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Abstract We propose a new iterative two-step proximal algorithm for solving
the problem of equilibrium programming in a Hilbert space. This method is a
result of extension of L.D. Popov’s modification of Arrow-Hurwicz scheme for
approximation of saddle points of convex-concave functions. The convergence
of the algorithm is proved under the assumption that the solution exists and the
bifunction is pseudo-monotone and Lipschitz-type.
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1 Introduction

Throughout this chapter, we assume that H is a real Hilbert space with inner product
.�; �/ and norm k � k. The symbol * denote weak convergence.

Let C be a nonempty closed convex subset of H and F W C � C ! R be a
bifunction with F.x; x/ D 0 for all x 2 C. Consider the following equilibrium
problem in the sense of Blum and Oettli [12]:

find x 2 C such that F.x; y/ � 0 8 y 2 C: (1)

The equilibrium problem (1) (problem of equilibrium programming, Ky Fan
inequality) is very general in the sense that it includes, as special cases, many
applied mathematical models such as: variational inequalities, fixed point problems,
optimization problems, saddle point problems, Nash equilibrium point problems in
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non-cooperative games, complementarity problems, see [3, 5, 6, 10, 12, 14, 17, 25]
and the references therein. This problem is interesting because it allows to unify all
these particular problems in a convenient way. In recent years, many methods have
been proposed for solving equilibrium and related problems [2–10, 14, 16, 26, 28,
32, 35–37]. The solution approximation methods for the equilibrium problem are
often based on the resolvent of equilibrium bifunction (see, for instance [14]) where
at each iterative step a strongly monotone regularization equilibrium problem is
solved. It is also called the proximal point method [16, 18, 20, 26, 37].

The variational inequality problem is a special case of the equilibrium problem.
For solving the variational inequality in Euclidean space, Korpelevich [21] intro-
duced the extragradient method where two metric projections onto feasible sets
must be found at each iterative step. This method was setted in Hilbert spaces by
Nadezhkina and Takahashi [27]. Some extragradient-like algorithms proposed for
solving variational inequality problems can be found in [19, 33, 34, 38]. In 2011, the
authors in [13, 22] have replaced the second projection onto any closed convex set
in the extragradient method by one onto a half-space and proposed the subgradient
extragradient method for variational inequalities in Hilbert spaces, see also [15, 39].

In recent years, the extragradient method has been extended to equilibrium prob-
lems for monotone (more general, pseudomonotone) and Lipschitz-type continuous
bifunctions and studied both theoretically and algorithmically [1, 31, 40]. In this
methods we must solve two strongly convex minimization problems on a closed
convex constrained set at each iterative step. We note that similar methods have
been previously proposed and studied by Antipin [2–4].

In 1980, Russian mathematician Popov [30] introduced very interesting modi-
fication of Arrow-Hurwicz scheme for approximation of saddle points of convex-
concave functions in Euclidean space. Let X and Y are closed convex subset of
Euclidean spaces R

d and R
p, respectively, and L W X � Y ! R be a differentiable

convex-concave function. Then, the method [30] approximation of saddle points of
L on X � Y can be written as

8
<

:

x1; Nx1 2 X; y1; Ny1 2 Y; � > 0;

xnC1 D PX
�
xn � �L0

1.Nxn; Nyn/
�

; ynC1 D PY
�
yn C �L0

2.Nxn; Nyn/
�

;

NxnC1 D PX
�
xnC1 � �L0

1.Nxn; Nyn/
�

; NynC1 D PY
�
ynC1 C �L0

2.Nxn; Nyn/
�

;

where PX and PY are metric projection onto X and Y , respectively, L0
1 and L0

2 are
partial derivatives. Under some suitable assumptions, Popov proved the convergence
of this method.

In this chapter, we have been motivated and inspired by the results of the authors
in [30, 31], proposed a new two-step proximal algorithm for solving equilibrium
problems. This algorithm is the extension of Popov method [30].

The set of solutions of the equilibrium problem (1) is denoted EP.F; C/. Further,
we assume that the solution set EP.F; C/ is nonempty.

Here, for solving equilibrium problem (1), we assume that the bifunction F
satisfies the following conditions:
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(A1) F.x; x/ D 0 for all x 2 C;
(A2) for all x, y 2 C from F.x; y/ � 0 it follows that F.y; x/ � 0 (pseudo-

monotonicity);
(A3) for all x 2 C the function F.x; �/ is convex and lower semicontinuous on C;
(A4) for all y 2 C the function F.�; y/ is weakly upper semicontinuous on C;
(A5) for all x, y, z 2 C the next inequality holds

F.x; y/ � F.x; z/ C F.z; y/ C a kx � zk2 C b kz � yk2 ;

where a, b are positive constants (Lipschitz-type continuity);
(A6) for all bounded sequences .xn/, .yn/ from C we have

kxn � ynk ! 0 ) F.xn; yn/ ! 0:

It is easy to show that under the assumptions (A1)–(A4), we have

x 2 EP.F; C/ , x 2 C W F.y; x/ � 0 8 y 2 C:

In particular, the set EP.F; C/ is convex and closed (see, for instance [31]).
The hypothesis (A5) was introduced by Mastroeni [25]. It is necessary to imply

the convergence of the auxiliary principle method for equilibrium problems. For
example, the bifunction F.x; y/ D .Ax; y � x/ with k-Lipschitz operator A W C ! H
satisfies (A5). Actually,

F.x; y/ � F.x; z/ � F.z; y/ D .Ax; y � x/ � .Ax; z � x/ � .Az; y � z/ D
D .Ax � Az; y � z/ � kAx � Azk ky � zk � k kx � zk ky � zk �

� k

2
kx � zk2 C k

2
ky � zk2 :

This implies that F satisfies the condition (A5) with a D b D k=2.
The condition (A6) is satisfied by bifunction F.x; y/ D .Ax; y � x/ with Lipschitz

operator A W C ! H.

2 The Algorithm

Let g W H ! R [ fC1g be a convex, lower semicontinuous, and proper. The
proximity operator of a function g is the operator proxg W H ! dom g � H (dom g
denotes the effective domain of g) which maps every x 2 H to the unique minimizer
of the function g C k � �xk2=2, i.e.,

8x 2 H proxgx D argminy2dom g

�

g.y/ C 1

2
ky � xk2

�

:
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We have

z D proxgx , g.y/ � g.z/ C .z � x; y � z/ � 0 8y 2 dom g:

Proximity operators have attractive properties that make them particularly well
suited for iterative minimization algorithms. For instance, proxg is firmly nonex-
pansive and its fixed point set is precisely the set of minimizers of g. For detailed
accounts of the proximity operators theory, see [11].

Now we extend the Popov method [30] to an equilibrium problem (1). In
Algorithm 1 we are going to describe, in order to be able to obtain its convergence,
the parameter � must satisfy some condition (see convergence Theorem 1).

Algorithm 1. For x1, y1 2 C generate the sequences xn, yn 2 C with the
iterative scheme

(
xnC1 D prox�F.yn;�/xn D argminy2C

˚
�F.yn; y/ C 1

2
ky � xnk2

�
;

ynC1 D prox�F.yn;�/xnC1 D argminy2C

˚
�F.yn; y/ C 1

2
ky � xnC1k2

�
;

where � > 0.

Extragradient method for the equilibrium problem (1) has the form
(

yn D prox�F.xn;�/xn;

xnC1 D prox�F.yn;�/xn;

where � > 0 [31]. A distinctive and attractive feature of the Algorithm 1 consists in
the fact that in the iterative step is used only one function F.yn; �/.
Remark 1. If F.x; y/ D .Ax; y � x/, then Algorithm 1 takes the form:

8
<

:

x1 2 C; y1 2 C;

xnC1 D PC.xn � �Ayn/;

ynC1 D PC.xnC1 � �Ayn/;

where PC is the operator of metric projection onto the set C.

A particular case of the scheme from the Remark 1 was proposed by Popov
[30] for search of saddle points of convex-concave functions, which are defined on
finite-dimensional Euclidean space. In recent works Malitsky and Semenov [23, 24]
proved the convergence of this algorithm for variational inequalities with monotone
and Lipschitz operators in infinite-dimensional Hilbert space, and proposed some
modifications of this algorithm.
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For substantiation of the iterative Algorithm 1 we note first, that if for some
number n 2 N next equalities are satisfied

xnC1 D xn D yn (2)

than yn 2 EP.F; C/ and the following stationarity condition holds

yk D xk D yn 8 k � n:

Actually, the equality

xnC1 D prox�F.yn;�/xn

means that

F.yn; y/ � F.yn; xnC1/ C .xnC1 � xn; y � xnC1/

�
� 0 8y 2 C:

From (2) it follows that

F.yn; y/ � 0 8y 2 C;

i.e. yn 2 EP.F; C/.
Taking this into account the practical variant of the Algorithm 1 can be written

as

Algorithm 2. Choose x1 2 C, y1 2 C, � > 0, and " > 0.

Step 1. For xn and yn compute

xnC1 D prox�F.yn;�/xn:

Step 2. If max fkxnC1 � xnk; kyn � xnkg � ", then STOP, else compute

ynC1 D prox�F.yn;�/xnC1:

Step 3. Set n WD n C 1 and go to Step 1.

Further, we assume that for all numbers n 2 N the condition (2) doesn’t hold. In
the following section the weak convergence of the sequences .xn/, .yn/ generated by
the Algorithm 1 is proved.
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3 Convergence Results

To prove the convergence we need next facts.

Lemma 1. Let non-negative sequences .an/, .bn/ such that

anC1 � an � bn:

Then exists the limit limn!1 an 2 R and
P1

nD1 bn < C1.

Lemma 2 (Opial [29]). Let the sequence .xn/ of elements from Hilbert space H
converges weakly to x 2 H. Then for all y 2 H n fxg we have

lim inf
n!1 kxn � xk < lim inf

n!1 kxn � yk:

We start the analysis of the convergence with the proof of important inequality
for sequences .xn/ and .yn/, generated by the Algorithm 1.

Lemma 3. Let sequences .xn/, .yn/ be generated by the Algorithm 1, and let z 2
EP.F; C/. Then, we have

kxnC1 � zk2 � kxn � zk2 � .1 � 2�b/ kxnC1 � ynk2 �
� .1 � 4�a/ kyn � xnk2 C 4�a kxn � yn�1k2 : (3)

Proof. We have

kxnC1 � zk2 D kxn � zk2 � kxn � xnC1k2 C 2 .xnC1 � xn; xnC1 � z/ D
D kxn � zk2 � kxn � ynk2 � kyn � xnC1k2 �

�2 .xn � yn; yn � xnC1/ C 2 .xnC1 � xn; xnC1 � z/ : (4)

From the definition of points xnC1 and yn it follows that

�F.yn; z/ � �F.yn; xnC1/ � .xnC1 � xn; xnC1 � z/; (5)

�F.yn�1; xnC1/ � �F.yn�1; yn/ � �.xn � yn; yn � xnC1/: (6)

Using inequalities (5), (6) to estimate inner products in (4), we get

kxnC1 � zk2 � kxn � zk2 � kxn � ynk2 � kyn � xnC1k2 C
C2� fF.yn; z/ � F.yn; xnC1/ C F.yn�1; xnC1/ � F.yn�1; yn/g : (7)

From pseudomonotonicity of the bifunction F and z 2 EP.F; C/ it follows that

F.yn; z/ � 0;
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and Lipschitz-type continuity F guaranties the satisfying of inequality

�F.yn; xnC1/ C F.yn�1; xnC1/ � F.yn�1; yn/ �
� a kyn�1 � ynk2 C b kyn � xnC1k2 :

Using the above estimations (7), we get

kxnC1 � zk2 � kxn � zk2 � kxn � ynk2 � kyn � xnC1k2 C
C2�a kyn�1 � ynk2 C 2�b kyn � xnC1k2 : (8)

The term kyn�1 � ynk2 we estimate in the next way

kyn�1 � ynk2 � 2 kyn�1 � xnk2 C 2 kyn � xnk2 :

Taking this into account (8), we get the inequality

kxnC1 � zk2 � kxn � zk2 � kxn � ynk2 � kyn � xnC1k2 C
C4�a kyn�1 � xnk2 C 4�a kyn � xnk2 C 2�b kyn � xnC1k2 ;

i.e. the inequality (3). ut
Proceed directly to proof of the convergence of the algorithm. Let z 2 EP.F; C/.

Assume

an D kxn � zk2 C 4�a kyn�1 � xnk2 ;

bn D .1 � 4�a/ kyn � xnk2 C .1 � 4�a � 2�b/ kyn � xnC1k2 :

Then inequality (3) takes form

anC1 � an � bn:

The following condition are required

0 < � <
1

2.2a C b/
:

Then from Lemma 1 we can conclude that exists the limit

lim
n!1

�
kxn � zk2 C 4�a kyn�1 � xnk2

�

and

1X

nD1

�
.1 � 4�a/ kyn � xnk2 C .1 � 4�a � 2�b/ kyn � xnC1k2

�
< C1:
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Whence we obtain

lim
n!1 kyn � xnk D lim

n!1 kyn � xnC1k D lim
n!1 kxn � xnC1k D 0 (9)

and convergence of the sequence .kxn � zk/ for all z 2 EP.F; C/. In particular,
sequences .xn/, .yn/ are bounded.

Now we consider the subsequence .xnk /, which converges weakly to the point
Nz 2 C. Then from (9) it follows that ynk * Nz. Show that Nz 2 EP.F; C/. We have

F.yn; y/ � F.yn; xnC1/ C .xnC1 � xn; xnC1 � y/

�
8y 2 C: (10)

Passing to the limit (10) taking into account (9) and conditions (A4), (A6), we get

F.Nz; y/ � lim sup
k!1

F.ynk ; y/ � lim
k!1 fF.ynk ; xnkC1/C

C .xnkC1 � xnk ; xnkC1 � y/

�

�

D 0 8y 2 C;

i.e. Nz 2 EP.F; C/.
Now we show that xn * Nz. Then from (9) it follows that yn * Nz. Assume the

converse. Let exists the subsequence .xmk / such that xmk * Qz and Qz ¤ Nz. It is clear
that Qz 2 EP.F; C/. Use the Lemma 2 twice. We have

lim
n!1 kxn � Nzk D lim

k!1 kxnk � Nzk < lim
k!1 kxnk � Qzk D lim

n!1 kxn � Qzk D
D lim

k!1 kxmk � Qzk < lim
k!1 kxmk � Nzk D lim

n!1 kxn � Nzk;

it is impossible. So, sequence .xn/ converges weakly to Nz 2 EP.F; C/.
Thus, we obtain the following result.

Theorem 1. Let H be a Hilbert space, C � H is nonempty convex closed set, for
bifunction F W C � C ! R conditions (A1)–(A6) are satisfied and EP.F; C/ ¤
;. Assume that � 2

�
0; 1

2.2aCb/

�
. Then sequences .xn/, .yn/ generated by the

Algorithm 1 converge weakly to the solution Nz 2 EP.F; C/ of the equilibrium
problem (1), and limn!1 kxn � ynk D 0.

Remark 2. The asymptotics limn!1 kxn � ynk D 0 can be specified up to the
following:

lim inf
n!1

p
nkxn � ynk D 0: (11)

Indeed, if (11) does not hold, then kxn � ynk � �n�1=2 for some � > 0 and all
sufficiently large n. Hence, the series

P kxn � ynk2 diverges. We have obtained an
contradiction.
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4 Conclusion and Future Work

In this work we have proposed a new iterative two-step proximal algorithm for
solving the equilibrium programming problem in the Hilbert space. The method
is the extension of Popov’s modification [30] for Arrow-Hurwitz scheme for search
of saddle points of convex-concave functions. The convergence of the algorithm is
proved under the assumption that the solution exists and the bifunction is pseudo-
monotone and Lipschitz-type.

In one of a forthcoming work we’ll consider the next regularized variant of the
algorithm that converges strongly

(
xnC1 D prox�F.yn;�/ .1 � ˛n/ xn;

ynC1 D prox�F.yn;�/ .1 � ˛nC1/ xnC1;

where � > 0, .˛n/ is infinitesimal sequence of positive numbers. Also we plan to
study the variant of the method using Bregman’s distance instead of Euclidean.

The interesting question is the substantiation of using Algorithm 1 as the element
of an iterative method for equilibrium problem with a priori information, described
in the form of inclusion to the fixed points set of quasi-nonexpansive operator.

Another promising area is the development of Algorithm 1 variants for solving
stochastic equilibrium problems.

Acknowledgements We are grateful to Yura Malitsky, Yana Vedel for discussions. We are very
grateful to the referees for their really helpful and constructive comments. Vladimir Semenov
thanks the State Fund for Fundamental Researches of Ukraine for support.

References

1. Anh, P.N.: Strong convergence theorems for nonexpansive mappings and Ky Fan inequalities.
J. Optim. Theory Appl. 154, 303–320 (2012)

2. Antipin, A.S.: Equilibrium programming: gradient methods. Autom. Remote Control 58(8),
Part 2, 1337–1347 (1997)

3. Antipin, A.S.: Equilibrium programming: proximal methods. Comput. Math. Math. Phys. 37,
1285–1296 (1997)

4. Antipin, A.: Equilibrium programming problems: prox-regularization and prox-methods. In:
Recent Advances in Optimization. Lecture Notes in Economics and Mathematical Systems,
vol. 452, pp. 1–18. Springer, Heidelberg (1997)

5. Antipin, A.S.: Extraproximal approach to calculating equilibriums in pure exchange models.
Comput. Math. Math. Phys. 46, 1687–1998 (2006)

6. Antipin, A.S.: Multicriteria equilibrium programming: extraproximal methods. Comput. Math.
Math. Phys. 47, 1912–1927 (2007)

7. Antipin, A.S., Vasil’ev, F.P., Shpirko, S.V.: A regularized extragradient method for solving
equilibrium programming problems. Comput. Math. Math. Phys. 43(10), 1394–1401 (2003)

8. Antipin, A.S., Artem’eva, L.A., Vasil’ev, F.P.: Multicriteria equilibrium programming: extra-
gradient method. Comput. Math. Math. Phys. 50(2), 224–230 (2010)



324 S.I. Lyashko and V.V. Semenov

9. Antipin, A.S., Jacimovic, M., Mijailovic, N.: A second-order continuous method for solving
quasi-variational inequalities. Comput. Math. Math. Phys. 51(11), 1856–1863 (2011)

10. Antipin, A.S., Artem’eva, L.A., Vasil’ev, F.P.: Extraproximal method for solving two-person
saddle-point games. Comput. Math. Math. Phys. 51(9), 1472–1482 (2011)

11. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert
Spaces. Springer, New York (2011)

12. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems.
Math. Stud. 63, 123–145 (1994)

13. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational
inequalities in Hilbert space. J. Optim. Theory Appl. 148(2), 318–335 (2011)

14. Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear
Convex Anal. 6(1), 117–136 (2005)

15. Denisov, S.V., Semenov, V.V., Chabak, L.M.: Convergence of the modified extragradient
method for variational inequalities with non-Lipschitz operators. Cybern. Syst. Anal. 51, 757–
765 (2015)

16. Flam, S.D., Antipin, A.S.: Equilibrium programming using proximal-like algorithms. Math.
Program. 78, 29–41 (1997)

17. Giannessi, F., Maugeri, A., Pardalos, P.M.: Equilibrium Problems: Nonsmooth Optimization
and Variational Inequality Models. Kluwer Academic, New York (2004)

18. Iusem, A.N., Sosa, W.: On the proximal point method for equilibrium problems in Hilbert
spaces. Optimization 59, 1259–1274 (2010)

19. Khobotov, E.N.: Modification of the extra-gradient method for solving variational inequalities
and certain optimization problems. USSR Comput. Math. Math. Phys. 27(5), 120–127 (1987)

20. Konnov, I.V.: Application of the proximal point method to nonmonotone equilibrium problems.
J. Optim. Theory Appl. 119, 317–333 (2003)

21. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems.
Ekonomika i Matematicheskie Metody 12, 747–756 (1976) (In Russian)

22. Lyashko, S.I., Semenov, V.V., Voitova, T.A.: Low-cost modification of Korpelevich’s methods
for monotone equilibrium problems. Cybern. Syst. Anal. 47, 631–639 (2011)

23. Malitsky, Yu.V., Semenov, V.V.: An extragradient algorithm for monotone variational inequal-
ities. Cybern. Syst. Anal. 50, 271–277 (2014)

24. Malitsky, Yu.V., Semenov, V.V.: A hybrid method without extrapolation step for solving
variational inequality problems. J. Glob. Optim. 61, 193–202 (2015)

25. Mastroeni, G.: On auxiliary principle for equilibrium problems. In: Daniele, P., et al. (eds.)
Equilibrium Problems and Variational Models, pp. 289–298. Kluwer Academic, Dordrecht
(2003)

26. Moudafi, A.: Proximal point methods extended to equilibrium problems. J. Nat. Geom. 15,
91–100 (1999)

27. Nadezhkina, N., Takahashi, W.: Weak convergence theorem by an extragradient method for
nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 128, 191–201 (2006)

28. Nurminski, E.A.: The use of additional diminishing disturbances in Fejer models of iterative
algorithms. Comput. Math. Math. Phys. 48, 2154–2161 (2008)

29. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive
mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)

30. Popov, L.D.: A modification of the Arrow-Hurwicz method for search of saddle points. Math.
Notes Acad. Sci. USSR 28(5), 845–848 (1980)

31. Quoc, T.D., Muu, L.D., Hien, N.V.: Extragradient algorithms extended to equilibrium prob-
lems. Optimization 57, 749–776 (2008)

32. Semenov, V.V.: On the parallel proximal decomposition method for solving the problems of
convex optimization. J. Autom. Inf. Sci. 42(4), 13–18 (2010)

33. Semenov, V.V.: A strongly convergent splitting method for systems of operator inclusions with
monotone operators. J. Autom. Inf. Sci. 46(5), 45–56 (2014)

34. Semenov, V.V.: Hybrid splitting methods for the system of operator inclusions with monotone
operators. Cybern. Syst. Anal. 50, 741–749 (2014)



A New Two-Step Proximal Algorithm 325

35. Semenov, V.V.: Strongly convergent algorithms for variational inequality problem over the
set of solutions the equilibrium problems. In: Zgurovsky, M.Z., Sadovnichiy, V.A. (eds.)
Continuous and Distributed Systems, pp. 131–146. Springer, Heidelberg (2014)

36. Stukalov, A.S.: An extraproximal method for solving equilibrium programming problems in a
Hilbert space. Comput. Math. Math. Phys. 46, 743–761 (2006)

37. Takahashi, S., Takahashi, W.: Viscosity approximation methods for equilibrium problems and
fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 331, 506–515 (2007)

38. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings.
SIAM J. Control Optim. 38(2), 431–446 (2000)

39. Verlan, D.A., Semenov, V.V., Chabak, L.M.: A strongly convergent modified extragradient
method for variational inequalities with non-Lipschitz operators. J. Autom. Inf. Sci. 47(7),
31–46 (2015)

40. Vuong, P.T., Strodiot, J.J, Nguyen, V.H.: Extragradient methods and linesearch algorithms for
solving Ky Fan inequalities and fixed point problems. J. Optim. Theory Appl. 155, 605–627
(2012)


	A New Two-Step Proximal Algorithm of Solving the Problem of Equilibrium Programming
	1 Introduction
	2 The Algorithm
	3 Convergence Results
	4 Conclusion and Future Work
	References


