2.0 to Java 5. Softw. Syst. Model. 6(1), 3–35 (2006)

3. Alam, O., Kienzle, J., Mussbacher, G.: Concern-oriented software design. In:
Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013.
LNCS, vol. 8107, pp. 604–621. Springer, Heidelberg (2013)

4. Badreddin, O., Forward, A., Lethbridge, T.C.: Improving code generation for asso-
ciations: enforcing multiplicity constraints and ensuring referential integrity. In:
Lee, R. (ed.) SERA 2013. SCI, vol. 496, pp. 129–149. Springer, Heidelberg (2013)

5. Bensoussan, C.: Associations in MDE: A Concern-Oriented, Reusable Solution.
M.Sc. Thesis, School of Computer Science, McGill University, March 2016

6. Schmidt, D.C.: Model-driven engineering. IEEE Comput. 39, 41–47 (2006)
7. EJ Technologies: JProfiler. https://www.ej-technologies.com/products/jprofiler/

overview.html
8. France, R., Rumpe, B.: Model-driven development of complex software: a research

roadmap. In: Future of Software Engineering, pp. 37–54. IEEE (2007)
9. Génova, G., del Castillo, C.R., Llorens, J.: Mapping UML associations into Java

code. J. Object Technol. 2(5), 135–162 (2003)
10. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous java performance

evaluation. SIGPLAN Not. 42(10), 57–76 (2007)
11. Gessenharter, D.: Mapping the UML2 Semantics of associations to a java code

generation model. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MODELS 2008. LNCS, vol. 5301, pp. 813–827. Springer, Heidelberg (2008)

12. Harrison, W., Barton, C.: Mapping UML designs to Java. In: OOPSLA, pp. 178–
188. ACM Press (2000)

13. International Telecommunication Union (ITU-T): Recommendation Z.151: User
Requirements Notation (URN) - Language Definition, October 2012

14. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical report. CMU/SEI-90-TR-21, SEI,
CMU, November 1990

http://scrtchpad.files.wordpress.com/2008/10/java-collections-performance-evaluation.pdf
http://scrtchpad.files.wordpress.com/2008/10/java-collections-performance-evaluation.pdf
https://www.ej-technologies.com/products/jprofiler/overview.html
https://www.ej-technologies.com/products/jprofiler/overview.html

Associations in MDE: A Concern-Oriented, Reusable Solution 137

15. Kienzle, J. (ed.): Transactions on Aspect-Oriented Development VII, Special Issue
on a Common Case Study for Aspect-Oriented Modeling. Springer, Heidelberg
(2010)

16. Object Management Group: Unified Modeling Language (UML) Superstructure,
v. 2.5, pp. 32–35, March 2015

17. Object Management Group (OMG): UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems, June 2011

18. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, New York (2005)

19. Filman, R., Elrad, T., Clarke, S., Akşit, M.: Aspect-Oriented Software Develop-
ment. Addison-Wesley, Reading (2004)

20. Schöttle, M., Alam, O., Kienzle, J., Mussbacher, G.: On the modularization pro-
vided by concern-oriented reuse. In: Modularity in Modelling Workshop - MOMO
2016, MODULARITY Companion 2016, pp. 184–189. ACM (2016)

21. Schöttle, M., Thimmegowda, N., Alam, O., Kienzle, J., Mussbacher, G.: Feature
modelling and traceability for concern-driven software development with Touch-
CORE. In: Companion Proceedings of MODULARITY, pp. 11–14. ACM (2015)

22. Tarr, P., Ossher, H., Harrison, W., Sutton Jr., S.M.: N Degrees of separation:
multi-dimensional separation of concerns. In: International Conference on Software
Engineering - ICSE, pp. 107–119. IEEE (1999)

23. Weigert, T., Weil, F., van den Berg, A., Dietz, P., Marth, K.: Automated code gen-
eration for industrial-strength systems. In: COMPSAC 2008, pp. 464–472 (2008)

Automated Metamodel/Model Co-evolution
Using a Multi-objective Optimization Approach

Wael Kessentini1(B), Houari Sahraoui1, and Manuel Wimmer2

1 DIRO, University of Montreal, Montreal, Canada
kessentw@iro.umontreal.ca

2 Business Informatics Group, Vienna University of Technology, Vienna, Austria

Abstract. We propose a generic automated approach for the metamod-
el/model co-evolution. The proposed technique refines an initial model to
make it as conformant as possible to the new metamodel version by find-
ing the best compromise between three objectives, namely minimizing
(i) the non-conformities with new metamodel version, (ii) the changes to
existing models, and (iii) the loss of information. Consequently, we view
the co-evolution as a multi-objective optimization problem, and solve it
using the NSGA-II algorithm. We successfully validated our approach
on the evolution of the well-known UML state machine metamodel. The
results confirm the effectiveness of our approach with average precision
and recall respectively higher than 87 % and 89 %.

Keywords: Metamodel/model co-evolution · Model migration · Cou-
pled evolution · NSGA-II

1 Introduction

Models are considered as first-class artifacts in the Model-Driven Engineering
(MDE) paradigm. Available techniques, approaches, and tools for MDE support
a huge variety of activities, such as model creation, model transformation, and
code generation. However, there is still limited support available for model evo-
lution. Like other software artifacts, metamodels are subject to many changes
during the evolution of software modeling languages and language maintenance
projects, especially for domain-specific languages [13]. Thus, models have to be
updated for preserving their conformance with the new metamodel version.

Recently, several approaches emerged with the aim of tackling the
metamodel/model co-evolution (e.g., [10,13,14,25]). Most of the automated co-
evolution approaches focus on the detection of differences between the meta-
model versions. Then, they find a set of generic rules to transform the initial
models into revised ones, which conform to the new metamodel [12]. Neverthe-
less, the following challenges remain. The migration rules have to be defined
manually for the change types which are detectable at the metamodel level,
and they are difficult to generalize for all potential changes of metamodels. The
definition of these rules may require a high level of expertise/knowledge from
c© Springer International Publishing Switzerland 2016
A. W ↪asowski and H. Lönn (Eds.): ECMFA 2016, LNCS 9764, pp. 138–155, 2016.
DOI: 10.1007/978-3-319-42061-5 9

Automated Metamodel/Model Co-evolution 139

the designer regarding both the previous and new versions of the metamodel.
In addition, the detection of changes at the metamodel level is complex due to
the graph isomorphism problem where different transformation possibilities are
equivalent. Finally, existing approaches produce exactly one solution for a meta-
model/model co-evolution scenario, while other solutions might be possible and
may be more suitable in a particular context. Due to these challenges, developers
are, sometimes, reluctant to migrate to a new metamodel version, considering
the high effort required to adapt existing models.

To address these challenges, we propose to tackle the co-evolution of models
without the need of computing differences between the metamodel versions. In
particular, we view the metamodel/model co-evolution as an automated multi-
objective optimization process that searches for a good combination of edit oper-
ations, at the model level, by minimizing (i) the number of constraints the revised
model violates with respect to the new metamodel version, (ii) the number of
changes applied on the initial model to produce the revised model, and (iii)
the deviation (dissimilarity) between the initial and revised models. These three
objectives are the heuristics that allow us to approximate the evolution of models
without an explicit knowledge on the differences between the two metamodel ver-
sions and the rules to apply to migrate the models. The first objective ensures
that the modified model conforms to the new metamodel. As changes in the
metamodel are generally limited to a small subset of its elements, the second
objective is used to reflect this property at the model level. Finally, the third
objective allows us to limit the loss of information when migrating a model.

To implement our multi-objective approach, we adapt the NSGA-II [5] algo-
rithm to search for solutions that offer the best trade-off between the three
aforementioned objectives. We evaluate our approach on the evolution of the
UML state machine metamodel. In addition, to study the proposed transfor-
mations to the considered state machine models, we compare our approach to
a random search algorithm, a mono-objective algorithm, and an existing app-
roach in which the migration rules are manually defined after finding the changes
between the initial and revised metamodels. The obtained results provide evi-
dence that our proposal is, in average, efficient with more than 92 % of manual
precision achieved for the studied metamodel evolution.

The remainder of this paper is structured as follows. Section 2 provides the
background of model co-evolution and presents a motivating example. In Sect. 3,
we detail our approach. Section 4 discusses an empirical evaluation of our app-
roach. After surveying the related work in Sect. 5, a conclusion is provided in
Sect. 6.

2 Background and Motivating Example

This section introduces the necessary background for this paper, namely the
basic notions of metamodels and models, including their conformsTo relation-
ship, as well as a motivating example to demonstrate the challenges related to
the metamodel/model co-evolution problem.

140 W. Kessentini et al.

2.1 Metamodels and Models

In MDE, metamodels are the means to specify the abstract syntax of modeling
languages. For defining metamodels, there are metamodeling standards (such as
MOF, Ecore) available which are mostly based on a core subset of the UML
class diagrams, i.e., classes, attributes, and references. Theoretically speaking,
metamodels give the intentional description of all possible models of a given
language. In practice, metamodels are instantiated to produce models which
are, in essence, object graphs, i.e., consisting of objects (instances of classes)
representing the modeling elements, object slots for storing values (instances
of attributes), and links between objects (instances of references). The object
graphs are often represented as UML object diagrams and have to conform to
the UML class diagram describing the metamodel. This means, for a model to
conform to its metamodel, a set of constraints have to be fulfilled. This set of
constraints is normally referred to as conformsTo relationship [11,22].

To make the conformsTo relationship more concrete, we give an excerpt of
the constraints concerning objects in models and their relationship to classes in
metamodels. Objects are instantiated from classes. Thus, for each referred type of
an object in a given model, a corresponding class must exist in the metamodel
(name equivalence), and the corresponding class must not be abstract. Such
constraints may be formulated in the following way using OCL:

context M!Object
inv typeExists: MM!Class.allInstances() ->

exists(c|c.name = self.type and not c.abstract)

Example model versions and corresponding metamodel versions are shown in
Figs. 1a and 2a, respectively. This simple language allows to define state machines
consisting of states having a name as well as predecessor/successor states.

Fig. 1. Example model evolution

Automated Metamodel/Model Co-evolution 141

Fig. 2. A simplified metamodel evolution example

2.2 Metamodel/Model Co-evolution: A Motivating Example

While some metamodels, such as UML, are standardized and changed rarely,
metamodels for Domain-Specific Modeling Languages (DSMLs), representing
concepts within a certain domain, are frequently subject to change [13].

As most of the current metamodeling frameworks are strict in the sense
that only fully conformant models can be used, metamodel evolution requires
to co-evolve already existing models, which may no longer conform to the new
metamodel version. In such cases, model migration scripts have to be provided
in current tools [10] to re-establish the conformance between models and their
metamodels. However, finding the best migration scripts to co-evolve models
is left to the user of such tools or default migration scripts are provided. The
exploration of the actual co-evolution space is considered as an open challenge.

Figure 2 shows an example of a simplified metamodel evolution, based on
the simple state machine language. The metamodel evolution comprises three
steps: extract sub-classes for State class resulting in InitialState, SimpleState,
and FinalState, make class State abstract, and refine the cardinalities of the
predecessor/successor references for the subclasses. This results in the fact that,
besides other constraints violations, the constraint shown previously is violated
when considering the initial model shown in Fig. 1a and its conformance to the
new metamodel version in Fig. 2b.

To re-establish conformance for the given example, assume for now that only
two operations on models are used in this context. Non-conforming objects may
either be retyped (reclassified as instances of the concrete classes) or deleted.
Thus, the potential solution space for retyping or deleting non-conforming ele-
ments contains (c + 1)O solutions (with c = number of candidate classes + 1
for deletion, o = number of non-conforming objects). This means, in our given
example, we would end up with 64 possible co-evolutions while one (probably
the preferred one) of these is shown in Fig. 1b. This one seems the preferred one
due to the following reasons: (i) number of changes introduced, (ii) amount of
information loss, and (iii) number of violated conformance constraints. In fact,
designers may prefer solutions that introduce the minimum number of changes

142 W. Kessentini et al.

to the initial model while maximizing the conformance with the target meta-
model. When applying changes to the initial model, some model elements could
be deleted leading to a better conformance with the new metamodel version but
it will reduce the design consistency with the initial model. Thus, these three
preferences of the designers are conflicting.

To this end, we consider the metamodel/model co-evolution problem as a
multi-objective one which corresponds to finding the best sequence of edit oper-
ations. This provides a balance between the consistency of the new model with
the previous version of the model as well as with the new metamodel version.

3 Model Co-evolution: A Multi-objective Problem

We describe in this section our proposal and, in particular, how we can formulate
the model co-evolution as a multi-objective optimization problem.

3.1 Overview

The goal of our approach is to generate a new version of an existing model,
which conforms to a new version of its metamodel. We view this derivation as
a search in the space of all possible sequences of edit operations on the initial
model. The search is guided by three objectives, which aims at minimizing (i)
the number of non-conformities with the new version of the metamodel, (ii) the
number of the changes to the initial model, and (iii) the consistency between
the initial model and the revised one.

In other words, the revised model has to be similar, as much as possible, to
the initial model while conforming to the new metamodel version. Therefore, we
implemented our idea in the form of a multi-objective optimization algorithm
that derives an optimal sequence of edit operations finding the best trade-off
between the three objectives. More concretely, our algorithm takes as input the
revised version of the metamodel, the initial model to update and a list of possible
edit operations that can be applied to this model. It generates as output a
sequence of edit operations that should be applied to the initial model to migrate
it to the new metamodel version. The space of all possible sequences of operations
can be large, especially when dealing with large models. An exhaustive search
method cannot be applied within a reasonable timeframe. To cope with the size
of the search space, we use a heuristic search with a multi-objective evolutionary
algorithm, namely NSGA-II [5].

3.2 Adapting NSGA-II for Model Co-evolution

Multi-objective Optimization and NSGA-II. To better understand our
contribution, we present some definitions related to multi-objective optimization.

Definition 1 (MOP). A multi-objective optimization problem (MOP) consists
in minimizing or maximizing an objective function vector f(x) = [f1(x), f2(x),

Automated Metamodel/Model Co-evolution 143

..., fM (x)] of M objectives under some constraints. The set of feasible solutions,
i.e., those that satisfy the problem constraints, defines the search space Ω. The
resolution of a MOP consists in approximating the whole Pareto front.

Definition 2 (Pareto optimality). In the case of a minimization problem, a
solution x∗ ∈ Ω is Pareto optimal if ∀x ∈ Ω and ∀m ∈ I = {1, ...,M} either
fm(x) = fm(x∗) or there is at least one m ∈ I such that fm(x) > fm(x∗).
In other words, x∗ is Pareto optimal if no feasible solution exists, which would
improve some objective without causing a simultaneous worsening in at least
another one.

Definition 3 (Pareto dominance). A solution u is said to dominate another
solution v (denoted by f(u) � f(v)) if and only if f(u) is partially less than
f(v), i.e., ∀m ∈ {1, ...M} we have fm(u) ≤ fm(v) and ∃m ∈ {1, ...,M} where
fm(u) < fm(v).

Definition 4 (Pareto optimal set). For a MOP f(x), the Pareto optimal set
is P ∗ = {x ∈ Ω|¬∃x′ ∈ Ω, f(x′) � f(x)}.

Definition 5 (Pareto optimal front). For a given MOP f(x) and its Pareto
optimal set P∗ the Pareto front is PF ∗ = {f(x), x ∈ P ∗}.

NSGA-II [5] is one of the most-used multi-objective evolutionary algorithms
(EAs) in tackling real-world problems. It begins by generating an offspring pop-
ulation from a parent one by means of variation operators (crossover and muta-
tion) such that both populations have the same size. After that, it ranks the
merged population (parents and children) into several non-dominance layers,
called fronts, as depicted by Fig. 3. Non-dominated solutions are assigned a rank
of 1 and constitute the first layer (Pareto front). After removing solutions of
the first layer, the non-dominated solutions form the second layer and so on and
so forth until no non-dominated solutions remain. After assigning solutions to
fronts, each solution is assigned a diversity score, called crowding distance [5],
inside each front. This distance defines a partial ranking inside the front which
aims, later, at favoring diverse solutions in terms of objective values. A solution
is then characterized by its front and its crowding distance inside the front.

Fig. 3. NSGA-II selection mechanism for a two-objective problem.

144 W. Kessentini et al.

To finish an iteration of the evolution, NSGA-II performs the environmental
selection to form the parent population for the next generation by picking half of
the solutions. The solutions are included iteratively from the Pareto front to the
lowest layers. If half of the population is reached inside a front than the crowding
distance is used to discriminate between the solutions. Figure 3 shows an example
of the selection process for two objectives. The solutions of the three first layers
are included but not all those of the 4th one. Some solutions of the 4th layer
are selected based on their crowding distance values. In this way, most crowded
solutions are the least likely to be selected; thereby emphasizing population
diversification. To sum up, the Pareto ranking encourages convergence towards
the near-optimal solution while the crowding ranking emphasizes diversity.

Problem Formulation. The model co-evolution problem involves searching
for the best sequence of edit operations to apply among the set of possible ones.
A good solution s is a sequence of edit operations to apply to an initial model
with the objectives of minimizing the number of non-conformities f1(s) = nvc(s)
with the new metamodel version, the number of changes f2(s) = nbOp(s) applied
to the initial model, and the inconsistency f3(s) = dis(s) between the initial and
the evolved models such as the loss of information.

The first fitness function nvc(s) counts the number of violated constraints
w.r.t. the evolved metamodel after applying a sequence s of edit operations. We
consider three types of constraints, as described in [17]: related to model objects,
i.e., model element (denoted by O.*), related to objects’ values (V.*), and related
to objects’ links (L.*). We use in our experiments the implementation of these
constraints inspired by Schoenboeck et al. [22] with slight adaptations. We use
the following constraints:

O.1 For an object type, a corresponding class must exist (name equivalence).
O.2 Corresponding class must not be abstract.
V.3 For all values of an object, a corresponding attribute in the corresponding

class (or in its superclasses) must exist (name equivalence).
V.4 For all (inherited) attributes in a class, a corresponding object must fulfil

minimal cardinality of values.
V.5 For all (inherited) attributes in a class, a corresponding object must fulfil

maximum cardinality of values.
V.6 For all values of an object, the value’s type must conform to the corre-

sponding attribute’s type (Integer, String, Boolean).
L.7 For all links of an object, a corresponding reference in its corresponding

class (or in its superclasses) must exist (name equivalence).
L.8 For all (inherited) references in a class, a corresponding object must fulfil

minimal cardinality of links.
L.9 For all (inherited) references in a class, a corresponding object must fulfil

maximum cardinality of links.
L.10 For all links of an object, the target object’s type must be the class defined

by the reference (or its subclasses).

Automated Metamodel/Model Co-evolution 145

For the second fitness function, which aims at minimizing the changes to
the initial models, we simply count the number of edit operations nbOp(s) of a
solution s (size of s). The third fitness function dis(s) measures the difference
between the model elements in the initial and revised model. As the type of a
model element may change because of a change in the metamodel, we cannot
rely on elements’ types. Alternatively, we use the identifiers to assess whether
information was added or deleted when editing a model. Let Idi and Idr be the
sets of identifiers present respectively in the initial (i) and revised (r) models.
The inconsistency between the models is measured as the complement of the
similarity measure sim(s) which is the proportion of common elements in the
two models. Formally:

dis(s) = 1 − sim(s) and sim(s) =
|Idi ∩ Idr|

Max(|Idi|, |Idr|)

NSGA-II Application. To adapt NSGA-II to our problem, we define (i) how
to represent a co-evolution solution, (ii) how to derive new solutions from exist-
ing ones, and (iii) how to evaluate a solution.

Solution Representation. To represent a candidate solution (individual), we
use a vector containing all the edit operations to apply to the initial model. Each
element in the vector represents a single operation (with links to the model ele-
ments to which it is applied) and the order of operations in this vector represents
the sequence in which the operations are applied. Consequently, vectors repre-
senting different solutions may have different sizes, i.e., number of operations.
Table 1 shows the possible edit operations that can be applied to model elements.
These operations are inspired by the catalog of operators for the metamodel/-
model co-evolution in [9].

Table 1. Model edit operations

Operations Description

Create/delete Add/remove an element in the initial model.

Retype Replace an element by another equivalent element having a different
type.

Merge Merge several model elements of the same type into a single
element.

Split Split a model element into several elements of the same type.

Move Move an attribute from a model element to another

Figure 4 depicts an example of a solution that can be applied to revise the ini-
tial model of Fig. 1. The solution consists of 10 different edit operations to apply:

146 W. Kessentini et al.

Fig. 4. Example of a solution representation

Retype(State s1, InitialState s1), Retype(State s2, SimpleState s2), Dele-
teElement(SimpleState s2.name), Retype(State s3, FinalState s3), CreateEle-
ment(SimpleState s2, SimpleState s2, successors), CreateElement(FinalState
s1), MoveElement(FinalState s1, SimpleState s2.id), CreateElement(FinalState
s3, FinalState s1, successors), CreateElement(InitialState s3), DeleteEle-
ment(InitialState s3). The proposed algorithm first generates a population of
random operation sequences (solution candidates), which are used in the subse-
quent iterations to produce new solutions.

Solution derivation. In a search algorithm, the variation operators play a key
role of moving within the search space with the aim of driving the search towards
better solutions. In each iteration, we select population size/2 individuals from
the population popi to form population popi+1. These (population size/2)
selected individuals will produce other (population size/2) new individuals using
a crossover and mutation operators. To select parents for reproduction, we used
the principle of the roulette wheel [5]. According to this principle, the probabil-
ity to select an individual for crossover and mutation is directly proportional to
its relative fitness in the population. We use a one-point crossover operator. For
our problem, this operator split each parent operation sequence S1 (resp. S2)
into two subsequences {S11, S12} (resp. {S21, S22}) according to a cut position
k. Then, it combines the subsequences to create two sibling solutions {S11, S22}
and {S21, S12}. Our crossover operator could create a child sequence that con-
tains conflict operations. In this case, it will be penalized by the component nvc
of the fitness function. The mutation operator consists in randomly selecting
one or two operations in a solution vector and modifying them. Two modifica-
tions are used: (i) swapping the two selected operations in the sequence or (ii)
replacing an operation by a randomly created one. When applying both change
operators, we are using a repair operator to detect and fix possible redundancies
between the model elements. When a redundancy is detected, we remove one of
redundant model elements from the solution (vector).

Solution Evaluation. As mentioned in the problem formulation, a solution
is evaluated according to three objectives. Thus, for each solution s, we cal-
culate nvc(s), nbOp(s), and dis(s). These values are used later to establish
the dominance relation between solutions. Based on the example of the solu-

Automated Metamodel/Model Co-evolution 147

tion of Fig. 4, the value of the fitness functions are the following: f1(S) = 1
(a final state should not have a successor), f2(S) = 10 (10 operations) and
f3(S) = 1 − (9/Max(15, 13)) since the intersection between the ids of the
initial model of Fig. 1 (State.s1, s1.id, s1.name, s1.successors, State.s2, s2.id,
s2.name, s2.successors, s2.predecessors, State.s3, s3.id, s3.name, s3.predecessors)
and the ids of the revised one of Fig. 4 (InitialState.s1, s1.id, s1.name,
s1.successors, InitialState.s2, s2.successors, s2.predecessors, FinalState.s3,
s3.id, s3.name, s3.predecessors, s3.successors, FinalState s1, s2.id) is 9 (bold
elements in the revised model), the size of the initial model of Fig. 1 is 13 and
the size of the revised one of Fig. 4 is 15.

4 Validation

In order to validate our metamodel/model co-evolution approach, we conducted
a set of experiments1 based on a well-known evolution case of UML Metamodel
for State Machine from v1.4 to v2.0 [1].

4.1 Research Questions

The validation study was conducted to quantitatively and qualitatively assess
the completeness and correctness of our co-evolution approach when applied to
realistic settings and to compare its performance with an existing deterministic
approach [26]. More specifically, we aimed at answering the following research
questions:

– RQ1: Sanity check: To what extent the obtained results are attributable to
our search strategy and to the large number of solutions that we explore?

– RQ2: Correctness: To what extent can the proposed multi-objective approach
co-evolve models to make them comply with a new metamodel version (in terms
of correctness and completeness of proposed edit operations)?

– RQ3: How does the multi-objective metamodel/model co-evolution approach
perform compared to a mono-objective one? We use a genetic algorithm with
a fitness function that represents the average of the normalized scores of the
three objectives.

– RQ4: How does our approach perform compared to an existing co-evolution
approach [26] not based on metaheuristic search?

4.2 Experimental Setting

Studied Metamodels and Models. To answer the four research questions,
we considered the evolution of UML State Machine Metamodel from version 1.4
to 2.0 [1]. This is a very interesting case since it represents a real metamodel
evolution and was studied in other contributions [26]. Therefore, the two versions
1 The data of the experiments can be found in https://sites.google.com/site/

datapaperswaelkessentini/data.

https://sites.google.com/site/datapaperswaelkessentini/data
https://sites.google.com/site/datapaperswaelkessentini/data

148 W. Kessentini et al.

were manually analyzed to determine the actually applied changes. We also used
10 models from version 1.4 and evolved them manually to version 2.0 to create
new models from the initial ones using the edit operations.

As described in Table 2, the manually defined sequences for the selected mod-
els are used as baseline sequences for the calculation of precision and recall scores.
Table 2 shows for each model, the number of expected edit operations and the
size in terms of elements.

Table 2. The models studied

Models SM1 SM2 SM3 SM4 SM5 SM6 SM7 SM8 SM9 SM10

Number of expected
edit operations

8 11 12 11 12 9 20 14 10 21

Number of model
elements

34 38 72 64 46 37 82 56 47 94

Evaluation Metrics. To compare our approach with the other alternatives, we
use precision and recall measures. For an operation sequence corresponding to a
given solution, precision indicates the proportion of correct edit operations (w.r.t.
the baseline sequence) in a solution. Recall is the proportion of correctly identi-
fied edit operations among the set of all expected operations. Both values range
from 0 to 1, with higher values indicating good solutions. The baseline sequences
do not represent unique evolution solutions for the used models. Indeed, more
than one alternative can be possible to evolve a given model. Thus, in addition
to automatic precision (AC-PR) and recall (AC-RE), we calculated a manual
correctness (MC). To this end, we manually checked the solutions to determine
the accuracy of their operations.

Based on the example of the solution of Fig. 4 the value of the results are
the following: AC-PR=0.3 (the set of correct edit operations which is 3, divided
by the set of all actually applied operations which is 10), AC-RE=1(the set of
correct edit operations which is 3, divided by the set of all expected operations
which is 3), MC=0.37 (when we check the solution operation by operation, we
found that the sequence of the 2 operations: CreateElement(InitialState s3),
DeleteElement(InitialState s3) can be considered correct since the InitialState
s3 was created and then deleted). In addition to the three above-mentioned
metrics, we report the number of operations (NO) per solution and the compu-
tation time (CT). Finally, it is worth noting that the mono-objective GA and
the deterministic [26] approaches produce a unique co-evolution solution, while
NSGA-II generates a set of non-dominated solutions (Pareto front). In order to
have meaningful comparisons, we select the best solution for NSGA-II using a
knee point strategy [5].

Statistical Tests. Since the used metaheuristic algorithms (NSGA-II and
GA) are stochastic by nature, different executions may produce different results

Automated Metamodel/Model Co-evolution 149

for the same model with the same execution parameters. For this reason, our
experimental study is performed based on 30 independent simulation runs and
the obtained results by the alternative approaches are compared using the
Wilcoxon rank sum test [2] with a 95 % confidence level (α = 5%).

4.3 Results

Results for RQ1. We do not dwell long in answering the first research question
(RQ1) that involves comparing our approach based on NSGA-II with random
search. Figures 5 and 6 confirm that using NSGA-II (as well as the GA and the
deterministic algorithm) produce results by far better (and statistically signifi-
cant) than just randomly exploring a comparable number of solutions. NSGA-II
has precisions (AC-PR and MC) and recall (AC-RE) more than twice higher
than the ones of random search as shown in Fig. 5 (∼ 89% vs ∼ 43%). Moreover,
these results were obtained with smaller operation sequences in the 10 models
(Fig. 6) comparing to random search. The slight difference in execution time in
favor of random search (Fig. 7), due to the crossover and mutation operators, is
largely compensated by quality of the obtained results.

Fig. 5. Average correctness results of NSGA-II, GA, Schoenboeck et al. and Random
Search. (Color figure online)

To formally answer RQ1, we state that there is an empirical evidence that
the quality of the co-evolution results obtained are due to our multi-objective
approach and not to the number of explored solutions.

Results for RQ2. We evaluated the averages of NO, AC-PR, AC-RE and
MC scores for non-dominated co-evolution solutions proposed by NSGA-II.
Figure 6 shows that our NSGA-II adaptation was successful in generating good
co-evolution solutions that minimize the number of operations. The number of
suggested operations seems very reasonable if we consider the high number of
changes applied at the metamodel of State Machine during the evolution from
v1.4 to v2.0. In fact, 23 edit operations were recommended for the largest model
(SM10) with an average of 16 operations for the remaining models.

150 W. Kessentini et al.

Fig. 6. Average number of suggested operations of NSGA-II, GA, Schoenboeck et al.
and Random Search. (Color figure online)

Fig. 7. Average execution time of NSGA-II, GA, Schoenboeck et al. and Random
Search.

For the precision and recall, Fig. 8 shows that the produced solutions using
NSGA-II are similar to the baseline ones with more than 85 % of precision and
recall (AC-PR and AC-RE) in general. For four models (SM1, SM3, SM5, and
SM8), we obtained more than 90 % for the recall. From another perspective, we
did not observe a correlation between the size or the number of operations of the
models and the precision and recall. For example, we obtained higher precision
and recall for SM7 (82 elements and 20 operations) than for SM2 (38 elements
and 11 operations). This means that the correctness of the results is not degraded
as the size of the models or the size of necessary modifications increase. For the
manual correctness, the results are even better. Except for SM2, SM3 and SM9

Fig. 8. Correctness results of NSGA-II. (Color figure online)

Automated Metamodel/Model Co-evolution 151

all the MCs are higher than 90 % with a perfect score for SM8. Here again, the
scalability in terms of correctness is valid for MC. Indeed MC increases from 88 %
(SM2) to 95 % (SM10) while the size of the model (resp. operation sequence)
goes from 38 to 94 (resp. 11 to 21).

To formally answer RQ2, we state that the multi-objective co-evolution app-
roach allows to migrate models with higher precision and recall and with a limited
number of edit operations. This achieved without any explicit knowledge on the
specific changes that occurred on the metamodel.

Results for RQ3 and RQ4. For the recall and the automatic and manual
precisions, Fig. 5 shows that the solutions of NSGA-II have the highest scores
compared to the other algorithms. The same observation holds for the manual
precision, for which NSGA-II is the only algorithm that has an average score
higher than 91 %. These differences in favor of NSGA-II are all statistically
significant according to the Wilcoxon tests. Additionally, Fig. 6 shows that, for
all the models, NSGA-II produces higher scores with smaller operation sequences
compared to those of the two contender algorithms.

Regarding the execution time (Fig. 7), considering that the model evolution
happens rarely (not a daily activity), the time magnitude (minutes) for all the
algorithms is reasonable. Our NSGA-II approach takes more time than [26] (28
vs 12 min). We believe that this difference is acceptable knowing that for [26], we
do not count the time of metamodel comparison and rules writing. The slight
difference with the mono-objective algorithm is also acceptable if we consider
the improvement in accuracy.

To formally answer RQ3 and RQ4, we state that there is an empirical
evidence that the multi-objective algorithm outperforms the mono-objective and
deterministic algorithms for AC-PR, AC-RE and MC. This must be mitigated
by the fact that these good results come at the cost of more execution time.

4.4 Threats to Validity

We used the Wilcoxon rank sum to test if significant differences exist between
the scores of the co-evolution algorithms. This test makes no assumption on the
data distribution, especially for small samples. We are then confident that our
observations are valid. Another possible threat is related to the parameter tuning
of our multi-objective algorithm. Further experiments are required to evaluate
the impact of the parameters setting on the quality of the solutions.

To ensure that the results are attributable to our multi-objective algorithm
and not to chance, we performed 30 independent simulation runs for each model.
This makes it unlikely that the observed differences are due to the probabilistic
decisions of the algorithms. Another threat is related to our choice of taking the
average of the three objective functions in the mono-objective algorithms. Other
forms of combination, e.g., weighted average, may give different results.

With respect to generalizability of our findings, we performed our experi-
ments on a single evolution scenario (state machine metamodel from v1.4 to v2.0).

152 W. Kessentini et al.

Future replications of this study are necessary to confirm these findings, in partic-
ular, with industrial settings. In addition, the comparison of the performance of
NSGA-II to the state of the art is limited to the approach in [26]. The decision was
made as the concerned tool was easily accessible to us.

5 Related Work

Co-evolution has been subject for research since several decades in the database
community [18], and especially, the introduction of object-oriented database sys-
tems [3] gave rise to the investigation of this topic. However, metamodel/model
co-evolution introduces several additional challenges mostly based on the rich
modeling constructs for defining metamodels, and consequently, it has to be
dealt with the specific conformsTo relationship between models and metamod-
els. Thus, in the last decade, several approaches emerged which aim to tackle
metamodel/model co-evolution from different angles using different techniques
(cf. e.g., [13,20,21] for an overview).

In one of the early works [23], the co-evolution of models is tackled by design-
ing co-evolution transformations based on metamodel change types. In [4,7], the
authors compute differences between two metamodel versions which are then
input to adapt models automatically. This is achieved by transforming the dif-
ferences into a migration transformation with a so-called higher-order transfor-
mation (HOT). Going one step further concerning the nature of change types
is presented in [24], where ideas from object-oriented refactoring and grammar
adaptation are presented to provide the basis for metamodel/model co-evolution.
In [8], a conservative copying algorithm is presented: for each initial model ele-
ment for which no transformation rule is found, a default copy transformation
rule is applied. This algorithm has been developed in a model migration frame-
work Epsilon Flock [19] and in the framework described in [15]. In order to avoid
copy rules at all, co-evolution approaches which base their solution on in-place
transformations (i.e., transformations which are updating an input model to pro-
duce the output model) have been proposed [10,12–14,26]. In such approaches,
the co-evolution rules are specified as in-place transformation rules by using a
kind of unified metamodel representing both metamodel versions.

Although the main goal of all discussed approaches is similar to ours, there
are several major differences. We tackle co-evolution of models without the need
of computing differences on the metamodel level. Instead, we reason on the con-
sistency of the models by following a similar research line as presented in the
visionary paper by Demuth et al. [6]. In particular, we search for transforma-
tion executions on the model level, which fulfil multiple goals expressed as our
fitness functions. By this, the critical and challenging task of finding proper co-
evolution rules of the model level is automated which allows exploring a much
larger space of possible solutions which is possible when manually developing
co-evolution transformations. To sum up, none of the existing approaches allows
the exploration of different possible co-evolution strategies. On the contrary, only
one specific strategy is either automatically derived or manually developed from
the calculated set of metamodel changes.

Automated Metamodel/Model Co-evolution 153

The only work we are aware of discussing metamodel/model co-evolution
using some search-based techniques is [25]. In this paper, the authors discuss the
idea of using search-based algorithms to reason about possible model changes,
but in contrast to our approach, they rely again on metamodel differences which
have to be computed (probably using a search-based approach) before the co-
evolution of models can be performed. We use a different approach by using an
explicit definition and formalization of the conformsTo relationship which can
be used as basis to formulate fitness functions for reasoning about the quality
of a certain model co-evolution strategy. To the best of our knowledge, this
approach is unique compared to previous approaches and outperforms logic-
based approaches for repairing models [22]. Furthermore, we are not dependent
on the quality of metamodel change detection algorithms. By this, we allow the
automatic exploration of the model co-evolution space given a certain metamodel
evolution and we developed formal quality characteristics to assess the quality
of model co-evolutions.

6 Conclusion

This paper proposes a multi-objective approach for the co-evolution of models
by finding the best operation sequence that generates, from the initial model, a
new model version conforming as much as possible to the evolved metamodel.
Therefore, a generated revised model should minimize the number of inconsis-
tencies (with the new metamodel), the number of changes made to the initial
model and the dissimilarity with the initial model. The experiment results indi-
cate clearly that the best generated models have a precision and recall of more
than 86 % and a manual precision of more than 92 %.

Although our approach has been evaluated with a real-world scenario with
a reasonable number of applied operations and models, we are working now on
larger metamodels and models with larger lists of operations to apply. This is
necessary to investigate more deeply the applicability of the approach in practice,
but also to study the performance of our approach when dealing with very large
models. Moreover, we will further evaluate the performance of NSGA-II with
several other multi-objective algorithms as well as compare our approximate
approach with exact approaches [16]. More generally, we plan to extend this
work by evolving model transformation rules when the metamodels were revised.

References

1. Object Management Group, Unified Modeling Language Specification v1.4 and
v2.0. http://www.omg.org

2. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess ran-
domized algorithms in software engineering. In: Proceedings of ICSE (2011)

3. Banerjee, J., Kim, W., Kim, H.J., Korth, H.F.: Semantics and implementation of
schema evolution in object-oriented databases. In: Proceedings of SIGMOD (1987)

4. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: Automating co-evolution
in model-driven engineering. In: Proceedings of EDOC (2008)

http://www.omg.org

154 W. Kessentini et al.

5. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Deb, K.,
Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X.
(eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

6. Demuth, A., Lopez-Herrejon, R.E., Egyed, A.: Co-evolution of metamodels and
models through consistent change propagation. In: Proceedings of ME Workshop
(2013)

7. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: Managing model adaptation by
precise detection of metamodel changes. In: Paige, R.F., Hartman, A., Rensink, A.
(eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 34–49. Springer, Heidelberg (2009)

8. Gruschko, B.: Towards synchronizing models with evolving metamodels. In: Pro-
ceedings of MoDSE Workshop (2007)

9. Herrmannsdoerfer, M., Vermolen, S.D., Wachsmuth, G.: An extensive catalog of
operators for the coupled evolution of metamodels and models. In: Malloy, B.,
Staab, S., Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 163–182. Springer,
Heidelberg (2011)

10. Herrmannsdoerfer, M.: COPE – a workbench for the coupled evolution of meta-
models and models. In: Malloy, B., Staab, S., Brand, M. (eds.) SLE 2010. LNCS,
vol. 6563, pp. 286–295. Springer, Heidelberg (2011)

11. Iovino, L., Pierantonio, A., Malavolta, I.: On the impact significance of metamodel
evolution in MDE. J. Object Technol. 11(3), 1–33 (2012)

12. Mantz, F., Lamo, Y., Taentzer, G.: Co-transformation of type and instance graphs
supporting merging of types with retyping. ECEASST 61, 1–24 (2013)

13. Meyers, B., Vangheluwe, H.: A framework for evolution of modelling languages.
Sci. Comput. Program. 76(12), 1223–1246 (2011)

14. Meyers, B., Wimmer, M., Cicchetti, A., Sprinkle, J.: A generic in-place
transformation-based approach to structured model co-evolution. In: Proceedings
of MPM Workshop (2010)

15. Narayanan, A., Levendovszky, T., Balasubramanian, D., Karsai, G.: Automatic
domain model migration to manage metamodel evolution. In: Schürr, A., Selic, B.
(eds.) MODELS 2009. LNCS, vol. 5795, pp. 706–711. Springer, Heidelberg (2009)

16. Olaechea, R., Rayside, D., Guo, J., Czarnecki, K.: Comparison of exact and approx-
imate multi-objective optimization for software product lines. In: Proceedings of
SPLC (2014)

17. Richters, M.: A precise approach to validating UML models and OCL constraints.
Technical report (2001)

18. Roddick, J.F.: Schema evolution in database systems: an annotated bibliography.
SIGMOD Rec. 21(4), 35–40 (1992)

19. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Model migration with
epsilon flock. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp.
184–198. Springer, Heidelberg (2010)

20. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.: An analysis of approaches
to model migration. In: Proceedings of MoDSE-MCCM Workshop (2009)

21. Rose, L., Herrmannsdoerfer, M., Mazanek, S., Van Gorp, P., Buchwald, S., Horn,
T., Kalnina, E., Koch, A., Lano, K., Schätz, B., Wimmer, M.: Graph and model
transformation tools for model migration. SoSyM 13(1), 323–359 (2014)

22. Schoenboeck, J., Kusel, A., Etzlstorfer, J., Kapsammer, E., Schwinger, W., Wim-
mer, M., Wischenbart, M.: CARE: a constraint-based approach for re-establishing
conformance-relationships. In: Proceedings of APCCM (2014)

23. Sprinkle, J., Karsai, G.: A domain-specific visual language for domain model evo-
lution. J. Vis. Lang. Comput. 15(3–4), 291–307 (2004)

Automated Metamodel/Model Co-evolution 155

24. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. In: Ernst, E.
(ed.) ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)

25. Williams, J.R., Paige, R.F., Polack, F.A.C.: Searching for model migration strate-
gies. In: Proceedings of ME Workshop (2012)

26. Wimmer, M., Kusel, A., Schoenboeck, J., Retschitzegger, W., Schwinger, W.: On
using inplace transformations for model co-evolution. In: Proceedings of MtATL
Workshop (2010)

Enabling OCL and fUML Integration
by Transformation

Massimo Tisi1, Frédéric Jouault2(B), Zied Saidi1, and Jérome Delatour2

1 AtlanMod team (Inria, Mines Nantes, LINA), Nantes, France
{massimo.tisi,zied.saidi}@mines-nantes.fr

2 TRAME team (ESEO), Angers, France
{frederic.jouault,jerome.delatour}@eseo.fr

Abstract. Until the recent adoption of fUML, UML has lacked stan-
dard execution semantics. However, parts of UML models have always
been executable: OCL expressions. They may notably be used to express
contracts (i.e., invariants, pre- and post-conditions), to define side-effect
free operations, and to specify how to compute derived features. Nonethe-
less, although fUML is partly inspired by OCL (notably for primitive
behaviors), its specification does not consider interoperability with OCL
expressions. Moreover, the semantics of OCL is specified independently
of (f)UML, and their implementations are separate execution engines,
hampering all global activities (e.g., analysis, optimization, debugging).
This paper explores a possible integration approach of OCL and fUML:
by transforming (i.e., compiling) OCL expressions into fUML activities
we obtain a unified executable model. With this approach, operations
specified in OCL can be called, and getters can be generated for derived
features. Preconditions (resp. postconditions) can be automatically exe-
cuted before (resp. after) the execution of their contextual operations.
A precise semantics for invariant evaluation can be specified in fUML.
Thanks to this work, OCL may also be seen as a functional counterpart
to Alf.

1 Introduction

Foundational UML (fUML) [1] is the ongoing effort by the Object Management
Group (OMG) for providing standard execution semantics to UML models. Exe-
cutable models may be beneficial in Model-Driven Engineering (MDE) when a
higher degree of precision is required at the modeling level (e.g., for critical sys-
tems), and for allowing users to simulate and analyze the system behavior before
the actual implementation. fUML acts as the cornerstone of this vision, by pro-
viding, in its current version, standard execution semantics for a core subset
of UML Activity Diagram and Class Diagram. Extensions are in progress for
Statechart Diagram (Precise Semantics of UML State Machines, PSSM [2]) and
Composite Structure Diagram (Precise Semantics of UML Composite Structures
PSCS [3]). The Action Language For Foundational UML (Alf) [4] is a textual lan-
guage that executes by translation towards fUML activities, and that is designed
as a convenient alternative to complex diagrams.
c© Springer International Publishing Switzerland 2016
A. W ↪asowski and H. Lönn (Eds.): ECMFA 2016, LNCS 9764, pp. 156–172, 2016.
DOI: 10.1007/978-3-319-42061-5 10

Enabling OCL and fUML Integration by Transformation 157

Before the introduction of fUML, UML users could provide precise executable
semantics only to a limited part of their models. Common practice was (and
still is) to express executable contracts, side-effect free operations and computa-
tion of derived features by using the Object Constraint Language (OCL) [5], a
purely functional language standardized by OMG. Moving to executable mod-
eling by fUML/Alf does not lower the need for contracts, functional operations
and derived features. However fUML does not include a built-in support for these
tasks, that could constitute a viable alternative to OCL.

The specifications of OCL and fUML do not directly reference each other, and
the interaction between the two languages passes through standard UML mech-
anisms: e.g., OCL expressions can call UML operations implemented in fUML
activities and fUML activities can use UML value specifications computed by
OCL expressions. Also the execution environment of the two languages is gen-
erally separated: OCL evaluators and fUML interpreters are separated tools,
interacting at runtime on the same modeling platform (e.g., Java and the Eclipse
Modeling Framework). This makes global optimization extremely difficult and
hampers the possibilities of global analysis and simulation promised by the exe-
cutable modeling approach.

In this paper we propose a mechanism for compile-time integration of OCL
and fUML. We use a translational approach by providing a compiler able to
transform a model including both OCL expressions and fUML activities into a
pure fUML model. The resulting model is semantically equivalent to the original
one, meaning that the OCL semantics for contracts, derived features, operation
bodies, etc. has been implemented as fUML activities.

The paper contribution is twofold: (1) we provide a translation from OCL
expressions to equivalent fUML activities; (2) we use fUML to provide a default
semantics for under-specified parts of the OCL standard, e.g. timing of fea-
ture derivation. We also validate the feasibility of the approach by developing
a proof-of-concept implementation of our mapping in the form of a compiler
transformation, publicly available1.

The paper is structured as follows: Sect. 2 introduces a running example in
order to exemplify the problem of integrating OCL and fUML; Sect. 3 provides an
intuitive look on our solution by describing its application to the example; Sect. 4
describes the mapping rules between OCL and fUML; Sect. 5 gives implementa-
tion details on our proof-of-concept compiler; Sect. 6 analyzes design decisions,
limitations and alternative applications of the approach; Sect. 7 discusses related
work and Sect. 8 concludes the paper.

2 Interaction Between fUML and OCL by Example

As an example of the joint use of OCL constraints and fUML behavior we adapt
the Company example from the OCL specification [5, pp. 7–29]. The class dia-
gram is presented in Fig. 1.

1 https://github.com/atlanmod/OCL2fUML.

https://github.com/atlanmod/OCL2fUML

158 M. Tisi et al.

Fig. 1. Excerpt of the Company class diagram (adapted from [5, p. 7])

In this model a Person is described by her firstName, lastName and
birthDate. The age of each Person is derived from her birthDate. A Person
may be involved in one or more Marriages, but among them at most one is
not currently ended2. To simplify access to marriage information, the Person
class includes the isMarried, husband and wife derived features, and the
getCurrentSpouse() operation whose precondition (i.e., the person is currently
married) and function body (i.e., get the spouse of the only marriage that is not
ended) are shown in Listing 1.1. Since the operation is free from side-effects its
body can be expressed in OCL. According to the UML specification a call to
getCurrentSpouse() returns the evaluation of the body only if the precondition
is satisfied, otherwise the behavior is undefined.

Listing 1.1. getCurrentSpouse operation [5, p. 9]
context Person : : getCurrentSpouse () : Person

pre : s e l f . isMarried = true
body : s e l f . marriages−>select (m | m . ended = fa l se) . spouse

The operations marry(p: Person) and unmarry(p: Person) are used to
simplify model updates in case of marriage and divorce (avoiding the need to
manually perform model element edits). Husbands and wives are adults, as spec-
ified by the OCL invariant in Listing 1.2. According to the OCL semantics, any
update to the model, e.g., by the marry and unmarry operations, may trigger the
re-verification of this invariant and the re-computation of the above-mentioned
derived features. For instance, the evaluation of the invariant to false at the
end of the operation execution results in an undefined behavior. The moment in
which derived features are re-evaluated is not precisely specified by OCL, but
computation will be performed before the subsequent access to the feature.

Listing 1.2. Wives and husbands are adults [5, p. 20]
context Person inv :

(s e l f . wife−>notEmpty () implies s e l f . wife . age >= 18) and
(s e l f . husband−>notEmpty () implies s e l f . husband . age >= 18)

Each Person may have a Job in a Company, which is identified by a name and
cannot have less than 50 employees, as imposed by the invariant in Listing 1.3.
2 For space reasons we can not provide here the code of all OCL contracts, derived

features and fUML activities mentioned in this section.

Enabling OCL and fUML Integration by Transformation 159

Listing 1.3. Companies have at least 50 employees (adapted from [5, p. 20])
context Company inv :

s e l f . employee−>size () >= 50

Derived features employer and employee simplify navigation between
Companies and Persons. A derived attribute birthDates, computed as shown
in Listing 1.4, gathers the birthdates of all employees.

Listing 1.4. birthDates derived attribute [5, p. 29]
context Company : : birthDates : Bag(Date)

derive : s e l f . employee−>collect (person | person . birthDate)

Start and end of work contracts are handled by the operations hire(Person
p, String title) and fire(Person p), both implemented as fUML activities.
In particular in Fig. 3 we show the fUML activity diagram for fire. In the next
section we will describe the fUML semantics by example. Then it will be clear
that the fire activity selects the Job of the given employee among all Jobs in
the current Company, and deletes it. Since a call to fire may change the list
of employees, it will generally trigger the re-computation of both invariant and
derived feature in Listing 1.3 and 1.4.

Figure 2 gives an overview of the relations between the languages we men-
tioned so far. The set of UML concepts (or metaclasses) can notably be divided
into structural concepts (e.g., Class, Property, Operation, Interface), and
behavioral ones (e.g., Activity, Action, StateMachine). Associations between
structural and behavioral concepts enable jointly modeling both aspects. fUML
considers only subsets of these structural and behavioral parts (e.g., excluding
Interface, and StateMachine). Alf and OCL are two textual languages that are
defined outside of UML, but that can be integrated in it using OpaqueBehavior
and OpaqueExpression. Additionally, Alf specifies a transformation from its
textual syntax to fUML elements, and a reverse transformation from fUML ele-
ments to Alf textual syntax. This enables usage of a textual syntax instead of
relatively verbose diagrams.

A model of Company uses these languages for a precise executable specifi-
cation of its semantics. Global analysis on Company could for instance detect
that the fire activity does not impact the invariant in Listing 1.2. Optimiza-
tion could avoid checking the invariant in this case. However such cross-language
activities are not available in current executable modeling. In the following sec-
tions we introduce a translational approach, represented in Fig. 2 as the dashed
arrow from OCL to fUML, that addresses this problem and others.

3 Integrating OCL in fUML by Translation

In this paper we propose a compilation strategy and a prototype compiler that
takes as input an executable model, written by the joint use of fUML and OCL,
and returns an OCL-free fUML model, where the OCL part has been translated
into fUML behavior. To give a first view over our objective, this section illustrates
the result of the compilation of the Company model from the previous section.

160 M. Tisi et al.

Fig. 2. Overview of relations between UML, fUML, Alf, and OCL

Fig. 3. The fire fUML activity

Bodies and pre/postconditions of OCL operations become side-effect free
fUML activities. For instance the precondition of the getCurrentSpouse() OCL
operation becomes the fUML activity in Fig. 4. The structure of an fUML activity
is given by object flows that propagate object tokens from inputs to outputs and
control-flow edges that force an execution order by passing control tokens. The
activity in Fig. 4 makes exclusive use of object flows: the result of the activity
comes from the comparison by a TestIdentityAction of (1) a constant value
true provided by a ValueSpecificationAction and (2) the feature isMarried
of the current object, obtained by a ReadStructuralFeatureAction over the
output of a ReadSelfAction.

Fig. 4. getCurrentSpouse precondition activity (corresponding to Listing 1.1)

The body of getCurrentSpouse() becomes the activity in Fig. 5. Here the
activity has to iterate through all the marriages to find the one that is not

Enabling OCL and fUML Integration by Transformation 161

ended. This is done in fUML by an ExpansionRegion (the dashed rectangle).
An ExpansionRegion expects a collection as input (represented in the fUML
semantics as a sequence of object tokens flowing on the link) and the content
of the region is executed once for each element of the collection. The expansion
node of the ExpansionRegion passes the elements of the input collection one
by one through its outgoing object flow. The result of all iterations is gathered
by the output node of the ExpansionRegion. In Fig. 5 each marriage m flows
through a fork that passes it to (1) a flow that accesses the ended attribute and
compares it to the constant false, and (2) a DecisionNode (the diamond) that
will let the marriage pass through only if the result of the previous test is true.
The output node of the expansion region will gather the expected result, i.e. the
marriage that is not ended, and the spouse of this marriage will be returned
to the caller.

Fig. 5. getCurrentSpouse body activity (corresponding to the operation body in
Listing 1.1)

The translation of the OCL expressions for precondition and body does not
complete the translation of the getCurrentSpouse() operation to fUML. We
still need to represent the implicit precondition semantics: the body is evalu-
ated only if the precondition is satisfied, otherwise the behavior is undefined.
We propose to describe this semantics in fUML by providing a wrapper for the
operation, as shown in Fig. 6. The wrapper method starts by launching the evalu-
ation of the precondition using a CallOperationAction. Depending on the result
of the precondition, one of two possible StructuredActivityNodes (shown as
dashed rectangles sub-activities) is executed: (1) if the precondition is true, the
activity representing the operation body is called and its result returned, (2) if
the condition is false, the missed precondition is reported (e.g., using a logger
or the standard output through the WriteLine operation of the standard fUML
library), and no result token is returned. An alternative (undefined) behavior
would be to terminate the execution. However, fUML does not support excep-
tions, and does not provide means to terminate the execution engine. Note that
this wrapping approach can also be used for post-conditions.

The translation of the invariants in Listing 1.2 (i.e., spouses are adults) and
1.3 (i.e., companies are big) are respectively shown in Figs. 7 and 8. The structure

162 M. Tisi et al.

Fig. 6. getCurrentSpouse main activity (corresponding to Listing 1.1)

is straightforward, since for each operation of the OCL library (e.g., notEmpty,
implies, >=, and, size) we reuse the equivalent operation in the fUML or Alf
standard libraries. The fUML standard library mostly defines native functions
for primitive types, and input-output. The Alf standard library extends it with
higher-level functions, many of which are implemented in fUML.

Fig. 7. Invariant on Person (corresponding to Listing 1.2)

Figure 9 is the result of the compilation of the derived feature in Listing 1.4
(birthDates). In this case we produce a getter operation for the derived feature,
that performs the attribute (re-)computation. The OCL collect is compiled as
an ExpansionRegion that iterates on employees and gathers their birthDates.
As fUML does not support derived features, we propose to turn them into get-
ters without backing fields. This also requires replacing every action accessing
a derived property into a call to the corresponding getter. The approach works

Enabling OCL and fUML Integration by Transformation 163

Fig. 8. Invariant on Company (corresponding to Listing 1.3)

in fUML because property values are not observable (while it could fail in UML
where ChangeEvents can be leveraged to observe property values).

Fig. 9. getBirthDates activity (corresponding to Listing 1.4)

We have now considered the translations of all OCL examples from the
previous section. Their interaction with regular fUML activities like fire(p
: Person) from Fig. 3 can now be explained. Because it has side-effects,
fire(p : Person) must be wrapped in a way similar to what was done for
getCurrentSpouse(). This takes care of checking the invariant from Listing
1.3 after each change to the list of employees. The getter created from the
birthDates derived feature does not need a special treatment, since it will return
an updated value the next time it is accessed.

Finally, we quickly consider some uses of OCL in other parts of a UML model.
It can notably be used everywhere a ValueSpecification can be used. We only
have space to mention three possibilities here:

1. Activity simplification. A ValueSpecificationAction could actually
contain an OCL expression instead of a constant literal. Figure 10 shows
how the fire(p : Person) activity from Fig. 3 can be simplified by leverag-
ing this possibility. The purely side-effect free part of the activity has been
expressed as an OCL expression embedded in a ValueSpecificationAction.
Given this new fUML+OCL activity, deriving the pure fUML version is sim-
ply a matter of compiling the OCL expression in the same way we compile
bodies, pre- and post-conditions, invariants, and derive expressions.

2. Default values of properties can be specified in OCL with the init kind
of expression, or with Property.defaultValue from the UML metamodel.
They could be compiled into actions that initialize the corresponding prop-
erties from within constructors.

3. Default values of parameters can similarly be expressed in OCL. These
OCL expressions could be compiled, and leveraged to generate alternative
versions of a given operation, in which parameters with default values would
disappear, and be computed instead.

164 M. Tisi et al.

Fig. 10. A variant of the fire(p : Person) activity (Fig. 3) simplified using OCL

4 Compiling OCL to fUML

To obtain the result outlined in the previous section we defined a compilation
scheme of OCL to fUML, that we describe in this section. The mapping is spec-
ified as an ATL transformation and we outline here its points of interest. We
address three problems: mapping operations from the OCL standard library to
the fUML or Alf standard libraries (Sect. 4.1), defining translation patterns for
OCL expressions (Sect. 4.2), and translating the fUML extensions for embedding
OCL code into pure fUML (Sect. 4.3).

4.1 Mapping the OCL Library to fUML

Table 1 summarizes the main correspondences between operations for OCL data
types and fUML/Alf3. We can identify three kinds of correspondence:

– Operations on OclType and OclAny are directly translated into specific
fUML actions, properly parametrized.

– Operations on primitive data types (Boolean, String, Integer, Real)
translate into calls to primitive behaviors in the fUML standard library.

– Operations on collections translate into calls to behaviors in the Alf stan-
dard library. Note that this mapping does not include iterators. Alf does
not include support for lambda expressions, so its library cannot include an
implementation of general iterators. We therefore support iterators by stati-
cally compiling them to fUML patterns.

4.2 Translating OCL Expressions

In Figs. 11, 12, 13, and 14 we illustrate some examples of compilation patterns for
OCL. These patterns are analogous to those given in the fUML specification [1,
Appendix A] for Java to fUML translation.

The pattern in Fig. 11 is generated for all OCL conditional expressions.
The compiled condition propagates its boolean result through an object flow
to a DecisionNode. Depending on the boolean value, two control-flow edges

3 The complete mapping for the OCL standard library is available at the project
repository https://github.com/atlanmod/OCL2fUML.

https://github.com/atlanmod/OCL2fUML

Enabling OCL and fUML Integration by Transformation 165

Table 1. Mapping the OCL standard library to fUML

Context OCL operation Generated fUML

OclType allInstances ReadExtentAction

OclAny = TestIdentityAction

<> TestIdentityAction

CallBehaviorAction(fUML::Not)

oclIsKindOf ReadIsClassifiedObjectAction

Boolean [and | or | xor | not | implies] CallBehaviorAction(fUML::[And | Or
| Xor | Not | Implies])

String [concat | size | substring] CallBehaviorAction(fUML::[Concat |
Size | Substring])

Integer,Real [+ | - | * | / |>|<|≥|≤] CallBehaviorAction(fUML::[+
| − | ∗ | / |>|<|≥|≤])

Collection size() CallBehaviorAction(fUML::ListSize)

[includes | excludes |
including | excluding |
count | isEmpty |
notEmpty | union |
intersection | at | first |
last | union | includesAll |
excludesAll | insertAt]

CallBehaviorAction(Alf::[includes |
excludes | including | excluding |
count | isEmpty | notEmpty |
union | intersection | at | first | last
| union | includesAll | excludesAll |
insertAt])

pass the control token (coming from an initial node) to the compiled expression
from the then or else part. Thanks to the use of control flows the part that
does not receive the control token is not evaluated at all. Finally a MergeNode
gathers the result of the active part (then or else).

Fig. 11. Compilation pattern for OCL if

OCL iterators are generally compiled to fUML expansion regions, as we show
in the following examples. For clearly understanding the correspondence a key
point is remembering that collections in the fUML semantics are represented

166 M. Tisi et al.

as sequences of object tokens that flow consecutively over an object flow. The
expansion region considers the tokens one by one, and for each token it may
compute a result and propagate it to the object flow outgoing from its output
node.

Compiling the collect iterator is straightforward, since the default behavior
of fUML expansion regions corresponds to a functional map semantics. As shown
in Fig. 12 from each collect we generate an expansion region that takes the
input collection as a sequence of object tokens through the object flow coming
from the source. The expansion region directly includes the compilation result
from the body of the collect. We only add a ForkNode to simplify the distribution
of the iterator in case it is used multiple times in the body.

Fig. 12. Compilation pattern for OCL collect

The pattern in Fig. 13 represents the translation of an OCL select iterator.
In this case the compiled body returns a boolean value that is used as decision
input of a DecisionNode. If the boolean is true then the current value of the
iterator is passed to the output node, otherwise it is discarded (because there is
no false outgoing edge).

Fig. 13. Compilation pattern for OCL select

We compile an OCL exists iterator to the pattern in Fig. 14 that chains the
select pattern of Fig. 13 with a CallBehaviorAction to the notEmpty behavior
of the Alf library. In conformance to the OCL semantics the body of the exists
is evaluated for the whole collection (the evaluation is not short-circuited when
an element satisfying the body is found). When the entire collection has been
evaluated a control flow launches the notEmpty behavior that returns the final
result.

Enabling OCL and fUML Integration by Transformation 167

Fig. 14. Compilation pattern for OCL exists

4.3 Translating fUML Extensions

OCL expressions are included in our fUML models using mechanisms that are not
part of the fUML specification, but are imported from UML. These mechanisms
need to be translated into fUML elements to be executable. Depending on the
role of the OCL expression, we generate a different fUML scaffolding:

– body: If the corresponding operation is missing from the fUML class model,
we create a new operation. A wrapper activity with structure analogous to
Fig. 6 is attached to the operation. We create also a separate private operation
for the body, and we attach to it the activity generated from the OCL expres-
sion. The wrapper has a CallOperationAction towards the body operation.

– pre, post, inv: For each constraint we generate a new auxiliary operation
associated with a side-effect free fUML activity that returns a boolean. Bodies
of other operations in the model are wrapped in activities that check pre- and
post-conditions of the operation and invariants of the class.

– derive: We create a getter operation (e.g., get<FeatureName>). We attach
the fUML activity generated from the OCL expression to the getter. We
replace all read accesses to the feature (ReadStructuralFeature) by calls
(OperationCallAction) to the getter.

– def: We create a new operation and associated method.
– init: We add an AddStructuralFeatureValueAction to the class constructor

to set the value of the property to the result of the compilation of the OCL
expression.

5 Proof-of-Concept Implementation

In order to evaluate the feasibility of the approach presented in this paper, we
partially implemented it. All OCL examples given in the previous sections have
been translated into fUML using this implementation, and executed using an
fUML execution engine. The present section describes this implementation.

We decided to use Moka4 [2] as an fUML engine because (1) it is based on
the reference implementation but (2) provides more tooling. Thanks to (1) we
have confidence in its conformity to the fUML specification. And (2) means that
activities like debugging are simpler than with the reference implementation.

4 https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution.

https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution

168 M. Tisi et al.

Also, because Moka is integrated into Papyrus, we could use it to create the
diagrams presented in this paper5. We used Moliz [6] in previous work [7] because
we needed xMOF [8] (i.e., fUML lifted to the metametamodel). However, xMOF
is not required for the present work, and showing that the approach can work
with a full-featured UML editor like Papyrus seems more relevant.

The translation of OCL expressions into fUML is performed in two steps:

1. Text-to-model parsing yields a model representation of textual OCL
expressions. We used the ATL parser for this purpose. This is possible because
ATL expressions are written in a variant of OCL 2.0, which we call ATL-OCL.
An additional shortcut consisted in writing OCL expressions in a separate file
to simplify parsing. Parsing OCL expressions actually embedded in a UML
model (in OpaqueExpressions) would not present significant issues.

2. Model transformation integrates the OCL model resulting from parsing
into an fUML model. This transformation is written in ATL refining mode,
which enables in-place updates. It takes as inputs both an extended fUML
model, as well as an ATL-OCL model, and gives as output an updated version
of the fUML model. The resulting fUML model contains the elements gener-
ated from the translation of all OCL expressions given as input. Additionally
all fUML extensions have been integrated and removed.

Several other existing OCL parsers could have been reused. Notably, in an
actual tool, leveraging Eclipse OCL would make more sense, because it closely
follows the current OCL specification. The choice of ATL-OCL was motivated by
the two following considerations: (1) familiarity with ATL-OCL enabled reduced
development time (we have already worked on several ATL transformations that
process ATL-OCL [9]); (2) reusability of ATL code helps amortize development
cost. We already had an ATL-OCL to fUML transformation for a small subset
as part of previous work on an ATL to fUML transformation [7]. Furthermore,
we also intend to integrate the new transformation (extended to a larger subset
of OCL) into the ATL to fUML transformation.

For the OCL to fUML model tranformation, we used only declarative ATL,
which means that the rules are very close to a mapping specification. Each rule
translates an OCL metaclass into a set of fUML elements. To connect the dif-
ferent fUML elements that are generated by different rules, we use a solution
that can be summarized in two steps. The first step creates from each OCL
expression, a set of fUML elements that should include one result element and
may contain a set of input elements. The result and input elements can be rep-
resented by the input node, output nodes, the fork nodes, the join nodes, the
input expansion region or output expansion region according to the correspond-
ing source element. The second step aims to generate for each input element an
object flow coming from the appropriate result element, e.g. the one generated
from the parent OCL expression.

5 The diagrams have nonetheless been modified manually in Inkscape (https://
inkscape.org/), mostly to improve whitespace usage.

https://inkscape.org/
https://inkscape.org/

Enabling OCL and fUML Integration by Transformation 169

Our compiler supports most OCL constructs with the following notable
exceptions: (1) tuples and iterate expressions could be added with relatively
little work, (2) introspection of previous values of object properties, as well as
of all messages sent by an operation in post-conditions would require detailed
bookkeeping, and is likely to have a significant overhead, (3) oclIsInState is
not relevant because fUML does not include state machines yet, at least until
PSSM is standardized.

6 Discussion

A tool based on the OCL to fUML approach has two main usage scenarios:

1. Synchronization from OCL to fUML activities could be used to simplify the
definition of fUML activities. Users would write a couple of OCL expressions,
then run the transformation to translate them into fUML. Then, they would
continue working on the resulting model, and iterate the process. This is
similar to what can be done with Alf, except that Alf can also go back from
fUML activities into code.

2. As a pre-processor for an fUML execution engine. Users would express signif-
icant parts of their model in OCL. They would only use the transformation
to fUML before loading their model into an fUML engine (e.g., for simula-
tion), but would never modify the resulting model. Then, they would continue
working on the original model, and iterate the process.

A combination of these two scenarios is also possible. Parts of the OCL expres-
sions may be used to specify fUML activities, and therefore be translated as
soon as possible into fUML. Other parts could be left as OCL expressions (e.g.,
preconditions, invariants), and only translated to fUML before execution.

The synchronization scenario is likely to require more complex tooling.
Whereas a pre-processor may be invoked transparently (or as a command line
tool), synchronization between code and fUML is non trivial and requires a
well-designed user interface, as the integration of Alf into Papyrus shows [10].
Additionally, later modifications may be more difficult. For instance, removing
an OCL precondition simply consists of removing the link between operation
and constraint. However, removing a precondition compiled to fUML requires
editing an activity.

We observe that the OCL to fUML transformation is similar to the Alf to
fUML transformation (see Fig. 2). Therefore, users could use OCL in place of Alf
to textually specify some fUML activities: those that are side-effect free. This is
even possible on UML models that contain more than just fUML and the rel-
atively simple extensions compiled in our work, although fUML execution may
not be possible. Some users may prefer OCL because it is a purely functional lan-
guage. For instance, it is not possible to inadvertently insert side-effects in query
operations written in OCL. However, the missing fUML to OCL reverse trans-
formation would make OCL less convenient than Alf for this purpose. Moreover,

170 M. Tisi et al.

this missing transformation would necessarily be partial because fUML activity
with side-effects would not be translatable into OCL expressions.

Since OCL has been in use for quite some time (OCL 1.1 published in 1997),
some users are likely to know it much better than Alf (version 1.01 published in
2013), and fUML (version 1.0 published in 2011). Being able to translate OCL
expressions into fUML could help them getting started with fUML. Also, even if
they do not write OCL expression in order to generate fUML activities, playing
with an OCL to fUML compiler could be a significant learning aid.

Our integration solution is based on a compilation approach: OCL expres-
sions are translated into fUML activities. An alternative approach would be to
evaluate OCL expressions using an interpreter written in fUML. Although both
approaches have pros and cons, we preferred the compilation one because it
avoids double interpretation of OCL (i.e., interpretation of OCL by an fUML
interpreter itself interpreted by an fUML engine). Current implementations of
fUML (the reference implementation, as well as Moka and Moliz, which are
based on it) are all interpreters. Another possibility would be to extend the
fUML interpreter with support for OCL interpretation. This could be done by
coupling it with an existing black-box OCL interpreter, but then one would lose
the fine grained control over execution provided by the fUML interpreter.

While working on the translation presented here, we considered the following
possible extensions to fUML:

1. Integration with State Machines. Ongoing work at OMG on a state machine
extension to fUML could make use of our OCL to fUML translation approach.
Transition guards can notably be specified in OCL.

2. Built-in support for pre- and post-conditions. The previous sections presented
one possible integration of pre- and post-conditions into fUML. However,
other integrations are possible, notably with respect to when they are eval-
uated. One possible way to support several integration strategies would be
to add options to the compiler. Another way would be to extend fUML with
a strategy similar to the existing DispatchStrategy, and ChoiceStrategy
(among others), which respectively enable plugging alternative operation dis-
patch algorithms, and alternative algorithms to select which action to perform
next among those activated.

3. Anonymous Functions. Translation of OCL iterator expressions such as select
and collect does not leverage a generic library but rather always generates
expansion regions. If fUML supported anonymous functions, using a library
approach could be quite simple. Alternatively, we could have used classes as
function wrappers, like in Java, or even implemented defunctionalization.

4. Exceptions. Violations to pre-, post-conditions and invariants encoded in
fUML (Sect. 3), cannot result in fail-fast terminations, but rather in unde-
fined behaviors. Exceptions are one UML feature which would be particu-
larly useful to integrate in fUML for this purpose. An alternative would be
to add a native function to the fUML execution engine that would terminate
its execution (similarly to what System.exit(1) does in Java).

Enabling OCL and fUML Integration by Transformation 171

7 Related Work

Approaches like [11] focus on UML model validation with respect to OCL pre-
and post-conditions, as well as invariants. In contrast, our approach focuses on
model executability. For instance, we also integrate OCL in places where its
execution is part of the execution of the model (e.g., operation bodies, derived
features), not just to validate it. However, our integration of the pre- and post-
conditions is weaker, and closer to what can be achieved with asserts in Java.

In [12], the authors extend OCL with the capability to perform side effects
(e.g., assign values to properties, create instances). They then use this extended
OCL as an action language for an executable UML. To support UML actions,
they further define a mapping from actions to extended OCL expressions. This
is basically the opposite of the mapping we propose from OCL to UML actions.

Several UML editors, like Papyrus, provide execution of OCL. However, this
execution is typically supported using a dedicated interpreter. Tools that also
integrate fUML do not necessarily provide the capability to call OCL from fUML.
When they do they typically exhibit a problem mentioned in Sect. 6: the OCL
and fUML interpreters are only loosely connected.

The Alf specification can also be considered as a related work, but its relation
to our work has already been described in Sect. 6. Another aspect of our approach
is that it enables evaluation of OCL expressions in tools that do not support OCL
but only fUML. We then see fUML as a kind of virtual machine. This aspect
and corresponding related work is described in our papers [7,13].

8 Conclusion

In this work, we have presented a compiler to generate a fully executable fUML
model from a user-specified model containing both fUML activities and OCL
constraints. We discussed the practical advantages of building executable models
using both languages, and having them executed at the same level of abstraction.
In previous work we already used the analogy of fUML as a modeling virtual
machine, a common platform for execution of modeling tools. This paper is a
step in this path, by showing the integration of constraint checkers and query
languages in fUML. Since OCL is integrated as expression language in several
other MDE tools, this work may be leveraged to port them to fUML as well.

References

1. Object Management Group (OMG): Semantics of a Foundational Subset for Exe-
cutable UML Models (fUML), v1.2.1, January 2016

2. Guermazi, S., Tatibouet, J., Cuccuru, A., Seidewitz, E., Dhouib, S., Gérard, S.:
Executable modeling with fUML and alf in papyrus: tooling and experiments. In:
1st International Workshop on Executable Modeling, pp. 3–8 (2015)

3. Object Management Group (OMG): Precise Semantics Of UML Composite Struc-
tures (PSCS), v1.0. http://www.omg.org/spec/PSCS/1.0/, October 2015

http://www.omg.org/spec/PSCS/1.0/

172 M. Tisi et al.

4. Object Management Group (OMG): Concrete Syntax For A UML Action Lan-
guage: Action Language For Foundational UML (ALF), v1.0.1. http://www.omg.
org/spec/ALF/1.0.1/, October 2013

5. Object Management Group (OMG): Object Constraint Language (OCL), v2.4.
http://www.omg.org/spec/OCL/2.4/, February 2014

6. Mayerhofer, T., Langer, P.: Moliz: a model execution framework for UML models.
In: Proceedings of the 2nd International Master Class on Model-Driven Engineer-
ing: Modeling Wizards. MW 2012, pp. 3: 1–3: 2. ACM, New York (2012)

7. Tisi, M., Jouault, F., Delatour, J., Saidi, Z., Choura, H.: fUML as an assembly
language for model transformation. In: Combemale, B., Pearce, D.J., Barais, O.,
Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706, pp. 171–190. Springer, Heidelberg
(2014)

8. Mayerhofer, T., Langer, P., Wimmer, M., Kappel, G.: xMOF: executable DSMLs
based on fUML. In: Erwig, M., Paige, R.F., Wyk, E. (eds.) SLE 2013. LNCS, vol.
8225, pp. 56–75. Springer, Heidelberg (2013)

9. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order
model transformations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-
FA 2009. LNCS, vol. 5562, pp. 18–33. springer, Heidelberg (2009)

10. Seidewitz, E., Tatibouet, J.: Tool Paper: Combining Alf and UML in Model-
ing Tools - An Example with Papyrus. In: Brucker, A.D., Egea, M., Gogolla,
M., Tuong, F. (eds.) OCL@MoDELS. vol. 1512 of CEUR Workshop Proceedings,
CEUR-WS.org, pp. 105–119 (2015)

11. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environ-
ment for validating UML and OCL. Sci. Comput. Program. 69(1), 27–34 (2007)

12. Jiang, K., Zhang, L., Miyake, S.: Using OCL in executable UML. In: Proceedings
of the Workshop Ocl4All: Modeling Systems with OCL at MoDELS 2007. vol. 9,
Electronic Communications of the EASST (2008)

13. Tisi, M., Jouault, F., Delatour, J., Saidi, Z., Choura, H.: fUML as an assembly
language for model transformation. In: Combemale, B., Pearce, D.J., Barais, O.,
Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706, pp. 171–190. Springer, Heidelberg
(2014)

http://www.omg.org/spec/ALF/1.0.1/
http://www.omg.org/spec/ALF/1.0.1/
http://www.omg.org/spec/OCL/2.4/

Isolating and Reusing Template
Instances in UML

Matthieu Allon1(B), Gilles Vanwormhoudt1,2,
Bernard Carré1, and Olivier Caron1

1 University of Lille, CRIStAL Lab. (UMR CNRS 9189), Villeneuve-d’ascq, France
Matthieu.Allon@etudiant.univ-lille1.fr,

{Gilles.Vanwormhoudt,Bernard.Carre,Olivier.Caron}@univ-lille1.fr
2 Mines-Telecom Institute, Villeneuve-d’ascq, France

Abstract. In MBE, design of systems can be improved and accelerated
thanks to reusable models which are made available in model repositories
or libraries. One answer for designing reusable models is parameterization
as offered by UML templates and their binding relationship. The stan-
dard aims at embracing under the same constructs two distinct kinds of
template usages, namely template instantiation and aspectual binding.
Template instantiation is concerned with the capacity of UML templates
to model generic components (like C++ templates or Java generics) and
produce new models from their binding. Aspectual binding is much more
concerned with the capacity of UML templates to specify functionalities
to inject into models of systems (contexts) which must conform to a
required parameter model. In this paper, we focus on the generative
interpretation of UML template binding. On the basis of a deep analy-
sis of the standard, it will be shown that template binding consists in
template instantiation plus context merging. This allows to isolate the
capacity of instantiating templates (under their generative view) to get
reusable models coming from applicative contexts. Then the possibility
of partial instantiation inspired by partial binding as promoted by the
standard is studied. At a practical level, related functionalities are offered
within Eclipse.

Keywords: UML templates · Aspectual templates · Template binding ·
Partial binding · Template instantiation

1 Introduction

In Model-based Engineering, model reuse is a big challenge that aims to facilitate
the capitalization of technology independent design efforts and logics (“off-the-
shelves” model components libraries [8]) then to accelerate system design and
improve their quality via early checking, by the reuse of proved models. Besides
the composition of model pieces [10,16], another way to face this challenge is
model parameterization [3,9], that is the capacity for a model to expose some
of its elements as parameters, then produce other models through parameter
c© Springer International Publishing Switzerland 2016
A. W ↪asowski and H. Lönn (Eds.): ECMFA 2016, LNCS 9764, pp. 173–187, 2016.
DOI: 10.1007/978-3-319-42061-5 11

174 M. Allon et al.

substitution. This allows to capitalize models of a higher kind which capture
recurrent structure, so that they can be applied (reused) in multiple modeling
contexts.

The UML standard answer to this need is the “template construct” and its
binding relationship. This construct is general enough to support MBE reuse
practices ranging from the representation at a model level of generic software
components (such as C++ templates or Java generics) to the weaving of reusable
functionalities into models, mainly the way aspect-, pattern- and view-oriented
modeling do. In our prior work [18], we contributed to this research by enhancing
the semantics of UML Templates for their aspectual interpretation. This leads to
so called “aspectual templates” whose parameters must form a model of systems
in which to inject the functionalities. This semantics enhancement ensures the
“parameters as a model” requirement and its consistency throughout substitu-
tion and composition mechanisms, notably when binding is partial. Thanks to
this enhancement, UML templates can be better controlled for their aspectual
usage, particularly in case of complex assembly.

In this paper, we concentrate on template instantiation which underlies MBE
practices related to their generative usage, that is the creation of new models
from their generic modeling structure. This calls for the isolation of template
instantiation from standard binding. Given this, consequences on template para-
meters, particularly when they form a model, need to be examined and we do
so by the proper identification of template constituents as submodels. It will be
shown that instantiation can be applied on any templates being aspectual or
not. Similarly to partial binding, partial instantiation is provided when not all
parameters are substituted. A study of this feature is offered and its interest for
producing models with pieces from multiple contexts is presented. More gener-
ally, the isolation of template instances as stated here contributes to increase
UML templates reusability and to enrich template-based MDE facilities [1].

The rest of the paper is structured as follows. After providing background
on UML templates, we present an analysis of template binding in Sect. 3. This
analysis will lead to the isolation of template instantiation. Then, Sect. 4 exam-
ines how instantiation relates to template parameters. Partial instantiation is
studied in Sect. 5. Section 6 describes application of the results in modeling tools.
Before concluding with perspectives, Sect. 7 discusses template instantiation in
existing works.

2 Background on UML Templates

In this section, a reminder on UML templates and their aspectual enhancement
[18] are presented to ground the study.

2.1 UML Template and the Binding Relationship

In UML [13], a template is a model which exposes some of its model elements
as formal parameters using a signature (list of formal parameters). Examples

Isolating and Reusing Template Instances in UML 175

are class or package templates. Graphically, the signature is contained in a small
dashed rectangle on the top right-hand corner of the template symbol. Templates
can be applied, and thus reused to produce other models thanks to parameter
substitution, through the standard binding relationship1. It links a bound model
to a template (from which it was obtained) via a parameter substitution set that
associates formal parameters of the template to actual elements of the bound
model. Constraints of the standard only impose that the type of each actual
model element must be a subtype of the corresponding formal parameter.

Fig. 1. UML package template example

Figure 1 shows an example of UML template and its binding for extending
the model of a system. It shows a package template used to model the observer
pattern parameterized by the Subject and Observer classes, the value property,
the T type and the observers association. The system where the pattern must
be applied represents a car rental agency with its clients and cars. In the figure,
the ObserverPattern template is used to introduce the observer functionality
between Agency and Clients for capacity observation by clients. This design
choice is specified by the binding relationship between the CarHiringSystem
model and the ObserverPattern template with the specified set of substitutions.
As a result of the binding, CarHiringSystem includes the model structure of the
ObserverPattern with respect to substitutions.

Finally, UML allows partial binding. Partial binding occurs when not all
formal template parameters are substituted. For that, the UML specification
states that the unsubstituted formal template parameters are formal template
parameters of the bound element, which is itself a template as a consequence.
Partial binding will be specifically studied in Sect. 5.

2.2 Parameters as a Model

Regarding template parameters, the standard does not require any structuring
between them. The only constraint imposed by UML is the inclusion of the set of
parameters into the set of template elements. Although this choice is permissive,
it is underspecified to capture structuring constraints expected from candidate
models to correctly apply the template functionality.

1 Informally specified in [13], p. 650.

176 M. Allon et al.

value : T

Subject

Fig. 2. Set of parameters vs model of parameters

Figure 2 illustrates the issue. On the left of the figure, a variant of the
Observer template compliant with UML is presented. As expected, all the para-
meters are model elements of the template core but one can observe that they
do not form a consistent model. Indeed, the value property is exposed without
its owning class whereas the latter is required to enable its mapping with a prop-
erty contained in a context class. Similarly, the observers association exposed
as parameter is underspecified because one of its ends (the Subject class) is not
declared as a parameter.

In our previous work [18], we deeply studied the aspectual interpretation of
UML templates with the requirement that parameters have to form a well formed
modeling structure to which candidate models must have to conform. Following
this requirement, we stated a semantical enhancement of UML templates which
consists in enforcing templates to have a full model as parameter. Its aim is
to improve the consistency of templates, notably for aspectual usages, but also
to better specify the model of systems to which the functionalities will apply.
Following this enhancement, the (partial) binding mechanism has been adapted
to enable substitution of the model parameter by a conforming substructure of
the base model.

Right of Fig. 2 gives the enhanced version of the Observer template. One can
observe that the template parameters (see the superimposed dashed box) form
a full model. One can also verify that the structure of this model parameter is
well preserved by the substituted elements of the binding in Fig. 1.

3 Towards Explicit Template Instantiation

In this section, we analyze template binding. We will see that template binding
underlies template instantiation. This analysis will serve to motivate our pro-
posal which consists in isolating template instantiation separately from template
binding. Constraints that template instantiation imposes on the parameters and
the specific case of partial template instantiation will be studied in the next
sections.

In UML, the semantics of the binding relationship is specified as follows:

“The presence of a TemplateBinding relationship implies the same seman-
tics as if the contents of the template owning the target template signature

Isolating and Reusing Template Instances in UML 177

were copied into the bound element, substituting any elements exposed as
a formal template parameter by the corresponding elements specified as
actual parameters in this binding.” ([13], p. 650)

Following this semantics, the bound model resulting from a template bind-
ing can be seen as the merging of an applicative context with the content of
the template after substitutions were made. Figure 3 presents this construction
principle on the scenario presented in Fig. 1. It makes explicit (upper-right in the
figure) the applicative context (car agency) to which both the template and the
intermediate model apply, instance of the template (ObserverPatternInstance
upper-left). It is the context that provides actual elements for the binding.

Fig. 3. Template binding = instantiation + context merging

As represented in Fig. 3, the bound model (ObservableCarHiringSystem) con-
tains all the content of the template instance plus the content of the context.
This can be captured using the standard “merge” relationship from the bound
model to the template instance and the context:

template binding = instantiation + context merging

Following this, once template instances have been isolated, they can be pro-
moted as valuable artifacts of their own and then be reused. This new capacity is
of interest when designers are much more concerned by the construction of new

178 M. Allon et al.

models from templates instead of enriching existing ones. This calls for giving a
much more active role to template instantiation in the modeling space and its
related processes.

As a consequence, we propose to isolate template instantiation from template
binding. For representing template instantiation, we use a relationship named
instantiate. Like the binding relationship, this relation requires a template, a
source modeling context plus a set of parameter substitutions. Its semantics
consists in copying the content of the template and replacing the parameters by
corresponding copies of actual elements from the source model.

Fig. 4. Template instantiation

Figure 4 illustrates template instantiation with the same template and a
source model equal to the context used in Fig. 3. The result of this instanti-
ation is the template instance (ObserverPatternInstance) presented in Fig. 3.
Regarding substitution specified in the instantiate relationship, substituted ele-
ments from the context model must conform to the modeling structure formed
by the parameters. In Fig. 4, one can verify that it is actually the case.

Finally, to isolate the instantiate relationship, we showed the treatment of
template with a well formed parameter model. More generally, how instantiation
relates to the structure of templates needs to be deeply examined. It is the intent
of the next section.

4 Instantiation Regarding Kinds of Templates

To study how instantiation relates to template structure, we decompose a tem-
plate into two complementary constituents: its parameter and its specific sub-
models. Main questions are: which constituent provides the template structure

Isolating and Reusing Template Instances in UML 179

Fig. 5. Template model = parameter + specific submodels

and what are the requirement on template parameters when instantiation is
considered ?

Consider a template with a well formed parameter submodel. It is this sub-
model which provides the modeling structure of the template core. This is illus-
trated in Fig. 5. In this situation, the lack of well-formedness for the specific
model is due to the fact that classes owning the register and update methods are
parameters, so are not part of the specific model.

The observation regarding the well-formedness of template constituents raises
the question of alternative cases. It can be questioned whether a parameter
submodel that is not well formed (respectively a specific model that is well
formed) is of interest and what are the specific usages. Indeed, depending on
the well-formedness or not of each template constituent, other cases can be
considered in addition to the previous one, whether the parameter submodel

Fig. 6. Possible forms of template constituents

180 M. Allon et al.

is well formed or not. Cases when the parameter model is not well formed are
shown in Fig. 6.

Not well formed parameter model, well formed specific model : This case is shown
on top of Fig. 6. Here, it is the specific submodel that is well formed and therefore
provides the modeling structure of the template.

Not well formed parameter model, not well formed specific model : This last case
is illustrated in bottom of Fig. 6. Compared to the previous case, this one has
both submodels which are not well formed. Here, the structure of the template
content is in the template in its entirety.

Table 1 gives a summary of all possible cases of template constituents.

Table 1. Possible forms of template constituents

Specific Model

well formed not well formed

Parameter Model well formed Case 1 Case 2

not well formed Case 3 Case 4

These cases being identified, they can be analyzed with regard to template
instantiation. It is done in the following.

Let us consider cases 1 and 2 corresponding to a well formed parameter
submodel. The situation was examined in Sect. 3. It leads to a resulting model
where the well-formedness of its structure is brought by substituted elements
of the context model. So, similarly to aspectual template binding, instantiation
can be applied to any template having a well formed parameter submodel. This
is an interesting result for the reuse of templates. It means that any template
having this property can be applied both for aspectual and generative usages
depending on the modeling needs.

Let us continue with the two remaining cases corresponding to the situations
where the submodel parameter is not well formed (Fig. 6), regardless of its spe-
cific submodel. Figure 7 shows an example of template instantiation for case 3,
accompanied with the resulting model. As can be observed, the parameter sub-
model is not well formed contrary to the specific model. Thus, in this case, the
template structure is provided by the specific model. Concerning case 4, similar
comments can be made regarding template instantiation. Even if both template
submodels are not well formed, the template they form can be instantiated. To
be convinced, it suffices to modify the status of the Subject class as parameter in
Fig. 7. Despite this change, such a template continues to be applicable through
an instantiate relationship.

The last two cases typically occur when modeling generics (e.g. C++ or Java)
but also in partial template instantiation. Thus, it is important to handle them
and ensure they are treated consistently through template instantiation. The

Isolating and Reusing Template Instances in UML 181

Fig. 7. Template instantiation with a not well formed parameter model

following section specifically studies partial instantiation and concludes on the
comparison between aspectual binding and template instantiation.

5 Partial Instantiation

UML templates allow partial binding when not all parameters are substituted
and unsubstituted ones remain parameters in the resulting model which is there-
fore a template. Partial binding is a powerful feature that allows modelers to
obtain richer templates through the composition of templates. It was deeply
studied in our preceding work [18] for aspectual templates. Following UML prin-
ciples concerning parameter substitution and propagation of the unsubstituted
parameters, partial instantiation can be offered to benefit from additional capac-
ities. It gives the ability to produce new templates from instantiated ones and,
thus, sequences of instantiations. It also enables instantiation in multiple con-
texts.

Figure 8 gives an example of a partial instantiation between the Observer-
Pattern template and the CarHiringSystem model. In this example the Subject,
value and T parameters are bound in the substitution set of the instantiate
relationship while the observers and Observer parameters are unbound. This
figure also shows the result of this partial instantiation which is a new template
named ObservableAgency. For this template, the parameter model contains the
unbound observers and Observer, following the propagation strategy of UML for
unsubstituted parameters.

One observation can be made concerning the propagation of unsubstituted
parameters in the new template. This propagation is achieved with respect to
specified substitution causing adaptation of method parameters. See for example
the substitution of Observer by Resource in the register method of the Agency
parameter, in the ObservableAgencyResource template instance. Depending on

182 M. Allon et al.

Fig. 8. Partial instantiation

the substituted parameters, the resulting template may have a well formed model
as parameter or not.

Templates resulting from partial instantiation can be further applied. They
can help to construct other parts of the same system or serve as valuable artifacts
in order to build parts of new systems. For applying a template resulting from
partial instantiation to a new context, complete or partial instantiation can be
used. Additionally, such a template can also be bound for aspectual usages as
long as their parameter model is well formed. In our example, only instantiation
is enabled because the parameter model is not well formed. Figure 8 shows a
partial instantiation of the obtained template ObservableAgency to get Observ-
ableAgencyResource. This instantiation takes place in a new applicative context
related to stock management. In this instantiation, the Observer and observers
are substituted in order to produce a final model that combines ingredients
from the two modeling contexts. Such a model can be useful for observing state
changes between the two parts.

In this example, it is interesting to highlight that the same result could be
obtained through an alternative sequence of instantiations: first, partially instan-
tiating the ObserverPattern template in the StockManagement context and then
instantiating the intermediate result in the CarHiringSystem context. Moreover,
obtaining the same ObservableAgencyResource model with a complete instanti-
ation would require merging CarHiringSystem and StockManagement models

Isolating and Reusing Template Instances in UML 183

into a single model followed by a complete instantiation of ObserverPattern to
this merged model. These equalities emphasize the compatibility between partial
and complete instantiation and, thus, their consistency.

The preceding example also illustrates successive template instantiations
from an initial template. Along a sequence of instantiations, the set of para-
meters decreases in intermediate templates. This may cause relaxation of struc-
tural constraints on the parameters. Such relaxation has the effect to enlarge
the set of potential elements for substituting parameters in instantiation. This
flexibility at the level of substitution is visible in the previous example. In the
obtained template ObservableAgency, Observer and observers parameters form
a less-constrained structure than their counterpart in the initial template. This
enables mapping them on a larger set of candidate elements when compared
with the initial template.

Table 2 summarizes the situations studied in this paper. It characterizes
applicability and results of examined relationships depending on whether the
template is aspectual or not. This table should help to have a better understand-
ing of the UML Template modeling space, particularly in case where parameters
form a model.

Table 2. Template applicability and kinds of resulting models

Aspectual Template Not Aspectual Template

(Well formed Parameter Model) (Not Well formed Parameter Model)

Applicable ? Kind of Resulting Model Applicable ? Kind of Resulting Model

Aspectual Binding Yes Model No No Resulting Model

Instantiation Yes Model Yes Model

Partial Aspectual Binding Yes Aspectual Template No No Resulting Model

Partial Instantiation Yes Template Yes Template

6 Tool Support

A software environment dedicated to template based model engineering in
Eclipse was previously implemented [18]. This environment2 is composed of plu-
gins which are based on the official EMF (Eclipse Modeling Framework), UML
and OCL plugins. These plugins offer core functionalities to specify and verify
aspectual templates well-formedness but also apply their binding in a compliant
way with the UML plugin thanks to a specific profile. In addition, the plugins
provide general and original facilities to support other modeling tasks targeting
templates or user assistance such as automatic completion of template signature
and binding inference. All the plugins functionalities are reusable in modeling
tools that handle model templates.

2 Eclipse plugins and modeling tool snapshots are available at http://www.cristal.
univ-lille.fr/caramel/MBE Template/

http://www.cristal.univ-lille.fr/caramel/MBE_Template/
http://www.cristal.univ-lille.fr/caramel/MBE_Template/

184 M. Allon et al.

Following the present work, this environment has been extended to include
the capacity of instantiating templates. For that purpose, we added the following
enhancements to existing plugins :

– An adaptation of OCL constraints for checking the consistency of template
parameters and their substitutions when instantiation is applied. The con-
straints applied in that case are a subset of the ones for checking aspectual
templates. These constraints mainly enforce that parameters and the substi-
tuted elements involved in a template instantiation have a compatible struc-
ture.

– An implementation of total and partial instantiation. The implemented algo-
rithm proceeds by copying the core of the template into a new model and
replacing copied parameters by substituted elements from the context model.
Thanks to their compatibility with instantiation, this implementation is also
applicable to aspectual templates.

– An extension of the current profile dedicated to templates with a new stereo-
type related to template instantiation, i.e., InstantiationBinding. It special-
izes the TemplateBinding UML metaclass and provides an OCL context for
applying constraints due to template instantiation.

7 Related Works

This study started from UML template and showed that this concept is a general
construct both for aspect-oriented and generative modeling based on parameter-
ized models. A detailed review of related works regarding aspectual templates
can be found in our previous work [18]. In these works, instantiation is sometimes
mentioned as an underlying mechanism for binding aspectual templates [2,9,15]
but it is not isolated as a full-right mechanism, as studied here. In the following,
we review existing works that explicitly support template instantiation since it
is the focus of this paper.

As already indicated, one motivation for template instantiation is the mod-
eling of generic classes. [5] is a work that studies this need in UML by means
of template classifier. The authors mainly focus on mechanism offered by this
construct for expressing constraints on type parameters of represented generic
classes and checking their substitutability in bindings. The work presented in [7]
addresses the similar modeling need but aims to offer a stronger conformance
for the binding of template classifiers. For that purpose, it proposes a set of
well-formedness rules, additional to that of UML, to enforce the correctness of
bound attributes and methods regarding their types, their membership and some
of their meta-attributes. By offering generic classes similar to Java, Ecore (the
metamodel of EMF) [17] can also be cited as a work dealing with this need.
Thanks to this feature, models expressed in Ecore can contain declaration of
generic classes or use instantiation of generic classes for typing attributes and
methods. This feature also improves the capacities delivered by EMF for code
generation (i.e., generate generic code).

Isolating and Reusing Template Instances in UML 185

The Catalysis approach [6] proposes model frameworks in order to design
reusable packages. A model framework is a form of parameterized package con-
taining placeholders which are names that can be substituted with actual type
names when the framework is instantiated. Each instantiation of the framework
provides its own substitution of the placeholders. The names of attributes and
associations of placeholder types are themselves placeholders. This approach,
based on string substitution, is realized in the XMF tool.

[14] studies the support of genericity in component models. This work pro-
poses a structural pattern to extend an existing component model with con-
cepts for genericity. With this pattern, a component model can be made generic
through parametrization. Elements that can be exposed as parameters are types
of input and output ports, types of component implementation and the number
of nested subcomponents. This work also introduces an algorithm to instantiate
a generic component model. The use of the pattern is demonstrated by extending
the SCA component model.

In [11], the authors present a notion of model template and its instantiation
mechanism in the context of the MetaDepth framework. In this work, a model
template specifies its generic modeling structure by means of the “concept” con-
struct which is a separate model expressing both the parameters and a set of
structural requirements on these parameters. In some way, the “concept” con-
struct is related to the notion of “parameters as a model” and has a similar
purpose but it is not part of the template body. Instantiation of a model tem-
plate is done by importing substituted elements from a model conforming to the
concept into a new model constructed from the template body.

Compared to these works, the present contribution differs on several main
points. First, only one of the existing works [5] takes place inside the scope of
standard UML but only for template classifiers. Second, all these works except
[11] do not consider template parameters as a fully structured model. As dis-
cussed in the paper, this requirement allows us to overcome possible inconsisten-
cies when instantiating templates. It also provides a way to better characterize
and control the usages of templates during processes. A last difference between
the present work and existing ones is related to partial instantiation. To our
knowledge, no existing approach offers capacities comparable to this feature. As
a result, interesting capacities are enabled like instantiation of template in mul-
tiple contexts or the construction of complex assembly, mixing aspectual and
generative usages of templates through partial binding and instantiation.

8 Conclusion

Starting from UML templates and their binding relationship, this work isolated
instantiation of templates with “parameters as a model”. As a consequence, new
capacities were offered for the reuse of templates and the construction of new
models from their complete or partial instantiation. This work also provided a
characterization of the resulting UML Template modeling space. More generally,
it contributes to enrich template-based MDE capacities.

186 M. Allon et al.

In future work, we plan to focus on order and equivalence of instantiation
sequences, the way we did in one of our works [12] for aspectual binding. Another
interesting perspective to investigate is the study of alternative strategies for
unsubstituted parameters, like no propagation or the use of default values for
them. Lastly, we are working on the formalization of the template construct by
exploiting our previous work on model inclusion and the notion of submodel
[4]. We expect this formalization will help to achieve a better theoretical under-
standing and generalization of template for the quest of model reuse.

Acknowledgement. We would like to thank the anonymous reviewers for their work
and comments in order to improve the presentation of the results.

References

1. Allon, M., Vanwormhoudt, G., Carré, B., Caron, O.: Template based MDE.
In: 4ème Conférence en Ingénierie du Logiciel (CIEL 2015) (2015). https://hal.
archives-ouvertes.fr/hal-01162652

2. Berg, H., Møller-Pedersen, B.: Type-safe symmetric composition of metamodels
using templates. In: Haugen, Ø., Reed, R., Gotzhein, R. (eds.) SAM 2012. LNCS,
vol. 7744, pp. 160–178. Springer, Heidelberg (2013)

3. Bottoni, P., Guerra, E., de Lara, J.: A language-independent and formal approach
to pattern-based modelling with support for composition and analysis. Inf. Softw.
Technol. 52(8), 821–844 (2010)

4. Carré, B., Vanwormhoudt, G., Caron, O.: From subsets of model elements to sub-
models, a characterization of submodels and their properties. Softw. Syst. Model.
14, 861–887 (2015)

5. Cuccuru, A., Radermacher, A., Gérard, S., Terrier, F.: Constraining type para-
meters of UML 2 templates with substitutable classifiers. In: Schürr, A., Selic, B.
(eds.) MODELS 2009. LNCS, vol. 5795, pp. 644–649. Springer, Heidelberg (2009)

6. D’Souza, D., Wills, A.: Catalysis: Objects, Components, and Frameworks with
UML. Object Technology Series. Addison-Wesley, Boston (1998)

7. Farinha, J., Ramos, P.: Extending UML templates towards computability. In: Pro-
ceedings of the 3rd International Conference on Model-Driven Engineering and
Software Development (MODELSWARD 2015), pp. 122–133. SciTePress, Febru-
ary 2015

8. Herrmannsdörfer, M., Hummel, B.: Library concepts for model reuse. Electr. Notes
Theoret. Comput. Sci. 253(7), 121–134 (2010)

9. Klein, J., Kienzle, J.: Reusable aspect models. In: 11th Aspect-Oriented Modeling
Workshop, Nashville. Citeseer (2007)

10. Whittle, J., Jayaraman, P., Elkhodary, A., Moreira, A., Araújo, J.: MATA: a uni-
fied approach for composing UML aspect models based on graph transformation.
In: Katz, S., Ossher, H., France, R., Jézéquel, J.-M. (eds.) Transactions on Aspect-
Oriented Software Development VI. LNCS, vol. 5560, pp. 191–237. Springer, Hei-
delberg (2009)

11. de Lara, J., Guerra, E.: From types to type requirements: genericity for model-
driven engineering. Softw. Syst. Model. 12(3), 453–474 (2013)

12. Muller, A., Caron, O., Carré, B., Vanwormhoudt, G.: On some properties of para-
meterized model application. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA
2005. LNCS, vol. 3748, pp. 130–144. Springer, Heidelberg (2005)

https://hal.archives-ouvertes.fr/hal-01162652
https://hal.archives-ouvertes.fr/hal-01162652

Isolating and Reusing Template Instances in UML 187

13. OMG: Auxiliary Constructs Templates, Chap. 17. UML 2.4.1 Superstructure Spec-
ification (2011)

14. Bigot, J., Pérez, C.: Increasing reuse in component models through genericity.
In: Edwards, S.H., Kulczycki, G. (eds.) ICSR 2009. LNCS, vol. 5791, pp. 21–30.
Springer, Heidelberg (2009)

15. Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., McEachen, N.,
Song, E., Georg, G.: Directives for composing aspect-oriented design class models.
In: Rashid, A., Akşit, M. (eds.) Transactions on Aspect-Oriented Software Devel-
opment I. LNCS, vol. 3880, pp. 75–105. Springer, Heidelberg (2006)

16. Melnik, S., Bernstein, P.A., Halevy, A., Rahm, E.: A semantics for model manage-
ment operators. Microsoft Technical report, pp. 1–12 (2004)

17. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling
Framework. Addison-Wesley, Reading (2008)

18. Vanwormhoudt, G., Caron, O., Carré, B.: Aspectual templates in UML. In:
Software and Systems Modeling, pp. 1–29 (2015). http://dx.doi.org/10.1007/
s10270-015-0463-3

http://dx.doi.org/10.1007/s10270-015-0463-3
http://dx.doi.org/10.1007/s10270-015-0463-3

Experience Reports and Case Studies

MBF4CR: A Model-Based Framework
for Supporting an Automated Cancer

Registry System

Shuai Wang1(&), Hong Lu1, Tao Yue1,2, Shaukat Ali1,
and Jan Nygård3

1 Simula Research Laboratory, Oslo, Norway
{shuai,honglu,tao,shaukat}@simula.no

2 University of Oslo, Oslo, Norway
3 Cancer Registry of Norway, Oslo, Norway
Jan.Nygard@kreftregisteret.no

Abstract. The Cancer Registry of Norway (CRN) collects medical information
(e.g., laboratory results, clinical procedures and treatment) of cancer patients
from different medical entities, for all cancer patients in Norway. The collected
data are checked for validity and correctness (i.e., validation) and is the basis for
the registration of cancer cases (i.e., aggregation) by employing more than a
thousand of medical rules. However, the current practice of CRN lacks of a
systematic way to capture the domain knowledge and maintain medical rules at
a proper level of abstraction.
To tackle these challenges, this paper proposes a model-based framework

(named as MBF4CR) for capturing the domain knowledge, formalizing medical
rules, automating rule selection, and enabling data (cancer messages and cancer
cases) validation and aggregation using Unified Modeling Language (UML) and
Object Constraint Language (OCL). MBF4CR systematically captures domain
knowledge (e.g., cancer messages) as an UML class diagram and formally
specifies medical rules as OCL constraints. By associating tags to OCL con-
straints, MBF4CR enables an automated rule selection process with tool support.
We employed a case study from CRN that consists of 187 medical rules to
evaluate MBF4CR from two aspects: Performance in terms of selecting and
executing rules, and Correctness in terms of producing correct validation and
aggregation results. Results show that MBF4CR can facilitate the current
practice by complying with the medical domain knowledge with an acceptable
performance, while reducing the maintenance effort.

Keywords: Automated Cancer Registry System � UML � OCL

1 Introduction

In the last few generations, cancer is one of the most challenging diseases to be tackled
and large amount research effort has been put on studying cancer and estimating effects
of different treatments [1]. To gain sufficient input for cancer research and national
report, a national cancer registry plays a key role in the research community and

© Springer International Publishing Switzerland 2016
A. Wąsowski and H. Lönn (Eds.): ECMFA 2016, LNCS 9764, pp. 191–204, 2016.
DOI: 10.1007/978-3-319-42061-5_12

society, aiming to collect information (e.g., diagnosis) for all cancer patients in a
country [2]. Such information is collected from different medical entities (e.g., clinical
departments) [2]. All these data require to be thoroughly checked for validity by
employing more than a thousand of medical rules to ensure data quality [2].

The Cancer Registry of Norway (CRN) is making a transfer from a
paper-based/manual registry system to an ICT-based Automated Cancer Registry
System (ACRS). Based on the domain knowledge and discussions with medical
experts (i.e., the chief medical officers and medical coders) in CRN, we learned that
ACRS needs to automate three main tasks: (1) Cancer Message Validation: collecting
cancer messages from different medical entities, and checking their validity and cor-
rectness (e.g., a female cannot have a prostate cancer); (2) Cancer Message Aggre-
gation: aggregating several relevant cancer messages into a cancer case, which contains
information related with a cancer such as diagnosis, treatment and morphology; and
(3) Cancer Case Validation: validating aggregated cancer cases since errors may be
introduced during the aggregation process. It is worth mentioning that the three tasks
are based on more than a thousand of medical rules that have been specified by chief
medical officers, implemented by programmers, and applied by medical coders over the
last 60 years.

We observe that the current practice of CRN poses two key challenges: (1) Low
Level of Abstraction: The domain knowledge (i.e., cancer messages and cancer cases)
is currently captured directly at the implementation level, which makes it difficult to
understand the domain. In particular, when a new medical coder starts her/his job, it
requires medical coding training and it takes long time for her/him to acquire domain
knowledge; and (2) Large Effort to Maintain: The existing rules are scattered and
represented in different means, i.e., source code, database and look-up tables. There is
no unique manner (e.g., a rule repository) to manage and maintain such a large number
of rules. When a new rule is introduced or the existing rules are modified, programmers
have to modify the implementation and consequently test the modified source code,
which is time-consuming, costly, and might lead to low quality of ACRS.

Model-based engineering (MBE) has been applied in practice to address various
challenges [7–9, 12–14] such as automated generation of test cases [8]. To cope with
the above-mentioned challenges, this paper proposes a model-based framework for
supporting ACRS, named as MBF4CR with tool support. MBF4CR first systematically
captures the domain knowledge by building Unified Modeling Language
(UML) models, and formally specify medical rules as Object Constraint Language
(OCL) constraints [3, 4]. Furthermore, MBF4CR links OCL constraints with relevant
attributes in UML models by associating tags to each constraint with the aim to enable
automated rule selection. MBF4CR also consists of a set of external tools and five tools
we developed for supporting capturing domain knowledge systematically, specifying
rules formally, and selecting and executing relevant rules automatically. To evaluate
MBF4CR, we employed a case study from CRN that consists of 187 medical rules and
results show that MBF4CR can achieve an acceptable performance in terms of selecting
and executing rules, and the results for data validation and aggregation returned by
MBF4CR comply with the medical domain knowledge. We also discuss that MBF4CR
can reduce the effort for maintaining the large number of rules.

192 S. Wang et al.

As compared with the current practice, MBF4CR posts several benefits, which
include: (1) The domain knowledge is captured at a high abstraction level, which can
be understood more easily by medical coders without getting into implementation
details; (2) All the medical rules are specified in a formal and standard way and
organized in a medical rule repository (separated from the implementation of ACRS),
which largely improves the maintenance of the medical rules.

The rest of the paper is organized as follows. Section 2 presents the MBF4CR
framework followed by the evaluation (Sect. 3). An overall discussion is presented in
Sect. 4. Section 5 presents the related work and Sect. 6 concludes the paper.

2 The Model-Based Framework for Cancer Registry

2.1 Modeling Methodology

An overall diagram (in UML activity diagram) is given in Fig. 1, in which the manual
steps have been marked as gray. The modeling methodology of MBF4CR contains
three parts: (1) modeling the domain knowledge as a UML class diagram; (2) speci-
fying rules as OCL constraints; and (3) associating tags to the OCL constraints.

Modeling the Domain Knowledge as an UML Class Diagram (A1). Two key
domain concepts were identified based on the domain knowledge: Cancer Message and
Cancer Case. A cancer message including a set of fields (e.g., message type) records all
the necessary cancer information about a cancer patient from one medical entity, e.g.,
pathology laboratory. A cancer case consists of a number of fields (e.g., cancer type)
that are necessary for public health surveillance and cancer research. Each cancer
message can only be associated with one cancer case, while one cancer case can be
associated with several cancer messages. Notice that cancer messages and cancer cases
share a set of common fields. For example, DS (Diagnostic Certainty) exist in both
cancer messages and cancer cases, which is used to determine a cancer if the value of
DS is more than 3 (lower values of DS indicate a pre-cancer). It is important to point it
out that values of the common fields for cancer cases require to be obtained by
aggregating corresponding cancer messages based on pre-defined medical rules.

As shown in Fig. 1, we first automatically converted the existing database schema
of CRN (i.e., cancer patient, cancer message and cancer case) into an UML class
diagram (A1.1) and captured them as three classes (CancerPatient, CancerMessage and
CancerCase). Notice that each cancer message and cancer case should be associated
with a specific cancer patient (CancerPatient, Fig. 2) that has associated information,
e.g., personId, age, birth and gender. All the fields related with cancer messages and
cancer cases are specified as attributes of CancerMessage and CancerCase. Based on
the domain knowledge, we manually refined the diagram (A1.2, gray rectangle) and
Fig. 2 shows an excerpt of the refined UML class diagram. Since cancer messages and
cancer cases share a set of common fields (e.g., DS), we grouped them (in total 48) and
specified as the attributes of a separate class (CommonField).

Moreover, each cancer message consists of a number of attributes, e.g., messageId
to uniquely identify a specific cancer message and personId to trace a cancer message
for a particular cancer patient (CancerPatient class in Fig. 2). Two key attributes are

MBF4CR: A Model-Based Framework for Supporting an ACRS 193

associated with each cancer message, i.e., messageType used to identify from which
medical entity a cancer message is sent, and cancerType (CommonField class) used to
identify the cancer type a particular cancer message refers to. These two attributes are
used for automatically selecting relevant medical rules for validating and aggregating
cancer messages in our methodology. Notice that we only list five types of cancers
(e.g., prostate cancer) in Fig. 2 for illustration. In addition, an attribute called can-
cerCaseId is required for a cancer message, which is used to associate a cancer

Fig. 1. An overview of the methodology

Fig. 2. An excerpt of the refined UML class diagram

194 S. Wang et al.

message with the corresponding cancer case for aggregation. In total, 64 attributes have
been included into the CancerMessage class, which denote all necessary medical
information for a cancer patient from different medical entities, such as treatment
information from clinical departments and morphology and topography from pathology
laboratories. Notice that some of the attributes may have empty values when a cancer
message is reported from a medical entity to CRN, e.g., the information morphology
will be empty when a cancer message comes from a clinical department.

Similarly, a cancer case (CancerCase) also includes a number of attributes, such as
cancerCaseId and cancerType (Fig. 2). In summary, there are 49 attributes in total for
CancerCase including 48 common attributes with the CancerMessage class. The
detailed medical meanings of other attributes of CancerMessage and CancerCase
classes (Fig. 2) will not be explained since it is out of the scope of this paper.

Specifying Rules as OCL Constraints (A2). The medical rules in CRN can be
classified into three categories, i.e., cancer message validation rules (MVRs), cancer
message aggregation rules (MARs) and cancer case validation rules (CCVRs). These
rules are manually modeled, shown as A2 in Fig. 1. We first model the MVRs and
CCVRs in parallel since both MVRs and CCVRs are only for the validation of values of
fields. Figure 3 shows the overall classification of these rules and how they are asso-
ciated with OCL constraints. We present each type of rules in detail.

Cancer Message Validation Rules (MVRs).
Definition: MVRs in the current practice of
CRN are defined to evaluate: (1) the validity
of one field value of a cancer message, e.g.,
the value for DS in a cancer message should
be an integer ranging from 1 to 9; and
(2) the consistency of several fields within a
cancer message. For example, if the value of
attribute basis is equal to “79” and the
message type is not “O”, the value of sur-
gery can only choose either “95” or “97”
(rule 1 in Table 1).

Guidelines: As shown in Fig. 3, one MVR is specified as one OCL constraint. The
context of an OCL constraint associated with a MVR is always the CancerMessage
class (Fig. 2). This guideline is specified formally in OCL as below:

context MVR inv: self.oclConstraint.contextConstraint = CRN::CancerMessage

Example: Table 1 provides an example of a MVR as rule 1. The result of the evalu-
ation of a MVR is true if the constraint is satisfied and false otherwise.

Cancer Case Validation Rules (CCVRs). Definition: CCVRs aim to evaluate: (1) the
validity of one field in a cancer case; and (2) the consistency of several fields within a

Fig. 3. Rules classification and relationship
with OCL constraints

MBF4CR: A Model-Based Framework for Supporting an ACRS 195

cancer case. For instance, for a cancer case, rule 2 in Table 1 constrains that the value
of surgery cannot be 1 when the value of topography is C70, C71 or C72.

Guidelines: Same as for MVR, except that the context of a CCVR is class CancerCase
(Fig. 2). This guideline is specified formally as the OCL constraint:

context CCVR inv: self.oclConstraint.contextConstraint = CRN::CancerCase

Example: Table 1 shows an example that specifies rule 2 as an OCL constraint. The
evaluation result of a CCVR is true if the constraint is satisfied and false otherwise.

Cancer Message Aggregation Rules (MARs). Definition: This type of rules is defined
to aggregate one or more cancer messages into a cancer case. For instance, there is a
MAR (rule 3, Table 1) stating when a new cancer message comes, if and only if the DS
value for the new cancer message is 2 and the current DS value for the cancer case is 3
(condition), the DS value for the cancer case will be updated to 2 (action).

Guidelines: We specify each MAR with one or two PreRules and one PostRule
(Fig. 3). A PreRule specifies the condition of a MAR and a PostRule describes the
action of an MAR. There are two possibilities for a pre-rule. First, there can be exactly
one pre-rule if the condition only includes the values of the cancer message. This can
be formally captured as an OCL constraint below:

context MAR inv: self.preRule->size() =1 implies self.preRule-

>select(preR:PreRule|preR.oclConstraint.contextConstraint = CRN::CancerMessage)->size() =1

Second, there are two pre-rules if the condition constrains values of the cancer
message and the relevant cancer case (e.g., rule 3, Table 1), which can be formally
specified as an OCL constraint below:

Table 1. Examples for specifying rules as OCL constraints

No Category Constrained fields OCL specification

1 MVR Basis
messageTypesurgery

context CancerMessage inv: self.basis = 79
and self.messageType <> ‘Oʼ implies
(self.surgery = 95 or self.surgery = 97)

2 CCVR Topography
surgery

context CancerCase inv:
(self.topography = ‘C70ʼ or
self.topography = ‘C71ʼ or
self.topography = ‘C72ʼ) implies
self.surgery <>1

3 MAR DS in cancer
message, DS in
cancer case

Pre-rules: context CancerMessage inv: self.
DS = 2 context CancerCase inv: self. DS = 3
Post-rule: context CancerCase inv: self.
DS = 2

196 S. Wang et al.

context MAR inv: self.preRule->size() =2 implies self.preRule.oclConstraint-

>select(c:OCLConstraint|c.contextConstraint = CRN::CancerMessage)->size() =1 and

self.preRule.oclConstraint->select(c:OCLConstraint|c.contextConstraint = CRN::CancerCase)->size() =1

As for a post-rule (PostRule), there is always exactly one since the action can only
be taken in the cancer case level. A post-rule is always specified on the CancerCase
class (Fig. 3) and it is formally specified as below:

context PostRule inv: self.oclConstraint.contextConstraint = CRN::CancerCase

Example: Table 1 shows an example of MAR (rule 3) that includes two pre-rules for
the value of DS in a cancer message (equal to 2) and the value of DS in the relevant
cancer case (equal to 3) and one post-rule that specifies the action to be performed, i.e.,
the value of DS in the cancer case should be updated to 2.

Associating Tags to OCL Constraints (A3). Furthermore, to support automated rule
selection, tags are associated with a rule based on one or more attributes that the rule
constrains (A3 in Fig. 2). Notice that the tags reuse the same names as the attributes in
the domain model, which makes it easier to match specific rules with corresponding
attributes in the UML class diagram. With tags, a particular rule (from MVRs, MARs or
CCVRs) will not be selected for data validation and aggregation until the values of
specific attributes related with rule tags in cancer messages or cancer cases are not
empty. For instance, three tags “basis”, “messageType” and “surgery” are associated to
rule 1 in Table 1 since rule 1 constrains these three fields. Similarly, two tags “to-
pography” and “surgery” are assigned to rule 2 (CCVR) while one tag “DS” is assigned
to rule 3 (MAR). When a new cancer message is introduced for validation, rule 1
(Table 1) will not be selected for validating the cancer message unless the fields of
“basis”, “messageType” and “surgery” of the cancer message have specified values.
Notice that the process of associating tags to rules is automated, which involves parsing
OCL constraints to obtain tags and automatically associating them with the rules.

2.2 Tool Support

This section presents the tool support of MBF4CR and the design port is shown in
Fig. 4. MBF4CR relies on three external tools: IBM RSA, Dresden OCL [10] and
EsOCL [11] (highlighted as gray rectangles in Fig. 4), and five newly developed tools:
Extraction Tool, Tagging Tool, Validation Tool, Aggregation Tool and Transformation
Tool (shown as black rectangles in Fig. 4).

The Extraction Tool (implemented in Java) first takes the existing database schema
from the CRN implementation as input and automatically generates an initial version of
UML class diagram (e.g., cancer messages and cancer cases). Based on the modeling
methodology (Sect. 2.1), IBM RSA is used to manually refine the UML class diagram
and specify the three types of rules as OCL constraints as discussed in Sect. 2.1. Notice
that we implemented guidelines as OCL constraints as part of our modeling method-
ology (Sect. 2.1). These OCL constraints are automatically enforced when modeling
the rules. For example, a modeler will not be allowed to model a MVR as an OCL

MBF4CR: A Model-Based Framework for Supporting an ACRS 197

constraint with the context other than the CancerMessage class. These OCL constraints
are inputted into the Tagging Tool (implemented in Java) for automatically associating
tags with each OCL constraint. The tool outputs a set of tagged OCL constraints
(Fig. 4).

When cancer messages are introduced from various medical entities, the cancer
messages, the revised UML class diagram and tagged OCL constraints will be taken as
input to the Validation Tool for selecting and executing the MVRs to check the validity
of the cancer messages. Notice that the Validation Tool is developed based on top of
the Dresden OCL tool [10] for parsing and evaluating OCL constraints. If some of the
selected MVRs are evaluated to be false (violated), the Validation Tool will return a
report that specifies in which field(s) of which cancer message(s) which rule is violated,
so that the cancer messages that do not comply with the MVRs will be returned to
specific medical entities for correcting.

If all the selected MVRs are evaluated to be true, the cancer messages will be
inputted to the Aggregation Tool that is developed based on an existing OCL solver
tool called EsOCL [11] (Fig. 4) and works in two steps. First, the tool selects relevant
MARs based on the tagged OCL constraints and use the Validation Tool to evaluate if
the PreRule of a MAR is evaluated to be true using the Dresden OCL tool. Second, if
the PreRule is evaluated to be true, the Aggregation Tool takes input the corresponding
PostRule and solves it using the EsOCL solver. The EsOCL solver returns a set of
values that satisfies the PostRule. These values are used by the Aggregation Tool to
update the instance of a cancer case in the UML class diagram. Once the corresponding
values in the cancer case are updated, the Validation Tool will be applied again to
choose the relevant CCVRs for checking the validity of the cancer case. Similarly, if
some of the CCVRs are evaluated to be false, a report will be returned by MBF4CR to
medical coders in CRN. If all the CCVRs are evaluated to be true, the updated values of

Fig. 4. The design of the MBF4CR tool support

198 S. Wang et al.

the cancer case will be transformed to the same format as the current CRN’s practice
(i.e., structured XML files) using a Transformation Tool (implemented in Java), which
is used to update the database of CRN (Fig. 4).

3 Evaluation

To evaluate MBF4CR, we employed a real case study from CRN, consisting of 10
cancer messages, 6 cancer cases, 89 MVRs, 30 MARs and 68 CCVRs. All these rules
have been formally specified using OCL based on the plain (English and Norwegian)
texts of medical rules. The evaluation aims at addressing two research questions:
(1) RQ1: Does MBF4CR reduce the number of medical rules to execute and is the time
performance of MBF4CR acceptable in practice (Performance)? (2) RQ2: Does
MBF4CR produce correct data validation and aggregation results (Correctness)?

3.1 RQ1 (Performance)

Tables 2 and 3 show the results of the percentage of selected rules out of the total
number of rules related with each cancer message and cancer case. For instance, for
cancer message 1, 24 out of 89 MVRs (27.0 %) were selected for validation, while 15
out of 30MARs (50 %) were selected for aggregation (Table 2). On average, 32.8 % of
MVRs and 63.3 % of MARs were selected for the 10 cancer messages. As for validating
cancer cases (CCVRs), for instance, 25 out of 68 CCARs (36.8 %) were chosen for
validating cancer case 1 (Table 3). On average, 37.5 % of CCVRs were selected for all
the 6 cancer cases.

Table 2. Results of percentage of selected MVRs and MARs for each cancer message

Cancer message MVRs MARs Cancer message MVRs MARs

1 27.0 % 50.0 % 6 36.0 % 63.3 %
2 29.2 % 63.3 % 7 56.2 % 80.0 %
3 32.6 % 76.7 % 8 28.1 % 53.3 %
4 20.2 % 90.0 % 9 34.8 % 60.0 %
5 44.9 % 66.7 % 10 19.1 % 30.0 %

Table 3. Results of percentage of selected CCVRs for each cancer case

Cancer case CCVRs Cancer case CCVRs

1 36.8 % 4 27.9 %
2 33.8 % 5 52.9 %
3 44.1 % 6 29.4 %

MBF4CR: A Model-Based Framework for Supporting an ACRS 199

To evaluate the time performance of MBF4CR, we report the selection and exe-
cution time of the rules for each cancer message and cancer case. Results are shown in
Tables 4 and 5. For instance, selecting the relevant MVRs and executing them for
cancer message 1 took 609 ms while the selection and execution time of MARs took
318 ms (Table 4). Similarly, the time taken by selecting and executing CCVRs for
cancer case 1 is only 465 ms.

It took on average 732.1, 390.3 and 578 ms to select and execute the MVRs, MARs
and CCVRs for the 10 cancer messages and 6 cancer cases, respectively (Tables 4 and
5). We also report the average time of selection and execution for each type of rules,
i.e., 25.1, 20.5, 22.7 ms for a MVR, a MAR and a CCVR, respectively (Tables 4 and 5),
which is reasonable based on the discussions with medical coders. Thus, we answer
RQ1 as: MBF4CR can largely reduce the number of rules to execute and the time
performance of MBF4CR is acceptable in practice.

3.2 RQ2 (Correctness)

To check whether results returned by MBF4CR (validation and aggregation for cancer
messages and cancer cases) are correct, in the sense of complying with the medical
domain knowledge, we manually went through all the results produced by MBF4CR.
More specifically, for MVRs, we checked if the value of a cancer message field is valid
or the combinations of the values of several cancer message fields are valid if the
returned result is true; If false, we also checked if the value of a cancer message field is

Table 4. Results for selection and execution time of rules for cancer messages

Cancer message MVRs MARs Cancer message MVRs MARs

1 609 318 6 810 386
2 654 376 7 1243 475
3 725 470 8 617 334
4 446 567 9 764 362
5 1018 421 10 435 194
Average MVRs per cancer message: 732.1

MARs per cancer message: 390.3
Per MVR: 25.1, Per MAR: 20.5

Table 5. Results for selection and execution time of rules for cancer cases

Cancer Case CCVRs Cancer Case CCVRs

1 615 4 471
2 592 5 796
3 498 6 497
Average CCVRs per cancer case: 578,

Per CCVR: 22.7

200 S. Wang et al.

invalid or the combinations of the values of several cancer messages are invalid; For
MARs, we manually checked (a) when the condition of a MAR is evaluated to be true,
whether its corresponding cancer case fields are updated correctly; (b) when the con-
dition of a MAR is evaluated to be false, whether the cancer case fields are updated
incorrectly. For CCVRs, similarly as for MVRs, we manually checked if the values of
cancer case fields and the combinations of the values of several cancer case fields are
valid or not when the returned results for CCVRs are true or false.

In summary, we manually checked the correctness of the results. For the 10 cancer
messages, in total, there were 292 times of execution of MVRs, which led to the 879
field checks, and there were 190 times of execution of MARs, which led to the 599 field
checks. For the 6 cancer cases, in total, CCVRs were executed 139 times, which led to
958 field checks. Based on the manual check, we observed that all the results returned
by MBF4CR are consistent with the medical domain knowledge. This implies that the
MBF4CR framework is correctly implemented with: (a) correct domain model,
(b) correctly specified medical rules as OCL constraints, (c) correct implementation of
the tagging mechanism, and (d) correct implementation of the rule execution.

3.3 Threats to Validity

One of the main external threats is that the experiment only included 10 cancer
messages and 6 cancer cases, which may be a small sample of cancer messages and
cancer cases. Notice that the 10 cancer messages we chose cover all the types of cancer
messages (from different medical entities, e.g., clinic departments), and the 6 cancer
cases we chose cover the most common types of cancers (e.g., lung cancer and breast
cancer). Thus, the cancer messages and cancer cases we chose are representative. The
main internal threat to validity is that one may argue that the manual check for the
correctness of the results may not be always correct due to the insufficient medical
domain knowledge. We need to mention such manual check also involved some of the
medical coders from CRN with the aim to ensure the correctness.

4 Overall Discussion

Raising Level of Abstraction and Enabling Automation. The MBF4CR method-
ology relies on UML class diagrams and OCL constraints to specify required domain
knowledge (i.e., cancer messages and cancer cases) at a higher level of abstraction than
actual implementation (i.e., code). Raising the level of abstraction provides a better
support in terms of facilitating communications of domain knowledge, especially
medical rules, among stakeholders: e.g., chief medical officers, medical coders and
programmers. In addition, training new stakeholders for the domain knowledge is
limited to train them with the UML class model (Sect. 2.1) instead of going into the
details of database and code. Furthermore, formalizing the domain knowledge as the
UML class diagram and OCL constraints provides an opportunity to facilitate the
automated process of selecting relevant medical rules for validation and aggregation,
thereby significantly reducing the number of rules to execute (Sect. 3).

MBF4CR: A Model-Based Framework for Supporting an ACRS 201

Systematically Maintaining Medical Rules. The current practice lacks a systematic
way to maintain the more than a thousand of medical rules. Whenever a new rule is
introduced, the chief medical officers need to specify it and a programmer needs to
implement it into the system and medical coders will apply these rules for validation
and aggregation of cancer messages and cancer cases. Similarly, when the chief
medical officers request that a rule is to be deleted, a programmer has to look through
the system and delete the corresponding code. When existing rules are modified,
programmers have to update relevant code accordingly. Moreover, similarly as for
maintaining any code, regression testing needs to be performed whenever the code is
changed to ensure the quality of the implementation. Therefore, the cost of maintaining
this kind of system is very expensive. With MBF4CR, we however provide a sys-
tematic way to maintain the rules: when a new rule is introduced, a new OCL constraint
is created and added to the rule repository; when an old rule is deleted, the corre-
sponding OCL constraint is removed; when an existing rule is modified, one only need
to refine the affected OCL constraint. In summary, if any change occurs to rules, only
affected OCL constraints need to be updated and there is no impact on the system
implementation at all, thereby reducing the overall maintenance effort.

5 Related Work

Ensuring data quality is the core task in cancer registries, which has led to the
development of a number of tools [5]. The Program established between the Interna-
tional Agency for Research on Cancer (IARC) and the International Association of
Cancer Registries (IACR) aims to check the validity of data obtained from medical
entities [6]. CanReg51 is an open source tool provided by IACR for inputting, checking
and analyzing encoded data in a standard way. As compared to MBE4CR, the
IARC/IACR Check Program, and CanReg5 only focus on checking data validity (i.e.,
cancer case validation) without considering the aggregation, which is more challenging
than the validation in the context of CRN. Moreover, the domain knowledge is cap-
tured in the implementation level, which brings a challenge for understanding and all
the rules are hardcoded in the program, which is difficult to manage and maintain.

GenEdit Plus2 is a batch-mode application, developed by the Centers for Disease
Control and Prevention (CDC) for checking the validity and consistency of cancer
registry data. Its core part is a metafile containing data dictionary, record layout, lookup
tables and validation algorithms. GenEdit Plus also provides a metafile called NCDB,
which contains around 780 rules. Similar to MBF4CR, GenEdit Plus encodes all the
rules in a portable way, i.e., rules are not hardcoded in the program but in a separate
metafile. However, as compared with GenEdit Plus, MBF4CR specifies medical rules
using OCL, which is a standardized notation having a number of open source and
commercial tools available in the market for use. OCL also has a number of off-the-shelf

1 CanReg5: http://www.iacr.com.fr/CanReg5/CanReg5-instructions.pdf.
2 NPCR–EDITS Tools: http://origin.glb.cdc.gov/cancer/npcr/tools/edits/index.htm.

202 S. Wang et al.

http://www.iacr.com.fr/CanReg5/CanReg5-instructions.pdf
http://origin.glb.cdc.gov/cancer/npcr/tools/edits/index.htm

evaluators to enable automated data validation and aggregation (i.e., cancer messages
and cancer cases). Moreover, GenEdit Plus does not support the aggregation of data
(e.g., cancer message aggregation in our case).

6 Conclusion and Future Work

This paper proposes a model-based framework for supporting an automated cancer
registry system (i.e., MBF4CR), which systematically models the domain knowledge
(i.e., cancer messages and cancer cases) as an UML class diagram and formally specifies
different types of medical rules as OCL constraints. By associating tags to each OCL
constraint, an automated rule selection process is enabled. We evaluatedMBF4CR using
a case study from CRN and the results showMBF4CR can facilitate the current practice
of CRN with an acceptable performance at the same time complying with the medical
domain knowledge and reducing the maintenance effort of medical rules. In the future,
we plan to evaluate MBF4CR with a large-scale case study involving more cancer data
and medical rules. We also want to conduct a questionnaire-based study to solicit the
views of medical experts for applying MBF4CR.

Acknowledgement. This research was supported by RFF Hovedstaden funded MBE-CR pro-
ject. Shuai Wang is also supported by RCN funded Certus SFI. Tao Yue and Shaukat Ali are also
supported by RCN funded Zen-Configurator project, EU Horizon 2020 project funded U-Test
project, RCN funded MBT4CPS project and Certus SFI.

References

1. World Health Organization. Work Cancer Report (2014)
2. Larsen, I.K., et al.: Data quality at the Cancer Registry of Norway: an overview of

comparability, completeness, validity and timeliness. Eur. J. Cancer 45(7), 1218–1231
(2009)

3. Unified Modeling Language (UML). http://www.uml.org/
4. Object Management Group (OMG). http://www.omg.org/spec/OCL/2.2/
5. Ferlay, J., Burkhard, C., et al.: Check and conversion programs for cancer registries.

International Agency for Research on Cancer (2005)
6. TR for IARC/IACR Tool. http://www.iacr.com.fr/images/doc/TechRep42.pdf
7. Joint Workshop on HCMDSS-MDPnP, pp. 156–159. IEEE (2007)
8. Wang, S., Ali, S., Yue, T., Liaaen, M.: Using feature model to support model-based testing

of product lines: an industrial case study. In: QSIC Conference, pp. 75–84 (2013)
9. Wang, S., Gotileb, A., Ali, S., Liaaen, M.: Automated test case selection using feature

model: an industrial case study. In: ACM/IEEE 16th International Conference on Model
Driven Engineering Languages and Systems (MODELS), pp. 237–253 (2013)

10. Dresden OCL. http://www.dresden-ocl.org/index.php/DresdenOCL
11. Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.: Solving OCL constraints for test data generation

in industrial systems with search techniques. IEEE Trans. Softw. Eng. (TSE) 39(10), 1376–
1402 (2013)

MBF4CR: A Model-Based Framework for Supporting an ACRS 203

http://www.uml.org/
http://www.omg.org/spec/OCL/2.2/
http://www.iacr.com.fr/images/doc/TechRep42.pdf
http://www.dresden-ocl.org/index.php/DresdenOCL

12. Wang, S., Ali, S., Gotlieb, A., Liaaen, M.: A systematic test case selection methodology for
product lines: results and insights from an industrial case study. Empirical Softw. Eng.
(EMSE), 1–37 (2014). doi:10.1007/s10664-014-9345-5

13. Wang, S., Ali, S., Gotlieb, A., Liaaen, M.: Automated product line test case selection:
industrial case study and controlled experiment. J. Softw. Syst. Model. (SOSYM), 1–25
(2015). doi:10.1007/s10270-015-0462-4

14. Wang, S., Ali, S.: Modeling BCMS product line using feature model, component family
model, and UML. In: Comparing Modeling Approaches Workshop (2013)

204 S. Wang et al.

http://dx.doi.org/10.1007/s10664-014-9345-5
http://dx.doi.org/10.1007/s10270-015-0462-4

Metamodeling vs Metaprogramming: A Case
Study on Developing Client Libraries for REST

APIs

Markus Scheidgen1(B), Sven Efftinge2, and Frederik Marticke1

1 Humboldt Universität zu Berlin, Berlin, Germany
{scheidge,marticke}@informatik.hu-berlin.de

2 Typefox GmbH, Kiel, Germany
sven.efftinge@typefox.de

Abstract. Web-services with REST APIs comprise the majority of the
programmable web. To access these APIs more safely and conveniently,
language specific client libraries can hide REST details behind regu-
lar programming language idioms. Manually building such libraries is
straightforward, but tedious and error prone. Fortunately, model-based
development provides different methods to automate their development.
In this paper, we present our experiences with two opposing approaches
to describe existing REST APIs and to generate type-safe client side
Java libraries from these descriptions. First, we use an EMF-metamodel
and a code generator (external DSL). Secondly, we use the Java compati-
ble language Xtend and its metaprogramming mechanism active annota-
tions, which allows us to alter the semantics of existing Xtend constructs
to describe REST APIs within Xtend (internal DSL). Furthermore, we
present related approaches and discuss our findings comparatively.

1 Introduction

Many of today’s data intensive web applications (e.g. most social networks:
Google+, Facebook, Twitter, etc.) provide access to their data via REST APIs.
The representational state transfer (REST) principles impose very little restric-
tions on the development of clients. Ubiquitous technologies like HTTP and
JSON facilitate development in almost all programming environments. On the
downside, this technology combination provides little safety. IDEs cannot deter-
mine whether a certain request is part of the used API, if a certain parameter
actually exists, if arguments have the right type, or whether the response is
structured as expected.

Used to the safety and comfort (e.g. code-completion) of type-safe languages
and IDEs, many developers build language specific client libraries for existing
REST APIs. Those libraries transparently hide the necessary HTTP and JSON
processing behind type-safe programming language idioms. The development of
such client libraries is a straightforward deduction of boilerplate code from API
documentation. This tedious and error prone process presents an archetypical
use-case for model-based development (MBD).
c© Springer International Publishing Switzerland 2016
A. W ↪asowski and H. Lönn (Eds.): ECMFA 2016, LNCS 9764, pp. 205–216, 2016.
DOI: 10.1007/978-3-319-42061-5 13

206 M. Scheidgen et al.

Following our goal to create a set of homogeneous Java libraries for social
networks and their existing REST APIs, we experimented with a metamodel-
and a metaprogramming-based approach (implementations are provided as an
open-source Github project [15]). First, we developed a metamodel that allows
developers to describe REST APIs on a high level of abstraction through the
use of domain (REST) specific modeling concepts (external DSL [9]). A code
generator then produces the desired libraries from these descriptions.

Secondly, we use the Java compatible language Xtend [4] to describe REST
APIs (internal DSL [9]). Xtend provides a metaprogramming concept called
active annotations. Active annotations allow developers to eXtend the Xtend
compiler with specialized semantics for existing language constructs. We use
this to derive client libraries from REST APIs described with annotated Xtend
classes and fields.

The next section will give a short introduction to REST and defines prob-
lems that we observed while developing Java libraries for existing REST APIs.
In Sects. 3 and 4, we describe the two approaches and how we used them. We
complement our approaches with those found in related work in Sect. 5 and
finally compare everything and draw conclusions in the closing Sect. 6.

2 REST APIs and Client Libraries

Representational state transfer (REST, often also RESTful or ReST) is a set of
principles for Internet client-server architectures originally formulated by Field-
ing [8]. REST is tightly associated with HTTP as the client-server-communica-
tion protocol. In fact, it is believed, that Fielding, who was part of the HTTP
1.0 and 1.1 standardization process, actively aligned HTTP with his REST prin-
ciple [18]. There are two REST principles that are important for clients: commu-
nication is stateless and there has to be a uniform interface. The first principle,
stateless communication, means everything necessary to understand a request
and a respective response has to be part of the corresponding message. This
facilitates simple and scalable server-side application design and is probably the
most important factor for its wide adoption. In fact, 62 % of APIs listed on pro-
grammableweb.com are REST APIs, compared to mere 17 % of SOAP APIs. The
second principle (uniform interface) can be realized at different levels according
to Richardson’s maturity model [2]. Level 0, there is no interface, just a black-
box (no REST or RESTless); level 1, clients can identify specific resources on a
server (i.e. through URLs); level 2, clients can also use different verbs (i.e. HTTP
methods) to create, read, update, and delete (CRUD) resources; level 3, there
is hypermedia as the engine of application state (HATEOAS). This means that
resources reference each other with hyperlinks and that clients do not need to
understand the full interface (i.e. resource URL path and parameters) because
they simply navigate from one resource to another through contained hyperlinks.
Although, HTTP allows different MIME-types, the majority of APIs use JSON
to represent data. Figure 1 shows an example of REST communication.

Metamodeling vs Metaprogramming: A Case Study on Developing Client 207

Fig. 1. Example request and response for a tweet search with Twitter’s REST API.
The resulting JSON is simplified; strings are abbreviated.

There are few restrictions for the development of REST clients: HTTP-,
URL-, and JSON libraries exist for most programming environments; the learn-
ing curve compared to other web-service architectures, i.e. SOAP is low. But,
client code becomes very verbose, since HTTP requests need to be constructed,
possible errors handled, JSON needs to be parsed, etc. Furthermore, as stated
earlier, there is no safety when compared to other architectures and to what
most statically type-safe programming languages have to offer. Not surprisingly
language specific and type-safe client libraries are in high demand. The left side
of Fig. 1 shows a type-safe Java idiom that could be used to process the example
request on the right side.

While the development of client libraries is pretty straightforward, we expe-
rienced a set of issues that any MBD of such libraries needs to cope with:

1. To avoid confusion, client libraries need to use the names that the original
API uses. This includes names to distinct different kinds of resources in URL
paths, names for URL parameters, and keys in JSON objects. But often, the
existing names are not suitable for a particular programming language. Names
might break naming conventions, inconveniently or illegally hide or override
other names (e.g. Class in Java), or are outright forbidden (e.g. keywords).

2. JSON has a limited set of primitive types: boolean, strings, and numbers. This
leads to non-trivial data mappings. For example, clients want to process dates
as dates and not as strings that represent dates. Other examples are URLs,
colors, or GPS-coordinates. Furthermore, each REST API might encode the
same data differently.

208 M. Scheidgen et al.

3. HATEOAS is not adopted by all services or often necessary links are miss-
ing. In practice, one needs to understand the URL part of a particular API.
Furthermore, there are few conventions on how to organize resources and
structure their URLs or their data. Even very similar concepts might be real-
ized very differently in two APIs. One example is pagination (i.e. providing
long lists of data over multiple requests). Some APIs provide the URLs to
the next chunk of data (HATEOAS), some provide only partial URLs, some
provide ids, other require the use of parameters with specific semantics.

3 Metamodeling

3.1 Metamodels and Code-Generation

The goal of a metamodel is to structurally define the usable constructs (abstract
syntax) of a language. Like all object-oriented metamodeling languages, Ecore
provides a combination of classifier (classes and data types) and feature
(attributes and references) concepts to describes constructs (classes) and their
possible attributes and relationships (features). Thereby, the metamodel is not
concerned with what language instances (models) mean or what the language
constructs are used for.

In order to give semantics to a metamodel, one can provide a code generator:
a program that takes a metamodel instance (model) as input and translates it
into code (i.e. an instance of a programming language). Thereby, a code generator
realizes rules; each rule determines how to translate a certain language construct
and each rule gives a meaning to a metamodel class and its features. While the
code generator depends on a given metamodel, the metamodel is fully indepen-
dent from the code generator. In fact, one can use multiple code generators that
realize different semantics for the same metamodel. This is a major factor in
MBD, since it facilitates the (re-)use the same model for different things.

In order to allow language users to express themselves with the defined con-
structs, a concrete notation (concrete syntax) and an accompanying tool (e.g. edi-
tor) are necessary. A tuple of metamodel, code generator, and notation/editor is
often referred to as an external domain specific language (external DSL).

3.2 A Metamodel for REST APIs

Figure 2 shows a simplified version of our REST API metamodel. The model
contains the constructs necessary to describe all aspects of a REST APIs that
are necessary to generate client libraries. The top part of the metamodel com-
prises core object-oriented constructs that we also find in many other languages
(including UML, Java, or metamodeling itself). Classes can contain Features
that describe slots for values of a certain DataType.

There are two specializations of these common constructs in REST APIs:
Request classes and ComplexDataTypes. A Request class defines a set of
Parameters (communicated through either URL path, URL parameter,

Metamodeling vs Metaprogramming: A Case Study on Developing Client 209

method:Methods
path:EString

Request

separator:EString
Parameter

PrimitiveDataType

ComplexDataType

Response

Field

GET
POST
PUT
DELETE

Methods

type 1

response 1
{subsets features}

pathPattern:EString
PathParameter

baseURL:EString
REST-API

features 0..*

parameters 0..*
{subsets features}

Class
array:EBoolean

Feature DataType

name:EString
NamedElement

0..* parameters

0..*
dataTypes

0..*
requests

QueryParameter BodyParameter

Fig. 2. Simplified metamodel for our REST client API generator.

or HTTP body) and a specific Response. Both have respective types.
A ComplexDataType (i.e. a schema for JSON objects) defines Fields (i.e. JSON
key/value-pairs) which also have a respective type. Besides complex types, pre-
defined and custom PrimitiveDataTypes can be used. All Features can also
describe arrays of data.

We have written a code generator that translates REST API descriptions
(metamodel instances) into client libraries (Java code). Instances of all class
constructs (i.e. Request classes and ComplexDataTypes) are translated into Java
classes, and all instances of feature constructs (i.e. Parameter, Response, Field)
are translated into Java properties (i.e. pairs of get- and set-methods). Properties
have Java types that match the respective DataType in the model.

Depending on the meta-class, some semantic variations are generated.
A Parameter can only be modified before the response is accessed. Instead
of properties, we generate a fluent interface for parameters. The response’s
get-method contains all the code that is needed to execute the request: con-

210 M. Scheidgen et al.

struction and execution of the HTTP request with the corresponding HTTP
verb and URL, waiting for its response, handling possible errors, parsing the
JSON contained in the response, and instantiating the right Java class for the
given ComplexDataType. Generated Java classes for ComplexDataTypes have a
private field that holds a reference to the corresponding JSON object. The gen-
erated field access methods contain code that delegates calls to the wrapped
JSON object and translates Java data to JSON data (set) and vice-versa (get).
The code generator creates the right data-conversion and delegation code for
arrays, other ComplexDataTypes, and the predefined primitive types. Users can
declare custom conversion rules for their own primitive types (refer to Sect. 6 for
more details).

Fig. 3. Example API description and example use of generated library.

3.3 Example

The left side of Fig. 3 exemplifies the use of the metamodel with a self explanatory
concrete syntax. The example shows a description for a request class that defines
the Twitter API’s tweet search function that was depicted by example in Fig. 1.
The description contains the appropriate path, a few parameters, and refers
to a complex data type to wrap the expected response. The right side of the
same figure shows how one can use the library that was generated from this
partial API description. The fluent interface for request creation allows to create
and configure request in a single line. The method xResult triggers request
execution and returns the result contained in the request’s response. Note that
the response (as all features) has the proper Java type and the Java tooling can

Metamodeling vs Metaprogramming: A Case Study on Developing Client 211

actually validate the proper use of these types. The rest of the example shows
how to access the complex result data. You also see, how we can configure further
request in typical REST fashion by passing state data from one response to the
next request.

4 Metaprogramming

4.1 Xtend and Active Annotations

As a general paradigm, metaprograms are programs that transform the code
of other programs or themselves into regular programs (object-programs) [16].
A specific approach to metaprogramming that Sheard [16] would classify as a
homogeneous, manually annotated two staged metaprogram, is a metaprogram
that uses annotations to replace idioms in the program with generated code
in order to create object-programs. Readers unfamiliar with this application of
metaprogramming can also think of this as a profile mechanism for program-
ming languages, where one can define stereotypes (i.e. annotations) to assign a
specialized meaning to existing language constructs.

Active annotations in Xtend provide such a metaprogramming mechanism.
Xtend compiles into Java code and active annotations allow developers to inject
specialized semantics into the compilation process. Syntactically, active annota-
tions work like regular Java annotations. Semantically, Xtend provides a callback
interface that hooks client code into the Xtend compiler. Developers can provide
their own static semantics rules and provide further checks for the annotated ele-
ments. They can provide model-to-model transformation rules that expand the
annotated elements into more complex Java structures. Finally, developers can
provide code generator rules to implement the expanded annotated elements. In
metaprogramming terms [16], implementations of the mentioned callback inter-
face provide metaprograms that replace parts of a given object-program with
different object-program code. The active annotations function as manual anno-
tations to trigger the metaprograms for the intended object-program parts. The
translation process only has two stages, so the generated code cannot contain
further active annotations (or at least Xtend wont compile them as such). We
have homogeneous metaprograms, since callback interface implementations are
also Xtend programs.

4.2 A Set of Active Annotations to Describe REST APIs

As part of the REST API metamodel in Sect. 3, we observed that request classes
and complex data objects have a class/feature/datatype structure. The same
structure that Java classes and their member fields also have. We can use this
similarity here. With active annotations, we cannot define new meta-classes; we
cannot introduce new language constructs for requests or complex data types.
But, we can use the existing Java/Xtend class and member field constructs to
model request classes and complex data types. More concretely, we eXtend the
semantics of classes and their members fields with active annotations.

212 M. Scheidgen et al.

The left side of Fig. 4 shows some of our annotation definitions. They are
themselves annotated with annotations that describe details about the new anno-
tations. The annotation Active turns a regular Java annotation into an active
annotation. It also assigns the intended implementation of the before mentioned
callback interface (i.e. the semantics of the annotation). We have defined two
active annotations, one for request classes, called Request and one for com-
plex data types, called JSON. When these annotations are used, they have to
carry very little information, since most of the necessary information is already
conveyed by the Xtend classes and their member fields. Classes already have a
name, a set of member fields, and each field has a name as well as a type. The
Request annotation has attributes for the URL path and for its response type.
To denote specific characteristics of features, we add additional annotations. Fist,
Body- and PathParameter to denote fields as body or path parameters (query

Fig. 4. Xtend annotation for REST API description, example use of annotations and
example use of the generated library.

Metamodeling vs Metaprogramming: A Case Study on Developing Client 213

parameter is the default). Secondly, Name to provide different feature names in
case the necessary name is not a valid Java identifier (details in Sect. 6). Thirdly,
we have an annotation to describe the response (it’s type or whether it is an
array). Fourthly, to further describe complex data types, we can assign different
names to fields or add data conversion to fields (also refer to Sect. 6).

Semantically, the active annotations work similar to the code generator in
our metamodel-based approach. The difference is that corresponding Java classes
and fields already exist. However, the active annotations will replace the declared
member fields with get- and set-methods (properties) and implement these meth-
ods similar to the described code generator in Sect. 3.

4.3 Example

We use the example from Fig. 1 again (upper right in Fig. 4). If you compare
the Xtend code used to describe the API with the metamodel-based description
in Fig. 3, you notice a strong and not surprising resemblance. Both examples
describe the same part of the same API. The only difference is that in Xtend we
cannot introduce our own keywords and have to use our annotations instead.

The example Xtend code that uses the generated library in the lower right
of the same figure also shows strong resemblance to its Java counterpart (right
of Fig. 3). In fact, the generated APIs are almost identical. But, since Xtend
allows to access get-/set-methods like fields, omits empty parenthesis, and offers
closures, we can express the same in a more compact form.

5 Related Work

Izquierdo and Cabot [11], Cánovas and Cabot [3], and Menkundle et al. [13] infer
explicit schemas (e.g. in the form of Ecore-models) from the implicit schemas
contained in example JSON data. These inferred descriptions are similar to
our metamodel-based descriptions of complex data types. There is similar work
based on metaprogramming side. The active Xtend annotation Jsonized [6]
takes example JSON data and turns it into wrapper classes. JsonProvider [1]
applies the same concept to type providers in F#.

Ed-Douibi et al. [5] build a server side REST framework for EMF-data. In a
certain way, this can be interpreted as the opposite to our work. Instead of
creating model-based descriptions of existing REST APIs, Ecore-models are
interpreted as descriptions for new REST APIs. Gerhart et al. [10] is another
example that represents EMF-data with JSON. With both works, JSON data
can be processed safely via Java APIs generated from Ecore-models. But, in both
cases the mapping between implicit JSON schema and Java API is fix and you
cannot use unconventional names or custom representations of primitive data.

There are also metamodel-based frameworks for generating server-side code
for new REST APIs [12,14,17]. The used metamodels are all similar to each
other and ours and a single description could be used for both server and client

214 M. Scheidgen et al.

code. Unfortunately, most service providers have not adopted such approaches
yet, and no formal descriptions of the examined APIs exist.

Our idea of metaprogramming with active annotations is only one way;
reflection is another: Jackson [7] uses regular Java annotations and runtime-
introspection to facilitate type-safe JSON data bindings. Type providers in F#
are a different metaprogramming mechanism from the .NET world.

6 Discussion and Conclusions

When comparing the two presented approaches metamodeling and metapro-
gramming the general known arguments from comparing external with internal
DSLs apply [9]: no syntactical limitations, closed language, specialized tools for
external DSLs and language integration, existing/stronger tool support, and eas-
ier to (co-)evolve for internal DSLs.

Based on REST APIs as a specific application, further arguments in favor of
external DSLs can be made. First, metamodeling is programming language inde-
pendent and code generators for multiple languages and with different semantics
can be used. In principle, we could derive client libraries for multiple languages,
server-side code, and API documentation from the same description. Secondly,
metamodels can define standards and metamodel-based descriptions can be used
interoperably by different parties. During this work, we often wished that web-
service providers would publish their APIs in such a formal manner. Even with
an MBD-based description language for client libraries, we still have to gather
descriptions from informal artifacts like API documentation. For some vendors,
we even decided to develop specialized HTML-parsers to automatically translate
online API documentation. The work of Izquierdo and Cabot [11], Cánovas and
Cabot [3], and Menkudle et al. [13] presents a different approach by inferring
explicit schema information from actual application data.

In favor of internal DSLs, we can state that a metaprogramming mechanism
like active annotations in Xtend drastically eXtends the possibilities to use a
host language more specifically and elevates Xtend internal DSLs further from
just being regular libraries. Now, we can introduce different static and dynamic
semantics to existing language constructs without having to provide our own
language tools. This is particularly ideal for applications that require to describe
structures that consist of classes, features, and types like REST APIs, because
similar concepts already exist in object-oriented host languages.

We stated three problems that arise when creating client libraries for one
or multiple REST APIs in Sect. 2. First, not all names are allowed in all pro-
gramming languages. In a metamodel-based description, we can use all names,
since the metamodel is programming language independent. The code gener-
ator however has to identify non conforming names and has to change them
accordingly. In an annotation based description, the names we want to use are
already the names of Java/Xtend classes and fields. Consequently, we cannot
always use the indented name. In general, we can also use implicit name conver-
sions, but without further information, this can only be the same for all names

Metamodeling vs Metaprogramming: A Case Study on Developing Client 215

(e.g. we could always convert camelCase names to snake case names). This does
not work for all non conforming names. Therefore, we often need to provide two
names: one for the Xtend class or member, and one that is used to communicate
with the server. We can provide the latter one with an annotation (example in
Fig. 4 id str vs id). In summary, we can solve this in both approaches, but for
metaprogramming the description is less concise.

Secondly, programming language types are more specific than JSON types.
Does a JSON string just mean a JSON string, or something that has a more
specific type in a programming language, like a date or a color. Since this lays
in the semantics of what is described and not within the syntax of it, it also
does not matter whether we describe the API based on a metamodel or a set of
annotations. In both cases, we have to provide conversion rules for features with
primitive types. We allow users to program such conversions by implementing
a given interface (refer to Fig. 4, left side and the end). In the metamodel, we
can use an additional field in Feature to enable users to refer to converters
by name; in an annotation-based description, developers can use an additional
annotation WithConverter to add a specific converter to a feature (as done in
Fig. 4: created at). In Xtend, this referencing has good tool support, because
we simply refer to a converter class written in Xtend/Java. With an external
DSL, the same level of tool support is much harder to achieve.

Thirdly, different APIs implement common concepts differently. This problem
lays within the semantics of the web applications themselves and has nothing
to do with their APIs. REST APIs just provide a common way to access data,
how a web-service decides to organize and structure this data is beyond the
interface. Consequently, we can’t do anything about it by means of describing
REST APIs, neither with metamodels nor annotations. To identify common
concepts and homogenize different APIs, we would need to create a common
API and translate calls to the common API into calls for the individual specific
existing APIs. This is a different topic and is beyond the scope of this paper.

Due to space restrictions, we had to leave out several aspects. We could
not explain the use of constraints for request parameters and inheritance for
complex data types (i.e. JSON data). The former is useful to enforce semantic
conformance with APIs. The latter also for more concise descriptions. Rate-
limits, authentication, and authorization are particularly challenging to integrate
into client libraries homogeneously.

To summarize, both approaches, in principle, allow to describe REST APIs
and allow to generate client libraries. The problems we identified are either
solved in a similar fashion and cannot be solved by both approaches. In the end,
general considerations, similar to those of external vs internal DSLs, decide. If
you need to create libraries for a range of programming languages, or even want
to create server side code, you should opt for a metamodel-based approach. If the
goal is to quickly develop a library for the Java world, Xtend and the presented
active annotations allow to develop this API quickly and with existing tool
support. In general, our experiences have shown that active annotations provide
a meaningful addition to an internal DSL host language that allows to apply
semantic variations to existing language constructs.

216 M. Scheidgen et al.

References

1. F# data: Json type provider. http://fsharp.github.io/FSharp.Data/library/
JsonProvider.html

2. Betten, S.: Richardson maturity model. Technical report, Fachgebiet Software
Engineering, Universität Hannover (2011)

3. Cánovas Izquierdo, J.L., Cabot, J.: Discovering implicit schemas in JSON data.
In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 68–83.
Springer, Heidelberg (2013)

4. Eclipse.org: Xtend. http://www.eclipse.org/xtend/
5. Ed-Douibi, H., Izquierdo, J.L.C., Gómez, A., Tisi, M., Cabot, J.: EMF-REST:

generation of restful apis from models. CoRR (2015)
6. Efftinge, S.: Jsonized. http://github.com/svenefftinge/jsonized
7. FasterXML: Jackson json processor wiki. http://wiki.fasterxml.com/JacksonHome
8. Fielding, R.T.: Architectural Styles and the Design of Network-based Software

Architectures. Ph.D. thesis (2000)
9. Fowler, M.: Domain Specific Languages, 1st edn. Addison-Wesley Professional,

Boston (2010)
10. Gerhart, M., Bayer, J., Höfner, J.M., Boger, M.: Approach to define highly scalable

metamodels based on JSON. In: BigMDE 2015, p. 11 (2015)
11. Izquierdo, J.L.C., Cabot, J.: Composing JSON-based web APIs. In: Casteleyn, S.,

Rossi, G., Winckler, M. (eds.) ICWE 2014. LNCS, vol. 8541, pp. 390–399. Springer,
Heidelberg (2014)

12. Maximilien, E.M., Wilkinson, H., Desai, N., Tai, S.: A domain-specific language
for web APIs and services mashups. In: Krämer, B.J., Lin, K.-J., Narasimhan, P.
(eds.) ICSOC 2007. LNCS, vol. 4749, pp. 13–26. Springer, Heidelberg (2007)

13. Menkudle, A., Sonawane, S., Jagtap, A.: Extracting application model from restful
web services for client stub generation. Int. J. Comput. Technol. Appl. (IJCTA)
5(1), 226–232 (2014)

14. Rivero, J.M., Heil, S., Grigera, J., Gaedke, M., Rossi, G.: MockAPI: an agile app-
roach supporting API-first web application development. In: Daniel, F., Dolog, P.,
Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 7–21. Springer, Heidelberg (2013)

15. Scheidgen, M.: XRAW-Easy development of REST API client libraries with Xtend.
http://github.com/markus1978/xraw

16. Sheard, T.: Accomplishments and research challenges in meta-programming. In:
Taha, W. (ed.) SAIG 2001. LNCS, vol. 2196, pp. 2–44. Springer, Heidelberg (2001)

17. Tavares, N., Vale, S., Luis, S., Brazil, M.: Towards interoperability to the imple-
mentation of RESTful web services: a model driven approach. In: International
Conference on Systems (ICONS), pp. 234–240 (2014)

18. Tilkov, S.: REST und HTTP: Einsatz der Architektur des Web für Integra-
tionsszenarien. dpunkt, Heidelberg (2009)

http://fsharp.github.io/FSharp.Data/library/JsonProvider.html
http://fsharp.github.io/FSharp.Data/library/JsonProvider.html
http://www.eclipse.org/xtend/
http://github.com/svenefftinge/jsonized
http://wiki.fasterxml.com/JacksonHome
http://github.com/markus1978/xraw

Experiences with Model-Driven Engineering
in Neurorobotics

Georg Hinkel(B), Oliver Denninger, Sebastian Krach, and Henning Groenda

Software Engineering, Forschungszentrum Informatik (FZI),
Haid-und-Neu-Straße 10-14,

Karlsruhe, Germany
{hinkel,denninger,krach,groenda}@fzi.de

Abstract. Model-driven engineering (MDE) has been successfully
adopted in domains such as automation or embedded systems. How-
ever, in many other domains, MDE is rarely applied. In this paper, we
describe our experiences of applying MDE techniques in the domain of
neurorobotics – a combination of neuroscience and robotics, studying
the embodiment of autonomous neural systems. In particular, we par-
ticipated in the development of the Neurorobotics Platform (NRP) – an
online platform for describing and running neurorobotic experiments by
coupling brain and robot simulations. We explain why MDE was cho-
sen and discuss conceptual and technical challenges, such as inconsistent
understanding of models, focus of the development and platform-barriers.

1 Introduction

The field of neurorobotics uses insights from neuroscience to build robot con-
trollers using neural networks. Of particular interest is the combination of bio-
logically plausible spiking neural networks with robots. This enables neurophysi-
ologists to study how brains can be connected to bodies, neuroscientists to study
brain models in the real world and robotic scientists to perform locomotion or
perception tasks – which are hard to solve with classical robot controllers – using
the neural networks’ ability to learn and adapt.

Building spiking neural networks is increasingly understood by domain
experts. Robotics has a long experience of modelling robots and building robot
controllers. However, establishing a closed loop between both artifacts – this
means transferring sensor information from a robot to a brain and control infor-
mation from the brain back to the robot – is still an open question. Few scientists
know both neural network simulation and robotics well enough in order to per-
form adequate experiments.

As a consequence, most existing experiments in neurorobotics are hand-
crafted simulation scripts, able to perform only a tightly defined experiment
without variations. Such scripts may easily get obsolete when the interface of
the components from either domain changes.

Therefore, it is necessary to abstract from the technical implementation
details and allow neuroscientists to describe the interconnection between neural
c© Springer International Publishing Switzerland 2016
A. W ↪asowski and H. Lönn (Eds.): ECMFA 2016, LNCS 9764, pp. 217–228, 2016.
DOI: 10.1007/978-3-319-42061-5 14

218 G. Hinkel et al.

networks and robots in a formal model. The simulations gain flexibility as
common operations such as pausing, stopping, resetting or interacting with the
simulation can be implemented once, based on the formal model. Flexibility in
accessing the model is crucial as users want to build and run experiments interac-
tively as well as non-interactively. The interactive style is well-known to robotics
where experiments are built iteratively with visualization close to real-time. In
contrast, neural network simulation experiments are typically run as batch jobs.

Raising the abstraction level in order to limit the description of a system
to domain concepts rather than implementation details is also one of the major
goals of model-driven engineering (MDE). Hence, we have adopted MDE tech-
niques in the development of the Neurorobotics-Platform (NRP), an integrated
simulation platform to allow neuroscientists to specify a neurorobotics simula-
tion on a high level of abstraction.

In this paper, we present our experiences in applying model-driven techniques
in the domain of neurorobotics that we gained during the development of the
NRP. We observed inconsistencies in the understanding of models that imply
communication problems bringing together experts of the involved matters.
A lack of good test concepts for the code generators has made us shift function-
ality towards the target platform and keep code generators as small as necessary.
For the choice of generators or any other tools, we faced a platform barrier. Our
agile Scrum development process seemed incompatible with the upfront initial
effort implied by the model-driven software development approach we took.

The remainder of this paper is structured as follows: Sect. 2 briefly introduces
the NRP. Section 3 discusses the potential advantages offered by MDE in neuro-
robotics. Section 4 details on the lessons learned during the development of the
NRP. Finally, Sect. 5 concludes the paper.

2 The Neurorobotics Platform in a Nutshell

The Neurorobotics Platform (NRP) is developed as part of the Human Brain
Project1 to run coupled neuronal and robotics simulations in an interactive plat-
form. Whereas there are multiple neuronal simulators (e.g. Neuron [1], NEST
[2]), robotics and world simulations (e.g. Gazebo [3]), the NRP aims to offer
a platform uniting the two fields. A core part of the NRP is the Closed-Loop-
Engine (CLE) that allows to specify the data exchange between the brain simu-
lation and the robot in a programmatic manner and orchestrates the simulations.

The key concept of the NRP is offering scientists an easy access to a sim-
ulation platform using a state-of-the-art web interface. Scientists are relieved
from the burdensome installation process of scientific simulation software and
are able to leverage large-scale computing resources. Furthermore, support for
monitoring and visualizing the spiking activity of the neurons or joint states of
the robot is offered as well as the camera image perceived by the robot.

1 https://www.humanbrainproject.eu/.

https://www.humanbrainproject.eu/

Experiences with Model-Driven Engineering in Neurorobotics 219

Fig. 1. Screenshot showing a Braitenberg vehicle inspired experiment in the Neuroro-
botics Platform (NRP). Upon perception of red color in the camera image, the robot
moves forward, otherwise it keeps turning on the spot. A plot at the top shows velocity
of the robot wheels while a plot at the bottom shows spiking activity of neurons. (Color
figure online)

To give an impression on how the platform looks like, a screenshot of an
experiment inspired by Braitenberg vehicles [4] using a Husky2 robot is depicted
in Fig. 1.

The different users of the NRP are depicted in Fig. 2. The NRP basically
targets three science communities with overlapping fields of interest: neurosci-
entists, neurophysicists and roboticists. Neuroscientists are able to visualize brain
models through embodiment. Neurophysiologists leverage the coupling mecha-
nism of both simulations to analyze or validate models on signal transmission
between perception, brain activity and motor control. Roboticists are able to
validate and compare the performance of neuronal control compared to classic
robot control approaches.

The platform aims to be usable by scientists with little programming knowl-
edge. Based on templates, users can instantiate new experiments and adapt
them at runtime using techniques familiar to the respective communities. Data
interchange between a simulated brain and a robot is transcribed as so-called
Transfer Functions using an internal Python-based DSL [5]. We use the Python
programming language as it is generally accepted by neuroscientists and actively
used for specifying brain models.

Figure 3 depicts the Closed-Loop-Engine which implements the core of the
NRP. The CLE controls the neuronal and the world simulation, and realizes

2 http://www.clearpathrobotics.com/husky/.

http://www.clearpathrobotics.com/husky/

220 G. Hinkel et al.

Fig. 2. The actors and their intentions of using the NRP

Fig. 3. A closed loop between a robotics simulation and a neural network

a lightweight simulation data interchange mechanism. Neuronal and robotics
simulation are iteratively run in parallel for the same amount of time, after
which the transfer functions are executed periodically. Communication with the
brain is realized through recording and injecting spike data. Interfacing with
the robot simulation is done using the middleware (ROS [6]). In order to ensure
reproducibility, data exchange is conducted in a deterministic fashion.

Complex brain simulations require large scale computing resources and often
exceed the capacities researchers have at hand. Furthermore, effectively lever-
aging computing resources provided by data centers is only available to neu-
roscientists with the appropriate competences or support from the computer
scientific domain. The NRP provides a unified access to high-performance com-
puting resources of different institutions. The shared infrastructure in particular

Experiences with Model-Driven Engineering in Neurorobotics 221

offers the possibility to run simulations using specifically designed neuromorphic
hardware, which is currently not widely available.

Neuronal simulation in data centers are usually run as non-interactive batch
jobs whose execution is scheduled once and runs to completion before report-
ing results to the neuroscientist. The scientist has no means of influencing the
simulation after the job has been scheduled and errors can only be detected
by analyzing the results. The NRP is designed to enable interactive manipula-
tions of the neuronal network, the simulated environment or the robot. Thus,
erroneous behavior can be detected very quickly.

3 The Potential of Model-Driven Engineering
in Neurorobotics

In this section, we discuss why MDE is a suitable approach for developing a
simulation platform such as the NRP. As the NRP aims to support the specifi-
cation of data transfers between neural networks and robots accessible also by
users with little programming expertise, the process of assembling the simula-
tion code and its goals are very similar to model-driven software development.
While a frequent rationale of model-driven software development (MDSD) is to
reduce the development effort, we regard the higher abstraction level even as an
enabling technology for users with little programming experience.

The artifacts for a model-driven software development process as introduced
by Völter and Stahl [7] are depicted in Fig. 4.

The idea of model-driven software development is to divide the code of an
application into three parts, (i) the platform, (ii) schematic repetitive code and
(iii) individual code. From the repetitive code, a metamodel is extracted. Appli-
cation models are then created as instances of this metamodel through a domain-
specific language (DSL) and are transformed to the repetitive code by means of
a model transformation.

Fig. 4. Artifacts of model-driven software development as defined by Völter and
Stahl [7]

222 G. Hinkel et al.

The advantage is that the application model is very focused on domain con-
cepts whereas technical implementation details are encoded in either the plat-
form, the model transformation or the individual code. A goal of MDSD is clearly
to keep the individual code as small as possible. The application models are thus
usually specified in DSLs, either textual or graphical.

Understanding an experiment as an application, this model is also well suited
to describe neurorobotics simulations of these experiments. Here, the ability
to describe simulations in terms of domain concepts independent of technical
implementation details allows also neuroscientists without a strong experience
in programming languages to design and run experiments. At the same time,
the technical implementation details can be exchanged in order to support new
simulators. This is important as there is currently a multitude of neural network
simulators available.

Another important aspect is the validation of experiments. As the involved
neural networks become large, neurorobotics simulations require a large amount
of resources. Additionally, especially in a web-based simulation platform accessi-
ble through the internet, simulations are run with an identity of the service host
rather than the user. This raises security concerns in order to avoid the NRP to
execute malicious code. Here, formal models can help by validating the models,
whereas the code ultimately executed is generated and therefore can be trusted.

Finally, especially in neurorobotics, large assets of the experiments are likely
to be reused. Hardly any neuroscientist will create both the robot, the neural
network and its connection but rather reuse existing robots and potentially also
neural networks and couple them in an experiment. This requires an introspec-
tion of both neural networks and robots for the neuroscientists to understand
details of these artifacts such as e.g. the topology of the network or the kinematic
of the robot.

These analyses, validations for security and potential mistakes as well as
introspection, can be done independently of a running simulator if the experi-
ment is available as a formal model. In this sense, the problems are similar to
embedded systems, where formal models allow a verification, before a transfor-
mation converts them to integrated circuits.

We applied techniques and tools from model-driven engineering. In partic-
ular, we created formal metamodels to specify the connection between neural
networks and robots, designed a DSL for it and created a transformation to
generate the code to simulate an experiment [5].

4 Lessons Learned

In this section, we summarize our experiences applying model-driven techniques
to the development of the NRP. These descriptions cover the domain analysis,
development, tools, development process and project-internal communication.
The selection of experiences presented here are the outcome of a brainstorming
session reflecting on our experiences that we though could be interesting for
others.

Experiences with Model-Driven Engineering in Neurorobotics 223

4.1 Inconsistent Understanding of Models

Though the notion of models has been clearly defined as early as 1973 by
Stachowiak [8] and models are omnipresent in both robotics and neuroscience,
there is a diversity of opinions how models should be implemented. Furthermore,
as models always have a purpose, modeling standards of the same physical enti-
ties exist that incorporate abstractions for different usage scenarios.

In robotics, many modeling standards have been established. In the NRP, we
came along Collada to describe the robots’ appearance as a 3D-mesh, SDF, used
in the Gazebo robotics simulator and the Unified Robot Description Format
(URDF), used in the middleware ROS. While all of these standards are based
on XML, neither of them complies to the XMI standard usually used in MDE.
This has the consequence that tools such as generated parsers based on the XML
Schema are not usable as the implied object-oriented class structure does not
properly reflect the model. The framing XML language at least allows to reuse
some functionality when writing parsers and allows some degree of validation.

Reusing these existing modeling standards seems appealing as this means
that existing models can be easily reused, raising acceptance among users. How-
ever, one has to be very careful selecting the right model as it is hard to revoke
this decision once the modeling standard used turns out to miss important
aspects. For example, the SDF standard is used for simulation only and does
not allow to inspect a robot model in terms of how it can be controlled. This is
because the model contains references to packages that encapsulate the control
channels offered to a potential neural control architecture. From such a descrip-
tion, it is close to impossible to restore a mapping of joints to robot topics, as
this information is buried in controllers, only available in compiled form.

In the domain of neuroscience, the situation is very different. Here, an impor-
tant question is the level of abstraction, a neuron is interpreted. While some
approaches investigate the connection of entire regions of a neuronal network
consisting each of hundreds or thousands of neurons, other approaches inves-
tigate the compartments inside a single neuron. Existing formal approaches to
model neuronal networks such as NineML [9] or NeuroML [10] try to combine
these diverse levels of abstraction and provide a uniform format to catalog knowl-
edge. However, this makes them unusable for simulation purposes as there is no
simulator that spans all these levels of abstraction. Most simulators we have
been facing in the development of the NRP simulate neural networks at the
level of point-neurons, meaning that each neuron is considered to be an opaque
box whose behavior is described by a set of differential equations. These neuron
models can be modeled in a formal way [11].

When it comes to simulating neural networks, the common format to pass in
a model of a neural network to a simulator is a Python script that creates the
model inside the simulator. To raise the compatibility between the simulators,
there is an abstraction layer PyNN [12] which provides an interface that can be
used to create the neural network independently of the used simulator, such that
network scripts can be used with multiple simulators with only few modifications.

224 G. Hinkel et al.

This very low degree of formalization implies some challenges as it makes
it very hard to inspect neural networks without loading them into a simulator.
This applies even to very simple analyses such as checking whether a given
neuron or population exists at all. One of the reasons is that currently there are
many neural networks that use a multitude of control structures and loops when
creating the network. Hence, any formal model that does not allow such control
structures has a risk of a low acceptance. If control structures are supported,
there is a risk to end up with a formal metamodel that does not add much
to the Python syntax. Furthermore, because Python scripts are so popular, this
raises expectations that any new approach also supports them. As a result and to
avoid an enforced language adoption [13], we created an internal DSL in Python
[5], allowing to specify the coupling between a neural network and a robot in
Python, but without the requirement that a simulator is already loaded. A formal
metamodel on top of this internal DSL has not yet gained acceptance. We hope
this will change when we can provide a graphical editor for it.

These very different understandings of models imply a communication chal-
lenge when bringing together experts of different fields. While for some in the
team, the term model implicitly means the robots mesh, the term is bound to
Python scripts or neuron models when speaking to others. Especially in the neu-
roscience domain, the level of formalization is currently very low, which makes
it very hard to establish formal modeling standards.

As a possible reason, both in robotics and in neuroscience, models are often
validated through simulation or even execution. A model is considered valid if
its execution completes without failures and produces the intended behavior.
However, it is difficult to specify when such a behavior is valid. This is different
for the coupled simulation of both a robot and a neural network where one
would like to ensure that for a given connection between the simulators, both
the involved neurons or neuron populations as well as the involved sensors and
actuators exist and have the expected format.

4.2 Focus the Platform, Not the Generator

Following a model-driven approach as depicted in Fig. 4, a very important ques-
tion is whether a given functionality should be implemented in the target plat-
form or the generator, if both are developed in the same team. Applying the
approach of Völter and Stahl [7], we started with creating a reference simulation
script after creating an initial version of the platform. We then extracted a code
generator that would generate exactly this simulation script based on a given
reference model.

However, this soon turned out to cause problems in the quality assurance.
Generators are very hard to test in terms of unit testing. While an integration
test is desirable, the resources necessary to run these makes it infeasible to cover
large parts of the code through integration tests and make unit tests inevitably
required, but ensuring that the produced simulation scripts are correct is com-
plex and far beyond a usual unit test. Furthermore, we lack the tools to measure
whether the code generator complied to our goal of 90 % coverage by unit tests.

Experiences with Model-Driven Engineering in Neurorobotics 225

Therefore, we only tested the generated output for a few example models by
comparing with a predefined expectation and further created usual unit tests for
any functionality called from the generator. However, this leads to highly fragile
unit tests. Many changes in the target platform had an influence onto the code
generator and as a result, the test cases had to be adjusted. Thus, developers
started to simply copying all the generated output for the changed generator
to the test oracle and peer-reviewers spent less attention as the code was only
generated.

Therefore, we eventually decided to minimize the amount of code that is being
generated and tried to drag as much code as we could into the target platform as
Python modules. As a result, this code is subject to our continuous integration
infrastructure and thus, many code checks are automatically performed by static
code analysis that would otherwise have to be done by tests. The generator
now only generates artifacts that are very hard to create by non-generating
approaches such as expressions composed from model elements. While this could
also be done through model interpretation at runtime, it would mean a less clear
syntax (which is made visible to the user and therefore important) and degrade
the performance.

An artifact that has helped a lot minimizing the generated code is our internal
Python DSL PyTF [5]. Despite a syntax familiar to Python developers (which
is why we created the language in the first place), it also helped us minimize
the code generator transforming our formal model into PyTF. PyTF itself can
then be executed directly.

4.3 Model-Driven Tooling Based on Java Platform

As of today, many of the tools available to support model-driven engineering are
still based on Java, more specifically on the Eclipse Modelling Framework. The
components that we used in the NRP are based on C++ and Python. As we
also decided to create a Python interface for users to specify their connection
between selected neural networks and robots, the simulation backend is also
based on Python to avoid inter-process communication.

However, this decision puts a platform barrier that hampers the adoption of
model-driven techniques since most available tools cannot be used, unless the
involved developers install a Java IDE next to their Python or C++ environ-
ment. As suggested by Meyerovich [13], many developers do not like the idea
of adopting a new language which yields a strong argument against the intro-
duction of such tools. Indeed, our experience was that many developers tried to
avoid Java as much as they could.

Therefore, the more pragmatic solution for us was to use XML technology.
That is, we created the formal metamodel as an XML Schema. Though this has
the drawback that XML has no direct support for typed cross-references (only
ID and IDREF), this can be circumvented by designing the metamodel appropri-
ately. In favor of XML, like most languages, Python includes tools to generate
parsers based on a XML schema so that we can easily load and save models.
Furthermore, XML Schema allows a basic validation of instance documents.

226 G. Hinkel et al.

This validation is not as powerful as OCL and harder to specify but suffices for
many applications. More advanced validation, such as checks whether a reference
to a particular neuron or robot sensor is valid, has to be done separately anyhow
since the data is not available in a formal model (cf. Sect. 4.1).

A promising approach was to use EMF tools to generate the XML Schema
from an Ecore metamodel, but this turned out to be not a long-term solution.
EMF by far does not export all validations done on models into the XML Schema.
As we tend to include as much validation as we can, this quickly meant that we
maintained the XML Schema manually. However, as long as the Schema complies
to the XMI standard, the interoperability to modeling frameworks such as EMF
is still given as these frameworks also use XMI.

This interoperability is important, as it allows to use editor technologies such
as e.g. XText3 or Sirius4 and consume the created models in other languages.
However, in our case, this is difficult as we need our editors to be web-based.

To generate code, we used Jinja25, normally used to generate HTML pages,
though we generate Python code. This allows to use template-based code gen-
eration without additional effort. Nevertheless, these templates do not comply
with static code analysis and as a result, the acceptance of these code generators
among the developers is low. As a result, we have reduced the code genera-
tion to a minimum, meaning that we do not generate anything else than our
Python DSL.

4.4 Customer Value of Model-Driven Artifacts in a Scrum Process

Though set up as a research project, the NRP is developed according to a dis-
tributed Scrum process in sprints of three weeks length. Model-driven software
development introduces a high initial effort to set up the metamodel, transfor-
mations and editors. This seemingly contradicts the idea of Scrum where all
items of the backlog should be user stories that add some value to the user.

On the other hand, it is the user that specifies models of a simulation in the
final platform. Therefore, the typical development artifacts of a classical model-
driven project are in fact parts of the ready-made platform and therefore do
add a value to the user, hence fit into the format of a user story. For example,
metamodels are created with a user story similar to “As a user, I want to have a
clear specification how x is defined”. This gives the developer one sprint to create
an initial metamodel and possibly generate a visualization of it to show that to
the (expert) user. Further documentation of the metamodel, accessible also to
the non-expert user as well as other artifacts such as a DSL on top, generators
or editors are then developed in subsequent sprints.

Slightly more problematic are evolution scenarios as there is a risk that new
features are not introduced into all artifacts simultaneously. Therefore, the meta-
model may diverge from subsequent artifacts such as the DSL. As there are few

3 https://eclipse.org/Xtext/.
4 http://www.eclipse.org/sirius/.
5 http://jinja.pocoo.org/.

https://eclipse.org/Xtext/
http://www.eclipse.org/sirius/
http://jinja.pocoo.org/

Experiences with Model-Driven Engineering in Neurorobotics 227

tools to detect this in a dynamic language such as Python, we rely on code-
reviews. Though such evolution scenarios appear more often in agile methods,
this problem is not limited to them as it is unlikely to have an optimal metamodel
at the first attempt.

Overall, we think that the agile Scrum methodology met our needs creating
a model-driven platform very well.

4.5 Missing Baseline for MDE Benefits

Although we already noted the multitude of potential benefits brought by MDE
in Sect. 3, quite a number of people in the project are still skeptical on MDE.
This is partially due to problems we discussed in the earlier sections, but also
because the benefits are not obvious. We see having a formal representation of
domain concepts used in the NRP as the key benefit. But as we are developing
both the formal metamodel and the target platform on which it is executed in
parallel and in the same team, it is hard to distinguish whether the metamodel
has influenced the platform development or vice versa.

As a consequence, it is easy to claim that the formal metamodel just formal-
izes the concepts implemented in the platform anyway. After all, abstractions
can also be employed without MDE techniques in place. It is hard to proof this
wrong as the usage of proper abstractions does not strictly require MDE. We
believe that even if some of the models are supplied very informally, attempts to
formalize these models still improved our domain understanding and helped us
to ask domain experts the right questions. However, further research is required
to analyze and show potential advantages and disadvantages.

5 Conclusion

In this paper, we reported our experience applying MDE in the development
of the Neurorobotics Platform, a web-based simulation platform to run experi-
ments coupling spiking neural networks with robots. Though we identified large
potential given the overlap of defining and running such an experiment on the
one side and model-driven software development on the other, there are a couple
of challenges and obstacles that make the application difficult.

We expect that our lessons learned of these challenges can help others who
want to apply model-driven techniques in the area of neurorobotics and help
to identify obstacles in the future development of the model-driven approach as
a whole. An inconsistent understanding of models means that few assumptions
can be made on how a model is specified and many models are only available
rather informal. Especially in neuroscience, people are used to Python, making
it infeasible to use model-driven tools, often based on Java. As the support for
validating generated Python code is limited, we limited code generation to the
places where it is absolutely necessary. The compatibility with the Scrum process
we are following could be solved. However, the overall benefit of MDE was not
as clear for other developers, making arguments in favor of it difficult.

228 G. Hinkel et al.

Acknowledgment. The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7/2007-2013) under grant
agreements no. 604102 (Human Brain Project) and 610711 (Cactos).

References

1. Hines, M.L., Carnevale, N.T.: The NEURON simulation environment. Neural Com-
put. 9(6), 1179–1209 (1997)

2. Gewaltig, M.-O., Diesmann, M.: NEST (NEural Simulation Tool). Scholarpedia
2(4), 1430 (2007)

3. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an opensource
multi-robot simulator. In: Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), vol. 3, pp. 2149–2154. IEEE (2004)

4. Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT press,
Cambridge (1986)

5. Hinkel, G., Groenda, H., Vannucci, L. et al.: A domain-specific language (DSL) for
integrating neuronal networks in robot control. In: Joint MORSE/VAO Work-
shop on Model-Driven Robot Software Engineering and View-based Software-
Engineering (2015)

6. Quigley, M., Conley, K., Gerkey, B. et al.: ROS: an open-source Robot Operating
System. In: ICRA Workshop on Open Source Software, vol. 3, p. 5 (2009)

7. Völter, M., Stahl, T.: Model-Driven Software Development. Wiley, New York
(2006)

8. Stachowiak, H.: Allgemeine Modelltheorie. Springer, Heidelberg (1973)
9. Raikov, I., Cannon, R., Clewley, R., et al.: NineML: the network interchange for

neuroscience modeling language. BMC Neurosci. 12(Suppl 1), 330 (2011)
10. Gleeson, P., Crook, S., Cannon, R.C., et al.: NeuroML: a language for describing

data driven models of neurons and networks with a high degree of biological detail.
PLoS Comput. Biol. 6(6), e1000815 (2010)

11. Plotnikov, D., Blundell, I., Ippen, T. et al.: NESTML: a modeling language for
spiking neurons. In: Modellierung (2016, to appear)

12. Davison, A.P., Brüderle, D., Eppler, J.M., et al.: PyNN: a common interface for
neuronal network simulators. Front. Neuroinformatics 2(11), 1–10 (2009)

13. Meyerovich L.A., Rabkin, A.S.: Empirical analysis of programming language adop-
tion. In: Proceedings of the ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages & Applications, pp. 1–18. ACM (2013)

Variability and Uncertainty

Supporting Variability Exploration
and Resolution During Model Migration

Davide Di Ruscio1, Juergen Etzlstorfer2(B), Ludovico Iovino3,
Alfonso Pierantonio1, and Wieland Schwinger2

1 Department of Information Engineering, Computer Science and Mathematics,
Università degli Studi dell’Aquila, L’Aquila, Italy

{davide.diruscio,alfonso.pierantonio}@univaq.it
2 Department of Cooperative Information Systems,

Johannes Kepler University Linz, Linz, Austria
{juergen.etzlstorfer,wieland.schwinger}@jku.at

3 Gran Sasso Science Institute, L’Aquila, Italy
ludovico.iovino@gssi.infn.it

Abstract. In Model-Driven Engineering (MDE) metamodels are piv-
otal entities that underpin the definition of models. Similarly to any
software artifact, metamodels evolve over time due to evolutionary pres-
sure. However, whenever a metamodel is modified, related models may
become invalid and adaptations are required to restore their validity.
Generally, when adapting a model in response to metamodel changes,
more than one migration strategy is possible. Unfortunately, inspecting
all of them, which greatly overlap one with another, can be prone to
errors. In this paper, we present an approach supporting the identifi-
cation of variability during model migration and selection of migration
alternatives by generating an intensional and thus concise representation
of all migration alternatives by including also an explicit visualization of
conflicting solutions.

1 Introduction

In Model-Driven Engineering [24] (MDE) metamodels are often considered a piv-
otal concept used for formalizing and describing application domains. A wide
range of artifacts, tools and applications are defined upon one or more metamod-
els that altogether form a modeling ecosystem [6]. Generic modeling platforms
(e.g., ADOxx1, EMF2, andMetaedit3) enable the development of full-fledgedmod-
eling environments that are specifically tailored around organization needs [8,14].
Similarly to any other software artifact, metamodels are prone to evolution during
their routinely use, to cope with improvements, extensions, and corrections [18].
However, any change to a metamodel can endanger the integrity and consistency of
the modeling ecosystem as models, transformations, or even editors might become
1 http://www.adoxx.org.
2 http://eclipse.org/modeling/emf/.
3 http://www.metacase.com/products.html.

c© Springer International Publishing Switzerland 2016
A. W ↪asowski and H. Lönn (Eds.): ECMFA 2016, LNCS 9764, pp. 231–246, 2016.
DOI: 10.1007/978-3-319-42061-5 15

http://www.adoxx.org
http://eclipse.org/modeling/emf/
http://www.metacase.com/products.html

232 D. Di Ruscio et al.

invalid [7]. The metamodel co-evolution (or coupled evolution) problem concerns
the process of recovering the relationship between evolving metamodels and the
dependent artifacts in the modeling ecosystem [7]. In this paper, we focus on the
model co-evolution problem, i.e., on the process of migrating a model to restore the
conformance relation between evolving metamodels and those models affected by
the metamodel changes.

Over the last decade, numerous approaches for co-evolution of metamodels
and models have been proposed. Most of them can be distinguished by falling into
the groups of inductive and prescriptive ones: the former ones (e.g., [4,12]) auto-
matically derive a model migration procedure from the metamodel differences,
while in the course of the latter ones models are programmatically migrated by
means of predefined procedures (e.g., [13,21,29]). An aspect that has been largely
neglected so far is the following: when migrating a model in response to a meta-
model change there might be multiple alternatives to restore its conformance.
For instance, if the multiplicity of an association in a metamodel is decreased,
there are many ways of selecting the exceeding associations to be removed from
the instance models. Identifying the right migration alternative is a challenging
task as it should consider also aspects that go beyond the mere conformance
recovering, such as information erosion [25] and reducing the number of model
changes. Recently, an approach has been proposed to mitigate such difficulties
by generating all possible migrations at once [25]. Then, the responsibility of
identifying the right model migration is shifted from the implementer of the
migration program to the modeler, who can then inspect the solution space and
identify the most adequate solution. Unfortunately, already little changes in the
metamodel usually give place to a multitude of possible model migrations that
are difficult to inspect as they greatly overlap one with another.

In this paper, we present an approach to alleviate the consequences of dealing
with the multitude of model migrations that can restore model conformance.
The purpose of the approach is to help the modeler in finding the co-evolution
for models by supporting the modeler with a proper visualization of potential
conflicting solutions. Instead of extensionally [20] generating all migrated model
as done in [25], an intensional representation of them is given. In essence, the
approach permits to represent different solutions as a model with variability that
indicates which parts of the solution are different for each migration alternative
and is able to indicate if there are conflicts between solutions. The overall solution
space is represented by a feature model [1] to better navigate alternatives and
identify the wanted migration alternative. In addition, traceability between the
individual metamodel changes and the corresponding migration alternatives is
also provided in order to record modeler decisions and avoid to deal with already
resolved variability.

Outline. In Sect. 2 a motivating example is given to illustrate how migration
strategies can proliferate. Section 3 introduces the approach by presenting the
variability metamodel for the intensional representation of the different solu-
tions and illustrates it on the motivating example. The approach is critically

Supporting Variability Exploration and Resolution During Model Migration 233

(a) initial version (b) evolved version

Fig. 1. The simple workplace metamodel (SWMM)

discussed in Sect. 4. In Sect. 5 related work is considered and, Sect. 6 draws some
conclusions and outlines future plans.

2 Motivating Example

In order to satisfy unforeseen requirements or to better represent the considered
application domain, metamodels can be subject to modifications as for instance
in the case of the Simple Workplace MetaModel (SWMM) shown in Fig. 1a4.
In particular, let us suppose that a number of changes have been performed on
the SWMM metamodel leading to the evolved version shown in Fig. 1b. More
specifically, the performed changes (or refactorings) shall be the following:

R1. Introduce subclasses: the metaclasses Employee and Intern have been added
as subtype of Person that becomes abstract.

R2. Push down attribute: the attribute salary has been pushed down in the
hierarchy, from Person to Employee.

R3. Add mandatory attribute: the mandatory attribute temporary has been added
to the metaclass Employee.

R4. Restrict reference cardinality : the multiplicity of reference assignedTo has
been restricted from [0..2] to [0..1].

R5. Flatten hierarchy : the metaclasses Company and University have been
removed, flattening the hierarchy of Workplace.

A simple workplace model conforming to the initial version of SWMM is
shown in Fig. 2. The model specifies an instance of the metaclass Person named
John: he works at the University of L’Aquila and is employed in two projects,
namely LearnPad and MDEForge. Such a model is no longer conforming to the
newer version of the SWMM metamodel, therefore it has to be migrated in order
to re-establish the lost conformance relationship. In particular, the following
elements violate the conformance relationship:

4 For the sake of clarity, abstract classes are depicted in gray.

234 D. Di Ruscio et al.

– John:Person and Adele:Person cannot be instances of the metaclass Person,
which is now abstract; in addition, such instances contain the reference
assignedTo and the attribute salary that have been removed from the Person
metaclass;

– the Univaq:University element cannot be in the model because the metaclass
University has been flattened into Workplace;

– the number of assigned projects to John:Person is higher than 1 which is the
new maximal number of projects that can be assigned to Person.

Fig. 2. A simple workplace model

In general, various migration proce-
dures to recover the conformance are
possible, each providing a different solu-
tion. Thus, it is of utmost importance
to inspect the different alternatives for
detecting the one, which fits modeler’s
needs best. However, because the alter-
natives largely overlap each other and
might present conflicts among them, the
procedure can be tedious and prone to
errors if executed without (semi) auto-
mated support. For instance, because of the SWMM metamodel refactoring the
simple workplace model in Fig. 2 can be migrated by means of several model
migrations as reported in Table 1 and explained in the following5:

R1. Introduce subclasses: this metamodel change involving the metaclass Person
can be resolved by means of any of the following alternatives:

– R1a1: all instances of Person are removed;
– R1a2, R1a3: all instances of the abstract superclass Person are re-typed into

either Employee (R1a2) or Intern (R1a3);
– R1a4: a non-empty set of instances is re-typed to Employee while another non-

empty set of instances is re-typed to Intern; the decision criteria about which
instances are retyped to one or the other type has to be provided by the user
in form of, e.g., OCL expressions.

R2. Push down attribute: this change, which pushed down the attribute salary
from Person to Employee, can be resolved by operating one of the following model
migrations:

– R2a1: retain the value of the pushed attribute;
– R2a2: delete the value of the pushed attribute;

R3. Add mandatory attribute: the addition of the mandatory attribute temporary
can be resolved by setting its value either to true (R3a1), or to false (R3a2).
This should be decided by the user.
R4. Restrict reference cardinality: this change operated on the reference
assignedTo can be resolved applying one of the following migration alternatives:
5 Please note that each migration alternative is identified by a term like R1a1 where
a1 is one of the possible migration alternative related to the metamodel change R1.

Supporting Variability Exploration and Resolution During Model Migration 235

Table 1. Possible model migration alternatives for the motivating example

Metamodel change Possible migration alternatives

R1. Introduce subclasses R1a1. Remove the existing instances of type Person

R1a2. Re-type the existing instances from Person to
Employee

R1a3. Re-type the existing instances from Person to
Intern

R1a4. Re-type the existing instances from Person to
Employee or Intern with different (non-empty)
combinations

R2. Push down attribute R2a1. Maintain the attribute value of salary in the
re-typed instance

R2a2. Remove the attribute value of salary

R3. Add mandatory attribute R3a1. Set the attribute value of Employee.temporary to
true

R3a2. Set the attribute value of Employee.temporary to
false

R4. Restrict reference cardinality R4a1. Remove one of link to the project assigned to a
Persona

R4a2. Remove all the links of project related to a
Person

R4a3. Re-assign one of the project to other personsa

R4a4. Re-assign all the project to other personsa

R5. Flatten hierarchy R5a1. Re-type all the instance with the corresponding
flattened subclasses with the supertype

R5a2. Remove all instances of Workplace
aThe selection criteria can be decided by the generation process, e.g. first, last, random.

– R4a1: unassign one of the two Projects from a Person;
– R4a2: unassign all Projects to allow for a complete reassignment;
– R4a3, R4a4: reassign one Project instance (R4a3) or all instances of Project

(R4a4) to another instance of Person.

R5. Flatten hierarchy: this modification, which affected Workplace, Company,
and University, can be resolved by re-typing all the instances of University or
Company to the superclass Workplace (R5a1) or by deleting all of them (R5a2).

A migration solution consists of a combination of selected migration alter-
natives, one for each metamodel refactoring, which are not in conflict to each
other. However, alternatives can be combined in different manners by exponen-
tially increasing the number of migration solutions and thus the complexity of
the problem. For instance, by considering the 5 changes operated on the initial
SWMM metamodel of the previous example, the total number of possible migra-
tion solutions for the sample workplace model are 128 (= 4 × 2 × 2 × 4 × 2),
although this might be an over-approximation because conflicts might occur
between migration alternatives as discussed later on the paper. However, if user-
specified decision criteria are allowed, the number might be even higher.

236 D. Di Ruscio et al.

3 Approach

In this section, we present an approach to represent, explore, and select migration
alternatives in response to metamodel changes. The approach allows to inten-
tionally represent multiple solutions for the model migration problem at hand.
In particular, instead of extensionally represent all the possible solutions as typ-
ically done by existing techniques (e.g., [25]), a single model with variability is
employed to precisely denote which parts of the solution are different for each
migration alternative. The proposed approach also permits to highlight aspects
that are not evident with classical approaches, such as conflicting alternatives.

Fig. 3. Proposed approach

Figure 3 shows the main artifacts and activities of the proposed app-
roach. The main concepts are represented by the Variability Weaving Metamodel
(WMM), which employes model weaving [2] (see mWMM) by linking different
models to represent all possible migration solutions that can be alternatively
applied on the initial model mWMM in order to obtain models conforming to the
evolved metamodel (MM’). In particular, for each metamodel change the weaving
model represents corresponding migration alternatives for mWMM. Some of those
alternatives might be in conflict with others, e.g., the deletion of an element is in
conflict with other operations consuming it. In order to make the visualization
of alternatives and their conflicts easier to be analyzed, a model transformation
is applied on the source model mWMM to generate a target feature model [1].
The generated feature model can be inspected by the user in order to chose a
valid combination of migration alternatives, to finally obtain a model m′ con-
forming to MM’.

In the remaining of the section all the parts of the approach shown in Fig. 3
are described.

3.1 Variability Metamodel for Representing Different Migration
Solutions

The variability metamodel WMM previously mentioned is shown in Fig. 4
and has been constructed by building upon our previous work on difference

Supporting Variability Exploration and Resolution During Model Migration 237

Fig. 4. Variability weaving metamodel (WMM)

representation for metamodels [3], but shifting the concepts from the M2 level
of the OMG modeling stack to the M1 level [16]. Since we employ the Eclipse
technology stack, Ecore serves as meta-metamodel of the proposed variability
metamodel.

The metamodel consists of the root metaclass VariabilityModel that serves as
a container for all migration Solutions, each of which is performed on the affected
model to restore its conformance with respect to the newer metamodel version.
In order to express all the possible migration strategies, each Solution consists
of one or more disjunct Alternatives. Each alternative (as those illustrated in
Table 1) is represented in terms of effects on the model to be migrated. To this
end, the DiffInstance and DiffFeature metaclasses have been introduced: the for-
mer identifies the model element affected by the metamodel refactoring, whereas
the latter identifies the corresponding structural features. The metamodel is
capable of describing all added, deleted, and changed metamodel instances along
with their added, deleted, and changed features. Additionally, instances that
remain the same, i.e., migration is not needed, can be specified (cf. CopyInstance).
Thus, all possible migration alternatives can be represented. Please note that
applicationElement is the reference to an element subject to change in m. The
properties name and featureName, value, newValue represent the changed/new
values in changed/new instances and features, respectively.

As already mentioned above, migration alternatives might also be in conflict
with each other. For example, considering a deletion of an element as a possible
alternative, this alternative is in conflict with all other alternatives that still
depend on the existence of this element. As shown in Fig. 4, an Alternative might

238 D. Di Ruscio et al.

be in conflict with more than one other migration alternatives (see the reference
conflictsWith). In the following, we present a way how users can deal with conflicts
when selecting migration alternatives. This enables an explicit management of
conflicts in subsequent stages of the migration process.

3.2 Variability Model as Weaving Model

Employing the approach to our example, all migration alternatives shown in
Table 1 have been represented by means of the weaving model shown in Fig. 5
and conforming to the variability metamodel in Fig. 4. The model mWMM has
been manually specified by the user by exploiting the Eclipse Epsilon’s model
weaving facilities ModeLink6.

On the left-hand side of Fig. 5 the sample workplace model conforming to
the initial version of SWMM is shown, whereas the right-hand side of the figure

Fig. 5. Sample weaving model represented by means of epsilon ModeLink

6 https://www.eclipse.org/epsilon/doc/modelink/.

https://www.eclipse.org/epsilon/doc/modelink/

Supporting Variability Exploration and Resolution During Model Migration 239

shows the evolved version of SWMM. In the middle, all the weaving elements
representing the possible migration alternatives of the sample workplace model
are shown. In particular, the weaving model consists of links (annotated by
dashed lines) relating model elements that have to be migrated (see the left-
hand side of the figure), with metaclasses in the newer metamodel (see the
right-hand side of the figure). Weaving links are organized in solutions, each
consisting of migration alternatives. For instance, the solution for the metamodel
change R1 - Introduce subclasses applied to the metaclass Person consists of four
alternatives (R1a1–R1a4), each representing the corresponding model migration.
In particular,

– the alternative R1a1 contains a Delete Instance that refers to John and Adele,
meaning that this choice deletes both instances.

– the alternative R1a3 links the instances John and Adele to the class Intern
of the new SWMM via a Changed Instance element, meaning that they are
re-typed to be instances of Intern during migration.

Since not all migration alternatives might be compatible with each other,
WMM also allows to specify conflicts to declare disjunct alternatives. For
instance, the property view on the lower right-hand side of Fig. 5 shows the
specified conflicts for R1a3, which is in conflict with the alternative R3a1. In
particular, R1a3 retypes all the instances of Person to Interns, whereas in R3a1
the attribute temporary, which is not existing in the Intern, is set to true. Con-
flicts are annotated in Fig. 5 by means of (vertical) dotted lines connecting the
weaving model elements.

Please note that for the sake of clarity not all weaving links and conflicts
are shown in Fig. 5, nevertheless all weaving links and conflicts regarding the R1
alternatives are shown.

3.3 Variability Model as Feature Model

Feature models [1] are a compact representation of different configurations for a
system, e.g., software product lines. In our approach, we employ feature models
to provide a suitable representation of all Solutions along with their migration
Alternatives, to support the user in identifying the right migration alternative.
Therefore, Solutions are represented as mandatory features (since for each change
a solution has to be chosen), while migration Alternatives are disjunct subfeatures
of Solutions, thus the user can only decide for one concrete alternative at a
time. However, since alternatives might be in conflict among them, we exploit
constraints as part of the feature model to define these conflicts.

For instance, in order to provide a convenient representation for the solution
and alternatives illustrated in Fig. 5, the feature model in Fig. 6 can be used.
It can be automatically generated from the weaving model using the model
transformation shown in Listing 1.1. The generated feature model consists of
mandatory elements R1–R5 representing the different solutions that have to be
considered to migrate the simple workplace model. Each of them consists of

240 D. Di Ruscio et al.

Fig. 6. Feature model related to the running example

several disjunct alternatives that represent the concrete migration actions to
be undertaken. If conflicts have been specified, they are denoted in the feature
model by means of constraints, e.g., by R1a1 ⇒ ¬R2a1 ∧ ¬R3a1 ∧ ¬R4a2, thus,
excluding specific alternative combinations. Interestingly, the presence of con-
straints in mandatory alternatives might reveal “dead features”, which means
that in order to apply all solutions, some choices might not be valid. In the exam-
ple, R1a1 and R1a4 are detected as dead features, since they either delete the
instance John or retype it to Intern, thereby hindering all subsequent migration
actions that rely on the instance itself or features of Employee. Besides dead fea-
tures, all other conflicts lead to constraints that might restrict some solutions.
For example, the choice of R1a3 will prevent the modeler from choosing also
R3a1, R4a2, and R4a3.

3.4 The WMM2FM transformation

Feature models like the one in Fig. 6 can be automatically generated from a
weaving model by means of a model transformation. Listing 1.1 provides such a
transformation, which has been developed with the Epsilon Generation Language
(EGL) [22]. Please note that this transformation is actually a model-to-text
transformation, since the employed feature model representation is technically
based on XML, thus, XML code is produced. In line 1–3 all solutions of the
model are queried, while in line 9–15 we iterate over these solutions and create a
feature for each solution containing all of its alternatives as possible subfeatures
(line 11–13). Thus, alternatives belonging to the same Solution are disjunct by
default. In order to automatically derive conflicts between migration alternatives
belonging to different Solutions, in line 20–36 we create a rule for each migration
that is in conflict with another migration alternative. More specifically, a con-
flict between Alternatives implies that those alternatives are not compatible to
each other (line 27–29). The generated constraints correspond to the following
expression, which states that selection of a implies that a1, . . . ,an are not valid
anymore, i.e., they are in conflict with a, more formally:

Supporting Variability Exploration and Resolution During Model Migration 241

a ⇒ ¬a1 ∧ ¬a2 ∧ . . . ∧ ¬an
Once the feature model is generated, it can be loaded, displayed and edited

by the FeatureIDE plugin [27] for Eclipse.

Listing 1.1. Fragment of the WMM2FM transformation
1 [%
2 var solutionModel := SolutionM.allInstances().at(0);
3 var allSolutions := solutionModel.solutions; %]
4 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
5 <featureModel chosenLayoutAlgorithm="1">
6 <struct>
7 <and abstract="false" mandatory="true" name="SolutionModel">
8 [%
9 for (s in allSolutions) { %]

10 <alt mandatory="true" name="[%=s.name%]">
11 [% for (a in s.alternatives) { %]
12 <feature mandatory="true" name="[%=a.name%]" />
13 [% } %]
14 </alt>
15 [% } %]
16 </and>
17 </struct>
18 <constraints>
19 [%
20 for (s in allSolutions) {
21 for (a in s.alternatives) {
22 if (a.allConflicts.size() > 0) { %]
23 <rule>
24 <imp>
25 <var>[%=a.name%]</var>
26 <conj>
27 [% for (conflict in a.allConflicts) { %]
28 <not><var>[%=conflict.name%]</var></not>
29 [% } %]
30 </conj>
31 </imp>
32 </rule>
33 [%
34 }
35 }
36 } %]
37 </constraints>
38 ...
39 </featureModel>

The feature model represents all possible configurations (i.e., migration solu-
tions) for model migration. However, in order to create one specific m′ a single
configuration in the feature model must be selected. Since configurations can
also be executed with FeatureIDE, it is possible to automatically migrate m to
m′ by attaching the needed migration actions for model migration directly to
the alternatives in the feature model.

3.5 Configuration and Execution of Model Migration

As aforementioned, the modeler has to ultimately decide on a combination of
valid options in the feature model, i.e., a configuration, to define a migration. In
this process, the user is supported by the provision of constraints that restrict the
number of valid solutions. In Fig. 7a a concrete but not yet finalized configuration

242 D. Di Ruscio et al.

taken by the user is shown. It is highlighted in the picture that the decision for
R2 is not made yet, i.e., the modeler can still choose among the two available
configurations (empty boxes shown in green). Once the user decides for a valid
configuration (cf. Fig. 7b), this configuration can be executed. This means that
all migration actions attached to the alternatives can be applied. Please note
that discussing the actual migration process is outside the scope of this paper,
however migration actions elaborated in our previous work [17] are adequate to
be reused in this approach. As shown in Fig. 7c an exemplary execution log is
provided to show the potential of this approach when executed.

(a) Building of configura-
tion

(b) Concrete example of
configuration

(c) Execution log of the
configuration

Fig. 7. Configuration and execution of model migration

4 Discussion

Although the approach has been validated by considering representative exam-
ples only, early feedback provides interesting elements for outlining benefits and
potential drawbacks. The idea of using feature models for representing the vari-
ous alternatives simplifies the representation of explicit and relevant knowledge
to be conveyed to the modeler. A manifest representation of alternatives, their
conflicts, and how traceability cross-links them to the metamodel refactoring is
a useful instrument for assisting the modeler in meeting her migration design
decisions. On the contrary, model migration has always been based on individ-
ual and spontaneous processes prone to errors and inconsistencies. Therefore,
shifting the responsibility of deciding which migration best fits the requirements
from the migration program implementer to the modeler is greatly beneficial if
properly supported.

Supporting Variability Exploration and Resolution During Model Migration 243

To the best of our understanding, the major drawback of the approach is
represented by the manual creation of the weaving model and the conflict rep-
resentation. Although the automated generation of such artifacts is outside the
scope of this paper, both the weaving model and the conflict representation we
are confident that it can be obtained in an automated manner. In particular, we
plan to revise our work from [25] (in which a corrupted conformance relation-
ship is re-established by applying so-called repair actions that generate multi-
ple solutions) to generate the weaving model instead of the concrete solutions.
For identification of conflicts, starting from our work on dependent metamodel
changes [3], we intend to generate admissible scheduling of migration actions.
Both extensions are desirable and seem viable as no major technical obstacle is
evident at this stage.

5 Related Work

There has been only little research on the unified management of multiple
migration strategies in the modeling community so far. Thus, in the following,
first more close approaches are compared to our approach, while in the latter
approaches from other engineering domains are discussed.

The closest work to our approach has been proposed recently in [11], in which
the authors propose a Variable Metamodel (VMM) during metamodel evolution.
This metamodel unifies the concepts of different metamodel evolutions in a way
that all models that need to be migrated conform to the VMM. In fact, a model
is not migrated but matches the VMM in each evolution of the metamodel, which
is in contrast to our approach since we provide possibilities to explore different
migration alternatives how the model can conform to the latest version of the
metamodel.

In [25] the authors introduce an approach to re-establish the confor-
mance relationship between models and metamodels by manipulating the non-
conforming model according to specific rules. Thus, multiple valid m′ are being
generated that are sorted and presented to the user according to quality criteria.
However, each solution is presented as its own model in contrast to the approach
proposed in this paper, which attempts to present variability in model migration
in one single model to better cope with overlapping solutions.

In [15] variability is tackled by the provision of multiple alternative repair
actions in order to repair a violated, i.e., non-conforming, model. However, the
user has to decide on the lower level of repair actions, while in our approach the
user decides on the level of models.

An approach which allows to define custom migration actions while still sat-
isfying quality criteria, and thus tackles variability by user involvement, has been
proposed in [19]. However, exploration of the different possibilities for migration
is not part of their work.

In [9] the consistency restoration between different UML models, e.g., class
and sequence diagrams, is addressed. To ensure consistency, an approach to
automatically generated choices to repair inconsistent UML models is proposed.

244 D. Di Ruscio et al.

The tool lets the user explore alternative ways to fix inconsistencies in a UML
model. However, the tool is limited to generate resolutions that only involve a
change at a single location at a time.

The necessity of dealing with multiple alternatives arised also in other fields,
including model merging and versioning and requirement engineering. In [5] the
authors propose an approach to automatically merge different versions of a model
according to user-definable consistency constraints. In fact, in case of inconsis-
tencies the approach is able to inform the modeler about which model elements
have to be changed. However, the approach focuses on merging different model
versions into one model, while our approach is able to highlight different migra-
tion alternatives in one variability model.

Wieland et al. [30] present an approach for optimistic model versioning,
meaning that conflicts do not have to be resolved immediately but rather when
a decision can be made how to resolve them. The approach is able to accept
conflicts and resolve them later in the process, by having the conflicted model
elements annotated to reflect the modifications. However, the approach focuses
on the simultaneous editing of models and arising conflicts, in contrast to our
approach which deals with different strategies on how to migrate a model.

In [26] the authors propose an approach merge similar algebraic graph trans-
formation (AGT) rules and generate a single rule with variability. Doing so, rule
variants can be expressed in a compact manner.

In [10] partial models are introduced in order to let the designer to spec-
ify uncertain information by means of a base model enriched with annotations
and first-order logic, which highlights the need for variability also in other engi-
neering domains. In [23] the authors stress the need for uncertainty since the
requirements engineering field it is common to have uncertainty in both the con-
tent and structure of the models. However, they do not cope with uncertainty
by providing a number of different possible choices to resolve uncertainty.

In goal-oriented methodologies such as KAOS or i* [28] intentionality and
variability aspects are also treated, but they are more widely used in early phases
of a project, while the models considered in this paper are the central artifacts
in the development process.

6 Conclusion and Future Work

In this paper, an approach for representing and visualizing different solutions for
model migration in presence of metamodel changes has been proposed. Besides
the capability to represent all possible alternatives in an intensional fashion,
the approach permits the explicit representation of conflicts that easily arise in
the migration process. In particular, the different options are represented in a
weaving model between the model to migrate and the evolved version of the
metamodel. In addition, it has been shown how to transform the weaving model
into a feature diagram, a commonplace notation that can be used out-of-the-
box. Among the advantages of the approach there is the traceability between
the metamodel refactorings and the migrations alternatives, which provides a
useful way to better grasp the rationale behind the migration actions.

Supporting Variability Exploration and Resolution During Model Migration 245

The presented approach suggests further developments. In particular, the
idea of automating the generation of the weaving models seems viable according
to our previous work [25]. The generation of conflicts is also another aspect
we intend to investigate starting from our previous work on the management
of dependent changes [3]: an opportunity to harness is given by analyzing how
dependencies among metamodel changes can give place to scheduling of model
migration actions.

References

1. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005)

2. Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the large and
modeling in the small. In: Aßmann, U., Akşit, M., Rensink, A. (eds.) MDAFA
2003. LNCS, vol. 3599, pp. 33–46. Springer, Heidelberg (2005)

3. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Managing dependent changes in cou-
pled evolution. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 35–51.
Springer, Heidelberg (2009)

4. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution
in model-driven engineering. In: Proceedings of EDOC, pp. 222–231. IEEE (2008)

5. Dam, H.K., Egyed, A., Winikoff, M., Reder, A., Lopez-Herrejon, R.E.: Consistent
merging of model versions. J. Syst. Softw. 112, 137–155 (2015)

6. Di Ruscio, D., Iovino, L., Pierantonio, A.: Coupled evolution in model-driven engi-
neering. IEEE Softw. 29(6), 78–84 (2012)

7. Di Ruscio, D., Iovino, L., Pierantonio, A.: Evolutionary togetherness: how to man-
age coupled evolution in metamodeling ecosystems. In: Ehrig, H., Engels, G.,
Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 20–37.
Springer, Heidelberg (2012)

8. Di Ruscio, D., Paige, R.F., Pierantonio, A.: Guest editorial to the special issue
on success stories in model driven engineering. Sci. Comput. Program. 89, 69–70
(2014)

9. Egyed, A., Letier, E., Finkelstein, A.: Generating and evaluating choices for fixing
inconsistencies in UML design models. In: 23rd IEEE/ACM International Confer-
ence on Automated Software Engineering, pp. 99–108, September 2008

10. Famelis, M., Salay, R., Chechik, M.: Partial models: towards modeling and reason-
ing with uncertainty. In: Proceedings of ICSE, pp. 573–583, June 2012

11. Font, J., Arcega, L., Haugen, O., Cetina, C.: Addressing metamodel revisions in
model-based software product lines. In: Proceedings of the 2015 ACM SIGPLAN
International Conference on GPCE, pp. 161–170. ACM (2015)

12. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: Managing model adaptation by
precise detection of metamodel changes. In: Paige, R.F., Hartman, A., Rensink, A.
(eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 34–49. Springer, Heidelberg (2009)

13. Herrmannsdoerfer, M.: COPE – a workbench for the coupled evolution of meta-
models and models. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010.
LNCS, vol. 6563, pp. 286–295. Springer, Heidelberg (2011)

14. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assess-
ment of MDE in industry. In: Proceedings of the ICSE, pp. 471–480. ACM (2011)

246 D. Di Ruscio et al.

15. Körtgen, A.T.: New strategies to resolve inconsistencies between models of decou-
pled tools. In: 3rd Workshop on Living with Inconsistencies in Software Develop-
ment, Bd, vol. 661, pp. 21–31 (2010)

16. Kurtev, I., Bzivin, J., Aksit, M.: Technological spaces: an initial appraisal. In:
CoopIS, DOA’2002 Federated Conferences, Industrial Track (2002)

17. Kusel, A., Etzlstorfer, J., Kapsammer, E., Retschitzegger, W., Schwinger, W.,
Schönböck, J.: Consistent co-evolution of models and transformations. In: Proceed-
ings of the 18th International Conference on Model Driven Engineering Languages
and Systems (MODELS). IEEE, Ottawa, Canada (2015)

18. Lientz, B.P., Swanson, E.B.: Software Maintenance Management. Addison-Wesley,
Reading (1980)

19. Mantz, F., Taentzer, G., Lamo, Y.: Well-formed model co-evolution with customiz-
able model migration. In: Electronic Communications of the EASST, vol. 58 (2013)

20. Parsons, J., Wand, Y.: Using objects for systems analysis. Commun. ACM 40(12),
104–110 (1997)

21. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Model migration with
epsilon flock. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp.
184–198. Springer, Heidelberg (2010)

22. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.: The epsilon generation
language. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol.
5095, pp. 1–16. Springer, Heidelberg (2008)

23. Salay, R., Chechik, M., Horkoff, J., Di Sandro, A.: Managing requirements uncer-
tainty with partial models. Requirements Eng. 18(2), 107–128 (2013)

24. Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. Computer
39(2), 25–31 (2006)

25. Schönböck, J., Kusel, A., Etzlstorfer, J., Kapsammer, E., Schwinger, W., Wim-
mer, M., Wischenbart, M.: CARE - a constraint-based approach for re-establishing
conformance-relationships. In: Proceedings of the APCCM (2014)

26. Strüber, D., Rubin, J., Arendt, T., Chechik, M., Taentzer, G., Plöger, J.: Rule-
Merger: automatic construction of variability-based model transformation rules.
In: Stevens, P., Wasowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 122–140.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49665-7 8

27. Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: Fea-
tureIDE: an extensible framework for feature-oriented software development. Sci.
Comput. Program. 79, 70–85 (2014)

28. Van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
Fifth IEEE International Symposium on Requirements Engineering, pp. 249–262.
IEEE (2001)

29. Wagelaar, D., Iovino, L., Di Ruscio, D., Pierantonio, A.: Translational semantics
of a co-evolution specific language with the EMF transformation virtual machine.
In: Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol. 7307, pp. 192–207. Springer,
Heidelberg (2012)

30. Wieland, K., Langer, P., Seidl, M., Wimmer, M., Kappel, G.: Turning conflicts
into collaboration. Comput. Support. Coop. Work 22(2–3), 181–240 (2013)

http://dx.doi.org/10.1007/978-3-662-49665-7_8

Understanding Uncertainty in Cyber-Physical
Systems: A Conceptual Model

Man Zhang1(&), Bran Selic1, Shaukat Ali1, Tao Yue1,2,
Oscar Okariz3, and Roland Norgren4

1 Simula Research Laboratory, Oslo, Norway
{manzhang,bselic,shaukat,tao}@simula.no

2 University of Oslo, Oslo, Norway
3 ULMA Handling Systems, Oñati, Spain
ookariz@manutencion.ulma.es

4 Future Position X, Gävle, Sweden
roland.norgren@fpx.se

Abstract. Uncertainty is intrinsic in most technical systems, including
Cyber-Physical Systems (CPS). Therefore, handling uncertainty in a graceful
manner during the real operation of CPS is critical. Since designing, developing,
and testing modern and highly sophisticated CPS is an expanding field, a step
towards dealing with uncertainty is to identify, define, and classify uncertainties
at various levels of CPS. This will help develop a systematic and comprehensive
understanding of uncertainty. To that end, we propose a conceptual model for
uncertainty specifically designed for CPS. Since the study of uncertainty in CPS
development and testing is still irrelatively unexplored, this conceptual model
was derived in a large part by reviewing existing work on uncertainty in other
fields, including philosophy, physics, statistics, and healthcare. The conceptual
model is mapped to the three logical levels of CPS: Application, Infrastructure,
and Integration. It is captured using UML class diagrams, including relevant
OCL constraints. To validate the conceptual model, we identified, classified, and
specified uncertainties in two distinct industrial case studies.

Keywords: Uncertainty � Cyber-Physical systems � Conceptual model

1 Introduction

Cyber-Physical Systems (CPS) are present in a variety of safety/mission critical
domains [2–4]. Given the pervasiveness of CPS and their criticality to the daily
functioning of society, it is vital for such systems to operate in a reliable manner.
However, since they generally function in an inherently complex and unpredictable
physical environment, a major difficulty with these systems is that they must be
designed and operated in the presence of uncertainty. By uncertainty we mean here the

This work is funded by the U-Test H2020 Project (www.u-test.eu).

© Springer International Publishing Switzerland 2016
A. Wąsowski and H. Lönn (Eds.): ECMFA 2016, LNCS 9764, pp. 247–264, 2016.
DOI: 10.1007/978-3-319-42061-5_16

http://www.u-test.eu

lack of certainty (i.e., knowledge) about the timing and nature of inputs, the state of a
system, a future outcome, as well as other relevant factors.

As a first crucial step in such an investigation, we feel that it is necessary to
understand the phenomenon of uncertainty and all its relevant manifestations. This
means to systematically identify, classify and specify uncertainties that might arise at
any of the three levels of CPS: Application, Infrastructure, and Integration. Based on
studying and analyzing existing uncertainty models developed in other fields, including
philosophy, physics, statistics and healthcare [5–8], we have defined an uncertainty
conceptual model for CPS (U-Model) with the following objectives: (1) provide a
unified and comprehensive description of uncertainties to both researchers and prac-
titioners, (2) classify uncertainties with the aim of identifying common representational
patterns when modeling uncertain behaviors, (3) provide a reference model for sys-
tematically collecting uncertainty requirements, (4) serve as a methodological baseline
for modeling uncertain behaviors in CPS, and, last but not least, (5) provide a basis for
standardization of the conceptual model leading to its broader application in practice.

To verify the completeness and validity of the U-Model, we validated it using
uncertainty requirements1 collected from two industrial case studies from two different
domains: (1) Automated Warehouses developed by ULMA Handling Systems (www.
ulmahandling.com/en/), Spain, (2) GeoSports (fpx.se/geo-sports/) developed by Future
Position X, Sweden. This empirical validation was systematically performed in several
stages and, as a result, several revisions of the U-Model were obtained in addition to a
refined set of uncertainty requirements. The version of the U-Model that emerged from
this work is presented in this paper. Based on the results of this validation, we dis-
covered 61.5 % (averaged across the two case studies) additional uncertainties not
identified in the initial specifications. The rest of this paper is organized as follows:
Sect. 2 presents the background and a running example. Section 3 presents the U-
Model. Section 4 presents evaluation and discussion. Section 5 discusses related work
and we conclude the paper in Sect. 6.

2 Background and Running Example

A CPS is defined in [1] as: “A set of heterogeneous physical units (e.g., sensors,
control modules) communicating via heterogeneous networks (using networking
equipment) and potentially interacting with applications deployed on cloud infras-
tructures and/or humans to achieve a common goal” and is conceptually shown in
Fig. 1. As defined in [1], uncertainty can occur at the following three levels (Fig. 1):
(1) Application level: Due to events/data originating from the application of the CPS;
(2) Infrastructure level: Due to interactions including events/data among physical units,
networking infrastructure, and/or cloud infrastructure, (3) Integration level: Due to
either interaction among uncertainties at the first two levels or due to interactions
between application and infrastructure levels.

1 Use cases containing scenarios having uncertainty.

248 M. Zhang et al.

http://www.ulmahandling.com/en/
http://www.ulmahandling.com/en/

Due to confidentiality constraints, the actual industrial CPS case studies that we
used to evaluate the U-Model (Sect. 4) cannot be described in detail. Instead, we chose
a Videoconferencing Systems (VCS) developed by Cisco, Norway, as an example to
illustrate the conceptual model that has been used in our previous projects.

A typical VCS sends and receives audio/video streams to other VCS in a video-
conference including dedicated hardware-based VCS, software-based VCS for PCs,
and cloud-based VCS solutions (e.g., WebEx) as shown in Fig. 2 (inspired from [9]
and our existing collaboration with Cisco). To support videoconferences a complex
infrastructure is provided by Cisco (Fig. 2) comprising of a variety of hardware such as
gateways (e.g., Expressway) and dedicated servers (e.g., Telepresence and unified Call
Management servers). In Fig. 2, we also show the various levels at which the uncer-
tainties can occur in the context of our running example. For example, as shown in
Fig. 2, at Site 2, the interactions of Application level uncertainties in VCS 2 and
uncertainties in the Telepresence Servers are shown as Integration level uncertainties.

To facilitate the understanding of concepts, a VCS represents aspects of the physical
world in a somewhat simplified form. Among other functions, the VCS controls the
movement of a set of cameras that are directly attached to it via wired/wireless media.

Fig. 1. Conceptual model of a Cyber-Physical System [1]

Fig. 2. Running example – Videoconferencing System (VCS)

Understanding Uncertainty in Cyber-Physical Systems 249

This can also be performed via a cloud-basedVCS application (i.e.,WebEx) in addition to
dedicated hardware-based solutions. In the course of a videoconference, a number of
different uncertainties exist due to the complex and heterogeneous collection of networks,
cloud-based infrastructures, and VCSs.

3 Uncertainty Conceptual Model

The U-Model includes Belief Model, Uncertainty Model andMeasure Model. Their key
details are presented below, whereas more details are presented in [10].

3.1 Belief Model

The U-Model takes a subjective approach to representing uncertainty. This means that
uncertainty is modeled as a state (i.e., worldview) of some agent or agency – hence-
forth referred to as a BeliefAgent – that, for whatever reason, is incapable of possessing
complete and fully accurate knowledge about some subject of interest. Since it lacks
perfect knowledge, a BeliefAgent possesses a set of subjective Beliefs about the
subject. These may be valid, if the beliefs accurately represent facts, or invalid, if they
do not2. A Belief is an abstract concept, but can be expressed in concrete form via one
or more explicit BeliefStatements. Different BeliefAgents may hold different views
about a given subject, which is why each BeliefStatement is associated with a par-
ticular BeliefAgent. Note that a BeliefAgent does not necessarily represent a human
individual; it could constitute a community of individuals, some non-human organism,
or even some technological system, such as a computer system3.

These and other core concepts of the U-Model are represented as a class diagram in
Fig. 3, where subjective concepts are represented by the grey-filled boxes and objective
concepts as the unfilled boxes in Fig. 3. Subjective concepts are manifestations of the
imperfect knowledge of a BeliefAgent. Conversely, objective concepts reflect objective
reality and are, therefore, independent of BeliefAgents and their imperfections. One
significant characteristic of the subjective concepts is that they can vary over time, as
might occur, e.g., when more information becomes available4.

Uncertainty (lack of confidence) represents a state of affairs whereby a BeliefAgent
does not have full confidence in a Belief that it holds. This may be due to various factors:
lack of information, inherent variability in the subject matter, ignorance, or even due to
physical phenomena, e.g., the Heisenberg uncertainty principle.WhileUncertainty is an

2 Such a strictly binary categorization may not be always realistic, since Beliefs could be characterized
by degrees of validity. However, in this model, we choose to ignore such subtleties. Specifically, a
BeliefStatement is deemed to be valid if it is a sufficient approximation of the truth for the purpose
on hand.

3 In this case, the Beliefs would be reflected in the rules that are programmed into the system.
4 However, more information does not necessarily imply a decrease in uncertainty.

250 M. Zhang et al.

abstract concept, it can be represented by a corresponding Measurement expressing in
some concrete form the subjective degree of uncertainty held by the agent to a BeliefS-
tatement. Since the latter is a subjective notion, aMeasurement should not be confused
with the degree of validity of a BeliefStatement. Instead, it indicates the level of con-
fidence that the agent has in a statement5.

Finally, note that this model is intentionally made very general, which allows it to
be extended and customized for a variety of purposes, e.g., uncertainty model-based
testing of CPS in the context of our project. Figure 3 does not show the complete
model, e.g., to reduce visual clutter, some of the OCL constraints have been removed.
The complete model is described in [10]. In the remainder of this section, we examine
key concepts of the core model in more detail and illustrate some of them using the
running VCS example (see Table 1).

Belief, BeliefAgent and BeliefStatement. A Belief is an implicit subjective expla-
nation or description of some phenomena or notions6 held by a BeliefAgent. This is an
abstract concept whose only concrete manifestation is as a BeliefStatement. In our
running example, a test engineer at Cisco may have his/her own Beliefs about how a
VCS works. When coding test cases, he/she concretizes his/her Beliefs as executable
test scripts that may or may not correspond to the actual implementation the VCS.
A BeliefStatement in this context could be manifested as one executable test case file
and in other contexts it may correspond to other artifacts, e.g., source code.

A BeliefAgent is a physical entity7 owning one or more Beliefs about
phenomena/notion. A BeliefAgent can take actions based on its Beliefs. In our example
of CPS testing, BeliefAgents include: (1) Application level: software test engineers
focusing on testing new versions of the VCS software, and (2) Infrastructure level:
Network engineers focusing on testing a VCS under diverse network situations.

Fig. 3. The Core Belief Model

5 E.g, many people in the past were absolutely certain that the Earth was flat.
6 “Phenomena” here is intended to cover aspects of objective reality, whereas “notion” covers abstract
concepts, such those encountered in mathematics or philosophy.

7 We exclude here from this definition “virtual” BeliefAgents, such as those that might occur in virtual
reality systems and computer games.

Understanding Uncertainty in Cyber-Physical Systems 251

A BeliefStatement is a concrete and explicit specification of some Belief held by a
BeliefAgent about possible phenomena or notions belonging to a
given subject area. A BeliefStatement can be an aggregate of two or more component
BeliefStatements, or it may require one or more prerequisite BeliefStatements.

The concrete form of a BeliefStatement can vary, and may represent informal
pronouncements made by individuals or groups, documented textual specifications
expressed in either natural or formal languages, formal or informal diagrams, etc.

Due to the complex nature of objective reality and our human and technical lim-
itations, it may not always be possible to determine whether or not a BeliefStatement
is valid. Furthermore, the validity of a statement may only be meaningfully defined
within a given context or purpose at a given point of time. Thus, the statement that “the
Earth can be represented as a perfect sphere” may be perfectly valid for some purposes

Table 1. Running example – Dial of VCS

Package Concept Explanation

Belief
Model

Level Application
BeliefAgent Software testing engineers
BeliefStatement The VCS successfully dials to another VCS 70 % of the

time.
Indeterminacy
Source

Improper human behavior where he/she enters an
incomplete name/number of VCS to dial
IndeterminacyNature:: Non-determinism,
and IndeterminacyKnowledge.type=
KnowledgeType::KnownUnknown

Evidence Execution of 100 test cases on the VCS in the past week
involving the dial command
EvidenceKnowledge.type
=KnowledgeType::KnownKnown

Uncertainty Uncertainty in whether the dial to another VCS will be
successful or not. This concept may depend on (see
self-association of Uncertainty in Fig. 4) another
uncertainty composed by another BeliefStatement
specified by the network engineer, e.g. “The
Expressway gateway is 99 % of the time successful in
connecting Cisco’s VCS with third party VCS.”

Uncertainty
Model

Type Occurrence
Lifetime Difference of time that the dial was initiated and response

from the system was received
Locality Invocation of the dial API of VCS
Pattern Derived pattern from the collection of values of lifetime

of the uncertainty
Risk Low or even can be ignored

Measure
Model

Measurement 70 % of the time, derived from Evidence based on test
execution history

Measure Probability

252 M. Zhang et al.

but invalid or only partly valid for others. For our needs, we are more interested in
analyzing uncertainties in a BeliefStatement rather than studying its validity.

In our example, we define the following BeliefStatements: (1) Application level:
The VCS will successfully connect to another VCS 70 % of the time (see Table 1);
(2) Infrastructure level: The Expressway gateway is successful 99 % of the time in
connecting aCiscoVCSwith a third party VCS (see Table 1); and (3) Integration level: A
VCS communicates with the Expressway gateway with a 90 %–95 % success rate.

Evidence, EvidenceKnowledge, IndeterminacySource and IndeterminacyKnowl-
edge. Evidence is either an observation or a record of a real-world event occurrence
or, alternatively, the conclusion of some formalized chain of logical inference that
provides information that can contribute to determining the validity (i.e., truthfulness)
of a BeliefStatement. Evidence is inherently an objective phenomenon, representing
something that actually happened. This means that we exclude here the possibility of
counterfeit or invented evidence. Nevertheless, although Evidence represents objective
reality, it needs not be conclusive in the sense that it removes all doubt (Uncertainty)
about a BeliefStatement. In our example of an Application level BeliefStatement, i.e.,
“The VCS successfully dials to another VCS 70 % of the time”. The Evidence of the
70 % of success rate of dial may be obtained from the execution of 100 test cases on
the VCS in the past week (see Evidence Table 1).

EvidenceKnowledge expresses an objective relationship between a BeliefState-
ment and relevant Evidence. It identifies whether the corresponding BeliefAgent is
aware of the appropriate Evidence. Thus, an agent may be either aware that it knows
something (KnownKnown), or it may be completely unaware of Evidence
(UnknownKnown). This is formally expressed by the two constraints attached to
EvidenceKnowledge (Fig. 3). An example is provided in Table 1.

Indeterminacy is a situation whereby the full knowledge necessary to determine the
required factual state of some phenomena/notions is unavailable8. This is an abstract
concept whose only concrete manifestation is in the form of an IndeterminacySource.
As noted earlier, this may be due either to subjective reasons (e.g., agent ignorance) or
to objective reasons (e.g., the Heisenberg uncertainty). It is also useful to explicitly
identify factors that lead to Uncertainty referred to as IndeterminacySources. This
represents a situation whereby the information required to ascertain the validity of a
BeliefStatement is indeterminate in some way, resulting in Uncertainty being asso-
ciated with that statement. One possible source of indeterminacy can be another
BeliefStatement, which is why the latter is a specialization of IndeterminacySource
(Fig. 3). For example, for the following BeliefStatement: “The VCS successfully dials
to another VCS 70 % of the time”, for which there might be several Indetermi-
nacySources. A possibility is incorrect operator behavior, where an incomplete name
of the target VCS specified (IndeterminacySource entry in Table 1).

8 Care should be taken to distinguish between indeterminacy and non-determinism. The latter is only
one possible source of indeterminacy.

Understanding Uncertainty in Cyber-Physical Systems 253

IndeterminacyNature represents the specific kind of indeterminacy and can be one
of the following: (1) InsufficientResolution – The information available about the
phenomenon in question is not sufficiently precise; (2) MissingInfo – The full set of
information about the phenomenon in question is unavailable at the time when the
statement is made; (3) Non-determinism – The phenomenon in question is either
practically or inherently non-deterministic; (4) Composite – A combination of more
than one kinds of indeterminacy; (5) Unclassified – Indeterminate indeterminacy.

IndeterminacyKnowledge expresses an objective relationship between an Inde-
terminacySource and the awareness that the BeliefAgent has of that source. So, even
though it is agent specific, it is still an objective concept since it does not represent
something that is declared by the agent. For instance, an agent may be aware that it
does not know something about a possible source (KnownUnknown), or the agent may
be completely unaware of a possible source of indeterminacy (UnknownUnknown).

KnowledgeType (represented as enumeration) has four values: (1) KnownKnown
indicates that an associated BeliefAgent is consciously aware of some relevant aspect;
(2) KnownUnknown (Conscious Ignorance) indicates that an associated BeliefAgent
understands that it is ignorant of some aspect; (3) UnknownKnown (Tacit Knowledge)
indicates that an associated BeliefAgent is not explicitly aware of some relevant aspect,
but may be able to exploit in some way; (4) UnknownUnknown (Meta Ignorance)
indicates that an associated BeliefAgent is unaware of some relevant aspect.

At a given point in time, a BeliefAgent always makes a statement based on a
KnownKnown Evidence and a KnownUnknown IndeterminacySource. Splitting
EvidenceKnowledge and IndeterminacyKnowledge provides the flexibility to enable
transitions among different knowledge types (e.g., from UnknownKnown to
KnownKnown), based on the evolution of EvidenceKnowledge and Indetermi-
nacyKnowledge related to the associated BeliefAgent. For the following BeliefS-
tatement: “The VCS successfully dials to another VCS 70 % of the time” and an
IndeterminacySource is improper operator behavior, the KnowledgeType of Inde-
terminacyKnowledge is KnownUnknown.

Measurement and Measure. Measurement when associated with a given Indeter-
minacySource represents the optional quantification (or qualification) that specifies the
degree of indeterminacy of the IndeterminacySource. For example, in the case of a
Non-determinism IndeterminacySource, its measurement could be expressed by a
probability or a probability density function. For the example presented in Table 1,
‘70 %’ is the measurement of the IndeterminacySource improper operator behavior.

Measurement when associated with Uncertainty is a subjective concept repre-
senting the actual measured value of an uncertainty defined by a BeliefAgent. It may be
possible to specify a Measurement that quantifies in some way (e.g., as a probability)
the degree of the uncertainty that a BeliefAgent associates with a BeliefStatement.
Measurement when associated with Belief represents sets of measured values of all the
uncertainties contained by a BeliefStatement defined by a BeliefAgent. Several con-
straints on Measurement ensure that each Measurement owned by either Belief,
Uncertainty or IndeterminacySource has a unique Measure. Currently, we modeled
three different measures, i.e., Probability, Ambiguity and Vagueness that are

254 M. Zhang et al.

discussed in the Measure Model (Sect. 3.3). In the future, we will provide UML model
libraries for Measurement when implementing U-Model as a UML profile. Measure is
an objective concept specifying method of measuring uncertainty. More details are
presented in Sect. 3.3.

3.2 Uncertainty Model

This model (Fig. 4) was inspired by concepts defined in the literature on uncertainty
[11–15] and is an adjunct to the Core Belief Model (Sect. 3.1). The uncertainty model
expands on Uncertainty from several different viewpoints and introduces related
abstractions. Notice that Uncertainty has a self-association. This self-association
facilitates: (1) relating different Application level uncertainties to each other, (2) relat-
ing different Infrastructure level uncertainties to each other, (3) relating Application
level and Infrastructure level uncertainties to each other, (4) relating Integration level
uncertainties to each other, and (5) relating Application, Integration, and Infrastructure
level uncertainties. This self-association can be specialized into different types of
relationships such as ordering and dependencies. Here, we intentionally did not spe-
cialize it to keep the model general, so that it can be specialized for various purposes
and contexts. In the rest of the section, we discuss each subtype of Uncertainty and its
associated concepts.

Uncertainty, Lifetime and Pattern. Uncertainty represents a situation whereby a
BeliefAgent lacks confidence in a BeliefStatement. Figure 4 shows a conceptual
model for different types of Uncertainty inspired from the concepts reported in [12, 14,
15]. Uncertainty is specialized into the following types: (1) Content – represents a
situation, whereby a BeliefAgent lacks confidence in content existing in a BeliefS-
tatement; (2) Environment – represents a situation whereby a BeliefAgent lacks
confidence in the surroundings of a physical system existing in a BeliefStatement;
(3) GeographicalLocation – represents a situation whereby a BeliefAgent lacks con-
fidence in geographical location existing in a BeliefStatement; (4) Occurrence –

represents a situation whereby a BeliefAgent lacks confidence in the occurrence of
events existing in a BeliefStatement; (5) Time – represents a situation whereby a
BeliefAgent lacks confidence in time existing in a BeliefStatement. For example, for
the BeliefStatement: “The VCS successfully calls another VCS 70 % of the time”, the

Fig. 4. The core uncertainty model

Understanding Uncertainty in Cyber-Physical Systems 255

Uncertainty is whether the dialing to another VCS will be successful or not and
classified as Occurrence uncertainty. In case of the BeliefStatement: “The Express-
way gateway is successful 99 % of the time in connecting a Cisco VCS with a third
party VCS”, the Uncer-
tainty is in the connection
of the gateway with the
third party VCS, and type
of uncertainty is again
Occurrence (see type of
Uncertainty in Table 1).

Lifetime represents an
interval of time, during
which an Uncertainty
exists. That is, an Uncer-
tainty may appear tem-
porarily and then
disappear. On the other
hand, an Uncertainty could be persistent, i.e., it remains until appropriate actions are
taken to resolve it. An example of Lifetime is shown in Table 1. We show two types of
time in Fig. 5: (1) Real Time showing the actual passing of the time, (2) Testing Time,
i.e., a time point in real time, where a testing activity was performed, e.g., a call attempt
to establish a videoconference (stimulus to the system under test) or a response from
the system was received about success or failure of the call (test result). Time points tn
are shown on Testing Time in Fig. 5. A BeliefStatement can be made at any point in
the real time, for example, three versions of BeliefStatement B1 (B1.1, B1.2, and B1.3)
can be made at different points of time as shown in Fig. 5. Lifetime of Uncertainty
(the occurrence of successful dial) in BeliefStatement B1 should be tn − tn−1: difference
of time that the dial was initiated and response from the system was received for B1.3.

Figure 6 shows a conceptual model for the occurrence Pattern of Uncertainty
inspired from concepts reported in [14, 16, 17]. Notice that in this section, patterns
presented are by no means the representation of a complete set of patterns that may
exist for an Uncertainty. Rather, we only present the most common patterns.

Periodic uncertainty occurs at regular intervals of time, whereas Persistent
uncertainty is the one that lasts forever. The definition of “forever” varies; e.g., an
uncertainty may exist permanently until appropriate actions are taken. On the other
hand, an uncertainty may not be resolvable and remains forever. Both Periodic and
Persistent inherit from Systematic, which means that these types of patterns occur in
some methodical manners, i.e., a pattern that can be described in a mathematical way.

An uncertainty with an Aperiodic pattern occurs at irregular intervals of time,
which is further specialized into Sporadic and Transient. A Sporadic uncertainty
occurs occasionally, whereas a Transient uncertainty occurs temporarily. Systematic
and Aperiodic uncertainty patterns inherit from Temporal, which means that they both
inherently have the notion of time. If an uncertainty occurs without a definite method,
purpose or conscious decision, the type of the pattern it follows is referred to as

Fig. 5. Example of Lifetime and Pattern of Uncertainty

256 M. Zhang et al.

Random. For example, when looking at Fig. 5, a pattern of the Uncertainty (the
occurrence of a successful call attempt) can be derived after collecting values of
Lifetime of the Uncertainty (see Pattern in Table 1).

Locality and Risk. Locality (see Fig. 4) is a particular place or a position where an
Uncertainty occurs in a BeliefStatement. For example, for the BeliefStatement: “The
VCS successfully dials to another VCS 70 % of the time”, the Locality of the
Uncertainty (whether the call attempt to another VCS will be successful or not) is in
the invocation (position) of dial API of VCS (see Locality in Table 1).

An uncertainty may have an associated Risk and high-risk uncertainties deserve
special attention. As shown in Fig. 4, an Uncertainty might or might not associated to
Risk, whose level can be classified into four levels according to the ISO 31000 – Risk
Management standard [18]. Level/Rating is derived from Measurement owned by
Uncertainty (e.g., Probability
of the Occurrence of an
Uncertainty) and Measurement
owned by Effect (e.g., high
impact using the risk matrix in
[19] or any other matrix). For
example, for the BeliefState-
ment: “The VCS successfully
calls another VCS 70 % of the
time”, the Risk associated with the Uncertainty in this BeliefStatement is low or the
risk could be even ignored (see Risk in Table 1).

3.3 Measure Model

Figure 7 shows the Measure Model of the U-Model, inspired from concepts reported in
[12–14] and by no means complete. Depending on the type of Uncertainty, a variety of
measures could be applied and new ones can also be proposed when needed. We aim to
give a high-level introduction to commonly known measures.

An uncertainty may be described ambiguously (Ambiguity). For example, in
statement “The camera is down”, the ambiguity is in the measurement, i.e., the camera
is either facing down or disconnected. Interested readers may consult [20] for various
measures of Ambiguity. Another common way of measuring Uncertainty is in a vague
manner (i.e., Vagueness), which can be further classified into Fuzziness and
NonSpecificity. Regarding Fuzziness, an uncertainty may be measured using fuzzy
methods. More details can be referred to the fuzzy logic literature such as [20]. In
certain cases, it may not be possible to measure an uncertainty using quantitative
measurements and instead qualitative measurements can be used. Such qualitative
measurements are classified under NonSpecificity methods. Finally, a common way of
measuring uncertainty is via Probability. For example, for the BeliefStatement: “The
VCS successfully calls another VCS 70 % of the time”, the Uncertainty is measured
by Probability (see Measure in Table 1).

Fig. 6. The Patterns of Uncertainty

Understanding Uncertainty in Cyber-Physical Systems 257

4 Evaluation

This section presents the results of the
industrial case studies that we conducted
to evaluate the U-Model and collect
uncertainty requirements. First case study
is about Automated Warehouse
(AW) provided by ULMA Handling
Systems and the second case study is
about Geo Sports (GS) by Future Posi-
tion X (further details in [10]).

4.1 Development and Validation of Uncertainty Requirements
and U-Model

We collected uncertainty requirements from the two industrial case studies in the
following ways. The uncertainty requirements were collected as part of an EU project
on testing CPS under uncertainty (www.u-test.eu). An initial set of uncertainty
requirements were collected by the industrial partners themselves and were later
classified into the three CPS levels: Application, Infrastructure, and Integration. Later
on, the researchers of Simula Research Laboratory conducted one workshop per partner
to further refine the requirements. For AW, the onsite workshop took around three
days, whereas in case of GS, a one-day onsite workshop was organized.

The validation procedure is summarized in Fig. 8 and comprises two parallel
validation processes. The first validation process is related to the validation of the
U-Model and was mainly conducted by the researchers. The second validation process
focuses on the validation of uncertainty requirements and was mainly performed by the
industrial partners.

The validation was developed incrementally (Activities A1 and A2 in Fig. 8),
based on existing models in the literature and other related published works (see Sect. 5
for details). The Simula team validated the conceptual model using two types of
examples shown as inputs to A2 in Fig. 8: (1) Examples of uncertainties from domains
other than CPS, and (2) A subset of VCS requirements. As a result an initial version of
the U-Model was produced referred as U-Model V.1 in Fig. 8.

In parallel, initial uncertainty requirements (Reqs V.1) were provided (Activity B1
in Fig. 8) by the industrial partners based on their domain knowledge, existing
requirements of their CPS, and some information from the real operation of the CPS.
These initial uncertainty requirements were used as input for A3, focusing on further
refining the U-Model. In addition, the researchers inspected the collected uncertainty
requirements using a requirements inspection checklist provided in [21] and provided a
set of comments for the industrial partners on how to improve their requirements. There
were two key outputs of the A3 activity: U-Model V.2 and comments to refine the
requirements. These comments were used by the industrial partners to produce a
second version of requirements (Reqs V.2) in B2.

Fig. 7. Measure Model

258 M. Zhang et al.

http://www.u-test.eu

4.2 Evaluation Results

For each of the industrial case studies, we mapped the three versions of uncertainty
requirements (Reqs V.1, Reqs V.2, and Reqs V.4) to the three versions of U-Model
(V.1 to V.3). The number of the instances of the concepts are shown in columns x (for
mapping Reqs V.1 to U-Model V.1), y (for mapping Reqs. V.2 to U-Model V.2), and z
(for mapping Reqs V.4 to U-Model V.3) of Table 2, respectively. Notice that Reqs V.3
was the result of the onsite workshops together with U-Model V.3 and thus these
requirements are not mapped to the model since both the conceptual model and
requirements were refined together. We analyzed in total 20 use cases for AW and 18
use cases for GS. Notice that, the number of use cases for each case study did not
change during the requirements collection and the U-Model validation process. They
were selected at the beginning of the process to capture and specify the key func-
tionalities of the CPS.

Based on the final version of requirements, we can see from Table 2 that most
common types of identified uncertainties are Content uncertainties having 91 instances
(the last column in Table 2) and Occurrence uncertainties having 205 instances. On
the other hand, a relatively lower number of Time uncertainties (50), Environment
uncertainties (32), and GeographicalLocation uncertainties (31) were found in the case

Fig. 8. Development and validation of uncertainty requirement and U-Model

Understanding Uncertainty in Cyber-Physical Systems 259

studies. Most of the time, uncertainties are due to InsufficientResolution (42 instan-
ces), MissingInfo (31 instances) or Non-determinism (89 instances). In terms of
Measure, our analysis revealed that 76 of the uncertainties across the case studies may
be measured with the Fuzziness measures, 119 with NonSpecificity, whereas 148 with
Probability. Notice that in Table 2, we do not show the concepts that have no instances
identified from any of the case studies.

In Table 2, the R1 = y/x − 1 column represents the increased percentage of mapping
of concepts explicitly captured in Reqs V.2 as compared to Reqs V.1. The R2 = z/y − 1
column shows the increased percentage of mapping of concepts explicitly captured in
Reqs V.4, i.e., including unknown uncertainties that weren’t explicitly specified in
Reqs V.2. As can be seen from Table 2, in case of AW for R1, on average, we identified
an additional 1.43 of uncertainties and in R2 we identified an additional 0.51 of
uncertainties. For GS, these percentages are 2.39 in R1, and 0.72 in R2, respectively. In
total, in R1 on average we identified additional 1.91 of uncertainties, whereas in R2 we
identified on average 0.615 of unknown uncertainties.

In Table 2, one can see that we didn’t have exact data (e.g., probability) and risk
information available at the moment. Such data will be collected using
questionnaire-based surveys in the future to quantify the identified uncertainties. In
addition, we didn’t observe any pattern for the occurrences of the identified uncer-
tainties. Moreover, the Belief part of the conceptual model (e.g., concepts Belief,
BeliefAgent) was derived to understand Uncertainty and is not relevant for the
validation.

5 Related Work

Uncertainty is a term that has been used in various fields such as philosophy, physics,
statistics and engineering to describe a state of having limited knowledge where it is
impossible to exactly tell the existing state, a future outcome or more than one possible
outcome [18]. Various uncertainty models have been proposed in the literature from
different perspectives for various domains. For instance, from an ethics perspective,
uncertainties are classified as objective uncertainty and subjective uncertainty, both of
which are further classified into subcategories to support decision-making [5]. In
healthcare, uncertainty has often been defined as “the inability to determine the
meaning of illness-related events” [6] and comprehensive domain-specific uncertainty
models (e.g., [7]) have been proposed, as discussed in [8].

Uncertainty is receiving more and more attention in recent years in both system and
software engineering, especially for CPS, which are required to be more and more
context aware [22–24]. Moreover, CPS inherently involves tight interactions between
various engineering disciplines, information technology, and computer science. This
magnifies uncertainties. Therefore, adequate treatment of uncertainty becomes
increasingly more relevant for any non-trivial CPS. However, to the best of our
knowledge, there is no comprehensive uncertainty conceptual model existing in liter-
ature that focused specifically on CPS design or on system/software engineering in
general. In the remainder of the section, we discuss how the concepts uncovered during
the literature review align with our proposed conceptual model.

260 M. Zhang et al.

The U-Model concepts BeliefAgent, BeliefStatement, and Belief of the Belief
model were adapted from [12]. The author of [12] postulates that uncertainty involves a
statement whose truth is expected by a person, and therefore the truth might differ for
different persons (defined as BeliefAgent in our model). However, as we discussed in
Sect. 3.1, we assigned a broader meaning to BeliefAgent: which can be an individual, a
community of individuals, or a technology. The U-Model concepts Environment and
Locality were adapted from [12, 25–27], and we related them to the other U-Model
concepts.

Our knowledge conceptual model aligns well with the model of knowledge reported
in [28]. Here the authors looked at how to manage different types of known and
unknown knowledge to distinguish what is known from what is not known. Knowledge
is also classified from a different perspective: something that everyone knows, tacit
knowledge, conscious ignorance and meta-ignorance. Their objective is to better
understand ignorance. The author of [29] also studied unknowns and provided a tax-
onomy particularly focusing on ignorance (named as KnownUnknown and Unknow-
nUnknown in our conceptual model). In our conceptual model, we further elaborate
these concepts and captured them as KnowledgeType, which is associated to Evidence
and IndeterminacySource via EvidenceKnowledge and IndeterminacyKnowledge.

We classified uncertainties into various types including Content, Time and
Occurrence. In [12], a chapter was dedicated to the discussion of content uncertainty
and its measurement. The other two types of uncertainties were mentioned in [12, 14,
15], with examples but with no clear definitions provided. We adopted the

Table 2. Evaluation results of uncertainty requirements and U-Model

Concept AW GS Freq

x y z R1* R2* x y z R1 R2 Total+

Uncertainty Content 14 36 55 1.57 0.53 16 20 36 0.25 0.80 91

Time 6 16 28 1.67 0.75 5 11 22 1.20 1.00 50

Occurrence 27 81 126 2.00 0.56 6 50 79 7.33 0.58 205

Environment 13 15 22 0.15 0.47 4 6 10 0.50 0.67 32

Geographical
Location

4 11 14 1.75 0.27 3 11 17 2.67 0.55 31

Sum for x, y, z/Average for R1,
R2

64 159 245 1.43 0.51 34 98 164 2.39 0.72 409

Indeterminacy Insufficient
Resolution

7 18 24 1.57 0.33 11 14 18 0.27 0.29 42

Non-determinism 7 45 52 5.43 0.16 11 20 37 0.82 0.85 89

MissingInfo 2 19 24 8.50 0.26 0 5 7 N/A 0.40 31

Sum for x, y, z/Average for R1,
R2

16 82 100 2.67 0.43 22 39 62 0.55 0.57 162

Measure Fuzziness 6 22 51 2.67 1.32 6 15 25 1.50 0.67 76

NonSpecificity 16 40 73 1.50 0.83 12 26 46 1.17 0.77 119

Probability 18 56 98 2.11 0.75 4 37 50 8.25 0.35 148

Sum for x, y, z/Average for R1,
R2

40 118 222 2.09 0.96 22 78 121 3.64 0.60 343

*R1 = y/x − 1 *R2 = z/y − 1 +Total = AW(z)+GS(z) Freq is Frequency

Understanding Uncertainty in Cyber-Physical Systems 261

measurements in our conceptual model. Different types of sources of uncertainty for
various purposes have been identified in the literature. In [30], the authors captured
sources of uncertainty by considering risk and reliability analyses, based on which they
classified uncertainty. The authors of [15, 31] identified sources of uncertainty in active
systems. In [23, 32], the authors described the sources of uncertainty in software
engineering in general. We however proposed the U-Model concepts Indetermi-
nacySource and IndeterminacyNature to capture sources of uncertainty.

Aleatory and Epistemic uncertainties are the two generic categories of uncertainties
discussed in many works [30, 33]. According to the work reported in [30], Aleatory is
due to the inherent randomness of phenomena, whereas the Epistemic uncertainty is
mainly due to the lack of knowledge. These two types are also covered in the U-Model.
For example, the Non-determinism (nature of indeterminacy in U-Model) represents
the randomness as in Aleatory, and Epistemic is covered by MissingInfo — nature of
indeterminacy.

In [34], the author noted that uncertainty can occur in a random or systematic
manner. In the Pattern part of the U-Model, we further elaborated the “systematic”
concept by introducing Pattern and its sub categories. In literature, uncertainty is often
related to Risk. The acquisition project team of the US Air Force Electronic System
Center (ESC) has proposed a risk matrix for evaluating risks [19]. They introduced the
concepts of Risk, impact, likelihood of occurrence, and rate of Risk and also identified
their relations. We reused these concepts and linked them with Uncertainty.

6 Conclusion

Cyber-Physical Systems (CPS) often consist of heterogeneous physical units (e.g.,
sensors, control modules) communicating via various networking equipment, inter-
acting with applications and humans. Thus, uncertainty is inherent in CPS due to tight
interactions between hardware, software and humans, and the need for them to be
increasingly context aware. To understand uncertainty in the context of CPS, unified
and comprehensive uncertainty conceptual model should be derived. The U-Model is
such a conceptual model developed in an EU project, based on a thorough literature
review of existing uncertainty models from various domains (e.g., philosophy,
healthcare), and refined and validated with two industrial CPS case studies of various
domains. Based on the results of several stages validation, we obtained the current
version of the conceptual model in addition to refined uncertainty requirements. On
average, we managed to learn 61.5 % of unknown uncertainties that weren’t explicitly
specified in the uncertainty requirements collected from the two case studies.

References

1. Ali, S., Yue, T.: U-test: evolving, modelling and testing realistic uncertain behaviours of
cyber-physical systems. In: Software Testing, Verification and Validation (ICST), pp. 1–2.
IEEE (2015)

262 M. Zhang et al.

2. Broy, M.: Engineering cyber-physical systems: challenges and foundations. In: Proceedings
of Complex Systems Design & Management, CSD&M, pp. 1–13 (2013)

3. Huang, H.-M., Tidwell, T., Gill, C., Lu, C., Gao, X., Dyke, S.: Cyber-physical systems for
real-time hybrid structural testing: a case study. In: Proceedings of the 1st ACM/IEEE
International Conference on Cyber-Physical Systems, pp. 69–78 (2010)

4. Tidwell, T., Gao, X., Huang, H.-M., Lu, C., Dyke, S., Gil, C.: Towards configurable
real-time hybrid structural testing: a cyber physical systems approach. In: Proceedings of
Object/Component/Service-Oriented Real-Time Distributed Computing, pp. 37–44 (2009)

5. Tannert, C., Elvers, H.D., Jandrig, B.: The ethics of uncertainty. EMBO reports 8 (2007)
6. Mishel, M.H.: Uncertainty in illness. Image: J. Nurs. Scholarsh. 20, 225–232 (1988)
7. Babrow, A.S., Kasch, C.R., Ford, L.A.: The many meanings of uncertainty in illness: toward

a systematic accounting. Health Commun. 10, 1–23 (1998)
8. Han, P.K., Klein, W.M., Arora, N.K.: Varieties of uncertainty in health care a conceptual

taxonomy. Med. Decis. Making 31, 828–838 (2011)
9. Cisco: Cisco Preferred Architecture for Video - Design Overview (2015)
10. Zhang, M., Selic, B., Ali, S., Yue, T., Okariz, O., Norgren, R.: Understanding uncertainty in

cyber-physical systems: a conceptual model. Simula Laboratory Research (2016)
11. Bammer, G., Smithson, M.: Uncertainty and Risk: Multidisciplinary Perspectives.

Routledge, New York (2012)
12. Lindley, D.V.: Understanding uncertainty (revised edn.). Wiley, Hoboken (2014)
13. Potter, K., Rosen, P., Johnson, C.R.: From quantification to visualization: a taxonomy of

uncertainty visualization approaches. In: Dienstfrey, A.M., Boisvert, R.F. (eds.) Uncertainty
Quantification in Scientific Computing. IFIP AICT, vol. 377, pp. 226–249. Springer,
Heidelberg (2012)

14. Taylor, B.N.: Guidelines for Evaluating and Expressing the Uncertainty of NIST
Measurement Results (rev. DIANE Publishing 2009)

15. Wasserkrug, S., Gal, A., Etzion, O.: A taxonomy and representation of sources of
uncertainty in active systems. In: Etzion, O., Kuflik, T., Motro, A. (eds.) NGITS 2006.
LNCS, vol. 4032, pp. 174–185. Springer, Heidelberg (2006)

16. Cimatti, A., Micheli, A., Roveri, M.: Timelines with Temporal Uncertainty. In: AAAI
(2013)

17. Sprunt, B., Sha, L., Lehoczky, J.: Scheduling sporadic and aperiodic events in a hard
real-time system. DTIC Document (1989)

18. ISO: ISO 31000: Risk management (2009)
19. Garvey, P.R., Lansdowne, Z.F.: Risk matrix: an approach for identifying, assessing, and

ranking program risks. Air Force J. Logistics 22, 18–21 (1998)
20. Klir, G.: Facets of Systems Science. Springer Science & Business Media, New York (2013)
21. Yue, T., Briand, L.C., Labiche, Y.: Facilitating the transition from use case models to

analysis models: approach and experiments. ACM Trans. Softw. Eng. Methodol. (TOSEM)
22, Article No. 5, 1–38 (2013)

22. Rajkumar, R.R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next computing
revolution. In: Proceedings of the 47th Design Automation Conference. ACM (2010)

23. Conti, M., Das, S.K., Bisdikian, C., Kumar, M., Ni, L.M., Passarella, A., Roussos, G.,
Tröster, G., Tsudik, G., Zambonelli, F.: Looking ahead in pervasive computing: Challenges
and opportunities in the era of cyber–physical convergence. Pervasive Mob. Comput. 8,
2–21 (2012)

24. Garlan, D.: Software engineering in an uncertain world. In: Proceedings of the FSE/SDP
Workshop on Future of Software Engineering Research, pp. 125–128. ACM (2010)

25. Hu, F.: Cyber-Physical Systems: Integrated Computing and Engineering Design. CRC Press,
Boca Raton (2013)

Understanding Uncertainty in Cyber-Physical Systems 263

26. Cheng, B.H., Sawyer, P., Bencomo, N., Whittle, J.: A goal-based modeling approach to
develop requirements of an adaptive system with environmental uncertainty. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 468–483. Springer, Heidelberg
(2009)

27. Wan, K., Man, K.L., Hughes, D.: Specification, analyzing challenges and approaches for
cyber-physical systems (CPS). Eng. Lett. 18, 308 (2010)

28. Kerwin, A.: None too solid medical ignorance. Sci. Commun. 15, 166–185 (1993)
29. Smithson, M.: Ignorance and Uncertainty: Emerging Paradigms. Springer, New York (1989)
30. Der Kiureghian, A., Ditlevsen, O.: Aleatory or epistemic? Does it matter? Struct. Saf. 31,

105–112 (2009)
31. Esfahani, N., Malek, S.: Uncertainty in self-adaptive software systems. In: De Lemos, R.,

Giese, H., Müller, H.A., Shaw, M. (eds.) Self-Adaptive Systems. LNCS, vol. 7475, pp 214–
238. Springer, Heidelberg (2013)

32. Ziv, H., Richardson, D., Klösch, R.: The uncertainty principle in software engineering. In:
Proceedings of the 19th International Conference on Software Engineering (1997)

33. Matthies, H.G.: Quantifying uncertainty: modern computational representation of
probability and applications. In: Extreme Man-Made and Natural Hazards in Dynamics of
Structures, pp. 105–135. Springer, The Netherlands (2007)

34. Bell, S.: A Beginner’s Guide to Uncertainty of Measurement. National Physical Laboratory
Teddington, Middlesex (2001)

264 M. Zhang et al.

Author Index

Ali, Shaukat 191, 247
Allon, Matthieu 173
Atkinson, Colin 83

Babur, Önder 3
Barmpis, Konstantinos 48
Bensoussan, Céline 121

Caron, Olivier 173
Carré, Bernard 173
Cleophas, Loek 3

de Lara, Juan 101
Delatour, Jérome 156
Denninger, Oliver 217
Di Ruscio, Davide 231
Diskin, Zinovy 19

Efftinge, Sven 205
Ekelin, Cecilia 36
Ekholm, Christian 36
El-Khoury, Jad 36
Etzlstorfer, Juergen 231

Garcia-Dominguez, Antonio 48
Garmendia, Antonio 101
Groenda, Henning 217
Guerra, Esther 101

Heim, Robert 67
Hinkel, Georg 217

Iovino, Ludovico 231

Jouault, Frédéric 156

Kessentini, Wael 138
Kienzle, Jörg 121
Kolovos, Dimitrios S. 48

König, Harald 19
Krach, Sebastian 217
Kühne, Thomas 83

López-Fernández, Jesús J. 101
Lu, Hong 191

Marticke, Frederik 205
Mir Seyed Nazari, Pedram 67

Norgren, Roland 247
Nygård, Jan 191

Okariz, Oscar 247

Paige, Richard F. 48
Pierantonio, Alfonso 231

Rumpe, Bernhard 67

Sahraoui, Houari 138
Saidi, Zied 156
Scheidgen, Markus 205
Schöttle, Matthias 121
Schwinger, Wieland 231
Selic, Bran 247

Tisi, Massimo 156

van den Brand, Mark 3
Vanwormhoudt, Gilles 173

Wang, Shuai 191
Wei, Ran 48
Wimmer, Manuel 138
Wortmann, Andreas 67

Yue, Tao 191, 247

Zhang, Man 247

	Foreword
	Preface
	Organization
	Keynotes
	A Model-Based Driver’s License for Self-Driving Cars: Challenges and Future Directions
	Usage of Domain Specific Modeling Languages in the Automotive Industry

	Contents
	Multi- and Many Models
	Hierarchical Clustering of Metamodels for Comparative Analysis and Visualization
	1 Introduction
	2 Preliminaries: Information Retrieval and Clustering
	3 Method for Metamodel Clustering
	3.1 Representation as VSM
	3.2 Clustering

	4 Case Studies
	4.1 Case Study 1 - GitHub Search Results
	4.2 Case Study 2 - AtlanMod Metamodel Zoo

	5 Discussion
	5.1 Threats to Validity

	6 Related Work
	7 Conclusion and Future Work
	References

	Advanced Local Checking of Global Consistency in Heterogeneous Multimodeling
	1 Introduction
	2 Background
	2.1 From Class Diagrams to Graphs, I: Typing
	2.2 From Class Diagrams to Graphs, II: Diagrammatic Constraints
	2.3 Multimodeling

	3 Managing Global Constraints
	3.1 Global Consistency
	3.2 Local-Individual Checking
	3.3 Global-Local-Equivalence

	4 Related Work

	5 Conclusion
	References

	Supporting the Linked Data Approach to Maintain Coherence Across Rich EMF Models
	Abstract
	1 Introduction
	1.1 Linked Data and the OASIS OSLC Standard
	1.2 Approach

	2 Case Study
	3 Auto Generation of OSLC Interfaces for EMF-Based Models
	3.1 Overall Architecture of the EMF4OSLC Generator
	3.2 Adaptor Implementation

	4 Related Work
	5 Conclusion
	Acknowledgement
	References

	Stress-Testing Centralised Model Stores
	1 Introduction
	2 Background and Related Work
	2.1 File-Based Model Persistence
	2.2 Database-Backed Model Persistence
	2.3 Model Repositories
	2.4 Heterogeneous Model Indexing

	3 Experiment Design
	3.1 Research Questions
	3.2 Experiment Setup
	3.3 Queries Under Study

	4 Results and Discussion
	4.1 Measurements Obtained
	4.2 RQ1: Impact of Protocol
	4.3 RQ2: Impact of API Design
	4.4 RQ3: Impact of Tool Internals
	4.5 Limitations and Threats to Validity

	5 Conclusions and Further Work
	References

	Language Engineering
	Compositional Language Engineering Using Generated, Extensible, Static Type-Safe Visitors
	1 Introduction
	2 Preliminaries
	3 Generating the Visitor Pattern as DSL Infrastructure
	4 The Visitor Pattern for Compositional Languages
	4.1 Extending Concrete Visitors for Language Extension
	4.2 Composing Concrete Visitors During Language Embedding

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Demystifying Ontological Classification in Language Engineering
	1 Introduction
	2 Background
	3 Points of Confusion
	3.1 Domain-Specific Languages
	3.2 Classic Language Engineering
	3.3 Dichotomy-Ambivalent Modeling

	4 Illuminating Dual Classification
	5 Points of Confusion Clarified
	5.1 Ontological Types Used for Linguistic Classification
	5.2 Linguistic Types Used in Ontological Levels
	5.3 Postponing Role Assignments

	6 Conclusion
	References

	Example-Based Generation of Graphical Modelling Environments
	1 Introduction
	2 Overview and Running Example
	2.1 Running Example

	3 Example-Based Meta-modelling
	4 Example-Based Concrete Syntax Inference
	4.1 Detection of Icons and Line Styles
	4.2 Detection of Spatial Relationships

	5 Generation of Graphical Modelling Environments
	6 Tool Support
	6.1 Tool Support for the Generation Process
	6.2 Extension Mechanisms

	7 Related Work
	8 Conclusions and Future Work
	References

	UML and Meta-modeling
	Associations in MDE: A Concern-Oriented, Reusable Solution
	1 Introduction
	2 Background on Concern-Oriented Reuse
	2.1 The CORE Reuse Process

	3 Designing the Association Concern
	3.1 Association Variation Interface
	3.2 Customization Interface
	3.3 Usage Interface
	3.4 Structural Realization of Associations
	3.5 Behavioural Realization
	3.6 Determining the Impacts of Association Realizations
	3.7 Association Concern Design Summary

	4 Using the Association Concern
	4.1 DSL for Applying the Association Concern
	4.2 Modifications to the Class Diagram Metamodel
	4.3 Automated and Consistent Feature Selections
	4.4 Generation of Mappings and Operation Renaming

	5 Related Work
	5.1 Existing Code Generation Approaches for Associations
	5.2 MouseTrap
	5.3 UMPLE
	5.4 Discussion

	6 Conclusion
	References

	Automated Metamodel/Model Co-evolution Using a Multi-objective Optimization Approach
	1 Introduction
	2 Background and Motivating Example
	2.1 Metamodels and Models
	2.2 Metamodel/Model Co-evolution: A Motivating Example

	3 Model Co-evolution: A Multi-objective Problem
	3.1 Overview
	3.2 Adapting NSGA-II for Model Co-evolution

	4 Validation
	4.1 Research Questions
	4.2 Experimental Setting
	4.3 Results
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion
	References

	Enabling OCL and fUML Integration by Transformation
	1 Introduction
	2 Interaction Between fUML and OCL by Example
	3 Integrating OCL in fUML by Translation
	4 Compiling OCL to fUML
	4.1 Mapping the OCL Library to fUML
	4.2 Translating OCL Expressions
	4.3 Translating fUML Extensions

	5 Proof-of-Concept Implementation
	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Isolating and Reusing Template Instances in UML
	1 Introduction
	2 Background on UML Templates
	2.1 UML Template and the Binding Relationship
	2.2 Parameters as a Model

	3 Towards Explicit Template Instantiation
	4 Instantiation Regarding Kinds of Templates
	5 Partial Instantiation
	6 Tool Support
	7 Related Works
	8 Conclusion
	References

	Experience Reports and Case Studies
	MBF4CR: A Model-Based Framework for Supporting an Automated Cancer Registry System
	Abstract
	1 Introduction
	2 The Model-Based Framework for Cancer Registry
	2.1 Modeling Methodology
	2.2 Tool Support

	3 Evaluation
	3.1 RQ1 (Performance)
	3.2 RQ2 (Correctness)
	3.3 Threats to Validity

	4 Overall Discussion
	5 Related Work
	6 Conclusion and Future Work
	Acknowledgement
	References

	Metamodeling vs Metaprogramming: A Case Study on Developing Client Libraries for REST APIs
	1 Introduction
	2 REST APIs and Client Libraries
	3 Metamodeling
	3.1 Metamodels and Code-Generation
	3.2 A Metamodel for REST APIs
	3.3 Example

	4 Metaprogramming
	4.1 Xtend and Active Annotations
	4.2 A Set of Active Annotations to Describe REST APIs
	4.3 Example

	5 Related Work
	6 Discussion and Conclusions
	References

	Experiences with Model-Driven Engineering in Neurorobotics
	1 Introduction
	2 The Neurorobotics Platform in a Nutshell
	3 The Potential of Model-Driven Engineering in Neurorobotics
	4 Lessons Learned
	4.1 Inconsistent Understanding of Models
	4.2 Focus the Platform, Not the Generator
	4.3 Model-Driven Tooling Based on Java Platform
	4.4 Customer Value of Model-Driven Artifacts in a Scrum Process
	4.5 Missing Baseline for MDE Benefits

	5 Conclusion
	References

	Variability and Uncertainty
	Supporting Variability Exploration and Resolution During Model Migration
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 Variability Metamodel for Representing Different Migration Solutions
	3.2 Variability Model as Weaving Model
	3.3 Variability Model as Feature Model
	3.4 The WMM2FM transformation
	3.5 Configuration and Execution of Model Migration

	4 Discussion
	5 Related Work
	6 Conclusion and Future Work
	References

	Understanding Uncertainty in Cyber-Physical Systems: A Conceptual Model
	Abstract
	1 Introduction
	2 Background and Running Example
	3 Uncertainty Conceptual Model
	3.1 Belief Model
	3.2 Uncertainty Model
	3.3 Measure Model

	4 Evaluation
	4.1 Development and Validation of Uncertainty Requirements and U-Model
	4.2 Evaluation Results

	5 Related Work
	6 Conclusion
	References

	Author Index

