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Preface

This book is a collection of papers related to the International Conference “Opti-
mization and Its Applications in Control and Data Sciences” dedicated to Professor
Boris T. Polyak on the occasion of his 80th birthday, which was held in Moscow,
Russia, May 13–15, 2015.

Boris Polyak obtained his Ph.D. in mathematics from Moscow State University,
USSR, in 1963 and the Dr.Sci. degree from Moscow Institute of Control Sciences,
USSR, in1986. Between 1963 and 1971 he worked at Lomonosov Moscow State
University, and in 1971 he moved to the V.A. Trapeznikov Institute of Control
Sciences, Russian Academy of Sciences. Professor Polyak was the Head of Tsypkin
Laboratory and currently he is a Chief Researcher at the Institute. Professor Polyak
has held visiting positions at universities in the USA, France, Italy, Israel, Finland,
and Taiwan; he is currently a professor at Moscow Institute for Physics and
Technology. His research interests in optimization and control have an emphasis
in stochastic optimization and robust control. Professor Polyak is IFAC Fellow, and
a recipient of Gold Medal EURO-2012 of European Operational Research Society.
Currently, Boris Polyak’s h-index is 45 with 11807 citations including 4390 citations
since 2011.

This volume contains papers reflecting developments in theory and applications
rooted by Professor Polyak’s fundamental contributions to constrained and uncon-
strained optimization, differentiable and nonsmooth functions including stochastic
optimization and approximation, optimal and robust algorithms to solve many
problems of estimation, identification, and adaptation in control theory and its
applications to nonparametric statistics and ill-posed problems.

This book focus is on the recent research in modern optimization and its
implications in control and data analysis. Researchers, students, and engineers will
benefit from the original contributions and overviews included in this book. The
book is of great interest to researchers in large-scale constraint and unconstrained,
convex and non-linear, continuous and discrete optimization. Since it presents
open problems in optimization, game and control theories, designers of efficient
algorithms and software for solving optimization problems in market and data
analysis will benefit from new unified approaches in applications from managing
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viii Preface

portfolios of financial instruments to finding market equilibria. The book is also
beneficial to theoreticians in operations research, applied mathematics, algorithm
design, artificial intelligence, machine learning, and software engineering. Graduate
students will be updated with the state-of-the-art in modern optimization, control
theory, and data analysis.

Athens, OH, USA Boris Goldengorin
March 2016
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A New Adaptive Conjugate Gradient Algorithm
for Large-Scale Unconstrained Optimization

Neculai Andrei

This paper is dedicated to Prof. Boris T. Polyak on the occasion
of his 80th birthday. Prof. Polyak’s contributions to linear and
nonlinear optimization methods, linear algebra, numerical
mathematics, linear and nonlinear control systems are
well-known. His articles and books give careful attention to
both mathematical rigor and practical relevance. In all his
publications he proves to be a refined expert in understanding
the nature, purpose and limitations of nonlinear optimization
algorithms and applied mathematics in general. It is my great
pleasure and honour to dedicate this paper to Prof. Polyak, a
pioneer and a great contributor in his area of interests.

Abstract An adaptive conjugate gradient algorithm is presented. The search
direction is computed as the sum of the negative gradient and a vector determined by
minimizing the quadratic approximation of objective function at the current point.
Using a special approximation of the inverse Hessian of the objective function,
which depends by a positive parameter, we get the search direction which satisfies
both the sufficient descent condition and the Dai-Liao’s conjugacy condition. The
parameter in the search direction is determined in an adaptive manner by clustering
the eigenvalues of the matrix defining it. The global convergence of the algorithm is
proved for uniformly convex functions. Using a set of 800 unconstrained optimiza-
tion test problems we prove that our algorithm is significantly more efficient and
more robust than CG-DESCENT algorithm. By solving five applications from the
MINPACK-2 test problem collection, with 106 variables, we show that the suggested
adaptive conjugate gradient algorithm is top performer versus CG-DESCENT.

Keywords Unconstrained optimization • Adaptive conjugate gradient method •
Sufficient descent condition • Conjugacy condition • Eigenvalues clustering •
Numerical comparisons
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2 N. Andrei

1 Introduction

For solving the large-scale unconstrained optimization problem

minff .x/ W x 2 Rng; (1)

where f W Rn ! R is a continuously differentiable function, we consider the
following algorithm

xkC1 D xk C ˛kdk; (2)

where the step size ˛k is positive and the directions dk are computed using the
updating formula:

dkC1 D �gkC1 C ukC1: (3)

Here, gk D rf .xk/; and ukC1 2 Rn is a vector to be determined. Usually, in (2), the
steplength ˛k is computed using the Wolfe line search conditions [34, 35]:

f .xk C ˛kdk/ � f .xk/C �˛kgT
k dk; (4)

gT
kC1dk � �gT

k dk; (5)

where 0 < � � � < 1: Also, the strong Wolfe line search conditions consisting
of (4) and the following strengthened version of (5):

ˇ
ˇgT

kC1dk

ˇ
ˇ � ��gT

k dk (6)

can be used.
Observe that (3) is a general updating formula for the search direction compu-

tation. The following particularizations of (3) can be presented. If ukC1 D 0; then
we get the steepest descent algorithm. If ukC1 D .I � r2f .xkC1/�1/gkC1; then the
Newton method is obtained. Besides, if ukC1 D .I � B�1kC1/gkC1; where BkC1 is an
approximation of the Hessian r2f .xkC1/ then we find the quasi-Newton methods.
On the other hand, if ukC1 D ˇkdk; where ˇk is a scalar and d0 D �g0; the family
of conjugate gradient algorithms is generated.

In this paper we focus on conjugate gradient method. This method was intro-
duced by Hestenes and Stiefel [21] and Stiefel [31], (ˇHS

k D gT
kC1yk=yT

k dk), to
minimize positive definite quadratic objective functions ( Hereyk D gkC1 � gk.)
This algorithm for solving positive definite linear algebraic systems of equations
is known as linear conjugate gradient. Later, the algorithm was generalized to
nonlinear conjugate gradient in order to minimize arbitrary differentiable nonlinear
functions, by Fletcher and Reeves [14], (ˇFR

k D kgkC1k2=kgkk2), Polak and
Ribière [27] and Polyak [28], (ˇPRP

k D gT
kC1yk=kgkk2), Dai and Yuan [10],
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(ˇDY
k D kgkC1k2=yT

k dk), and many others. An impressive number of nonlinear
conjugate gradient algorithms have been established, and a lot of papers have
been published on this subject insisting both on theoretical and computational
aspects. An excellent survey of the development of different versions of nonlinear
conjugate gradient methods, with special attention to global convergence properties,
is presented by Hager and Zhang [20].

In this paper we consider another approach to generate an efficient and robust
conjugate gradient algorithm. We suggest a procedure for ukC1 computation by
minimizing the quadratic approximation of the function f in xkC1 and using a
special representation of the inverse Hessian which depends on a positive parameter.
The parameter in the matrix representing the search direction is determined in an
adaptive manner by minimizing the largest eigenvalue of it. The idea, taken from
the linear conjugate gradient, is to cluster the eigenvalues of the matrix representing
the search direction.

The algorithm and its properties are presented in Sect. 2. We prove that the search
direction used by this algorithm satisfies both the sufficient descent condition and
the Dai and Liao conjugacy condition [11]. Using standard assumptions, Sect. 3
presents the global convergence of the algorithm for uniformly convex functions.
In Sect. 4 the numerical comparisons of our algorithm versus the CG-DESCENT
conjugate gradient algorithm [18] are presented. The computational results, for a
set of 800 unconstrained optimization test problems, show that this new algorithm
substantially outperform CG-DESCENT, being more efficient and more robust.
Considering five applications from the MINPACK-2 test problem collection [4],
with 106 variables, we show that our algorithm is way more efficient and more
robust than CG-DESCENT.

2 The Algorithm

In this section we describe the algorithm and its properties. Let us consider that at
the kth iteration of the algorithm an inexact Wolfe line search is executed, that is the
step-length ˛k satisfying (4) and (5) is computed. With these the following elements
sk D xkC1 � xk and yk D gkC1 � gk are computed. Now, let us take the quadratic
approximate of function f in xkC1 as

˚kC1.d/ D fkC1 C gT
kC1dC

1

2
dTBkC1d; (7)

where BkC1 is an approximation of the Hessian r2f .xkC1/ of functionf and d is the
direction to be determined. The search direction dkC1 is computed as in (3), where
ukC1 is computed as solution of the following minimizing problem

min
ukC12Rn

˚kC1.dkC1/: (8)
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Introducing dkC1 from (3) in the minimizing problem (8), then ukC1 is obtained
as

ukC1 D .I � B�1kC1/gkC1: (9)

Clearly, using different approximations BkC1 of the Hessian r2f .xkC1/ different
search directions dkC1 can be obtained. In this paper we consider the following
expression of B�1kC1:

B�1kC1 D I � skyT
k � yksT

k

yT
k sk

C !k
sksT

k

yT
k sk
; (10)

where !k is a positive parameter which follows to be determined. Observe
that B�1kC1 is the sum of a skew symmetric matrix with zero diagonal elements
.skyT

k � yksT
k /=yT

k sk; and a pure symmetric and positive definite one IC!ksksT
k =yT

k sk:

The expression of B�1kC1 in (10) is a small modification of the BFGS quasi-
Newton updating formula without memory. This is considered here in order to
get the sufficient descent and the conjugacy conditions of the corresponding search
direction. Now, from (9) we get:

ukC1 D
�

skyT
k � yksT

k

yT
k sk

� !k
sksT

k

yT
k sk

�

gkC1: (11)

Denote HkC1 D B�1kC1: Therefore, using (11) in (3) the search direction can be
expressed as

dkC1 D �HkC1gkC1; (12)

where

HkC1 D I � skyT
k � yksT

k

yT
k sk

C !k
sksT

k

yT
k sk
: (13)

Observe that the search direction (12), where HkC1 is given by (13), obtained by
using the expression (10) of the inverse Hessian B�1kC1; is given by:

dkC1 D �gkC1 C
�

yT
k gkC1
yT

k sk
� !k

sT
k gkC1
yT

k sk

�

sk � sT
k gkC1
yT

k sk
yk: (14)

Proposition 2.1. Consider !k > 0 and the step length ˛k in (2) is determined by
the Wolfe line search conditions (4) and (5). Then the search direction (14) satisfies
the descent condition gT

kC1dkC1 � 0:
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Proof. By direct computation, since !k > 0; we get:

gT
kC1dkC1 D �kgkC1k2 � !k

.gT
kC1sk/

2

yT
k sk

� 0: �

Proposition 2.2. Consider !k > 0 and the step length ˛k in (2) is determined by
the Wolfe line search conditions (4) and (5). Then the search direction (14) satisfies
the Dai and Liao conjugacy condition yT

k dkC1 D �vk.sT
k gkC1/; where vk � 0:

Proof. By direct computation we have

yT
k dkC1 D �

"

!k C kykk2
yT

k sk

#

.sT
k gkC1/ � �vk.s

T
k gkC1/;

where vk � !k C kykk2
yT

k sk
: By Wolfe line search conditions (4) and (5) it follows

that yT
k sk > 0; therefore vk > 0: �

Observe that, although we have considered the expression of the inverse Hessian
as that given by (10), which is a non-symmetric matrix, the search direction (14),
obtained in this manner, satisfies both the descent condition and the Dai and Liao
conjugacy condition. Therefore, the search direction (14) leads us to a genuine
conjugate gradient algorithm. The expression (10) of the inverse Hessian is only
a technical argument to get the search direction (14). It is remarkable to say that
from (12) our method can be considered as a quasi-Newton method in which the
inverse Hessian, at each iteration, is expressed by the non-symmetric matrix HkC1:
More than this, the algorithm based on the search direction given by (14) can be
considered as a three-term conjugate gradient algorithm.

In this point, to define the algorithm the only problem we face is to specify a
suitable value for the positive parameter !k:As we know, the convergence rate of the
nonlinear conjugate gradient algorithms depend on the structure of the eigenvalues
of the Hessian and the condition number of this matrix. The standard approach
is based on a singular value study on the matrix HkC1 (see for example [6, 7]),
i.e. the numerical performances and the efficiency of the quasi-Newton methods
are based on the condition number of the successive approximations of the inverse
Hessian. A matrix with a large condition number is called an ill-conditioned matrix.
Ill-conditioned matrices may produce instability in numerical computation with
them. Unfortunately, many difficulties occur when applying this approach to general
nonlinear optimization problems. Mainly, these difficulties are associated to the
condition number computation of a matrix. This is based on the singular values
of the matrix, which is a difficult and laborious task. However, if the matrix HkC1 is
a normal matrix, then the analysis is simplified because the condition number of a
normal matrix is based on its eigenvalues, which are easier to be computed.

As we know, generally, in a small neighborhood of the current point, the
nonlinear objective function in the unconstrained optimization problem (1) behaves
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like a quadratic one for which the results from linear conjugate gradient can apply.
But, for faster convergence of linear conjugate gradient algorithms some approaches
can be considered like: the presence of isolated smallest and/or largest eigenvalues
of the matrix HkC1; as well as gaps inside the eigenvalues spectrum [5], clustering of
the eigenvalues about one point [33] or about several points [23], or preconditioning
[22]. If the matrix has a number of certain distinct eigenvalues contained in m
disjoint intervals of very small length, then the linear conjugate gradient method will
produce a very small residual after m iterations [24]. This is an important property
of linear conjugate gradient method and we try to use it in nonlinear case in order
to get efficient and robust conjugate gradient algorithms. Therefore, we consider
the extension of the method of clustering the eigenvalues of the matrix defining the
search direction from linear conjugate gradient algorithms to nonlinear case.

The idea is to determine !k by clustering the eigenvalues of HkC1; given by (13),
by minimizing the largest eigenvalue of the matrix HkC1 from the spectrum of this
matrix. The structure of the eigenvalues of the matrix HkC1 is given by the following
theorem.

Theorem 2.1. Let HkC1 be defined by (13). Then HkC1 is a nonsingular matrix and
its eigenvalues consist of 1 (n � 2 multiplicity); �CkC1; and ��kC1; where

�CkC1 D
1

2

�

.2C !kbk/C
q

!2k b2k � 4ak C 4
�

; (15)

��kC1 D
1

2

�

.2C !kbk/ �
q

!2k b2k � 4ak C 4
�

; (16)

and

ak D kykk2kskk2
.yT

k sk/2
> 1; bk D kskk2

yT
k sk
� 0: (17)

Proof. By the Wolfe line search conditions (4) and (5) we have that yT
k sk > 0:

Therefore, the vectors yk and sk are nonzero vectors. Let V be the vector space
spanned by fsk; ykg: Clearly, dim.V/ � 2 and dim.V?/ � n � 2: Thus, there exist a
set of mutually unit orthogonal vectors fui

kgn�2iD1 � V? such that

sT
k ui

k D yT
k ui

k D 0; i D 1; : : : ; n � 2;

which from (13) leads to

HkC1ui
k D ui

k; i D 1; : : : ; n � 2:

Therefore, the matrix HkC1 has n � 2 eigenvalues equal to 1, which corresponds
to fui

kgn�2iD1 as eigenvectors.
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Now, we are interested to find the rest of the two remaining eigenvalues, denoted
as �CkC1 and ��kC1; respectively. From the formula of algebra (see for example [32])

det.I C pqT C uvT/ D .1C qTp/.1C vTu/ � .pTv/.qTu/;

where p D ykC!ksk

yT
k sk

; q D sk; u D � sk

yT
k sk

and v D yk; it follows that

det.HkC1/ D kskk2kykk2
.yT

k sk/
2
C !k

kskk2
yT

k sk
� ak C !kbk: (18)

But, ak > 1 and bk � 0, therefore, HkC1 is a nonsingular matrix.
On the other hand, by direct computation

tr.HkC1/ D nC !k
kskk2
yT

k sk
� nC !kbk: (19)

By the relationships between the determinant and the trace of a matrix and
its eigenvalues, it follows that the other eigenvalues of HkC1 are the roots of the
following quadratic polynomial

�2 � .2C !kbk/�C .ak C !kbk/ D 0: (20)

Clearly, the other two eigenvalues of the matrix HkC1 are determined from (20)
as (15) and (16), respectively. Observe that ak > 1 follows from Wolfe conditions
and the inequality

yT
k sk

kskk2
� kykk2

yT
k sk

:�

In order to have both �CkC1 and ��kC1 as real eigenvalues, from (15) and (16) the
following condition must be fulfilled !2k b2k�4akC4 � 0; out of which the following
estimation of the parameter !k can be determined:

!k � 2
p

ak � 1
bk

: (21)

Since ak > 1; if kskk > 0; it follows that the estimation of !k given in (21) is well
defined. From (20) we have

�CkC1 C ��kC1 D 2C !kbk > 0; (22)

�CkC1�
�
kC1 D ak C !kbk > 0: (23)
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Therefore, from (22) and (23) we have that both �CkC1 and ��kC1 are positive
eigenvalues. Since!2k b2k�4akC4 � 0; from (15) and (16) we have that �CkC1 � ��kC1:
By direct computation, from (15), using (21) we get

�CkC1 � 1C
p

ak � 1 > 1: (24)

A simple analysis of Eq. (20) shows that 1 � ��kC1 � �CkC1: Therefore HkC1 is a
positive definite matrix. The maximum eigenvalue of HkC1 is �CkC1 and its minimum
eigenvalue is 1.

Proposition 2.3. The largest eigenvalue

�CkC1 D
1

2

�

.2C !kbk/C
q

!2k b2k � 4ak C 4
�

(25)

gets its minimum 1Cpak � 1; when !k D 2
p

ak�1
bk

:

Proof. Observe that ak > 1: By direct computation the minimum of (25) is obtained
for !k D .2

p
ak � 1/=bk; for which its minimum value is 1Cpak � 1: �

We see that according to proposition 2.3 when !k D .2
p

ak � 1/=bk the largest
eigenvalue of HkC1 arrives at the minimum value, i.e. the spectrum of HkC1 is
clustered. In fact for !k D .2

p
ak � 1/=bk; �

C
kC1 D ��kC1 D 1 C pak � 1:

Therefore, from (17) the following estimation of !k can be obtained:

!k D 2 yT
k sk

kskk2
p

ak � 1 � 2kykk
kskk

p

ak � 1: (26)

From (17) ak > 1; hence if kskk > 0 it follows that the estimation of !k given
by (26) is well defined. However, we see that the minimum of �CkC1 obtained for
!k D 2

p
ak � 1=bk; is given by 1 C pak � 1: Therefore, if ak is large, then the

largest eigenvalue of the matrix HkC1 will be large. This motivates the parameter !k

to be computed as:

!k D
(

2
p
� � 1 kykk

kskk ; if ak � �;
2
p

ak � 1 kykk
kskk ; otherwise;

(27)

where � > 1 is a positive constant. Therefore, our algorithm is an adaptive
conjugate gradient algorithm in which the value of the parameter !k in the search
direction (14) is computed as in (27) trying to cluster all the eigenvalues of HkC1
defining the search direction of the algorithm.

Now, as we know, Powell [30] constructed a three dimensional nonlinear
unconstrained optimization problem showing that the PRP and HS methods could
cycle infinitely without converging to a solution. Based on the insight gained by
his example, Powell [30] proposed a simple modification of PRP method where
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the conjugate gradient parameterˇPRP
k is modified as ˇPRPC

k D maxfˇPRP
k ; 0g: Later

on, for general nonlinear objective functions Gilbert and Nocedal [15] studied the
theoretical convergence and the efficiency of PRP+ method. In the following, to
attain a good computational performance of the algorithm we apply the Powell’s
idea and consider the following modification of the search direction given by (14)
as:

dkC1 D �gkC1 Cmax

�
yT

k gkC1 � !ksT
k gkC1

yT
k sk

; 0

�

sk � sT
k gkC1
yT

k sk
yk: (28)

where !k is computed as in (27).
Using the procedure of acceleration of conjugate gradient algorithms presented in

[1], and taking into consideration the above developments, the following algorithm
can be presented.

NADCG Algorithm (New Adaptive Conjugate Gradient Algorithm)
Step 1. Select a starting point x0 2 Rn and compute: f .x0/; g0 D rf .x0/: Select some positive

values for � and � used in Wolfe line search conditions. Consider a positive value for
the parameter �: (� > 1/ Set d0 D �g0 and k D 0.

Step 2. Test a criterion for stopping the iterations. If this test is satisfied, then stop; otherwise
continue with step 3.

Step 3. Determine the steplength ˛k by using the Wolfe line search (4) and (5).
Step 4. Compute z D xk C ˛kdk; gz D rf .z/ and yk D gk � gz:

Step 5. Compute: Nak D ˛kgT
z dk and Nbk D �˛kyT

k dk:

Step 6. Acceleration scheme. If Nbk > 0; then compute �k D �Nak=Nbk and update the variables as
xkC1 D xk C �k˛kdk; otherwise update the variables as xkC1 D xk C ˛kdk:

Step 7. Compute !k as in (27).
Step 8. Compute the search direction as in (28).

Step 9. Powell restart criterion. If
ˇ
ˇ
ˇgT

kC1gk

ˇ
ˇ
ˇ > 0:2kgkC1k2; then set dkC1 D �gkC1:

Step 10. Consider k D kC 1 and go to step 2. �

If function f is bounded along the direction dk; then there exists a stepsize ˛k

satisfying the Wolfe line search (see for example [13] or [29]). In our algorithm
when the Beale-Powell restart condition is satisfied, then we restart the algorithm
with the negative gradient �gkC1: More sophisticated reasons for restarting the
algorithms have been proposed in the literature [12], but we are interested in
the performance of a conjugate gradient algorithm that uses this restart criterion
associated to a direction satisfying both the descent and the conjugacy conditions.
Under reasonable assumptions, the Wolfe conditions and the Powell restart criterion
are sufficient to prove the global convergence of the algorithm. The first trial of
the step length crucially affects the practical behavior of the algorithm. At every
iteration k � 1 the starting guess for the step ˛k in the line search is computed
as ˛k�1 kdk�1k = kdkk : For uniformly convex functions, we can prove the linear
convergence of the acceleration scheme used in the algorithm [1].
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3 Global Convergence Analysis

Assume that:

i. The level set S D fx 2 Rn W f .x/ � f .x0/g is bounded.
ii. In a neighborhood N of S the function f is continuously differentiable and

its gradient is Lipschitz continuous, i.e. there exists a constant L > 0 such that
krf .x/ � rf .y/k � L kx � yk ; for all x; y 2 N:

Under these assumptions on f there exists a constant � � 0 such that krf .x/k � �
for all x 2 S: For any conjugate gradient method with strong Wolfe line search the
following general result holds [26].

Proposition 3.1. Suppose that the above assumptions hold. Consider a conjugate
gradient algorithm in which, for all k � 0; the search direction dk is a descent
direction and the steplength ˛k is determined by the Wolfe line search conditions. If

X

k�0

1

kdkk2
D1; (29)

then the algorithm converges in the sense that

lim inf
k!1 kgkk D 0: (30)

For uniformly convex functions we can prove that the norm of the direction dkC1
computed as in (28) with (27) is bounded above. Therefore, by proposition 3.1 we
can prove the following result.

Theorem 3.1. Suppose that the assumptions (i) and (ii) hold. Consider the algo-
rithm NADCG where the search direction dk is given by (28) and !k is computed
as in (27). Suppose that dk is a descent direction and ˛k is computed by the strong
Wolfe line search. Suppose that f is a uniformly convex function on S i.e. there exists
a constant � > 0 such that

.rf .x/ � rf .y//T.x � y/ � �kx � yk2 (31)

for all x; y 2 N: Then

lim
k!1 kgkk D 0: (32)

Proof. From Lipschitz continuity we havekykk � L kskk : On the other hand, from
uniform convexity it follows that yT

k sk � �kskk2: Now, from (27)

!k D 2
p
� � 1kykk

kskk � 2
p
� � 1L kskk

kskk D 2L
p
� � 1:
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On the other hand, from (28) we have

kdkC1k � kgkC1k C
ˇ
ˇyT

k gkC1
ˇ
ˇ

yT
k sk

kskk C !k

ˇ
ˇsT

k gkC1
ˇ
ˇ

yT
k sk

kskk C
ˇ
ˇsT

k gkC1
ˇ
ˇ

yT
k sk

kykk

� � C kykk� kskk
�kskk2

C 2L
p
� � 1kskk� kskk

�kskk2
C kskk� kykk

�kskk2

� � C 2L�

�
C 2L

p
� � 1�

�
;

showing that (29) is true. By proposition 3.1 it follows that (30) is true, which for
uniformly convex functions is equivalent to (32). �

4 Numerical Results and Comparisons

The NADCG algorithm was implemented in double precision Fortran using loop
unrolling of depth 5 and compiled with f77 (default compiler settings) and run on a
Workstation Intel Pentium 4 with 1.8 GHz. We selected a number of 80 large-scale
unconstrained optimization test functions in generalized or extended form presented
in [2]. For each test function we have considered 10 numerical experiments with
the number of variables increasing as n D 1000; 2000; : : : ; 10000: The algorithm
uses the Wolfe line search conditions with cubic interpolation, � D 0:0001; � D
0:8 and the same stopping criterion kgkk1 � 10�6;where k:k1is the maximum
absolute component of a vector.

Since, CG-DESCENT [19] is among the best nonlinear conjugate gradient algo-
rithms proposed in the literature, but not necessarily the best, in the following we
compare our algorithm NADCG versus CG-DESCENT. The algorithms we compare
in these numerical experiments find local solutions. Therefore, the comparisons of
algorithms are given in the following context. Let f ALG1

i and f ALG2
i be the optimal

value found by ALG1 and ALG2, for problem i D 1; : : : ; 800; respectively. We
say that, in the particular problem i; the performance of ALG1 was better than the
performance of ALG2 if:

�
�f ALG1

i � f ALG2
i

�
� < 10�3 (33)

and the number of iterations (#iter), or the number of function-gradient evalua-
tions (#fg), or the CPU time of ALG1 was less than the number of iterations, or the
number of function-gradient evaluations, or the CPU time corresponding to ALG2,
respectively.

Figure 1 shows the Dolan-Moré’s performance profiles subject to CPU time
metric for different values of parameter �: Form Fig. 1, for example for� D 2,
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Fig. 1 NADCG versus CG-DESCENT for different values of �

comparing NADCG versus CG-DESCENT with Wolfe line search (version 1.4),
subject to the number of iterations, we see that NADCG was better in 631 problems
(i.e. it achieved the minimum number of iterations for solving 631 problems),
CG-DESCENT was better in 88 problems and they achieved the same number of
iterations in 52 problems, etc. Out of 800 problems, we considered in this numerical
study, only for 771 problems does the criterion (33) hold. From Fig. 1 we see that
for different values of the parameter� NADCG algorithm has similar performances
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versus CG-DESCENT. Therefore, in comparison with CG-DESCENT, on average,
NADCG appears to generate the best search direction and the best step-length. We
see that this very simple adaptive scheme lead us to a conjugate gradient algorithm
which substantially outperform the CG-DESCENT, being way more efficient and
more robust.

From Fig. 1 we see that NADCG algorithm is very little sensitive to the values of
the parameter �: In fact, for ak � �; from (28) we get:

@dkC1
@�

D � 1p
� � 1

kykk
kskk

sT
k gkC1
yT

k sk
sk; (34)

where � > 1: Therefore, since the gradient of the function f is Lipschitz
continuous and the quantitysT

k gkC1is going to zero it follows that along the iterations
@dkC1=@� tends to zero, showing that along the iterations the search direction is less
and less sensitive subject to the value of the parameter �: For uniformly convex
functions, using the assumptions from Sect. 3 we get:

�
�
�
�

@dkC1
@�

�
�
�
�
� 1p

� � 1
L�

�
: (35)

Therefore, for example, for larger values of � the variation of dkC1 subject to �
decreases showing that the NADCG algorithm is very little sensitive to the values
of the parameter �: This is illustrated in Fig. 1 where the performance profiles have
the same allure for different values of �:

In the following, in the second set of numerical experiments, we present
comparisons between NADCG and CG-DESCENT conjugate gradient algorithms
for solving some applications from the MINPACK-2 test problem collection [4]. In
Table 1 we present these applications, as well as the values of their parameters.

The infinite-dimensional version of these problems is transformed into a finite
element approximation by triangulation. Thus a finite-dimensional minimization
problem is obtained whose variables are the values of the piecewise linear function
at the vertices of the triangulation. The discretization steps are nx D 1; 000 and
ny D 1; 000; thus obtaining minimization problems with 1,000,000 variables. A
comparison between NADCG (Powell restart criterion, krf .xk/k1 � 10�6; � D
0:0001; � D 0:8, � D 2) and CG-DESCENT (version 1.4, Wolfe line search, default
settings, krf .xk/k1 � 10�6) for solving these applications is given in Table 2.

Table 1 Applications from the MINPACK-2 collection

A1 Elastic–plastic torsion [16, pp. 41–55], c D 5

A2 Pressure distribution in a journal bearing [9], b D 10; " D 0:1

A3 Optimal design with composite materials [17], � D 0:008

A4 Steady-state combustion [3, pp. 292–299], [8], � D 5

A5 Minimal surfaces with Enneper conditions [25, pp. 80–85]
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Table 2 Performance of NADCG versus CG-DESCENT

NADCG CG-DESCENT

#iter #fg cpu #iter #fg cpu

A1 1111 2253 352:14 1145 2291 474:64

A2 2845 5718 1136:67 3370 6741 1835:51

A3 4270 8573 2497:35 4814 9630 3949:71

A4 1413 2864 2098:74 1802 3605 3786:25

A5 1548 3116 695:59 1225 2451 753:75

TOTAL 11187 22524 6780:49 12356 24718 10799:86

1,000,000 variables. CPU seconds

From Table 2, we see that, subject to the CPU time metric, the NADCG algorithm
is top performer and the difference is significant, about 4019.37 s for solving all
these five applications.

The NADCG and CG-DESCENT algorithms (and codes) are different in many
respects. Since both of them use the Wolfe line search (however, implemented in
different manners), these algorithms mainly differ in their choice of the search
direction. The search direction dkC1 given by (27) and (28) used in NADCG is
more elaborate: it is adaptive in the sense to cluster the eigenvalues of the matrix
defining it and it satisfies both the descent condition and the conjugacy condition in
a restart environment.

5 Conclusions

An adaptive conjugate gradient algorithm has been presented. The idea of this
paper is to compute the search direction as the sum of the negative gradient and an
arbitrary vector which was determined by minimizing the quadratic approximation
of objective function at the current point. The solution of this quadratic minimization
problem is a function of the inverse Hessian. In this paper we introduce a special
expression of the inverse Hessian of the objective function which depends by
a positive parameter !k. For any positive values of this parameter the search
direction satisfies both the sufficient descent condition and the Dai-Liao’s conjugacy
condition. Thus, the algorithm is a conjugate gradient one. The parameter in the
search direction is determined in an adaptive manner, by clustering the spectrum of
the matrix defining the search direction. This idea is taken from the linear conjugate
gradient, where clustering the eigenvalues of the matrix is very benefic subject to
the convergence. Mainly, in our nonlinear case, clustering the eigenvalues reduces
to determine the value of the parameter !k to minimize the largest eigenvalue of
the matrix. The adaptive computation of the parameter !k in the search direction is
subject to a positive constant which has a very little impact on the performances
of our algorithm. The steplength is computed using the classical Wolfe line
search conditions with a special initialization. In order to improve the reducing
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the values of the objective function to be minimized an acceleration scheme is
used. For uniformly convex functions, under classical assumptions, the algorithm
is globally convergent. Thus, we get an accelerated adaptive conjugate gradient
algorithm. Numerical experiments and intensive comparisons using 800 uncon-
strained optimization problems of different dimensions and complexity proved that
this adaptive conjugate gradient algorithm is way more efficient and more robust
than CG-DESCENT algorithm. In an effort to see the performances of this adaptive
conjugate gradient we solved five large-scale nonlinear optimization applications
from MINPACK-2 collection, up to 106 variables, showing that NADCG is obvious
more efficient and more robust than CG-DESCENT.
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On Methods of Terminal Control with
Boundary-Value Problems: Lagrange Approach

Anatoly Antipin and Elena Khoroshilova

Abstract A dynamic model of terminal control with boundary value problems
in the form of convex programming is considered. The solutions to these finite-
dimensional problems define implicitly initial and terminal conditions at the ends of
time interval at which the controlled dynamics develops. The model describes a real
situation when an object needs to be transferred from one state to another. Based
on the Lagrange formalism, the model is considered as a saddle-point controlled
dynamical problem formulated in a Hilbert space. Iterative saddle-point method
has been proposed for solving it. We prove the convergence of the method to
saddle-point solution in all its components: weak convergence—in controls, strong
convergence—in phase and conjugate trajectories, and terminal variables.

Keywords Terminal control • Boundary values problems • Controllability •
Lagrange function • Saddle-point method • Convergence

1 Introduction

Terminal control problem is considered in this article. The problem consists of
two main components in the form of linear controlled dynamics and two finite-
dimensional convex boundary value problems. The problem consists in choosing
such a control that the corresponding phase trajectory (the solution of differential
equation) is to connect the solutions of two boundary value problems, which are
tied to the ends of the time interval. The terminal control problem can be viewed
as a generalization of one of the main problems in the controllability theory for the
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case where the boundary conditions are defined implicitly as solutions of convex
programming problems. Such models have countless varieties of applications.

To solve this problem, we propose an iterative process of the saddle-point type,
and its convergence to the solution of the problem is proved. This solution includes
the following components: optimal control, optimal phase trajectory, conjugate
trajectory, and solutions of terminal boundary value problems. The method of
solving as an iterative process builds sequences of controls, trajectories, conjugate
trajectories, and similar sequences in terminal spaces. Here, the subtlety of the
situation is that trajectories are expected to tie the solutions of boundary value
problems. To achieve this, we organize special (additional) finite-dimensional
iterative process at the ends of time interval. These iterative processes in finite-
dimensional spaces ensure the convergence to terminal solutions.

The proposed approach [2–12, 17, 18] is considered in the framework of the
Lagrange formalism in contrast to the Hamilton formalism, the top of which is
the Pontryagin maximum principle. Although the Lagrange approach assumes the
convexity of problems, this assumption is not dominant fact, since the class of
problems to be solved remains quite extensive. This class includes problems with
linear controlled dynamics and convex integral and terminal objective functions.
Furthermore, the idea of linearization significantly reduce the pressure of convexity.
The class of possible models is greatly enriched by the use of different kinds of
boundary value problems. The proposed method is based on a saddle-point structure
of the problem, and converges to the solution of the problem as to a saddle point
of the Lagrange function. The convergence of iterative process to the solution is
proved. Namely, the convergence in controls is weak, but the convergence in other
components of the solution is strong. Other approaches are shown in [22, 23].

2 Problem Statement

Consider a boundary value problem of optimal control on a fixed time interval Œt0; t1	
with a movable right end. Dynamics of controllable trajectories x.�/ is described by
a linear system of ordinary differential equations

d

dt
x.t/ D D.t/x.t/C B.t/u.t/; t0 � t � t1;

where D.t/;B.t/ are n� n; n� r continuous matrices .r < n/. Controls u.�/ 2 U are
assumed to be bounded in the norm Lr

2

U D
�

u.�/ 2 Lr
2Œt0; t1	 j

1

2
ku.�/k2Lr

2
� C2

�

:

While controls are taking all admissible values from U, the ODE system for a given
x0 D x.t0/ generates a set of trajectories x.�/, the right ends x1 D x.t1/ of which
describe the attainability set X.t1/ � Rn.
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Any function x.�/ 2 Ln
2Œt0; t1	 satisfying this system for almost all t 2 Œt0; t1	 can

be considered as a solution. In particular, it may occur that the Cantor staircase
function (see [19, p. 361]), which is not an absolutely continuous function, is
a solution. This function is differentiable almost everywhere, but it cannot be
recovered from its derivative. Therefore, instead of examining differential system on
the entire space of trajectories x.�/ 2 Ln

2Œt0; t1	, we restrict ourselves to its subset of
absolutely continuous functions [19]. Every absolutely continuous function satisfies
the identity

x.t/ D x.t0/C
Z t

t0

.D.�/x.�/C B.�/u.�//d�; t0 � t � t1:

It is shown in [26, Book 2, p. 443] that a unique trajectory x.�/ is associated with
any control u.�/ 2 U � Lr

2Œt0; t1	 in the above system of equations. The class of
absolutely continuous functions forms a linear variety that is everywhere dense in
Ln
2Œt0; t1	. We denote this linear variety by ACnŒt0; t1	. Its closure is AC

n
Œt0; t1	 D

Ln
2Œt0; t1	. The Newton-Leibniz formula and the integration-by-parts formula hold

for every pair of functions x.�/; u.�/ 2 ACnŒt0; t1	 � U.1

In applications, a control u.�/ is often a piecewise continuous function. The
presence of jump points in control u.�/ has no effect on trajectory x.�/. Moreover, this
trajectory will not change even if we change the values of u.�/ on a set of measure
zero.

Now we are ready to formulate the problem. Namely, we need to find the initial
value x�0 and control function u�.�/ 2 U such that the corresponding trajectory x�.�/,
being the solution of the differential system, starts from the point x�0 at the left end
of the time interval and comes to the point x�.t1/ at the right end:

x�0 2 Argminf'0.x0/ j A0x0 � a0; x0 2 Rng;
.x�.t1/; x�.�/; u�.�// 2 Argminf'1.x.t1// j A1x.t1/ � a1; x.t1/ 2 X.t1/ � Rn;

d

dt
x.t/ D D.t/x.t/C B.t/u.t/; x.t0/ D x�0 ; x.t1/ D x�.t1/;

x.�/ 2 ACnŒt0; t1	; u.�/ 2 Ug:

1Scalar products and norms are defined, respectively, as

hx.�/; y.�/i D
Z t1

t0
hx.t/; y.t/idt; kx.�/k2 D

Z t1

t0
jx.t/j2dt;

where hx.t/; y.t/i D
nX

1

xi.t/yi.t/; jx.t/j2 D
nX

1

x2i .t/; t0 � t � t1;

x.t/ D .x1.t/; : : : ; xn.t//
T; y.t/ D .y1.t/; : : : ; yn.t//

T:
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Here A0;A1 are constant m � n-matrices .m < n/; a0; a1 are given m-vectors; scalar
functions '0.x0/, '1.x1/ are convex and differentiable with gradients satisfying the
Lipschitz condition.

In the convex case, optimization problems for '0.x0/ and '1.x1/ are equivalent
to variational inequalities hr'0.x�0 /, x�0 � x0i � 0 and hr'1.x�1 /; x�1 � x1i � 0. As
a result of linearization, the original problem is reduced to the following equivalent
problem:

x�0 2 Argminfhr'0.x�0 /; x0i j A0x0 � a0; x0 2 Rng; (1)

.x�.t1/; x�.�/; u�.�// 2 Argminfhr'1.x�.t1//; x.t1/i j A1x.t1/ � a1;

x.t1/ 2 X.t1/ � Rn; (2)

d

dt
x.t/ D D.t/x.t/C B.t/u.t/; x.t0/ D x�0 ; x.t1/ D x�.t1/; (3)

x.�/ 2 ACnŒt0; t1	; u.�/ 2 Ug: (4)

It is proved that the solution .x�0 ; x�.t1/; x�.�/; u�.�// 2 Rn � Rn � Ln
2Œt0; t1	 � U of

the problem exists [26]. We focus once again that the symbol x.t1/ denotes the right
end of the phase trajectory x.t/, i.e., the element of reachability set. Classical linear
controlled systems for dynamics were studied in [24].

3 Classic Lagrangian for Original Problem

The considered problem is a terminal control problem formulated in the Hilbert
space. As we know, in convex programming theory for finite-dimensional spaces,
there is always a dual problem in the dual (conjugate) space, corresponding to
the primal problem. Through appropriate analogy, we will try to get explicit dual
problem for (1)–(4) in the functional spaces. To this end, we scalarize systems and
introduce a linear convolution known as the Lagrangian:

L .x0; x.t1/; x.�/; u.�/I p0; p1;  .�// D hr'0.x�0 /; x0i C hr'1.x�.t1//; x.t1/i
Chp0;A0x0 � a0i C hp1;A1x.t1/ � a1i (5)

C
Z t1

t0

h .t/;D.t/x.t/C B.t/u.t/ � d

dt
x.t/idt

for all .x0; x.t1/; x.�/; u.�// 2 Rn �Rn �ACnŒt0; t1	�U, .p0; p1;  .�// 2 RmC �RmC �

 n
2 Œt0; t1	.

2 Here 
 n
2 Œt0; t1	 is a linear variety of absolutely continuous functions from

the conjugate space. This set is everywhere dense in Ln
2Œt0; t1	, i.e., 
2

n
Œt0; t1	 D

Ln
2Œt0; t1	.

2For simplicity, the positive orthant Rm
C

hereinafter will also be referred to p � 0.
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Saddle point .x�.t0/; x�.t1/; x�.�/; u�.�/I p�0 ; p�1 ;  �.�// of the Lagrange function
is formed by primal .x�.t0/; x�.t1/; x�.�/; u�.�// and dual .p�0 ; p�1 ;  �.�// variables,
the first of which is a solution of (1)–(4). By definition, the saddle point satisfies the
system of inequalities

hr'0.x�0 /; x�0 i C hr'1.x�.t1//; x�.t1/i C hp0;A0x�0 � a0i C hp1;A1x�.t1/ � a1i

C
Z t1

t0

h .t/;D.t/x�.t/C B.t/u�.t/ � d

dt
x�.t/idt

� hr'0.x�0 /; x�0 i C hr'1.x�.t1//; x�.t1/i C hp�0 ;A0x�0 � a0i

Chp�1 ;A1x�.t1/ � a1i C
Z t1

t0

h �.t/;D.t/x�.t/C B.t/u�.t/

� d

dt
x�.t/idt � hr'0.x�0 /; x0i C hr'1.x�.t1//; x.t1/i

Chp�0 ;A0x0 � a0i C hp�1 ;A1x.t1/ � a1i C
Z t1

t0

h �.t/;D.t/x.t/

CB.t/u.t/ � d

dt
x.t/idt (6)

for all .x0; x.t1/; x.�/; u.�// 2 Rn �Rn �ACnŒt0; t1	�U, .p0; p1;  .�// 2 RmC �RmC �

 n
2 Œt0; t1	.

According to the Kuhn-Tucker theorem, but for functional spaces, we can say
that if the original problem (1)–(4) has primal and dual solutions, they form a
saddle point for the Lagrangian. It was shown that the converse is also true: a saddle
point of the Lagrange function (5) contains primal and dual solutions of the original
problem (1)–(4).

In fact, the left-hand inequality of (6) is a problem of maximizing the linear
function in variables .p0; p1;  .�// on the whole space RmC � RmC � 
 n

2 Œt0; t1	:

hp0 � p�0 ;A0x�0 � a0i C hp1 � p�1 ;A1x�.t1/ � a1i

C
Z t1

t0

h .t/ �  �.t/;D.t/x�.t/C B.t/u�.t/

� d

dt
x�.t/idt � 0; (7)

where .p0; p1;  .�// 2 RmC � RmC � 
 n
2 Œt0; t1	. From (7), we have

hp0 � p�0 ;A0x�0 � a0i � 0; hp1 � p�1 ;A1x�.t1/ � a1i � 0; (8)

Z t1

t0

h .t/ �  �.t/;D.t/x�.t/C B.t/u�.t/ � d

dt
x�.t/idt � 0 (9)
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for all .p0; p1;  .�// 2 RmC � RmC � 
 n
2 Œt0; t1	. Putting p0 D 0 and p0 D 2p�0 in the

first inequality of (8); p1 D 0 and p1 D 2p�1 in the second inequality of (8), and
 .t/ � 0 and  .t/ D 2 �.t/ in (9), we obtain the system

hp�0 ;A0x�0 � a0i D 0; A0x
�
0 � a0 � 0;

hp�1 ;A1x�.t1/ � a1i D 0; A1x
�.t1/ � a1 � 0;

D.t/x�.t/C B.t/u�.t/ � d

dt
x�.t/ D 0; x�.t0/ D x�0 : (10)

The right-hand inequality of (6) is a problem of minimizing the Lagrangian in
variables .x0; x1; x.�/; u.�// with fixed values of p0 D p�0 , p1 D p�1 ,  .�/ D  �.�/.
Show below that the set of primal variables from .x�0 ; x�.t1/; x�.�/; u�.�/I p�0 ; p�1 ;
 �.�// is the solution of (1)–(4). Indeed, in view of (10), from the right-hand
inequality of (6), we have

hr'0.x�0 /; x�0 i C hr'1.x�.t1//; x�.t1/i
� hr'0.x�0 /; x0i C hr'1.x�.t1//; x.t1/i
C hp�0 ;A0x0 � a0i C hp�1 ;A1x.t1/ � a1i

C
Z t1

t0

h �.t/;D.t/x.t/C B.t/u.t/ � d

dt
x.t/idt (11)

for all .x0; x.t1/; x.�/; u.�// 2 Rn � Rn � ACnŒt0; t1	 � U.
Considering the inequality (11) under additional scalar constraints

hp�0 ;A0x0 � a0i � 0; hp�1 ;A1x.t1/ � a1i � 0;
R t1

t0
h �.t/;D.t/x.t/C B.t/u.t/ � d

dt x.t/idt D 0;
(12)

we obtain the optimization problem

hr'0.x�0 /; x�0 i C hr'1.x�.t1//; x�.t1/i � hr'0.x�0 /; x0i C hr'1.x�.t1//; x.t1/i:

But from (10) we see that the solution .x�.�/; u�.�// belongs to a narrower set
than (12) . Therefore, this point is also a minimum on a subset of solutions of the
system (12), i.e.,

hr'0.x�0 /; x�0 i C hr'1.x�.t1//; x�.t1/i � hr'0.x�0 /; x0i C hr'1.x�.t1//; x.t1/i;
A0x0 � a0 � 0; A1x.t1/ � a1 � 0; (13)

d

dt
x.t/ D D.t/x.t/C B.t/u.t/ (14)

for all .x0; x.t1/; x.�/; u.�// 2 Rn � Rn � ACnŒt0; t1	 � U.



On Methods of Terminal Control with Boundary-Value Problems: Lagrange Approach 23

Thus, if the Lagrangian (5) has a saddle point then primal components of this
point form the solution of (1)–(4), and therefore of the original problem of convex
programming in infinite-dimensional space.

4 Dual Lagrangian for Dual Problem

Show how the Lagrangian in linear dynamic problems provides a dual problem
in dual (conjugate) space. Using formulas for the transition to conjugate linear
operators

hp0;A0x0i D hAT
0p0; x0i; hp1;A1x1i D hAT

1p1; x1i;
h .t/;D.t/x.t/i D hDT.t/ .t/; x.t/i;
h .t/;B.t/u.t/i D hBT.t/ .t/; u.t/i;

and the integration-by-parts formula on the interval Œt0; t1	

h .t1/; x.t1/i � h .t0/; x.t0/i
D R t1

t0
h d

dt .t/; x.t/idtC R t1
t0
h .t/; d

dt x.t/idt;

we write out the dual Lagrangian to (5):

L T.p0; p1;  .�/I x0; x.t1/; x.�/; u.�// D hr'0.x�0 /C AT
0p0 C  0; x0i

C hr'1.x�.t1//C AT
1p1 �  1; x.t1/i

C h�p0; a0i C h�p1; a1i C
Z t1

t0

hDT.t/ .t/

C d

dt
 .t/; x.t/idtC

Z t1

t0

hBT.t/ .t/; u.t/idt;

(15)

for all .p0; p1;  .�// 2 RmC � RmC � 
 n
2 Œt0; t1	, .x0; x.t1/; x.�/; u.�// 2 Rn � Rn�

ACnŒt0; t1	 � U, where  0 D  .t0/,  1 D  .t1/.
Primal and dual Lagrangians (5) and (15) have the same saddle points .x�0 ; x�.t1/,

x�.�/; u�.�/I p�0 ; p�1 ;  �.�//. These saddle points satisfy the saddle-point system (6),
the dual version of which has the form

hr'0.x�0 /C AT
0p0 C  0; x�0 i C hr'1.x�.t1//C AT

1p1 �  1; x�.t1/i
Ch�p0; a0i C h�p1; a1i
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C
Z t1

t0

hDT.t/ .t/C d

dt
 .t/; x�.t/idtC

Z t1

t0

hBT.t/ .t/; u�.t/idt

� hr'0.x�0 /C AT
0p�0 C  �0 ; x�0 i C hr'1.x�.t1//C AT

1p�1 �  �1 ; x�.t1/i
Ch�p�0 ; a0i C h�p�1 ; a1i

C
Z t1

t0

hDT.t/ �.t/C d

dt
 �.t/; x�.t/idtC

Z t1

t0

hBT.t/ �.t/; u�.t/idt

� hr'0.x�0 /C AT
0p�0 C  �0 ; x0i C hr'1.x�.t1//C AT

1p�1 �  �1 ; x.t1/i
Ch�p�0 ; a0i C h�p�1 ; a1i

C
Z t1

t0

hDT.t/ �.t/C d

dt
 �.t/; x.t/idtC

Z t1

t0

hBT.t/ �.t/; u.t/idt (16)

for all .x0; x.t1/; x.�/; u.�// 2 Rn �Rn �ACnŒt0; t1	�U, .p0; p1;  .�// 2 RmC �RmC �

 n
2 Œt0; t1	.

Repeat now the same transformations that were carried out in the previous
paragraph. It was shown there that the saddle-point system leads to the original
problem. In a similar way, we will get the dual problem. From the right-hand
inequality of (16), we have

hr'0.x�0 /C AT
0p�0 C  �0 ; x�0 � x0i C hr'1.x�.t1//C AT

1p�1 �  �1 ; x�.t1/ � x.t1/i

C
Z t1

t0

hDT.t/ �.t/C d

dt
 �.t/; x�.t/ � x.t/idt

C
Z t1

t0

hBT.t/ �.t/; u�.t/ � u.t/idt � 0

for all .x0; x.t1/; x.�/; u.�// 2 Rn � Rn � ACnŒt0; t1	 � U.
Since the variables .x0; x.t1/; x.�/; u.�// independently vary (each within its

admissible subspace or set), the last inequality is decomposed into four independent
inequalities

hr'0.x�0 /C AT
0p�0 C  �0 ; x�0 � x0i � 0; x0 2 Rn;

hr'1.x�.t1//C AT
1p�1 �  �1 ; x�.t1/ � x.t1/i � 0; x1 2 Rn;

Z t1

t0

hDT.t/ �.t/C d

dt
 �.t/; x�.t/ � x.t/idt � 0; x.�/ 2 ACnŒt0; t1	;

Z t1

t0

hBT.t/ �.t/; u�.t/ � u.t/idt � 0; u.�/ 2 U:

It is well known that a linear functional reaches a finite extremum on the whole
subspace only when its gradient vanishes. So, we come to the system of problems
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r'0.x�0 /C AT
0p�0 C  �0 D 0; (17)

DT.t/ �.t/C d

dt
 �.t/ D 0; r'1.x�.t1//C AT

1p�1 �  �1 D 0; (18)

Z t1

t0

hBT.t/ �.t/; u�.t/ � u.t/idt � 0; 8u.�/ 2 U: (19)

Given (17) and (18), we rewrite the left-hand inequality (16) in the form

hr'0.x�0 /C AT
0p0 C  0; x�0 i C hr'1.x�.t1//C AT

1p1 �  1; x�.t1/i
Ch�p0; a0i C h�p1; a1i

C
Z t1

t0

hDT.t/ .t/C d

dt
 .t/; x�.t/idtC

Z t1

t0

hBT.t/ .t/; u�.t/idt

� h�p�0 ; a0i C h�p�1 ; a1i C
Z t1

t0

hBT.t/ �.t/; u�.t/idt:

Considering this inequality under performing scalar constraints

hr'0.x�0 /C AT
0p0 C  0; x�0 i D 0; hr'1.x�.t1//C AT

1p1 �  1; x�.t1/i D 0;
Z t1

t0

hDT.t/ .t/C d

dt
 .t/; x�.t/idt D 0;

we arrive at the problem of maximization for scalar function

h�p0; a0i C h�p1; a1i C
Z t1

t0

hBT.t/ .t/; u�.t/idt

� h�p�0 ; a0i C h�p�1 ; a1i C
Z t1

t0

hBT.t/ �.t/; u�.t/idt;

where .p0; p1;  .�// 2 RmC � RmC � 
 n
2 Œt0; t1	.

Combining with (17)–(19), we get the dual with respect to (1)–(4) problem:

.p�0 ; p�1 ;  �.�// 2 Argmax fh�p0; a0i C h�p1; a1i

C
Z t1

t0

hBT.t/ .t/; u�.t/idt j (20)

r'0.x�0 /C AT
0p0 C  0 D 0; .p0; p1;  .�// 2 RmC � RmC � 
 n

2 Œt0; t1	; (21)

DT.t/ .t/C d

dt
 .t/ D 0;  1 D r'1.x�.t1//C AT

1p1

�

; (22)

Z t1

t0

hBT.t/ �.t/; u�.t/ � u.t/idt � 0; u.�/ 2 U: (23)
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5 Mutually Dual Problems

Write out together a pair of mutually dual problems.
The primal problem:

.x�0 ; x�.t1/; x�.�/; u�.�// 2 Argminfhr'0.x�0 /; x0i C hr'1.x�.t1//; x.t1/i j
A0x0 � a0; A1x.t1/ � a1; .x0; x.t1// 2 Rn � Rn;

d

dt
x.t/ D D.t/x.t/C B.t/u.t/; x.t0/ D x�0 ; x.t1/ D x�.t1/;

x.�/ 2 ACnŒt0; t1	; u.�/ 2 Ug:

The dual problem:

.p�0 ; p�1 ;  �.�// 2 Argmaxfh�p0; a0i C h�p1; a1i

C
Z t1

t0

hBT.t/ .t/; u�.t/idt j

r'0.x�0 /C AT
0p0 C  0 D 0; .p0; p1/ 2 RmC � RmC;  .�/ 2 
 n

2 Œt0; t1	;

DT.t/ .t/C d

dt
 .t/ D 0;  1 D r'1.x�.t1//C AT

1p1g;
Z t1

t0

hBT.t/ �.t/; u�.t/ � u.t/idt � 0; u.�/ 2 U:

If this system is not dynamic, it takes the form of primal and dual problems
known in the finite-dimensional optimization:

.x�0 ; x�1 / 2 Argminfhr'0.x�0 /; x0i C hr'1.x�.t1//; x.t1/i j
A0x0 � a0; A1x.t1/ � a1; .x0; x.t1/ 2 Rn � Rng;

.p�0 ; p�1 / 2 Argmaxfh�p0; a0i C h�p1; a1i j r'0.x�0 /C AT
0p0 D 0;

r'1.x�.t1//C AT
1p1 D 0; .p0; p1/ 2 RmC � RmCg:

Primal and dual problems (separately or together) can serve as a basis for the
development of a whole family of methods for computing the saddle points of
the primal or dual Lagrange functions [2–8, 27]. It is possible to construct saddle-
point methods, which will converge monotonically in norm to the saddle points of
Lagrangians. With regard to initial boundary value problems of terminal control it
will mean weak convergence in controls, and strong convergence in trajectories,
dual trajectories and terminal variables.

In this paper, we consider an iterative process for solving the boundary-value
differential system. On the one hand, this process will be obtained from the saddle-
point inequalities. On the other hand, it will be close to a differential system, derived
from the integral form of the Pontryagin maximum principle.
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6 Boundary-Value Dynamic Controlled System

Now we unite together the left-hand inequality of the saddle-point system (6)
(for the classical Lagrangian) and the right-hand inequality of the saddle-point
system (16) (for the dual Lagrangian). Subsystems (10), (12), (18), (19) and (17)
were obtained as consequences of these systems. Writing them here, we arrive at
the following boundary-value dynamic controlled system:

d

dt
x�.t/ D D.t/x�.t/C B.t/u�.t/; x�.t0/ D x�0 ; (24)

hp0 � p�0 ;A0x�0 � a0i � 0; p0 � 0; (25)

hp1 � p�1 ;A1x�.t1/ � a1i � 0; p1 � 0; (26)

d

dt
 �.t/C DT.t/ �.t/ D 0;  �1 D r'1.x�.t1//C AT

1p�1 ; (27)

Z t1

t0

hBT.t/ �.t/; u�.t/ � u.t/idt � 0; u.�/ 2 U; (28)

r'0.x�0 /C AT
0p�0 C  �0 D 0: (29)

Variational inequalities of the system can be rewritten in equivalent form of operator
equations with operators of projection onto the corresponding convex closed sets.
Then we obtain the following system of differential and operator equations:

d

dt
x�.t/ D D.t/x�.t/C B.t/u�.t/; x�.t0/ D x�0 ; (30)

p�0 D �C.p�0 C ˛.A0x�0 � a0//; (31)

p�1 D �C.p�1 C ˛.A1x�.t1/ � a1//; (32)

d

dt
 �.t/C DT.t/ �.t/ D 0;  �1 D r'1.x�.t1//C AT

1p�1 ; (33)

u�.t/ D �U.u
�.t/ � ˛BT.t/ �.t//; (34)

x�0 D x�0 � ˛.r'0.x�0 /C AT
0p�0 C  �0 /; (35)

where �C.�/; �U.�/ are projection operators onto the positive orthant RmC and the set
of controls U, ˛ > 0.
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7 Saddle-Point Method for Solving Boundary Value
Controlled System

Construct now an iterative process based on the system (30)–(35). Suppose that the
values of dual variables pk

0, pk
1, the initial value xk

0 of trajectory, and the control
uk.�/ 2 U are known on the k-th iteration. Describe below how to find the values of
these variables on the next iteration. Formally, the process is as follows (parameter
˛ > 0 characterizes the value of iteration step):

d

dt
xk.t/ D D.t/xk.t/C B.t/uk.t/; xk.t0/ D xk

0; (36)

pkC1
0 D �C.pk

0 C ˛.A0xk
0 � a0//; (37)

pkC1
1 D �C.pk

1 C ˛.A1xk.t1/ � a1//; (38)

d

dt
 k.t/C DT.t/ k.t/ D 0;  k

1 D r'1.xk.t1//C AT
1pk
1; (39)

ukC1.t/ D �U.u
k.t/ � ˛BT.t/ k.t//; (40)

xkC1
0 D xk

0 � ˛.r'0.xk
0/C AT

0pk
0 C  k

0 /; k D 0; 1; 2 : : : (41)

Here, using the initial value xk
0 and control uk.�/, we solve the differential equa-

tion (36) and find the trajectory xk.�/. Then, using pk
0 and xk

0, we calculate pkC1
0

from (37). Finding xk
1 D xk.t/jtDt1 and using pk

1, we can then determine pkC1
1 in (38).

With pk
1 and xk

1 we calculate the terminal value  k
1 , and find the conjugate trajectory

 k.t/ on the whole interval from the differential system (39). Further, using uk.�/
together with  k.�/ we define ukC1.�/ from (40). Finally, calculating  k

0 D  k.t0/
and taking into account xk

0, pk
0, we define xkC1

0 from (41).
The process (36)–(41) refers to methods of simple iteration and is the simplest of

the known computational processes. For strictly contraction mappings this process
converges at a geometric rate. However, in the case of saddle-point object the
simple iteration method does not converge to the saddle point (only their analogues
in optimization—the gradient projection methods—are converging). Therefore, to
solve the saddle-point problem we use the saddle-point extragradient approach
developed in [1, 21]. Other gradient-type approaches have been investigated by
many authors [13, 14, 16, 25]. As for variational inequalities, we can point to
[15, 20].

The proposed method for solving the problem (1)–(2) is a controlled pro-
cess (36)–(41), each iteration of which breaks down into two half-steps, providing
convergence. Formulas of this iterative method are as follows:
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1. the predictive half-step

d

dt
xk.t/ D D.t/xk.t/C B.t/uk.t/; xk.t0/ D xk

0; (42)

Npk
0 D �C.pk

0 C ˛.A0xk
0 � a0//; (43)

Npk
1 D �C.pk

1 C ˛.A1xk.t1/ � a1//; (44)

d

dt
 k.t/C DT.t/ k.t/ D 0;  k

1 D r'1.xk.t1//C AT
1pk
1; (45)

Nuk.t/ D �U.u
k.t/ � ˛BT.t/ k.t//; (46)

Nxk
0 D xk

0 � ˛.r'0.xk
0/C AT

0pk
0 C  k

0 /I (47)

2. the basic half-step

d

dt
Nxk.t/ D D.t/Nxk.t/C B.t/Nuk.t/; Nxk.t0/ D Nxk

0; (48)

pkC1
0 D �C.pk

0 C ˛.A0 Nxk
0 � a0//; (49)

pkC1
1 D �C.pk

1 C ˛.A1 Nxk.t1/ � a1//; (50)

d

dt
N k.t/C DT.t/ N k.t/ D 0; N k

1 D r'1.Nxk.t1//C AT
1 Npk
1; (51)

ukC1.t/ D �U.u
k.t/ � ˛BT.t/ N k.t//; (52)

xkC1
0 D xk

0 � ˛.r'0.Nxk
0/C AT

0 Npk
0 C N k

0 /; k D 0; 1; 2 : : : (53)

At each half-step, two differential equations are solved, and an iterative step in
controls, trajectories, conjugate trajectories, initial values and finite-dimensional
dual variables is implemented.

From formulas of this process we can see that differential equations (42), (48)
and (45), (51) are only used to calculate functions xk.t/, Nxk.t/ and  k.t/, N k.t/, so
the process can be rewritten in a more compact form

Npk
0 D �C.pk

0 C ˛.A0xk
0 � a0//; (54)

pkC1
0 D �C.pk

0 C ˛.A0 Nxk
0 � a0//; (55)

Npk
1 D �C.pk

1 C ˛.A1xk.t1/ � a1//; (56)
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pkC1
1 D �C.pk

1 C ˛.A1 Nxk.t1/ � a1//; (57)

Nuk.t/ D �U.u
k.t/ � ˛BT.t/ k.t//; (58)

ukC1.t/ D �U.u
k.t/ � ˛BT.t/ N k.t//; (59)

Nxk
0 D xk

0 � ˛.r'0.xk
0/C AT

0pk
0 C  k

0 /; (60)

xkC1
0 D xk

0 � ˛.r'0.Nxk
0/C AT

0 Npk
0 C N k

0 /; (61)

where xk.�/, Nxk.�/,  k.�/ and N k.�/ are calculated in (42), (48), (45) and (51).
For auxiliary estimates required further to prove the convergence of the method,

we present operator equations (54)–(61) in the form of variational inequalities

hNpk
0 � pk

0 � ˛.A0xk
0 � a0/; p0 � Npk

0i � 0; (62)

hpkC1
0 � pk

0 � ˛.A0 Nxk
0 � a0/; p0 � pkC1

0 i � 0; (63)

hNpk
1 � pk

1 � ˛.A1xk.t1/ � a1/; p1 � Npk
1i � 0; (64)

hpkC1
1 � pk

1 � ˛.A1 Nxk.t1/ � a1/; p1 � pkC1
1 i � 0; (65)

Z t1

t0

hNuk.t/ � uk.t/C ˛BT.t/ k.t/; u.t/ � Nuk.t/idt � 0; (66)

Z t1

t0

hukC1.t/ � uk.t/C ˛BT.t/ N k.t/; u.t/ � ukC1.t/idt � 0; (67)

hNxk
0 � xk

0 C ˛.r'0.xk
0/C AT

0pk
0 C  k

0 /; x0 � Nxk
0i � 0; (68)

hxkC1
0 � xk

0 C ˛.r'0.Nxk
0/C AT

0 Npk
0 C N k

0 /; x0 � xkC1
0 i � 0 (69)

for all p0 2 RmC, p1 2 RmC, u.�/ 2 U, x0 2 Rn. The inequalities (62)–(69) leads to
estimates

jNpk
0 � pkC1

0 j � ˛kA0kjxk
0 � Nxk

0j; (70)

jNpk
1 � pkC1

1 j � ˛kA1kjxk.t1/ � Nxk.t1/j; (71)

jNxk
0 � xkC1

0 j � ˛.jr'0.xk
0/ � r'0.Nxk

0/j C jAT
0 .p

k
0 � Npk

0/j C j k
0 � N k

0 j/
� ˛.L0jxk

0 � Nxk
0j C kAT

0kjpk
0 � Npk

0j C j k
0 � N k

0 j/; (72)

kNuk.�/ � ukC1.�/k � ˛kBT.t/. k.�/ � N k.�//k � ˛Bmaxk k.�/ � N k.�/k; (73)

where Bmax D maxkB.t/k for all t 2 Œt0; t1	; L0 is a Lipschitz constant forr'0.x0/.
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1. To prove the theorem on convergence of the method we need two more estimates.
We mean estimates of deviations jxk.t/ � Nxk.t/j, j k.t/ � N k.t/j, t 2 Œt0; t1	, and
accordingly jxk.t1/� Nxk.t1/j, j k

1 � N k
1 j. By the linearity of the Eqs. (42) and (48),

we have

d

dt

	

xk.t/ � Nxk.t/

 D D.t/.xk.t/ � Nxk.t//C B.t/.uk.t/ � Nuk.t//;

xk.t0/ � Nxk.t0/ D xk
0 � Nxk

0:

Integrate the resulting equation from t0 to t:

.xk.t/ � Nxk.t// � .xk.t0/ � Nxk.t0// D

D
Z t

t0

D.�/.xk.�/ � Nxk.�//d� C
Z t

t0

B.�/.uk.�/ � Nuk.�//d�:

From last equation, we obtain the estimate

jxk.t/ � Nxk.t/j � Dmax

Z t

t0

jxk.�/ � Nxk.�/jd�

CBmax

Z t1

t0

juk.�/ � Nuk.�/jd� C jxk
0 � Nxk

0j; (74)

where Dmax D max kD.t/k, t 2 Œt0; t1	. Now we can apply the Gronwall lemma [26,
Book 1, p. 472] in the form: if 0 � '.t/ � a

R t
t0
'.�/d� C b then '.t/ � bea.t1�t0/,

t0 � t � t1, where '.t/ is continuous function, a; b � 0 are constants. Using this
lemma, we obtain from (74)

jxk.t/ � Nxk.t/j � eDmax.t1�t0/

�

Bmax

Z t1

t0

juk.t/ � Nuk.t/jdtC jxk
0 � Nxk

0j
�

:

Squaring and using the Cauchy-Bunyakovskii inequality, we find for every t

jxk.t/ � Nxk.t/j2 � 2e2Dmax.t1�t0/

� 	B2max.t1 � t0/kuk.�/ � Nuk.�/k2 C jxk
0 � Nxk

0j2



:
(75)

Putting t D t1 in (75), we obtain an estimate of terminal value deviations for
trajectories

jxk.t1/ � Nxk.t1/j2 � 2e2Dmax.t1�t0/

� 	B2max.t1 � t0/kuk.�/ � Nuk.�/k2 C jxk
0 � Nxk

0j2



:
(76)

We have already mentioned that the differential system (3) produces a linear
single-valued mapping which assigns to each control u.�/ the single trajectory x.�/.
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Using the above-mentioned Gronwall lemma, one can show that a linear mapping is
bounded on any bounded set, i.e., continuous. Indeed, we write down the difference
between two linear equations (42) and (24):

d

dt

	

xk.t/ � x�.t/

 D D.t/.xk.t/ � x�.t//C B.t/.uk.t/ � u�.t//;

xk.t0/ � x�.t0/ D xk
0 � x�0 :

Passing from this difference to analogue of (74), we have

jxk.t/ � x�.t/j � Dmax

Z t

t0

jxk.�/ � x�.�/jd�

CBmax

Z t1

t0

juk.�/ � u�.�/jd� C jxk
0 � x�0 j:

Concluding these considerations, we obtain an estimate similar to (75):

jxk.t/ � x�.t/j2 � 2e2Dmax.t1�t0/

� 	B2max.t1 � t0/kuk.�/ � u�.�/k2 C jxk
0 � x�0 j2




:
(77)

This means that the considered above linear operator transforms a bounded set of
controls and initial conditions in a bounded set of trajectories.

2. Finally, from (45), (51) we get similar estimates for conjugate trajectories
j k.t/ � N k.t/j:

d

dt

	

 k.t/ � N k.t/

C DT.t/. k.t/ � N k.t// D 0; (78)

where  k
1 � N k

1 D r'1.xk.t1// � r'1.Nxk.t1//C AT
1 .p

k
1 � Npk

1/.

Integrate (78) from t to t1:

 k.t/ � N k.t/ D
Z t1

t
DT.t/. k.t/ � N k.t//dtC  k

1 � N k
1 :

We have the following estimate

j k.t/ � N k.t/j � R t1
t jDT.t/. k.t/ � N k.t//jdtC j k

1 � N k
1 j

� Dmax
R t1

t j k.t/ � N k.t/jdtC b;
(79)

where t 2 Œt0; t1	, b D j k
1 � N k

1 j. Here we again use the Gronwall lemma
[26, Book 1, p. 472]: if 0 � '.t/ � a

R t1
t '.�/d.�/ C b then '.t/ � bea.t1�t/,

t0 � t � t1, where '.t/ is a continuous function, a; b � 0 are constants. Based on
this statement, we obtain from (79)
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j k.t/ � N k.t/j2 � e2Dmax.t1�t/j k
1 � N k

1 j2: (80)

Since the estimate (80) is true for all t 2 Œt0; t1	, it holds, in particular, at t D t0:

j k
0 � N k

0 j2 � e2Dmax.t1�t0/j k
1 � N k

1 j2: (81)

For terminal values, we obtain from (45) and (51)

j k
1 � N k

1 j � jr'1.xk.t1// � r'1.Nxk.t1//j C kAT
1kjpk

1 � Npk
1j

� L1jxk.t1/ � Nxk.t1/j C kAT
1kjpk

1 � Npk
1j;

or squaring,

j k
1 � N k

1 j2 � .L1jxk.t1/ � Nxk.t1/j C kAT
1kjpk

1 � Npk
1j/2; (82)

where L1 is a Lipschitz constant for r'1.x.t1//. Comparing (81) and (82), we obtain

j k
0 � N k

0 j2 � e2Dmax.t1�t0/.L1jxk.t1/ � Nxk.t1/j C kAT
1kjpk

1 � Npk
1j/2

� 2e2Dmax.t1�t0/.L21jxk.t1/ � Nxk.t1/j2 C kAT
1k2jpk

1 � Npk
1j2/: (83)

Substitute (82) in (80)

j k.t/ � N k.t/j2 � e2Dmax.t1�t/.L1jxk.t1/ � Nxk.t1/j C kAT
1kjpk

1 � Npk
1j/2;

and integrate this inequality from t0 to t1:

k k.�/ � N k.�/k2 � 	e2Dmax.t1�t0/ � 1
 =.2Dmax/

� 	L1jxk.t1/ � Nxk.t1/j C kAT
1kjpk

1 � Npk
1j

2
:

(84)

Finally, it remains to prove the boundedness of conjugate trajectories. From (45)
and (33), we have

d

dt

	

 k.t/ �  �.t/
C DT.t/. k.t/ �  �.t// D 0:

Proceeding in a similar way as was done with (78), we obtain an analogue of
estimation (84):

k k.�/ �  �.�/k2 � 	e2Dmax.t1�t0/ � 1
 =.2Dmax/

� 	L1jxk.t1/ � x�.t1/j C kAT
1kjpk

1 � p�1 j

2
:

(85)
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8 Proof of Method Convergence

We show below that process (42)–(53) converges in all the variables. Moreover, it
converges monotonically in the norm of the Cartesian product for some variables.

Theorem 1. Suppose the set of solutions .x�0 ; x�.t1/; x�.�/; u�.�/I p�0 ; p�1 ;  �.�// to
the problem (30)–(35) is not empty and belongs to Rn � Rn � ACnŒt0; t1	 � U �
RmC � RmC � 
 n

2 Œt0; t1	, the functions '0.x0/, '1.x1/ are differentiable with gradients
satisfying the Lipschitz condition, the step length ˛ is chosen from 0 < ˛ <

min
�
1
�1
; 1
�2
; 1
�3
; 1
�4
; 1
�5

�

, where �i are determined in (104).3

Then the sequence f.xk
0; x

k.t1/; xk.�/; uk.�/I pk
0; p

k
1,  

k.�//g generated by (42)–(53)
contains a subsequence which converges to a solution of the problem in controls,
phase and conjugate trajectories, as well as to solutions of terminal problems at
both ends of the time interval. In particular, the sequence

˚jxk
0 � x�0 j2 C kuk.�/ � u�.�/k2 C jpk

0 � p�0 j2 C jpk
1 � p�1 j2




decreases monotonically on the Cartesian product Rn � Lr
2Œt0; t1	 � RmC � RmC.

Proof. The main efforts in the proof are focused on obtaining estimates juk.t/ �
u�.t/j2, jxk

0 � x�0 j2, jpk
0 � p�0 j2 and jpk

1 � p�1 j2. In our method, some of formulas
are written in the form of variational inequalities, while others are written in the
form of differential equations. So, for uniformity of reasoning we will also write the
differential equations in the form of variational inequalities.

1. Rewrite Eq. (51) as the variational inequality

hr'1.Nxk.t1/C AT
1 Npk
1 � N k

1 ; x
�.t1/ � Nxk.t1/i

C
Z t1

t0

hDT.t/ N k.t/C d

dt
N k.t/; x�.t/ � Nxk.t/idt � 0:

Similarly we proceed with (33):

�hr'1.x�.t1//C AT
1p�1 �  �1 ; x�.t1/ � Nxk.t1/i

�
Z t1

t0

hDT.t/ �.t/C d

dt
 �.t/; x�.t/ � Nxk.t/idt � 0:

Sum together these inequalities

hr'1.Nxk.t1// � r'1.x�.t1//C AT
1 .Npk

1 � p�1 / � . N k
1 �  �1 /; x�.t1/ � Nxk.t1/i

C
Z t1

t0

hDT.t/. N k.t/ �  �.t//C d

dt
. N k.t/ �  �.t//; x�.t/ � Nxk.t/idt � 0:

(86)

3See below the proof of the theorem.
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Using the integration-by-parts formula

Z t1

t0

h d

dt
. N k.t/ �  �.t//; x�.t/ � Nxk.t/idt

D �
Z t1

t0

h N k.t/ �  �.t/; d

dt
.x�.t/ � Nxk.t//idt

Ch N k
1 �  �1 ; x�.t1/ � Nxk.t1/i � h N k

0 �  �0 ; x�0 � Nxk
0i;

we transform the differential term in the left-hand part of (86) (this transforma-
tion means the transition to the conjugate differential operator):

hr'1.Nxk.t1// � r'1.x�.t1//; x�.t1/ � Nxk.t1/i
ChAT

1 .Npk
1 � p�1 /; x�.t1/ � Nxk.t1/i � h N k

1 �  �1 ; x�.t1/ � Nxk.t1/i

C
Z t1

t0

h N k.t/ �  �.t/;D.t/.x�.t/ � Nxk.t// � d

dt
.x�.t/ � Nxk.t//idt

Ch N k
1 �  �1 ; x�.t1/ � Nxk.t1/i � h N k

0 �  �0 ; x�0 � Nxk
0i � 0:

Reducing similar terms and taking into account that the gradient of the convex
function '1.x/ is a monotone operator, i.e., hr'1.y/ � r'1.x/; y � xi � 0,
8x; y 2 Rn, we obtain

hAT
1 .Npk

1 � p�1 /; x�.t1/ � Nxk.t1/i C
Z t1

t0

h N k.t/ �  �.t/;D.t/.x�.t/ � Nxk.t//

� d

dt
.x�.t/ � Nxk.t//idt � h N k

0 �  �0 ; x�0 � Nxk
0i � 0: (87)

2. Now, we get the inequality for the variable p1. To do this, we put p1 D pkC1
1

in (64):

hNpk
1 � pk

1 � ˛.A1xk.t1/ � a1/; p
kC1
1 � Npk

1i � 0:

Add and subtract ˛hA1 Nxk.t1/ � a1; p
kC1
1 � Npk

1i:

hNpk
1 � pk

1; p
kC1
1 � Npk

1i C ˛h.A1 Nxk.t1/ � a1/ � .A1xk.t1/ � a1/; p
kC1
1 � Npk

1i
�˛hA1 Nxk.t1/ � a1; p

kC1.t1/ � Npk
1i � 0:

Using (71), we estimate the second term

hNpk
1�pk

1; p
kC1
1 �Npk

1iC˛2kA1k2jNxk.t1/�xk.t1/j2�˛hA1 Nxk.t1/�a1; p
kC1
1 �Npk

1i � 0:
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Put p1 D p�1 in (65):

hpkC1
1 � pk

1; p
�
1 � pkC1

1 i � ˛hA1 Nxk.t1/ � a1; p
�
1 � pkC1

1 i � 0:

Add up these inequalities

hNpk
1 � pk

1; p
kC1
1 � Npk

1i C hpkC1
1 � pk

1; p
�
1 � pkC1

1 i
C˛2kA1k2jNxk.t1/ � xk.t1/j2 � ˛hA1 Nxk.t1/ � a1; p

�
1 � Npk

1i � 0:

Assuming p1 D Npk
1 in (26), we have

˛hp�1 � Npk
1;A1x

�.t1/ � a1i � 0:

Summarize the last two inequalities

hNpk
1 � pk

1; p
kC1
1 � Npk

1i C hpkC1
1 � pk

1; p
�
1 � pkC1

1 i
C˛2kA1k2jNxk.t1/ � xk.t1/j2 � ˛hA1.Nxk.t1/ � x�.t1//; p�1 � Npk

1i � 0: (88)

3. We obtain a similar inequality for the variable p0. To this end, we put p0 D pkC1
0

in (62):

hNpk
0 � pk

0 � ˛.A0xk
0 � a0/; p

kC1
0 � Npk

0i � 0:

Add and subtract ˛hA0 Nxk
0 � a0; p

kC1
0 � Npk

0i:

hNpk
0 � pk

0; p
kC1
0 � Npk

0i C ˛h.A0 Nxk
0 � a0/ � .A0xk

0 � a0/; p
kC1
0 � Npk

0i
�˛hA0 Nxk

0 � a0; p
kC1
0 � Npk

0i � 0:

Using (70), we estimate the second term

hNpk
0 � pk

0; p
kC1
0 � Npk

0i C ˛2kA0k2jNxk
0 � xk

0j2 � ˛hA0 Nxk
0 � a0; p

kC1
0 � Npk

0i � 0:

Put p0 D p�0 in (63):

hpkC1
0 � pk

0; p
�
0 � pkC1

0 i � ˛hA0 Nxk
0 � a0; p

�
0 � pkC1

0 i � 0:

Add up these inequalities

hNpk
0 � pk

0; p
kC1
0 � Npk

0i C hpkC1
0 � pk

0; p
�
0 � pkC1

0 i
C˛2kA0k2jNxk

0 � xk
0j2 � ˛hA0 Nxk

0 � a0; p
�
0 � Npk

0i � 0:
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Putting p0 D Npk
0 in (25), we get

˛hp�0 � Npk
0;A0x

�
0 � a0i � 0:

Add up the last two inequalities

hNpk
0 � pk

0; p
kC1
0 � Npk

0i C hpkC1
0 � pk

0; p
�
0 � pkC1

0 i
C˛2kA0k2jNxk

0 � xk
0j2 � ˛hA0.Nxk

0 � x�0 /; p�0 � Npk
0i � 0: (89)

4. We summarize (88), (89) and (87), pre-multiplying the latter by ˛:

hNpk
1 � pk

1; p
kC1
1 � Npk

1i C hpkC1
1 � pk

1; p
�
1 � pkC1

1 i
ChNpk

0 � pk
0; p

kC1
0 � Npk

0i C hpkC1
0 � pk

0; p
�
0 � pkC1

0 i
C˛2kA1k2jNxk.t1/ � xk.t1/j2 C ˛2kA0k2jNxk

0 � xk
0j2

�˛hA0.Nxk
0 � x�0 /; p�0 � Npk

0i � ˛h N k
0 �  �0 ; x�0 � Nxk

0i

C˛
Z t1

t0

h N k.t/ �  �.t/;D.t/.x�.t/ � Nxk.t// � d

dt
.x�.t/ � Nxk.t//idt � 0:

(90)

5. Consider now inequalities with respect to controls. Put u.�/ D ukC1.�/ in (66)

Z t1

t0

hNuk.t/ � uk.t/C ˛BT.t/ k.t/; ukC1.t/ � Nuk.t/idt � 0:

Add and subtract the term N k.t/ under the sign of scalar product

Z t1

t0

hNuk.t/ � uk.t/; ukC1.t/ � Nuk.t/idt

�˛
Z t1

t0

hBT.t/. N k.t/ �  k.t//; ukC1.t/ � Nuk.t/idt

C˛
Z t1

t0

hBT.t/ N k.t/; ukC1.t/ � Nuk.t/idt � 0: (91)

Put u D u�.�/ in (67)

Z t1

t0

hukC1.t/ � uk.t/C ˛BT.t/ N k.t/; u�.t/ � ukC1.t/idt � 0: (92)
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Add up (91) and (92)

Z t1

t0

hNuk.t/ � uk.t/; ukC1.t/ � Nuk.t/idt

C
Z t1

t0

hukC1.t/ � uk.t/; u�.t/ � ukC1.t/idt

�˛
Z t1

t0

hBT.t/. N k.t/ �  k.t//; ukC1.t/ � Nuk.t/idt

C˛
Z t1

t0

hBT.t/ N k.t/; u�.t/ � Nuk.t/idt � 0: (93)

Substituting u.t/ D Nuk.t/ in (28), we have

Z t1

t0

hBT.t/ �.t/; Nuk.t/ � u�.t/idt � 0: (94)

Summarize (93) and (94)

Z t1

t0

hNuk.t/ � uk.t/; ukC1.t/ � Nuk.t/idt

C
Z t1

t0

hukC1.t/ � uk.t/; u�.t/ � ukC1.t/idt

�˛
Z t1

t0

hBT.t/. N k.t/ �  k.t//; ukC1.t/ � Nuk.t/idt

C˛
Z t1

t0

h N k.t/ �  �.t/;B.t/.u�.t/ � Nuk.t//idt � 0: (95)

Add up (90) with (95)

hNpk
1 � pk

1; p
kC1
1 � Npk

1i C hpkC1
1 � pk

1; p
�
1 � pkC1

1 i
ChNpk

0 � pk
0; p

kC1
0 � Npk

0i C hpkC1
0 � pk

0; p
�
0 � pkC1

0 i
C˛2kA1k2jNxk.t1/ � xk.t1/j2 C ˛2kA0k2jNxk

0 � xk
0j2

�˛hA0.Nxk
0 � x�0 /; p�0 � Npk

0i � ˛h N k
0 �  �0 ; x�0 � Nxk

0i

C˛
Z t1

t0

h N k.t/ �  �.t/;D.t/.x�.t/ � Nxk.t//

CB.t/.u�.t/ � Nuk.t// � d

dt
.x�.t/ � Nxk.t//idt
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C
Z t1

t0

hNuk.t/ � uk.t/; ukC1.t/ � Nuk.t/idt

C
Z t1

t0

hukC1.t/ � uk.t/; u�.t/ � ukC1.t/idt

�˛
Z t1

t0

hBT.t/. N k.t/ �  k.t//; ukC1.t/ � Nuk.t/idt � 0: (96)

6. Subtract (48) from (30):

D.t/.x�.t/ � Nxk.t//C B.t/.u�.t/ � Nuk.t// � d

dt
.x�.t/ � Nxk.t// D 0:

Given the resulting equation, the first of integrals in (96) is zeroed, and as a
result, we get

hNpk
1 � pk

1; p
kC1
1 � Npk

1i C hpkC1
1 � pk

1; p
�
1 � pkC1

1 i
ChNpk

0 � pk
0; p

kC1
0 � Npk

0i C hpkC1
0 � pk

0; p
�
0 � pkC1

0 i
C˛2kA1k2jNxk.t1/ � xk.t1/j2 C ˛2kA0k2jNxk

0 � xk
0j2

�˛hA0.Nxk
0 � x�0 /; p�0 � Npk

0i � ˛h N k
0 �  �0 ; x�0 � Nxk

0i

C
Z t1

t0

hNuk.t/ � uk.t/; ukC1.t/ � Nuk.t/idt

C
Z t1

t0

hukC1.t/ � uk.t/; u�.t/ � ukC1.t/idt

�˛
Z t1

t0

hBT.t/. N k.t/ �  k.t//; ukC1.t/ � Nuk.t/idt � 0: (97)

7. Proceed as done above, but in relation to the variable x0. To do this, we put
x0 D xkC1

0 in (68):

hNxk
0 � xk

0 C ˛.r'0.xk
0/C AT

0pk
0 C  k

0 /; x
kC1
0 � Nxk

0i � 0:

Add and subtract ˛.r'0.Nxk
0/C AT

0 Npk
0 C N k

0 / under the sign of scalar product:

hNxk
0 � xk

0 C ˛..r'0.xk
0/C AT

0pk
0 C  k

0 / � .r'0.Nxk
0/C AT

0 Npk
0 C N k

0 /; x
kC1
0 � Nxk

0i
C˛hr'0.Nxk

0/C AT
0 Npk
0 C N k

0 ; x
kC1
0 � Nxk

0i � 0:

Put x0 D x�0 in (69)

hxkC1
0 � xk

0 C ˛.r'0.Nxk
0/C AT

0 Npk
0 C N k

0 /; x
�
0 � xkC1

0 i � 0:
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Add up the inequalities obtained

hNxk
0 � xk

0; x
kC1
0 � Nxk

0i C hxkC1
0 � xk

0; x
�
0 � xkC1

0 i
C˛h.r'0.xk

0/C AT
0pk
0 C  k

0 / � .r'0.Nxk
0/C AT

0 Npk
0 C N k

0 /; x
kC1
0 � Nxk

0i
C˛hr'0.Nxk

0/C AT
0 Npk
0 C N k

0 ; x
�
0 � Nxk

0i � 0: (98)

We rewrite the Eq. (35) as a variational inequality, putting in it x0 D Nxk
0:

�˛hr'0.x�0 /C AT
0p�0 C  �0 ; x�0 � Nxk

0i � 0:

Add up this inequality with (98)

hNxk
0 � xk

0; x
kC1
0 � Nxk

0i C hxkC1
0 � xk

0; x
�
0 � xkC1

0 i
C˛h.r'0.xk

0/C AT
0pk
0 C  k

0 / � .r'0.Nxk
0/C AT

0 Npk
0 C N k

0 /; x
kC1
0 � Nxk

0i
C˛hr'0.Nxk

0/ � r'0.x�0 /; x�0 � Nxk
0i C ˛hAT

0 .Npk
0 � p�0 /; x�0 � Nxk

0i
C˛h N k

0 �  �0 ; x�0 � Nxk
0i � 0: (99)

We add up (97) with (99)

hNpk
1 � pk

1; p
kC1
1 � Npk

1i C hpkC1
1 � pk

1; p
�
1 � pkC1

1 i C ˛2kA1k2jNxk.t1/ � xk.t1/j2

ChNpk
0 � pk

0; p
kC1
0 � Npk

0i C hpkC1
0 � pk

0; p
�
0 � pkC1

0 i C ˛2kA0k2jNxk
0 � xk

0j2

�˛hA0.Nxk
0 � x�0 /; p�0 � Npk

0i � ˛h N k
0 �  �0 ; x�0 � Nxk

0i

C
Z t1

t0

hNuk.t/ � uk.t/; ukC1.t/ � Nuk.t/idt

C
Z t1

t0

hukC1.t/ � uk.t/; u�.t/ � ukC1.t/idt

�˛
Z t1

t0

hBT.t/. N k.t/ �  k.t//; ukC1.t/ � Nuk.t/idt

ChNxk
0 � xk

0; x
kC1
0 � Nxk

0i C hxkC1
0 � xk

0; x
�
0 � xkC1

0 i
C˛h.r'0.xk

0/C AT
0pk
0 C  k

0 / � .r'0.Nxk
0/C AT

0 Npk
0 C N k

0 /; x
kC1
0 � Nxk

0i
C˛hr'0.Nxk

0/ � r'0.x�0 /; x�0 � Nxk
0i C ˛hAT

0 .Npk
0 � p�0 /; x�0 � Nxk

0i
C˛h N k

0 �  �0 ; x�0 � Nxk
0i � 0:

Given the monotony of gradient r'0.x0/ in penultimate line (the negative term
˛hr'0.Nxk

0/ � r'0.x�0 /; x�0 � Nxk
0i is discarded) and collecting similar terms (the

terms˙˛h N k
0 � �0 ; x�0 � Nxk

0i and˙˛hAT
0 .Npk � p�/; x�0 � Nxk

0i cancel each other),
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we get:

hNpk
1 � pk

1; p
kC1
1 � Npk

1i C hpkC1
1 � pk

1; p
�
1 � pkC1

1 i C ˛2kA1k2jNxk.t1/ � xk.t1/j2

ChNpk
0 � pk

0; p
kC1
0 � Npk

0i C hpkC1
0 � pk

0; p
�
0 � pkC1

0 i C ˛2kA0k2jNxk
0 � xk

0j2

C
Z t1

t0

hNuk.t/ � uk.t/; ukC1.t/ � Nuk.t/idt

C
Z t1

t0

hukC1.t/ � uk.t/; u�.t/ � ukC1.t/idt

�˛
Z t1

t0

hBT.t/. N k.t/ �  k.t//; ukC1.t/ � Nuk.t/idt

ChNxk
0 � xk

0; x
kC1
0 � Nxk

0i C hxkC1
0 � xk

0; x
�
0 � xkC1

0 i
C˛hr'0.xk

0/ � r'0.Nxk
0/; x

kC1
0 � Nxk

0i C ˛hAT
0 .p

k
0 � Npk

0/; x
kC1
0 � Nxk

0i
C˛h k

0 � N k
0 ; x

kC1
0 � Nxk

0i � 0: (100)

8. Using the identity jy1 � y2j2 D jy1 � y3j2C 2hy1 � y3; y3 � y2i C jy3 � y2j2, we
transform the scalar product in (100) into the sum (difference) of squares

jpkC1
1 � pk

1j2 � jpkC1
1 � Npk

1j2 � jNpk
1 � pk

1j2

Cjpk
1 � p�1 j2 � jpkC1

1 � p�1 j2 � jpkC1
1 � pk

1j2

CjpkC1
0 � pk

0j2 � jpkC1
0 � Npk

0j2 � jNpk
0 � pk

0j2

Cjpk
0 � p�0 j2 � jpkC1

0 � p�0 j2 � jpkC1
0 � pk

0j2

C2˛2kA0k2jNxk
0 � xk

0j2 C 2˛2kA1k2jNxk.t1/ � xk.t1/j2

CkukC1.�/ � uk.�/k2 � kNuk.�/ � ukC1.�/k2 � kuk.�/ � Nuk.�/k2

Ckuk.�/ � u�.�/k2 � kukC1.�/ � u�.�/k2 � kukC1.�/ � uk.�/k2

�2˛
Z t1

t0

hBT.t/. N k.t/ �  k.t//; ukC1.t/ � Nuk.t/idt

CjxkC1
0 � xk

0j2 � jxkC1
0 � Nxk

0j2 � jNxk
0 � xk

0j2

Cjxk
0 � x�0 j2 � jxkC1

0 � x�0 j2 � jxkC1
0 � xk

0j2

C2˛hr'0.xk
0/ � r'0.Nxk

0/; x
kC1
0 � Nxk

0i C 2˛hAT
0 .p

k
0 � Npk

0/; x
kC1
0 � Nxk

0i
C2˛h k

0 � N k
0 ; x

kC1
0 � Nxk

0i � 0: (101)
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Rewrite the inequality as follows

jpkC1
1 � p�1 j2 C jpkC1

0 � p�0 j2 C kukC1.�/ � u�.�/k2 C jxkC1
0 � x�0 j2

CjpkC1
1 � Npk

1j2 C jNpk
1 � pk

1j2 C jpkC1
0 � Npk

0j2 C jNpk
0 � pk

0j2

�2˛2kA0k2jNxk
0 � xk

0j2 � 2˛2kA1k2jNxk.t1/ � xk.t1/j2

CkNuk.�/ � ukC1.�/k2 C kuk.�/ � Nuk.�/k2 C jxkC1
0 � Nxk

0j2 C jNxk
0 � xk

0j2

C2˛
Z t1

t0

hBT.t/. N k.t/ �  k.t//; ukC1.t/ � Nuk.t/idt

�2˛hr'0.xk
0/ � r'0.Nxk

0/; x
kC1
0 � Nxk

0i � 2˛hAT
0 .p

k
0 � Npk

0/; x
kC1
0 � Nxk

0i
�2˛h k

0 � N k
0 ; x

kC1
0 � Nxk

0i
� jpk

1 � p�1 j2 C jpk
0 � p�0 j2 C kuk.�/ � u�.�/k2 C jxk

0 � x�0 j2:

Using the Cauchy-Bunyakovskii inequality, we estimate the remaining terms in
the form of scalar products

jpkC1
1 � p�1 j2 C jpkC1

0 � p�0 j2 C kukC1.�/ � u�.�/k2 C jxkC1
0 � x�0 j2

CjpkC1
1 � Npk

1j2 C jNpk
1 � pk

1j2 C jpkC1
0 � Npk

0j2 C jNpk
0 � pk

0j2

�2˛2kA0k2jNxk
0 � xk

0j2 � 2˛2kA1k2jNxk.t1/ � xk.t1/j2

CkNuk.�/ � ukC1.�/k2 C kuk.�/ � Nuk.�/k2 C jxkC1
0 � Nxk

0j2 C jNxk
0 � xk

0j2

�2˛Bmaxk N k.�/ �  k.�/kkukC1.�/ � Nuk.�/k
�2˛jr'0.xk

0/ � r'0.Nxk
0/jjxkC1

0 � Nxk
0j � 2˛jjAT

0kjpk
0 � Npk

0jjxkC1
0 � Nxk

0j
�2˛j k

0 � N k
0 jjxkC1

0 � Nxk
0j

� jpk
1 � p�1 j2 C jpk

0 � p�0 j2 C kuk.�/ � u�.�/k2 C jxk
0 � x�0 j2: (102)

We continue to estimate the individual terms in the left-hand side of last
inequality.

(a) Involving (73) and (84), we have

2˛Bmaxk N k.�/ �  k.�/kkukC1.�/ � Nuk.�/k � 2.˛Bmax/
2k N k.�/ �  k.�/k2

� .˛Bmax/
2
�

e2Dmax.t1�t0/ � 1
�

=Dmax � .L1jxk.t1/ � Nxk.t1/j C kAT
1kjpk

1 � Npk
1j/2

� 2.˛Bmax/
2
�

e2Dmax.t1�t0/ � 1
�

=Dmax � .L21jxk.t1/ � Nxk.t1/j2 C kAT
1k2jpk

1 � Npk
1j2/

D ˛2d1jxk.t1/ � Nxk.t1/j2 C ˛2d2jpk
1 � Npk

1j2;
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where

d1 D 2L21B
2
max

	

e2Dmax.t1�t0/ � 1
 =Dmax;

d2 D 2kAT
1k2B2max

	

e2Dmax.t1�t0/ � 1
 =Dmax:

(b) Due to Lipschitz condition and obvious inequality 2jajjbj � a2Cb2, we have

2˛jr'0.xk
0/ � r'0.Nxk

0/jjxkC1
0 � Nxk

0j � 2˛L0jxk
0 � Nxk

0jjxkC1
0 � Nxk

0j
� ˛L0jxk

0 � Nxk
0j2 C ˛L0jxkC1

0 � Nxk
0j2;

2˛jjAT
0kjpk

0 � Npk
0jjxkC1

0 � Nxk
0j � ˛jjAT

0kjpk
0 � Npk

0j2 C ˛jjAT
0kjxkC1

0 � Nxk
0j2;

2˛j k
0 � N k

0 jjxkC1
0 � Nxk

0j � ˛j k
0 � N k

0 j2 C ˛jxkC1
0 � Nxk

0j2:

By virtue of (83), we receive

j k
0 � N k

0 j2 � 2e2Dmax.t1�t0/.L21jxk.t1/ � Nxk.t1/j2 C kAT
1k2jpk

1 � Npk
1j2/

D d3jxk.t1/ � Nxk.t1/j2 C d4jpk
1 � Npk

1j2;

where d3 D 2L21e
2Dmax.t1�t0/, d4 D 2kAT

1k2e2Dmax.t1�t0/.

Then the inequality (102) takes the form

jpkC1
1 � p�1 j2 C jpkC1

0 � p�0 j2 C kukC1.�/ � u�.�/k2 C jxkC1
0 � x�0 j2

CjpkC1
1 � Npk

1j2 C jNpk
1 � pk

1j2 C jpkC1
0 � Npk

0j2 C jNpk
0 � pk

0j2

�2˛2kA0k2jNxk
0 � xk

0j2 � 2˛2kA1k2jNxk.t1/ � xk.t1/j2

CkNuk.�/ � ukC1.�/k2 C kuk.�/ � Nuk.�/k2 C jxkC1
0 � Nxk

0j2 C jNxk
0 � xk

0j2

�˛2d1jxk.t1/ � Nxk.t1/j2 � ˛2d2jpk
1 � Npk

1j2 � ˛L0jxk
0 � Nxk

0j2 � ˛L0jxkC1
0 � Nxk

0j2

�˛jjAT
0kjpk

0 � Npk
0j2 � ˛jjAT

0kjxkC1
0 � Nxk

0j2

�˛.d3jxk.t1/ � Nxk.t1/j2 C d4jpk
1 � Npk

1j2/ � ˛jxkC1
0 � Nxk

0j2

� jpk
1 � p�1 j2 C jpk

0 � p�0 j2 C kuk.�/ � u�.�/k2 C jxk
0 � x�0 j2:

Collecting similar terms, we obtain

jpkC1
1 � p�

1 j2 C jpkC1
0 � p�

0 j2 C kukC1.�/ � u�.�/k2 C jxkC1
0 � x�

0 j2 C jpkC1
1 � Npk

1j2

C.1 � ˛2d2 � ˛d4/jNpk
1 � pk

1j2 C jpkC1
0 � Npk

0j2

C.1 � ˛jjAT
0k/jNpk

0 � pk
0j2 C .1 � 2˛2kA0k2 � ˛L0/jNxk

0 � xk
0j2

CkNuk.�/ � ukC1.�/k2 C kuk.�/ � Nuk.�/k2 C .1 � ˛.1C L0 C jjAT
0k//jxkC1

0 � Nxk
0j2
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�.˛2d1 C ˛d3 C 2˛2kA1k2/jxk.t1/ � Nxk.t1/j2

� jpk
1 � p�

1 j2 C jpk
0 � p�

0 j2 C kuk.�/ � u�.�/k2 C jxk
0 � x�

0 j2: (103)

Using the estimate (76)

jxk.t1/ � Nxk.t1/j2 � 2e2Dmax.t1�t0/
	

B2max.t1 � t0/kuk.�/ � Nuk.�/k2 C jxk
0 � Nxk

0j2



D d5kuk.�/ � Nuk.�/k2 C d6jxk
0 � Nxk

0j2;

where d5 D 2B2max.t1 � t0/e2Dmax.t1�t0/, d6 D 2e2Dmax.t1�t0/, we get

jpkC1
1 � p�1 j2 C jpkC1

0 � p�0 j2 C kukC1.�/ � u�.�/k2 C jxkC1
0 � x�0 j2

CjpkC1
1 � Npk

1j2 C .1 � ˛.˛d2 C d4//jNpk
1 � pk

1j2

CjpkC1
0 � Npk

0j2 C .1 � ˛kAT
0k/jNpk

0 � pk
0j2

C.1 � ˛.2˛kA0k2 C L0 C .˛d1 C d3 C 2˛kA1k2/d6//jNxk
0 � xk

0j2

CkNuk.�/ � ukC1.�/k2 C .1 � ˛.˛d1 C d3 C 2˛kA1k2/d5/kuk.�/ � Nuk.�/k2

C.1 � ˛.1C L0 C jjAT
0k//jxkC1

0 � Nxk
0j2

� jpk
1 � p�1 j2 C jpk

0 � p�0 j2 C kuk.�/ � u�.�/k2 C jxk
0 � x�0 j2:

Introducing notations

�1 D d4 C ˛d2; �2 D 1C L0 C jjAT
0k; �5 D kAT

0k;
�3 D 2˛kA0k2 C L0 C .˛d1 C d3 C 2˛kA1k2/d6;
�4 D .˛d1 C d3 C 2˛kA1k2/d5; (104)

we arrive at the inequality of the form

jpkC1
1 � p�1 j2 C jpkC1

0 � p�0 j2 C kukC1.�/ � u�.�/k2 C jxkC1
0 � x�0 j2

CjpkC1
1 � Npk

1j2 C jpkC1
0 � Npk

0j2 C kNuk.�/ � ukC1.�/k2

C.1 � ˛�1/jNpk
1 � pk

1j2 C .1 � ˛�5/jNpk
0 � pk

0j2 C .1 � ˛�2/jxkC1
0 � Nxk

0j2

C.1 � ˛�3/jNxk
0 � xk

0j2 C .1 � ˛�4/kuk.�/ � Nuk.�/k2

� jpk
1 � p�1 j2 C jpk

0 � p�0 j2 C kuk.�/ � u�.�/k2 C jxk
0 � x�0 j2: (105)

Choosing the value of ˛ from the condition

0 < ˛ < min

�
1

�1
;
1

�2
;
1

�3
;
1

�4
;
1

�5

�

; (106)
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it is possible to provide strict positiveness of all the terms in (105). Discarding
in the left-hand side of this inequality all lines except the first and last, we obtain

jpkC1
1 � p�1 j2 C jpkC1

0 � p�0 j2 C kukC1.�/ � u�.�/k2 C jxkC1
0 � x�0 j2

� jpk
1 � p�1 j2 C jpk

0 � p�0 j2 C kuk.�/ � u�.�/k2 C jxk
0 � x�0 j2; (107)

that means a monotonous decrease of the sequence

fjpk
1 � p�1 j2 C jpk

0 � p�0 j2 C kuk.�/ � u�.�/k2 C jxk
0 � x�0 j2g

on the Cartesian product RmC � RmC � Lr
2Œt0; t1	 � Rn.

9. We sum up the inequality (105) from k D 0 to k D N:

jpNC1
1 � p�1 j2 C jpNC1

0 � p�0 j2 C kuNC1.�/ � u�.�/k2 C jxNC1
0 � x�0 j2

C
NX

kD0
jpkC1
1 � Npk

1j2 C
NX

kD0
jpkC1
0 � Npk

0j2 C
NX

kD0
kNuk.�/ � ukC1.�/k2

C.1 � ˛�1/
NX

kD0
jNpk
1 � pk

1j2 C .1 � ˛�5/
NX

kD0
jNpk
0 � pk

0j2

C.1 � ˛�2/
NX

kD0
jxkC1
0 � Nxk

0j2 C .1 � ˛�3/
NX

kD0
jNxk
0 � xk

0j2

C.1 � ˛�4/
NX

kD0
kuk.�/ � Nuk.�/k2

� jp01 � p�1 j2 C jp00 � p�0 j2 C ku0.�/ � u�.�/k2 C jx00 � x�0 j2: (108)

Provided (106), this inequality implies that the sequence is bounded for any N

jpNC1
1 � p�1 j2 C jpNC1

0 � p�0 j2 C kuNC1.�/ � u�.�/k2 C jxNC1
0 � x�0 j2

� jp01 � p�1 j2 C jp00 � p�0 j2 C ku0.�/ � u�.�/k2 C jx00 � x�0 j2; (109)

and the following series converge

1X

kD0
jpkC1
1 � Npk

1j2 <1;
1X

kD0
jNpk
1 � pk

1j2 <1;

1X

kD0
jpkC1
0 � Npk

0j2 <1;
1X

kD0
jNpk
0 � pk

0j2 <1;
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1X

kD0
jxkC1
0 � Nxk

0j2 <1;
1X

kD0
jNxk
0 � xk

0j2 <1;

1X

kD0
kNuk.�/ � ukC1.�/k2 <1;

1X

kD0
kuk.�/ � Nuk.�/k2 <1:

The convergence of the series implies the vanishing of the terms for these series

jpkC1
1 � Npk

1j ! 0; jNpk
1 � pk

1j ! 0; jpkC1
0 � Npk

0j ! 0; jNpk
0 � pk

0j ! 0;

jxkC1
0 � Nxk

0j ! 0; jNxk
0 � xk

0j ! 0;

kNuk.�/ � ukC1.�/k ! 0; kuk.�/ � Nuk.�/k ! 0: (110)

Hence, by the triangle inequality, we obtain

jpkC1
1 � pk

1j ! 0; jpkC1
0 � pk

0j ! 0; jxkC1
0 � xk

0j ! 0; kukC1.�/ � uk.�/k ! 0:

From (75), (76) and (84) it follows that

jxk.t/ � Nxk.t/j ! 0; jxk.t1/ � Nxk.t1/j ! 0; k k.�/ � N k.�/k ! 0 as k!1:
(111)

Moreover, every term in the left-hand side of (109) is bounded

jpk
1 � p�1 j � const; jpk

0 � p�0 j � const;

jxk
0 � x�0 j � const; kuk.�/ � u�.�/k � const:

Finally, as it follows from (77), (76) and (85), the sequences below also are
bounded

kxk.�/ � x�.�/k � const; jxk.t1/ � x�.t1/j � const; k k.�/ �  �.�/k � const:

10. Since the sequence f.xk
0; x

k.t1/; xk.�/; uk.�/I pk
0; p

k
1, 

k.�//g is bounded on the
Cartesian product Rn � Rn � ACnŒt0; t1	 � U � RmC � RmC � ‰n

2Œt0; t1	 then
this sequence is weakly compact [19]. The latter means that there exists
the subsequence f.xki

0 ; x
ki.t1/; xki.�/; uki.�/; pki

0 ; p
ki
1 ;  

ki.�//g and the point
.x

0

0; x
0

.t1/; x
0

.�/; u0

.�/I p0

0,p
0

1,  
0

.�//, which is the weak limit of this subsequence.
Note that in finite-dimensional (Euclidean) spaces of variables p0; p1 and
x0; x.t1/ strong and weak convergences coincide.

Note also that all linear differential operators of system (42)–(53) are weakly
continuous [19], and therefore the transition to weak limit is possible. Passing to
weak limit as ki !1 in the whole system with the exception of Eqs. (46) and (52),
we obtain
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d

dt
x

0

.t/ D D.t/x
0

.t/C B.t/u
0

.t/; x
0

.t0/ D x
0

0;

p
0

0 D �C.p
0

0 C ˛.A0x
0

0 � a0//;

p
0

1 D �C.p
0

1 C ˛.A1x
0

.t1/ � a1//;

d

dt
 

0

.t/C DT.t/ 
0

.t/ D 0;  0

1 D r'1.x
0

.t1//C AT
1p

0

1;

r'0.x0

0/C AT
0p

0

0 C  
0

0 D 0: (112)

Thus, it was shown that weak limit of the subsequence is the solution of incomplete
system (112). This system does not contain a limit expression for the iterative
formula (52) (or (46)). To obtain a complete picture, it is necessary to show that
the weak limit point satisfies this limit relation, i.e., the variational inequality

Z t1

t0

hBT.t/ 
0

.t/; u
0

.t/ � u.t/idt � 0; u.�/ 2 U; (113)

or, that is the same, the operator equation

u
0

.t/ D �U.u
0

.t/ � ˛BT.t/ N 0

.t//: (114)

Let us prove this fact. The right-hand side of (52) (or (46)) as an operator is not
weakly continuous, therefore the transition to weak limit is, generally speaking,
impossible. We will use a different approach. The first three equations of the
system (112) coincide with (10). The solution of system (10) is a solution of (1)–(4).

The saddle point .x�0 ; x�1 ; x�.�/; u�.�/I p�0 ; p�1 ;  �.�// of system (6) for
Lagrangian (5) is formed by primal .x�0 ; x�1 ; x�.�/; u�.�// and dual .p�0 ; p�1 ;  �.�//
variables for problem (1)–(4). In Sects. 3 and 4 it was shown that the above saddle
point is also a saddle point for dual Lagrangian (15). Consequently, this point
satisfies the dual system of saddle-point inequalities (16). In turn, this system
generates the dual (conjugate) problem (20)–(23). In this case, the saddle point
.x�0 ; x�1 ; x�.�/; u�.�/I p�0 ; p�1 ;  �.�// is solution of dual problem. In particular, the
variational inequality (23) is true. In considered case, it takes the form (113).

Thus, combining (112) and (113), it can be argued that weak limit point is the
solution of primal and dual system (24)–(29), i.e.,

.x
0

0; x
0

1; x
0

.�/; u0

.�/; p0

0; p
0

1;  
0

.�// D .x�0 ; x�1 ; x�.�/; u�.�/; p�0 ; p�1 ;  �.�//:

The system (24)–(29) is necessary and sufficient condition for solving the problem
in form of Lagrange principle (the saddle-point principle). It remains to note that the
process converges monotonically in variables .p0; p1; x0; u.�//. As it is well-known
[26], the convergence in .x.�/;  .�// is strong. The convergence in finite-dimensional
variables .p0; p1; x0; x.t1// is also strong. The theorem is proved. ut
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9 Conclusions

In this paper, the dynamic model of terminal control with boundary value problems
at the ends of time interval is interpreted as a saddle-point problem. The problem
is considered in functional Hilbert space. Solution of the problem (as a saddle
point) satisfies the saddle-point system of inequalities with respect to primal and
dual variables. In the linear-convex case, this system can be considered as a
strengthening of the maximum principle. This enhancement allows us to expand
the possibilities of dynamic modeling of real situations both due to the large variety
of finite-dimensional boundary value problems, and due to the diversity of the new
saddle-point methods.

New quality of the proposed technique is that it allows us to prove the strong (in
norm) convergence of computing process in all the variables of the problem, except
for controls, where the convergence is weak. Features of the new technology are
demonstrated with the example of linear-convex dynamic problem with boundary
conditions described by convex programming problems. Such problems as n-person
games, variational inequalities, extreme mappings, equilibrium economic models
and others can successfully play the role of boundary value problems.
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Abstract The paper proposes two new approaches to designing efficient math-
ematical tools for quantitatively analyzing decision-making processes that small
and medium price-taking traders undergo in forming and managing their portfolios
of financial instruments traded in a stock exchange. Two mathematical models
underlying these approaches are considered. If the trader can treat price changes for
each financial instrument of her interest as those of a random variable with a known
(for instance, a uniform) probability distribution, one of these models allows the
trader to formulate the problem of finding an optimal composition of her portfolio
as an integer programming problem. The other model is suggested to use when the
trader does not possess any particular information on the probability distribution of
the above-mentioned random variable for financial instruments of her interest while
being capable of estimating the areas to which the prices of groups of financial
instruments (being components of finite-dimensional vectors for each group) are
likely to belong. When each such area is a convex polyhedron described by a finite
set of compatible linear equations and inequalities of a balance kind, the use of
this model allows one to view the trader’s decision on her portfolio composition as
that of a player in an antagonistic game on sets of disjoint player strategies. The
payoff function of this game is a sum of a linear and a bilinear function of two
vector arguments, and the trader’s guaranteed financial result in playing against the
stock exchange equals the exact value of the maximin of this function. This value,
along with the vectors at which it is attained, can be found by solving a mixed

A.S. Belenky (�)
National Research University Higher School of Economics, Moscow, Russia

Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA,
USA
e-mail: abelenky@hse.ru

L.G. Egorova
National Research University Higher School of Economics, Moscow, Russia
e-mail: legorova@hse.ru

© Springer International Publishing Switzerland 2016
B. Goldengorin (ed.), Optimization and Its Applications in Control
and Data Sciences, Springer Optimization and Its Applications 115,
DOI 10.1007/978-3-319-42056-1_3

51

mailto:abelenky@hse.ru
mailto:legorova@hse.ru


52 A.S. Belenky and L.G. Egorova

programming problem. Finding an upper bound for this maximin value (and the
vectors at which this upper bound is attained) is reducible to finding saddle points in
an auxiliary antagonistic game with the same payoff function on convex polyhedra
of disjoint player strategies. These saddle points can be calculated by solving linear
programming problems forming a dual pair.

Keywords Convex polyhedron • Equilibrium points • Financial instruments •
Integer programming • Linear programming • Mixed programming • Price-taking
traders • Random variable probability distribution • Two-person games on sets of
disjoint player strategies

JEL Classification: G11, C6

1 Introduction

Stock exchanges as markets of a special structure can be viewed as economic
institutions whose functioning affects both the global economy and economic
developments in every country. This fact contributes to a great deal of attention
to studying the stock exchange behavior, which has been displayed for years by
a wide spectrum of experts, especially by financiers, economists, sociologists,
psychologists, politicians, and mathematicians. What becomes known as a result
of their studies, what these experts can (and wish to) explain and interpret from
findings of their studies to both interested individuals and society as a whole to
help them understand how the stock exchanges work, and how good (or bad)
these explanations are make a difference. Indeed, economic issues and policies,
the financial stability and the financial security of every country, and the financial
status of millions of individuals in the world who invest their personal money in
sets of financial instruments traded in stock exchanges are affected by the stock
exchange behavior. The existing dependency of so many “customers” on the above-
mentioned ability (or inability) of the experts to provide trustworthy explanations
of this behavior makes advances in developing tools for quantitatively analyzing
the work of stock exchanges important for both the financial practice and economic
science.

These tools seem indispensible, first of all, for specialists in economics and
finance, since they let them (a) receive, process, analyze, and interpret available
information on the behavior of both stock exchanges and their participants, (b)
form, test, and analyze both scientific and experience-based hypotheses on the stock
exchange behavior, along with mathematical models for its description, and (c)
study, evaluate, and generalize the experience of successful traders. However, since
the quality of the above analyses heavily affects financial decisions of so many
individuals whose well-being substantially depends on the quality of decisions on
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forming and managing their portfolios, it is clear that developing the tools presents
interest for a sizable number of these individuals as well, especially if the tools are
easy to operate, are widely available, and the results of the tools’ work are easy to
understand.

Developing such tools for quantitatively studying the financial behavior and
strategies of price-taking traders and those of any groups of them presents particular
interest, since these strategies and this behavior, in fact, (a) determine the behavior
of stock exchanges, (b) reflect both the state of the global economy and that
of the economy in every country in which particular stock exchanges function,
and (c) let one draw and back up conclusions on the current investors’ mood.
However, the development of such tools requires substantial efforts from researchers
to make the tools helpful in studying particular characteristics attributed to stock
exchanges, for instance, regularities of the dynamics of financial instrument values
depending on the financial behavior of so-called “bulls” and “bears” [27]. The
same is true for studying the reaction of particular stock exchanges in particular
countries on forming financial “bubbles,” on crushes of particular stocks, and on
financial and general economic crises, especially taking into account large volumes
of the available data, interdependencies of particular ingredients of this data, and the
probabilistic nature of the data.

Three questions on tools for quantitatively studying the financial behavior and
strategies of price-taking traders are in order: (1) can the above-mentioned tools be
developed in principle, and if yes, what can they help analyze, (2) who and how
can benefit from their development, and (3) is there any need for developing such
tools while so many different tools for studying stock exchanges have already been
developed (and have been recognized at least by the scientific community)?

1. Every stock exchange is a complicated system whose behavior is difficult to
predict, since this behavior depends on (a) decisions made by its numerous
participants, (b) political and economic situations and tendencies both in the
world and in particular countries, (c) breakthroughs in science and technology,
and (d) environmental issues associated with the natural anomalies and disasters
that may affect agriculture, industry, and people’s everyday life. However, there
are examples of global systems having a similar degree of complexity whose
behavior has been studied and even successfully forecast. Weather, agricultural
systems, electoral systems, certain kinds of service systems, including those
supplying energy (electricity, water, and gas), and particular markets, where
certain goods are traded, can serve as such examples. Indeed, for instance,
the dynamics of the land productivity with respect to particular agricultural
crops in a geographic region, which substantially depends on both local weather
and human activities relating to cultivating the crops and which is difficult to
study, has been successfully researched. The dynamics of changing priorities of
the electorate in a country, which substantially depends on the political climate
both there and in the world, as well as on actions undertaken by candidates on
the ballot and their teams to convince the voters to favor these candidates, is
successfully monitored and even predicted in the course of, for instance, U.S.
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presidential election campaigns, despite the obvious complexity of studying it.
The dynamics of energy consumption by a resident in a region, which depends
on the financial status of this resident and her family, on the climate and local
weather in the region, on the time of the day, on her life style and habits, etc., is
successfully forecast in calculating parameters of regional electrical grids though
its formalized description presents substantial difficulties.

While there are obvious similarities in the dependency of all the above-
mentioned global systems on the nature and human behavior, the conventional
wisdom suggests that developing any universal decision-support systems appli-
cable to studying and analyzing these systems from any common, uniform
positions is hardly possible. However, the authors believe that certain regularities
detected in studying these systems [6] can successfully be applied in studying and
analyzing stock exchanges and financial strategies of their participants [7].

At the same time, one should bear in mind that according to [22, 44], with
all the tools available to world financial analysts, they correctly predict the
behavior of financial instruments approximately in 50 % of the cases. This may
suggest that either the tools adequately describing the stock exchange regularities
have not so far been developed, or not everything in stock exchanges can be
predicted with a desirable accuracy in principle though the existing tools seem
helpful for understanding regularities underlying the tendencies of the stock
exchange behavior. In any case, it seems that the tools allowing one to analyze
the “potential” of a price-taking trader and the impact of her decisions on both the
composition of her portfolio of financial instruments traded in a stock exchange
and on the behavior of this stock exchange as a whole are needed the most.

2. Economists, financial analysts, and psychologists are direct beneficiaries of
developing tools for quantitatively studying the financial behavior and decision-
making strategies of price-taking traders, whereas these traders themselves are
likely to benefit from developing these tools at least indirectly, by using results
of the studies that can be undertaken by the above-mentioned direct beneficiaries.
A set of mathematical models describing the process of making investment
decisions by price-taking traders and software implementing existing or new
techniques for solving problems formulated with the use of these models, along
with available statistical data reflecting the stock exchange behavior, should
constitute the core of the tools for analyzing the psychology of making decisions
by price-taking traders possessing abilities to divine the market price dynamics
with certain probabilities. One should expect that the use of the tools by
price-taking traders for improving their decisions (no matter whether such an
improvement can be attained by any of them) is likely to change the behavior of
every stock exchange as a whole, and this is likely to affect both the economy of
a particular country and the global economy.

3. The financial theory in general and financial mathematics in particular offer
models describing the financial behavior of price-taking traders assuming that
these traders are rational and make their decisions in an attempt to maximize
their utility functions under a reasonable estimate of both the current and the
future market status. In all these models, including the Black-Scholes model



Optimization of Portfolio Compositions for Small and Medium Price-Taking Traders 55

for derivative investment instruments and those developed by Markowitz for
the stocks [33], their authors assume that the trader possesses information on
the probability distribution of the future prices of the financial instruments
(at least for those being of interest to the trader). The use of these models leads
to solving quite complicated mathematical problems that can in principle be
solved only approximately, and even approximate solutions can be obtained only
for a limited number of the variables that are to be taken into consideration.
Since the parameters of the above-mentioned probability distributions are also
known only approximately, the question on how correctly these models may
reflect the real financial behavior of the traders in their everyday work with
financial instruments, and to what extent these models are applicable as tools
for quantitatively analyzing the work of any stock exchange as a whole seems to
remain open.

The present paper discusses a new approach to developing a package of
mathematical tools for quantitatively analyzing the financial behavior of small and
medium price-taking traders (each possessing the ability to divine future price
values of certain financial instruments traded in any particular stock exchange)
by means of integer, mixed, and linear programming techniques (the latter being
the most powerful techniques for solving optimization problems). It is assumed
that each such trader forms her portfolio of only those financial instruments of her
interest traded in a stock exchange for which the above ability has been confirmed
by the preliminary testing that the trader undergoes using the publicly available data
on the dynamics of all the financial instruments traded there. Once the initial trader’s
portfolio has been formed, at each moment, the trader gets involved in making
decisions on which financial instruments from the portfolio (and in which volumes)
to sell and to hold, as well as on which financial instruments traded in the stock
exchange (and in which volumes) to buy to maximize the portfolio value. The paper
concerns such decisions that a price-taking trader might make if she had tools for
analyzing the dynamics of financial instruments being of her interest (at the time of
making these decisions) in the following two situations:

(a) For each financial instrument, the trader believes that its price values will
increase and decrease within a segment as two random variables each uniformly
distributed on one of the two parts into which its current price value divides the
segment, and

(b) no information on the probability distribution of the above-mentioned random
variable is available to or can be obtained by the trader though she can estimate
the areas to which the price values of groups of financial instruments from her
portfolio, considered as components of vectors in finite-dimensional spaces, are
likely to belong.

It is shown that in the first situation, the deployment of one of the two mathe-
matical models, proposed in the paper, allows the trader to reduce the problem of
finding an optimal composition of her portfolio to solving an integer programming
problem. In the second situation, the use of the other model allows the trader to find
her optimal investment strategy as that of a player in a two-person game on sets of



56 A.S. Belenky and L.G. Egorova

disjoint player strategies, analogous to the game with the nature, in which the payoff
function is a sum of a linear and a bilinear function of two vector variables. It is
proven that in the second situation, finding an optimal investment strategy of a trader
is equivalent to solving a mixed programming problem, whereas finding an upper
bound for the trader’s guaranteed result in the game is reducible to calculating an
equilibrium point in an auxiliary antagonistic game, which can be done by solving
linear programming problems forming a dual pair.

The structure of the rest of the paper is as follows: Sect. 2 presents a brief survey
of existing approaches to studying the financial behavior of small and medium price-
taking traders. Section 3 briefly discusses ideas underlying the development of the
tools for detecting a set of financial instruments for which a price-taking trader is
able to divine their future price values. Section 4 addresses the problem of forming
an optimal portfolio of financial securities by a price-taking trader assuming that the
trader knows only the area within which the price value of each particular financial
security of her interest (considered as the value of a uniformly distributed random
variable) changes. Section 5 presents a game model for finding strategies of a price-
taking trader with respect to managing her portfolio when the trader cannot consider
price values of financial securities of her interest as random variables with known
probability distributions. In this case, finding a global maximum of the minimum
function describing the guaranteed financial result for a trader, associated with her
decision to buy, hold, and sell financial securities is reducible to solving a mixed
programming problem, whereas finding an upper bound for this guaranteed result is
reducible to finding Nash equilibria in an auxiliary antagonistic game. Finding these
equilibria is, in turn, reducible to solving linear programming problems forming
a dual pair. Section 6 provides two numerical programming problems forming a
dual pair. Section 6 provides two numerical examples illustrative of using the game
model, presented in Sect. 5, in calculating optimal investment strategies of a trader
in both forming a new and in managing an existing portfolio of financial securities
traded in a stock exchange. Section 7 presents concluding remarks on the problems
under consideration in the paper.

2 A Brief Review of Publications on Modeling the Financial
Behavior of Small and Medium Price-Taking Traders
in a Stock Exchange

2.1 Mathematical Models for Developing an Optimal Portfolio
of a Price-Taking Trader

There are three basic approaches to forming an optimal portfolio of a price-taking
trader with the use of mathematical models, proposed by economists H. Markowitz,
W. Sharpe, and S. Ross.
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Markowitz considered the problem of forming a trader’s optimal portfolio under
the budget limitations in which two parameters—the growth of the portfolio value
(to be maximized) and the risks associated with the instability of the stock exchange
(to be minimized)—are optimized. He assumed that (a) mathematically, the first
parameter is modeled by the expectation of the portfolio’s return, whereas the
second one is modeled by the portfolio’s return variance, (b) the value of each
security considered for the inclusion in the portfolio is a random variable with
a normal probability distribution, and (c) the shares of securities in the portfolio
are non-negative, real numbers. The underlying idea of the Markowitz approach to
finding an optimal portfolio composition consists of determining a Pareto-optimal
border (efficient frontier) of attainable values of the above two parameters on
a plane with the “expectation-variance” coordinates and finding on this border
an optimal trader’s portfolio by solving an auxiliary problem of calculating a
tangent to the above border. Markowitz proved [33] that (a) components of the
solutions to the auxiliary problem are piecewise functions, (b) there are so-called
“corner” portfolios, corresponding to discontinuity points of the functions being
derivatives of the components of the auxiliary problem solutions, and (c) these
“corner” portfolios are sufficient for describing all the portfolios from the Pareto-
optimal border, since all the portfolios from the Pareto-optimal border are linear
combinations of these “corner” portfolios. Here, the choice of a particular portfolio
by a particular trader depends on the preferences that the trader has on both
the return and the risk associated with the inclusion of a particular security in
the portfolio, and the pair of these two parameters determines a point on the
above Pareto-optimal border.

Though the Markowitz model presents obvious theoretical interest, it does not
seem to have received attention in the practice of analyzing the stock exchange work,
apparently, due to (a) the assumptions under which this model has been developed
(particularly, normal probability distributions for the above-mentioned random
variables), (b) difficulties in obtaining data for calculating both the expectation of
the return and the variance of the return under unstable conditions of the stock
market, (c) the need to use approximate methods in calculating the Pareto-optimal
border when the number of securities is large, etc. Nor has it received enough
attention from the practice of using stock exchange work models though models
that employ the Markowitz idea in practical calculations but use other parameters
instead of the expectation and the variance of the return have been implemented
in particular practical calculations. For instance, mean-semivariance [34], mean-
absolute deviation [25], mean-VaR (Value-at-Risk) [21], mean-CVaR (Conditional
Value-at-Risk) [45], and chance-variance [28] are among such models, despite the
presence of the above-mentioned Markowitz model deficiencies in them.

In 1964 Sharpe developed another model for choosing a composition of the
investment portfolio, called Capital Asset Pricing Model (CAPM) [49], which
incorporated some ideas of the Markowitz model. That is, all the traders are assumed
to be rational and developing their strategies proceeding from the expected revenue
and the values of standard deviations of the return rate for securities from the
portfolio. Sharpe’s model assumes that all the traders (a) have access to the same
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information on the stock exchange, (b) have the same horizon of planning and
estimate the expected rates of return and standard deviations of these rates in
the same manner, and (c) proceed from the same risk-free interest rate at which
every trader can borrow money (for instance, from the interest rate of the Treasury
Bills). He suggested that under the above assumptions, the traders, who estimate
the risk-free interest rate, co-variations, dispersions, and the expected rates of return
for every security uniformly, would choose the same portfolio, called the market
portfolio, in which the share of each security corresponds to its market value. Since
each trader has her own utility function, she would allocate her capital among
the risk-free securities and the market portfolio in a manner that guarantees her a
desirable level of the yield while not exceeding a certain level of risk. Thus, due to
the same rate of return and to the same market portfolio for all the traders, CAPM-
effective portfolios on the plane with the risk and the rate of return as coordinates
will occupy a line, called the market line, and all the portfolios below this line
will not be effective. Sharpe proposed a mathematical expression for the above
line whose coefficients are determined by the risk-free interest rate and by the
expectation and the dispersion of the rate of the market portfolio return. For each
security from the trader’s portfolio, the expected premium for the risk of investing
in this security can be described by a function of its rate of return and of the risk-
free rate so that the expected premium for the risk associated with investing in a
particular security is proportional to the expectation of the premium for investing
in securities with the above risk-free interest rate. Moreover, Sharpe proposed
to measure “the sensitivity” of a particular security to changes in the market of
securities by a coefficient “beta” reflecting the level of coincidence of the direction
in which the security changes and the direction in which the market as a whole does.
When “beta” equals 1, the value of the security increases or decreases with the same
rate as does the whole market so that the inclusion of securities with the coefficient
values exceeding 1 increases the risk of investment in securities from the portfolio
while increasing the return of the portfolio.

Though the Sharpe model for all the traders (a) assumes their rationality,
the uniformity of information on the stock exchange that they possess, and the
uniformity of their evaluation of the return and the risk associated with each security
from the portfolio, (b) does not take into consideration a number of factors affecting
the return of securities from the portfolio besides the market portfolio, and (c)
shows a substantial deviation between the actual and the calculated data and the
instability of the above coefficient “beta,” which can be viewed as a “sensitivity
coefficient,” this model is widely used in practical calculations. In these calculations,
the “sensitivity coefficient” is determined based upon the available statistical data
on the monthly yield of securities and on the values of some stock exchange indices.

The Arbitrage Pricing Theory, APT, proposed by Ross in 1976 [47], uses a
multifactor mathematical model for describing the dependence of the return of a
security on a number of factors in forecasting values of the expected return. For
instance, the trader may consider the values of the stock indices, the level of interest
rates, the level of inflation, the GDP growth rates, etc. as the factors in the APT
model with coefficients reflecting the sensitivity of the return of a particular security
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to the changes of a particular factor in the model. Ross considered a trader’s problem
of composing an investment portfolio that is insensitive to any factor changes, does
not need any additional trader’s resources, and has a positive return. Ross proved
that such a portfolio, called an arbitrage portfolio (where the arbitrage is understood
in the sense of receiving a risk-free profit as a result of dealing with the same
securities, but with different prices) allows one to get a positive profit with zero
initial capital and in the absence of risk. He proved that the arbitrage is impossible if
the dependence among a substantial number of securities considered to be included
in the portfolio is “almost linear” [47]. He also proposed to calculate the expected
return of a particular security as a linear combination of summands each of which
depends on the expected return of the portfolio having the unit sensitivity to a
particular factor and zero sensitivity to the other factors.

The recommendations of the Ross model present mostly theoretical interest, and
they may be considered realistic only for a large number of different securities in
the trader’s portfolio, i.e., for extremely large markets. In any case, the use of these
recommendations implies the determination of the composition of factors affecting
the return of a security.

2.2 Modeling the Dynamics of Security Price Values

Traders who do not use mathematical models for optimizing their investment
portfolios usually make decisions on forming and managing these portfolios based
upon forecasts of the future price values of the financial instruments that interest
them, which can be done with the use of several statistical methods.

Regression Analysis Linear regression models, which are used for estimating
parameters in the above-mentioned CAPM and APT models, are widely used for
describing the dependences of the security yield on (a) its dividend yield ratio (the
ratio of the annual dividend per security share to the market value of the share
price of this security at the end of the fiscal year) [24], (b) P/E coefficient (price-
earning ratio, equaling the ratio of the current market capitalization of the company
to its carrying value) [31], (c) the banking interest rate and the spread value (the
difference between the best price values of market orders for buying and selling a
particular security at one and the same moment) [19], etc. Though the regression
models are widely used, their use requires processing a substantial volume of data
to adequately estimate parameters of the model. The absence of the adequacy of
the model (for models presented in the form of any numerical dependency between
explanatory variables and those to be explained), a relatively low accuracy of the
forecasts, and the impossibility to analyze the interrelation among the data available
for processing in the form of finite time series are shortcomings/limitations of the
regression models that are in use for forecasting future price values of securities
traded in stock exchanges. To provide a correct interpretation of the forecast with
the use of these models, one should determine the full set of explanatory variables
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to avoid (a) the bias of the coefficient estimates, (b) the incorrectness of t-statistics
and that of other quality indices in the absence of the significant variables, and (c)
the risk of multicollinearity (i.e., a linear dependency among the factors). Finally, as
shown in [38, 39], for almost all the data describing U.S. macroeconomic indices, all
the regressions obtained with the use of the least square methods have turned out to
be spurious, i.e., while the dependence between the above-mentioned variables was
present (since the regression coefficients were significant, and all the assumptions
under which the use of linear regressions is justified were present), there were no
dependences between the explanatory variables and those to be explained.

Time Series Analysis Time series of various special structures are widely used
for describing macroeconomic indices. However, due to the non-stationarity of,
particularly, financial time series, and the presence of both the autoregression and
the moving average, time series models cannot describe these indices adequately.
Nevertheless, one can transform the initial time series into those whose values
are the differrences of a certain degree for the initial time series, and these time
series of the differences can be used in forecasting security price values [8, 20, 42].
Autoregression heteroskedasticity models (ARCH), which describe changes of the
dispersion of the time series, have been proposed to take into consideration the
feature of stock exchange time series associated with the sequencing of the periods
of high and small volatility of the parameters described by these time series [15].
Other econometric models for studying time series that describe financial indices,
along with tests for verifying and estimating coefficients in these models, the quality
of the forecast, and the assumptions underlying the models, are discussed in [56].
The practical use of the time series techniques requires (a) processing a substantial
volume of data, (b) an adequate choice of the structure of a particular time series
for forecasting a particular parameter, and (c) establishing the applicability of the
models under the feature of non-stationarity of the parameters to be forecast, which
usually presents considerable difficulties.

Stochastic Differential Equations Stochastic differential equations are widely
used in the description of the dynamics of both the price of and the yield for a
security, and the most general description is usually offered in the form

dXt D �.Xt; t/dtC �.Xt; t/dWt;

where Wt is a Wiener process, being a continuous-time analog of a random walk.
Here, the random process Xt, describing the dynamics of the share price or that
of the yield, can be modeled under different particular variants of the functions �
and � . The most known models are those used for describing the dynamics of the
interest rate rt (in which the equality Xt D rt holds) in determining the value of the
share price of a bond, and they include

• the Merton model, describing the capital assets in which drt D ˛dtC �dWt [35],
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• the Vasicek model drt D ˛.ˇ � rt/dt C �dWt [57], reflecting the tendency of
the interest rate to return to its average level ˇ with the velocity described by the
parameter ˛,

• Cox-Ingersoll-Ross model drt D .˛ � ˇrt/dt C �.rt/
1=2dWt [11], which takes

into consideration the dependence of the volatility .�.rt; t/ D �.rt/
1=2/ on the

interest rate rt,
• the Chen model [10] of the interest rate dynamics drt D .˛t�rt/dtC.�trt/

1=2dWt

in which the coefficients are also stochastic processes described by analogous
stochastic differential equations d˛t D .˛ � ˛t/dt C .˛t/

1=2dW1
t , d�t D .� �

�t/dtC .�t/
1=2dW2

t .

The Levy processes deliver another type of stochastic differential equations
[18, 23, 59] that are used for describing the dynamics of the share price (or that
of the yield) of a security. These processes can be represented by a sum of three
summands, where the first and the second ones describe the trend of the dynamics
and fluctuations around this trend, whereas the third one models the jumps of the
value of the security share price as a reaction on any events being external to the
stock exchange

dXt D �dtC �dWt C dJt;

where Jt is a compound Poisson process with a known arrival rate of the external
events. The complexity of (a) obtaining both analytical and approximate solutions to
the equations adequately describing real stock exchange processes, (b) understand-
ing mathematical models underlying the description of the processes under study
and the solution techniques of the problems formulated on the basis of these models,
and (c) implementing the solutions, are among major disadvantages of modeling
the dynamics of the share price of a security with the use of stochastic differential
equations.

Other Methods Non-parametric methods [56], particularly, neural networks
[36, 40], data mining [16], and machine learning [54] should be mentioned
among other methods used for describing the dynamics of the share price of a
security. However, besides disadvantages attributed to the parametric methods,
mentioned earlier, there are some additional ones associated with the specifics
of non-parametric methods. For instance, the choice of the topology (the number
of layers and neurons and their connections) of the neural networks presents
considerable difficulties, and the training of a neural network requires processing
large volumes of data while even the correspondence of the model to the historical
data does not necessarily guarantee a high level of quality of the forecasts on the
basis of the neural network models.
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2.3 Some Empirical Facts on the Financial Behavior
of Price-Taking Traders and Financial Analysts

Some Statistical Facts Illustrative of the Ability (or of the Inability) of Price-
taking Traders To Make Successful Investment Decisions According to the in-
formation on transactions of ten thousand investors in a seven year period of time,
the average, securities sold by the traders had a higher interest rate than those bought
by them later on [41]. Also, an analysis of transactions related to more than sixty
six thousand broker accounts showed that the average yield of a trader was equal
16,4 %, and the average yield of active traders reached only 11,4 % while the yield
of the market portfolio was 17,9 % [1]. Based on this data, the authors of the above-
mentioned publications concluded that the traders adopted wrong financial decisions
in quite a number of cases. The authors of [13] believe that adopting wrong financial
decisions by the traders is associated with traders’ emotions, and several tests have
been conducted to analyze how the physiology status of a trader (measured by, for
instance, the frequency of her pulse and the electrical conductivity of her skin)
affected these decisions. That is, the values of these trader’s medical parameters
were measured in the course of such market events as changes in the trend and
an increase of the volatility or that of the volume of transactions with respect to
particular financial instruments [29], and they were compared with the values in
the periods of market stability. It has turned out that, generally, experienced traders
have been less sensitive emotionally to the stock exchange events than inexperienced
ones. Similar to the authors of [1, 37], the authors of [48] believe that the tendency of
both professional private investors and traders to sell profitable securities more often
than unprofitable ones (the disposition effect) should be interpreted as the inability
of the traders to adopt right financial decisions in a substantial number of cases.
The authors of [26] assert that private investors are overconfident and that they are
sure that they interpret all the available financial information correctly, which leads
to their excessive participation in stock exchange bids and causes them to sustain
big losses. Neither a correlation between the success of a trader and her personal
qualities (such as age, experience, the size of her capital, the level of education, etc.)
[30], nor a correlation between her success and the gender have been detected [44].
Moreover, conclusions of some researchers on the performance of the investment
funds managed by Ph. D. holders, as well as by those having scientific publications
in the top journals on economics and finance, suggest that the viewpoint that these
funds achieve better financial results should be considered controversial [9]. The
fate of the Long-Term Capital Management—the hedge fund which crashed in
1999, despite the fact that more than a half of its participants and partners had
scientific degrees, and Nobel economists R. Merton and M. Scholes were among
its partners—seems to be illustrative of this statement.

As is known, traders who do not have any specific knowledge or time for
making decisions based upon analyzing available information are inclined to
follow the actions of other traders, called gurus (the so-called herding effect)
[46, 55, 58]. Usually, lucky and experienced traders or the insiders, who have
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access to information inaccessible to others, are chosen as such gurus, and the
herding effect is present even among experienced traders (though to a much lower
degree) [58]. In [55], the authors suggest that in the market of currency futures
contracts, small speculators follow the actions of large ones if this looks profitable
to them. This conclusion on the herding effect is also suggested in [14], where the
authors explain such a behavior of the traders by (a) expectations of substantial
profits to come, (b) personal motives of particular market participants, and (c)
the so-called cascade model, when an agent possessing negative information on a
particular financial instrument, but contemplating the actions of other market players
may change her mind and ignore the available negative information. An excessive
attention to the actions of the neighbors (even if a trader follows and takes into
account the actions of only successful ones) leads to forming financial “bubbles” and
stock exchange crashes [51]. Some authors believe that people are inclined to trust
today’s information on the market status more than to evaluate the current situation
there taking into account the prehistory of this information [12]. The authors of [43]
believe that even if some financial information is public, but is not accessible to
all the market players, the market will not react to this information (in particular,
will not react to the actions undertaken by those possessing this information) by
changing either the volumes of transactions with respect to particular financial
instruments or the market prices. According to [4], private investors often buy
securities discussed in the media while do not have a chance to estimate all
the available financial instruments and to comprehend all the available financial
information. Results of quite a number of empirical studies on the herding effect are
surveyed in [52].

Some Facts Illustrative of the Ability (or of the Inability) of Financial Analysts
to Form Correct Recommendations and Forecasts As mentioned earlier, the
analysis of forecasts offered by financial analysts [22] showed that in a majority of
all the forecasts analyzed, the share of correct forecasts is approximately 50 %. In
[44] the authors estimated the effectiveness of the forecasts of analysts and experts
on the Russian stock market, and they concluded that only 56.8 % of the experts
offered correct forecasts. An analysis of the forecasts offered by economists working
in the government, banks, entrepreneurship, and in the field of science, conducted
by the Federal Bank of Philadelphia since 1946 (Livingston Survey), caused the
authors of the survey to conclude that professional economists apparently unable to
correctly predict the behavior of financial markets in principle [50].

Some Facts on Financial Results Achieved by Investment Funds An analysis of
financial activities of hedge funds in the period of time from 1994 through 2003 [32]
showed that more than a half of them could not achieve the yield of their portfolios
higher than the market one. Particularly, this means that even a passive investment
strategy (buy and hold) could have brought to the clients of the fund a larger yield
than that they received by investing a comparable amount of money in hedge funds.
Also, the authors of [32] estimated the number of funds that displayed the results
exceeding the average in the two consequent years and concluded that the share of
these funds had been about only 50 %, whereas only 11 out of 18 funds that beat the
market in 1995 repeated this result in 1996.
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2.4 A Few Remarks Regarding Directions of Studies
on Modeling the Financial Behavior of Small
and Medium Price-Taking Traders in a Stock Exchange

The presented brief survey of publications suggests that studying the financial
behavior of small and medium price-taking traders interacting with a stock exchange
with the use of mathematical models should be conducted at least in two major
directions (a) modeling short-term strategies of the transaction participants, and (b)
modeling long-term investments in financial instruments (mostly, in securities).

It seems obvious that strategies of a trader with respect to her short-term
transactions substantially depend on both the trader’s knowledge of models and
methods for analyzing the market of financial instruments and her willingness to
use these analytical tools. For traders who do not have necessary mathematical
knowledge, the latter mostly depends on their ability to quickly understand only the
substance of the above-mentioned models and methods and on the ability of these
tools to solve large-scale problems in an acceptable time. However, the surveyed
publications bear evidence that comprehending the existing models and methods
implies the involvement of consultants possessing the necessary knowledge. Thus,
the need in developing new mathematical tools for studying the financial behavior
of traders and for helping them achieve their investment goals seems obvious, and,
since the use of these tools will likely affect the behavior of stock exchanges, the
development of these tools presents interest for both society and financial science.

A game-theoretic approach to studying trader’s financial behavior, which has suc-
cessfully been applied in studying phenomena in the nature and society in general,
and particular results in studying classes of games with nonlinear payoff functions
on convex polyhedral sets of player strategies [6] seem promising in solving large-
scale problems that the traders face in strategizing their everyday transactions,
especially taking into account the simplicity of interpreting the strategies (obtained
as a result of solving these games) in the stock exchange terms [7].

At the same time, the above-presented survey suggests that even if particular
effective tools for developing financial strategies of a trader existed, not all the
traders would use them. For quite a number of traders, especially for those who
have only recently started interacting with a stock exchange and do not have enough
experience, their own intuition is likely to remain the most reliable tool in making
financial decisions. For these traders, as well as for all the others who would like
to detect the dynamics of values of which financial instruments they can forecast
most accurately, the tools allowing any interested trader to estimate her chances
to succeed in including a particular financial instrument in her portfolio seem
indispensable. The availability of such tools may allow many of those who think
about trading in a stock exchange to avoid unjustified risks of investing in general
or those with respect to particular financial instruments both in the short term and in
the long run.
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3 Detecting the Ability of a Price-Taking Trader to Divine
Future Price Values of a Financial Instrument
and to Succeed in Using this Ability in a Standard
and in a Margin Trading

The ability of a trader to divine the price value dynamics of a set of particular
financial instruments traded in a stock exchange matters a great deal in forming her
optimal portfolio. However, even for a person gifted in divining either future values
of any time series in general or only those of time series describing the dynamics
of particular financial instruments with a probability exceeding 50 %, it is clear that
this ability as such may turn out to be insufficient for successfully trading securities
either in a long run or even in a short period of time. Thus, tools for both detecting
the ability of a potential trader to divine the values of the share prices of, for
instance, securities from a particular set of securities with a probability exceeding
50 % and testing this ability (from the viewpoint of a final financial result that the
trader may expect to achieve by trading corresponding financial securities within
any particular period of time) are needed. These tools should help the potential
trader develop confidence in her ability to succeed by trading particular financial
securities and evaluate whether this ability is safe to use in trading with risks
associated with the margin trading at least under certain leverage rates, offered by
brokers working at a stock exchange. It seems obvious that, apparently, no tools can
guarantee in principle that the results that they produce are directly applicable in a
real trading. However, they may (a) give the interested person (i.e., a potential trader)
the impression on what she should expect by embarking the gamble of trading in
stock exchanges, and (b) advise those who do not display the ability to succeed in
trading financial securities (either in general or in a margin trading with a particular
leverage) to abstain from participating in these activities.

The above-mentioned tools for testing the ability of a trader to divine the upward
and downward directions of changing the value of the share price of a financial
security and those for evaluating possible financial results of trading this security in
a particular stock exchange consist of two separate parts. The first part (for testing
the trader’s ability to divine) is a software complex in which (a) the trader is offered
a time series describing the dynamics of the price value of the security share for
a particular financial security that interests her, and (b) her prediction made at the
endpoint of a chosen segment of the time series is compared with the real value
of the share price of this financial security at the point next to that endpoint. It is
clear that to estimate the probability of the random event consisting of correctly
predicting this value of the share price, one should first find the frequency of correct
answers offered by the trader (provided the trials are held under the same conditions)
and make sure that the outcome of each trial does not depend on the outcomes of
the other trials (i.e., that the so-called Bernoulli scheme [17] of conducting the trails
takes place). If these conditions are met, one can calculate the frequency of this event
as a ratio of the correct predictions to the total number of trials, and this ratio can
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be considered as an estimate of the probability under consideration [17]. A possible
approach to making the trials independent of each other and to securing the same
conditions for the trials may look as follows: one may prepare a set of randomly
chosen segments of the time series having the same length and let the trader make
her prediction at the endpoint of each segment proceeding from the observation of
the time series values within the segment.

The second part of the testing tools (for estimating possible final financial results
of trading a particular security with a detected probability to divine the directions of
changing the value of the share price of this security) is also a software complex in
which trading experiments can be conducted. For instance, the trader can be offered
a chance to predict the direction of changing the value of the share price of a security
at any consequent set of moments (at which real values of the share price of the
security constitute a time series) and to choose the number of shares that she wishes
to trade (to buy or to sell) at each moment from the set. By comparing the results of
the trader’s experiments with real values of the share price of a security from the sets
(time series segments) of various lengths at the trader’s choice, she concludes about
her potential to succeed or to fail in working with the security under consideration.

Finally, the complex allows the trader to make sure that at each testing step
(i.e., at each moment t) of evaluating financial perspectives of working with each
particular financial security of her interest, the probability with which the trader
divines the value of the share price of this financial security at the moment t+1 does
coincide with the one detected earlier (or at least is sufficiently close to it). This
part of the software is needed to avoid unjustified recommendations on including
a particular financial security in the trader’s portfolio if for whatever reasons, the
above coincidence (or closeness) does not take place.

4 Finding Optimal Trader’s Strategies of Investing
in Standard Financial Securities. Model 1: The Values
of Financial Securities Are Random Variables
with Uniform Probability Distributions

In considering the financial behavior of a price-taking trader who at the moment t
wants to trade financial instruments that are traded in a particular stock exchange,
two situations should be analyzed.

Situation 1
The trader does not possess any financial instruments at the moment t while

possessing a certain amount of cash that can be used both for buying financial
instruments and for borrowing them from a broker (to sell the borrowed financial
instruments short).
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Situation 2
The trader has a portfolio of financial instruments, along with a certain amount

of cash, and she tries to increase the value of her portfolio by selling and buying
financial instruments of her interest, as well as by borrowing them from the brokers
(to sell the borrowed financial instruments short).

To simplify the material presentation and to avoid the repetition of parts of
the reasoning to follow, in Model 1, which is studied in Sect. 4, Situation 2 is
considered first. Moreover, it is assumed that the trader’s portfolio consists of
financial securities only; cases in which derivative financial instruments are parts of
the trader’s portfolio are not considered in this paper. Remark 1 at the end of Sect. 4
explains how the model developed for finding the best investment strategy of the
trader in Situation 2 (Model 1) can be used in finding such a strategy in Situation 1.

4.1 Notation

Let
N D f1; 2; : : : ; ng be a set of (the names of) financial securities comprising the

portfolio of a trader that are traded in a particular stock exchange and interest the
trader;

t0 < : : : < t < t C 1 < t C 2 < : : : be a set of the time moments at which the
trader adopts decisions on changing the structure of her portfolio;

mt be the amount of cash that the trader possesses at the moment t;
Wt be the total value of the trader’s portfolio at the moment t (in the form of cash

and financial securities), i.e., the trader’s welfare at the moment t;
si;t be the spot value of the share price of financial security i at the moment t, i.e.,

the price at which a share of financial security i is traded at the moment t at the stock
exchange under the conditions of an immediate financial operation;
vi;t be the (non-negative, integer) number of shares of financial security i that the

trader possesses at the moment t.
The following four assumptions on how the trader makes decisions on changing

her portfolio at the moment t seem natural:

1. The trader possesses a confirmed (tested) ability of estimating the probability pi

with which the future value of the share price of financial security i may change
at the moment t C 1 in a particular direction for each i 2 1; n, i.e., the ability
to predict whether this value will increase or will not increase. (See some of the
details further in Sect. 4.)

2. At each moment t (from the above set of moments), the trader can divide the set
of financial securities N into three subsets ICt , I�t , I0t for which N D ICt [ I�t [ I0t ,
and ICt \ I�t D ; , I�t \ I0t D ;, ICt \ I0t D ;, where

ICt is the set of financial securities on which the trader is confident that the
values of their share prices will increase at the moment t C 1 (so she intends to
buy securities from this set at the moment t),
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I�t is the set of financial securities on which the trader is confident that the
values of their share prices will decrease at the moment tC 1 (so she intends to
sell securities from this set at the moment t),

I0t is the set of financial securities on which the trader is confident that the
values of their share prices will not change at the moment t C 1 or will change
insignificantly (so she does not intent to either sell or buy securities from this set
at the moment t).

3. For buying financial securities from the set ICt , the trader can spend both the
available cash and the money to be received as a result of selling financial
securities from the set I�t at the moment t, as well as finances that the trader
can borrow from any lenders (if such finances are available to the trader).
Analogously, for selling financial securities from the set i 2 I�t , the trader may
use her own reserves of this security (of the size vi;t), as well as to borrow a
certain number of shares of this security from a broker to open a short position
(if this service is available to the trader from the broker);

4. The trader does not undertake any actions with financial securities from the
set I0t .

To simplify the mathematical formulation of problems to be considered in this
section of the paper in the framework of Model 1, in the reasoning to follow, it is
assumed that the trader (a) works only with shares and bonds as financial securities
(called standard securities further in this paper), and (b) puts only market orders,
i.e., those that can be implemented immediately, at the spot market prices.

4.2 The Statement and Mathematical Formulation
of the Problem of Finding a Trader’s Optimal Investment
Strategy

Let at the moment t, the trader have a portfolio of standard securities vi;t; i 2 1; n
and a certain amount of cash mt so that her welfare at the moment t equals Wt D
mtCPn

iD1 vi;tsi;t. The problem of finding optimal investment strategies of the trader
consists of choosing (a) the numbers of shares of securities xCi;t (integers) from the
set ICt to buy (about which the trader expects the increase of the values of their share
prices at the moment t C 1), (b) the numbers of shares of securities x�i;t (integers)
from the set I�t in her current portfolio to sell (about which the trader expects the
decrease of the values of their share prices at the moment tC1), and (c) the numbers
of shares of securities z�i;t (integers) from the set I�t to sell, which are to be borrowed
from a broker at the value of the share price equaling si;t to open a short position at
the moment t with the return of these securities to the broker at the moment tC 1 at
the share price value si;tC1 (for which the trader expects the inequality si;t > si;tC1
to hold), to maximize the increment of her welfare at the moment tC 1.
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The welfare that the trader expects to have at the moment tC 1 thus equals

WtC1 D
X

i2I0t

vi;tsi;tC1 C
X

i2IC
t

.vi;t C xCi;t/si;tC1 C
X

i2I�
t

.vi;t � x�i;t/si;tC1C

C
0

@mt �
X

i2IC
t

xCi;t si;t C
X

i2I�
t

x�i;tsi;t C
X

i2I�
t

z�i;t.si;t � si;tC1/

1

A ;

where the first three summands determine a part of the trader’s welfare formed by
the value of the securities from her portfolio at the moment t C 1, and the last
summand determines the amount of cash remaining after the finalization of all the
deals on buying and selling securities by the moment t C 1, including the return of
the borrowed securities to the broker.

The (positive or negative) increment of the trader’s welfare that she expects to
attain at the moment tC 1 compared with that at the moment t after the completion
of all the transactions equals

4WtC1 D
X

i2I0t

vi;t.si;tC1 � si;t/C
X

i2IC
t

.vi;t C xCi;t/.si;tC1 � si;t/C

C
X

i2I�
t

.vi;t � x�i;t/.si;tC1 � si;t/C
X

i2I�
t

z�i;t.si;t � si;tC1/:

Here, vi;t, si;t, mt, i 2 ICt , I�t are known real numbers (the numbers vi;t are
integers), and the numbers si;tC1, i 2 ICt , I�t are the values of random variables.
Further, it is assumed that the values of the share prices of securities i; j 2 N at the
moment tC1 are independent random variables.

The trader conducts her transactions taking into consideration the following
constraints:

1. The numbers of shares of financial securities bought, sold, and borrowed are
integers,

2. x�i;t, the number of shares of security i sold from the trader’s portfolio, cannot
exceed the available number of shares vi;t of this security that the trader possesses
at the moment t, i.e., the inequalities

x�i;t � vi;t; i 2 I�t ;

hold (one should notice that if the trader plans to sell any number of shares of
security i that exceeds vi;t, then she borrows the number of shares of this security
z�i;t from a broker to open a short position to sell security i in the number of shares
additional to the number vi;t),
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3. the limitations on the accessibility to the capital to borrow while using a credit
with a particular (credit) leverage cannot be exceeded; these limitations may be
described, for instance, by the inequality

X

i2IC
t

xCi;t si;t C
X

i2I�
t

z�i;tsi;t �
0

@mt C
X

i2I�
t

x�i;tsi;t

1

A � kt

 

mt C
nX

iD1
vi;tsi;t

!

:

Here, kt is the size of the credit leverage, the first two summands on the left hand
side of this inequality represent the sum of the total expenses bore by the trader at
the moment t (that are associated with buying securities in the market and with the
trader’s debt to the brokers who lent her securities from the set I�t to open a short
position). The third summand (on the left hand side of the above inequality) reflects
the amount of cash that the trader will possess as a result of selling securities from
the set I�t that the trader has as part of her own portfolio at the moment t. The right
hand side of the inequality reflects the maximal amount of money (that is assumed
to be) available to the trader for borrowing with the credit leverage of the size kt,
and this amount depends on the total amount of the capital that the trader possesses
at the moment t before she makes any of the above-mentioned transactions. One
should bear in mind that particular mathematical relations reflecting the limitations
on the accessibility of a particular trader to the capital to borrow may vary, and such
relations much depend on the situation in the stock exchange at the moment t and
on the ability of the trader to convince particular brokers to lend her securities and
on the ability to convince particular lenders to lend her cash (or on both).

It is also assumed that in making investment decisions at the moment t, the
trader proceeds from the value ˛ of a threshold, determining whether to make
transactions in the stock exchange in principle. That is, she makes the transactions if
the inequality WtC1 � ˛Wt holds, meaning that the trader tends to keep the level of
the ratio of her welfare at every moment compared with that at the previous moment
not lower than a particular value ˛ of the threshold, ˛ > 0.

4.3 Transforming the Problem of Finding an Optimal
Investment Strategy of a Trader into an Integer
Programming Problem

Let at the moment t, the trader be able to estimate smax
i;tC1 and smin

i;tC1, the boarders of
a segment to which the values of the share price of security i 2 ICt [ I�t [ I0t will
belong at the moment tC1 (based upon either the previous data or any fundamental
assumptions on the dynamics of the value of the share price that this security may
have). If the trader can make no assumptions on a particular probability distribution
of the values of the share price that security i may have within these boarders, it is
natural to consider that these values change upwards and downwards (with respect to
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the value si;t) as continuous random variables u and v uniformly distributed on the
segments Œsi;t; smax

i;tC1	 and Œsmin
i;tC1; si;t	, respectively, with the probability distribution

densities
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8

<̂

:̂

1
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; if u 2 Œsi;t; s
max
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max
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f2.v/ D

8

<̂
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1

si;t � smin
i;tC1

; if v 2 Œsmin
i;tC1; si;t	;

0; if v … Œsmin
i;tC1; si;t	:

Thus, if the trader assumes that the value of the share price of security i will
increase at the moment tC1 compared with its current value, i.e., that the inequality
si;tC1 > si;t will hold, then the expectation of the value of the share price that this

security will have at the moment tC1 equals Msi;tC1 D si;tCsmax
i;tC1

2
. On the contrary, if

the trader assumes that this value of the share price will decrease at the moment tC1,
i.e., that the inequality si;tC1 < si;t will hold, then the expectation of the value of the

share price that security i will have at the moment tC 1 equals Msi;tC1 D smin
i;tC1
Csi;t

2
.

Finally, if the trader cannot make either assumption about the value of the share
price that security i will have at the moment t C 1, it is natural to consider that
the value of the share price of this security will not change, i.e., that the equality
Msi;tC1 D si;tC1 D si;t will hold.

If at the moment t, the trader expects with the probability pi that the value of the
share price of security i will increase at the moment t C 1, i.e., that the inclusion
i 2 ICt will hold (event A1), then the expectation of the value of the share price

that this security will have at the moment t C 1 assumes the value
si;tCsmax

i;tC1

2
, and

the probability of the event A1 equals pi. Otherwise, two events are possible at the
moment tC 1 W (a) the value of the share price of security i at the moment tC 1 will
decrease (event A2), and (b) the value of the share price of security i at the moment
t C 1 will remain equal to the one at the moment t (event A3), and it is natural to
assume that these two events are equally possible with the probability 1�pi

2
.

Thus, the expectation of the value of the share price that security i 2 ICt will have
at the moment tC 1 can be calculated proceeding from the probabilities of the three
incompatible events A1;A2;A3, reflected in Table 1.

If at the moment t, the trader expects with the probability pi that the value of the
share price of security i will decrease at the moment tC1, i.e., that the inclusion i 2
I�t will hold, then the reasoning similar to the previous one allows one to conclude

Table 1 The values of the
conditional expectation
M.si;tC1=Ak/; i 2 IC

t ; k 2 1; 3
M.si;tC1=Ak/; i 2 IC

t
si;tCsmax

i;tC1

2

smin
i;tC1Csi;t

2
si;t

P.Ak/ pi
1�pi
2

1�pi
2
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Table 2 The values of the
conditional expectation
M.si;tC1=Bk/; i 2 I�

t ; k 2 1; 3
M.si;tC1=Bk/; i 2 I�

t
smin
i;tC1Csi;t

2

si;tCsmax
i;tC1

2
si;t

P.Bk/ pi
1�pi
2

1�pi
2

Table 3 The values of the
conditional expectation
M.si;tC1=Ck/; i 2 I0t ; k 2 1; 3

M.si;tC1=Ck/; i 2 I0t si;t
smin
i;tC1Csi;t

2

si;tCsmax
i;tC1

2

P.Ck/ pi
1�pi
2

1�pi
2

that the expectation of the value of the share price that security i 2 I�t will have at
the moment t C 1 can be calculated proceeding from the probabilities of the three
incompatible events B1;B2;B3, reflected in Table 2.

Finally, if the trader expects with the probability pi that for security i the inclusion
i 2 I0t will hold at the moment tC 1, the expectation of the value of the share price
that security i 2 I0t will have at the moment tC 1 can be calculated proceeding from
the probabilities of the three incompatible events C1;C2;C3, reflected in Table 3.

Thus, in the above three cases for security i to belong to one of the three subsets
of the set N, the expectations Msi;tC1 are calculated as follows [17]:

Msi;tC1 D pi
si;t C smax

i;tC1
2

C 1 � pi

2

smin
i;tC1 C si;t

2
C 1 � pi

2
si;t; i 2 ICt ;

Msi;tC1 D pi
smin
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2
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2
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2
si;t; i 2 I�t ;

Msi;tC1 D pisi;t C 1 � pi

2

smin
i;tC1 C si;t

2
C 1 � pi

2

si;t C smax
i;tC1

2
; i 2 I0t ;

Certainly, generally, the trader can make any particular assumptions on the
regularities that probability distributions of the future values of the share prices may
have for securities from the sets ICt , I�t , I0t at the moment t C 1 (for instance, that
these distributions will be normal). Such assumptions may let her more accurately
calculate the expectations of the values of these share prices using the same logic
that was employed under the assumption on the uniform distributions of these
values.

To calculate an optimal trader’s strategy of changing her portfolio at the moment
t, one should choose the value of the threshold ˛ and formulate the problem of
finding such a strategy as, for instance, that of maximizing the expectation of the
portfolio value increment, provided all the constraints associated with this choice
hold. In the simplest case of such a formulation, one can assume that (a) the trader
deals with and is interested in only those securities that are present in her portfolio
at the moment t, (b) she may buy securities only from the set ICt , and she may sell
securities only from the set I�t , and c) the trader does not make any transactions
with securities from the set I0t (see assumption 4 at the end of Sect. 4.1). Then, this
maximization problem can be formulated, for instance, as follows [7]:
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where xCi;t , i 2 ICt , x�i;t, i 2 I�t , z�i;t, i 2 I�t are integers. This problem is an integer
programming one in which xCi;t , i 2 ICt , x�i;t, i 2 I�t , and z�i;t, i 2 I�t are the variables.

Generally, (a) the set of standard securities QN (which contains N as a subset)
that are of the trader’s interest may include those that are not necessarily present
in her portfolio at the moment t, and (b) the trader may proceed from the estimates
of Msi;tC1 for all the securities from the set QN and make decisions of changing the
composition of her portfolio based upon the values of the differences Msi;tC1 � si;t

for all of these securities (so that assumption at the end of Sect. 4.1 does not hold).
Let the trader divide the whole set QN of standard securities that interest her at the

moment t into the subsets QICt , QI�t , and QI0t , where QICt is a set of standard securities for
which the trader believes with the probability pi > 0:5 that the share price values
that these securities will have at the moment tC1will increase, QI�t is a set of standard
securities for which the trader believes with the probability pi > 0:5 that the share
price values that these securities will have at the moment t C 1 will decrease, and
QI0t is a set of standard securities for which the trader believes with the probability
pi > 0:5 that the share price values that these securities will have at the moment
tC 1 will not change.

Let the trader know the boarders of the segment Œsmin
i;tC1; smax

i;tC1	 within which the
value of si;tC1; i 2 ICt [ I�t [ I0t will change at the moment t C 1 while the trader
can make no assumptions on a particular probability distribution that the value of
si;tC1, considered as that of a random variable, may have (within these borders).
Then, as before, it seems natural to assume that this value changes upwards as a
continuous random variable u uniformly distributed on the segment Œsi;t; smax

i;tC1	 and
changes downwards as a continuous random variable v distributed uniformly on the
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segment Œsmin
i;tC1; sit	. The latter assumption allows one to calculate the expectations

Msi;tC1 in just the same manner this was done earlier for standard securities from
the set N.

First, consider standard securities that the trader may be interested in buying,
including securities with particular names that some of the standard securities in her
portfolio have. Let OICt � QICt , OI�t � QI�t , and OI0t � QI0t be the sets of standard securities
for which the differences Msi;tC1 � si;t are strictly positive. If at least one of the
three sets OICt , OI�t , and OI0t is not empty, the trader may consider buying new standard
securities from the set OICt [ OI�t [ OI0t at the moment t.

Second, consider standard securities that are already in the trader’s portfolio at
the moment t. Let QICt .av/ � QICt , QI�t .av/ � QI�t , QI0t .av/ � QI0t be the sets of names
of the standard securities that the trader possesses at the moment t, and let vi;t be

the number of shares of standard security i, i 2 QICt .av/ [ QI�t .av/ [ QI0t .av/. Let
OICt .av/ � QICt .av/, OI�t .av/ � QI�t .av/, and OI0t .av/ � QI0t .av/ be the sets of i for which
the differences Msi;tC1 � si;t are strictly positive.

It is clear that the trader may consider a) holding the standard securities from the
sets OICt .av/, OI�t .av/, and OI0t .av/, and b) selling all the standard securities from the
sets QICt .av/ n OICt .av/, QI�t .av/ n OI�t .av/, and QI0t .av/ n OI0t .av/ and borrowing standard
securities from these sets from brokers. Since the trader believes that selling
standard securities, in particular, from the sets QICt .av/ n OICt .av/, QI�t .av/ n OI�t .av/,
and QI0t .av/n OI0t .av/ short leads to receiving the money that can be spent, particularly,
for buying new standard securities from the sets OICt , OI�t , and OI0t (provided these sets
are not empty), the trader needs to find an optimal investment strategy of changing
her portfolio. This problem can be formulated as follows:
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where xCi;t ; i 2 OICt [ OI�t [ OI0t � QICt [ QI�t [ QI0t ; are the numbers of shares of securities
from the set QICt [ QI�t [ QI0t that are bought at the moment t.

As before, the (expected) increment of the trader’s welfare is calculated as the
difference between the expected trader’s welfare at the moment t C 1 as a result of
buying and selling securities in the stock exchange and her welfare at the moment
t (with respect to the activities related to the interaction with the stock exchange).
That is, at the moment tC1, the expected trader’s welfare is a sum of (a) the expected
value of new securities bought at the moment t, (b) the expected value of securities
from her portfolio that have been held since the moment t, (c) the amount of cash
remaining at the moment t C 1 after spending a part of cash that is available at the
moment t for buying new securities and receiving cash as a result of selling securities
from the set i 2 . QICt .av/ n OICt .av// [ . QI�t .av/ n OI�t .av// [ . QI0t .av/ n OI0t .av//, and
(d) the amount of cash expected to be received as a result of selling short securities
borrowed from brokers. This problem is also an integer programming one in which
xCi;t , i 2 OICt [ OI�t [ OI0t , and z�i;t, i 2 . QICt n OICt /[ . QI�t n OI�t /[ . QI0t n OI0t / are the variables.

Both problem (1) and problem (2) can be solved exactly, with the use of software
for solving integer programming problems, if the number of the variables allows
one to solve this problem in an acceptable time.

As is known, in solving applied integer programming problems, integer variables
are often considered as continuous ones, i.e., a relaxation of the problem is
solved instead of the initial integer programming problem, and all the non-integer
components of the solution are rounded-off [61] in line with any methodology. Such
a transformation is mostly used when the constraints in the integer programming
problem have the form of inequalities (which is the case in the problem under
consideration). One should notice that the problem of rounding-off non-integer
solutions in relaxed linear programming problems (with respect to the initial integer
programming ones) and an approach to estimating the accuracy of this rounding-off
are discussed in scientific publications, in particular, in [2].
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Thus, the conditions for the variables to be integer are to be replaced in
problem (1) with those of non-negativity for the volumes of securities to be bought,
sold, and borrowed

xCi;t � 0; i 2 ICt ; x�i;t � 0; i 2 I�t ; z�i;t � 0; i 2 I�t ;

which transforms this integer programming problem into a linear programming one.
Analogously, for problem (2), conditions for the variables to be integer are to be
replaced with those of non-negativity

xCi;t � 0; i 2 OICt [ OI�t [ OI0t ; z�i;t � 0; i 2 . QICt n OICt / [ . QI�t n OI�t / [ . QI0t n OI0t /:

Adding these conditions to the system of constraints of problem (2) transforms this
problem into a linear programming one.

Both the system of constraints and the goal function of problem (1) and those
of problem (2) are substantially different. Particularly, there are no inequalities of
the kind x�i;t � vi;t; i 2 I�t in the system of constraints of problem (2). Under the
assumptions made in formulating problem (1), the trader may or may not sell all the
standard securities from the set I�t . On the contrary, in problem (2), the suggested
division of the set QN into the subsets implies that the trader will sell all the standard
securities from the set . QICt .av/ n OICt .av// [ . QI�t .av/ n OI�t .av// [ . QI0t .av/ n OI0t .av//.

Also, in comparing the mathematical formulations of problems (1) and (2), one
should bear in mind that the trader’s division of the set N into the three subsets ICt ,
I�t , I0t , for which N D ICt [ I�t [ I0t and ICt \ I�t D ;, I�t \ I0t D ;, ICt \ I0t D
;, is, generally, purely intuitive and may turn out to be wrong. This division is
not based on any mathematical analysis of either directions of potential changes in
which the share price values of particular securities may move or on any numerical
relations among the probabilities with which these moves may take place and the
limits within which the changes are possible. In contrast, the division of the set QN
of standard securities that interest the trader at the moment t into the subsets QICt , QI�t ,
and QI0t and dealing only with those securities i from this set for which the differences
Msi;tC1 � si;t are strictly positive are a result of such an analysis. In the framework
of this analysis, solving problem (2) may, in fact, be viewed as a means for testing
the intuition of an interested trader with respect to her ability to properly choose the
set of securities to consider for potential transactions.

Example 1. Consider security A from the set ICt whose current share price value
(at the moment t) equals 10.00 US dollars. Let the trader expect that at the moment
t C 1, the share price value of security A a) will be between 10.00 US dollars and
12.00 US dollars with the probability 0.6, b) will be between 2.00 US dollars and
10.00 US dollars with the probability 0.2, and c) will remain equal to 10.00 US
dollars (i.e., will remain unchanged) with the probability 0.2.

Then using the above formulae for calculating the expectation of the share price
value for a security from the set ICt , one can easily be certain that the expectation of
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the share price value of security A at the moment tC 1 equals 9.80 US dollars, i.e.,
contrary to the trader initial analysis, the expectation of the share price value of this
security will decrease.

Example 2. Consider security B from the set I�t , whose current share price value
(at the moment t) equals 100.00 US dollars. Let the trader expect that at the moment
t C 1, the share price value of security B a) will be between 90.00 US dollars and
100.00 US dollars with the probability 0.6, b) will be between 100.00 US dollars
and 160.00 US dollars with the probability 0.2, and c) will remain equal to 100.00
US dollars (i.e., will remain unchanged) with the probability 0.2.

Then using the above formulae for calculating the expectation of the share price
value for a security from the set I�t , one can easily be certain that the expectation of
the share price value of security B at the moment t C 1 equals 103.00 US dollars,
i.e., contrary to the trader initial analysis, the expectation of the share price value of
this security will increase.

Remark 1. It is clear that finding an optimal investment strategy of the trader in
Situation 1, one should add the equalities vi;t D 0, i 2 1; n and x�i;t D 0; i 2 I�t to the
system of constraints of problem (1) and set ICt .av/ D ;; I�t .av/ D ;; I0t .av/ D ;
in the system of constraints of problem (2). Also, one should bear in mind that in
the formulation of problems (1) and (2), it is assumed that the value of the money at
which standard securities are sold at the moment t remains unchanged at the moment
t C 1. However, if this is not the case, it is easy to reformulate problem (2) taking
into consideration the difference in this value.

5 Finding Optimal Trader’s Strategies of Investing
in Standard Financial Securities. Model 2: The Trader
Can Numerically Estimate Only the Areas
in Which the Values of the Share Prices of all the Securities
That Interest Her May Change

Let N be a set of (names of) standard securities that interest a trader at the moment t.
Further, let us assume that at the moment t, a trader can choose (1) a set of securities
ICt 	 N whose share price values (as she believes) will increase at the moment tC1
compared with their share price values at the moment t, and (2) a set of securities
I�t 	 N whose share price values (as she believes) will decrease at the moment tC1
compared with those at the moment t. Finally, let the trader correctly forecast that
the share price values of securities from the set ICt will increase with the probability
pC > 0:5 (so that the share price values of securities from the set ICt will not increase
with the probability 1 � pC). Analogously, let the trader correctly forecast that the
share price values of securities from the set I�t will decrease with the probability
p� > 0:5 (so that the share price values of securities from the set I�t will not decrease
with the probability 1 � p�).
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If (a) the set of securities N also contains standard securities forming the subset
I0t D N n .ICt [ I�t /, (b) she believes that the share price values of securities forming
this set may change at the moment tC 1, and (c) she does not have any assumptions
on the direction in which the share price values of these securities will change at the
moment tC1, it seems natural to assume that both the increasing and not increasing
of the share price values of these securities are equally possible with the probability
0.5. It is natural to assume that ICt \ I�t D ;, I�t \ I0t D ;, and ICt \ I0t D ;.

Let

1. xt D .xCt ; x�t ; x0t / be the vector of volumes (numbers of shares) of securities from
the set N that the trader intends to buy and to sell at the moment t (based on her

beliefs), where xCt 2 XCt � RjI
C
t jC is the vector of volumes (numbers of shares)

of such securities from the set ICt , x�t 2 X�t � R
jI�

t jC is the vector of volumes

(numbers of shares) of such securities from the set I�t , and x0t 2 X0t � R
jI0t jC is the

vector of volumes (numbers of shares) of such securities from the set I0t ;

2. ytC1 D .yCtC1; y�tC1; y0tC1/ 2 YCtC1 � Y�tC1 � Y0tC1 � R
jIC

t jCjI�
t jCjI0t jC be the

vector whose components are the values of the share prices of securities from
the set N at the moment t C 1 if the trader correctly determines directions
in which the values of the share prices of these securities may change, where

yCtC1 2 YCtC1 � RjI
C
t jC is the vector whose components are the values of the share

prices of securities from the set ICt at the moment t C 1 if the trader correctly
determines directions in which these values of the share prices may change (with

the probability pC > 0:5), y�tC1 2 Y�tC1 � R
jI�

t jC is the vector whose components
are the values of the share prices of securities from the set I�t at the moment tC1
if the trader correctly determines directions in which these values of the share

prices may change (with the probability p� > 0:5), and y0tC1 2 Y0tC1 � R
jI0t jC is

the vector whose components are the values of the share prices of securities from
the set I0t at which they will be available in the stock exchange at the moment
t C 1, if the trader correctly determines the areas in which these values of the
share prices may change (with the probability p0 D 0:5);

3. ztC1 D .zCtC1; z�tC1; z0tC1/ 2 ZCtC1 � Z�tC1 � Z0tC1 � R
jIC

t jCjI�
t jCjI0t jC be the vector

whose components are the values of the share prices of securities from the
set N at the moment t C 1 if the trader incorrectly determines directions in
which the values of the share prices of these securities may change, where

zCtC1 2 ZCtC1 � RjI
C
t jC is the vector whose components are the values of the share

prices of securities from the set ICt at the moment t C 1 if the trader incorrectly
determines directions in which these values of the share prices may change (with

the probability 1� pC), z�tC1 2 Z�tC1 � R
jI�

t jC is the vector whose components are
the values of the share prices of securities from the set I�t at the moment t C 1
if the trader incorrectly determines directions in which these values of the share

prices may change (with the probability 1 � p�), and z0tC1 2 Z0tC1 � R
jI0t jC is the

vector whose components are the values of the share prices of securities from
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the set I0t at which they will be available in the stock exchange at the moment
t C 1 if the trader incorrectly determines the areas in which these values of the
share prices may change (with the probability 1 � p0 D 0:5).

Throughout Sect. 5, the optimality of the strategy to be exercised at the moment
t is understood in the sense of maximizing the value of the trader’ s portfolio at the
moment tC 1.

As mentioned earlier (see Sect. 4), the trader may consider finding an optimal
investment strategy in two situations: (a) in forming a new portfolio (Situation 1),
and (b) in changing a composition of the existing portfolio (Situation 2). Unlike in
Sect. 5, for Model 2, Situation 1 is considered first, and based upon the analysis of
the results obtained for Situation 1, Situation 2 is considered.

Situation 1
Let the trader possess no securities at the moment t, and let N be a set of (the

names of) standard securities that interest the trader at the moment t. As before, let
N D ICt [ I�t [ I0t ; ICt \ I�t D ;; ICt \ I0t D ;; I�t \ I0t D ;, where all the
three sets have the same meaning as described at the beginning of Sect. 4, and let
jNj D jICt j C jI�t j C jI0t j D n.

It is obvious that if the trader does not possess any standard securities at the
moment t, she can only either buy these securities (by investing cash that she
possesses at the moment t) or borrow money or securities or both (under certain
conditions offered by potential lenders or/and brokers that the trader views to be
acceptable) and use the borrowed money (or/and the money to be received as a
result of selling the borrowed securities short) to invest it in securities from the
set N. With respect to Situation 1, the vectors x�t and x0t should be understood as
volumes of those securities (from the set I�t [ I0t ) that are the only securities that
the trader may eventually consider to borrow from brokers to sell these securities
short to receive the above-mentioned cash. However, at the moment t, the trader
also has a certain amount of cash (see the description of the underlying conditions
of Situation 1 at the beginning of Sect. 4). So her major problem is to find the best
variant of investing all the cash that she can afford to invest in securities (i.e., in
buying securities) at the moment t in such a manner that the value of her portfolio
of securities, which is formed as a result of this investment, will be maximal at the
moment tC 1.

Thus, in Situation 1, all the three sets ICt , I�t , and I0t are those from which the
trader may buy securities at the moment t, and the trader forms all these three sets
at any moment t at her own discretion, proceeding from her financial abilities at the
moment t. One should also emphasize that if the trader decides to borrow securities
from a broker to sell them short (provided the broker offers such a transaction to
the trader), and the trader can choose which particular securities to borrow within
financial limitations agreed upon by both parties, she will do this in the course of
forming the above three sets.

It is clear that if at the moment t, the trader were absolutely sure that the share
price values of all the securities from the set ICt would only increase, the share price
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values of all securities from the set I�t would only decrease, and if the set I0t were
empty, then she would invest all the cash available at the moment t in securities
from the set ICt . The trader would certainly not buy any securities from the set I�t
though she would borrow securities from this set to sell them short at the moment
t (provided such a transaction is offered to her by any broker or brokers) and to
invest the money received (from this selling) in securities from the set ICt by adding
the money received to all the cash available to the trader at the moment t (for the
purpose of investing in standard securities). As one will have a chance to be certain,
mathematically, the corresponding problem is a particular case of the problem under
consideration in this section of the paper.

However, in the rest of this section, it is assumed that the trader believes that (a)
the share price values of each of securities from the set ICt may increase only with a
certain probability pC, whereas these values may decrease with the probability 1 �
pC, and (b) there is a non-empty set I0t of securities for each of which its share price
value may increase or decrease with the same probability p0 D 0:5. Analogously,
the trader believes that the share price values of securities from the set I�t may
decrease also only with a certain probability p�, whereas they may increase with
the probability 1 � p�.

Examples at the end of Sect. 4 are illustrative of such relations between the values
of the probabilities pC.pC > 0:5/, p�.p� > 0:5/, and the values of coordinates of
the vectors from the set XCt [ X�t that the expectations of the share price values
of some securities from the set ICt at the moment t C 1 are lower than their
current values (i.e., those at the moment t), whereas the expectations of the share
price values of some securities from the set I�t at the moment t C 1 exceed their
current values. The same reasons are applicable to the set I0t as well, which explains
the trader’s interest to securities from this set.

While it seems quite clear how the trader may form the sets XCt and X0t , one may
raise a natural question: what should be considered as the set X�t in Situation 1? The
trader does not possess any securities at the moment t at all, and she assumes that
if she possessed securities from the set I�t , she would certainly have sold at least
some of them trying to protect her welfare. When the optimality of the strategy to
be exercised at the moment t is understood in the sense of maximizing the value of
the trader’s portfolio at the moment tC 1 (which is the case under consideration in
this paper), at least three approaches to what the trader may view as the set X�t are
possible.

Approach 1. Taking into consideration the above-mentioned examples at the end of
Sect. 4, the trader considers spending a part of the available (her own) cash for
buying securities from the set I�t at the moment t at the share price values of
these securities that exist at the moment t (while she has no access to credits
in any form), and possible (feasible) variants of allocating this money among
these securities determine the set X�t . The determination of the set X�t should be
followed by making a decision on which securities from the set I�t (or from its
subset) and in which volumes to buy to maximize the trader portfolio’s value at
the moment tC 1. (In contrast, choosing particular volumes of securities (to buy
and to sell) proceeding from a particular vector of them in the already determined
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set X�t corresponds to considering Situation 2 in which the trader already has
securities from the set X�t in her portfolio.)

Approach 2. The trader can get a cash credit at the moment t on certain acceptable
conditions, and she is to return this credit at the moment t C 1 or later
(possibly, with some interest in both cases). Once again, taking into consideration
the above-mentioned examples at the end of Sect. 4, the trader may consider
spending a part of this credit for buying some securities from the set I�t at the
moment t in an attempt to maximize the trader portfolio’s value at the moment
tC 1 in just the same way this is done under Approach 1.

Approach 3. At the moment t, the trader borrows securities from a subset of the
set I�t from a broker to sell the borrowed securities short at the moment t;
however, she is to return the borrowed securities to the broker (possibly, along
with a certain percentage of the cost of the borrowed securities to be paid to the
broker for using them as a form of a credit from this broker) later than at the
moment t C 1. This move is based on the hope that at the time of returning the
borrowed securities, their share price values will be lower than those at which
these securities were borrowed. The trader uses the money received as a result of
selling the borrowed securities short for buying securities from the set N. Here,
as under Approaches 1 and 2, the trader’s aim is to maximize the value of her
portfolio at the moment t C 1, and securities to borrow are chosen from among
those from the set I�t that are offered by the broker. The trader is interested
in borrowing such securities from the broker whose share price values at the
moment t would allow her to sell these securities at the maximal possible amount
of money to be added to the trader’s cash (that she can afford to spend for buying
securities at the moment t). This borrowing is done with the aim of spending all
the cash (that the trader can spend for buying securities from the whole set N at
the moment t) to maximize the trader portfolio’s value at the moment tC 1.

Thus, under any of these three approaches, one may consider that at the moment
t, the trader has a certain amount of cash that she can spend in forming her portfolio
in such a manner that this portfolio would have the maximal market value at the
moment t C 1. (Here, some strategies of allocating a portion of the cash available
at the moment t for buying some securities to be returned to the broker (or to the
brokers) later than at the moment t C 1 can be exercised.) It is the allocation of
this cash either among securities from the set ICt only (and taking the risk shown in
examples at the end of Sect. 4) or among securities from the set ICt [ I�t [ I0t that
determines the set X�t .

Let us first consider Situation 1 assuming that one of the above three approaches
to determining the set X�t is used, which means that no matter what particular
approach is employed, taking into consideration examples at the end of Sect. 4, the
trader chooses which securities to buy from all the three sets ICt , I�t , and I0t to form
her portfolio.

Further, let at each moment t the trader proceed from the existence of linear
constraints of the balance kind imposed on the components of the vector xt,
including bilateral constraints-inequalities imposed on each component of each
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of the three vectors forming the vector xt. It is natural to assume that these
constraints, which, in particular, reflect the trader’s financial status at the moment
t, are compatible. The presence of such constraints allows one to consider, for
instance, that the sets XCt (the set of feasible values of the vector xCt ), X�t (the
set of feasible values of the vector x�t ) , and X0t (the set of feasible values of the

vector x0t ) are formed by the vectors from subsets of convex polyhedra MCt � RjI
C
t jC ,

M�t � R
jI�

t jC , and M0
t � R

jI0t jC , respectively. In this case, each of these three polyhedra
is described by a system of compatible linear constraints binding variables forming
vectors from the corresponding space only, and the above-mentioned subset of the
polyhedron is determined by the requirement for all the coordinates of the vectors
from this subset to be non-negative integers so that (a) the above mentioned subsets

take the form MCt D fxCt 2 RjI
C
t jC W BCt xCt � dCt ; xCt 2 QjI

C
t jC g, M�t D fx�t 2 R

jI�
t jC W

B�t x�t � d�t ; x�t 2 Q
jI�

t jC g, and M0
t D fx0t 2 R

jI0t jC W B0t x0t � d0t ; x
0
t 2 Q

jI0t jC g, where
BCt ;B�t ;B0t are matrices, dCt ; d�t ; d0t are vectors of corresponding sizes, and QkC is a
direct product of k sets of the set of all non-negative integers QC, and (b) Xt, a set of
feasible values of the vectors xt D .xCt ; x�t ; x0t /, has the form Xt D MCt �M�t �M0

t .
According to the assumptions on the bilateral constraints-inequalities, the sets
MCt ;M�t ; and M0

t are either subsets of the corresponding parallelepipeds or coincide
with them.

However, generally, the sets of feasible values XCt , X�t , and X0t may be
determined by a set of linear equations and inequalities binding together the
variables being coordinates of all the vectors xCt , x�t , and x0t so that Xt (the set of
feasible values of the vectors xt D .xCt ; x�t ; x0t /), may have the form Xt D Mt D
fxt 2 RnC W Btxt � dt; xt 2 QnCg � MCt � M�t � M0

t , where each of these three
sets is non-empty and contains the zero vector. Analogously, it is natural to assume
that each of the sets YCtC1, Y�tC1,Y0tC1 and ZCtC1, Z�tC1, Z0tC1 is a (non-empty) convex
polyhedron, since the values of the share prices of securities from the set N are non-
negative, real numbers bounded from above. Finally, let the trader believe that at
each moment t, the directions in which the values of the share prices of securities
from the set N may change are “connected” within each of the three sets ICt , I�t , and
I0t . Here, this “connection” is understood in the sense that the values of the share
prices of all the securities from the set ICt will change in one and the same direction
at the moment t C 1, and the same is true for the values of the share prices of all
the securities from each of the two sets I�t and I0t . Also, let the trader believe that
the share price values within each of the sets YCtC1, Y�tC1,Y0tC1 and ZCtC1, Z�tC1, Z0tC1
change independently of those in the other five sets.

At each moment, one may view the interaction between the trader and the stock
exchange in Situation 1 as an antagonistic game between them. In this game, a
strategy of the trader is to choose a) how many shares of securities from the sets ICt ,
I�t , and I0t should be bought at the moment t, and b) how many shares of securities
from the set N to borrow from a broker to sell them short at the moment t (see
Remark 3 at the end of Sect. 5) with the intent of both types of the transactions
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to form her portfolio with the maximum possible value at the moment t C 1. The
stock exchange’s strategy in this game is “to choose” the values of the share prices
of securities from the set N the most unfavorably to the trader. This game can be
viewed to be analogous to the game with the nature in which “the nature” (the stock
exchange in the game under consideration) may offer the trader the most unfavorable
combinations of the values of the share prices that securities from the sets ICt , I�t ,
and I0t may assume at the moment t C 1 (while the trader chooses the volumes
of security shares to buy from each of these three sets at the moment t). These
combinations (of the share price values) are chosen in the form of vectors from
the (non-empty) convex polyhedra YCtC1, Y�tC1,Y0tC1 and ZCtC1, Z�tC1, Z0tC1, and (as
mentioned earlier) vectors from these convex polyhedra are chosen independently
of each other.

The structure of this game allows one to find an optimal trader’s strategy by
solving a mixed programming problem. Finding an upper bound of the trader’s
guaranteed result in this game can be done by solving linear programming problems
forming a dual pair [6].

Theorem. There exists an antagonistic game describing the interaction between the
trader and the stock exchange at each moment t, and this game is the one on (non-
empty) sets of disjoint player strategies one of which is Xt D Mt D fxt 2 RnC W
Btxt � dt; xt 2 QnCg 	 MCt � M�t � M0

t , and the other is 
tC1 D fwtC1 2 R2nC W
AtwtC1 � btg with the bilinear payoff function hxt;DtwtC1i, where

Dt D

0

B
@

DjI
C
t j.pC/ DjI

C
t j.1 � pC/ 0 0 0 0

0 0 DjI�
t j.p�/ DjI�

t j.1 � p�/ 0 0

0 0 0 0 DjI0t j. 1
2
/ DjI0t j. 1

2
/

1

C
A ;

xt D .xCt ; x�t ; x0t / 2 Xt, wtC1 D .wCtC1;w�tC1;w0tC1/ 2 
tC1 D 
CtC1�
�tC1�
0tC1, Dt is
a .jICt jCjI�t jCjI0t j/�2.jICt jCjI�t jCjI0t j/matrix, DjIj is a .jIj�jIj/ diagonal matrix
all whose elements on the main diagonal equal x, Xt is a set of the trader’s strategies,

tC1 is a set of the stock exchange strategies, 
CtC1 D YCtC1�ZCtC1, 
�tC1 D Y�tC1�Z�tC1,

0tC1 D Y0tC1 � Z0tC1 are (non-empty) convex polyhedra, wCtC1 D .yCtC1; zCtC1/ 2 
CtC1,
w�tC1 D .y�tC1; z�tC1/ 2 
�tC1, w0tC1 D .y0tC1; z0tC1/ 2 
0tC1 are vectors, QC is the
set of all non-negative, integer numbers, QnC is a direct product of n sets QC, and
the payoff function is maximized with respect to the vector x and is minimized with
respect to the vector wtC1. In this game, an optimal trader’s strategy is the one at
which the maximin of the payoff function of the game is attained, and finding the
exact value of this maximin is reducible to solving a mixed programming problem.
Finding an upper bound of this maximin is reducible to solving linear programming
problems forming a dual pair [7].

Proof. Let us first assume that the set of trader’s strategies Xt is a direct product
of the three subsets of vectors with all integer components from disjoint polyhedra

MCt , M�t , and M0
t , i.e., Xt D XCt � X�t � X0t D MCt �M�t �M0

t in the spaces RjI
C
t jC ,
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R
jI�

t jC , and R
jI0t jC , respectively, where MCt D fxt 2 RjI

C
t jC W BCt xCt � dCt ; xt 2 QjI

C
t jC g,

M�t D fx�t 2 R
jI�

t jC W B�t x�t � d�t ; x�t 2 Q
jI�

t jC g, and MCt D fx0t 2 R
jI0t jC W B0t x0t �

d0t ; x
0
t 2 Q

jI0t jC g.
1. Let us consider securities forming the set ICt at the moment t. If the trader

correctly forecast directions in which the values of the share prices of securities
from this set may change, then a) by buying securities from the set ICt in the
volumes (numbers of shares) being components of the vector xCt , and b) by
expecting the values of the share prices of these securities at the moment t C 1
to be components of the vector yCtC1, the trader would hope to invest the money
available to her at the moment t in such a manner that would maximize the value
of the part of her portfolio (associated with securities from the set ICt ) at the
moment t C 1. Here, the trader’s best investment strategy in the game with the
stock exchange (with “the nature”) with respect to securities from the set XCt
consists of choosing such volumes of securities from the set ICt to buy that can
be found by solving the problem

min
yC

tC1
2YC

tC1

hxCt ; yCtC1i ! max
xC

t 2XC
t

:

If the trader did not correctly forecast the directions in which the values of the
share prices of securities from the set ICt may change, i.e., if the values of the
share prices of securities from the set ICt did not increase at the moment t C 1,
the best investment strategy of the trader in her game with the stock exchange
with respect to securities from the set XCt would be determined by solutions to
the problem

min
zC

tC1
2ZC

tC1

hxCt ; zCtC1i ! max
xC

t 2XC
t

:

Since the trader correctly forecasts the directions in which the values of the
share prices of securities from the set ICt may change only with the probability
pC, the worst financial result of the trader’s choice of the volumes of securities
from the set ICt to be bought at the moment t, i.e., the worst financial result
of choosing the vector xCt 2 XCt at the moment t by the trader, can be
viewed as a discrete random variable taking the values minyC

tC1
2YC

tC1

hxCt ; yCtC1i
and minzC

tC1
2ZC

tC1

hxCt ; zCtC1i with the probabilities pC and 1 � pC, respectively.

It is clear that an optimal trader’s strategy in the case under consideration may
consist of choosing a vector xCt 2 XCt that maximizes the expectation of this
discrete random variable. If this is the case, the optimal trader’s strategy is found
by solving the problem

pC min
yC

tC1
2YC

tC1

hxCt ; yCtC1i C .1 � pC/ min
zC

tC1
2ZC

tC1

hxCt ; zCtC1i ! max
xC

t 2XC
t

:
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One can easily be certain that the equality

max
xC

t 2XC
t

"

pC min
yC

tC1
2YC

tC1

hxCt ; yCtC1i C .1 � pC/ min
zC

tC1
2ZC

tC1

hxCt ; zCtC1i
#

D

max
xC

t 2XC
t

"

min
yC

tC1
2YC

tC1

hxCt ;DjI
C
t j.pC/yCtC1i C min

zC

tC1
2ZC

tC1

hxCt ;DjI
C
t j.1 � pC/zCtC1i

#

holds, and since the vectors yCtC1 and zCtC1 from the sets YCtC1 and ZCtC1 are chosen
independently of each other, the following equalities also hold:

max
xC

t 2XC
t

"

min
yC

tC1
2YC

tC1

hxCt ;DjI
C
t j.pC/yCtC1i C min

zC

tC1
2ZC

tC1

hxCt ;DjI
C
t j.1 � pC/zCtC1i

#

D

max
xC

t 2XC
t

"

min
.yC

tC1
;zC

tC1
/2YC

tC1
�ZC

tC1

hxCt ;DjI
C
t j.pC/DjI

C
t j.1 � pC/.yCtC1; z

C
tC1/i

#

D

max
xC

t 2XC
t

"

min
wC

tC1
2
C

tC1

hxCt ;D2jIC
t j.pC; 1 � pC/wCtC1i

#

;

where wCtC1 D .yCtC1; z
C
tC1/, 


C
tC1 D YCtC1 � ZCtC1, D2jIC

t j.pC; 1 � pC/ D
DjI

C
t j.pC/DjI

C
t j.1 � pC/, DjI

C
t j.pC/ is a jICt j � jICt j diagonal matrix all whose

elements on the main diagonal equal pC, DjI
C
t j.1 � pC/ is a jICt j � jICt j

diagonal matrix all whose elements on the main diagonal equal 1 � pC, and

D2jIC
t j.pC; 1 � pC/ is a jICt j � 2jICt j matrix formed by accessing the matrix

DjI
C
t j.1 � pC/ to the matrix DjI

C
t j.pC/ from the right.

2. Let us consider securities forming the set I�t at the moment t. If the trader
correctly forecast directions in which the values of the share prices of securities
from this set may change, then a) by buying securities from the set I�t in the
volumes (numbers of shares) being components of the vector x�t , and b) by
expecting the values of the share prices of these securities at the moment t C 1
to be components of the vector y�tC1, the trader would hope to invest the money
available to her at the moment t in such a manner that would maximize the value
of the part of her portfolio (associated with securities from the set I�t ) at the
moment t C 1. Here, the trader’s best investment strategy in the game with the
stock exchange with respect to securities from the set X�t consists of choosing
such volumes (numbers of shares) of securities to buy that can be found by
solving the problem

min
y�

tC1
2Y�

tC1

hx�t ; y�tC1i ! max
x�

t 2X�
t

:
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If the trader did not correctly forecast directions in which the values of the
share prices of securities from the set I�t may change, i.e., if the values of the
share prices of securities from the set I�t did not decrease at the moment t C 1,
the best investment strategy of the trader in her game with the stock exchange
with respect to securities from the set X�t would be determined by solutions to
the problem

min
z�
tC1
2Z�

tC1

hx�t ; z�tC1i ! max
x�

t 2X�
t

:

The reasoning analogous to the one presented in part 1 of this Proof lets one write
the expression for the expectation of the worst financial result of the trader’s
decision to buy securities from the set I�t in the volumes (numbers of shares)
determined by the vector x�t in the form

min
w�

tC1
2
�

tC1

hx�t ;D2jI�
t j.p�; 1 � p�/w�tC1i:

Under the assumption on the optimality of the trader’s strategy that was made
with respect to securities from the set ICt , one can be certain that the trader tries
to maximize her expected financial result associated with choosing the vector
x�t 2 X�t by solving the problem

max
x�

t 2X�
t

"

min
w�

tC1
2
�

tC1

hx�t ;D2jI�
t j.p�; 1 � p�/w�tC1i

#

;

where w�tC1 D .y�tC1; z�tC1/, 
�tC1 D Y�tC1 � Z�tC1, D2jI�
t j.p�; 1 � p�/ D

DjI�
t j.p�/DjI�

t j.1 � p�/, DjI�
t j.p�/ is a jI�t j � jI�t j diagonal matrix all whose

elements on the main diagonal equal p�, DjI�
t j.1 � p�/ is a jI�t j � jI�t j diagonal

matrix all whose elements on the main diagonal equal 1�p�, and D2jI�
t j.p�; 1�

p�/ is a jI�t j � 2jI�t j matrix formed by accessing the matrix DjI�
t j.1 � p�/ to the

matrix DjI�
t j.p�/ from the right.

3. Let us consider securities forming the set I0t at the moment t for which the trader
determines the direction in which the values of their share prices at the moment
t C 1 may change with the probability p0 D 1=2. The best investment strategy
of the trader in her game with the stock exchange with respect to securities from
the set I0t would be to choose the volumes (numbers of shares) of securities from
this set that are determined by solutions to the problems

min
y0tC1
2Y0tC1

hx0t ; y0tC1i ! max
x0t 2X0t

:

and

min
z0tC1
2Z0tC1

hx0t ; z0tC1i ! max
x0t 2X0t

:
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A reasoning similar to that presented in parts 1 and 2 of this Proof allows one
to write the expression for the expectation of the financial result associated with
choosing (buying) by the trader the volumes (numbers of shares) of securities
from the set I0t (being components of the vector x0t ) in the form

min
w0tC1
2
0tC1

hx0t ;D2jI0t j.p0; 1 � p0/w0tC1i;

Under the same assumption on the optimality of the trader’s strategy that was
made with respect to securities from the set ICt and I�t , the trader tries to
maximize this minimum by choosing the vector x0t 2 X0t as a vector component
of a solution to the problem

max
x0t 2X0t

"

min
w0tC1
2
0tC1

hx0t ;D2jI0t j.p0; 1 � p0/w0tC1i
#

;

where w0tC1 D .y0tC1; z0tC1/, 
0tC1 D Y0tC1 � Z0tC1, D2jI0t j.p0; 1 � p0/ D
DjI0t j.p0/DjI0t j.1�p0/, DjI0t j.p0/ is a jI0t j� jI0t j diagonal matrix all whose elements
on the main diagonal equal p0, DjI0t j.1 � p0/ is a jI0t j � jI0t j diagonal matrix all
whose elements on the main diagonal equal 1 � p0, and D2jI0t j.p0; 1 � p0/ is a
jI0t j � 2jI0t j matrix formed by accessing the matrix DjI0t j.1 � p0/ to the matrix
DjI0t j.p0/ from the right.

4. Since the financial results of choosing the volumes (numbers of shares) of
securities from the sets ICt , I�t , and I0t are random variables (since the trader
forecasts the directions in which the values of their share prices at the moment
t C 1 will change within the polyhedra YCtC1, Y�tC1,Y0tC1 and ZCtC1, Z�tC1, Z0tC1
only with certain probabilities), the expectations of the worst compound financial
result is a sum of the above three expectations [17].

Let the matrix Dt have the form

Dt D

0

B
@

D2jIC
t j.pC; 1 � pC/ 0 0

0 D2jI�
t j.p�; 1 � p�/ 0

0 0 D2jI0t j.p0; 1 � p0/

1

C
A D

D

0

B
@

DjI
C
t j.pC/ DjI

C
t j.1 � pC/ 0 0 0 0

0 0 DjI�
t j.p�/ DjI�

t j.1 � p�/ 0 0

0 0 0 0 DjI0t j. 1
2
/ DjI0t j. 1

2
/

1

C
A ;

while xt D .xCt ; x�t ; x0t / belongs to the set Xt, and wtC1 D .wCtC1;w�tC1;w0tC1/
belongs to the convex polyhedron 
tC1 D 
CtC1 � 
�tC1 � 
0tC1. Further, let
linear inequalities describing the convex polyhedron 
tC1 D fwtC1 2 R2nC W
AtwtC1 � btg be compatible so that At;Bt are matrices, and bt; dt are vectors of
corresponding dimensions, whose elements are formed by the coefficients of the
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above two compatible systems of linear equations and inequalities. Then, when
the trader chooses a particular vector xt from the set Xt, the expectation of the
compound worst financial result determined by this choice can be calculated as

min
wtC12
tC1

hxt;DtwtC1i:

5. Let now Xt D Mt D fxt 2 RnC W Btxt � dt; xt 2 QnCg � MCt � M�t � M0
t ,

where Bt is a matrix of a general structure, not necessarily corresponding to the
structure of the set Mt D MCt � M�t � M0

t as a direct product of subsets of the

three polyhedra from the spaces RjI
C
t jC , R

jI�
t jC , and R

jI0t jC , respectively. This means
that the system of linear equations and inequalities in the description of the set
Mt contains at least one that binds together components of all the three vectors
xCt , x�t , and x0t .

Let the trader choose the vector xt D .xCt ; x�t ; x0t / 2 Xt. Depending on in which
direction the share price values of securities from the sets ICt , I�t , and I0t may change,
the trader may obtain the following worst financial results:

1. minyC

tC1
2YC

tC1

hxCt ; yCtC1i or minzC

tC1
2ZC

tC1

hxCt ; zCtC1i for securities from the set ICt ,

2. miny�
tC1
2Y�

tC1
hx�t ; y�tC1i or minz�

tC1
2Z�

tC1
hx�t ; z�tC1i for securities from the set I�t ,

3. miny0tC1
2Y0tC1

hx0t ; y0tC1i or minz0tC1
2Z0tC1

hx0t ; z0tC1i for securities from the set I0t .

According to the (earlier made) assumptions on the sets YCtC1, Y�tC1,Y0tC1 and ZCtC1,
Z�tC1,Z0tC1,

(a) non-empty convex polyhedra in each of which all the components of the vectors
belonging to the sets ICt , I�t , and I0t , respectively, change in one and the same
direction, and

(b) the direction of changing the values for all the components of the vectors yCtC1,
y�tC1,y0tC1 and zCtC1, z�tC1, z0tC1 are chosen (by the stock exchange) randomly,
with the probabilities pC; p�; p0 and .1 � pC/; .1 � p�/; .1 � p0/, respectively,
independently of each other for all the components of these six vectors,

the above six worst financial results can be viewed as the values of three
random variables �C; ��; �0.

Each of these three random variables is, in turn, a discrete random variable
with two possible values for each variable. That is, the discrete random variable
�C assumes the values minyC

tC1
2YC

tC1

hxCt ; yCtC1i and minzC

tC1
2ZC

tC1

hxCt ; zCtC1i with

the probabilities pC and 1 � pC, respectively (since, in line with assumption a),
the probability with which all the components of those vectors whose components
belong to the set ICt hit the sets YCtC1 and ZCtC1 with the probabilities pC and
1 � pC, respectively). Analogously, the discrete random variable �� assumes two
values miny�

tC1
2Y�

tC1
hx�t ; y�tC1i and minz�

tC1
2Z�

tC1
hx�t ; z�tC1i with the probabilities p�

and 1 � p�, respectively, whereas the discrete random variable �0 assumes two
values miny0tC1

2Y0tC1
hx0t ; y0tC1i and minz0tC1

2Z0tC1
hx0t ; z0tC1i with the probabilities po

and 1 � p0, respectively.
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Since the expectation of the sum of the random variables �C; ��; �0 equals the
sum of their expectations [17], the equality

MŒ�C C �� C �0	 D pC. min
yC

tC1
2YC

tC1

hxCt ; yCtC1i/C .1 � pC/. min
zC

tC1
2ZC

tC1

hxCt ; zCtC1i/C

p�. min
y�

tC1
2Y�

tC1

hx�t ; y�tC1i/C .1 � p�/. min
z�
tC1
2Z�

tC1

hx�t ; z�tC1i/C

p0. min
y0tC1
2Y0tC1

hx0t ; y0tC1i/C .1 � p0/. min
z0tC1
2Z0tC1

hxCt ; z0tC1i/

holds, which, in line with the notation from the formulation of the Theorem, takes
the form

MŒ�C C �� C �0	 D min
wtC12
tC1

hxt;DtwtC1i

for any xt 2 Xt.

6. It seems natural to consider that the best trader’s choice of the vector xt is the
vector at which the maximin

max
xt2Xt

�

min
wtC12
tC1

hxt;DtwtC1i
�

is attained. Though all the components of the vector xt are integers, the same
logic that was applied in [6] in finding the maximum of the minimum function
similar to the above one (but with all the components of the vector variable under
the maximum sign assuming non-negative, real values) allows one to be certain
that the equality

max
xt2Xt

�

min
wtC12
tC1

hxt;DtwtC1i
�

D max
xt2Xt

�

max
ztC12fztC1�0 WztC1At�xtDtg

hbt; ztC1i
�

holds. Indeed, since the set 
tC1 D fwtC1 2 R2nC W AtwtC1 � btg is a (non-empty)
convex polyhedron so that the linear function hxt;DtwtC1i attains its minimum
on this convex polyhedron for any xt 2 Xt, the set fztC1 � 0 W ztC1At � xtDtg,
which is a set of feasible solutions to the linear programming problem that is dual
to the problem minwtC12
tC1

hxt;DtwtC1i, is nonempty for any xt 2 Xt [60]. Thus,
in both problems

hxt;DtwtC1i ! min
wtC12
tC1

and

hbt; ztC1i ! max
ztC12fztC1�0WztC1At�xtDtg

;
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which form a dual pair of linear programming problems for any xt 2 Xt, the goal
functions attain their extreme values at certain points of the sets 
tC1 D fwtC1 2
R2nC W AtwtC1 � btg and fztC1 � 0 W ztC1At � xtDtg, respectively, for every xt 2 Xt

due to the duality theorem of linear programming [60]. Thus, the equality

min
wtC12
tC1

hxt;DtwtC1i D max
ztC12fztC1�0WztC1At�xtDtg

hbt; ztC1i

holds for every xt 2 Xt, and since the set Xt is finite, the equality

max
xt2Xt

�

min
wtC12
tC1

hxt;DtwtC1i
�

D max
xt2Xt

�

max
ztC12fztC1�0WztC1At�xtDtg

hbt; ztC1i
�

also holds, which means that the equality

max
xt2Xt

"

min
wtC12
tC1

hxt;DtwtC1i
#

D max
fxt2Rn

C
WBtxt�dt ;xt2Qn

C
g

"

max
ztC12fztC1�0WztC1At�xtDtg

hbt; ztC1i
#

;

where QC is a set of all non-negative, integer numbers, and QnC is a direct product
of n sets QC, holds. This means that the value

max
xt2Mt

�

min
wtC12
tC1

hxt;DtwtC1i
�

can be found by solving the problem

hbt; ztC1i ! max
f.xt ;ztC1/2Rn

C
�Rm

C
WBtxt�dt ;ztC1At�xtDt ;xt2Qn

C
g
;

where m is the number of rows in the matrix At, which is a mixed programming
problem.

7. It is clear that if the numbers of securities in the sets ICt , I�t , and I0t are large,
solving this problem may present considerable difficulties. At the same time,
since the values of components of the vector xt usually substantially exceed 1,
one can consider these numbers as non-negative, real ones, solve the problem of
finding

max
xt2 QMt

�

min
wtC12
tC1

hxt;DtwtC1i
�

with the vector variables xt belonging to the above-mentioned convex polyhedron
QMt D fxt 2 RnC W Btxt � dtg, which contains the set Mt (and is described by a

compatible system of linear equations and inequalities), and round off all the non-
integer components of the vector xt in the solution in just the same way it was
mentioned in Sect. 4 in considering problems (1) and (2). Thus (if the number
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of shares in the trader’s portfolio is large), the trader may decide to calculate
the above maximum of the minimum function, which is an upper bound for the
number maxxt2Mt

�

minwtC12
tC1
hxt;DtwtC1i

�

. The value of this upper bound is
attained at a saddle point of an antagonistic game on the convex polyhedra QMt

and 
tC1 with the payoff function

hxt;DtwtC1i: (3)

Let

Qt D f.xt; ht/ � 0 W htAt � xtDt;Btxt � dtg;
Pt;tC1 D f.wtC1; �tC1/ � 0 W �tC1Bt � �DtwtC1;AtwtC1 � btg:

Then the optimal values of the vectors .xt/
� and .wtC1/�, forming a saddle

point of function (3) on the set QMt�
tC1, are found as components of the solution
vectors to linear programming problems

hbt; hti ! max
.xt ;ht/2Qt

;

h�dt; �tC1i ! min
.wtC1;�tC1/2PtC1

;

forming a dual pair.
If ..xt/

�; .ht/
�; .wtC1/�; .�tC1/�/ is a solution of the above pair of linear

programming problems, then the values of the vectors .xCt /�, .x�t /� and .x0t /
�,

where .xt/
� D ..xCt /�; .x�t /�; .x0t /�/, are completely determined by the values of

the vector .xt/
� [6]. The Theorem is proved. ut

Remark 2. As mentioned in the course of proving the Theorem, all the variables xt

are integers so that the value of the maximin of the function (3) when xt 2 QMt—
which is attained at a saddle point of the game on the sets QMt and 
tC1 with the
payoff function hxt;DtwtC1i that is maximized with respect to x 2 QMt and is
minimized with respect to wtC1 2 
tC1—is only an upper bound of the maximin
of this function when xt 2 Mt. Also, as shown there, finding the exact value of this
maximin is reducible to solving a mathematical programming problem with mixed
variables and a linear goal function. However, it is clear that solving this mixed
programming problem within an acceptable period of time may present considerable
difficulties for the problems with sizes being of interest for both theoretical studies
and practical calculations while solving linear programming problems in finding a
saddle point of the game on QMt � 
tC1 with the payoff function described by (3)
does not present any computational difficulties in such calculations. Moreover,
quickly finding an upper bound of the maximin of the function (3) may interest
small and medium price-taking traders for their practical calculations the most.
Also, in theoretical studies of the interaction between a trader and a stock exchange
(to which the present paper belongs), traditionally (see, for instance, the seminal
publication of Markowitz [33]), volumes of shares to be bought and sold by a
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trader are assumed to be non-negative, real numbers (variables). Finally, generally,
the coefficients in the systems of linear equations and inequalities describing the
convex polyhedra that participate in the mathematical formulation of the mixed
programming problem under consideration are known only approximately. With
all this in mind, the replacement of the problem of finding the exact value of the
maximin of the function (3) when xt 2 Mt with finding an upper bound of this value
seems justifiable in practical calculations.

Situation 2
There are two cases to be considered in Situation 2. In the first case, the trader

does not have any intent to keep particular securities that she possesses at the
moment t (either based on her own beliefs or at someone’s advice), whereas in the
second case, the trader has this intent with respect to particular securities. It is clear
that in the first case, to estimate what portfolio would have the maximum value at
the moment tC 1, the trader should first estimate the total cash that she would have
if she sold all the securities from her portfolio at the moment t proceeding from the
share price values that these securities have at the moment t. Then the trader should
solve the same problem that she would solve in Situation 1 in forming a portfolio (a)
proceeding from the total amount of cash available to her at the moment t, and (b)
taking into account that she can borrow cash and/or securities from a broker to be
returned later. If the borrowed cash or securities should be returned later than at the
moment tC1, then in the first case of Situation 2, finding the trader’s best investment
strategies (in the sense of maximizing the value of her portfolio at the moment tC1)
is either reducible to solving a mixed programming problem (for finding the exact
value of the maximin of the function (3) when xt 2 Mt) or to finding saddle points in
an antagonistic game (for finding an upper bound of the above-mentioned maximin)
that are similar to those considered in finding such strategies earlier, in Situation 1.

In the second case of Situation 2, one can easily show that the considered game of
changing the portfolio of securities is formulated as the game on the sets MCt �M�t �
M0

t or Mt and 
tC1 D fwtC1 2 R2nC W AtwtC1 � btg of the player strategies with the
payoff function hxt;DtwtC1i C hq;wtC1i. Here, q 2 R2nC is a particular vector, At, Bt

are matrices, and dt, bt are vectors of corresponding dimensions. Their elements are
formed by coefficients of compatible systems of linear equations and inequalities of
the balance kind that describe sets of feasible values of the variables forming the
vectors xt and wtC1. Two subcases should then be considered.

In the first subcase, the trader does not borrow any securities (from a broker)
from the set I�t .

Let vt D .vCt ; v�t ; v0t / 2 R
jIC

t jCjI�
t jCjI0t jC be the vector of volumes (numbers of

shares) of securities from the set N that the trader has in her portfolio at the moment
t and would like to keep at the moment tC 1 for whatever reasons. As in the Proof
of the Theorem, let us first consider the case in which Xt D XCt � X�t � X0t D
MCt �M�t �M0

t in the spaces RjI
C
t jC , R

jI�
t jC , and R

jI0t jC , respectively, where MCt D fxt 2
RjI

C
t jC W BCt xCt � dCt ; xt 2 QjI

C
t jC g, M�t D fx�t 2 R

jI�
t jC W B�t x�t � d�t ; x�t 2 Q

jI�
t jC g,
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and M0
t D fx0t 2 R

jI0t jC W B0t x0t � d0t ; x
0
t 2 Q

jI0t jC g. Then the optimal trader’s strategy of
choosing the volumes of securities from the set XCt to buy is found by maximizing
the expectation of the discrete random variable

pC min
yC

tC1
2YC

tC1

�hxCt ; yCtC1i C hvCt ; yCtC1i
�C.1�pC/ min

zC

tC1
2ZC

tC1

�hxCt ; zCtC1i C hvCt ; zCtC1i
�

;

which describes the expectation of the financial result associated with buying
securities from the set ICt .

Since the equality

max
xC

t 2XC
t

"

pC min
yC

tC12YC

tC1

�

hxC
t ; y

C

tC1i C hvC
t ; y

C

tC1i
�

C .1� pC/ min
zC

tC12ZC

tC1

�

hxC
t ; z

C

tC1i C hvC
t ; z

C

tC1i
�
#

D

D max
xC

t 2XC
t

"

min
yC

tC12YC

tC1

�

hxC
t ;D

jIC
t j.pC/yC

tC1i C hpCvC
t ; y

C

tC1i
�

C

min
zC

tC12ZC

tC1

�

hxC
t ;D

jIC
t j.1� pC/zC

tC1i C h.1� pC/vC
t ; z

C

tC1i
�
#

holds, and the since the vectors yCtC1 and zCtC1 from the sets YCtC1 and ZCtC1 are chosen
independently of each other, the equalities

max
xC

t 2XC
t

2

4 min
yC

tC1
2YC

tC1

�

hxCt ;DjI
C
t j.pC/yCtC1i C hpCvCt ; yCtC1i

�

C

C min
zC

tC1
2ZC

tC1

�

hxCt ;DjI
C
t j.1 � pC/zCtC1i C h.1 � pC/vCt ; zCtC1i

�

3

5 D

D max
xC

t 2XC
t

2

4 min
.yC

tC1
;zC

tC1
/2YC

tC1
�ZC

tC1

�

hxCt ;DjI
C
t j.pC/yCtC1i C hpCvCt ; yCtC1i

�

C

ChxCt ;DjI
C
t j.1 � pC/zCtC1i C h.1 � pC/vCt ; zCtC1i

i

D

D max
xC

t 2XC
t

2

4 min
wC

tC1
2
C

tC1

�

hxCt ;D2jI
C
t j.pC; 1 � pC/wCtC1i C h.pCvCt ; .1 � pC/vCt /;wCtC1i

�

3

5 ;

hold.
Analogously, the maximum of the expectation of the financial result associated

with buying securities from the set I�t at the moment t can be written as written as

max
x�

t 2X�
t

"

min
w�

tC1
2
�

tC1

�

hx�t ;D2jI�
t j.p�; 1 � p�/w�tC1i C h.p�v�t ; .1 � p�/v�t /;w�tC1i

�
#

;
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whereas the maximum of the expectation of the financial result associated with
choosing (buying) the volumes of securities from the set I0t can be written as

max
x0t 2X0t

"

min
w0tC1
2
0tC1

�

hx0t ;D2jI0t j
�
1

2
;
1

2

�

w0tC1i C h
�
1

2
v0t ;

1

2
v0t

�

;w0tC1i
�#

:

Thus, if the trader’s best strategy of choosing the volumes of financial securities
from the set Mt is understood as that maximizing the expectation of the financial
result associated with buying securities being components of the vector xt 2 XCt �
X�t � X0t , this strategy can be found by calculating

max
xt2Xt

�

min
wtC12
tC1

.hxt;DtwtC1i C hq;wtC1i/
�

;

where q D 	.pCvCt ; .1 � pC/vCt /; .p�v�t ; .1 � p�/v�t /;
	
1
2
v0t ;

1
2
v0t




.
In just the same way this was done in the course of proving the Theorem, one can

be certain that this strategy remains optimal if Xt D Mt D fxt 2 RnC W Btxt � dt; xt 2
QnCg � MCt �M�t �M0

t , where Bt is a matrix of a general structure, not necessarily
corresponding to the structure of the set Mt D MCt �M�t �M0

t as a direct product

of the above-mentioned subsets of the three polyhedra from the spaces RjI
C
t jC , R

jI�
t jC ,

and R
jI0t jC , respectively (see earlier in Sect. 5).

One can easily be certain that the equalities

max
xt2Mt

�

min
wtC12
tC1

.hxt;DtwtC1i C hq;wtC1i/
�

D

D max
fxt2Rn

C
WBtxt�dt ;xt2Qn

C
g

�

max
fztC1�0WztC1At�xtDtCqg

hbt; ztC1i
�

D

D max
f.xt ; ztC1/�0W Btxt�dt ; ztC1At�xtDtCq; xt2Qn

C
g
hbt; ztC1i

hold for both types of the structure of the set Xt D Mt so that the maximin

max
xt2Mt

�

min
wtC12
tC1

.hxt;DtwtC1i C hq;wtC1i/
�

is found by solving a mixed programming problem of finding the maximum of
the linear function hbt; ztC1i on the set f.xt; ztC1/ � 0 W Btxt � dt; ztC1At �
xtDt C q; xt 2 QnCg.

In just the same way it was done in considering Situation 1, if one treats
components of the vector xt as non-negative, real numbers, finding the maximin

max
fxt2Rn

C
WBtxt�dtg

�

min
wtC12
tC1

.hxt;DtwtC1i C hq;wtC1i/
�

;
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which is an upper bound of the maximin

max
xt2Mt

�

min
wtC12
tC1

.hxt;DtwtC1i C hq;wtC1i/
�

;

is reducible to finding a saddle point in the antagonistic game on the sets of player
strategies QMt and 
tC1 with the payoff function hxt;DtwtC1i C hq;wtC1i.

A saddle point in this game can be found [6] by solving linear programming
problems

hbt; hti ! max
.xt ;ht/2Qt.q/

;

h�dt; �tC1i C hq;wtC1i ! min
.wtC1;�tC1/2Pt;tC1

;

forming a dual pair, where Qt.q/ D f.xt; ht/ � 0 W htAt � qC xtDt;Btxt � dtg and
Pt;tC1 D f.wtC1; �tC1/ � 0 W �tC1Bt � �DtwtC1;AtwtC1 � btg.

In the second subcase, the trader borrows securities from the broker to sell them
at the moment t to have additional cash for buying those securities at the moment
t whose share price values she expects to decrease at the moment later than t C 1
(and the trader should return the borrowed securities later than at the moment tC1).
The only difference between this subcase and the first subcase is in the amount of
cash available for buying securities that interest the trader at the moment t, i.e., in
the parameters determining the set Mt.

Remark 3. One should bear in mind that both the trader’s guaranteed result and
its upper estimate in her game with the stock exchange determine only the trader’s
investment strategies at the moment t, and they do not determine the total financial
result of applying these strategies. This is the case, since neither the goal function
in the maximin problem nor the payoff function, for instance, in game (3) (when
xt 2 QMt) take into consideration such components of the trader’s welfare at the
moment t C 1 as, for instance, the amount of cash remaining after finalizing all
the transactions associated with buying securities from the sets ICt , I�t and I0t .
However, the above-mentioned financial result can easily be calculated based upon
the solutions to the mixed programming problems and games considered for both
Situation 1 and Situation 2.

One should also bear in mind that if the trader borrows securities from a broker,
and she needs to return them to the broker at the moment t C 1, other approaches
to what should be chosen as the set X�t are to be considered. The deployment
of such approaches leads to a different structure of the payoff functions in the
games describing the interaction of the trader with the stock exchange, including
the structure of the matrix Dt. One can, however, show that in the framework of this
interaction, finding corresponding maximin values or saddle points in corresponding
games can be done based on the same theoretical foundation developed in [6].
Certainly, in some cases, the interaction between the trader and the stock exchange
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is formalized in the form of maximin problems and games of more complicated
structures than those studied in Sect. 5; however, their consideration lies beyond the
scope of the present publication.

Finally, one should notice that by solving either the above-mentioned problem
(i.e., the problem of finding the trader’s guaranteed result or that of finding an
upper estimate of this result), the trader determines which share price values she
should expect to deal with at the moment t with respect to all the standard securities
from the set N. This information can be used, in particular, in making decisions on
borrowing standard securities to be returned to brokers at the moment tC 1.

6 Illustrative Examples

The aim of this section is to illustrate how a price-taking trader may make decisions
on forming her portfolio out of standard securities when at the moment t, she can
make no assumptions on probability distributions of the values of the share prices
that (standard) securities of her interest may have at the moment t C 1. As shown
in Sect. 5, if, nevertheless, the trader can estimate the areas in which the values of
the share prices of these securities may change at the moment t C 1, game models
of a special kind may help the trader calculate her optimal investment strategies at
the moment t aimed at increasing the value of her portfolio at the moment t C 1.
Particularly, the present section illustrates how the games described in Sect. 5 are
formed, and what linear programming problems are solved to find an upper estimate
of this value by calculating saddle points in one of these games with the use of
standard software packages for solving linear programming problems. To this end,
two numerical examples are considered in both situations mentioned in the text of
Sect. 5, and in the description of these examples, the notation from Sect. 5 is used.

As mentioned in Remark 2 (see Sect. 5), solving the above-mentioned linear
programming problems lets the trader determine only an upper bound of the
expected increment value of her portfolio by considering volumes (numbers of
shares) of securities to be bought and sold as non-negative, real numbers. Such a
consideration is, however, in line with traditional approaches exercised in theoretical
studies of stock exchanges [33]. Moreover, even from a practical viewpoint— when
the number of different securities that interest the trader is large—solving mixed
programming problems to calculate the exact (integer) numbers of shares for each
(standard) security to buy and to sell to secure the exact value of the expected
increment of the trader portfolio’s value may present substantial difficulties. If this
is the case, finding the exact numbers of shares of the above-mentioned standard
securities will hardly interest the traders in making decisions on forming and
managing their investment portfolios.

In just the same way as in Sect. 5, in the illustrative examples to follow, the
optimality of the trader’s investment strategy is considered in the sense of the value
of her portfolio at the moment tC 1.
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6.1 Illustrative Example 1

Consider a trader who plans to interact with a stock exchange by forming a portfolio
of financial instruments. Let us assume that at the moment t, the trader (a) is
interested in only two particular standard securities that are traded in the stock
exchange (so that N D f1; 2g for this trader), (b) does not have a portfolio of
financial instruments traded in this stock exchange (so that v1 D v2 D 0 for this
trader), (c) has the amount of cash equaling mt D 10; 000:00 financial units, for
instance, US dollars, and (d) has a broker who is ready to provide her with a credit.
It is assumed that (a) the credit leverage equals kt D 0:5 for borrowing standard
securities from the broker to let the trader open short positions there, and (b) the
broker is ready to offer the trader securities from the set N (which are the only
securities that interest the trader at the moment t) to borrow.

Let at the moment t, the values of the share prices equal s1;t D 100 US dollars for
security 1 and s2;t D 50 US dollars for security 2. Further, let the trader believe that
the value of the share price of security 1 will increase at the moment tC 1, whereas
the value of the share price of security 2 will decrease at the moment t C 1 so that
ICt D f1g, I�t D f2g and I0t D ;. Moreover, let the trader be confident that the price
values of the above two securities will change the way she believes they will with
the probabilities pC D 0:6 and p� D 0:7, respectively. Finally, let the trader adhere
to Approach 3 to the understanding of what should be viewed as the set X�t (see
Sect. 5).

The first step in finding the trader’s best investment strategy is to find out how
much of additional cash she can have as a result of borrowing securities from the
broker and selling them short at the moment t. Further, since security 2 is the only
one that the trader should be interested in borrowing from the broker (hoping that
the share price value of this security will decrease in the future), the trader should
determine how many shares of security 2 she should borrow to sell them at the
moment t. It is obvious that since the total cost of the shares of security 2 that the
trader can borrow from the broker at the moment t cannot exceed 5,000,00, and the
share price value of one share of security 2 equals 50.00 US dollars at the moment t,
the maximum number of shares of security 2 that the trader can borrow equals 100.

Let xC1 and x�2 be the numbers of shares of security 1 and security 2, respectively,
that the trader plans to have in her portfolio at the moment t C 1, which means
that the trader plans to buy xC1 shares of security 1 and x�2 shares of security 2 at
the moment t. According to the description of the trader’s actions in forming her
portfolio at the moment t, presented in Sect. 5, the trader should estimate how many
shares and of which securities from the set N she should have at the moment tC1 that
would maximize the value of her portfolio at the moment tC1. It is clear that in this
particular example, one should expect the trader not to buy any shares of security 2.
However, one should bear in mind that, generally, despite the fact that at the moment
t, the trader borrows (from the broker) at least some securities from the set X�t to
receive additional cash, it may happen that the portfolio with the maximum value at
the moment tC 1 may include at least some of the securities that were borrowed at
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the moment t (security 2 in the example under consideration). Thus, for the purpose
of illustrating the trader’s actions in the general case, buying both shares of security
1 and shares of security 2 are considered.

As mentioned in Sect. 5, the trader determines the description of the sets XCt and
X�t at her own discretion, so let the trader describe them with the following system
of linear inequalities (proceeding from her financial abilities at the moment t):

xC1 � 0I
x�2 � 0I

s1;tx
C
1 C s2;tx

�
2 � mt C 5000:

Here, the first two of the above three inequalities reflect the condition of non-
negativity of the transaction volumes, whereas the third one puts the limit on the
volume of securities 1 and 2 that the trader can buy with her own money and with
the money to be received from selling at the moment t shares of security 2 (borrowed
from the broker).

Thus, Mt D fxt 2 R2C W Btxt � dtg, the set of the volumes of securities 1 and 2
that the trader can buy at the moment t, where xt D .xC1;t; x�2;t/ D .xC1 ; x�2 /, is such
that

Bt D
0

@

1 0

0 1

�s1;t �s2;t

1

A D
0

@

1 0

0 1

�100 �50

1

A ; dt D
0

@

0

0

�mt � 5000

1

A D
0

@

0

0

�15000

1

A ;

and the inequality

0

@

1 0

0 1

�100 �50

1

A .xC1 ; x
�
2 / �

0

@

0

0

�15000

1

A

holds (see Sect. 5). To simplify the notation in the description of the illustrative
example to follow, let also

yC1;tC1 D yC1 ; y�2;tC1 D y�2 ; zC1;tC1 D zC1 ; z�2;tC1 D z�2 :

While xt D .xC1 ; x�2 / is the vector of the trader’s strategies in her game with the
stock exchange (see Sect. 5), the strategies of the stock exchange can be represented
by the vector wtC1 D .yC1 ; zC1 ; y�2 ; z�2 / whose components are the (expected) values
of the share prices of securities 1 and 2 at the moment t C 1. Here, yC1 , y�2 are the
(expected) values of the share prices of securities 1 and 2 at the moment t C 1,
respectively, if the trader has correctly predicted directions in which the values of
these two securities will change, and zC1 , z�2 are the (expected) values of the share
prices of securities 1 and 2 at the moment tC 1, respectively, if the trader has failed
to predict these directions correctly.
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Let the trader believe that the maximum and the minimum values of the share
prices of securities 1 and 2 at the moment t C 1 will be smax

1;tC1 D 115, smax
2;tC1 D 65,

smin
1;tC1 D 75, smin

2;tC1 D 35 US dollars, respectively. Further, let the trader put stop
orders on the above maximum and minimum price values of securities 2 and 1 at
the moment tC1 to avoid unexpected financial losses associated with increasing the
value of the share price of security 2 beyond smax

2;tC1 and with decreasing the value of
the share price of security 1 below smin

1;tC1, respectively. Then, 
tC1 D fwtC1 2 R4C W
AtwtC1 � btg, the set of possible strategies of the stock exchange in the game, can
be described by the system of inequalities

s1;t � yC1 � smax
1;tC1;

smin
1;tC1 � zC1 � s1;t;

smin
2;tC1 � y�2 � s2;t;

s2;t � z�2 � smax
2;tC1;

which takes the following vector-matrix form:

At D

0

B
B
B
B
B
B
B
B
B
B
B
@

1 0 0 0

�1 0 0 0

0 1 0 0

0 �1 0 0

0 0 1 0

0 0 �1 0

0 0 0 1

0 0 0 �1

1

C
C
C
C
C
C
C
C
C
C
C
A

; bt D

0

B
B
B
B
B
B
B
B
B
B
B
@

s1;t
�smax

1;tC1
smin
1;tC1
�s1;t
smin
2;tC1
�s2;t
s2;t
�smax

2;tC1

1

C
C
C
C
C
C
C
C
C
C
C
A

D

0

B
B
B
B
B
B
B
B
B
B
B
@

100

�115
75

�100
35

�50
50

�65

1

C
C
C
C
C
C
C
C
C
C
C
A

;

0

B
B
B
B
B
B
B
B
B
B
B
@

1 0 0 0

�1 0 0 0

0 1 0 0

0 �1 0 0

0 0 1 0

0 0 �1 0

0 0 0 1

0 0 0 �1

1

C
C
C
C
C
C
C
C
C
C
C
A

.yC1 ; z
C
1 ; y
�
2 ; z
�
2 / �

0

B
B
B
B
B
B
B
B
B
B
B
@

100

�115
75

�100
35

�50
50

�65

1

C
C
C
C
C
C
C
C
C
C
C
A

:

According to the Theorem (see Sect. 5), the payoff function of the game between
the trader and the stock exchange takes the form hxt;DtwtC1i, where

Dt D
�

pC 1 � pC 0 0

0 0 p� 1 � p�
�

D
�
0:6 0:4 0 0

0 0 0:7 0:3

�

:
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To simplify the notation further, let

h1;t D h1; h2;t D h2; h3;t D h3; h4;t D h4; h5;t D h5; h6;t D h6; h7;t D h7; h8;t D h8;

and let

�1;tC1 D u1; �2;tC1 D u2; �3;tC1 D u3:

As shown in Sect. 5, saddle points in the game under consideration can be found by
solving linear programming problems

100h1 � 115h2 C 75h3 � 100h4 C 35h5 � 50h6 C 50h7 � 65h8 !
! max

.h1;h2;h3;h4;h5;h6;h7;h8IxC
1 ;x

�
2 /

; (4)

h1 � h2 � 0:6xC1 ;

h3 � h4 � 0:4xC1 ;

h5 � h6 � 0:7x�2 ;

h7 � h8 � 0:3x�2 ;

�100xC1 � 50x�2 � �15000;
hi � 0; i D 1; 8;
xC1 � 0; x�2 � 0;

and

15000u3 ! min
.u1;u2;u3IyC

1 ;z
C
1 ;y

�
2 ;z

�
2 /

; (5)

u1 � 100u3 � �0:6yC1 � 0:4zC1 ;

u2 � 50u3 � �0:7y�2 � 0:3z�2 ;

100 � yC1 � 115;
75 � zC1 � 100;
35 � y�2 � 50;
50 � z�2 � 65;

ui � 0; i D 1; 3;

forming a dual pair.
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Solutions to problems (4) and (5) were found with the use of a computer program
implemented on the Maple 7 computing platform, which includes software for
solving linear programming problems. These solutions are

xC1 D 150; x�2 D 0;
h1 D 90; h2 D 0; h3 D 60; h4 D 0; h5 D 0; h6 D 0; h7 D 0; h8 D 0;

for problem (4), and

u1 D 0; u2 D 0; u3 D 0:9;
yC1 D 100; zC1 D 75; y�2 D 35; z�2 D 50;

for problem (5).
Thus, the trader’s optimal strategy consists of (a) borrowing from a broker 100

units of security 2 and selling them at the moment t, and (b) buying 150 units of
security 1 at the moment t. As a result of the deployment of this optimal strategy,
the expectation of the value of the trader’s portfolio at the moment t C 1 equals
13500.

6.2 Illustrative Example 2

Consider now a trader who interacts with a stock exchange by maintaining a
portfolio of financial instruments and who at the moment t (a) is interested in six
particular securities that are traded in the stock exchange, (b) has a portfolio of
financial instruments that consists of only these six securities so that the numbers of
shares of these securities in her portfolio at the moment t equal v1 D 10, v2 D 30,
v3 D 50, v4 D 0, v5 D 4, v6 D 12, respectively, (c) has her own cash at the amount
l of mt D $1000, and (d) has a broker who is ready to provide her with securities
traded in the stock exchange for opening short positions there with the leverage
kt D 2.

Let the share price values of these six securities at the moment t be 50, 90, 10,
22, 49, and $50, respectively, and let the trader believe that the share price values of
securities 1 and 2 will increase at the moment tC 1 (with the probability pC > 0:5),
whereas the share price values of securities 3 and 4 will decrease at the moment
tC 1 (with the probability p� > 0:5). Further, let the trader believe that share price
values of securities 5 and 6 may increase or decrease (with the same probability
p0 D 0:5) so that ICt D f1; 2g, I�t D f3; 4g and I0t D f5; 6g. Moreover, let the
trader be confident that the share price values of securities from the groups ICt D
f1; 2g, I�t D f3; 4g will change the way she believes they will with the probabilities
pC D 0:56, p� D 0:6, respectively. Finally, let Table 4 reflect the trader’s estimates
of the maximum and the minimum share price values of all the six securities at the
moment tC 1.
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Table 4 Parameters for security prices

1 2 3 4 5 6

Current price value 50 90 10 22 49 50

Minimal expected price value of
the security at the moment tC 1

40 75 8 18 42 30

Maximal expected price value of
the security at the moment tC 1

60 120 13 25 53 70

As in Illustrative Example 1, throughout Illustrative Example 2, it is assumed that
(a) the trader adheres to Approach 3 to the understanding of what should be viewed
as the set X�t , and (b) the trader’s goal is to maximize the value of her portfolio at
the moment tC 1.

First, consider case 1 in Situation 2 (see Sect. 5) in which the trader does not plan
to keep at the moment tC 1 particular securities that she possesses at the moment t
in her portfolio. In this case, the trader should estimate the total amount of cash that
she may have by selling all the securities that she possesses at the moment t at their
current price values (that exist on the market at the moment t), which equals

10 � 50C 30 � 90C 50 � 10C 0 � 22C 4 � 49C 12 � 50C 1000 D 5496:

Consider the first subcase of case 1 in which the trader does not plan to borrow
any securities from the broker.

Should the trader use systems of inequalities analogous to those from Illustrative
Example 1 for describing the set of her feasible strategies Mt D fxt 2 R2C W Btxt �
dtg and the set of those for the stock exchange 
tC1 D fwtC1 2 R4C W AtwtC1 � btg,
one can easily be certain that the matrices and the vectors in the description of the
sets Mt and 
tC1 and in that of the payoff function hxt;DtwtC1i are as follows:

Bt D

0

B
B
B
B
B
B
B
B
B
@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

�s1;t �s2;t �s3;t �s4;t �s5;t �s6;t

1

C
C
C
C
C
C
C
C
C
A

D

0

B
B
B
B
B
B
B
B
B
@

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

�50 �90 �10 �22 �49 �50

1

C
C
C
C
C
C
C
C
C
A

;

dt D
 

0; 0; 0; 0; 0; 0;�mt �
X

i2N

vi;tsi;t

!

D .0; 0; 0; 0; 0; 0;�5496/;
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At D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 0 0 0 0 0 0 0 0 0 0 0

�1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 �1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 �1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 �1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 �1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 �1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 �1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 �1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 �1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 �1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 �1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 �1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

bt D .s1;t;�smax
1;tC1; s2;t;�smax

2;tC1; smin
1;tC1;�s1;t; s

min
2;tC1;�s2;t; s

min
3;tC1;�s3;t; s

min
4;tC1;�s4;t;

s3;t;�smax
3;tC1; s4;t;�smax

4;tC1; s5;t;�smax
5;tC1; s6;t;�smax

6;tC1; smin
5;tC1;�s5;t; s

min
6;tC1;�s6;t/ D

.50;�60; 90;�120; 40;�50; 75;�90; 8;�10; 18;�22; 10;�13;
22;�25; 49;�53; 50;�70; 42;�49; 30;�50/;

xt D .xC1 ; xC2 ; x�3 ; x�4 ; x05; x06/;
wtC1 D .yC1 ; yC2 ; zC1 ; zC2 ; y�3 ; y�4 ; z�3 ; z�4 ; y05; y06; z05; z06/;

Dt D

0

B
B
B
B
B
B
B
@

0:56 0 0:44 0 0 0 0 0 0 0 0 0

0 0:56 0 0:44 0 0 0 0 0 0 0 0

0 0 0 0 0:6 0 0:4 0 0 0 0 0

0 0 0 0 0 0:6 0 0:4 0 0 0 0

0 0 0 0 0 0 0 0 0:5 0 0:5 0

0 0 0 0 0 0 0 0 0 0:5 0 0:5

1

C
C
C
C
C
C
C
A

;
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Here, to simplify the notation in the description of Illustrative Example 2, it is
implied that

x1;t D xC1 ; x2;t D xC2 ; x3;t D x�3 ; x4;t D x�4 ; x5;t D x05; x6;t D x06

The first (prime) linear programming problem in the above pair, which is
analogous to problem (4), contains 30 variables and 19 constraints-inequalities
(besides the inequalities reflecting the non-negativity of a part of the prime
variables for which their non-negativity is not reflected in the above-mentioned 19
constraints-inequalities). The second (dual) problem contains 19 variables and 30
constraints-inequalities (besides the inequalities reflecting the non-negativity of a
part of the dual variables for which their non-negativity does not follow from the
corresponding part of the above-mentioned 30 constraints-inequalities).

The first (prime) linear programming problem is formulated as follows:

50h1 � 60h2 C 90h3 � 120h4 C 40h5 � 50h6 C 75h7 � 90h8C
C 8h9 � 10h10 C 18h11 � 22h12 C 10h13 � 13h14 C 22h15 � 25h16C
C 49h17 � 53h18 C 50h19 � 70h20 C 42h21 � 49h22 C 30h23 � 50h24 !
! max

.h1;h2;h3;h4;h5;h6;h7;h8;h9;h10;h11;h12;h13;h14;h15;h16;h17;h18;h19;h20;h21;h22;h23;h24IxC
1 ;x

C
2 ;x

�
3 ;x

�
4 ;x

0
5;x

0
6/

;

h1 � h2 � 0:56xC1 ;

h3 � h4 � 0:56xC2 ;

h5 � h6 � 0:44xC1 ;

h7 � h8 � 0:44xC2 ;

h9 � h10 � 0:6x�3 ;

h11 � h12 � 0:6x�4 ;

h13 � h14 � 0:4x�3 ;

h15 � h16 � 0:4x�4 ;

h17 � h18 � 0:5x05;

h19 � h20 � 0:5x06;

h21 � h22 � 0:5x05;

h23 � h24 � 0:5x06;

hi � 0; i D 1; 24;
xC1 � 0; xC2 � 0; x�3 � 0; x�4 � 0; x05 � 0; x06 � 0;
50xC1 C 90xC2 C 10x�3 C 22x�4 C 49x05 C 50x06 � 5496:
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Here, the last inequality puts the limit on the volumes of securities 1, 2, 3, 4, 5, and 6
that the trader can buy with the money that she may have at the moment t by selling
all the securities from her portfolio that she possesses at the moment t.

The second (dual) linear programming problem is formulated as follows:

5496u7 ! min
.u1;u2;u3;u4;u5;u6;u7IyC

1 ;y
C
2 ;z

C
1 ;z

C
2 ;y

�
3 ;y

�
4 ;z

�
3 ;z

�
4 ;y

0
5;y

0
6;z

0
5;z

0
6/

;

u1 � 50u7 � �0:56yC1 � 0:44zC1 ;

u2 � 90u7 � �0:56yC2 � 0:44zC2 ;

u3 � 10u7 � �0:6y�3 � 0:4z�3
u4 � 22u7 � �0:6y�4 � 0:z�4
u5 � 49u7 � �0:5y05 � 0:5z05

u6 � 50u7 � �0:5y06 � 0:5z06

50 � yC1 � 60;
90 � yC2 � 120;
40 � zC1 � 50;
75 � zC2 � 90;
8 � y�3 � 10;
18 � y�4 � 22;
10 � z�3 � 13;
22 � z�4 � 25;
49 � y05 � 53;
50 � y06 � 70;
42 � z05 � 49;
30 � z06 � 50;
ui � 0; i D 1; 7:

The solution to the first problem is

xC1 D 0; xC2 D 0; x�3 D 0; x�4 D 0; x05 D 112:16; x06 D 0;
h1 D 0; h2 D 0; h3 D 0; h4 D 0; h5 D 0; h6 D 0; h7 D 0; h8 D 0;

h9 D 0; h10 D 0; h11 D 0; h12 D 0; h13 D 0; h14 D 0; h15 D 0; h16 D 0;
h17 D 56:08; h18 D 0; h19 D 0; h20 D 0; h21 D 56:08; h22 D 0; h23 D 0; h24 D 0;
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and the solution to the second problem, which is analogous to problem (5), is

u1 D 0; u2 D 0; u3 D 0; u4 D 0; u5 D 0; u6 D 0; u7 D 0:93;
yC1 D 50; yC2 D 90; zC1 D 40; zC2 D 75:39; y�3 D 8; y�4 D 18; z�3 D 10; z�4 D 22;

y05 D 49; y06 D 50; z05 D 42; z06 D 30:

It seems interesting to compare the composition of the trader’s portfolio at the
moment t with the optimal composition of this portfolio at the moment t C 1

proceeding from the expectations of the share price values of all the securities that
are of interest to the trader at the moment t. As one can see, the optimal portfolio
composition at the moment t C 1 consists of the following numbers of shares of
securities 1–6:

v1 D 0; v2 D 0; v3 D 0; v4 D 0; v5 D 112:16; v6 D 0;
whereas the composition of the trader’s portfolio at the moment t is

v1 D 10; v2 D 30; v3 D 50; v4 D 0; v5 D 4; v6 D 12:
Consider now the second subcase of case 1 in which the trader plans to borrow

securities from the set I�t D f3; 4g from the broker to open short positions and to
sell the borrowed securities at the moment t, along with all the securities that she
possesses in her portfolio at the moment t. The only difference with the first subcase
(of case 1) consists of the amount of cash that the trader may have at the moment t
in addition to the amount 5496.00 US dollars, which the trader may have by selling
securities from her portfolio that she has at the moment t. That is, the amount of
cash that the trader may have as a result of selling securities from the set I�t that she
borrows from the broker equals kt

	

mt CPn
iD1 vi;tsi;t


 D 2 � 5496 D 10992. Thus,
the total amount of cash that trader may have at the moment t equals 3 � 5496 D
16488, and the vector .0; 0; 0; 0; 0; 0;�16488/ is the vector dt in subcase 2 of case 1
in the description of the set Mt D fxt 2 R2C W Btxt � dtg.

The formulation of the prime linear programming problem in subcase 2 of case 1
differs from that in subcase 1 of case 1 only by the last inequality in the system of
its constraints, and this inequality takes the form

50xC1 C 90xC2 C 10x�3 C 22x�4 C 49x05 C 50x06 � 16488:
The solution to this problem is

xC1 D 0; xC2 D 0; x�3 D 0; x�4 D 0; x05 D 336:49; x06 D 0;
h1 D 0; h2 D 0; h3 D 0; h4 D 0; h5 D 0; h6 D 0; h7 D 0; h8 D 0;

h9 D 0; h10 D 0; h11 D 0; h12 D 0; h13 D 0; h14 D 0; h15 D 0; h16 D 0;
h17 D 168:24; h18 D 0; h19 D 0; h20 D 0; h21 D 168:24; h22 D 0; h23 D 0; h24 D 0:
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The value of the prime problem is equal to 15310.28.
The formulation of the dual linear programming problem in subcase 2 of case 1

differs from that of subcase 1 of case 1 only by the coefficient for the variable u7,
which now equals 16488. The solution to the dual problem is

u1 D 0; u2 D 0; u3 D 0; u4 D 0; u5 D 0; u6 D 0; u7 D 0:93;
yC1 D 50; yC2 D 90; zC1 D 40; zC2 D 75:39; y�3 D 8; y�4 D 18; z�3 D 10; z�4 D 22;

y05 D 49; y06 D 50; z05 D 42; z06 D 30:

Consider now case 2 of Situation 2 in which the trader plans to keep at the
moment tC 1 securities that she possesses at the moment t while buying additional
securities 1–6 and using the amount of her own cash that she has at the moment t. As
before, two subcases are possible. That is, the trader does not borrow any securities
from the broker (subcase 1), and the trader borrows securities from the set I�t from
the broker (subcase 2).

The only difference between the subcase 1 of case 2 and subcase 1 of case 1
consists of the presence of a linear function hq;wtC1i in the payoff function of the
game between the trader and the stock exchange, where

q D
�

pCv1; pCv2; .1 � pC/v1; .1 � pC/v2; p�v3; p�v4; .1 � p�/v3; .1 � p�/v4;

1

2
v5;

1

2
v6;

1

2
v5;

1

2
v6

�

D .5:6; 16:8; 4:4; 13:2; 30; 0; 20; 0; 2; 6; 2; 6/:

This difference, however, leads to a slightly different system of constraints in the
first (prime) linear programming problem to be solved to determine saddle points of
the game so that this linear programming problem takes the form

50h1 � 60h2 C 90h3 � 120h4 C 40h5 � 50h6 C 75h7 � 90h8C
C 8h9 � 10h10 C 18h11 � 22h12 C 10h13 � 13h14 C 22h15 � 25h16C
C 49h17 � 53h18 C 50h19 � 70h20 C 42h21 � 49h22 C 30h23 � 50h24 !
! max

.h1;h2;h3;h4;h5;h6;h7;h8;h9;h10;h11;h12;h13;h14;h15;h16;h17;h18;h19;h20;h21;h22;h23;h24IxC
1 ;x

C
2 ;x

�
3 ;x

�
4 ;x

0
5;x

0
6/

;

h1 � h2 � 0:56xC1 C 5:6;
h3 � h4 � 0:56xC2 C 16:8;
h5 � h6 � 0:44xC1 C 4:4;
h7 � h8 � 0:44xC2 C 13:2;
h9 � h10 � 0:6x�3 C 30;
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h11 � h12 � 0:6x�4 ;

h13 � h14 � 0:4x�3 C 20;
h15 � h16 � 0:4x�4 ;

h17 � h18 � 0:5x05 C 2;
h19 � h20 � 0:5x06 C 6;
h21 � h22 � 0:5x05 C 2;
h23 � h24 � 0:5x06 C 6;
hi � 0; i D 1; 24;
xC1 � 0; xC2 � 0; x�3 � 0; x�4 � 0; x05 � 0; x06 � 0;
50xC1 C 90xC2 C 10x�3 C 22x�4 C 49x05 C 50x06 � 1000;

and in the goal function in the second (dual) linear programming problem, which
takes the form (see Sect. 5)

1000u7C5:6yC1 C16:8yC2 C4:4zC1 C13:2zC2 C30y�3 C20z�3 C2y05C6y06C2z05C6z06 !
! min

.u1;u2;u3;u4;u5;u6;u7IyC
1 ;y

C
2 ;z

C
1 ;z

C
2 ;y

�
3 ;y

�
4 ;z

�
3 ;z

�
4 ;y

0
5;y

0
6;z

0
5;z

0
6/

;

u1 � 50u7 � �0:56yC1 � 0:44zC1 ;

u2 � 90u7 � �0:56yC2 � 0:44zC2 ;

u3 � 10u7 � �0:6y�3 � 0:4z�3
u4 � 22u7 � �0:6y�4 � 0:z�4
u5 � 49u7 � �0:5y05 � 0:5z05

u6 � 50u7 � �0:5y06 � 0:5z06

50 � yC1 � 60;
90 � yC2 � 120;
40 � zC1 � 50;
75 � zC2 � 90;
8 � y�3 � 10;
18 � y�4 � 22;
10 � z�3 � 13;
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22 � z�4 � 25;
49 � y05 � 53;
50 � y06 � 70;
42 � z05 � 49;
30 � z06 � 50;
ui � 0; i D 1; 7:

The solution to the first problem is

xC1 D 0; xC2 D 0; x�3 D 0; x�4 D 0; x05 D 20:41; x06 D 0;
h1 D 5:6; h2 D 0; h3 D 16:8; h4 D 0; h5 D 4:4; h6 D 0; h7 D 13:2; h8 D 0;
h9 D 30; h10 D 0; h11 D 0; h12 D 0; h13 D 20; h14 D 0; h15 D 0; h16 D 0;

h17 D 12:2; h18 D 0; h19 D 6; h20 D 0; h21 D 12:2; h22 D 0; h23 D 6; h24 D 0;

and the solution to the second problem, which is analogous to problem (5), is

u1 D 0; u2 D 0; u3 D 0; u4 D 0; u5 D 0; u6 D 0; u7 D 0:93;
yC1 D 50; yC2 D 90; zC1 D 40; zC2 D 75:39; y�3 D 8; y�4 D 18; z�3 D 10; z�4 D 22;

y05 D 49; y06 D 50; z05 D 42; z06 D 30:

Thus, the optimal trader’s strategy consists of buying 20.41 units of security 5
while not buying and not selling other securities from her portfolio at the moment t.
The expected value of the trader’s portfolio as a result of the deployment of this
optimal strategy equals 4988.57.

Finally, consider subcase 2 of case 2 in which the trader (a) plans to borrow
securities from the broker, and (b) plans to keep at the moment t C 1 securities
that she possesses at the moment t while buying additional securities 1–6 and using
the total amount of cash being at her disposal at the moment t. As in case 1, the
only difference between the subcase 1 and subcase 2 consists of the total amount of
cash that the trader can use for buying new securities from the set N, which equals
kt
	

mt CPn
iD1 vi;tsi;t


C 1000 D 2 � 5496C 1000 D 11992.
The formulation of the prime linear programming problem in subcase 2 of case 2

differs from that in subcase 1 only by the last inequality in the system of problem’s
constraints, and this inequality takes the form

50xC1 C 90xC2 C 10x�3 C 22x�4 C 49x05 C 50x06 � 11992:
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The solution to this problem is

xC1 D 0; xC2 D 0; x�3 D 0; x�4 D 0; x05 D 244:73; x06 D 0;
h1 D 5:6; h2 D 0; h3 D 16:8; h4 D 0; h5 D 4:4; h6 D 0; h7 D 13:2; h8 D 0;
h9 D 30; h10 D 0; h11 D 0; h12 D 0; h13 D 20; h14 D 0; h15 D 0; h16 D 0;

h17 D 124:37; h18 D 0; h19 D 0; h20 D 0; h21 D 124:37; h22 D 0; h23 D 6; h24 D 0:

The formulation of the dual linear programming problem in subcase 2 of case 1
differs from that of subcase 1 of case 1 only by the coefficient for the variable u7,
which now equals 11992. The solution to the dual problem is

u1 D 0; u2 D 0; u3 D 0; u4 D 0; u5 D 0; u6 D 0; u7 D 0:93;
yC1 D 50; yC2 D 90; zC1 D 40; zC2 D 75:39; y�3 D 8; y�4 D 18; z�3 D 10; z�4 D 22;

y05 D 49; y06 D 50; z05 D 42; z06 D 30:

In just the same way it was done in case 1, it is interesting to compare the
composition of the trader’s portfolio at the moment t with the optimal composition
of this portfolio at the moment t C 1 proceeding from the expectations of the share
price values of all the securities that are of interest to the trader at the moment t. As
one can see, the optimal portfolio composition at the moment t C 1 consists of the
following numbers of shares of securities 1–6:

v1 D 10; v2 D 30; v3 D 50; v4 D 0; v5 D 248:73; v6 D 12;

whereas the composition of the trader’s portfolio at the moment t is

v1 D 10; v2 D 30; v3 D 50; v4 D 0; v5 D 4; v6 D 12:

Finding solutions to the dual pair of linear programming problems (to solving
which the finding of the optimal trader’s strategy is reducible) was done with the
use of another specially developed computer program, implemented on Maple 7
computing platform. (As mentioned earlier, in Illustrative Examples 1 and 2, the
number of shares to be bought by the trader can be rounded-off to make them
integers.)

7 Concluding Remarks

1. Studying the financial behavior of small and medium price-taking traders in their
interaction with a stock exchange presents both scientific and practical interest.
As a result of these studies, (a) viewpoints of both researchers of stock markets
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and successful stock market players on how the stock exchange functions, and
(b) their explanations of why the market players act as they do become known.
In addition to that, recommendations on (a) how the market players should act to
succeed, and (b) what decision-making models can be viewed as those adequately
describing the interaction of individual market players with the stock exchange
become available.

The authors believe that currently, two competing viewpoints on what models
should be considered adequate prevail in both scientific and mass media publica-
tions.

Fundamental scientific approaches to mathematically modeling the interaction
of a trader and a particular stock exchange, briefly surveyed, for instance,
in [7], underlie the first one. This viewpoint is based on the belief that an
adequate model is the one of the so-called representative agent, who is rational
in adopting decisions on forming and managing her portfolio of securities
and derivative financial instruments and tries to maximize her welfare. This
belief is accompanied by the assumption that this “rational” agent (a) knows
the probability distribution of the values of future prices for every financial
instrument that is of her interest and is traded in the stock exchange (with which
this trader interacts), and (b) makes her decisions based upon this knowledge.
However, the real life does not seem to support either the above assumption or
the above belief underlying this viewpoint. As mentioned earlier, deviations of
the trader’s financial behavior from a rational one [5, 22, 38], as well as the
inability of even financial analysts to make rational investment decisions and
forecast directions in which the values of the share prices of particular securities
(considered as random variables) will change (under any assumptions on the
probability distributions of the values of these share prices), have widely been
reported in scientific publications [3, 32, 41, 44, 50].

The other viewpoint on the decision-making models adequately describing
the interaction of a trader with a stock exchange is “pushed” by particular “lucky
traders” who have managed to make money on adopting non-standard financial
decisions. Some of them, particularly, N.Taleb [53], even deny the effectiveness
of any economic and mathematical theories describing the functioning of the
stock market for forming a trader’s decision on managing her portfolio. Instead of
adhering to such theories in managing the portfolio of a trader, N. Taleb suggests
the trader to focus her attention exceptionally on the crises that happen in a stock
exchange and in the world. He believes that only at the time of these crises can
a trader expect to attain significant financial results. However, as shown in [1],
at least under quite natural assumptions, a price-taking trader who is capable
of recognizing regular events with a probability even slightly exceeding 50 % is
almost guaranteed to receive a positive average gain. It is clear that attaining such
a result may or may not be the case if all the trader’s activities consist of waiting
for “black swan” events to occur .

The authors believe that both viewpoints on the adequacy of the decision-
making models are extreme, and neither reflects the practice of the interaction
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of a trader with a stock exchange. This state of affairs raises the following two
groups of questions:

(a) Can any alternative to the above extreme views on the adequacy of the
decision-making models be proposed? Can mathematical models capable of
facilitating the decision-making process that small and medium price-taking
traders undergo in estimating the expected financial results be proposed?
Can such models work successfully in the absence of knowledge on any
probability distribution of future price values of financial instruments traded
in a particular stock exchange?

(b) Can one propose mathematical models the use of which would allow a
trader (with a confirmed ability to correctly estimate directions of changing
the price values of financial instruments of her interest) to make rational
decisions on the structure of her portfolio at a particular moment t in
principle? Can such models be proposed if the trader can indicate a segment
within which the future values of the price of a particular financial instrument
will change being uniformly distributed? Can one propose such models if the
trader can estimate only the expected areas in which the values of the prices
for the groups of financial instruments forming together the whole set of the
financial instruments of her interest (into which this set is divided by the
trader) may change? Can one develop these models with the use of only the
simplest linear equations and inequalities of a balance type?

The present paper offers positive answers to all the above questions.
However, the authors believe that the proposed mathematical models and
approaches to finding trader’s optimal investment strategies need to be tested
and researched by both economists and other analysts studying financial
aspects of the interaction between a trader and a stock exchange. The
authors consider the tools proposed in this paper mostly as a powerful
instrument allowing interested researchers to study particular aspects of the
stock exchange behavior in the framework of a large-scale decision-support
system. These tools allow one to use the models with millions of variables
and constraints, which distinguishes the authors’ approach to modeling stock
exchanges from those already proposed.

2. As is well known, global optimization problems are difficult to solve,
and there are no uniform approaches allowing one to find global extrema
in problems mathematically formalizing many of theoretical and practical
optimization problems. Thus, detecting classes of problems in which not
only global extrema can be found in principle, but those in which these
extrema can be found with the use of the most powerful computational
techniques, linear programming being one of them, undoubtedly presents
both scientific and applied interest. As shown in the paper, finding a point
of the global maximum of a particular nonlinear function (the minimum
function on a convex polyhedron described by a compatible system of
linear equations and inequalities) on a subset of another convex polyhedron
formed by vectors with all the coordinates being non-negative integers is
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reducible to solving a mixed programming problem. It was also shown that
finding the global maximum of the above function on this another convex
polyhedron (described by another compatible system of linear equations and
inequalities) is reducible to solving linear programming problems forming a
dual pair.

3. While there are numerous schemes for and approaches to forecasting time
series, the need in tools helping a potential or an acting small or medium
price-taking trader reliably estimate the ability to divine future values of
the share prices of securities remains high. Such tools can save a lot of
money to private investors and even prevent personal financial tragedies. It
is clear that (a) a detected ability to divine future values of the share prices
of particular securities by processing results of the trials according to the
Bernoulli scheme, and (b) the ability to divine the actual values of the share
prices of particular securities in dealing with these prices in real life may not
be the same. So the availability of the tool that allows one to compare both
abilities seems critical at least from a practical viewpoint.

4. In two mathematical models proposed in this paper, the authors assumed
that for all the securities being of interest to a trader, the trader either (a)
can indicate a segment within which the values of the prices of a particular
financial instrument will change being uniformly distributed, or (b) can only
estimate the areas in which the expected values of the prices for the whole set
of financial instruments that interest her may change. However, it is possible
that there are two groups of securities that interest the trader, and for one
group, her ability to divine future values of the share prices of particular
securities corresponds to case (a) from point 3 of this section, whereas for
the other group, the ability to divine directions in which the price values
of securities from this group will change corresponds to case (b) from the
same point of this section. If the trader is firm in dividing financial resources
available to her between these two groups (in dealing with securities from
these groups), then both models can be used separately. If this is the case,
the trader’s optimal investment strategies can be determined by solving
corresponding mathematical programming problems considered in Sects. 4
and 5 of this paper. Otherwise, the trader faces a complicated problem of
dividing financial resources available to her at the moment t between the two
groups, which leads to considering models whose structure and features are
completely different from those considered in the present paper.

The authors would like to emphasize that in the models formalizing the
interaction of a trader with the stock exchange in the form of mathematical
programming problems with Boolean variables, presented in Sects. 4 and 5
of the paper, they did not consider some particular risks that the trader
may be interested in taking into consideration in making her decision on
developing or changing her portfolio of securities. Though such risks are
traditionally considered in publications on modeling the behavior of traders
trading securities in a stock exchange, the inclusion of the risks considered,
for instance, in [33], in the models proposed in this paper would lead to
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solving large-scale nonlinear programming problems with integer or mixed
variables (formulated on the basis of these models). Such problems are
difficult to solve even for relatively small problem sizes, and from the
authors’ viewpoint, this inclusion would hardly make corresponding models
and problems an effective tool of studying stock exchanges and traders’
behavior in interacting with them. At the same time, the authors would like
to make it clear that their search for the models that could be considered
an effective tools for studying the stock exchange behavior continues, and
models of the mentioned kind presented in this paper should be viewed as
no more than only the first step towards this direction.

5. Finally, only the modeling of the decision-making process that individual
price-taking traders undergo in the course of their interaction with a stock
exchange was the subject of this paper. However, one should bear in mind
that both small and medium price-taking traders may form coalitions and
act either as one legal entity or as groups in the framework of which the
interests of all the group members within each group are to be observed.
Moreover, such groups are implicitly formed when some (and, possibly,
quite a substantial number of) small price-taking traders exercise the strategy
of following someone’s decisions (for instance, those of large traders or
“lucky” ones) independently of their (groups’) sizes. Studying aspects of
the financial behavior of these groups presents obvious interest in an attempt
to understand the mechanisms of the interacting between individual traders
and a stock exchange. However, such studies require both a particular use of
known and the development of new mathematical tools, and the discussion of
these issues, which invokes that of a set of fundamental modeling problems,
lies beyond the scope of the present paper.
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Indirect Maximum Likelihood Estimation

Daniel Berend and Luba Sapir

Abstract We study maximum likelihood estimators (henceforth MLE) in exper-
iments consisting of two stages, where the first-stage sample is unknown to us,
but the second-stage samples are known and depend on the first-stage sample. The
setup is similar to that in parametric empirical Bayes models, and arises naturally
in numerous applications. However, problems arise when the number of second-
level observations is not the same for all first-stage observations. As far as we
know, this situation has been discussed in very few cases (see Brandel, Empirical
Bayes methods for missing data analysis. Technical Report 2004:11, Department
of Mathematics, Uppsala University, Sweden, 2004 and Carlin and Louis, Bayes
and Empirical Bayes Methods for Data Analysis, 2nd edn. Chapman & Hall, Boca
Raton, 2000) and no analytic expression for the indirect maximum likelihood
estimator was derived there. The novelty of our paper is that it details and
exemplifies this point. Specifically, we study in detail two situations:

1. Both levels correspond to normal distributions; here we are able to find an explicit
formula for the MLE and show that it forms uniformly minimum-variance
unbiased estimator (henceforth UMVUE).

2. Exponential first-level and Poissonian second-level; here the MLE can usually be
expressed only implicitly as a solution of a certain polynomial equation. It seems
that the MLE is usually not a UMVUE.

In both cases we discuss the intuitive meaning of our estimator, its properties, and
show its advantages vis-Ja-vis other natural estimators.
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1 Introduction

In parametric statistics, the probability distribution generating the experimental data
is completely known, except for the values of the parameters. The classical setup in
point estimation problems is loosely defined as follows. Assume that a population
can be represented by a random variable X, whose density is f . � I 
/, where the form
of the density is known, except for the unknown parameter 
 . Let x1; x2; : : : ; xk

be the values of a random sample X1;X2; : : : ;Xk from f . � I 
/. On the basis of
the observations x1; x2; : : : ; xk, it is required to estimate the value of the unknown
parameter 
 , or of some function thereof �.
/.

There are several methods of finding point estimators of a parameter: the Bayes
method, the method of moments, the method of least squares, etc. One of these
methods, and probably the most popular one, is the method of maximal likelihood.
This method, introduced by Fisher in 1912, can be applied in most problems, has a
strong intuitive appeal, and usually yields a reasonable estimator of 
 . Furthermore,
if the sample is large, the method typically yields an excellent estimator of the
parameter. For these reasons, the maximal likelihood method is probably the most
widely used method of estimation in statistics [1, 4, 11, 13, 16, 20, 23, 24].

However, the methods of obtaining point estimators of 
 were developed mostly
for the classical setup, where the value of the parameter 
 of the distribution function
is unknown, but the observations (almost by definition) are. A more complicated
situation occurs when inferences about the unknown parameter should be done
based on noisy observations. In this situation, before estimating the parameter,
various noise-subtraction techniques are employed [3, 5, 12, 21].

This paper is motivated by even more problematic situations. Namely, the obser-
vations x1; x2; : : : ; xk are unknown to us, but we do have some related information.
(One is almost tempted to refer to the xi’s as “unobserved observations”.) Consider
the following, somewhat simplified, example. There is a machine in a certain
factory which produces sensory devices for harsh environments. The quality of
the devices produced by the machine is distributed according to some known
distribution function with unknown (perhaps multi-dimensional) parameter, say
Pi 
 Beta.˛; ˇ/; 1 � i � k; with ˛; ˇ unknown. We need to estimate the
parameter .˛; ˇ/ of the machine as best we can. For example, each device has to
signal in case it encounters radiation exceeding a certain threshold, and it performs
correctly with a probability Pi. If a device can be tested infinitely many times, the
value pi of Pi for this particular device will be exactly known. However, due to the
harsh environment, a device may supply us with only few indications until it wears
out. Thus the exact values of the observations, namely the correctness probabilities
pi; are unknown, and we have to make our inferences based on the observations
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from the Bernoulli distribution representing the correctness of the indications. We
would like to estimate the parameter .˛; ˇ/ of the original machine, based on the
few indications at hand.

Clearly, we may try to estimate each pi based on the small sample available for
the i-th sensor, and then conclude about the parameter .˛; ˇ/ of the machine. To
realize that this approach is non-optimal, consider the situation where, say, device
number 1 supplies us with 20 indications until it is out of use, whereas device
number 2 supplies only 5 of them. The estimate of p1 is more reliable than that
of p2, which should be taken into account when the estimation of the machine’s
parameter takes place. However, the method above fails to give each estimate a
weight, corresponding to its reliability.

In this paper we consider the problem of estimating the unknown parameter of the
distribution of the first level, based on the data of the second level. We note that the
classical setup of the parameter estimation problem is a special instance of our setup,
namely when the second distribution is constant. We propose in the two-levels case
an approach for calculating (precisely or approximately) the maximum likelihood
estimate. Our method may be termed indirect maximum likelihood estimation. In
particular, we provide a detailed discussion of the indirect maximum likelihood
estimate calculation for several specific pairs of distributions.

The same setup is encountered not only in various practical applications, but
also in empirical Bayes inference. Namely, it appears in the empirical Bayes
method for data analysis as a particular step dealing with marginal maximum
likelihood estimation of the parameter (see Sect. 5). Our approach details this issue
for the situation where the number of second-stage (observed) observations is not
necessarily the same for each first-stage (unobserved) observation. As far as we
know, the case of distinct number of second-level observations has been discussed
in very few cases (see [8, 9]). However, no analytic expression for the indirect
maximum likelihood estimator was derived there in this situation.

In this paper, we illustrate our method in two situations. In one of these, MLE
may be obtained in closed-form; in the other, it may be obtained only implicitly as
a solution of a certain equation. In the first case we are able to explain how and
why our formula takes into account the number of observations in the second stage,
related to each observation of the first stage. In the second case, where we are unable
to obtain an analytic formula for the MLE, we show the MLE value is confined to
a certain interval and various iterative approximation methods can be used to find
the value. In both cases, we discuss the properties of our estimator and show its
advantages versus other natural estimators.

There does exist quite a bit of research on estimation in situations where one does
not have direct observations from the distribution whose parameter is the object for
estimation. We refer, for example, to [6, 10, 14, 25]. However, those models, which
usually originate in economics, seem to be very different from our model, and we
shall not dwell on their setup here.

The setup is formally defined in Sect. 2. Section 3 contains the main results
dealing with several specific pairs of first- and second-level distributions. Section 4
provides the proofs. In Sect. 5 we discuss some potential applications of our
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approach. In particular, our approach may improve one of the steps of empirical
Bayes inference. In Sect. 6 we summarize and raise some questions for future
research.

2 Setup of the Problem and Approach for Solution

The mathematical formulation of the problem is as follows:

Problem 1. A random sample X1;X2; : : : ;Xk is taken from a distribution f .xI 
/,
where the parameter 
 2 � is unknown. The corresponding observations
x1; x2; : : : ; xk are unknown. We are given a second distribution g.tI x/ and samples
Ti1;Ti2; : : : ;Tini from g.tI xi/ for 1 � i � k, with corresponding observed values,
which may be organized in the following table:

t D

0

B
B
@

t11 t12 : : : : : : t1n1

t21 t22 : : : t2n2

: : : : : : : : :

tk1 tk2 : : : : : : : : : tknk

1

C
C
A
:

Goal: Find the MLE for 
 or for some function �.
/.

The required estimator O
 is a function of the statistics Tij; 1 � i � k; 1 � j � ni.
The table t of observations may be regarded as the value observed for the multi-
dimensional statistic T D .Tij/1�i�k;1�j�ni . Note that the rows of the tables t and T
are in general of varying lengths. The statistic O
 may be explicitly defined by

O
 D arg max

2�

P.TI 
/: (1)

(Here P.TI 
/ signifies either a probability or a density.) Note that the parameter 

may be multi-dimensional.

Remark 1. In the theoretical level, one may consider various generalizations of the
problem. For example, the values tij may also be unknown, and information regard-
ing their values can be derived only from samples taken from other populations in
which the tij’s serve as parameters. Another generalization is where there are several
distributions gi.tI x/ and the Tij’s in each row of T are distributed gi.tI xi/. We shall
not deal with these extensions here.

The problem of finding the value of 
 maximizing P.T D tI 
/ on the right-hand
side of (1) can be made more transparent by replacing P.T D tI 
/ with an explicit
expression (adapted to the case of continuous variables). Denote:

Ti D .Ti1;Ti2; : : : ;Tini/; 1 � i � k:
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The likelihood function L.
/, for any given observations t D .tij/1�i�k;1�j�ni , is
given by

L.
/D
Z

: : :

Z

„ ƒ‚ …

Dk
X

0

@

n1Y

jD1
g.t1jI x1/ � : : : �

nkY

jD1
g.tkjI xk/

1

A �
kY

iD1
f .xiI 
/dxi

D
kY

iD1

Z

DX

niY

jD1
g.tijI xi/f .xiI 
/dxi;

where DX is the support of the first-level random variables Xi; i D 1; : : : ; k. Thus,
for a given table t, the MLE for 
 is defined by:

O
 D arg max

2�

kY

iD1

Z

DX

f .xiI 
/
niY

jD1
g.tijI xi/dxi:

3 The Main Results

In this section we illustrate our method for dealing with Problem 1 for several pairs
of distributions f .xI 
/ and g.tI x/. In one of these, we are able to give a closed-
form formula for the MLE. However, even in the classical setup, there is usually no
closed-form formula for the MLE. In our, more complicated, setup there seem to be
very few situations where such a formula may be obtained. In most cases, the MLE
is defined implicitly as the solution of a certain equation. Our second instance of
study falls into this category, and we are able to present, under some assumptions, a
procedure for finding an approximate solution.

While one may study any pair of distributions f .xI 
/ and g.tI x/; it is natural to
take the first as a conjugate prior of the second ([9, 11]). The first two cases studied
here deal with such pairs (or special cases thereof).

3.1 MLE of the Mean in the Normal-Normal Case

We start with a case where the MLE is unique and can be explicitly found.

Theorem 1. Consider the setup in Problem 1, where the distribution f .xI�/ is
N.�; �21 / with unknown � and known �21 , and the distribution g.tI x/ is N.x; �22 /
with known �22 . Then the MLE for � is given by the statistic
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M D
kX

iD1
wiTi; (2)

where wi D
1

�21C�22 =ni
Pk

rD1 1

�21C�22 =nr

and Ti D 1

ni

niX

jD1
Tij; 1 � i � k:

Corollary 1. If the number of observations at the second stage is the same for each
observation of the first stage, i.e., ni D n for 1 � i � k, then (2) reduces to

M D 1

kn
�

kX

iD1

nX

jD1
Tij:

Let us explain the intuitive meaning of the theorem. The most natural estimator

for each xi is the sample mean Ti D 1

n

niX

jD1
Tij of the observations related to this

specific xi. At first glance, the natural estimator for � is the mean T D 1

k

kX

iD1
Ti of

these means. The estimator M in the theorem is also an average of the Ti’s, but a
weighted average rather than a simple average. The reason for the weighting is that,
the larger ni is, the more reliable is Ti as an estimator for xi. The weight assigned
to Ti is inversely proportional to the variance of Ti, which is �21 C �22 =ni (see (20)
below), and thus increases with ni. Observe also the relation between our weights
and the variances �21 ; �

2
2 . If �22 is much smaller than �21 , then the tij’s are good

estimates for xi, and our estimator is close to T . As �22 grows relative to �21 , the
effect of the noise in the measurements tij becomes more significant, and M deviates
more from T . If �22 is much larger than �21 , then the wi’s are almost proportional to
the ni’s. Finally, we note also that both M and T are functions of the Ti’s only; this
is natural, as each Ti is a sufficient statistic for the parameter xi of g.tI xi/.

Corollary 1 deals with the case where the samples taken to estimate the xi’s are of
the same size, and thus these estimates are equally reliable. Unsurprisingly, in this
case M coincides with T .

Clearly, the estimator M in the theorem is an unbiased estimator of �. Of course,

there are many other unbiased estimators of �, for example T D 1

k

kX

iD1
Ti; and,

more generally, any weighted average

M� D
kX

iD1
˛iTi;

 
kX

iD1
˛i D 1

!

;

of the Ti’s. However, the following proposition proves that M is the most efficient
among all unbiased estimators.



Indirect Maximum Likelihood Estimation 125

Proposition 1. The estimator M is a uniformly minimum-variance unbiased esti-
mator. Its variance is given by:

V.M/ D 1
Pk

iD1 1

�21C�22 =ni

: (3)

Remark 2. It is amusing to observe what Proposition 1 yields in the special case of

the estimator T D 1

k

kX

iD1
Ti. Since V.T/ D Pk

iD1 1
k2

V.Ti/, and (20) and (21) imply

V.M/ D 1
Pk

iD1 1=V.Ti/
, the inequality V.M/ � V.T/ is equivalent to

k
Pk

iD1 1=V.Ti/
� 1

k

kX

iD1
V.Ti/: (4)

Thus, the variances of M and T are proportional to the harmonious and the
arithmetic means, respectively, of the numbers V.Ti/. Consequently, the inequality
V.M/ � V.T/, with strict inequality unless all the ni’s are equal, follows from the
classical means inequality [7, 15].

As in the classical situation, it seems natural to expect the consistency of the
MLE [20, 23]. In our setup, (3) immediately implies that M is a mean-squared-
error consistent estimator of � as the number of rows in the table t tends to infinity.
(In particular, M is also a weakly consistent estimator.) The following corollary
states it more formally.

Corollary 2. Let .Mk/
1
kD1 be a sequence of estimators of �, where each Mk is as

on the right-hand side of (2), and is based on a table t with k rows. Then .Mk/
1
kD1

forms a (mean-squared-error) consistent sequence of estimators of �.

3.2 MLE in the Exponential-Poissonian Case

In this section we present a case where the MLE can in general be only implicitly
defined as the zero of a certain polynomial. We then test its performance by Monte-
Carlo simulations. The distribution in question is exponential, and we try to estimate
its expectation (Of course, since the expectation is a one-to-one function of the
parameter, it does not matter if we deal with the MLE of the parameter or with
the MLE of the expectation, but later in the section we will also discuss unbiased
estimators, where it does matter.).

Theorem 2. Consider the setup in Problem 1, where the distribution f .xI 
/ is
Exp.
/ with an unknown parameter 
 , and the distribution g.tI x/ is P.x/. Then
the value O� of the MLE of � D 1=
 is the solution of the equation
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kX

iD1

ti C 1=ni

� C 1=ni
D k; (5)

where ti D 1

ni

niX

jD1
tij; 1 � i � k.

Our next result shows that, usually, the MLE exists and is unique.

Proposition 2. If at least one of the tij; 1 � i � k; 1 � j � ni; is non-zero,
then (5) has a unique solution O� in the positive axis. Moreover, the solution O� is
confined to the interval Œc � 1=nmin; c � 1=nmax	, where nmin D min

1�i�k
ni; nmax D

max
1�i�k

ni, and c D 1
k

Pk
iD1 .ti C 1=ni/.

Remark 3. If tij D 0 for 1 � i � k; 1 � j � ni, then (5) has the unique solution
O� D 0; which is not in the allowed range.

Obviously, the length of the interval containing the solution is 1
nmin
� 1

nmax
< 1,

and the value O� can be arbitrarily approximated by various iterative schemes (such
as the bisection method or Newton’s method).

Note that (5) depends on the observations of the table only through the sample
averages of each row, that, as in the normal-normal case of the preceding section,
form sufficient statistics for the unobserved observations xi; 1 � i � k; from the
first stage. Thus, O� depends on the data only through the values of the sufficient
statistics Ti. As in the preceding section, there is a “natural” estimator of the
parameter, also depending only on the sufficient statistics Ti, namely

T D 1

k

kX

iD1
Ti: (6)

In the sequel, we will compare (by simulation) this estimator with the MLE.
The following corollary of Theorem 2 lists a few cases, in which the MLE can

be obtained explicitly.

Corollary 3. If the table of observations in not identically 0, and it consists of

1. a single row, i.e., k D 1, then O� D T1;
2. only two rows, i.e., k D 2, then

O� D
2
�
1
n2

T1 C 1
n1

T2
�

1
n1
C 1

n2
� T1 � T2 C

r
�
1
n1
C 1

n2
� T1 � T2

�2 C 8
�
1
n2

T1 C 1
n1

T2
�
I

3. the same number of observations in all rows, i.e., ni D n; 1 � i � k, then

O� D 1

k

kX

iD1
Ti D 1

kn

kX

iD1

nX

jD1
Tij:
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The last part follows straightforwardly from Proposition 2, and the first is a
special case of the last. The second part follows from a routine calculation, which
we omit here. Note that the intuitive reason in part 3 is basically that, since the Ti’s
are based on samples of the same size, they are equally reliable. Hence the natural
estimator, giving them equal weight, coincides with the MLE. We mention that, by
Proposition 2, if all ni’s tend to1, then the difference between the MLE estimator
and T tends to 0.

The following example illustrates the calculation of the MLE by Theorem 2.

Example 1. Under the setup in Theorem 2 we generated k D 4 “unobserved”
observations x1; x2; x3; x4 from Exp.
true/ with 
true D 1. At the second stage, a
few observations were taken from each P.xi/, producing the table:

t D

0

B
B
@

0 2 1 0 2 0 1 1

1 0 1 0 3 1 2 2 1 0

0 0 3 1

0 0 0 0

1

C
C
A
:

Equation (5), corresponding to this data, reduces to:

4

8� C 1 C
6

10� C 1 C
3

4� C 1 D 2: (7)

Figure 1 depicts the expression on the left-hand side of (7) as a function of � . The
maximum value of the likelihood function (calculated by applying Maple’s fsolve

Fig. 1 Graphical solution of (7)
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Table 1 Errors of the MLE
and of T




Error 0.01 0.1 1 10 100

err.O�; �/ 0.1419 0.1437 0.1471 0.1793 0.3437

err.t; �/ 0.1419 0.1437 0.1473 0.1897 0.4232

method to (7)) is attained at the point 0:762, and thus the MLE value is O� D 0:762.
(Note that the endpoints of the interval in Proposition 2, which contains the solution
O� , are 0:675 and 0:825.) We mention that the value of the estimator T from (6) for
our data is t D 0:744.

It is not easy to compare the MLE with T theoretically, since the closed-form of
the MLE cannot be obtained in general. However, we can compare the estimators
by Monte-Carlo simulations. Table 1 provides such a comparison. We have tried the
parameter values 
 D 0:01; 0:1; 1; 10; 100 (and � D 100; 10; 1; 0:1; 0:01;

respectively). For each 
 we took a random sample X1;X2; : : : ;X50 from Exp.
/,
and for each value xi of Xi � the values ti1; ti2; : : : ; ti;ni of a random sample
from P.xi/; where ni is selected uniformly between 1 and 40. The procedure was
repeated 10000 times (with the same ni values). For each iteration s; 1 � s �
10000; we calculated the MLE and T estimates O�s D 1= O
s and ts, respectively. As a
measure of the error for the estimators, we took the quantities

err. O�; �/ D
v
u
u
t 1

104

104X

sD1

.� � O�s/2

�2
; err.t; �/ D

v
u
u
t 1

104

104X

sD1

.� � ts/2

�2
:

(Compare this measure with those of mean-squared-error and root mean-squared-
error, used in numerous applications; [2, 20, 23, 26]). The final results are presented
in Table 1.

Unsurprisingly, for large 
 both estimators perform quite badly, but the MLE is
consistently better than T . In fact, for such 
 the xi’s are very small, so that most tij’s
tend to vanish, and we get little significant data. (In fact, if all tij’s do vanish, then
neither estimator is defined. We omitted these rare observations from our sample,
which does not affect the comparison between the estimators.) For small 
 , both
estimators are good, and yield almost the same results.

In the normal-normal case, the MLE turned out to be a UMVUE. In our case, this
is still true in one particular situation, as Proposition 3 below shows. However, in
general, we doubt that there is a UMVUE at all. Indeed, consider weighted average
estimators of the form:

T� D
kX

iD1
˛iTi;

 
kX

iD1
˛i D 1

!

: (8)

Obviously, T� is an unbiased estimator. Indeed, one can easily verify that

Tij C 1 
 G

�




 C 1
�

; 1 � i � k; 1 � j � ni; (9)
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and therefore

E.T�/ D
kX

iD1
˛iE.Ti/ D

kX

iD1
˛iE.Ti1/ D

kX

iD1
˛i
1



D �:

We note that T is the special case ˛1 D ˛2 D : : : D ˛k D 1
k of T�.

Proposition 3. 1. If all ni’s are equal, then O� D T is a UMVUE.
2. If not all ni’s are the same, then T� is not a UMVUE (for any choice of ˛i’s).

4 Proofs

Proof of Theorem 1. The likelihood function in our case is

L.�/D
kY

iD1

Z 1

�1

 
niY

iD1

1p
2��2

� e�
.xi�tij/

2

2�22

!

� 1p
2��1

e
� .��xi/

2

2�21 dxi

D
kY

iD1

�
1p
2��2

�ni

� 1p
2��1

�
Z 1

�1
e
� 12

�

.��xi/
2

�21

CPni
jD1

.xi�tij/
2

�22

�

dxi:

(10)

A routine calculation shows that the expression in the exponent may be written in
the form

.� � xi/
2

�21
C

niX

jD1

.xi � tij/2

�22
D .Aixi � Bi/

2 C Ci; (11)

where

Ai D
q

�22 C ni�
2
1

�2�1
;

Bi D
��22 C �21

Pni
jD1 tij

q

�22 C ni�
2
1

� 1

�2�1
;

Ci D ni

�22 C ni�
2
1

�2 � 2
Pni

jD1 tij

�22 C ni�
2
1

� � 1

�22

0

@
�21 .

Pni
jD1 tij/2

�22 C ni�
2
1

�
niX

jD1
t2ij

1

A :

(12)
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Substituting (11) in (10), we obtain

L.�/D
kY

iD1

�
1p
2��2

�ni

� 1p
2��1

�
Z 1

�1
e� 12 .Aixi�Bi/

2� 12Ci dxi

D .2��2/� 12
Pk

iD1 ni.2��1/
� k
2

kY

iD1

p
2�e� 12Ci

Ai

Z 1

�1
1p
2�

e� 12 .yi�Bi/
2

dyi

D e�
1
2

Pk
iD1 Ci � .2��2/� 12

Pk
iD1 ni�

� k
2

1 �
kY

iD1
A�1i :

(13)
Passing to logarithms we find that

ln L.�/D �1
2

kX

iD1
Ci � 1

2

kX

iD1
ni ln .2��2/ � k

2
ln �1 �

kX

iD1
ln Ai: (14)

Note that, on the right-hand side of (14), only the Ci’s depends on the parameter �.
In fact, ln L.�/ is a quadratic function of �:

ln L.�/D �1
2

 
kX

iD1

ni

�22 C ni�
2
1

!

� �2 C
kX

iD1

Pni
jD1 tij

�22 C ni�
2
1

� �C D; (15)

where

D D 1

2�22

kX

iD1

0

@
�21 .

Pni
jD1 tij/2

�22 C ni�
2
1

�
niX

jD1
t2ij

1

A �
kX

iD1

ni

2
ln .2��2/ � k

2
ln �1 �

kX

iD1
ln Ai:

Thus ln L.�/ has a unique maximum, obtained at the point

O� D
kX

iD1

1

�22 =niC�21
Pk

rD1 1

�22 =nrC�21
�
Pni

jD1 tij

ni
: (16)

Hence, the statistic M, which corresponds to (16), is the MLE of �. This completes
the proof.

Proof of Proposition 1. Clearly,

V.M/ D
kX

iD1
w2i V.Ti/; (17)
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where

wi D
1

�21C�22 =ni
Pk

rD1 1

�21C�22 =nr

: (18)

Now:

V.Ti/D 1

n2i
�
0

@

niX

jD1
V.Tij/C 2

niX

1�j<s�ni

Cov.Tij;Tis/

1

A ; 1 � i � k: (19)

Obviously, V.Tij/ D �21 C �22 for 1 � i � k; 1 � j � ni; and Cov.Tij;Tis/ D �21 for
1 � i � k; 1 � j < s � ni. Thus,

V.Ti/D 1

n2i
�
 

ni.�
2
2 C �21 /C 2

 

ni

2

!

�21

!

D �21 C �22 =ni; 1 � i � k: (20)

Substituting (20) and (18) in (17), we see that

V.M/DPk
iD1

 
1

�21C�22 =ni
Pk

rD1
1

�21C�22 =nr

!2

� 	�21 C �22 =ni

 D 1

Pk
rD1

1

�21C�22 =nr

: (21)

To show that M is the UMVUE, one can easily calculate by (15) the Fisher
information on � contained in T D .T1;T2; : : : ;Tk/, which is

IT.�/ D
kX

rD1

1

�21 C �22 =nr
: (22)

Thus the CramKer-Rao lower bound 1
IT.�/

coincides with (21), which completes the
proof.

Proof of Theorem 2. The likelihood function is

L.
/D
kY

iD1

Z 1

0

0

@

niY

jD1

x
tij
i e�xi

tijŠ

1

A � 
e�
xi dxi

D
kY

iD1

Z 1

0

x
Pni

jD1 tij
i e�.niC
/xi � 


Qni
jD1 tijŠ

dxi:

(23)
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Recall that
Z 1

0

x˛�1e��xdx D � .˛/��˛ for ˛; � > 0. Therefore

Z 1

0

x
Pni

jD1 tij
i e�.niC
/xi dxi D

� .1CPni
jD1 tij/

.ni C 
/1C
Pni

jD1 tij
;

which yields

L.
/D
kY

iD1

0

@
� .1CPni

jD1 tij/


.ni C 
/1C
Pni

jD1 tij
Qni

jD1 tijŠ

1

A

D 
 k
kY

iD1

.
Pni

jD1 tij/Š

.ni C 
/1C
Pni

jD1 tij
Qni

jD1 tijŠ
:

(24)

Passing to logarithms and differentiating, we obtain:
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The value of the MLE of 
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d ln L.
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In terms of � , we obtain (5). This completes the proof.

Proof of Proposition 2. Put f .�/ DPk
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��!1 0. Since, f .�/ is a continuous monotonically decreasing function of

� in Œ0;1/; this implies that (5) has a unique solution on the positive axis.
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we obtain
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This completes the proof.

Before proving Proposition 3, we need

Lemma 1.
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Proof of Lemma 1. 1. We have
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Substituting (28) in (26), we find that
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2. We start from (24). A routine calculation yields:
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Since E.Tij/ D � , the Fisher information on � contained in T D .T1;T2; : : : ;Tk/, is
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This completes the proof.

Proof of Proposition 3. We start with the second part. Suppose that T� is the
UMVUE. Hence, its variance is equal to the CramKer-Rao lower bound 1
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If not all ni’s are the same, then ˛i depends in a non-trivial way on the parameter 
 .
This contradicts the assumption that T� is an estimator and completes the proof of
the second part.

If all ni’s are equal, we easily see that (32) indeed holds for ˛i D 1
k 1 � i � k;

and T� D T D O�; and V. O�/ is equal to the CramKer-Rao lower bound 1
IT.�.
//

D nC

kn
2

.
Hence O� is a UMVUE.

This proves the proposition.

5 Potential Applications and Empirical Bayes

Problems fitting naturally the indirect setup arise in various seemingly unrelated
domains, such as e-commerce, survey analysis, data mining, etc. Consider the
following example, taken from the area of reputation systems. The indirect setup
arises here in the context of the beta and Dirichlet reputation systems (see [17, 18]).
Namely, we have a set of objects of the same type (movies, hotels, department stores,
web providers), for which we collect users’ ratings. The basic idea of reputation
systems is to have a mechanism allowing users to submit these ratings and enabling a
computation of an aggregated rating of these objects based on the individual ratings.
In the beta reputation system, suggested by Jøsang and Ismail [17], for example,
each object receives a binary grade (“good”/“bad”) from an unknown number of
people. (The model is slightly more complex, but the simplified model retains the
point we want to elaborate on.) Here, the probability Pi of a random object to
obtain a “good” grade is distributed Beta.˛; ˇ/ for some parameter .˛; ˇ/. Thus,
one may consider the problem of estimating the unknown parameter of the Beta
distribution corresponding to indirect observations pi; 1 � i � k; based on the
rating data of the second level. Note that, from the point of view of the user of
the system, the average reputation score of the population is very important; by
comparing the score of a particular object with that average he decides whether to
use this object or look for another. As this average is a function of the parameter, it
is important to estimate the parameter well. One problem that naive methods fail to
address is that, in practice, some popular objects receive many ratings, while others
receive only few. This difference should be taken into account when estimating
the parameter. A naive approach may try to estimate each unobserved observation
on the basis of the second-stage observations attached to it, and then estimate the
parameter on the basis of these estimates. As we will see, the indirect maximum
likelihood estimator does better in the sense that unobserved observations with many
second-stage observations obtain a larger weight than those with few second-stage
observations.

Recently, Jøsang and Haller [18] suggested a generalization of the beta reputation
system, rating objects by m � 2 discrete levels, known as the Dirichlet reputation
system. This model is based on using Dirichlet’s density function (see [18]) to
combine feedback and derive reputation scores as a function of m parameters
corresponding to the density function. The same kind of problems and a similar
indirect setup appears also in this model.
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Another real-life situation fitting the two-stage setup arises in measurements with
errors. Suppose we have a group of items of some type, and want to know their
mean weight �. Suppose the weight is known to be N.�; 1/-distributed, and we
are allowed to examine k random items from the population. Since our scales are not
completely accurate, we weigh each item in the sample several times, say we weigh
ni times item i. Thus, we obtain a table of the second-stage observations tij; 1 � i �
k; 1 � j � ni, where each row 1 � i � k of the table contains the measurements
tij; 1 � j � ni; of the i-th item with unknown actual weight xi. We need to estimate
� on the basis of the observed measurements.

The two-stage setup appears also in Bayesian analysis of missing data. Unlike
in our situation, the purpose there is to estimate the unobserved observations of the
first stage. This is done with the help of the posterior distribution of the unobserved
observations, given the evidence of the second-stage observations. The posterior
distribution is equal to the likelihood times the prior distribution of the unobserved
observations, divided by the marginal distribution of the second-stage observations
[9]. Thus, to calculate the posterior distribution one should know the value of the
parameter. In the Bayesian approach we assume that this value is known. If the
parameter is unknown (as in our setup) one can use a known hyperprior distribution
of the parameter to compute the posterior distribution or to use the marginal
maximum likelihood estimate (henceforth MMLE) of the parameter, and plug it into
the calculation of the posterior distribution. The last procedure is called Empirical
Bayes, various aspects of which were studied in numerous papers [9, 22, 27].
However, it is often problematic to find the MMLE in closed form, especially
if the number of the second-stage observations is not the same for all first-stage
observations. Our paper details and exemplifies this issue.

6 Conclusions and Future Research

This paper focuses on the parameter estimation problem under indirect information,
formally defined in Problem 1. The setup is motivated by practical contemporary
applications from various domains, such as classification, reputation systems in
e-commerce, survey analysis, etc. We propose a maximum likelihood approach
for estimating the unknown parameter of the distribution of the first level, based
on the known observations of the second level, and illustrate it for two pairs of
distributions. Our approach raises several questions to be explored in theoretical
and applied aspects of the problem, such as:

• Developing our method for real-life applications. For example, suppose one
wants to estimate the parameters of beta binomial or Dirichlet reputation systems,
suggested by Jøsang and Ismail [17] and Jøsang and Haller [18], based on
large-scale databases. Our approach takes into account the reliability of the data
provided by each agent (namely, the number of ratings given by this agent) to the
parameter estimation, which is essential in the context of data sets.
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• An evaluation of the loss of accuracy of the MLE due to our indirect setup,
as compared to the “ideal” MLE corresponding to the classical case. For this
purpose it seems interesting to compare the Fisher information on 
 contained
in T1;T2; : : : ;Tk with that contained in X1;X2; : : : ;Xk. For mixture models, this
was done by Kagan and Li [19], who obtained a universal upper bound for the
loss of the accuracy.
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Lagrangian Duality in Complex Pose Graph
Optimization

Giuseppe C. Calafiore, Luca Carlone, and Frank Dellaert

Abstract Pose Graph Optimization (PGO) is the problem of estimating a set of
poses from pairwise relative measurements. PGO is a nonconvex problem, and
currently no known technique can guarantee the efficient computation of a global
optimal solution. In this paper, we show that Lagrangian duality allows computing
a globally optimal solution, under certain conditions that are satisfied in many
practical cases. Our first contribution is to frame the PGO problem in the complex
domain. This makes analysis easier and allows drawing connections with the recent
literature on unit gain graphs. Exploiting this connection we prove nontrival results
about the spectrum of the matrix underlying the problem. The second contribution
is to formulate and analyze the properties of the Lagrangian dual problem in the
complex domain. The dual problem is a semidefinite program (SDP). Our analysis
shows that the duality gap is connected to the number of eigenvalues of the penalized
pose graph matrix, which arises from the solution of the SDP. We prove that if
this matrix has a single eigenvalue in zero, then (1) the duality gap is zero, (2)
the primal PGO problem has a unique solution, and (3) the primal solution can be
computed by scaling an eigenvector of the penalized pose graph matrix. The third
contribution is algorithmic: we exploit the dual problem and propose an algorithm
that computes a guaranteed optimal solution for PGO when the penalized pose graph
matrix satisfies the Single Zero Eigenvalue Property (SZEP). We also propose a
variant that deals with the case in which the SZEP is not satisfied. This variant,
while possibly suboptimal, provides a very good estimate for PGO in practice. The
fourth contribution is a numerical analysis. Empirical evidence shows that in the
vast majority of cases (100% of the tests under noise regimes of practical robotics
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applications) the penalized pose graph matrix does satisfy the SZEP, hence our
approach allows computing the global optimal solution. Finally, we report simple
counterexamples in which the duality gap is nonzero, and discuss open problems.

Keywords Maximum likelihood estimation • Mobile robots • Motion estima-
tion • Position measurement • Rotation measurement • Simultaneous localization
and mapping • Duality

1 Introduction

Pose graph optimization (PGO) consists in the estimation of the poses (positions
and orientations) of a mobile robot, from relative pose measurements. The problem
can be formulated as the minimization of a nonconvex cost, and can be conveniently
visualized as a graph, in which a (to-be-estimated) pose is attached to each vertex,
and a given relative pose measurement is associated to each edge.

PGO is a key problem in many application endeavours. In robotics, it lies
at the core of state-of-the-art algorithms for localization and mapping in both
single robot [11, 13, 14, 26, 27, 33, 36, 43, 54, 58] and multi robot [1, 42, 46–48]
systems. In computer vision and control, problems that are closely related to PGO
need to be solved for structure from motion [2, 32, 34, 35, 37, 56, 69], attitude
synchronization [38, 57, 74], camera network calibration [75], sensor network
localization [59, 60], and distributed consensus on manifolds [65, 76]. Moreover,
similar formulations arise in molecule structure determination from microscopy
imaging [3, 71].

A motivating example in robotics is the one pictured in Fig. 1a. A mobile
robot is deployed in an unknown environment at time t D 0. The robot traverses
the environment and at each discrete time step acquires a sensor measurement
(e.g., distances from obstacles within the sensing radius). From wheel rotation,
the robot is capable of measuring the relative motion between two consecutive
poses (say, at time i and j). Moreover, comparing the sensor measurement, acquired
at different times, the robot can also extrapolate relative measurements between
non consecutive poses (e.g., between i and k in the figure). PGO uses these
measurements to estimate robot poses. The graph underlying the problem is shown
in Fig. 1b, where we draw in different colors the edges due to relative motion
measurements (the odometric edges, in black) and the edges connecting non-
consecutive poses (the loop closures, in red). The importance of estimating the robot
poses is two-fold. First, the knowledge of the current robot pose is often needed for
performing high-level tasks within the environment. Second, from the knowledge of
all past poses, the robot can register all sensor footprints in a common frame, and
obtain a map of the environment, which is needed for model-based navigation and
path planning.

Related Work in Robotics Since the seminal paper [54], PGO attracted large
attention from the robotics community. Most state-of-the-art techniques currently
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Fig. 1 (a) Pose graph optimization in robotics. A mobile robot is deployed in an unknown
environment at time t D 0. At each time step the robot measures distances from obstacles
within the sensing radius (red circle). The sensor footprint (i.e., the set of measurements) at time
T is visualized in orange. By matching sensor footprints acquired at different time steps, the
robot establishes relative measurements between poses along its trajectory. PGO consists in the
estimation of robot poses from these relative measurements. (b) Directed graph underlying the
problem

rely on iterative nonlinear optimization, which refines a given initial guess. The
Gauss-Newton method is a popular choice [44, 45, 51], as it converges quickly
when the initialization is close to a minimum of the cost function. Trust region
methods (e.g., the Levenberg-Marquart method, or Powell’s Dog-Leg method [52])
have also been applied successfully to PGO [62, 63]; the gradient method has been
shown to have a large convergence basin, while suffering from long convergence
tails [36, 48, 58]. A large body of literature focuses on speeding up computation.
This includes exploiting sparsity [31, 44], using reduction schemes to limit the num-
ber of poses [9, 50], faster linear solvers [22, 33], or approximate solutions [14, 24].

PGO is a nonconvex problem and iterative optimization techniques can only
guarantee local convergence. State-of-the-art iterative solvers fail to converge to
a global minimum of the cost for relatively small noise levels [11, 15]. This fact
recently triggered efforts towards the design of more robust techniques, together
with a theoretical analysis of PGO. Huang et al.[41] discuss the number of local
minima in small PGO problems. Knuth and Barooah [49] investigate the growth of
the error in absence of loop closures. Carlone [10] provides conservative approxima-
tions of the basin of convergence for the Gauss-Newton method. Huang et al. [40]
and Wang et al.[78] discuss the nonlinearities in PGO. In order to improve global
convergence, a successful strategy consists in solving for the rotations first, and then
using the resulting estimate to bootstrap iterative methods for PGO [11, 13–15].
This is convenient because the rotation subproblem1 can be solved globally, with
performance guarantees, in 2D [11], and many heuristic algorithms for rotation
estimation also perform well in 3D [15, 32, 34, 56]. Despite the empirical success

1We use the term “rotation subproblem” to denote the problem of associating a rotation to each
node in the graph, using relative rotation measurements. This corresponds to disregarding the
translation measurements in PGO.
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of state-of-the-art techniques, no approach can guarantee global convergence. It
is not even known if the global optimizer itself is unique in general instances
(while it is known that the minimizer is unique with probability one in the rotation
subproblem [11]). The lack of guarantees promoted a recent interest in verification
techniques for PGO. Carlone and Dellaert [12] use duality to evaluate the quality of
a candidate solution in planar PGO. The work [12] also provides empirical evidence
that in many problem instances the duality gap, i.e., the mismatch between the
optimal cost of the primal and the dual problem, is zero.

Related Work in Other Fields Variations of the PGO problem appear in different
research fields. In computer vision, a somehow more difficult variant of the problem
is known as bundle adjustment [2, 32, 34, 35, 37, 56, 69]. Contrarily to PGO, in
bundle adjustment the relative measurements between the (camera) poses are only
known up to scale. While no closed-form solution is known for bundle adjustment,
many authors focused on the solution of the rotation subproblem [2, 32, 34, 35, 37,
56, 69]. The corresponding algorithms have excellent performance in practice, but
they come with little guarantees, as they are based on relaxation. Fredriksson and
Olsson [32] use duality theory to design a verification technique for quaternion-
based rotation estimation.

Related work in multi robot systems and sensor networks also includes con-
tributions on rotation estimation (also known as attitude synchronization [17, 38,
57, 74, 79]). Borra et al.[6] propose a distributed algorithm for planar rotation
estimation. Tron and Vidal [75] provide convergence results for distributed attitude
consensus using gradient descent; distributed consensus on manifold [65] is related
to estimation from relative measurements, as discussed in [76]. A problem that
is formally equivalent to PGO is discussed in [59, 60] with application to sensor
network localization. Piovan et al.[60] provide observability conditions and discuss
iterative algorithms that reduce the effect of noise. Peters et al.[59] study pose
estimation in graphs with a single loop (related closed-form solutions also appear in
other literatures [25, 69]), and provide an estimation algorithm over general graphs,
based on the limit of a set of continuous-time differential equations, proving its
effectiveness through numerical simulations. We only mention that a large literature
in sensor network localization also deals with other types of relative measure-
ments [55], including relative positions (with known rotations) [4, 64], relative
distances [5, 8, 19–21, 23, 29, 70] and relative bearing measurements [30, 73, 77].

A less trivial connection can be established with related work in molecular
structure determination from cryo-electron microscopy [71, 72], which offers very
lucid and mature treatment of rotation estimation. Singer and Shkolnisky [71, 72]
provide two approaches for rotation estimation, based on relaxation and semidefinite
programming (SDP). Another merit of [71] is to draw connections between planar
rotation estimation and the “MAX-2-LIN MOD L” problem in combinatorial opti-
mization, and “MAX-K-CUT” problem in graph theory. Bandeira et al. [3] provide a
Cheeger-like inequality that establishes performance bounds for the SDP relaxation.
Saunderson et al. [66, 67] propose a tighter SDP relaxation, based on a spectrahedral
representation of the convex hull of the rotation group.
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Contribution This paper shows that the use of Lagrangian duality allows comput-
ing a guaranteed globally optimal solution for PGO in many practical cases, and
proves that in those cases the solution is unique.

Section 2 recalls preliminary concepts, and discusses the properties of a partic-
ular set of 2 � 2 matrices, which are scalar multiples of a planar rotation matrix.
These matrices are omnipresent in planar PGO and acknowledging this fact allows
reformulating the problem over complex variables.

Section 3 frames PGO as a problem in complex variables. This makes analysis
easier and allows drawing connections with the recent literature on unit gain
graphs [61]. Exploiting this connection we prove nontrival results about the
spectrum of the matrix underlying the problem (the pose graph matrix), such as
the number of zero eigenvalues in particular graphs.

Section 4 formulates the Lagrangian dual problem in the complex domain.
Moreover it presents an SDP relaxation of PGO, interpreting the relaxation as the
dual of the dual problem. Our SDP relaxation is related to the one of [32, 71],
but we deal with 2D poses, rather than rotations; moreover, we only use the SDP
relaxation to complement our discussion on duality and to support some of the
proofs. Section 4.3 contains keys results that relate the solution of the dual problem
to the primal PGO problem. We show that the duality gap is connected to the zero
eigenvalues of the penalized pose graph matrix, which arises from the solution of
the dual problem. We prove that if this matrix has a single eigenvalue in zero, then
(1) the duality gap is zero, (2) the primal PGO problem has a unique solution (up
to an arbitrary roto-translation), and (3) the primal solution can be computed by
scaling the eigenvector of the penalized pose graph matrix corresponding to the
zero eigenvalue. To the best of our knowledge, this is the first work to discuss the
uniqueness of the PGO solution for general graphs and to provide a provably optimal
solution.

Section 5 exploits our analysis of the dual problem to devise computational
approaches for PGO. We propose an algorithm that computes a guaranteed optimal
solution for PGO when the penalized pose graph matrix satisfies the Single Zero
Eigenvalue Property (SZEP). We also propose a variant that deals with the case in
which the SZEP is not satisfied. This variant, while possibly suboptimal, is shown
to perform well in practice, outperforming related approaches.

Section 6 elucidates on our theoretical results with numerical tests. In practical
regimes of operation (rotation noise < 0:3 rad and translation noise < 0:5m), our
Monte Carlo runs always produced a penalized pose graph matrix satisfying the
SZEP. Hence, in all tests with reasonable noise our approach enables the computa-
tion of the optimal solution. For larger noise levels (e.g., 1 rad standard deviation
for rotation measurements), we observed cases in which the penalized pose graph
matrix has multiple eigenvalues in zero. To stimulate further investigation towards
structural results on duality (e.g., maximum level of noise for which the duality gap
is provably zero) we report simple examples in which the duality gap is nonzero.
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2 Notation and Preliminary Concepts

Section 2.1 introduces our notation. Section 2.2 recalls standard concepts from
graph theory, and can be safely skipped by the expert reader. Section 2.3, instead,
discusses the properties of the set of 2 � 2 matrices that are multiples of a planar
rotation matrix. We denote this set with the symbol ˛SO.2/. The set ˛SO.2/ is of
interest in this paper since the action of any matrix Z 2 ˛SO.2/ can be conveniently
represented as a multiplication between complex numbers, as discussed in Sect. 3.3.
Table 1 summarizes the main symbols used in this paper.

Table 1 Symbols used in this paper

Graph

G D .V ;E / Directed graph

m Number of edges

n Number of nodes

V Vertex set; jV j D n

E Edge set; jE j D m

e D .i; j/ 2 E Edge between nodes i and j

A 2 R
n�m Incidence matrix of G

A 2 R
.n�1/�m Anchored incidence matrix of G

L D A >A Laplacian matrix of G

L D A>A Anchored Laplacian matrix of G

Real PGO formulation
NA D A ˝ I2 Augmented incidence matrix
NA D A˝ I2 Augmented anchored incidence matrix
NL D L ˝ I2 Augmented Laplacian matrix

W 2 R
4n�4n Real pose graph matrix

W 2 R
.4n�2/�.4n�2/ Real anchored pose graph matrix

p 2 R
2n Node positions

� 2 R
2.n�1/ Anchored node positions

r 2 R
2n Node rotations

Complex PGO formulation
QW 2 C

.2n�1/�.2n�1/ Complex anchored pose graph matrix

Q� 2 C
n�1 Anchored complex node positions

Qr 2 C
n Complex node rotations

Miscellanea

SO.2/ 2D rotation matrices

˛SO.2/ Scalar multiple of a 2D rotation matrix

jV j Cardinality of the set V

In n� n identity matrix

0n (1n) Column vector of zeros (ones) of dimension n

Tr.X/ Trace of the matrix X
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2.1 Notation

The cardinality of a set V is written as jV j. The sets of real and complex numbers
are denoted with R and C, respectively. In denotes the n � n identity matrix, 1n

denotes the (column) vector of all ones of dimension n, 0n�m denotes the n � m
matrix of all zeros (we also use the shorthand 0n

:D 0n�1). For a matrix M 2 C
m�n,

Mij denotes the element of M in row i and column j. The Frobenius norm of a matrix

M 2 C
m�n is denoted as kMkF

:D
q
Pm

iD1
Pn

jD1 jMijj2. For matrices with a block

structure we use ŒM	ij to denote the d � d block of M at the block row i and block
column j. In this paper we only deal with matrices that have 2�2 blocks, i.e., d D 2,
hence the notation ŒM	ij is unambiguous.

2.2 Graph Terminology

A directed graph G is a pair .V ;E /, where the vertices or nodes V are a finite set of
elements, and E � V �V is the set of edges. Each edge is an ordered pair e D .i; j/.
We say that e is incident on nodes i and j, leaves node i, called tail, and is directed
towards node j, called head. The number of nodes is denoted with n

:D jV j, while
the number of edges is m

:D jE j.
A directed graph G .V ;E / is (weakly) connected if the underlying undirected

graph, obtained by disregarding edge orientations in G , contains a path from i to j
for any pairs of nodes i; j 2 V . A directed graph is strongly connected if it contains
a directed path from i to j for any i; j 2 V .

The incidence matrix A of a directed graph is a m � n matrix with elements
in f�1; 0;C1g that exhaustively describes the graph topology. Each row of A
corresponds to an edge and has exactly two non-zero elements. For the row
corresponding to edge e D .i; j/, there is a �1 on the i-th column and a C1 on
the j-th column.

The set of outgoing neighbors of node i is N out
i

:D fj W .i; j/ 2 E g. The set of
incoming neighbors of node i is N in

i
:D fj W .j; i/ 2 E g. The set of neighbors of

node i is the union of outgoing and incoming neighbors Ni
:D N out

i [N in
i .

2.3 The Set ˛SO.2/

The set ˛SO.2/ is defined as

˛SO.2/
:D f˛R W ˛ 2 R; R 2 SO.2/g;

where SO.2/ is the set of 2D rotation matrices. Recall that SO.2/ can be
parametrized by an angle 
 2 .��;C�	, and any matrix R 2 SO.2/ is in the
form:
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R D R.
/ D
�

cos.
/ � sin.
/
sin.
/ cos.
/

�

: (1)

Clearly, SO.2/ � ˛SO.2/. The set ˛SO.2/ is closed under standard matrix
multiplication, i.e., for any Z1;Z2 2 ˛SO.2/, also the product Z1Z2 2 ˛SO.2/. In full
analogy with SO.2/, it is also trivial to show that the multiplication is commutative,
i.e., for any Z1;Z2 2 ˛SO.2/ it holds that Z1Z2 D Z2Z1. Moreover, for Z D ˛R with
R 2 SO.2/ it holds that Z>Z D j˛j2I2. The set ˛SO.2/ is also closed under matrix
addition, since for R1;R2 2 SO.2/, we have that

˛1R1C˛2R2 D ˛1
�

c1 �s1
s1 c1

�

C ˛2
�

c2 �s2
s2 c2

�

D (2)

D
�
˛1c1 C ˛2c2 �.˛1s1 C ˛2s2/
˛1s1 C ˛2s2 ˛1c1 C ˛2c2

�

D
�

a �b
b a

�

D ˛3R3 ;

where we used the shorthands ci and si for cos.
i/ and sin.
i/, and we defined a
:D

˛1c1 C ˛2c2 and b
:D ˛1s1 C ˛2s2. In (2), the scalar ˛3

:D ˙pa2 C b2 (if nonzero)

normalizes
h

a �b
b a

i

, such that R3
:D
h

a=˛3 �b=˛3
b=˛3 a=˛3

i

is a rotation matrix; if ˛3 D 0,

then ˛1R1 C ˛2R2 D 02�2, which also falls in our definition of ˛SO.2/. From this
reasoning, it is clear that an alternative definition of ˛SO.2/ is

˛SO.2/
:D
��

a �b
b a

�

W a; b 2 R

�

: (3)

˛SO.2/ is tightly coupled with the set of complex numbers C. Indeed, a matrix in
the form (3) is also known as a matrix representation of a complex number [39]. We
explore the implications of this fact for PGO in Sect. 3.3.

3 Pose Graph Optimization in the Complex Domain

3.1 Standard PGO

PGO estimates n poses from m relative pose measurements. We focus on the planar
case, in which the i-th pose xi is described by the pair xi

:D .pi;Ri/, where pi2R2 is
a position in the plane, and Ri 2 SO.2/ is a planar rotation. The pose measurement
between two nodes, say i and j, is described by the pair .�ij;Rij/, where �ij 2 R2
and Rij2SO.2/ are the relative position and rotation measurements, respectively.

The problem can be visualized as a directed graph G .V ;E /, where an unknown
pose is attached to each node in the set V , and each edge .i; j/ 2 E corresponds to
a relative pose measurement between nodes i and j (Fig. 2).



Lagrangian Duality in Complex Pose Graph Optimization 147

Fig. 2 Schematic representation of Pose Graph Optimization: the objective is to associate a pose
xi to each node of a directed graph, given relative pose measurements .�ij;Rij/ for each edge .i; j/
in the graph

In a noiseless case, the measurements satisfy:

�ij D R>i
	

pj � pi



; Rij D R>i Rj ; (4)

and we can compute the unknown rotations fR1; : : : ;Rng and positions fp1; : : : ; png
by solving a set of linear equations (relations (4) become linear after rearranging the
rotation Ri to the left-hand side). In absence of noise, the problem admits a unique
solution as long as one fixes the pose of a node (say p1 D 02 and R1 D I2) and the
underling graph is connected.

In this work we focus on connected graphs, as these are the ones of practical
interest in PGO (a graph with k connected components can be split in k subproblems,
which can be solved and analyzed independently).

Assumption 1 (Connected Pose Graph). The graph G underlying the pose graph
optimization problem is (weakly) connected.

In presence of noise, the relations (4) cannot be met exactly and pose graph
optimization looks for a set of positions fp1; : : : ; png and rotations fR1; : : : ;Rng that
minimize the mismatch with respect to the measurements. This mismatch can be
quantified by different cost functions. We adopt the formulation proposed in [12]:

min
fpig;fRig2SO.2/n

X

.i;j/2E
k�ij � R>i .pj � pi/k22 C

1

2
kRij � R>i Rjk2F; (5)

where k � k2 is the standard Euclidean distance and k � kF is the Frobenius norm.
The Frobenius norm kRa � RbkF is a standard measure of distance between two
rotations Ra and Rb, and it is commonly referred to as the chordal distance, see,
e.g., [37]. In (5), we used the short-hand notation fpig (resp. fRig) to denote the set
of unknown positions fp1 : : : ; png (resp. rotations).

Rearranging the terms, problem (5) can be rewritten as:

min
fpig;fRig2SO.2/n

X

.i;j/2E
k.pj � pi/ � Ri�ijk22 C

1

2
kRj � RiRijk2F; (6)
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where we exploited the fact that the 2-norm is invariant to rotation, i.e., for any
vector v and any rotation matrix R it holds kRvk2 D kvk2. Eq. (6) highlights that
the objective is a quadratic function of the unknowns.

The complexity of the problem stems from the fact that the constraint Ri 2 SO.2/
is nonconvex, see, e.g., [66]. To make this more explicit, we follow the line of [12],
and use a more convenient representation for nodes’ rotations. Every planar rotation
Ri can be written as in (1), and is fully defined by the vector

ri D
�

cos.
i/

sin.
i/

�

: (7)

Using this parametrization and with simple matrix manipulation, Eq. (6) becomes
(cf. with Eq. (11) in [12]):

min
fpig;frig

P

.i;j/2E k.pj � pi/ � Dijrik22 C krj � Rijrik22 (8)

s.t.: krik22 D 1; i D 1; : : : ; n

where we defined:

Dij D
"

�x
ij��y

ij

�
y
ij �

x
ij

#

; .with �ij
:D Œ�x

ij �
y
ij	
>/ ; (9)

and where the constraints krik22 D 1 specify that we look for vectors ri that represent
admissible rotations (i.e., such that cos.
i/

2 C sin.
i/
2 D 1).

Problem (8) is a quadratic problem with quadratic equality constraints. The
latter are nonconvex, hence computing a local minimum of (8) is hard in general.
There are two problem instances, however, for which it is easy to compute a
global minimizer, which attains zero optimal cost. These two cases are recalled
in Propositions 1 and 2, while procedures to compute the corresponding optimal
solutions are given in sections “Proof of Proposition 1: Zero Cost in Trees” and
“Proof of Proposition 2: Zero Cost in Balanced Graphs” in Appendix.

Proposition 1 (Zero Cost in Trees). An optimal solution for a PGO problem in
the form (8) whose underlying graph is a tree attains zero cost.

The proof is given in section “Proof of Proposition 1: Zero Cost in Trees”
in Appendix. Roughly speaking, in a tree, we can build an optimal solution by
concatenating the relative pose measurements, and this solution annihilates the cost
function. This comes with no surprises, as the chords (i.e., the extra edges, added
to a spanning tree) are indeed the elements that create redundancy and improve the
pose estimate. However, also for graphs with chords, it is possible to attain the zero
cost in problem (8).
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Definition 1 (Balanced Pose Graph). A pose graph is balanced if the pose
measurements compose to the identity along each cycle in the graph.2;3

In a balanced pose graph, there exists a configuration that explains exactly the
measurements, as formalized in the following proposition.

Proposition 2 (Zero Cost in Balanced Pose Graphs). An optimal solution for a
balanced pose graph optimization problem attains zero cost.

The proof is given in section “Proof of Proposition 2: Zero Cost in Balanced
Graphs” in Appendix. The concept of balanced graph describes a noiseless setup,
while in real instances the measurements do not compose to the identity along
cycles, because of noise. Note that a tree can be considered a special case of a
balanced graph with no cycles.

We note the following fact, which will be useful in Sect. 3.2.

Proposition 3 (Coefficient Matrices in PGO). Matrices Dij; I2;�I2;Rij appearing
in (8) belong to ˛SO.2/.

This fact is trivial, since Rij; I2 2 SO.2/ � ˛SO.2/ (the latter also implies
�I2 2 ˛SO.2/). Moreover, the structure of Dij in (9) clearly falls in the definition of
matrices in ˛SO.2/ given in (3).

3.2 Matrix Formulation and Anchoring

In this section we rewrite the cost function (8) in a more convenient matrix form.
The original cost is:

f .p; r/
:D
X

.i;j/2E
k.pj � pi/ � Dijrik22 C krj � Rijrik22 (10)

where we denote with p 2 R
2n and r 2 R

2n the vectors stacking all nodes positions
and rotations, respectively. Now, let A 2 R

m�n denote the incidence matrix of the
graph underlying the problem: if .i; j/ is the k-th edge, then Aki D �1, Akj D C1.
Let NA D A ˝ I2 2 R

2m�2n, and denote with NAk 2 R
2�2n the k-th block row of NA .

From the structure of NA , it follows that NAkp D pj � pi. Also, we define ND 2 R
2m�2n

as a block matrix where the k-th block row NDk 2 R
2�2n corresponding to the k-th

2We use the somehow standard term “composition” to denote the group operation for SE.2/. For
two poses T1

:D .p1;R1/ and T2
:D .p2;R2/, the composition is T1 � T2 D .p1 C R1p2;R1R2/ [16].

Similarly, the identity element is .02; I2/.
3When composing measurements along the loop, edge direction is important: for two consecutive
edges .i; k/ and .k; j/ along the loop, the composition is Tij D Tik � Tkj, while if the second edge is
in the form .j; k/, the composition becomes Tij D Tik � T�1

jk .
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edge .i; j/ is all zeros, except for a 2 � 2 block �Dij in the i-th block column. Using
the matrices NA and ND, the first sum in (10) can be written as:

X

.i;j/2E
k.pj � pi/ � Dijrik22 D

mX

kD1
k NAkpC NDkrk22 D k NA pC NDrk22 (11)

Similarly, we define NU 2 R
2m�2n as a block matrix where the k-th block row

NUk 2 R
2�2n corresponding to the k-th edge .i; j/ is all zeros, except for 2 � 2 blocks

in the i-th and j-th block columns, which are equal to�Rij and I2, respectively. Using
NU, the second sum in (10) becomes:

X

.i;j/2E
krj � Rijrik22 D

mX

kD1
k NUkrk22 D k NUrk22 (12)

Combining (11) and (12), the cost in (10) becomes:

f .p; r/ D
�
�
�
�

� NA ND
0 NU

� �
p
r

��
�
�
�

2

2

D
�

p
r

�> � NA > NA NA > ND
ND> NA ND> NDC NU> NU

� �
p
r

�

D
�

p
r

�> � NL NA > ND
ND> NA NQ

� �
p
r

�

; (13)

where we defined NQ :D ND> NDC NU> NU and NL :D NA > NA , to simplify notation. Note
that, since NA :D A ˝ I2, it is easy to show that NL D L ˝ I2, where L

:D
A >A is the Laplacian matrix of the graph underlying the problem. A pose graph
optimization instance is thus completely defined by the matrix

W
:D
� NL NA > ND
ND> NA NQ

�

2 R
4n�4n (14)

From (13), W can be easily seen to be symmetric and positive semidefinite. Other
useful properties of W are stated in the next proposition.

Proposition 4 (Properties of W ). Matrix W in (14) is positive semidefinite, and

1. has at least two eigenvalues in zero;
2. is composed by 2 � 2 blocks ŒW 	ij, and each block is a multiple of a rotation

matrix, i.e., ŒW 	ij 2 ˛SO.2/, 8i; j D 1; : : : ; 2n. Moreover, the diagonal blocks of
W are nonnegative multiples of the identity matrix, i.e., ŒW 	ii D ˛iiI2, ˛ii � 0.

A formal proof of Proposition 4 is given in section “Proof of Proposition 4:
Properties of W ” in Appendix. An intuitive explanation of the second claim follows
from the fact that (1) W contains sums and products of the matrices in the original
formulation (8) (which are in ˛SO.2/ according to Lemma 3), and (2) the set ˛SO.2/
is closed under matrix sum and product (Sect. 2.3).
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The presence of two eigenvalues in zero has a very natural geometric interpre-
tation: the cost function encodes inter-nodal measurements, hence it is invariant
to global translations of node positions, i.e., f .p; r/ D f .p C pa; r/, where pa

:D
.1n ˝ I2/a D Œa> : : : a>	> (n copies of a), with a 2 R

2. Algebraically, this
translates to the fact that the matrix .1n ˝ I2/ 2 R

2n�2 is in the null space of the
augmented incidence matrix NA , which also implies a two dimensional null space
for W .

Position Anchoring In this paper we show that the duality properties in pose
graph optimization are tightly coupled with the spectrum of the matrix W . We are
particularly interested in the eigenvalues at zero, and from this perspective it is not
convenient to carry on the two null eigenvalues of W (claim 1 of Proposition 4),
which are always present, and are due to an intrinsic observability issue.

We remove the translation ambiguity by fixing the position of an arbitrary node.
Without loss of generality, we fix the position p1 of the first node to the origin, i.e.,
p1 D 02. This process is commonly called anchoring. Setting p1 D 0 is equivalent
to removing the corresponding columns and rows from W , leading to the following
“anchored” PGO problem:

f .r; �/ D
2

4

02
�

r

3

5

>

W

2

4

02
�

r

3

5 D
�
�

r

�>
W

�
�

r

�

(15)

where � is the vector p without its first two-elements vector p1, and W is obtained
from W by removing the rows and the columns corresponding to p1. The structure
of W is as follows:

W D
� NA> NA NA> ND
ND> NA NQ

�

:D
� NL NS
NS> NQ

�

(16)

where NA D A ˝ I2, and A is the anchored (or reduced) incidence matrix, obtained
by removing the first column from A , see, e.g., [14]. On the right-hand-side of (16)
we defined NS :D NA> ND and NL :D NA> NA.

We call W the real (anchored) pose graph matrix. W is still symmetric and
positive semidefinite (it is a principal submatrix of a positive semidefinite matrix).
Moreover, since W is obtained by removing a 2 � 4n block row and a 4n � 2 block
column from W , it is still composed by 2�2matrices in ˛SO.2/, as specified in the
following remark.

Remark 1 (Properties of W). The positive semidefinite matrix W in (16) is com-
posed by 2�2 blocks ŒW	ij, that are such that ŒW	ij 2 ˛SO.2/, 8i; j D 1; : : : ; 2n�1.
Moreover, the diagonal blocks of W are nonnegative multiples of the identity matrix,
i.e., ŒW	ii D ˛iiI2, ˛ � 0.
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After anchoring, our PGO problem becomes:

f ? D min
�;r

�
�

r

�>
W

�
�

r

�

(17)

s.t.: krik22 D 1; i D 1; : : : ; n

3.3 To Complex Domain

In this section we rewrite problem (17), in which the decision variables are
real vectors, into a problem in complex variables. The main motivation for this
choice is that the real representation (17) is somehow redundant: as we show in
Proposition 7, each eigenvalue of W is repeated twice (multiplicity 2), while the
complex representation does not have this redundancy, making analysis easier. In the
rest of this chapter, quantities marked with a tilde (Q�) live in the complex domain C.

Any real vector v 2 R
2 can be represented by a complex number Qv D �ej' ,

where j2 D �1 is the imaginary unit, � D kvk2 and ' is the angle that v forms with
the horizontal axis. We use the operator .�/_ to map a 2-vector to the corresponding
complex number, Qv D v_. When convenient, we adopt the notation v 
 Qv, meaning
that v and Qv are the vector and the complex representation of the same number.

The action of a real 2 � 2 matrix Z on a vector v 2 R
2 cannot be represented,

in general, as a scalar multiplication between complex numbers. However, if Z 2
˛SO.2/, this is possible. To show this, assume that Z D ˛R.
/, where R.
/ is a
counter-clockwise rotation of angle 
 . Then,

Z v D ˛R.
/v 
 Qz Qv; where Qz D ˛ej
 : (18)

With slight abuse of notation we extend the operator .�/_ to ˛SO.2/, such that, given
Z D ˛R.
/ 2 ˛SO.2/, then Z_ D ˛ej
 2 C. By inspection, one can also verify the
following relations between the sum and product of two matrices Z1;Z2 2 ˛SO.2/
and their complex representations Z_1 ;Z_2 2 C:

.Z1 Z2/_ D QZ_1 Z_2 .Z1 C Z2/_ D Z_1 C Z_2 : (19)

We next discuss how to apply the machinery introduced so far to reformulate
problem (17) in the complex domain. The variables in problem (17) are the vectors
� 2 R

2.n�1/ and r 2 R
2n that are composed by 2-vectors, i.e., � D Œ�>1 ; : : : ; �>n�1	>

and r D Œr>1 ; : : : ; r>n 	>, where �i; ri 2 R
2. Therefore, we define the complex

positions and the complex rotations:

Q� D Œ Q�1; : : : ; Q�n�1	� 2 C
n�1; where: Q�i D �_i

Qr D ŒQr1; : : : ; Qrn	
� 2 C

n; where: Qri D r_i
(20)

Using the complex parametrization (20), the constraints in (17) become:

jQrij2 D 1; i D 1; : : : ; n: (21)
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Similarly, we would like to rewrite the objective as a function of Q� and Qr. This re-
parametrization is formalized in the following proposition, whose proof is given in
section “Proof of Proposition 5: Cost in the Complex Domain” in Appendix.

Proposition 5 (Cost in the Complex Domain). For any pair .�; r/, the cost
function in (17) is such that:

f .�; r/ D
�
�

r

�>
W

�
�

r

�

D
� Q�
Qr
��
QW
� Q�
Qr
�

(22)

where the vectors Q� and Qr are built from � and r as in (20), and the matrix QW 2
C
.2n�1/�.2n�1/ is such that QWij D ŒW	_ij , with i; j D 1; : : : ; 2n � 1.

Remark 2 (Real Diagonal Entries for QW). According to Remark 1, the diagonal
blocks of W are multiples of the identity matrix, i.e., ŒW	ii D ˛iiI2. Therefore, the
diagonal elements of QW are QWii D ŒW	_ii D ˛ii 2 R.

Proposition 5 enables us to rewrite problem (17) as:

f ? D min
Q�;Qr

� Q�
Qr
��
QW
� Q�
Qr
�

(23)

s.t.: jQrij2 D 1; i D 1; : : : ; n:
We call QW the complex (anchored) pose graph matrix. Clearly, the matrix QW
preserves the same block structure of W in (16):

QW :D
�

L QS
QS� QQ

�

(24)

where QS� is the conjugate transpose of QS, and L
:D A>A where A is the anchored

incidence matrix. In Sect. 4 we apply Lagrangian duality to the problem (23). Before
that, we provide results to characterize the spectrum of the matrices W and QW,
drawing connections with the recent literature on unit gain graphs, [61].

3.4 Analysis of the Real and Complex Pose Graph Matrices

In this section we take a closer look at the structure and the properties of the real
and the complex pose graph matrices W and QW. In analogy with (13) and (16), we
write QW as

QW D
�

A>A A> QD
.A> QD/� QU� QU C QD� QD

�

D
�

A QD
0 QU

�� �
A QD
0 QU

�

(25)

where QU 2 C
m�n and QD 2 C

m�n are the “complex versions” of NU and ND in (13), i.e.,
they are obtained as QUij D Œ NU	_ij and QDij D Œ ND	_ij , 8i; j.
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Incidence matrix:

=

⎡
⎢⎢⎢⎣

−1 +1 0 0
0 −1 +1 0
0 0 −1 +1

+1 0 0 −1
0 +1 0 −1

⎤
⎥⎥⎥⎦

(1,2)
(2,3)
(3,4)
(4,1)
(4,2)

Anchored Incidence matrix:

A=

⎡
⎢⎢⎢⎣

+1 0 0
−1 +1 0
0 −1 +1
0 0 −1

+1 0 −1

⎤
⎥⎥⎥⎦

Complex Incidence matrix:

Ũ =

⎡
⎢⎢⎢⎢⎣

−ejq12 +1 0 0
0 −ejq23 +1 0
0 0 −ejq34 +1
+1 0 0 −ejq41
0 +1 0 −ejq42

⎤
⎥⎥⎥⎥⎦

Fig. 3 Example of incidence matrix, anchored incidence matrix, and complex incidence matrix,
for the toy PGO problem on the top left. If Rij D R.
ij/ is the relative rotation measurement
associated to edge .i; j/, then the matrix QU can be seen as the incidence matrix of a unit gain graph
with gain ej
ij associated to each edge .i; j/

The factorization (25) is interesting, as it allows to identify two important
matrices that compose QW: the first is A, the anchored incidence matrix that we
introduced earlier; the second is QU which is a generalization of the incidence matrix,
as specified by Definition 2 and Lemma 1 in the following. Figure 3 reports the
matrices A and QU for a toy example with four poses.

Definition 2 (Unit Gain Graphs). A unit gain graph (see, e.g., [61]) is a graph in
which to each orientation of an edge .i; j/ is assigned a complex number Qzij (with
jQzijj D 1), which is the inverse of the complex number 1

Qzij
assigned to the opposite

orientation .j; i/. Moreover, a complex incidence matrix of a unit gain graph is a
matrix in which each row corresponds to an edge and the row corresponding to
edge e D .i; j/ has �Qzij on the i-th column, C1 on the j-th column, and zero
elsewhere.

Roughly speaking, a unit gain graph describes a problem in which we can
“flip” the orientation of an edge by inverting the corresponding complex weight.
To understand what this property means in our context, recall the definition (12),
and consider the following chain of equalities:

k NUrk22 D
X

.i;j/2E
krj � Rijrik22 D

X

.i;j/2E
kri � R>ij rjk22 (26)
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which, written in the complex domain, becomes:

k QUQrk22D
X

.i;j/2E
jQrj � ej
ij Qrij2D

X

.i;j/2E
jQri � e�j
ij Qrjj2D

X

.i;j/2E
jQri � 1

ej
ij
Qrjj2 (27)

Eq. (27) essentially says that the term k QUQrk22 does not change if we flip the
orientation of an edge and invert the relative rotation measurement. The proof of
the following lemma is straightforward from (27).

Lemma 1 (Properties of QU). Matrix QU is a complex incidence matrix of a unit gain
graph with weights R_ij Dej
ji associated to each edge .i; j/.

Our interest towards unit gain graphs is motivated by the recent results in [61] on
the spectrum of the incidence matrix of those graphs. Using these results, we can
characterize the presence of eigenvalues in zero for the matrix QW, as specified in the
following proposition (proof in section “Proof of Proposition 6: Zero Eigenvalues
in QW” in Appendix).

Proposition 6 (Zero Eigenvalues in QW). The complex anchored pose graph matrix
QW has a single eigenvalue in zero if and only if the pose graph is balanced or is a

tree.

Besides analyzing the spectrum of QW, it is of interest to understand how the
complex matrix QW relates to the real matrix W. The following proposition states
that there is a tight correspondence between the eigenvalues of the real pose graph
matrix W and its complex counterpart QW.

Proposition 7 (Spectrum of Complex Graph Matrices). The 2.2n� 1/ eigenval-
ues of W are the 2n � 1 eigenvalues of QW, repeated twice.

See section “Proof of Proposition 7: Spectrum of Complex and Real Pose Graph
Matrices” in Appendix for a proof.

4 Lagrangian Duality in PGO

In the previous section we wrote the PGO problem in complex variables as per
Eq. (23). In the following, we refer to this problem as the primal PGO problem,
that, defining Qx :D Œ Q�� Qr�	�, can be written in compact form as

f ? D min
Qx
Qx� QW Qx (Primal problem)

s.t.: jQxij2 D 1; i D n; : : : ; 2n � 1;
(28)

In this section we derive the Lagrangian dual of (28), which is given in Sect. 4.1.
Then, in Sect. 4.2, we discuss an SDP relaxation of (28), that can be interpreted as
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the dual of the dual problem. Finally, in Sect. 4.3 we analyze the properties of the
dual problem, and discuss how it relates with the primal PGO problem.

4.1 The Dual Problem

The Lagrangian of the primal problem (28) is

L.Qx; �/ D Qx� QW QxC
nX

iD1
�i.1 � jQxnCi�1j2/

where �i 2 R, i D 1; : : : ; n, are the Lagrange multipliers (or dual variables).
Recalling the structure of QW from (24), the Lagrangian becomes:

L.Qx; �/ D Qx�
�

L QS
QS� QQ.�/

�

QxC
nX

iD1
�i D Qx� QW.�/QxC

nX

iD1
�i;

where for notational convenience we defined

QQ.�/ :D QQ � diag.�1; : : : ; �n/; QW.�/ :D
�

L QS
QS� QQ.�/

�

The dual function d W Rn ! R is the infimum of the Lagrangian with respect to Qx:

d.�/ D inf
Qx

L.Qx; �/ D inf
Qx
Qx� QW.�/QxC

nX

iD1
�i; (29)

For any choice of � the dual function provides a lower bound on the optimal value of
the primal problem [7, Sect. 5.1.3]. Therefore, the Lagrangian dual problem looks
for a maximum of the dual function over �:

d?
:D max

�
d.�/ D max

�
inf
Qx
Qx� QW.�/QxC

nX

iD1
�i; (30)

The infimum over Qx of L.Qx; �/ drifts to �1 unless QW.�/ � 0. Therefore we
can safely restrict the maximization to vectors � that are such that QW.�/ � 0;
these are called dual-feasible. Moreover, at any dual-feasible �, the Qx minimizing
the Lagrangian are those that make Qx� QW.�/Qx D 0. Therefore, (30) reduces to the
following dual problem

d? D max
�

P

i �i; (Dual problem)

s.t.: QW.�/ � 0:
(31)
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The importance of the dual problem is twofold. First, it holds that

d? � f ? (32)

This property is called weak duality, see, e.g., [7, Sect. 5.2.2]. For particular
problems the inequality (32) becomes an equality, and in such cases we say that
strong duality holds. Second, since d.�/ is concave (minimum of affine functions),
the dual problem (31) is always convex in �, regardless the convexity properties of
the primal problem. The dual PGO problem (31) is a semidefinite program (SDP).

For a given �, we denote by X .�/ the set of Qx that attain the optimal value in
problem (29), if any:

X .�/
:D fQx� 2 C

2n�1 W Qx� D arg min
Qx

L.Qx; �/ D arg min
Qx

Qx� QW.�/Qxg

Since we already observed that for any dual-feasible � the points Qx that minimize
the Lagrangian are such that Qx� QW.�/Qx D 0, it follows that:

X .�/ D fQx 2 C
2n�1 W QW.�/QxD0g D Kernel. QW.�//; for � dual-feasible.

(33)
The following result ensures that if a vector in X .�/ is feasible for the primal
problem, then it is also an optimal solution for the PGO problem.

Theorem 1. Given � 2 R
n, if an Qx� 2 X .�/ is primal feasible, then Qx� is primal

optimal; moreover, � is dual optimal, and the duality gap is zero.

A proof of this theorem is given in section “Proof of Theorem 1: Primal-dual
Optimal Pairs” in Appendix.

4.2 SDP Relaxation and the Dual of the Dual

We have seen that a lower bound d? on the optimal value f ? of the primal (28) can
be obtained by solving the Lagrangian dual problem (31). Here, we outline another,
direct, relaxation method to obtain such bound.

Observing that Qx� QW Qx D Tr. QW QxQx�/, we rewrite (28) equivalently as

f ? D min
QX;Qx

Tr QW QX (34)

s.t.: Tr Ei QX D 1; i D n; : : : ; 2n � 1;
QX D QxQx�:

where Ei is a matrix that is zero everywhere, except for the i-th diagonal element,
which is one. The condition QX D QxQx� is equivalent to (1) QX � 0 and (2) QX has rank
one. Thus, (34) is rewritten by eliminating Qx as
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f ? D min
QX

Tr QW QX (35)

s.t.: Tr Ei QX D 1; i D n; : : : ; 2n � 1;
QX � 0
rank. QX/ D 1:

Dropping the rank constraint, which is non-convex, we obtain the following SDP
relaxation (see, e.g., [80]) of the primal problem:

s? D min
QX

Tr QW QX
s.t.: Tr Ei QX D 1; i D n; : : : ; 2n � 1;

QX � 0
(36)

which we can also rewrite as

s? D min
QX

Tr QW QX (SDP relaxation)

s.t.: QXii D 1; i D n; : : : ; 2n � 1;
QX � 0

(37)

where QXii denotes the i-th diagonal entry in QX. Obviously, s? � f ?, since the feasible
set of (37) contains that of (35). One may then ask what is the relation between
the Lagrangian dual and the SDP relaxation of problem (37): the answer is that the
former is the dual of the latter hence, under constraint qualification, it holds that
s? D d?, i.e., the SDP relaxation and the Lagrangian dual approach yield the same
lower bound on f ?. This is formalized in the following proposition.

Proposition 8. The Lagrangian dual of problem (37) is problem (31), and vice-
versa. Strong duality holds between these two problems, i.e., d? D s?. Moreover, if
the optimal solution QX? of (37) has rank one, then s? D f ?, and hence d? D f ?.

Proof. The fact that the SDPs (37) and (31) are related by duality can be found
in standard textbooks (e.g. [7, Example 5.13]); moreover, since these are convex
programs, under constraint qualification, the duality gap is zero, i.e., d? D s?. To
prove that rank. QX?/ D 1) s? D d? D f ?, we observe that (i) Tr QW QX? :D s? � f ?

since (37) is a relaxation of (35). However, when rank. QX?/ D 1, QX? is feasible
for problem (37), hence, by optimality of f ?, it holds (ii) f ? � f . QX?/ D Tr QW QX?.
Combining (i) and (ii) we prove that, when rank. QX?/ D 1, then f ? D s?, which also
implies f ? D d?. ut

To the best of our knowledge this is the first time in which this SDP relaxation
has been proposed to solve PGO; in the context of SLAM, anther SDP relaxation
has been proposed by Liu et al. [53], but it does not use the chordal distance and
approximates the expression of the relative rotation measurements. For the rotation
subproblem, SDP relaxations have been proposed in [32, 67, 72]. According to
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Proposition 8, one advantage of the SDP relaxation approach is that we can a-
posteriori check if the duality (or, in this case, the relaxation) gap is zero, from
the optimal solution QX?. Indeed, if one solves (37) and finds that the optimal QX? has
rank one, then we actually solved (28), hence the relaxation gap is zero. Moreover,
in this case, from spectral decomposition of QX? we can get a vector Qx? such that
QX? D .Qx?/.Qx?/�, and this vector is an optimal solution to the primal problem.

In the following section we derive similar a-posteriori conditions for the dual
problem (31). These conditions enable the computation of a primal optimal solution.
Moreover, they allow discussing the uniqueness of such solution. Furthermore, we
prove that in special cases we can provide a-priori conditions that guarantee that the
duality gap is zero.

4.3 Analysis of the Dual Problem

In this section we provide conditions under which the duality gap is zero. These
conditions depend on the spectrum of QW.�?/, which arises from the solution of (31).
We refer to QW.�?/ as the penalized pose graph matrix. A first proposition establishes
that (31) attains an optimal solution.

Proposition 9. The optimal value d? in (31) is attained at a finite �?. Moreover, the
penalized pose graph matrix QW.�?/ has an eigenvalue in 0.

Proof. Since QW.�/ � 0 implies that the diagonal entries are nonnegative, the
feasible set of (31) is contained in the set f� W QWii � �i � 0; i D 1; : : : ; 2n � 1g
(recall that QWii are reals according to Remark 2). On the other hand, �l D 02n�1 is
feasible and all points in the set f� W �i � 0 yield an objective that is at least as
good as the objective value at �l. Therefore, the problem is equivalent to max

�

P

i �i

subject to the original constraint, plus a box constraint on � 2 f0 � �i � QWii; i D
1; : : : ; ng. Thus we maximize a linear function over a compact set, hence a finite
optimal solution �? must be attained.

Now let us prove that QW.�?/ has an eigenvalue in zero. Assume by contradiction
that QW.�?/ � 0. From the Schur complement rule we know:

QW.�?/ � 0,
�

L � 0
QQ.�?/ � QS�L�1 QS � 0 (38)

The condition L � 0 is always satisfied for a connected graph, since L D A>A,
and the anchored incidence matrix A, obtained by removing a node from the
original incidence matrix, is always full-rank for connected graphs [68, Sect. 19.3].
Therefore, our assumption QW.�?/ � 0 implies that

QQ.�?/ � QS�L�1 QS D QQ � QS�L�1 QS � diag.�?/ � 0 (39)
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Now, let

� D �min. QQ.�?/ � QS�L�1 QS/ > 0:

which is positive by the assumption QW.�?/ � 0. Consider � D �? C �1, then

QQ.�/ � QS�L�1 QS D QQ.�/ � QS�L�1 QS � �I � 0;

thus � is dual feasible, and
P

i �i >
P

i �
?
i , which would contradict optimality of

�?. We thus proved that QQ.�?/ must have a zero eigenvalue. ut
Proposition 10 (No Duality Gap). If the zero eigenvalue of the penalized pose
graph matrix QW.�?/ is simple then the duality gap is zero, i.e., d? D f ?.

Proof. We have already observed in Proposition 8 that (37) is the dual problem
of (31), therefore, we can interpret QX as a Lagrange multiplier for the constraint
QW.�/ � 0. If we consider the optimal solutions QX? and �? of (37) and (31),

respectively, the complementary slackness condition ensures that Tr. QW.�?/ QX?/ D 0
(see [7, Example 5.13]). Let us parametrize QX? � 0 as

QX? D
2n�1X

iD1
�i Qvi Qv�i ;

where 0 � �1 � �2 � � � � � �2n�1 are the eigenvalues of QX, and Qvi form a unitary
set of eigenvectors. Then, the complementary slackness condition becomes

Tr. QW.�?/ QX?/ D Tr

 

QW.�?/
2n�1X

iD1
�i Qvi Qv�i

!

D
2n�1X

iD1
�iTr

	 QW.�?/ Qvi Qv�i



D
2n�1X

iD1
�i Qv�i QW.�?/ Qvi D 0:

Since QW.�?/ � 0, the above quantity is zero at a nonzero QX? ( QX? cannot be zero
since it needs to satisfy the constraints QXii D 1) if and only if �i D 0 for i D
mC 1; : : : ; 2n � 1, and QW.�?/ Qvi D 0 for i D 1; : : : ;m, where m is the multiplicity
of 0 as an eigenvalue of QW.�?/. Hence QX? has the form

QX? D
mX

iD1
�i Qvi Qv�i ; (40)
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where Qvi, i D 1; : : : ;m, form a unitary basis of the null-space of QW.�?/. Now,
if m D 1, then the solution QX? to problem (37) has rank one, but according to
Proposition 8 this implies d? D f ?, proving the claim. ut

In the following we say that QW.�?/ satisfies the single zero eigenvalue property
(SZEP) if its zero eigenvalue is simple. The following corollary provides a more
explicit relation between the solution of the primal and the dual problem when
QW.�?/ satisfies the SZEP.

Corollary 1 (SZEP) Qx? 2 X .�?/). If the zero eigenvalue of QW.�?/ is simple,
then the set X .�?/ contains a primal optimal solution. Moreover, the primal
optimal solution is unique, up to an arbitrary rotation.

Proof. Let Qx? be a primal optimal solution, and let f ? D .Qx?/� QW.Qx?/ be the
corresponding optimal value. From Proposition 10 we know that the SZEP implies
that the duality gap is zero, i.e., d? D f ?, hence

nX

iD1
�?i D .Qx?/� QW.Qx?/: (41)

Since Qx? is a solution of the primal, it must be feasible, hence jQx?i j2 D 1, i D
n; : : : ; 2n � 1. Therefore, the following equalities holds:

nX

iD1
�?i D

nX

iD1
�?i jQx?nCi�1j2 D .Qx?/�

�
0 0

0 diag.�?/

�

.Qx?/ (42)

Plugging (42) back into (41):

.Qx?/�
�

QW �
�
0 0

0 diag.�?/

��

.Qx?/ D 0, .Qx?/� QW.�?/.Qx?/ D 0 (43)

which proves that Qx? belongs to the null space of QW.�?/, which coincides with our
definition of X .�?/ in (33), proving the first claim.

Let us prove the second claim. From the first claim we know that the SZEP
implies that any primal optimal solution is in X .�?/. Moreover, when QW.�?/ has a
single eigenvalue in zero, then X .�?/ D Kernel. QW.�?// is 1-dimensional and can
be written as X .�?/ D f Q� Qx? : Q� 2 Cg, or, using the polar form for Q� :

X .�?/ D f�ej' Qx? W �; ' 2 Rg (44)

From (44) it’s easy to see that any � ¤ 1 would alter the norm of Qx?, leading to a
solution that it’s not primal feasible. On the other hand, any ej' Qx? belongs to X .�?/,
and it’s primal feasible (jej' Qx?i j D jQx?i j), hence by Theorem 1, any ej' Qx? is primal
optimal. We conclude the proof by noting that the multiplication by ej' corresponds
to a global rotation of the pose estimate Qx?: this can be easily understood from the
relation (18). ut
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Proposition 10 provides an a-posteriori condition on the duality gap, that requires
solving the dual problem; while Sect. 6 will show that this condition is very useful
in practice, it is also interesting to devise a-priori conditions, that can be assessed
from the pose graph matrix QW, without solving the dual problem. A first step in this
direction is the following proposition.

Proposition 11 (Strong Duality in Trees and Balanced Pose Graphs). Strong
duality holds for any balanced pose graph optimization problem, and for any pose
graph whose underlying graph is a tree.

Proof. Balanced pose graphs and trees have in common the fact that they attain
f ? D 0 (Propositions 1 and 2). By weak duality we know that d? � 0. However,
� D 0n is feasible (as QW � 0) and attains d.�/ D 0, hence � D 0n is feasible and
dual optimal, proving d? D f ?. ut

5 Algorithms

In this section we exploit the results presented so far to devise an algorithm to solve
PGO. The idea is to solve the dual problem, and use �? and QW.�?/ to compute a
solution for the primal PGO problem. We split the presentation into two sections:
Sect. 5.1 discusses the case in which QW.�?/ satisfies the SZEP, while Sect. 5.2
discusses the case in which QW.�?/ has multiple eigenvalues in zero. This distinction
is important as in the former case (which is the most common in practice) we can
compute a provably optimal solution for PGO, while in the latter case our algorithm
returns an estimate that is not necessarily optimal. Finally, in Sect. 5.3 we summarize
our algorithm and present the corresponding pseudocode.

5.1 Case 1: QW.�?/ Satisfies the SZEP

According to Corollary 1, if QW.�?/ has a single zero eigenvalue, then the optimal
solution of the primal problem Qx? is in X .�?/, where X .�?/ coincides with the
null space of QW.�?/, as per (33). Moreover, this null space is 1-dimensional, hence
it can be written explicitly as:

X .�?/ D Kernel. QW.�?// D fQv 2 C
2n�1 W Qv D � Qx?g; (45)

which means that any vector in the null space is a scalar multiple of the primal
optimal solution Qx?. This observation suggests a computational approach to compute
Qx?. We can first compute an eigenvector Qv corresponding to the single zero
eigenvalue of QW.�?/ (this is a vector in the null space of QW.�?/). Then, since Qx?
must be primal feasible (i.e., jQxnj D : : : D jQx2n�1j D 1), we compute a suitable
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scalar � that makes 1
�
Qv primal feasible. This scalar is clearly � D j Qvnj D : : : D

j Qv2n�1j (we essentially need to normalize the norm of the last n entries of Qv). The
existence of a suitable � , and hence the fact that j Qvnj D : : : D j Qv2n�1j > 0,
is guaranteed by Corollary 1. As a result we get the optimal solution Qx? D 1

�
Qv.

The pseudocode of our approach is given in Algorithm 1, and further discussed in
Sect. 5.3.

5.2 Case 2: QW.�?/ does not Satisfy the SZEP

Currently we are not able to compute a guaranteed optimal solution for PGO, when
QW.�?/ has multiple eigenvalues in zero. Nevertheless, it is interesting to exploit the

solution of the dual problem for finding a (possibly suboptimal) estimate, which can
be used, for instance, as initial guess for an iterative technique.

Eigenvector Method One idea to compute a suboptimal solution from the dual
problem is to follow the same approach of Sect. 5.1: we compute an eigenvector of
QW.�?/, corresponding to one of the zero eigenvalues, and we normalize it to make

it feasible. In this case, we are not guaranteed that j Qvnj D : : : D j Qv2n�1j > 0 (as in
the previous section), hence the normalization has to be done component-wise, for
each of the last n entries of Qv. In the following, we consider an alternative approach,
which we have seen to perform better in practice (see experiments in Sect. 6).

Null Space Method This approach is based on the insight of Theorem 1: if there
is a primal feasible Qx 2 X .�?/, then Qx must be primal optimal. Therefore we look
for a vector Qx 2X .�?/ that is “close” to the feasible set. According to (33), X .�?/

coincides with the null space of QW.�?/. Let us denote with QV 2 C
.2n�1/�q a basis

of the null space of QW.�?/, where q is the number of zero eigenvalues of QW.�?/.4
Any vector Qx in the null space of QW.�?/ can be written as Qx D QV Qz, for some vector
Qz 2 C

q. Therefore we propose to compute a possibly suboptimal estimate Qx D QV Qz?,
where Qz? solves the following optimization problem:

max
Qz

2n�1X

iD1
real. QViQz/C imag. QViQz/ (46)

s.t.: j QViQzj2 � 1; i D n; : : : ; 2n � 1

where QVi denotes the i-th row of QV , and real.�/ and imag.�/ return the real and the
imaginary part of a complex number, respectively. For an intuitive explanation of
problem (46), we notice that the feasible set of the primal problem (28) is described
by jQxij2 D 1, for i D n;: : :; 2n�1. In problem (46) we relax the equality constraints

4 QV can be computed from singular value decomposition of QW.�?/.
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to convex inequality constraints jQxij2 � 1, for i D n; : : : ; 2n�1; these can be written
as j QViQzj2 � 1, recalling that we are searching in the null space of QW.�?/, which is
spanned by QV Qz. Then, the objective function in (46) encourages “large” elements
QViQz, hence pushing the inequality j QViQzj2 � 1 to be tight. While other metrics can
force large entries QViQz, we preferred the linear metric (46) to preserve convexity.

Note that Qx D QV Qz?, in general, is neither optimal nor feasible for our PGO
problem (28), hence we need to normalize it to get a feasible estimate. The
experimental section provides empirical evidence that, despite being heuristic in
nature, this method performs well in practice, outperforming—among the others—
the eigenvector method presented earlier in this section.

5.3 Pseudocode and Implementation Details

The pseudocode of our algorithm is given in Algorithm 1. The first step is to
solve the dual problem, and check the a-posteriori condition of Proposition 10. If
the SZEP is satisfied, then we can compute the optimal solution by scaling the
eigenvector of QW.�?/ corresponding to the zero eigenvalue �1. This is the case
described in Sect. 5.1 and is the most relevant in practice, since the vast majority of
robotics problems falls in this case.

The “else” condition corresponds to the case in which QW.�?/ has multiple
eigenvalue in zero. The pseudocode implements the null space approach of Sect. 5.2.
The algorithm computes a basis for the null space of QW.�?/ and solves (46) to find
a vector belonging to the null space (i.e., in the form Qx D QV Qz) that is close to the
feasible set. Since such vector is not guaranteed to be primal feasible (and it is not
in general), the algorithm normalizes the last n entries of Qx? D QV Qz?, so to satisfy the
unit norm constraints in (28). Besides returning the estimate Qx?, the algorithm also
provides an optimality certificate when QW.�?/ has a single eigenvalue in zero.

Algorithm 1 Solving PGO using Lagrangian duality

Input: complex PGO matrix QW
Output: primal solution Qx? and optimality certificate isOpt

solve the dual problem (31) and get �?

if QW.�?/ has a single eigenvalue �1 at zero then
compute the eigenvector Qv of QW.�?/ corresponding to �1
compute Qx? D 1

�
Qv, where � D jQvjj, for any j 2 fn; : : : ; 2n� 1g

set isOpt D true
else

compute a basis QV for the null space of QW.�?/ using SVD
compute Qz? by solving the convex problem (46)
set Qx? D QVQz? and normalize jQxij to 1, for all i D n; : : : ; 2n� 1
set isOpt D unknown

end if
return .Qx?;isOpt/
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6 Numerical Analysis and Discussion

The objective of this section is four-fold. First, we validate our theoretical derivation,
providing experimental evidence that supports the claims. Second, we show that the
duality gap is zero in a vast amount or practical problems. Third, we confirm the
effectiveness of Algorithm 1 to solve PGO. Fourth, we provide toy examples in
which the duality gap is greater than zero, hoping that this can stimulate further
investigation towards a-priori conditions that ensure zero duality gap.

Simulation Setup For each run we generate a random graph with n D 10

nodes, unless specified otherwise. We draw the position of each pose by a uniform
distribution in a 10m � 10m square. Similarly, ground truth node orientations are
randomly selected in .��;C�	. Then we create set of edges defining a spanning
path of the graph (these are usually called odometric edges); moreover, we add
further edges to the edge set, by connecting random pairs of nodes with probability
Pc D 0:1 (these are usually called loop closures). From the randomly selected
true poses, and for each edge .i; j/ in the edge set, we generate the relative pose
measurement using the following model:

�ij D R>i
	

pj � pi

C ��; �� 
 N.02; �2�/

Rij D R>i Rj R.�R/; �R 
 N.0; �2R/
(47)

where �� 2 R
2 and �R 2 R are zero-mean Normally distributed random variables,

with standard deviation �� and �R, respectively, and R.�R/ is a random planar
rotation of an angle �R. Unless specified otherwise, all statistics are computed over
100 runs.

Spectrum of QW In Proposition 6, we showed that the complex anchored pose graph
matrix QW has at most one eigenvalue in zero, and the zero eigenvalue only appears
when the pose graph is balanced or is a tree.

Figure 4a reports the value of the smallest eigenvalue of QW (in log scale) for
different �R, with fixed �� D 0m. When also �R is zero, the pose graph is balanced,
hence the smallest eigenvalue of QW is (numerically) zero. For increasing levels of
noise, the smallest eigenvalue increases and stays away from zero. Similarly, Fig. 4b
reports the value of the smallest observed eigenvalue of QW (in log scale) for different
��, with fixed �R D 0 rad.

Duality Gap is Zero in Many Cases This section shows that for the levels of
measurement noise of practical interest, the matrix QW.�?/ satisfies the Single Zero
Eigenvalue Property (SZEP), hence the duality gap is zero (Proposition 10). We
consider the same measurement model of Eq. (47), and we analyze the percentage
of tests in which QW.�?/ satisfies the SZEP.

Figure 5a shows the percentage of the experiments in which the penalized pose
graph matrix QW.�?/ has a single zero eigenvalue, for different values of rotation
noise �R, and keeping fixed the translation noise to �� D 0:1m (this is a typical
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Fig. 4 Smallest eigenvalue of QW (in logarithmic scale) for different levels of (a) rotation noise
(std: �R), and (b) translation noise (std: ��). The figure show the minimum observed value over
100 Monte Carlo runs, for non-tree graphs. The minimum eigenvalue is zero only if the graph is
balanced

value in mobile robotics applications). For �R � 0:5 rad, QW.�?/ satisfies the SZEP
in all tests. This means that in this range of operation, Algorithm 1 is guaranteed
to compute a globally-optimal solution for PGO. For �R D 1 rad, the percentage
of successful experiments drops, while still remaining larger than 90%. Note that
�R D 1 rad is a very large rotation noise (in robotics, typically �R � 0:3 rad [11]),
and it is not far from the case in which rotation measurements are uninformative
(uniformly distributed in .��;C�	). To push our evaluation further we also tested
this extreme case. When rotation noise is uniformly distributed in .��;C�	, we
obtained a percentage of successful tests (single zero eigenvalue) of 69%, which
confirms that the number of cases in which we can compute a globally optimal
solution drops gracefully when increasing the noise levels.

Figure 5b shows the percentage of the experiments in which QW.�?/ has a single
zero eigenvalue, for different values of translation noise ��, and keeping fixed the
rotation noise to �R D 0:1 rad. Also in this case, for practical noise regimes, our
approach can compute a global solution in all cases. The percentage of successful
tests drops to 98% when the translation noise has standard deviation 1m. We also
tested the case of uniform noise on translation measurements. When we draw the
measurement noise from a uniform distribution in Œ�5; 5	2 (recall that the poses are
deployed in a 10 � 10 square), the percentage of successful experiments is 68%.

We also tested the percentage of experiments satisfying the SZEP for different
levels of connectivity of the graph, controlled by the parameter Pc. We observed
100% successful experiments, independently on the choice of Pc, for �R D �� D
0:1 and �R D �� D 0:5. A more interesting case if shown in Fig. 5c and corresponds
to the case �R D �� D 1. The SZEP is always satisfied for Pc D 0: this is natural
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(b) R = 0.1, Pc = 0.1, n= 10
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Fig. 5 Percentage of problems in which QW.�?/ satisfied the SZEP property, for different (a)
rotation measurement noise �R, (b) translation measurement noises ��, (c) loop closure probability
Pc, (d) number of nodes n

as Pc D 0 always produces trees, for which we are guaranteed to satisfy the SZEP
(Proposition 11). For Pc D 0:2 the SZEP fails in few runs. Finally, increasing the
connectivity beyond Pc D 0:4 re-establishes 100% of successful tests. This would
suggest that the connectivity level of the graph influences the duality gap, and better
connected graphs have more changes to have zero duality gap.

Finally, we tested the percentage of experiments satisfying the SZEP for
different number of nodes n. We tested the following number of nodes: n D
f10; 20; 30; 40; 50g. For �R D �� D 0:1 and �R D �� D 0:5 the SZEP was satisfied
in 100% of the tests, and we omit the results for brevity. The more challenging case
�R D �� D 1 is shown in Fig. 5d. The percentage of successful tests increases
for larger number of poses. We remark that current SDP solvers do not scale well
to large problems, hence a Monte Carlo analysis over larger problems becomes
prohibitive. We refer the reader to [12] for single-run experiments on larger PGO
problems, which confirm that the duality gap is zero in problems arising in real-
world robotics applications.
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Performance of Algorithm 1 In this section we show that Algorithm 1 provides
an effective solution for PGO. When QW.�?/ satisfies the SZEP, the algorithm is
provably optimal, and it enables to solve problems that are already challenging
for iterative solvers. When the QW.�?/ does not satisfy the SZEP, we show
that the proposed approach, while not providing performance guarantees, largely
outperforms competitors.

Case 1: QW.�?/ satisfies the SZEP. When QW.�?/ satisfies the SZEP, Algorithm 1
is guaranteed to produce a globally optimal solution. However, one may argue that
in the regime of operation in which the SZEP holds, PGO problem instances are
sufficiently “easy” that commonly used iterative techniques also perform well. In
this paragraph we briefly show that the SZEP is satisfied in many instances that
are hard to solve. For this purpose, we focus on the most challenging cases we
discussed so far, i.e., problem instances with large rotation and translation noise.
Then we consider the problems in which the SZEP is satisfied and we compare
the solution of Algorithm 1, which is proven to attain f ?, versus the solution of
a Gauss-Newton method initialized at the true poses. Ground truth poses are an
ideal initial guess (which is unfortunately available only in simulation): intuitively,
the global minimum of the cost should be close to the ground truth poses (this is
one of the motivations for maximum likelihood estimation). Figure 6 shows the
gap between the objective attained by the Gauss-Newton method (denoted as fGN)
and the optimal objective obtained from Algorithm 1. The figure confirms that
our algorithm provides a guaranteed optimal solution in a regime that is already
challenging, and in which iterative approaches may fail to converge even from a
good initialization.
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Fig. 6 Statistics on tests in which the SZEP is satisfied: the figure reports the gap between the
optimal objective f ? attained by Algorithm 1 and the objective fGN attained by a Gauss-Newton
method initialized at the true poses. We simulate different combinations of noise (see x-axis labels),
keeping fixed n D 10 and Pc D 0:1. The label “unif.” denotes uniform noise for rotations (in
.��;C�	) or translations (in Œ�5;C5	)
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Case 2: QW.�?/ does not satisfy the SZEP. In this case, Algorithm 1 computes an
estimate, according to the null space approach proposed in Sect. 5.2; we denote
this approach with the label NS. To evaluate the performance of the proposed
approach, we considered 100 instances in which the SZEP was not satisfied and
we compared our approach against the following methods: a Gauss-Newton method
initialized at the ground truth poses (GN), the eigenvector method described at the
beginning of Sect. 5.2 (Eig), and the SDP relaxation of Sect. 4.2 (SDP). For the
SDP approach, we compute the solution QX? of the relaxed problem (37). If QX? has
rank larger than 1, we find the closest rank-1 matrix QXrank-1 from singular value
decomposition [28]. Then we factorize QXrank-1 as QXrank-1 D QxQx� (Qx can be computed
via Cholesky factorization of QXrank-1 [71]). We report the results of our comparison
in the first row of Fig. 7, where we show for different noise setups (sub-figures a1–
a4), the cost of the estimate produced by the four approaches. The proposed null
space approach (NS) largely outperforms the Eig and the SDP approaches, and has
comparable performance with an “oracle” GN approach which knows the ground
truth poses.

One may also compare the performance of the approaches NS, Eig, SDP after
refining the corresponding estimates with a Gauss-Newton method, which tops off
residual errors. The cost obtained by the different techniques, with the Gauss-
Newton refinement, are shown in the second row of Fig. 7. For this case we
also added one more initialization technique in the comparison: we consider an
approach that solves for rotations first, using the eigenvalue method in [71], and
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Fig. 7 Statistics on tests in which the SZEP is not satisfied: (a1)–(a4) Comparison of different
PGO solvers for different levels of noise. The compared approaches are: a Gauss-Newton method
initialized at the ground truth poses (GN), the proposed null space approach (NS), the eigenvector
method (Eig), the SDP relaxation (SDP). (b1)–(b4) Comparison of the techniques GN, NS, Eig,
SDP, refined with a Gauss-Newton method, and an alternative approach which solves for rotations
first (EigR)
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then applies the Gauss-Newton method from the rotation guess.5 Figure 7b1–b4
show less differences (in average) among the techniques, as in most cases the Gauss-
Newton refinement is able to converge starting from all the compared initializations.
However, for the techniques Eig, SDP, and EigR we see many red sample points,
which denote cases in which the error is larger than the 75th percentile; these are the
cases in which the techniques failed to converge and produced a large cost. On the
other hand, the proposed NS approach is less prone to converge to a bad minimum
(fewer and lower red samples).

Chain Graph Counterexample and Discussion In this section we consider a
simple graph topology: the chain graph. A chain graph is a graph with edges
.1; 2/; .2; 3/; : : : ; .n�1; n/; .n; 1/. Removing the last edge we obtain a tree (or, more
specifically, a path), for which the SZEP is always satisfied. Therefore the question
is: is the SZEP always satisfied in PGO whose underlying graph is a chain? The
answer, unfortunately, is no. Figure 8a provides an example of a very simple chain
graph with five nodes that fails to meet the SZEP property. The figure reports the 4
smallest eigenvalues of QW.�?/ (�1; : : : ; �4), and the first two are numerically zero.
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Fig. 8 (a) Toy example of chain pose graph in which the SZEP fails. In each plot we also report
the four smallest eigenvalues of the penalized pose graph matrix QW.�?/ for the corresponding PGO
problem. Removing a node from the original graph may change the duality properties of the graph.
In (b), (c), (d), (e), (f) we remove nodes 1, 2, 3, 4, 5, respectively. Removing any node, except node
3, leads to a graph that satisfied the SZEP

5This was not included in the first row of Fig. 7 as it does not provide a guess for the positions of
the nodes.
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If the chain graph were balanced, Proposition 11 says that the SZEP needs to
be satisfied. Therefore, one may argue that failure to meet the SZEP depends on
the amount of error accumulated along the loop in the graph. Surprisingly, also this
intuition fails. In Fig. 8b–f we show the pose graphs obtained by removing a single
node from the pose graph in Fig. 8a. When removing a node, say k, we introduce a
relative measurement between nodes k�1 and kC1, that is equal to the composition
of the relative measurements associated to the edges .k � 1; k/ and .k; kC 1/ in the
original graph. By constructions, the resulting graphs have the same accumulated
errors (along each loop) as the original graph. However, interestingly, they do not
necessarily share the same duality properties of the original graph. The graphs
obtained by removing nodes 1; 2; 4; 5 (shown in figures b, c, e, f, respectively), in
fact, satisfy the SZEP. On the other hand, the graph in Fig. 8c still has 2 eigenvalues
in zero. The data to reproduce these toy examples are reported in section “Numerical
Data for the Toy Examples in Sect. 6” in Appendix.

We conclude with a test showing that the SZEP is not only dictated by the
underlying rotation subproblem but also depends heavily on the translation part of
the optimization problem. To show this we consider variations of the PGO problem
in Fig. 8a, in which we “scale” all translation measurements by a constant factor.
When the scale factor is smaller than one we obtain a PGO problem in which nodes
are closer to each other; for scale > 1 we obtain larger inter-nodal measurements;
the scale equal to 1 coincides with the original problem. Figure 9 shows the second
eigenvalue of QW.�?/ for different scaling of the original graphs. Scaling down the
measurements in the graph of Fig. 8a can re-establish the SZEP. Interestingly, this is
in agreement with the convergence analysis of [10], which shows that the basin of
convergence becomes larger when scaling down the inter-nodal distances.

0.01 0.02 0.04 0.06 0.08 0.1 0.2 0.4 0.6 0.8 1 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

scale

2n
d
ei
ge
nv

al
ue

of
W̃

(λ
)

Fig. 9 Second eigenvalue of the matrix QW.�?/ for different variations of the toy graph of Fig. 8a.
Each variation is obtained by scaling the translation measurements of the original graph by the
amount specified on the x-axis of this figure. When the scale of the measurement is � 0:4 the
second eigenvalue of QW.�?/ is larger than zero, hence the SZEP is satisfied
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7 Conclusion

We show that the application of Lagrangian duality in PGO provides an appealing
approach to compute a globally optimal solution. More specifically, we propose
four contributions. First, we rephrase PGO as a problem in complex variables.
This allows drawing connection with the recent literature on unit gain graphs, and
enables results on the spectrum of the pose graph matrix. Second, we formulate
the Lagrangian dual problem and we analyze the relations between the primal and
the dual solutions. Our key result proves that the duality gap is connected to the
number of eigenvalues of the penalized pose graph matrix, which arises from the
solution of the dual problem. In particular, if this matrix has a single eigenvalue
in zero (SZEP), then (1) the duality gap is zero, (2) the primal PGO problem has
a unique solution (up to an arbitrary roto-translation), and (3) the primal solution
can be computed by scaling an eigenvector of the penalized pose graph matrix.
The third contribution is an algorithm that returns a guaranteed optimal solution
when the SZEP is satisfied, and (empirically) provides a very good estimate when
the SZEP fails. Finally, we report numerical results, that show that (1) the SZEP
holds for noise levels of practical robotics applications, (2) the proposed algorithm
outperforms several existing approaches, (3) the satisfaction of the SZEP depends on
multiple factors, including graph connectivity, number of poses, and measurement
noise.

Appendix

Proof of Proposition 1: Zero Cost in Trees

We prove Proposition 1 by inspection, providing a procedure to build an estimate
that annihilates every summand in (8). The procedure is as follows:

1. Select a root node, say the first node .pi; ri/, with i D 1, and set it to the origin,
i.e., pi D 02, ri D Œ1 0	> (compare with (7) for 
i D 0);

2. For each neighbor j of the root i, if j is an outgoing neighbor, set rj D Rijri, and
pj D pi C Dijri, otherwise set rj D R>ji ri, and pj D pi C Djirj;

3. Repeat point 2 for the unknown neighbors of every node that has been computed
so far, and continue until all poses have been computed.

Let us now show that this procedure produces a set of poses that annihilates the
objective in (8). According to the procedure, we set the first node to the origin:
p1 D 02, r1 D Œ1 0	>; then, before moving to the second step of the procedure, we
rearrange the terms in (8): we separate the edges into two sets E D E1 [ NE1, where
E1 is the set of edges incident on node 1 (the root), and NE1 are the remaining edges.
Then the cost can be written as:
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f .p; r/ D
X

.i;j/2E1
kpj � pi � Dijrik22 C krj � Rijrik22 C

C
X

.i;j/2 NE1
kpj � pi � Dijrik22 C krj � Rijrik22 (48)

We can further split the set E1 into edges that have node 1 as a tail (i.e., edges in the
form .1; j/) and edges that have node 1 as head (i.e., .j; 1/):

f .p; r/ D
X

.1;j/;j2N out
1

kpj � p1 � D1jr1k22 C krj � R1jr1k22 C

C
X

.j;1/;j2N in
1

kp1 � pj � Dj1rjk22 C kr1 � Rj1rjk22 C

C
X

.i;j/2 NE1
kpj � pi � Dijrik22 C krj � Rijrik22 (49)

Now, we set each node j in the first two summands as prescribed in step 2 of the
procedure. By inspection one can verify that this choice annihilates the first two
summands and the cost becomes:

f .p; r/ D
X

.i;j/2 NE1
kpj � pi � Dijrik22 C krj � Rijrik22 (50)

Now we select a node k that has been computed at the previous step, but has some
neighbor that is still unknown. As done previously, we split the set NE1 into two
disjoint subsets: NE1 D Ek [ NEk, where the set Ek contains the edges in NE1 that are
incident on k, and NEk contains the remaining edges:

f .p; r/ D
X

f.k;j/;j2N out
k g\ NE1

kpj � pk � Dkjrkk22 C krj � Rkjrkk22 C

C
X

f.j;k/;j2N in
k g\ NE1

kpk � pj � Djkrjk22 C krk � Rjkrjk22 C

C
X

.i;j/2 NEk

kpj � pi � Dijrik22 C krj � Rijrik22 (51)

Again, setting neighbors j as prescribed in step 2 of the procedure, annihilates the
first two summands in (51). Repeating the same reasoning for all nodes that have
been computed, but still have unknown neighbors, we can easily show that all terms
in (51) become zero (the assumption of graph connectivity ensures that we can reach
all nodes), proving the claim.



174 G.C. Calafiore et al.

Proof of Proposition 2: Zero Cost in Balanced Graphs

Similarly to section “Proof of Proposition 1: Zero Cost in Trees” in this Appendix,
we prove Proposition 2 by showing that in balanced graphs one can always build a
solution that attains zero cost.

For the assumption of connectivity, we can find a spanning tree T of the graph,
and split the terms in the cost function accordingly:

f .p; r/ D
X

.i;j/2T
kpj � pi � Dijrik22 C krj � Rijrik22 C

C
X

.i;j/2 NT
kpj � pi � Dijrik22 C krj � Rijrik22 (52)

where NT :D E nT are the chords of the graph w.r.t. T .
Then, using the procedure in section “Proof of Proposition 1: Zero Cost in

Trees” in this Appendix we construct a solution fr?i ; p?i g that attains zero cost for
the measurements in the spanning tree T . Therefore, our claim only requires to
demonstrate that the solution built from the spanning tree also annihilates the terms
in NT :

f .p?; r?/ D
X

.i;j/2 NT
kp?j � p?i � Dijr

?
i k22 C kr?j � Rijr

?
i k22 (53)

To prove the claim, we consider one of the chords in NT and we show that the
cost at fr?i ; p?i g is zero. The cost associated to a chord .i; j/ 2 NT is:

kp?j � p?i � Dijr
?
i k22 C kr?j � Rijr

?
i k22 (54)

Now consider the unique path Pij in the spanning tree T that connects i to j, and
number the nodes along this path as i; iC 1; : : : ; j � 1; j.

Let us start by analyzing the second summand in (54), which corresponds
to the rotation measurements. According to the procedure in section “Proof of
Proposition 1: Zero Cost in Trees” in this Appendix to build the solution for T ,
we propagate the estimate from the root of the tree. Then it is easy to see that:

r?j D Rj�1j � � �RiC1iC2RiiC1r?i (55)

where RiiC1 is the rotation associated to the edge .i; iC1/, or its transpose if the edge
is in the form .i C 1; i/ (i.e., it is traversed backwards along Pij). Now we notice
that the assumption of balanced graph implies that the measurements compose to
the identity along every cycle in the graph. Since the chord .i; j/ and the path Pij

form a cycle in the graph, it holds:

Rj�1j � � �RiC1iC2RiiC1 D Rij (56)



Lagrangian Duality in Complex Pose Graph Optimization 175

Substituting (56) back into (55) we get:

r?j D Rijr
?
i (57)

which can be easily seen to annihilate the second summand in (54).
Now we only need to demonstrate that also the first summand in (54) is zero. The

procedure in section “Proof of Proposition 1: Zero Cost in Trees” in this Appendix
leads to the following estimate for the position of node j:

p?j D p?i C DiiC1r?i C DiC1iC2r?iC1 C � � � C Dj�1jr
?
j�1 (58)

D p?i C DiiC1r?i C DiC1iC2RiiC1r?i C � � � C Dj�1jRj�2j�1 � � �RiC1iC2RiiC1r?i
D p?i C

	

DiiC1 C DiC1iC2RiiC1 C � � � C Dj�1jRj�2j�1 � � �RiC1iC2RiiC1



r?i

The assumption of balanced graph implies that position measurements compose to
zero along every cycle, hence:

�ij D �iiC1 C RiiC1�iC1iC2 C RiC1iC2RiiC1�iC2iC3 C � � �
CRj�2j�1 � � �RiC1iC2RiiC1�j�1j (59)

or equivalently:

Dij D DiiC1 C DiC1iC2RiiC1 C � � �
CDj�1jRj�2j�1 � � �RiC1iC2RiiC1 (60)

Substituting (60) back into (58) we obtain:

p?j D p?i C Dijr
?
i

which annihilates the first summand in (54), concluding the proof.

Proof of Proposition 4: Properties of W

Let us prove that W has (at least) two eigenvalues in zero. We already observed that
the top-left block of W is NL D L ˝ I2, where L is the Laplacian matrix of the
graph underlying the PGO problem. The Laplacian L of a connected graph has a
single eigenvalue in zero, and the corresponding eigenvector is 1n (see, e.g., [18,
Sects. 1.2–1.3]), i.e., L � 1n D 0. Using this property, it is easy to show that the
matrix N

:D Œ0>n 1>n 	> ˝ I2 is in the nullspace of W , i.e., W N D 0. Since N has
rank 2, this implies that the nullspace of W has at least dimension 2, which proves
the first claim.
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Let us now prove that the matrix W is composed by 2 � 2 blocks ŒW 	ij, with
ŒW 	ij 2 ˛SO.2/, 8i; j D 1; : : : ; 2n, and ŒW 	ii D ˛iiI2 with ˛ii � 0. We prove
this by direct inspection of the blocks of W . Given the structure of W in (14), the
claim reduces to proving that the matrices NL , NQ, and NA> ND are composed by 2 � 2
blocks in ˛SO.2/, and the diagonal blocks of NL and NQ are multiples of the identity
matrix. To this end, we start by observing that NL D L ˝ I2, hence all blocks in
NL are multiples of the 2 � 2 identity matrix, which also implies that they belong to
˛SO.2/. Consider next the matrix NQ :D ND> ND C NU> NU. From the definition of ND it
follows that ND> ND is zero everywhere, except the 2 � 2 diagonal blocks:

Œ ND> ND	ii D
X

j2N out
i

k�ijk22I2; i D 1; : : : ; n: (61)

Similarly, from simple matrix manipulation we obtain the following block structure
of NU> NU:

Œ NU> NU	ii D diI2; i D 1; : : : ; nI
Œ NU> NU	ij D �Rij; .i; j/ 2 E I
Œ NU> NU	ij D �R>ji ; .j; i/ 2 E I
Œ NU> NU	ij D 02�2; otherwise: (62)

where di is the degree (number of neighbours) of node i. Combining (61) and (62)
we get the following structure for NQ:

Œ NQ	ii D ˇiI2; i D 1; : : : ; nI
Œ NQ	ij D �Rij; .i; j/ 2 E I
Œ NQ	ij D �R>ji ; .j; i/ 2 E I
Œ NQ	ij D 02�2; otherwise: (63)

where we defined ˇi
:D di CPj2N out

i
k�ijk22. Clearly, NQ has blocks in ˛SO.2/ and

the diagonal blocks are nonnegative multiples of I2.
Now, it only remains to inspect the structure of NA> ND. The matrix NA> ND has the

following structure:

Œ NA> ND	ii DPj2N out
i

Dij; i D 1; : : : ; nI
Œ NA> ND	ij D �Dji; .j; i/ 2 E I
Œ NA> ND	ij D 02�2; otherwise: (64)

Note that
P

j2N out
i

Dij is the sum of matrices in ˛SO.2/, hence it also belongs to

˛SO.2/. Therefore, also all blocks of NA> ND are in ˛SO.2/, thus concluding the proof.
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Proof of Proposition 5: Cost in the Complex Domain

Let us prove the equivalence between the complex cost and its real counterpart, as
stated in Proposition 5.

We first observe that the dot product between two 2-vectors x1; x2 2 R
2, can be

written in terms of their complex representation Qx1 :D x_1 , and Qx2 :D x_2 , as follows:

x>1 x2 D Qx
�
1 Qx2 C Qx1 Qx�2

2
(65)

Moreover, we know that the action of a matrix Z 2 ˛SO.2/ can be written as the
product of complex numbers, see (18).

Combining (65) and (18) we get:

x>1 Zx2 
 Qx
�
1 Qz Qx2 C Qx1 Qz� Qx�2

2
(66)

where Qz D Z_. Furthermore, when Z is multiple of the identity matrix, it easy to see
that z D Z_ is actually a real number, and Eq. (66) becomes:

x>1 Zx1 
 Qx�1 z Qx1 (67)

With the machinery introduced so far, we are ready to rewrite the cost x>Wx in
complex form. Since W is symmetric, the product becomes:

x>Wx D
2n�1X

iD1

2

4x>i ŒW	iixi C
2n�1X

jDiC1
2 x>i ŒW	ijxj

3

5 (68)

Using the fact that ŒW	ii is a multiple of the identity matrix, QWii
:D ŒW	_ii 2 R, and

using (67) we conclude x>i ŒW	iixi D Qx�i QWii Qxi. Moreover, defining QWij
:D ŒW	_ij (these

will be complex numbers, in general), and using (66), Eq. (68) becomes:

x>Wx D
2n�1X

iD1

2

4Qx�i QWii Qxi C
2n�1X

jDiC1
.Qx�i QWij Qxj C Qxi QW�ij Qx�j /

3

5

D
2n�1X

iD1

2

4Qx�i QWii Qxi C
X

j¤i

Qx�i QWij Qxj

3

5 D Qx� QW Qx (69)

where we completed the lower triangular part of QW as QWji D QW�ij .
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Proof of Proposition 6: Zero Eigenvalues in QW

Let us denote with N0 the number of zero eigenvalues of the pose graph matrix QW.
N0 can be written in terms of the dimension of the matrix ( QW 2 C

.2n�1/�.2n�1/) and
the rank of the matrix:

N0 D .2n � 1/ � rank. QW/ (70)

Now, recalling the factorization of QW given in (25), we note that:

rank. QW/ D rank

��
A QD
0 QU

��

D rank.A/C rank. QU/ (71)

where the second relation follows from the upper triangular structure of the matrix.
Now, we know from [68, Sect. 19.3] that the anchored incidence matrix A, obtained
by removing a row from the the incidence matrix of a connected graph, is full rank:

rank.A/ D n � 1 (72)

Therefore:

N0 D n � rank. QU/ (73)

Now, since we recognized that QU is the complex incidence matrix of a unit gain
graph (Lemma 1), we can use the result of Lemma 2.3 in [61], which says that:

rank. QU/ D n � b; (74)

where b is the number of connected components in the graph that are balanced.
Since we are working on a connected graph (Assumption 1), b can be either one
(balanced graph or tree), or zero otherwise. Using (73) and (74), we obtain N0 D b,
which implies that N0 D 1 for balanced graphs or trees, or N0 D 0, otherwise.

Proof of Proposition 7: Spectrum of Complex and Real Pose
Graph Matrices

Recall that any Hermitian matrix has real eigenvalues, and possibly complex
eigenvectors. Let � 2 R be an eigenvalue of QW, associated with an eigenvector
Qv 2 C

2n�1, i.e.,

QW Qv D � Qv (75)
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From Eq. (75) we have, for i D 1; : : : ; 2n � 1,

2n�1X

jD1
QWij Qvj D � Qvi ,

2n�1X

jD1
ŒW	ijvj D �vi (76)

where vi is such that v_i D Qvi. Since Eq. (76) holds for all i D 1; : : : ; 2n � 1, it can
be written in compact form as:

Wv D �v (77)

hence v is an eigenvector of the real anchored pose graph matrix W, associated with
the eigenvalue �. This proves that any eigenvalue of QW is also an eigenvalue of W.

To prove that the eigenvalue � is actually repeated twice in W, consider now
Eq. (75) and multiply both members by the complex number ej �2 :

QW Qvej �2 D � Qvej �2 (78)

For i D 1; : : : ; 2n � 1, we have:

2n�1X

jD1
QW�ij Qvje

j �2 D � Qvie
j �2 ,

2n�1X

jD1
ŒW	ijwj D �wi (79)

where wi is such that w_i D Qvjej �2 . Since Eq. (79) holds for all i D 1; : : : ; 2n � 1, it
can be written in compact form as:

Ww D �w (80)

hence also w is an eigenvector of W associated with the eigenvalue �.
Now it only remains to demonstrate that v and w are linearly independent. One

can readily check that, if Qvi is in the form Qvi D �iej
i , then

vi D �i

�
cos.
i/

sin.
i/

�

: (81)

Moreover, observing that Qvjej �2 D �iej.
iC�=2/, then

wi D �i

�
cos.
i C �=2/
sin.
i C �=2/

�

D �i

�� sin.
i/

cos.
i/

�

(82)

From (81) and (82) is it easy to see that v>w D 0, thus v;w are orthogonal,
hence independent. To each eigenvalue � of QW there thus correspond an identical
eigenvalue of W, of geometric multiplicity at least two. Since QW has 2n � 1
eigenvalues and W has 2.2n � 1/ eigenvalues, we conclude that to each eigenvalue
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� of QW there correspond exactly two eigenvalues of W in �. The previous proof
also shows how the set of orthogonal eigenvectors of W is related to the set of
eigenvectors of QW.

Proof of Theorem 1: Primal-dual Optimal Pairs

We prove that, given � 2 R
n, if an Qx� 2 X .�/ is primal feasible, then Qx� is primal

optimal; moreover, � is dual optimal, and the duality gap is zero.
By weak duality we know that for any �:

L .x�; �/ � f ? (83)

However, if x� is primal feasible, by optimality of f ?, it must also hold

f ? � f .x�/ (84)

Now we observe that for a feasible x�, the terms in the Lagrangian associated to
the constraints disappear and L .x�; �/ D f .x�/. Using the latter equality and the
inequalities (83) and (84) we get:

f ? � f .x�/ D L .x�; �/ � f ? (85)

which implies f .x�/ D f ?, i.e., x� is primal optimal.
Further, we have that

d? � min
x

L .x; �/ D L .x�; �/ D f .x�/ D f ?;

which, combined with weak duality (d? � f ?), implies that d? D f ? and that �
attains the dual optimal value.

Numerical Data for the Toy Examples in Sect. 6

Ground truth nodes poses, written as xi D Œp>i ; 
i	:

x1 D Œ 0:0000 �5:0000 0:2451 	

x2 D Œ 4:7553 �1:5451 �0:4496 	
x3 D Œ 2:9389 4:0451 0:7361 	

x4 D Œ �2:9389 4:0451 0:3699 	

x5 D Œ �4:7553 �1:5451 �1:7225 	

(86)
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Relative measurements, for each edge .i; j/, written as .i; j/ W Œ�>ij ; 
ij	:

.1; 2/ W Œ 4:6606 1:2177 2:8186 	

.2; 3/ W Œ �4:4199 4:8043 0:1519 	

.3; 4/ W Œ �4:1169 4:9322 0:5638 	

.4; 5/ W Œ �3:6351 �5:0908 �0:5855 	

.5; 1/ W Œ 3:4744 5:9425 2:5775 	

(87)
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State-Feedback Control of Positive Switching
Systems with Markovian Jumps

Patrizio Colaneri, Paolo Bolzern, José C. Geromel, and Grace S. Deaecto

Abstract This chapter deals with positive linear systems in continuous-time
affected by a switching signal representing a disturbance driven by a Markov
chain. A state-feedback control law has to be designed in order to ensure mean
stability and input–output L1-induced or L1-induced mean performance. The
chapter is divided into two parts. In the first, the control action is based on the
knowledge of both the state of the system and the sample path of the Markovian
process (mode-dependent control). In the second, instead, only the state-variable
is known (mode-independent control). In the mode-dependent case, as well as in
the single-input mode-independent case, necessary and sufficient conditions for the
existence of feasible feedback gains are provided based on linear programming
tools, also yielding a full parametrization of feasible solutions. In the multi-input
mode-independent case, sufficient conditions are worked out in terms of convex
programming. Some numerical examples illustrate the theory.
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1 Introduction

This chapter deals with stabilization and control of (continuous-time) positive
Markov jump linear systems (PMJLS). The switching signal 
 is a Markov process
associated with a given transition rate matrix.

The class of positive systems in the deterministic setting has been widely studied
in the past years. Relevant general textbooks are available, see [9, 11, 12], and more
specific contributions dealing with Lyapunov functions and input–output norms can
be found in [2, 6, 14–16]. As for the class of Markov Jump Linear Systems (MJLS),
a wide corpus of results is available, see the textbooks [5, 7].

On the other hand, only a few papers on PMJLS (in continuous-time) are
available up to now. To the best of the authors knowledge, the first contribution
pointing out the usefulness of the linear programming (LP) approach to the study
of PMJLS is [2]. More recently, in [4], various notions of stability and their
relationships are studied, while results on stochastic stabilization are provided in
[17]. An application to an epidemiological model can be found in [1]. A very recent
survey on analysis and design of PMJLS is available in [3].

The chapter is divided into two parts. In the first, the attention is concentrated
on mode-dependent state feedback laws u.t/ D K
.t/x.t/, whereas in the sec-
ond the focus is on mode-independent state feedback laws u.t/ D Kx.t/. The
addressed problems deal with mean stabilization, L1-induced optimal control and
L1-induced optimal control with a deterministic disturbance w.t/. Notably, the first
two problems admit a complete parametrization of the mode-dependent feedback
gains in terms of linear programming. The same is true for the third when the
disturbance w.t/ is scalar. The results in the mode-dependent case are inspired
by similar results for time-invariant deterministic positive systems provided in [6]
for L1-induced control and [8] for L1-induced control. The L2-induced optimal
control design problem is treated in [16] for the deterministic case, for which
diagonal positive solutions of the design constraints exist. This is not the case of
PMJLS, so that this point constitutes a subject of future research. A rather complete
exposition of the mode-dependent control for PMJLS can be found in [3].

The part concerning mode-independent control is inspired by [10]. Its originality
for PMJLS stems from the fact that, in the single-input case, a complete parametriza-
tion of the state-feedback laws u.t/ D Kx.t/ can be worked out using standard LP
tools. For multi-input systems, a sufficient condition for the existence of a feasible
gain K is developed using convex programming.

1.1 Notation

The semiring of nonnegative real numbers is RC. The .i; j/-th entry of a matrix
M will be denoted by ŒM	ij and The i-th entry of a vector v will be denoted by
Œv	i. A matrix M (in particular, a vector) with entries in RC is a nonnegative matrix
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(or vector). The matrix (or vector) M is positive (M > 0) if nonnegative and nonzero,
and strictly positive (M 
 0) if all its entries are positive.

The symbol 1n denotes the n-dimensional vector with all entries equal to 1. The
symbol ek will denote the k-th column of the identity matrix (the size will be clear
from the context).

The convex polytope of the nonnegative m-tuples of real numbers that sum up to
1 will be denoted by

Pm WD
(

˛ 2 R
mC W

mX

iD1
Œ˛	i D 1

)

D ˚˛ 2 R
mC W 10m˛ D 1
 :

A square matrix A D Œaij	 is said to be Metzler if its off-diagonal entries are
nonnegative, namely aij � 0 for every i ¤ j. An n � n Metzler matrix A, with
n > 1, is reducible if there exists a permutation matrix P such that

P0AP D
�

A11 A12
0 A22

�

;

where A11 is a k� k matrix, 1 � k � n� 1. A Metzler matrix which is not reducible
is called irreducible. For an irreducible n � n Metzler matrix A it is known that
its eigenvalue with maximum real part is real with multiplicity 1, and is called
the Perron-Frobenius eigenvalue. The corresponding eigenspace is generated by a
strictly positive eigenvector in Pn, called Perron-Frobenius eigenvector. For further
details on positive systems the reader is referred to [9]. A symmetric matrix Q is
negative definite if and only if all its eigenvalues are negative. A negative definite
matrix is indicated by the expression Q � 0.

The symbol Gm indicates the set of m�m Metzler matrices A such that A1m D 0.
Therefore matrices in Gm represent infinitesimal transition rate matrices associated
with a continuous-time Markov chain.

The 1-norm of a matrix M 2 R
n�m is defined as kMk1 D max

j

Pn
iD1 jŒM	ijj. The

1-norm of a matrix M 2 R
n�m is defined as kMk1 D max

i

Pm
jD1 jŒM	ijj. For a

positive matrix M, the absolute value is obviously irrelevant, and these norms can
be computed as kMk1 D max

j
1>n Mej and kMk1 D max

i
e>i M1m, respectively.

If fMi 2 R
n�m; i D 1; 2; : : : ;Ng is a set of matrices, the symbol col

i
fMig will

denote the matrix in R
nN�m obtained by orderly stacking all the matrices Mi in a

single block column. Analogously, the symbol row
i
fMig will denote the matrix in

R
m�nN obtained by orderly stacking all the matrices Mi in a single block row. Finally,

the symbol diag
i
fMig will denote the block diagonal matrix in R

nN�mN obtained by

orderly putting Mi on the diagonal. The range for the index i will be omitted, if clear
from the context. The symbol ˝ will be used to indicate the Kronecker product.

The set L1 includes all the (nonnegative) deterministic signals with finite
1-norm, i.e. bounded on the time interval Œ0;1/. The set L1 includes all the
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(nonnegative) deterministic signals with finite 1-norm, i.e. integrable over the time
interval Œ0;1/. The symbol ı.t/ denotes the unit impulse.

The expectation of a stochastic variable v will be denoted as EŒv	. The con-
ditional expectation of v given the event A will be indicated by EŒvjA 	. If
A1;A2; : : : ;AN are mutually exclusive events whose union covers the entire
event space, then the well-known law of total expectation claims that EŒv	 D
PN

iD1 EŒvjAi	PrŒAi	, where PrŒAi	 denotes the probability of event Ai.

2 Stability and Induced Norms of a PMJLS

This section is devoted to the analysis of mean stability (M-stability), L1–induced
and L1–induced norms of a PMJLS. Define N D f1; 2; : : : ;Ng and let .˝;F ;P/
be a complete probability space equipped with a right-continuous filtration
fFt; t 2 RCg. In the sequel, reference will be made to a time-homogeneous Markov
process 
.t/ adapted to fFtg and taking values in N . The PMJLS is described by

Px.t/ D F
.t/x.t/C B
.t/w.t/ (1)

z.t/ D L
.t/x.t/C D
.t/w.t/ (2)

where x is the n-dimensional state, w is a nw-dimensional disturbance input and z
is the nz-dimensional performance output. The time evolution for t � 0 of 
.t/ 2
N D f1; 2; � � � ;Ng is completely characterized by its initial probability distribution
and the constant transition rates �ij from mode i to mode j ¤ i. More precisely,
define the transition probabilities Prf
.t C h/ D jj
.t/ D ig D �ijh C o.h/; i ¤ j,
where h > 0, and �ij � 0 is the transition rate from mode i at time t to mode j at
time tC h. Letting

�ii D �
NX

jD1;j¤i

�ij

and defining � D Œ�ij	, the matrix � 2 GN is called the transition rate matrix (or
infinitesimal generator) of the Markov process. From now on we assume that the
matrix � is irreducible. Letting �.t/ 2 PN represent the probability distribution
of 
.t/, this assumption implies that the stationary probability distribution N� is the
unique solution in PN of the equation �> N� D 0, i.e. the equilibrium point of the
Kolmogorov differential equation

P�.t/ D �>�.t/ (3)

If �.0/ D N�, the process 
.t/ is stationary and ergodic.
The matrices Fi appearing in the model are n � n Metzler matrices, while Bi, Li,

Di are nonnegative matrices for all i 2 N . It is assumed that the disturbance signal
w is nonnegative for t � 0. In view of these assumptions, if the initial state at time
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t D 0 is nonnegative, the state vector x remains in the positive orthant and the output
signal z is nonnegative as well, for all t � 0.

Our analysis will concentrate on the L1–induced and L1–induced norms of
system (1), (2) under the standing assumption that the input w is a deterministic
disturbance. However, for such a study, it will be useful to assume in passing that
the input w is a stochastic signal adapted to the filtration Ft, i.e. it may depend on
the current and past values of 
.t/. We therefore define

mi.t/ W D EŒx.t/j
.t/ D i	Œ�.t/	i; m D col
i
fmig

vi.t/ W D EŒw.t/j
.t/ D i	Œ�.t/	i; v D col
i
fvig

Observing that EŒx.t/	 D PN
iD1 mi.t/ and EŒw.t/	 D PN

iD1 vi.t/, an elementary
computation shows that the PMJLS can be given a representation in the mean values
in terms of the following deterministic system of order nN:

Pm.t/ D QFm.t/C MBv.t/ (4)

EŒz.t/	 D QL Qm.t/C MDv.t/ (5)

where

QF D diag
i
fFig C�> ˝ In (6)

MB D diag
i
fBig (7)

QL D row
i
fLig (8)

MD D row
i
fDig (9)

It is important to note that QF is a Metzler matrix, while MB, QL and MD are nonnegative
matrices. System (4), (5) along with (6)–(9) will be called stochastic-input mean
(SIM) system and the associated transfer function

MG.s/ D QL.sI � QF/�1 MBC MD (10)

will be referred to as stochastic-input mean (SIM) transfer function.
As said, we are interested in the case where the input w is deterministic. In such

a case, it results that

v.t/ D �.t/˝ w.t/ (11)

The dynamical system from w to EŒz	 can be easily written as follows:

Pm.t/ D QFm.t/C QB.t/w.t/ (12)

EŒz.t/	 D QLm.t/C QD.t/w.t/ (13)
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where

QB.t/ D col
i
fBiŒ�.t/	ig (14)

QD.t/ D
NX

iD1
DiŒ�.t/	i (15)

with �.t/ being the solution of (3) under a given initial condition �.0/. Notice
that system (12), (13) is time-varying, and becomes time-invariant if �.0/ D N�,
so that �.t/ D N�, t � 0. Such a case corresponds to taking the expectations
EŒx.t/j
.t/ D i	 and EŒz.t/	 with respect to the stationary probability distribution N�.
Therefore, we can define the deterministic-input mean (DIM) system associated to
the given PMJLS as

Pm.t/ D QFm.t/C QBw.t/ (16)

EŒz.t/	 D QLm.t/C QDw.t/ (17)

with

QB D col
i
fBiŒ N�	ig (18)

QD D
NX

iD1
DiŒ N�	i (19)

Note that QB and QD are nonnegative matrices. The deterministic-input mean (DIM)
transfer function is then defined as

QG.s/ D QL.sI � QF/�1 QBC QD (20)

and the following relation between the DIM and SIM mean transfer functions holds:

QG.s/ D MG.s/ . N� ˝ Inw/

The matrix QF, along with the DIM and SIM transfer functions, play a fundamental
role in the characterization of M-stability of a PMJLS and the computation of its
L1-induced and L1-induced input–output norms. This is discussed in the next
subsections.

2.1 M-Stability

System (1) is said to be mean stable (M-stable) if, for any nonnegative initial
state x.0/ and any initial probability distribution �.0/, the expected value of
the free motion of the state vector x.t/ asymptotically converges to zero. This
characterization of stability for PMJLS’s is equivalent to first-moment stability,
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namely to the convergence to zero of the free motion of any norm kx.t/k of the
state vector, see [3]. An M-stable system is also exponentially stable and, thanks to
monotonicity of positive systems, M-stability can be ascertained by only checking
the convergence to zero of the expected value of the free motion of the state vector
for a single initial state in the strictly positive orthant.

Recalling the definition of m and (16), it is clear that M-stability is equivalent to
Hurwitz stability of the Metzler matrix QF. Checking Hurwitz stability of a Metzler
matrix can be done via LP. Precisely, stability is equivalent to the existence of a
strictly positive vector s 2 R

nNC such that QFs � 0 (equivalently, a strictly positive
vector p 2 R

nNC such that QF>p� 0). Recalling the structure of QF, the necessary and
sufficient condition of M-stability of system (1) is formulated as follows, see [2–4].

Proposition 1. The following statements are equivalent:

(i) System (1) is M-stable
(ii) There exist strictly positive vectors si 2 R

nC, i 2 N , such that

Fisi C
NX

jD1
�jisj � 0; i 2 N (21)

(iii) There exist strictly positive vectors pi 2 R
nC, i 2 N , such that

F>i pi C
NX

jD1
�ijpj � 0; i 2 N (22)

2.2 L1-Induced Norm

Assume that the system (1), (2) is M-stable and let x.0/ D 0, �.0/ D N�. Moreover,
let w > 0 be a deterministic bounded disturbance, i.e. w 2 L1. Therefore, it makes
sense to compute the L1–induced norm, defined as

J1 WD sup
w2L1;w>0

supk;t�0 EŒŒz.t/	k	

supk;t�0Œw.t/	k

Such a performance index provides a measure of average disturbance attenuation in
terms of peak-to-peak worst-case gain. Letting Qg.t/ be the impulse response of the
DIM system (16), (17), and taking, without loss of generality, w.t/ � 1nw , t � 0, it
follows that

sup
k;t�0

EŒŒz.t/	k	 D sup
k;t�0

Z t

0

e>k Qg.t � �/w.�/d�

� sup
k;t�0

Z t

0

e>k Qg.�/1nw d�
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� max
k

Z 1

0

e>k Qg.�/1nw d�

� max
k

e>k QG.0/1nw D k QG.0/k1

and it is clear that the supremum value is reached for w.t/ D 1nw , t � 0. Therefore
J1 D k QG.0/k1. Checking whether k QG.0/k1 < �, for a given � > 0 is an LP
problem, precisely stated in the following proposition, whose proof can be found
in [3].

Proposition 2. System (1), (2) is M-stable and J1 < � if and only if there exist
strictly positive vectors si 2 R

nC, i 2 N , such that

Fisi C
NX

jD1
�jisj C Œ N�	iBi1nw � 0; i 2 N (23)

NX

iD1
.Lisi C Œ N�	iDi1nw/� 1nz� (24)

As apparent from the definition and the positivity of the system, the worst
disturbance for J1 is a constant vector with equal entries, namely w.t/ D 1nw .

2.3 L1-Induced Norm

For an M-stable system (1), (2), with x.0/ D 0, �.0/ D N�, and an integrable
deterministic disturbance w > 0 2 L1, the L1–induced norm is defined as

J1 WD sup
w2L1;w>0

EŒ
R1
0

1>nz
z.t/dt	

R1
0

1>nw
w.t/dt

It provides an alternative measure of disturbance attenuation in terms of average
integral worst-case gain. It results that

E

�Z 1

0

1>nz
z.t/dt

�

D
Z 1

0

1>nz

�Z t

0

Qg.t � �/w.�/d�
�

dt

D
Z 1

0

1>nz

�Z 1

�

Qg.t � �/dt

�

w.�/d�

D
Z 1

0

1>nz

�Z 1

0

Qg.t/dt

�

w.�/d�
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D 1>nz
QG.0/

Z 1

0

w.�/d�

D
nwX

kD1
1>nz
QG.0/ek

Z 1

0

Œw.t/	kdt

and hence

EŒ
R1
0

1>nz
z.t/dt	

R1
0

1>nw
w.t/dt

D
nwX

kD1
1>nz
QG.0/ekˇk

with

ˇk D
R1
0
Œw.t/	kdt

R1
0

1>nw
w.t/dt

Since ˇk � 0 and
Pnw

kD1 ˇk D 1, it is clear that J1 D max
k

1>nz
QG.0/ek D k QG.0/k1,

and the worst disturbance is the (non L1–integrable) impulsive signal w.t/ D ı.t/ek,
where k is the index maximizing 1>nz

QG.0/ek. Checking whether k QG.0/k1 < �, for a
given � > 0 is an LP problem, precisely stated in the following proposition, proven
in [3].

Proposition 3. System (1), (2) is M-stable and J1 < � if and only if there exist
strictly positive vectors pi 2 R

nC, i 2 N , such that

F>i pi C
NX

jD1
�ijpj C L>i 1nz � 0; i 2 N (25)

NX

iD1
.B>i pi C D>i 1nz/Œ N�	i � �1nw (26)

As apparent from the positivity of the system, the worst disturbance is an
impulse applied to the worst input channel, namely w.t/ D ı.t/ek, where
k D arg max

iD1;:::;nw

1>nz
QG.0/ei.

Remark 1. Notice that the conditions (23), (24) and (25), (26) can be interpreted as
dual inequalities, reflecting the duality of the two norms considered, i.e.

k QG.0/k1 D max
kD1;2;:::;nz

e>k QG.0/1nw ; k QG.0/k1 D max
kD1;2;:::;nw

1>nz
QG.0/ek

Inequalities (23), (24) are generally used to cope with state-feedback problems,
whereas inequalities (25), (26) are used for output injection problems. In the sequel,
we will deal only with the first problem. In this regard, notice that in order to
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check whether k QG.0/k1 < � one can use inequalities (23), (24) applied to the
SISO systems with mean transfer functions 1>nz

QG.0/ek, and check whether they are
satisfied with a certain �, for each k D 1; 2; : : : ; nw.

2.4 Transient Analysis

The computation of the L1 and L1-induced norms has been carried out under
the assumption �.0/ D N�, which has allowed to consider the time-invariant DIM
system (16), (17) and the associated DIM transfer function QG.s/. Now, we address
the problem of computing the induced gains for the time-varying system (12), (13).
This corresponds to the case when the initial probability distribution is different
from the stationary one, so that the dynamics of the Kolmogorov equation (3) has to
be taken into account. Since �.0/ is a generic element of PN , we are well advised
to maximize the gain also with respect to the elements of this set. We start from the
worst L1–induced gain under arbitrary initial distribution �.0/, defined as

QJ1 WD sup
w2L1;w>0;�.0/2PN

EŒ
R1
0

1>nz
z.t/dt	

R1
0

1>nw
w.t/dt

Notice that the time-varying system (12), (13) is obtained from the time-
invariant system (4), (5) using (11) and observing that QB.t/ D MB .�.t/˝ Inw/

and QD.t/ D MD .�.t/˝ Inw/. Therefore, letting Mg.t/ denote the impulse response of
system (4), (5), it results that

E

�Z 1

0

1>nz
z.t/dt

�

D
Z 1

0

1>nz

�Z t

0

Mg.t � �/ .�.�/˝ w.�// d�

�

dt

D
Z 1

0

1>nz

�Z 1

�

Mg.t � �/dt

�

.�.�/˝ w.�// d�

D
Z 1

0

1>nz

�Z 1

0

Mg.t/dt

�

.�.�/˝ w.�// d�

D 1>nz
MG.0/

Z 1

0

.�.t/˝ w.t// dt

Moreover 1>Nnw
.�.t/˝ w.t// D 1>nw

w.t/. Therefore, for any assigned vector �.0/ 2
PN , the L1-induced norm is less than � if and only if the inequalities (25), (26)
are feasible with Œ N�	i replaced by Œ�.0/	i. Concerning the computation of QJ1, it is
clear that QJ1 D k MG.0/k1, where the worst disturbance is w.t/ D ı.t/ek and the worst
initial probability vector is �.0/ D ei, where k 2 f1; 2; : : :; nwg and i 2 N are the
maximizing indices of 1>nz

MG.0/ .ei ˝ Inw/ ek. The linear program for assessing that
QJ1 < � is still given by Proposition 3 by replacing inequality (26) with

B>i pi C D>i 1nz � �1nw ; i 2 N (27)
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Note that this condition coincides with that provided in Theorem 4 of [13], where
the L1 norm is computed considering an arbitrary �.0/. The above considerations
could be used in the sequel to derive variants of Theorems 3, 11, when one is
interested in considering �.0/ ¤ N�.

Next, consider the worst L1–induced gain under arbitrary initial distribution
�.0/, defined as

QJ1 D sup
w2L1;w>0;�.0/2PN

supk;t�0 EŒŒz.t/	k	

supk;t�0Œw.t/	k

The computation of the L1-induced norm for an assigned �.0/ is hard since
it depends on the whole trajectory �.t/. The formulation of algebraic necessary
and sufficient conditions for guaranteeing such a norm to be less than � (and
consequently to evaluate QJ1) is still an open issue. However, suitable bounds can be
easily derived. In this respect notice that, for w.t/ � 1nw , t � 0, and any �.0/ 2PN ,

sup
k;t�0

E ŒŒz.t/	k	 D sup
k;t�0

Z t

0

e>k Mg.t � �/ .�.�/˝ w.�// d�

� sup
k;t�0

Z t

0

e>k Mg.�/ .�.t � �/˝ 1nw/ d�

� max
k

Z 1

0

e>k Mg.�/1Nnw d� D k MG.0/k1

It is then clear that the worst disturbance is w.t/ D 1nw and QJ1 � k MG.0/k1.
On the other hand, QJ1 is greater than the gain obtained with �.0/ D N�, which

coincides with J1 computed in Sect. 2.2. In conclusion, it turns out that

J1 D k QG.0/k1 � QJ1 � k MG.0/k1
Since QJ1 � k MG.0/k1, a sufficient condition ensuring QJ1 < � is given by
Proposition 2, where the scalars Œ N�	i in the linear inequalities (23), (24) are replaced
by 1.

For a more detailed characterization of the induced norms of a PMJLS and their
relations with induced norms under stochastic disturbances, the interested reader is
referred to [3].

2.5 Stability and Norms Under Positive Perturbations

From (21), it is apparent that an M-stable system cannot be destabilized by nonpos-
itive perturbations of the system matrices Fi. Conversely, nonnegative perturbations
of Fi cannot result in an M-stable system if the original system is not M-stable.
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Moreover, it can be shown that the Perron-Frobenius eigenvalue of QF is a monotonic
nondecreasing function of positive perturbations of any entry of matrices Fi.

For M-stable systems, matrix QG.0/ D QD � QL. QF/�1 QB is nonnegative and its
entries are monotonically nondecreasing functions of the entries of Fi, Li, Bi, Di as
long as M-stability is preserved. This conclusion is straightforward for nonnegative
perturbations of the parameters in Li, Bi, Di in view of formulas (8), (18) and (19).
Now consider a nonnegative perturbation �i of the matrix Fi and, according to (6),
let OF D diag

i
.Fi C �i/ C �> ˝ In. It is apparent that OF � QF. Assuming that

OF is Hurwitz, then �OF�1 (as well as �QF�1) is a nonnegative matrix. Moreover
OF�1 OF QF�1 � OF�1 QF QF�1, which implies �OF�1 � �QF�1. In conclusion, being
the entries of QG.0/ nonnegative and monotonically nondecreasing functions of
the system matrix parameters Fi, Li, Bi, Di, its norm (in any specification) is
nondecreasing as well. In other words, no positive perturbation of any system matrix
can lead to an improvement in the values of J1 or J1.

All what said for the DIM transfer function in s D 0, namely QG.0/, also holds
for the SIM transfer function in s D 0, i.e. MG.0/ D MD � QL. QF/�1 MB.

3 Stabilization and Norm Minimization via Mode-Dependent
State-Feedback

Here we discuss the effect of a memoryless state-feedback law applied to a PMJLS
described by

Px.t/ D A
.t/x.t/C B
.t/w.t/C G
.t/u.t/ (28)

z.t/ D C
.t/x.t/C D
.t/w.t/C H
.t/u.t/ (29)

where the input signal u 2 R
nu has been added together with the relevant matrices

Gi and Hi, assumed to be nonnegative for all i 2 N . We consider a mode-dependent
state-feedback control of the form

u.t/ D K
.t/x.t/

where Ki 2 Rnu�n for all i. Notice that both the stochastic process 
.t/ and
the state variable x.t/ are considered measurable. For brevity, we only focus
on design problems where M-stability is concerned. In particular, the addressed
problems concern mean stabilization, L1-induced and L1-induced control with
deterministic disturbance w.t/. Notably, the first two control problems admit a
complete parametrization of the feedback gains in terms of linear programming.
For similar results on time-invariant deterministic positive systems, see [6].
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3.1 Mean Stabilization

Assume w.t/ D 0, t � 0, and consider the state equation only, i.e.

Px.t/ D A
.t/x.t/C G
.t/u.t/ (30)

The problem of mean stabilization (M-stabilization) can be cast as follows.

Problem 1. Parameterize the set K of all Ki, i 2 N , such that Fi D AiCGiKi are
Metzler matrices, i 2 N , and the closed-loop system

Px.t/ D 	A
.t/ C G
.t/K
.t/



x.t/ (31)

is M-stable.

A little thought reveals that this problem is ill-posed if one requires that u.t/ is
nonnegative for all t � 0 and all initial states x.0/ 2 R

nC. Indeed, such a condition
is equivalent to requiring that Ki, i 2 N , are nonnegative matrices. Therefore, if
system (31) is M-stable, in view of Proposition 1 there exist strictly positive vectors
si 2 R

nC such that

.Ai C GiKi/ si C
NX

jD1
�jisj � 0

Being both Ki and Gi nonnegative for all i 2 N , it turns out that

Aisi C
NX

jD1
�jisj � 0

This means that the open-loop system is already M-stable. Therefore, it is not pos-
sible to stabilize an unstable PMJLS through a state-feedback law with nonnegative
gains. In the same vein, recalling the effect of positive perturbations discussed in
Sect. 2.5, if lower bounds for the entries of Ki are known, i.e. Ki � Ki, i 2 N , then
Problem 1 is solvable if and only if the limiting gains Ki are such that the closed-
loop matrices Ai CGiKi are Metzler for all i 2 N and the closed-loop system with
u.t/ D K
.t/x.t/ is mean-stable.

One can relax the positivity constraints on u.t/, by allowing matrices Ki,
i 2 N to have nonpositive entries, but requiring at the same time that the state
vector remains in the nonnegative orthant for any initial state. This requirement
corresponds to select the gains Ki, i 2 N , in such a way that the closed-loop
matrices Ai C GiKi are Metzler for each i 2 N . This leads to the following linear
constraints for the entries of Ki:

e>r GiKiep � �ŒAi	rp; i 2 N ; r ¤ p D 1; 2; : : : ; n (32)

Therefore, the following result can be formulated.
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Theorem 1. There exist Ki, i 2 N , such that Ai C GiKi, i 2 N , are Metzler
matrices and the closed-loop system (31) is M-stable if and only if there exist strictly
positive vectors si 2 R

nC and vectors hp
i 2 R

nu , i 2 N , p D 1; 2; : : : ; n, such that

Aisi C Gi

nX

pD1
hp

i C
NX

jD1
�jisj � 0 (33)

e>r Gih
p
i C ŒAi	rpe>p si � 0; r ¤ p D 1; 2; : : : ; n (34)

for all i 2 N . Matrices Ki, i 2 N , are then obtained from

Kiep D .e>p si/
�1hp

i ; p D 1; 2; : : : ; n (35)

Proof. Assume that (33), (34) are feasible. Then, construct matrices Ki according
to (35). Therefore, for r ¤ p, it must hold that

ŒAi C GiKi	rp D e>r .Ai C GiKi/ ep

D ŒAi	rp C e>r

0

@Gi

nX

qD1
Kieqe>q

1

A ep

D .e>p si/
�1 	ŒAi	rp.e>p si/C e>r Gih

p
i




Thanks to (34), it turns out that ŒAiCGiKi	rp � 0 for r ¤ p. This means that matrices
Ai C GiKi are Metzler, for all i. Moreover,

0
 Aisi C Gi

nX

pD1
hp

i C
NX

jD1
�jisj

D Aisi C Gi

nX

pD1
Kiepe>p si C

NX

jD1
�jisj

D .Ai C GiKi/ si C
NX

jD1
�jisj

so that the closed-loop system (31) is M-stable.
Viceversa, assume that there exist matrices Ki such that Ai C GiKi are Metzler

matrices for all i and the closed-loop system (31) is M-stable. Then, using
Proposition 1, there exist strictly positive vectors si 2 R

nC such that

.Ai C GiKi/ si C
NX

jD1
�jisj � 0
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Letting

hp
i D e>p siKiep; p D 1; 2; : : : ; n

and reversing the arguments of the sufficiency part, it follows that both inequali-
ties (33) and (34) are satisfied.

Remark 2. It is worth noticing that Theorem 1 provides a parametrization of all
the state-feedback control gains ensuring positivity and M-stability of the closed-
loop system. Letting K be the set of the N-tuple gains K solving the problem, the
parametrization is indeed given by

K D fK W Kiep D .e>p si/
�1hp

i ; p D 1; 2; � � � ; n; i 2 N g (36)

where hp
i and si solve (33), (34). This parametrization is useful if one wants

to include in the design further properties besides stability, e.g. minimization of
specified closed-loop performance indices.

Remark 3. Assume that the system is single input (nu D 1) and make the
simplifying assumption that Gi 
 0 for each i 2 N (otherwise Gi ! Gi C �1n/.
Notice from (32) that Ai C GiKi is Metzler if and only if Ki � KŒA;G	

i , where

KŒA;G	
i ep D max

r¤p
� ŒAi	rp

e>r Gi
; i 2 N ; p D 1; 2; : : : ; n (37)

In other words, there exist matrices KŒA;G	
i such that the Metzler conditions are

verified for any Ki � KŒA;G	
i . In view of the discussion presented in Sect. 2.5, if

the feedback law u.t/ D KŒA;G	

.t/ x.t/ is not M-stabilizable, then Problem 1 has no

solution. When nu D 1, the parametrization of all gains solving Problem 1 can be
written as

K D fK W Kiep D KŒA;G	
i ep C .e>p si/

�1 Ohp
i ; p D 1; 2; � � � ; n; i 2 N g (38)

where Ohp
i are nonnegative scalars and si are strictly positive vectors satisfying

.Ai C GiK
ŒA;G	
i /si C Gi

nX

pD1
Ohp

i C
NX

jD1
�jisj � 0 (39)

for all i 2 N .
On the other hand, a necessary condition for M-stability is that AiCGiKiC �iiIn

are Hurwitz stable. Being such matrices Metzler, this implies negativity of their
diagonal entries, i.e. Ki � Ki where

Kiep D � ŒAi	pp C �ii C �
e>p Gi

; i 2 N ; p D 1; 2; : : : ; n (40)
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with � being an arbitrarily small positive number. In conclusion, in the scalar input
case (nu D 1), the gains Ki such that the closed-loop system is positive and M-stable
should lie necessarily inside the interval

KŒA;G	
i � Ki � Ki (41)

where KŒA;G	
i and Ki are defined in (37) and (40), respectively. Notice that it may

happen that this vector interval is void. This would entail that Problem 1 does not
admit any solution.

3.2 L1-Induced Mode-Dependent Control

Assume that w.t/, t � 0, is a nonnegative bounded disturbance for system (28), (29),
that x.0/ D 0 and �.0/ D N�. We aim at finding Ki, i 2 N , such that Ai C BiKi,
i 2 N , are Metzler matrices and the L1-induced norm for the closed-loop system

Px.t/ D 	

A
.t/ C G
.t/K
.t/



x.t/C B
.t/w.t/ (42)

z.t/ D 	

C
.t/ C H
.t/K
.t/



x.t/C D
.t/w.t/ (43)

is minimized. Here, we consider only the L1-induced norm associated with
deterministic positive bounded signals w.t/, i.e.

J1.K/ D sup
w2L1;w>0

supk;t�0 EŒŒz.t/	k	

supk;t�0Œw.t/	k

where K D fK1;K2; : : : ;KNg. Letting QGK.s/ be the DIM transfer function of
the PMJLS (42), (43) for a certain K, we have seen in Sect. 2.2 that J1.K/ D
k QGK.0/k1.

Problem 2. Parameterize the set K1 of all gains in K such that (i) the closed-
loop system (42), (43) is positive and M-stable, (ii) J1.K/ < � for a given positive
scalar �.

Notice that point (i) requires that Ai C GiKi, i 2 N , are Metzler matrices and
Ci C HiKi, i 2 N , are nonnegative matrices. The following parametrization result
can be proven.

Theorem 2. There exist Ki, i 2 N , such that the closed-loop system (42), (43) is
positive and M-stable with L1-induced norm less than � > 0 if and only if there
exist strictly positive vectors si 2 R

nC and vectors hp
i 2 R

nu , i 2 N , p D 1; 2; : : : ; n,
such that
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Aisi C Gi

nX

pD1
hp

i C
NX

jD1
�jisj C Œ N�	iBi1nw � 0 (44)

NX

iD1

0

@Cisi C Hi

nX

pD1
hp

i C Œ N�	iDi1nw

1

A� �1nz (45)

e>r Gih
p
i C ŒA	rpe>p si � 0; r ¤ p (46)

e>q Hih
p
i C ŒC	qpe>p si � 0 (47)

for all i 2 N , r D 1; 2; : : : ; n, p D 1; 2; : : : ; n, q D 1; 2; : : : ; nz. Matrices Ki,
i 2 N , are then given as follows:

Kiep D .e>p si/
�1hp

i ; p D 1; 2; : : : ; n (48)

Proof. The proof is similar to the one of Theorem 1 and hence is only sketched.
Conditions (44), (45) with position (48) are equivalent to

.Ai C GiKi/si C
NX

jD1
�jisj C Œ N�	iBi1nw � 0

NX

iD1
..Ci C HiKi/si C Œ N�	iDi1nw/� �1nz

for all i 2 N . In view of Proposition 2, they correspond to a closed-loop system
having L1-induced norm less than �. Moreover conditions (46), (47) with (48) are
equivalent to say that Ai C BiKi, i 2 N , are Metzler matrices and Ci C HiKi are
nonnegative matrices, i 2 N .

Remark 4. It is worth noticing that Theorem 2 provides a parametrization of all the
state-feedback control laws ensuring positivity, M-stability and L1-induced norm
less that � of the closed-loop system. Letting K1 be the set of N-tuple gains Ki

solving Problem 2, the parametrization is indeed given by

K1 D fK W Kiep D .e>p si/
�1hp

i ; p D 1; 2; � � � ; n; i 2 N g (49)

where hp
i and si solve (44)–(47).

Remark 5. The conditions of Theorem 2 are expressed in terms of inequalities that
are linear in all the decision variables and the performance parameter �. Then, the
minimization of � can be carried out through routine LP methods, so obtaining the
set of L1-optimal gains.
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Remark 6. In the scalar input case (nu D 1), and assuming Gi 
 0, Hi 
 0, it is
possible to conclude that the gains Ki are necessarily included in the intervals

K?
i � Ki � Ki; i 2 N (50)

where Ki is defined in (40) and

K?
i D maxfKŒA;G	

i ;KŒC;H	
i g (51)

with KŒA;G	
i defined in (37) and

KŒC;H	
i ep D max

r
� ŒCi	rp

e>r Hi
; p D 1; 2; : : : ; n

Note that the max operator in (51) is to be intended elementwise.

3.3 L1-Induced Mode-Dependent Control

In this section we assume that w.t/, t � 0, is a nonnegative integrable deterministic
disturbance for system (28), (29). We aim at finding Ki, i 2 N , such that AiCGiKi,
i 2 N , are Metzler matrices and the L1-induced norm

J1.K/ D sup
w2L1;w>0

EŒ
R1
0

1>nz
z.t/dt	

R1
0

1>nw
w.t/dt

for the closed-loop system (42), (43) is minimized, where K D fK1;K2; : : : ;KNg.
We have seen in Sect. 2.3 that J1.K/ D k QGK.0/k1. A further objective is to
parameterize the set K1 of all gains in K such that (1) the closed-loop system
is M-stable, (2) the closed-loop system has the state-space description of a positive
system, (3) J1.K/ < � for a given positive scalar �.

The following result does not provide a complete parametrization but only
a sufficient condition for the existence of the feedback gain matrices ensuring
positivity of the closed-loop system, M-stability and guaranteed L1-induced norm.

Theorem 3. There exist Ki, i 2 N , such that the closed-loop system (42), (43) is
positive and M-stable with L1-induced norm less than � > 0 if there exist strictly
positive vectors si 2 R

nC and vectors hp
i 2 R

nu , i 2 N , p D 1; 2; : : : ; n, such that

Aisi C Gi

nX

pD1
hp

i C
NX

jD1
�jisj C Œ N�	iBiek � 0 (52)

1>nz

NX

iD1

0

@Cisi C Hi

nX

pD1
hp

i C Œ N�	iDiek

1

A < � (53)
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e>r Gih
p
i C ŒA	rpe>p si � 0; r ¤ p (54)

e>q Hih
p
i C ŒC	qpe>p si � 0 (55)

for all i 2 N , r D 1; 2; : : : ; n, p D 1; 2; : : : ; n, q D 1; 2; : : : ; nz, k D 1; 2; : : : ; nw.
Matrices Ki, i 2 N , are then given as follows:

Kiep D .e>p si/
�1hp

i ; p D 1; 2; : : : ; n (56)

Proof. Conditions (52), (53) with position (56) are equivalent to

.Ai C GiKi/si C
NX

jD1
�jisj C Œ N�	iBiek � 0 (57)

1>nz

NX

iD1
..Ci C HiKi/si C Œ N�	iDiek/ < � (58)

for all i 2 N . Moreover conditions (54), (55) with (56) are equivalent to say that
Ai C GiKi, i 2 N , are Metzler matrices and Ci C HiKi are nonnegative matrices,
i 2 N . Therefore the closed-loop system is positive. Let QGK.s/ be the mean transfer
function of the PMJLS with u D K
x. We have to prove that its L1-induced norm
is less than �. To this aim, recall that such a norm is given by k QGK.0/k1. Then,

k QGK.0/k1 D max
kD1;2;:::;nw

k1>nz
QGK.0/ekk1 D max

kD1;2;:::;nw

k1>nz
QGK.0/ekk1

The last equality holds true since 1>nz
QGK.0/ek is a scalar. Thanks to Proposition 2,

inequalities (57), (58) imply that k1>nz
QGK.0/ekk1 < �, for any k D 1; 2; : : : ; nw, so

that the conclusion k QGK.0/k1 < � is proven.

Remark 7. The conditions of Theorem 3 are also necessary (and hence provide
a complete parametrization of the set K1) in the case nw D 1, i.e. for single
disturbance systems. As a matter of fact, in such a case it results that

J1.K/ D k QGK.0/k1 D 1>nz
QGK.0/ D k1>nz

QGK.0/k1

Then, imposing J1.K/ < � is equivalent to imposing k1>nz
QGK.0/k1 < �, which

can be performed by means of Theorem 2 applied to a system with scalar output
1>nz

z.t/. For this system, the inequalities (44), (45) of Theorem 2 coincide with the
inequalities (52), (53) of Theorem 3 with nw D 1. The reason why the conditions
of Theorem 3 are not necessary in the general case nw > 1 is the requirement
of the existence of common vectors si and hr

i satisfying (52), (53) for all input
channels k D 1; 2; : : : ; nw. On the other hand, relaxing this requirement would lead
to channel dependent gains, in view of (56). With similar arguments as those in [8], it
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is argued that necessity of the conditions of Theorem 3 holds for robust performance
if matrices B1;B2; : : : ;BN and D1;D2; : : : ;DN belong to a suitable uncertainty set.
Moreover notice that, when the system is single-input single-output (nw D nz D 1),
the conditions of Theorems 2 and 3 do coincide. As a matter of fact, for a scalar
transfer function all induced norms are equal. Finally, for nu D 1, all admissible
gains K must satisfy the constraint (50).

4 Stabilization and Norm Minimization via
Mode-Independent State-Feedback

This section is devoted to the design of a single state-feedback gain K, independent
of the current mode 
 , such that the closed-loop system is M-stable and satisfies
performance requirements in terms of L1–induced or L1–induced norms.

4.1 Mode-Independent M-Stabilization

First we study the problem of mode-independent M-stabilization. To be precise, we
aim at finding a single K such that

Px D .A
 C G
K/x (59)

is an M-stable PMJLS. From Theorem 1 above we can derive a necessary and
sufficient condition for mode-independent M-stabilization by imposing that

.e>r sj/hr
i D .e>r si/hr

j ; i 2 N ; j 2 N ; r D 1; 2; � � � ; n (60)

These are bilinear constraints associated to (33), (34), which are difficult to handle.
However, a full parametrization of the stabilizing gains K can be obtained as shown
in the following theorem.

Theorem 4. There exists K such that Ai C GiK, i 2 N , are Metzler matrices and
the closed-loop system (59) is M-stable if and only if there exist strictly positive
vectors si 2 R

nC and vectors hp
i 2 R

nu , h
p
i 2 R

nu , i 2 N , p D 1; 2; : : : ; n, such that

Aisi C Gi

nX

pD1
h

p
i C

NX

jD1
�jisj � 0; (61)

e>r Gih
p
i C ŒAi	rpe>p si � 0; r ¤ p D 1; 2; : : : ; n (62)

hp
i � h

p
i ; p D 1; 2; : : : ; n (63)
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for all i 2 N . All admissible gains K are then obtained from

.e>p si/
�1hp

i � Kep � .e>p si/
�1hp

i ; i 2 N ; p D 1; 2; : : : ; n (64)

Proof. First note that inequalities (63) are necessary in order to ensure that all the
intervals in (64) are not void. Now, assume that (61)–(62) are feasible and take K
satisfying (64). First, we show that AiCGiK are Metzler matrices. Indeed, from (63)
and the left inequality of (64) it holds that, for r ¤ p,

ŒAi C GiK	rp D ŒAi	rp C e>r GiKep

� .e>p si/
�1 	e>r Gih

p
i C ŒAi	rpe>p si




� 0
As for stability, taking into account (61) and the right inequality of (64), it follows
that

.Ai C GiK/si C
NX

jD1
�jisj D Aisi C Gi

nX

pD1
Kepe>p si C

NX

jD1
�jisj

� Aisi C Gi

nX

pD1
h

p
i C

NX

jD1
�jisj

� 0

implying M-stability of the closed-loop system.
Viceversa, suppose that K is an admissible gain. Taking hp

i D h
p
i D Kepe>p si for

all i and p, the gain is consistent with inequalities (64) and conditions (62), (63) are
trivially verified. M-stability of the closed-loop system is equivalent to the existence
of strictly positive vectors si satisfying

.Ai C GiK/si C
NX

jD1
�jisj � 0

With the aforementioned definition of h
p
i , (61) directly follows.

Remark 8. The above theorem provides a full parametrization of the set of mode-
independent M-stabilizing gains. However, conditions (64) are not linear in the
unknowns. Moreover, feasibility of the linear constraints (61)–(63) does not ensure
that a solution K exists in the intersection of the vector intervals defined in (64).

If nu D 1, a necessary and sufficient condition for the existence of a mode-
independent M-stabilizing gain, also providing a full parametrization of the set of
M-stabilizing gains, is now presented. Preliminarily define the matrices

KŒA;G	 D max
i2N KŒA;G	

i ; K D min
i2N Ki (65)
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where the max and min operators are to be intended elementwise. From Remark 3,
it appears that all M-stabilizing gains K must satisfy KŒA;G	 � K � K. Thus, we
have the following result.

Theorem 5. Let nu D 1, Gi 
 0, i 2 N , and recall (65). There exists K such that
AiCGiK, i 2 N , are Metzler matrices and the closed-loop system (59) is M-stable
if and only if it is M-stable with u.t/ D KŒA;G	x.t/. Moreover, all admissible K satisfy

KŒA;G	ep � Kep � KŒA;G	ep C .e>p si/
�1 Ohp

i ; i 2 N ; p D 1; 2; : : : ; n (66)

where the strictly positive vectors si 2 R
nC and the nonnegative scalars Ohp

i , i 2 N ,
p D 1; 2; : : : ; n, solve the inequalities

	

Ai C GiK
ŒA;G	




si C Gi

nX

pD1
Ohp

i C
NX

jD1
�jisj � 0 (67)

for all i 2 N .

Proof. The proof straightforwardly derives from the definition of KŒA;G	 and the
nonnegativity of the scalars Ohp

i .

An alternative approach to design a mode-independent feedback gain K in the
multi-input case nu > 1 is based on the so-called minimax theory, see [10], which
allows to find an admissible solution in the convex hull of a number of given gain
matrices. To this end, the following result is important.

Lemma 1. Let a N � M real matrix Q be given. The following statements are
equivalent:

(i)

9� 2PM W Q�� 0

(ii)

min
�2PN

max
�2PM

�>Q� < 0

If N D M, then (i) and (ii) are equivalent to

(iii)

x>.QC Q>/x < 0; 8x > 0

Let Ki, i 2 N , be constructed as in (35) of Theorem 1, where si, hi

solve (33), (34). Such gains solve the mode-dependent M-stabilization problem.
One can look for a mode-independent gain K in the convex hull of the given mode-
dependent gains Ki.
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Theorem 6. Let Ki, i 2 N , be given. There exists K in the convex hull of Ki

such that the closed-loop system (59) is positive and M-stable if there exist strictly
positive vectors si 2 R

nC and a matrix Q 2 R
N�N such that

.Ai C GiKj/si C
NX

kD1
�kisk � ŒQ	ij1n � 0; j 2 N (68)

e>r
	

Ai C GiKj



ep C ŒQ	ij � 0; j 2 N ; r ¤ p D 1; 2; : : : ; n (69)

QC Q> � 0 (70)

for all i 2 N . An admissible mode independent gain matrix K is then obtained from

K D
NX

jD1
Œ�	jKj (71)

where � is any solution in PN of Q�� 0.

Proof. In view of Lemma 1, condition (70) guarantees the existence of � 2 PN

satisfying Q� � 0. Multiplying inequalities (68), (69) by Œ�	j and summing up, it
results that

.Ai C GiK/si C
NX

kD1
�kisk � 0; i 2 N

e>r .Ai C GiK/ ep � 0; i 2 N ; r ¤ p D 1; 2; : : : ; n

with K given by (71). Therefore all matrices Ai C GiK are Metzler and the closed-
loop system with u.t/ D Kx.t/ is M-stable.

A similar design method can be worked out if nN gains Kj are given. The
following result is in order.

Theorem 7. Let Kj, j D 1; 2; � � � ; nN be given. There exists K in the convex hull
of Kj such that the closed-loop system is positive and M-stable if there exist vectors
qij 2 R

n, i 2 N , j D 1; 2; : : : ; nN, strictly positive vectors si 2 R
nC, i 2 N , and

� 2PnN such that

.Ai C GiKj/si C
NX

kD1
�kisk � qij � 0; j D 1; 2; : : : ; nN (72)

e>r
	

Ai C GiKj



ep C e>r qij � 0; j D 1; 2; : : : ; nN; r ¤ p D 1; 2; : : : ; n
(73)

QC Q> � 0 (74)
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for all i 2 N , where the square matrix Q 2 R
nN�nN is given by Q D row

j
fcol

i
fqijgg.

An admissible mode independent gain matrix K is then obtained from

K D
nNX

jD1
Œ�	jKj (75)

where � is any solution in PnN of Q�� 0.

Proof. The proof is similar to that of Theorem 6 and is therefore omitted.

Remark 9. The previous results only offer sufficient conditions for mode-
independent M-stabilization via convex programming. The gains Kj that are given
in advance can be chosen by solving the mode-dependent M-stabilization problem.
A necessary condition for the existence of an M-stabilizing gain K is indeed the
existence of mode-dependent gains in K solving Problem 1.

4.2 L1 Mode-Independent Control

Assume that w.t/, t � 0, is a nonnegative bounded disturbance for system (28), (29).
We are interested in finding K such that AiCGiK, i 2 N , are Metzler matrices and
the L1-induced norm of the closed-loop system

Px.t/ D 	

A
.t/ C G
.t/K



x.t/C B
.t/w.t/ (76)

z.t/ D 	

C
.t/ C H
.t/K



x.t/C D
.t/w.t/ (77)

is less than a prescribed bound �. Here, we consider only the L1-induced norm
associated with deterministic positive bounded signals w.t/, i.e.

J1.K/ D sup
w2L1;w>0

supk;t�0 EŒŒz.t/	k	

supk;t�0Œw.t/	k

The aim is to find a gain K (and possibly a parameterization of all gains K) such
that (1) the closed-loop system is M-stable, (2) the closed-loop system has the state-
space description of a positive system, (3) J1.K/ < � for a given positive scalar �.
A first result in this direction is provided by the following theorem.

Theorem 8. There exists K such that the closed-loop system (76), (77) is positive
and M-stable with L1-induced norm less than � > 0 if and only if there exist
strictly positive vectors si 2 R

nC and vectors hp
i 2 R

nu , h
p
i 2 R

nu , i 2 N , p D
1; 2; : : : ; n, such that
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Aisi C Gi

nX

pD1
h

p
i C

NX

jD1
�jisj C Œ N�	iBi1nw � 0 (78)

NX

iD1

0

@Cisi C Hi

nX

pD1
h

p
i C Œ N�	iDi1nw

1

A� �1nz (79)

e>r Gih
p
i C ŒA	rpe>p si � 0; r ¤ p (80)

e>q Hih
p
i C ŒC	qpe>p si � 0 (81)

hp
i � h

p
i (82)

for all i 2 N , r D 1; 2; : : : ; n, p D 1; 2; : : : ; n, q D 1; 2; : : : ; nz. All admissible
gains K are then obtained from

.e>p si/
�1hp

i � Kep � .e>p si/
�1hp

i ; i 2 N ; p D 1; 2; : : : ; n (83)

Proof. The proof is similar to the one of Theorem 4 and hence is only sketched.
Assume that (78)–(82) are feasible and take a gain K satisfying (83). Positivity of
the closed-loop system can be proven thanks to inequalities (80), (81) and the left
inequality of (83). Moreover, inequalities (78), (79) and the right inequality of (83)
entail that

.Ai C GiK/si C
NX

jD1
�jisj C Œ N�	iBi1nw � 0

NX

iD1
..Ci C HiK/si C Œ N�	iDi1nw/� �1nz

for all i 2 N . Hence the closed-loop L1-induced norm is less than �, in view of
Proposition 2.

Viceversa, if an admissible gain K exists, taking hp
i D h

p
i D Kepe>p si for all

i and p, the gain is consistent with inequalities (83) and conditions (80)–(82) are
trivially verified. M-stability of the closed-loop system with L1-induced norm less
than � is equivalent to the existence of strictly positive vectors si satisfying

.Ai C GiK/si C
NX

jD1
�jisj C Œ N�	iBi1nw � 0

NX

iD1
..Ci C HiK/si C Œ N�	iDi1nw/� �1nz
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With the aforementioned definition of h
p
i , the inequalities (78), (79) directly follow.

Remark 10. A similar observation as that done in Remark 8 holds for the above
theorem. In particular, feasibility of the linear constraints (78)–(82) does not
guarantee the existence of a feasible mode-independent gain K.

Remarkably, for the single input case (nu D 1) a necessary and sufficient
condition holds, based on the definition of

K? D maxfKŒA;G	;KŒC;H	g (84)

where the maximum is to be taken elementwise, KŒA;G	 is defined in (65), while

KŒC;H	 D max
i2N KŒC;H	

i

It is apparent that any admissible gain K must satisfy the constraint

K? � K � K (85)

Theorem 9. Let nu D 1, Gi 
 0, i 2 N and recall (84). There exists K such that
the closed-loop system (76), (77) is positive and M-stable with L1-induced norm
less than � > 0 if and only if it is so with u.t/ D K?x.t/. Moreover, all admissible
K satisfy

K?ep � Kep � K?ep C .e>p si/
�1 Ohp

i ; i 2 N ; p D 1; 2; : : : ; n (86)

where the strictly positive vectors si 2 R
nC and the nonnegative scalars Ohp

i , i 2 N ,
p D 1; 2; : : : ; n, solve the inequalities

.Ai C GiK
?/ si C Gi

nX

pD1
Ohp

i C
NX

jD1
�jisj � 0 (87)

NX

iD1

0

@.Ci C HiK
?/ si C Hi

nX

pD1
Ohp

i C Œ N�	iDi1nw

1

A� �1nz (88)

for all i 2 N .

Proof. The proof straightforwardly derives from the definition of K? and the
nonnegativity of the scalars Ohp

i .

Remark 11. Recalling Remarks 3 and 6, in the scalar input case (nu D 1) and Gi 

0, it is possible to conclude that the gain K necessarily satisfies the constraint (85).
Notice also that a solution to the mode-independent L1-induced control exists if
and only if the closed-loop system with u.t/ D K?x.t/ is M-stable and J1.K?/ < �.
This can be checked via LP by means of Proposition 2.
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A minimax approach, similar to the one provided for mode-independent
M-stabilization, can be worked out. The aim is to search for a mode-independent
gain K in the convex hull of pre-computed mode-dependent gains Ki, i 2 N . In
this respect, we have the following sufficient condition, whose proof is omitted as
similar to the ones presented previously.

Theorem 10. Let Ki, i 2 N , be given. There exists K in the convex hull of Ki such
that the closed-loop system (76), (77) is positive and M-stable with L1-induced
norm less than � > 0 if there exist strictly positive vectors si 2 R

nC and a matrix
Q 2 R

N�N such that

.Ai C GiKj/si C
NX

kD1
�kisk C Œ N�	iBi1nw � ŒQ	ij1n � 0 (89)

NX

iD1

		

Ci C HiKj



si C Œ N�	iDi1nw � ŒQ	ij1nz


� �1nz (90)

e>r .Ai C GiKj/ep C ŒQ	ij � 0; r ¤ p (91)

e>q .Ci C HiKj/ep C ŒQ	ij � 0 (92)

for all i 2 N , r D 1; 2; : : : ; n, p D 1; 2; : : : ; n, q D 1; 2; : : : ; nz. An admissible
mode independent gain matrix K is then obtained from

K D
NX

jD1
Œ�	jKj (93)

where � is any solution in PN of Q�� 0.

It goes without saying that an extension of Theorem 7 to cope with mode-
independent gain design with guaranteed L1-induced performance could be also
worked out, searching K in the convex hull of given nN control gain matrices Ki.

4.3 Mode-Independent L1-Induced Optimal Control

In this section we assume that w.t/, t � 0, is a nonnegative integrable deter-
ministic disturbance for system (28), (29). With reference to the closed-loop
system (76), (77), we are interested in finding K such that Ai C GiK, i 2 N , are
Metzler matrices and the L1-induced norm

J1.K/ D sup
w2L1;w>0

EŒ
R1
0

1>nz
z.t/dt	

R1
0

1>nw
w.t/dt
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is minimized. More precisely, the aim is to find a gain K (and possibly a
parameterization of all gains K) such that (1) the closed-loop system is M-stable,
(2) the closed-loop system has the state-space description of a positive system, (3)
J1.K/ < � for a given positive scalar �.

The following result does not provide a complete parametrization but only a
sufficient condition for the existence of a set of feedback gain matrices ensuring
positivity of the closed-loop system, M-stability and guaranteed L1-induced norm.
The proof is omitted since similar to the ones provided so far.

Theorem 11. There exists K such that the closed-loop system (76), (77) is positive
and M-stable with L1-induced norm less than � > 0 if there exist strictly positive
vectors si 2 R

nC and vectors hp
i 2 R

nu , h
p
i 2 R

nu , i 2 N , p D 1; 2; : : : ; n, such that

Aisi C Gi

nX

pD1
h

p
i C

NX

jD1
�jisj C Œ N�	iBiek � 0 (94)

1>p
NX

iD1

0

@Cisi C Hi

nX

pD1
h

p
i C Œ N�	iDiek

1

A < � (95)

e>r Gih
p
i C ŒA	rpe>p si � 0; r ¤ p (96)

e>q Hih
p
i C ŒC	qpe>p si � 0 (97)

hp
i � h

p
i (98)

for all i 2 N , r D 1; 2; : : : ; n, p D 1; 2; : : : ; n, q D 1; 2; : : : ; nz, k D 1; 2; : : : ; nw.
Admissible gains K are then given as follows:

.e>p si/
�1hp

i � Kep � .e>p si/
�1hp

i ; p D 1; 2; : : : ; n (99)

Remark 12. Following Remark 7, the conditions of Theorem 11 are also necessary
(and hence provide a complete parametrization of the feedback gains) in the case
nw D 1, i.e. for single disturbance systems.

Remark 13. In the scalar input case (nu D 1) and Gi 
 0, the gain K necessarily
satisfies the constraint (85) and the mode-independent L1-induced control problem
has a solution if and only if the closed-loop system with u.t/ D K?x.t/ is M-stable
and J1.K?/ < �. This can be checked via LP by means of Proposition 3.

Remark 14. A minimax approach for the computation of a mode-independent gain
K with guaranteed L1-induced performance can be pursued along the rationale
used in the previous sections for M-stabilization and L1-induced performance, see
Theorems 6, 7 and 10. For brevity, the details are omitted.
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5 Examples

This section contains three examples. The third is an extension of the one presented
in [3], and consists of a fourth-order compartmental model with four reservoirs.

Example 1. Consider the second-order PMJLS with N D 2

Px.t/ D A
.t/x.t/C
�
1

1

�

.u.t/C w.t//

z.t/ D �

1 1
�

x.t/

where

A1 D
�
2 1

3 �3
�

; A2 D
��2 8
1 3

�

; � D
��1 1

5 �5
�

We first aim at parameterizing the set of gains K D fK1;K2g such that the closed-
loop system matrices A1 C G1K1 and A2 C G2K2 are Metzler and the associated
closed-loop system is M-stable. For being Metzler, it is necessary and sufficient that

K1 � KŒA;G	
1 D ��3 �1 � ; K2 � KŒA;G	

2 D ��1 �8 �

Moreover, for stability it is necessary that

K1 � K1 D
��1 � � 4 � � � ; K2 � K2 D

�

7 � � 2 � � �

Thanks to Remark 3, it can be concluded that Problem 1 is solvable if and only if
u.t/ D KŒA;G	


.t/ x.t/ is a mode-dependent M-stabilizing feedback law. This is indeed
the case. Notice also that, being nw D nu D nz D 1, the L1-induced norm and the
L1-induced norm do coincide and are minimized by taking the “smallest” possible
gains Ki D K?

i D KŒA;G	
i , i D 1; 2. Therefore, the optimal value is � D 1:0286 and

the optimal gains are

K1 D
��3 �1 � ; K2 D

��1 �8 �

Finally, for mode-independent M-stabilization, one has first to construct a feedback
matrix KŒA;G	 D K? taking the maximum elements of Ki, namely

K? D ��1 �1 �

Any matrix K ensuring that Ai C GiK are Metzler matrices should be such that
K � K?. The PMJLS with u.t/ D K?x.t/ is not M-stable, as witnessed by the
violation of the second constraint of (85). In conclusion, no mode-independent M-
stabilizing feedback gain exists.
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Example 2. Consider the PMJLS (28), (29) with N D 2,

A1 D
�
2 0

0 �1
�

; A2 D
��15 1

0 �2
�

; � D
��1 1

5 �5
�

B1 D B2 D
�
1

1

�

; G1 D G2 D
�
1

0

�

C1 D C2 D
�

1 1
�

; D1 D D2 D 0; H1 D H2 D ˛

As for the closed-loop system being positive, a necessary and sufficient condition is
that K1e2 � N�1 D 0, K2e2 � N�2 D �1. A simple analysis of Hurwitz stability of the
matrix QF, defined in (6) with Fi D Ai C GiKi, reveals that the closed-loop system
with Ki D Œˇi �i	 is M-stable for any �i � N�i and ˇi such that the matrix

�
1C ˇ1 1

5 �20C ˇ2
�

is Hurwitz stable. Notice also that a stabilizing mode-independent law exists. All
such feedback matrices are given by

K D �ˇ �
�

; ˇ < �1:2355; � � 0

Now consider the scalar output z and consider first the case ˛ D 0. The optimization
of J1.K/ D J1.K/ returns unbounded gains associated with the optimal cost � D
0:8704. The optimal mode-dependent gains are

K1 D
��1 0

�

; K2 D
��1 �1 �

The fact that the optimal gains are unbounded can be easily explained by observing
that the first entry of both gains can be made arbitrarily negative without destroying
stability and positivity of the closed-loop system. Since with high feedback gain the
expectation of the first state-variable decays to zero arbitrarily fast and the second
is not affected by feedback, the optimal cost represents the optimal performance of
the open-loop scalar subsystem

Py.t/ D a
.t/y.t/C w.t/; z.t/ D y.t/; a1 D �1; a2 D �2

Similarly, it can be shown that the optimal mode-independent gain is

K D maxfK1;K2g D
��1 0

�

with the same value of the performance index.
Now let ˛ > 0, so as to weigh the input in the cost and obtain bounded gains.

Note that, for a fixed value ˛, all the entries of the gains K1, K2 must be greater than
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Fig. 1 The compartmental system considered in Example 3

�˛�1 in order to guarantee positivity of z.t/. Considering also the requirement on
the Metzler property of the closed-loop matrices, the mode-dependent gains must
satisfy

K1 � K?
1 D

��˛�1 0 � ; K2 � K?
2 D

��˛�1 maxf�˛�1;�1g �

These constraints may prevent the existence of stabilizing gains. Indeed, it can be
observed that closed-loop M-stability is lost for ˛ � ˛� D 0:81. The optimal value
of the cost J1.K/ D J1.K/ is monotonically increasing with respect to ˛, from a
minimum of 0:8704 (when ˛ D 0) to infinity (when ˛ tends to ˛�). The same occurs
for the optimal mode-independent gain K D ��˛�1 0 �.
Example 3. This example is concerned with a compartmental model with 4 reser-
voirs connected as in Fig. 1. The system state x is a 4-dimensional vector corre-
sponding to the storage of water in the four reservoirs. The signal w is a scalar
disturbance, while the inflows u1 D Œu	1 and u2 D Œu	2 are control inputs
constrained by the assumption that the total control inflow is nonnegative, i.e.
u1 C u2 � 0. The model takes the form

Px.t/ D Ax.t/C Bw.t/C Gu.t/; 1>2 u.t/ � 0
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with

A D

2

6
6
4

�˛1 �21ˇ2 0 0

0 �˛2 0 �42ˇ4
�13ˇ1 �23ˇ2 �˛3 C �33ˇ3 0

�14ˇ1 �24ˇ2 �34ˇ3 �˛4

3

7
7
5
; B D

2

6
6
4

ı1
ı2
0

0

3

7
7
5
; G D

�
I2
0

�

Suppose now that the discharge parameter ˇ2 is subject to sudden fluctuations
between two extreme values ˇ2min and ˇ2max, and the transition is governed by
a Markov process 
.t/ taking values in the set N D f1; 2g. The value 
 D 1

corresponds to ˇ2 D ˇ2max D 0:8 and 
 D 2 corresponds to ˇ2 D ˇ2min D 0.
The compartmental system can now be modeled by the PMJLS

Px.t/ D A
.t/x.t/C Bw.t/C Gu.t/; 1>2 u.t/ � 0 (100)

where A1 and A2 are obtained by simply putting either ˇ2 D ˇ2max or ˇ2 D ˇ2min in
the expression of matrix A. The other coefficients are as follows:

˛1 D ˛2 D ˛3 D ˛4 D 1; ˇ1 D ˇ3 D ˇ4 D 1
�13 D �14 D 0:5; �21 D �23 D �24 D 1=3
�33 D 0:2; �34 D 0:4; �42 D 0:5; ı1 D ı2 D 0:5

Assume that the transition rate matrix of the Markov process 
.t/ is

� D
��0:1 0:1

0:5 �0:5
�

We will focus on the time evolution of the entire state, i.e. z.t/ D x.t/. We first
aim at finding the mode-dependent control law u.t/ D K
.t/x.t/ that minimizes
the L1-induced norm from w to z, under the constraint u1 C u2 � 0, that can be
enforced by

1>2 Ki � 0; i D 1; 2 (101)

As discussed in Sect. 2.2, the closed-loop L1-induced norm is

J1.K/ D sup
t�0

max
k

EŒŒx.t/	k	

obtained for w.t/ D 1, t � 0. Theorem 2 has been applied along with the
minimization of the guaranteed cost �, by also adding to (44)–(47) the additional
linear constraint (101) in the form

1>2 hp
i � 0; i D 1; 2; p D 1; 2; 3; 4
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The result is given by (48), namely

K1 D
��367:61 519:95 0 0:083

367:61 �519:95 0 �0:083
�

; K2 D
��247190:12 1250:79 0 0:21

247190:12 �1250:79 0 �0:21
�

and the optimal attenuation level is � D 0:67. Notice that the open-loop system
(K1 D K2 D 0) is M-stable and its L1-induced norm is � D 0:74. Hence, through
a mode-dependent feedback a 10% improvement has been achieved.

For mode-independent control, one can resort to Theorem 10, by searching K
in the convex hull of matrices K1 and K2 computed above and minimizing the
L1-induced norm. The optimal K in this set is K D K1 yielding � D 0:81. As
apparent, this value is greater than the one provided by the null gain. Thus, in this
example, the minimax approach with the given Ki does not lead to an improvement
with respect to open-loop.

Turn now to the L1-induced norm. The system disturbance is scalar and hence
the optimal value of the attenuation level attainable via mode-dependent control can
be found by minimizing � using Theorem 3. The worst disturbance, as discussed in
Sect. 2.3, is w.t/ D ı.t/ and

J1.K/ D E

�Z 1

0

1>4 x.t/dt

�

is minimized with

K1 D
"

�298:39 310042:80 0 0:02

298:39 �310042:80 0 �0:02

#

; K2 D
"

�310117:93 1624:47 0 0:02

310117:93 �1624:47 0 �0:02

#

yielding the optimal attenuation level is � D 2:30. In Fig. 2, 20 realizations of
the closed-loop impulse response under mode-dependent L1 optimal control are
plotted, together with the transient of the expected value.

As for the mode-independent control, again one can look at the convex hull of
matrices K1 and K2 and minimize the L1-induced norm. The result is K D K2, to
which corresponds � D 2:48. Notice that in open-loop the system is M-stable and
the L1-induced norm is � D 2:52. Therefore in this case the minimax approach
leads to a slight improvement with respect to open-loop.

6 Concluding Remarks

In this paper, several issues concerning state-feedback design for M-stabilization
and norm optimization for the class of Positive Markov Jump Linear Systems
have been addressed. In particular, full parametrization of the feedback gains
for both mode-dependent and mode-independent stabilization and L1 control
as been provided. Remarkably, in the mode-dependent and in the single-input
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Fig. 2 Plot of 20 realizations of the mode-dependent closed-loop impulse response. The red
curves represent the transient of the expected value

mode-independent cases, the parametrization is obtained through Linear Program-
ming. Various problems are still to be more deeply understood, e.g. the multi-
disturbance L1 control and the multi-input mode-independent L1 and L1 design.
Moreover, how to extend, via convex programming, the above treatment to mean
square stability and L2-induced norm, while preserving positivity, is still an open
problem that deserves further investigation. A main difficulty in extending the theory
for deterministic positive systems developed in [16] is the fact that the existence of
diagonal solutions of the coupled Lyapunov-Metzler inequalities is not a necessary
condition for mean square stability. Finally, following [15] in the deterministic case,
an interesting open problem is to design output-feedback controllers for PMJLS
forcing positivity and prescribed stochastic stability requirements.
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Matrix-Free Convex Optimization Modeling

Steven Diamond and Stephen Boyd

Abstract We introduce a convex optimization modeling framework that transforms
a convex optimization problem expressed in a form natural and convenient for the
user into an equivalent cone program in a way that preserves fast linear transforms in
the original problem. By representing linear functions in the transformation process
not as matrices, but as graphs that encode composition of linear operators, we arrive
at a matrix-free cone program, i.e., one whose data matrix is represented by a linear
operator and its adjoint. This cone program can then be solved by a matrix-free
cone solver. By combining the matrix-free modeling framework and cone solver,
we obtain a general method for efficiently solving convex optimization problems
involving fast linear transforms.

Keywords Convex optimization • Matrix-free optimization • Conic program-
ming • Optimization modeling

1 Introduction

Convex optimization modeling systems like YALMIP [83], CVX [57], CVXPY
[36], and Convex.jl [106] provide an automated framework for converting a convex
optimization problem expressed in a natural human-readable form into the standard
form required by a solver, calling the solver, and transforming the solution back to
the human-readable form. This allows users to form and solve convex optimization
problems quickly and efficiently. These systems easily handle problems with a
few thousand variables, as well as much larger problems (say, with hundreds of
thousands of variables) with enough sparsity structure, which generic solvers can
exploit.
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The overhead of the problem transformation, and the additional variables and
constraints introduced in the transformation process, result in longer solve times
than can be obtained with a custom algorithm tailored specifically for the particular
problem. Perhaps surprisingly, the additional solve time (compared to a custom
solver) for a modeling system coupled to a generic solver is often not as much as one
might imagine, at least for modest sized problems. In many cases the convenience of
easily expressing the problem makes up for the increased solve time using a convex
optimization modeling system.

Many convex optimization problems in applications like signal and image
processing, or medical imaging, involve hundreds of thousands or many millions
of variables, and so are well out of the range that current modeling systems can
handle. There are two reasons for this. First, the standard form problem that would
be created is too large to store on a single machine, and second, even if it could
be stored, standard interior-point solvers would be too slow to solve it. Yet many
of these problems are readily solved on a single machine by custom solvers, which
exploit fast linear transforms in the problems. The key to these custom solvers is to
directly use the fast transforms, never forming the associated matrix. For this reason
these algorithms are sometimes referred to as matrix-free solvers.

The literature on matrix-free solvers in signal and image processing is extensive;
see, e.g., [9, 10, 22, 23, 51, 97, 117]. There has been particular interest in matrix-free
solvers for LASSO and basis pursuit denoising problems [10, 24, 42, 46, 74, 108].
Matrix-free solvers have also been developed for specialized control problems
[109, 110]. The most general matrix-free solvers target semidefinite programs [75]
or quadratic programs and related problems [52, 99]. The software closest to a
convex optimization modeling system for matrix-free problems is TFOCS, which
allows users to specify many types of convex problems and solve them using a
variety of matrix-free first-order methods [11].

To better understand the advantages of matrix-free solvers, consider the nonneg-
ative deconvolution problem

minimize kc � x � bk2
subject to x � 0; (1)

where x 2 Rn is the optimization variable, c 2 Rn and b 2 R2n�1 are problem data,
and � denotes convolution. Note that the problem data has size O.n/. There are
many custom matrix-free methods for efficiently solving this problem, with O.n/
memory and a few hundred iterations, each of which costs O.n log n/ floating point
operations (flops). It is entirely practical to solve instances of this problem of size
n D 107 on a single computer [77, 81].

Existing convex optimization modeling systems fall far short of the efficiency
of matrix-free solvers on problem (1). These modeling systems target a standard
form in which a problem’s linear structure is represented as a sparse matrix. As
a result, linear functions must be converted into explicit matrix multiplication. In
particular, the operation of convolving by c will be represented as multiplication by
a .2n�1/�n Toeplitz matrix C. A modeling system will thus transform problem (1)
into the problem



Matrix-Free Convex Optimization Modeling 223

minimize kCx � bk2
subject to x � 0; (2)

as part of the conversion into standard form.
Once the transformation from (1) to (2) has taken place, there is no hope of

solving the problem efficiently. The explicit matrix representation of C requires
O.n2/memory. A typical interior-point method for solving the transformed problem
will take a few tens of iterations, each requiring O.n3/ flops. For this reason
existing convex optimization modeling systems will struggle to solve instances of
problem (1) with n D 104, and when they are able to solve the problem, they will
be dramatically slower than custom matrix-free methods.

The key to matrix-free methods is to exploit fast algorithms for evaluating a linear
function and its adjoint. We call an implementation of a linear function that allows
us to evaluate the function and its adjoint a forward-adjoint oracle (FAO). In this
paper we describe a new algorithm for converting convex optimization problems
into standard form while preserving fast linear functions. (A preliminary version of
this paper appeared in [35].) This yields a convex optimization modeling system
that can take advantage of fast linear transforms, and can be used to solve large
problems such as those arising in image and signal processing and other areas,
with millions of variables. This allows users to rapidly prototype and implement
new convex optimization based methods for large-scale problems. As with current
modeling systems, the goal is not to attain (or beat) the performance of a custom
solver tuned for the specific problem; rather it is to make the specification of the
problem straightforward, while increasing solve times only moderately.

The outline of our paper is as follows. In Sect. 2 we give many examples of
useful FAOs. In Sect. 3 we explain how to compose FAOs so that we can efficiently
evaluate the composition and its adjoint. In Sect. 4 we describe cone programs, the
standard intermediate-form representation of a convex problem, and solvers for cone
programs. In Sect. 5 we describe our algorithm for converting convex optimization
problems into equivalent cone programs while preserving fast linear transforms. In
Sect. 6 we report numerical results for the nonnegative deconvolution problem (1)
and a special type of linear program, for our implementation of the abstract ideas
in the paper, using versions of the existing cone solvers SCS [94] and POGS
[45] modified to be matrix-free. (The main modification was using the matrix-
free equilibration described in [37].) Even with our simple, far from optimized
matrix-free cone solvers, we demonstrate scaling to problems far larger than those
that can be solved by generic methods (based on sparse matrices), with acceptable
performance loss compared to specialized custom algorithms tuned to the problems.

We reserve certain details of our matrix-free canonicalization algorithm for the
appendix. In “Equivalence of the Cone Program” we explain the precise sense in
which the cone program output by our algorithm is equivalent to the original convex
optimization problem. In “Sparse Matrix Representation” we describe how existing
modeling systems generate a sparse matrix representation of the cone program. The
details of this process have never been published, and it is interesting to compare
with our algorithm.



224 S. Diamond and S. Boyd

2 Forward-Adjoint Oracles

A general linear function f W Rn ! Rm can be represented on a computer as a dense
matrix A 2 Rm�n using O.mn/ bytes. We can evaluate f .x/ on an input x 2 Rn

in O.mn/ flops by computing the matrix-vector multiplication Ax. We can likewise
evaluate the adjoint f �.y/ D ATy on an input y 2 Rm in O.mn/ flops by computing
ATy.

Many linear functions arising in applications have structure that allows the
function and its adjoint to be evaluated in fewer than O.mn/ flops or using fewer
than O.mn/ bytes of data. The algorithms and data structures used to evaluate such
a function and its adjoint can differ wildly. It is thus useful to abstract away the
details and view linear functions as forward-adjoint oracles (FAOs), i.e., a tuple
� D .f ; ˚f ; ˚f �/ where f is a linear function, ˚f is an algorithm for evaluating f ,
and ˚f � is an algorithm for evaluating f �. We use n to denote the size of f ’s input
and m to denote the size of f ’s output.

While we focus on linear functions from Rn into Rm, the same techniques can be
used to handle linear functions involving complex arguments or values, i.e., from
Cn into Cm, from Rn into Cm, or from Cn into Rm, using the standard embedding
of complex n-vectors into real 2n-vectors. This is useful for problems in which
complex data arise naturally (e.g., in signal processing and communications), and
also in some cases that involve only real data, where complex intermediate results
appear (typically via an FFT).

2.1 Vector Mappings

We present a variety of FAOs for functions that take as argument, and return, vectors.

Scalar Multiplication Scalar multiplication by ˛ 2 R is represented by the FAO
� D .f ; ˚f ; ˚f �/, where f W Rn ! Rn is given by f .x/ D ˛x. The adjoint f � is
the same as f . The algorithms ˚f and ˚f � simply scale the input, which requires
O.mC n/ flops and O.1/ bytes of data to store ˛. Here m D n.

Multiplication by a Dense Matrix Multiplication by a dense matrix A 2 Rm�n

is represented by the FAO � D .f ; ˚f ; ˚f �/, where f .x/ D Ax. The adjoint
f �.u/ D ATu is also multiplication by a dense matrix. The algorithms˚f and˚f � are
the standard dense matrix multiplication algorithm. Evaluating ˚f and ˚f � requires
O.mn/ flops and O.mn/ bytes of data to store A and AT .

Multiplication by a Sparse Matrix Multiplication by a sparse matrix A 2 Rm�n,
i.e., a matrix with many zero entries, is represented by the FAO � D .f ; ˚f ; ˚f �/,
where f .x/ D Ax. The adjoint f �.u/ D ATu is also multiplication by a sparse
matrix. The algorithms ˚f and ˚f � are the standard algorithm for multiplying by
a sparse matrix in (for example) compressed sparse row format. Evaluating ˚f and
˚f � requires O.nnz.A// flops and O.nnz.A// bytes of data to store A and AT , where
nnz is the number of nonzero elements in a sparse matrix [34, Chap. 2].
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Multiplication by a Low-Rank Matrix Multiplication by a matrix A 2 Rm�n with
rank k, where k � m and k � n, is represented by the FAO � D .f ; ˚f ; ˚f �/,
where f .x/ D Ax. The matrix A can be factored as A D BC, where B 2 Rm�k and
C 2 Rk�n. The adjoint f �.u/ D CTBTu is also multiplication by a rank k matrix.
The algorithm ˚f evaluates f .x/ by first evaluating z D Cx and then evaluating
f .x/ D Bz. Similarly, ˚f � multiplies by BT and then CT . The algorithms ˚f and ˚f �

require O.k.mC n// flops and use O.k.mC n// bytes of data to store B and C and
their transposes. Multiplication by a low-rank matrix occurs in many applications,
and it is often possible to approximate multiplication by a full rank matrix with
multiplication by a low-rank one, using the singular value decomposition or methods
such as sketching [79].

Discrete Fourier Transform The discrete Fourier transform (DFT) is represented
by the FAO � D .f ; ˚f ; ˚f �/, where f W R2p ! R2p is given by

f .x/k D 1p
p

Pp
jD1 Re

�

!
.j�1/.k�1/
p

�

xj � Im
�

!
.j�1/.k�1/
p

�

xjCp

f .x/kCp D 1p
p

Pp
jD1 Im

�

!
.j�1/.k�1/
p

�

xj C Re
�

!
.j�1/.k�1/
p

�

xjCp

for k D 1; : : : ; p. Here !p D e�2� i=p. The adjoint f � is the inverse DFT. The
algorithm ˚f is the fast Fourier transform (FFT), while ˚f � is the inverse FFT. The
algorithms can be evaluated in O..mC n/ log.mC n// flops, using only O.1/ bytes
of data to store the dimensions of f ’s input and output [31, 82]. Here m D n D 2p.
There are many fast transforms derived from the DFT, such as the discrete Hartley
transform [17] and the discrete sine and cosine transforms [2, 86], with the same
computational complexity as the FFT.

Convolution Convolution with a kernel c 2 Rp is defined as f W Rn ! Rm, where

f .x/k D
X

iCjDkC1
cixj; k D 1; : : : ;m: (3)

Different variants of convolution restrict the indices i; j to different ranges, or
interpret vector elements outside their natural ranges as zero or using periodic
(circular) indexing.

Standard (column) convolution takes m D nCp�1, and defines ci and xj in (3) as
zero when the index is outside its range. In this case the associated matrix Col.c/ 2
RnCp�1�n is Toeplitz, with each column a shifted version of c:

Col.c/ D

2

6
6
6
6
6
6
6
6
6
4

c1

c2
: : :

:::
: : : c1

cp c2
: : :

:::

cp

3

7
7
7
7
7
7
7
7
7
5

:



226 S. Diamond and S. Boyd

Another standard form, row convolution, restricts the indices in (3) to the range
k D p; : : : ; n. For simplicity we assume that n � p. In this case the associated
matrix Row.c/ 2 Rn�pC1�n is Toeplitz, with each row a shifted version of c, in
reverse order:

Row.c/ D

2

6
4

cp cp�1 : : : c1
: : :

: : :
: : :

cp cp�1 : : : c1

3

7
5 :

The matrices Col.c/ and Row.c/ are related by the equalities

Col.c/T D Row.rev.c//; Row.c/T D Col.rev.c//;

where rev.c/k D cp�kC1 reverses the order of the entries of c.
Yet another variant on convolution is circular convolution, where we take p D n

and interpret the entries of vectors outside their range modulo n. In this case
the associated matrix Circ.c/ 2 Rn�n is Toeplitz, with each column and row a
(circularly) shifted version of c:

Circ.c/ D

2

6
6
6
6
6
6
6
6
6
6
4

c1 cn cn�1 : : : : : : c2

c2 c1 cn
: : :

:::

c3 c2
: : :

: : :
: : :

:::
:::
: : :

: : :
: : : cn cn�1

:::
: : : c2 c1 cn

cn : : : : : : c3 c2 c1

3

7
7
7
7
7
7
7
7
7
7
5

:

Column convolution with c 2 Rp is represented by the FAO � D .f ; ˚f ; ˚f �/,
where f W Rn ! RnCp�1 is given by f .x/ D Col.c/x. The adjoint f � is row
convolution with rev.c/, i.e., f �.u/ D Row.rev.c//u. The algorithms ˚f and ˚f �

are given in Algorithms 1 and 2, and require O..mC nC p/ log.mC nC p// flops.
Here m D n C p � 1. If the kernel is small (i.e., p � n), ˚f and ˚f � instead
evaluate (3) directly in O.np/ flops. In either case, the algorithms ˚f and ˚f � use
O.p/ bytes of data to store c and rev.c/ [30, 82].

Circular convolution with c 2 Rn is represented by the FAO � D .f ; ˚f ; ˚f �/,
where f W Rn ! Rn is given by f .x/ D Circ.c/x. The adjoint f � is circular
convolution with

Qc D

2

6
6
6
6
6
4

c1
cn

cn�1
:::

c2

3

7
7
7
7
7
5

:
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Algorithm 1 Column convolution c � x

Precondition: c 2 Rp is a length p array. x 2 Rn is a length n array. y 2 RnCp�1 is a length
nC p� 1 array.

Extend c and x into length nC p� 1 arrays by appending zeros.
Oc FFT of c.
Ox FFT of x.
for i D 1; : : : ; nC p� 1 do

yi  OciOxi.
end for
y inverse FFT of y.

Postcondition: y D c � x.

Algorithm 2 Row convolution c � u

Precondition: c 2 Rp is a length p array. u 2 RnCp�1 is a length nC p � 1 array. v 2 Rn is a
length n array.

Extend rev.c/ and v into length nC p� 1 arrays by appending zeros.
Oc inverse FFT of zero-padded rev.c/.
Ou FFT of u.
for i D 1; : : : ; nC p� 1 do

vi  Oci Oui.
end for
v inverse FFT of v.
Reduce v to a length n array by removing the last p� 1 entries.

Postcondition: v D c � u.

Algorithm 3 Circular convolution c � x
Precondition: c 2 Rn is a length n array. x 2 Rn is a length n array. y 2 Rn is a length n array.

Oc FFT of c.
Ox FFT of x.
for i D 1; : : : ; n do

yi  OciOxi.
end for
y inverse FFT of y.

Postcondition: y D c � x.
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The algorithms ˚f and ˚f � are given in Algorithm 3, and require O..m C n/ log
.mCn// flops. The algorithms ˚f and ˚f � use O.mCn/ bytes of data to store c and
Qc [30, 82]. Here m D n.

Discrete Wavelet Transform The discrete wavelet transform (DWT) for orthog-
onal wavelets is represented by the FAO � D .f ; ˚f ; ˚f �/, where the function
f W R2p ! R2p

is given by

f .x/ D
2

4

D1G1

D1H1

I2p�2

3

5 � � �
2

4

Dp�1Gp�1
Dp�1Hp�1

I2p�1

3

5

�
DpGp

DpHp

�

x; (4)

where Dk 2 R2k�1�2k
is defined such that .Dkx/i D x2i and the matrices Gk 2 R2k�2k

and Hk 2 R2k�2k
are given by

Gk D Circ
��

g
0

��

; Hk D Circ
��

h
0

��

:

Here g 2 Rq and h 2 Rq are low and high pass filters, respectively, that parameterize
the DWT. The adjoint f � is the inverse DWT. The algorithms ˚f and ˚�f repeatedly
convolve by g and h, which requires O.q.m C n// flops and uses O.q/ bytes to
store h and g [85]. Here m D n D 2p. Common orthogonal wavelets include the
Haar wavelet and the Daubechies wavelets [32, 33]. There are many variants on the
particular DWT described here. For instance, the product in (4) can be terminated
after fewer than p multiplications by Gk and Hk [70], Gk and Hk can be defined as a
different type of convolution matrix, or the filters g and h can be different lengths,
as in biorthogonal wavelets [28].

Discrete Gauss Transform The discrete Gauss transform (DGT) is represented
by the FAO � D .fY;Z;h; ˚f ; ˚f �/, where the function fY;Z;h W Rn ! Rm is
parameterized by Y 2 Rm�d, Z 2 Rn�d, and h > 0. The function fY;Z;h is given by

fY;Z;h.x/i D
nX

jD1
exp.�kyi � zjk2=h2/xj; i D 1; : : : ;m;

where yi 2 Rd is the ith column of Y and zj 2 Rd is the jth column of Z. The adjoint
of fY;Z;h is the DGT fZ;Y;h. The algorithms ˚f and ˚f � are the improved fast Gauss
transform, which evaluates f .x/ and f �.u/ to a given accuracy in O.dp.m C n//
flops. Here p is a parameter that depends on the accuracy desired. The algorithms
˚f and ˚f � use O.d.mC n// bytes of data to store Y , Z, and h [114]. An interesting
application of the DGT is efficient multiplication by a Gaussian kernel [113].

Multiplication by the Inverse of a Sparse Triangular Matrix Multiplication by
the inverse of a sparse lower triangular matrix L 2 Rn�n with nonzero elements
on its diagonal is represented by the FAO � D .f ; ˚f ; ˚f �/, where f .x/ D L�1x.
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The adjoint f �.u/ D .LT/�1u is multiplication by the inverse of a sparse upper
triangular matrix. The algorithms ˚f and ˚f � are forward and backward substitu-
tion, respectively, which require O.nnz.L// flops and use O.nnz.L// bytes of data
to store L and LT [34, Chap. 3].

Multiplication by a Pseudo-Random Matrix Multiplication by a matrix A 2
Rm�n whose columns are given by a pseudo-random sequence (i.e., the first m values
of the sequence are the first column of A, the next m values are the second column
of A, etc.) is represented by the FAO � D .f ; ˚f ; ˚f �/, where f .x/ D Ax. The
adjoint f �.u/ D ATu is multiplication by a matrix whose rows are given by a
pseudo-random sequence (i.e., the first m values of the sequence are the first row
of AT , the next m values are the second row of AT , etc.). The algorithms ˚f and
˚f � are the standard dense matrix multiplication algorithm, iterating once over the
pseudo-random sequence without storing any of its values. The algorithms require
O.mn/ flops and use O.1/ bytes of data to store the seed for the pseudo-random
sequence. Multiplication by a pseudo-random matrix might appear, for example, as
a measurement ensemble in compressed sensing [50].

Multiplication by the Pseudo-Inverse of a Graph Laplacian Multiplication by
the pseudo-inverse of a graph Laplacian matrix L 2 Rn�n is represented by the FAO
� D .f ; ˚f ; ˚f �/, where f .x/ D L�x. A graph Laplacian is a symmetric matrix with
nonpositive off diagonal entries and the property L1 D 0, i.e., the diagonal entry in a
row is the negative sum of the off-diagonal entries in that row. (This implies that it is
positive semidefinite.) The adjoint f � is the same as f , since L D LT . The algorithms
˚f and ˚f � are one of the fast solvers for graph Laplacian systems that evaluate
f .x/ D f �.x/ to a given accuracy in around O.nnz.L// flops [73, 101, 111]. (The
details of the computational complexity are much more involved.) The algorithms
use O.nnz.L// bytes of data to store L.

2.2 Matrix Mappings

We now consider linear functions that take as argument, or return, matrices. We take
the standard inner product on matrices X;Y 2 Rp�q,

hX;Yi D
X

iD1;:::;p; jD1;:::;q
XijYij D Tr.XTY/:

The adjoint of a linear function f W Rp�q ! Rs�t is then the function f � W Rs�t !
Rp�q for which

Tr.f .X/TY/ D Tr.XTf �.Y//;

holds for all X 2 Rp�q and Y 2 Rs�t.
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Vec and Mat The function vec W Rp�q ! Rpq is represented by the FAO � D
.f ; ˚f ; ˚f �/, where f .X/ converts the matrix X 2 Rp�q into a vector y 2 Rpq by
stacking the columns. The adjoint f � is the function mat W Rpq ! Rp�q, which
outputs a matrix whose columns are successive slices of its vector argument. The
algorithms ˚f and ˚f � simply reinterpret their input as a differently shaped output
in O.1/ flops, using only O.1/ bytes of data to store the dimensions of f ’s input and
output.

Sparse Matrix Mappings Many common linear functions on and to matrices are
given by a sparse matrix multiplication of the vectorized argument, reshaped as the
output matrix. For X 2 Rp�q and f .X/ D Y 2 Rs�t,

Y D mat.A vec.X//:

The form above describes the general linear mapping from Rp�q to Rs�t; we
are interested in cases when A is sparse, i.e., has far fewer than pqst nonzero
entries. Examples include extracting a submatrix, extracting the diagonal, forming
a diagonal matrix, summing the rows or columns of a matrix, transposing a matrix,
scaling its rows or columns, and so on. The FAO representation of each such
function is � D .f ; ˚f ; ˚f �/, where f is given above and the adjoint is given by

f �.U/ D mat.AT vec.U//:

The algorithms ˚f and ˚f � are the standard algorithms for multiplying a vector
by a sparse matrix in (for example) compressed sparse row format. The algorithms
require O.nnz.A// flops and use O.nnz.A// bytes of data to store A and AT [34,
Chap. 2].

Matrix Product Multiplication on the left by a matrix A 2 Rs�p and on the right by
a matrix B 2 Rq�t is represented by the FAO � D .f ; ˚f ; ˚f �/, where f W Rp�q !
Rs�t is given by f .X/ D AXB. The adjoint f �.U/ D ATUBT is also a matrix product.
There are two ways to implement ˚f efficiently, corresponding to different orders
of operations in multiplying out AXB. In one method we multiply by A first and B
second, for a total of O.s.pqC qt// flops (assuming that A and B are dense). In the
other method we multiply by B first and A second, for a total of O.p.qtC st// flops.
The former method is more efficient if

1

t
C 1

p
<
1

s
C 1

q
:

Similarly, there are two ways to implement ˚f � , one requiring O.s.pqC qt// flops
and the other requiring O.p.qtCst// flops. The algorithms˚f and˚f � use O.spCqt/
bytes of data to store A and B and their transposes. When p D q D s D t, the flop
count for ˚f and ˚f � simplifies to O

	

.mC n/1:5



flops. Here m D n D pq. (When
the matrices A or B are sparse, evaluating f .X/ and f �.U/ can be done even more
efficiently.) The matrix product function is used in Lyapunov and algebraic Riccati
inequalities and Sylvester equations, which appear in many problems from control
theory [49, 110].
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2-D Discrete Fourier Transform The 2-D DFT is represented by the FAO � D
.f ; ˚f ; ˚f �/, where f W R2p�q ! R2p�q is given by

f .X/k` D 1p
pq

Pp
sD1

Pq
tD1 Re

�

!
.s�1/.k�1/
p !

.t�1/.`�1/
q

�

Xst

�Im
�

!
.s�1/.k�1/
p !

.t�1/.`�1/
q

�

XsCp;t

f .X/kCp;` D 1p
pq

Pp
sD1

Pq
tD1 Im

�

!
.s�1/.k�1/
p !

.t�1/.`�1/
q

�

Xst

CRe
�

!
.s�1/.k�1/
p !

.t�1/.`�1/
q

�

XsCp;t;

for k D 1; : : : ; p and ` D 1; : : : ; q. Here !p D e�2� i=p and !q D e�2� i=q. The
adjoint f � is the inverse 2-D DFT. The algorithm ˚f evaluates f .X/ by first applying
the FFT to each row of X, replacing the row with its DFT, and then applying the FFT
to each column, replacing the column with its DFT. The algorithm˚f � is analogous,
but with the inverse FFT and inverse DFT taking the role of the FFT and DFT. The
algorithms ˚f and ˚f � require O..mC n/ log.mC n// flops, using only O.1/ bytes
of data to store the dimensions of f ’s input and output [80, 82]. Here m D n D 2pq.

2-D Convolution 2-D convolution with a kernel C 2 Rp�q is defined as f W Rs�t !
Rm1�m2 , where

f .X/k` D
X

i1Ci2DkC1;j1Cj2D`C1
Ci1j1Xi2j2 ; k D 1; : : : ;m1; ` D 1; : : : ;m2: (5)

Different variants of 2-D convolution restrict the indices i1; j1 and i2; j2 to different
ranges, or interpret matrix elements outside their natural ranges as zero or using
periodic (circular) indexing. There are 2-D analogues of 1-D column, row, and
circular convolution.

Standard 2-D (column) convolution, the analogue of 1-D column convolution,
takes m1 D s C p � 1 and m2 D t C q � 1, and defines Ci1j1 and Xi2j2 in (5) as
zero when the indices are outside their range. We can represent the 2-D column
convolution Y D C � X as the matrix multiplication

Y D mat.Col.C/ vec.X//;

where Col.C/ 2 R.sCp�1/.tCq�1/�st is given by:

Col.C/ D

2

6
6
6
6
6
6
6
6
6
4

Col.c1/

Col.c2/
: : :

:::
: : : Col.c1/

Col.cq/ Col.c2/
: : :

:::

Col.cq/

3

7
7
7
7
7
7
7
7
7
5

:
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Here c1; : : : ; cq 2 Rp are the columns of C and Col.c1/; : : : ;Col.cq/ 2 RsCp�1�s

are 1-D column convolution matrices.
The 2-D analogue of 1-D row convolution restricts the indices in (5) to the range

k D p; : : : ; s and ` D q; : : : ; t. For simplicity we assume s � p and t � q. The
output dimensions are m1 D s � pC 1 and m2 D t � qC 1. We can represent the
2-D row convolution Y D C � X as the matrix multiplication

Y D mat.Row.C/ vec.X//;

where Row.C/ 2 R.s�pC1/.t�qC1/�st is given by:

Row.C/ D

2

6
4

Row.cq/ Row.cq�1/ : : : Row.c1/
: : :

: : :
: : :

Row.cq/ Row.cq�1/ : : : Row.c1/

3

7
5 :

Here Row.c1/; : : : ;Row.cq/ 2 Rs�pC1�s are 1-D row convolution matrices. The
matrices Col.C/ and Row.C/ are related by the equalities

Col.C/T D Row.rev.C//; Row.C/T D Col.rev.C//;

where rev.C/k` D Cp�kC1;q�`C1 reverses the order of the columns of C and of the
entries in each row.

In the 2-D analogue of 1-D circular convolution, we take p D s and q D t
and interpret the entries of matrices outside their range modulo s for the row index
and modulo t for the column index. We can represent the 2-D circular convolution
Y D C � X as the matrix multiplication

Y D mat.Circ.C/ vec.X//;

where Circ.C/ 2 Rst�st is given by:

Circ.C/ D

2

6
6
6
6
6
6
6
6
6
6
4

Circ.c1/ Circ.ct/ Circ.ct�1/ : : : : : : Circ.c2/

Circ.c2/ Circ.c1/ Circ.ct/
: : :

:::

Circ.c3/ Circ.c2/
: : :

: : :
: : :

:::
:::

: : :
: : :

: : : Circ.ct/ Circ.ct�1/
:::

: : : Circ.c2/ Circ.c1/ Circ.ct/

Circ.ct/ : : : : : : Circ.c3/ Circ.c2/ Circ.c1/

3

7
7
7
7
7
7
7
7
7
7
5

:

Here Circ.c1/; : : : ;Circ.ct/ 2 Rs�s are 1-D circular convolution matrices.
2-D column convolution with C 2 Rp�q is represented by the FAO � D

.f ; ˚f ; ˚f �/, where f W Rs�t ! RsCp�1�tCq�1 is given by

f .X/ D mat.Col.C/ vec.X//:
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The adjoint f � is 2-D row convolution with rev.C/, i.e.,

f �.U/ D mat.Row.rev.C// vec.U//:

The algorithms ˚f and ˚f � are given in Algorithms 4 and 5, and require O..m C
n/ log.mCn// flops. Here m D .sCp�1/.tCq�1/ and n D st. If the kernel is small
(i.e., p� s and q� t), ˚f and ˚f � instead evaluate (5) directly in O.pqst/ flops. In
either case, the algorithms ˚f and˚f � use O.pq/ bytes of data to store C and rev.C/
[82, Chap. 4]. Often the kernel is parameterized (e.g., a Gaussian kernel), in which
case more compact representations of C and rev.C/ are possible [44, Chap. 7].

Algorithm 4 2-D column convolution C � X

Precondition: C 2 Rp�q is a length pq array. X 2 Rs�t is a length st array. Y 2 RsCp�1�tCq�1

is a length .sC p� 1/.tC q� 1/ array.

Extend the columns and rows of C and X with zeros so C;X 2 RsCp�1�tCq�1.
OC 2-D DFT of C.
OX 2-D DFT of X.

for i D 1; : : : ; sC p� 1 do
for j D 1; : : : ; tC q� 1 do

Yij  OCij OXij.
end for

end for
Y  inverse 2-D DFT of Y .

Postcondition: Y D C � X.

Algorithm 5 2-D row convolution C � U

Precondition: C 2 Rp�q is a length pq array. U 2 RsCp�1�tCq�1 is a length .sCp�1/.tCq�1/
array. V 2 Rs�t is a length st array.

Extend the columns and rows of rev.C/ and V with zeros so rev.C/;V 2 RsCp�1�tCq�1.
OC inverse 2-D DFT of zero-padded rev.C/.
OU 2-D DFT of U.

for i D 1; : : : ; sC p� 1 do
for j D 1; : : : ; tC q� 1 do

Vij  OCij OUij.
end for

end for
V  inverse 2-D DFT of V .
Truncate the rows and columns of V so that V 2 Rs�t.

Postcondition: V D C � U.
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Algorithm 6 2-D circular convolution C � X
Precondition: C 2 Rs�t is a length st array. X 2 Rs�t is a length st array. Y 2 Rs�t is a length st

array.

OC 2-D DFT of C.
OX 2-D DFT of X.

for i D 1; : : : ; s do
for j D 1; : : : ; t do

Yij  OCij OXij.
end for

end for
Y  inverse 2-D DFT of Y .

Postcondition: Y D C � X.

2-D circular convolution with C 2 Rs�t is represented by the FAO � D
.f ; ˚f ; ˚f �/, where f W Rs�t ! Rs�t is given by

f .X/ D mat.Circ.C/ vec.X//:

The adjoint f � is 2-D circular convolution with

QC D

2

6
6
6
6
6
4

C1;1 C1;t C1;t�1 : : : C1;2
Cs;1 Cs;t Cs;t�1 : : : Cs;2

Cs�1;1 Cs�1;t Cs�1;t�1 : : : Cs�1;2
:::

:::
:::

: : :
:::

C2;1 C2;t C2;t�1 : : : C2;2

3

7
7
7
7
7
5

:

The algorithms ˚f and ˚f � are given in Algorithm 6, and require O..m C n/ log
.m C n// flops. The algorithms ˚f and ˚f � use O.m C n/ bytes of data to store C
and QC [82, Chap. 4]. Here m D n D st.

2-D Discrete Wavelet Transform The 2-D DWT for separable, orthogonal
wavelets is represented by the FAO � D .f ; ˚f ; ˚f �/, where f W R2p�2p ! R2p�2p

is given by

f .X/ij D Wk � � �Wp�1WpXWT
p WT

p�1 � � �WT
k ;

where k D maxfdlog2.i/e; dlog2.j/e; 1g and Wk 2 R2p�2p
is given by

Wk D
2

4

DkGk

DkHk

I

3

5 :
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Here Dk, Gk, and Hk are defined as for the 1-D DWT. The adjoint f � is the inverse
2-D DWT. As in the 1-D DWT, the algorithms ˚f and ˚f � repeatedly convolve by
the filters g 2 Rq and h 2 Rq, which requires O.q.mCn// flops and uses O.q/ bytes
of data to store g and h [70]. Here m D n D 2p. There are many alternative wavelet
transforms for 2-D data; see, e.g., [20, 38, 69, 102].

2.3 Multiple Vector Mappings

In this section we consider linear functions that take as argument, or return, multiple
vectors. (The idea is readily extended to the case when the arguments or return
values are matrices.) The adjoint is defined by the inner product

h.x1; : : : ; xk/; .y1; : : : ; yk/i D
kX

iD1
hxi; yii D

kX

iD1
xT

i yi:

The adjoint of a linear function f W Rn1 � � � � � Rnk ! Rm1 � � � � � Rm` is then the
function f � W Rm1 � � � � � Rm` ! Rn1 � � � � � Rnk for which

X̀

iD1
f .x1; : : : ; xk/

T
i yi D

kX

iD1
xT

i f �.y1; : : : ; y`/i;

holds for all .x1; : : : ; xk/ 2 Rn1 � � � � �Rnk and .y1; : : : ; y`/ 2 Rm1 � � � � �Rm` . Here
f .x1; : : : ; xk/i and f �.y1; : : : ; y`/i refer to the ith output of f and f �, respectively.

Sum and Copy The function sum W Rm � � � � � Rm ! Rm with k inputs is
represented by the FAO � D .f ; ˚f ; ˚f �/, where f .x1; : : : ; xk/ D x1 C � � � C xk.
The adjoint f � is the function copy W Rm ! Rm � � � � � Rm, which outputs k copies
of its input. The algorithms ˚f and ˚f � require O.m C n/ flops to sum and copy
their input, respectively, using only O.1/ bytes of data to store the dimensions of f ’s
input and output. Here n D km.

Vstack and Split The function vstack W Rm1 � � � � � Rmk ! Rn is represented
by the FAO � D .f ; ˚f ; ˚f �/, where f .x1; : : : ; xk/ concatenates its k inputs into a
single vector output. The adjoint f � is the function split W Rn ! Rm1 � � � � � Rmk ,
which divides a single vector into k separate components. The algorithms ˚f and
˚f � simply reinterpret their input as a differently sized output in O.1/ flops, using
only O.1/ bytes of data to store the dimensions of f ’s input and output. Here n D
m D m1 C � � � C mk.
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2.4 Additional Examples

The literature on fast linear transforms goes far beyond the preceding examples.
In this section we highlight a few notable omissions. Many methods have been
developed for matrices derived from physical systems. The multigrid [62] and
algebraic multigrid [18] methods efficiently apply the inverse of a matrix repre-
senting discretized partial differential equations (PDEs). The fast multipole method
accelerates multiplication by matrices representing pairwise interactions [21, 59],
much like the fast Gauss transform [60]. Hierarchical matrices are a matrix format
that allows fast multiplication by the matrix and its inverse, with applications to
discretized integral operators and PDEs [14, 63, 64].

Many approaches exist for factoring an invertible sparse matrix into a product
of components whose inverses can be applied efficiently, yielding a fast method for
applying the inverse of the matrix [34, 41]. A sparse LU factorization, for instance,
decomposes an invertible sparse matrix A 2 Rn�n into the product A D LU of a
lower triangular matrix L 2 Rn�n and an upper triangular matrix U 2 Rn�n. The
relationship between nnz.A/, nnz.L/, and nnz.U/ is complex and depends on the
factorization algorithm [34, Chap. 6].

We only discussed 1-D and 2-D DFTs and convolutions, but these and related
transforms can be extended to arbitrarily many dimensions [40, 82]. Similarly, many
wavelet transforms naturally operate on data indexed by more than two dimensions
[76, 84, 116].

3 Compositions

In this section we consider compositions of FAOs. In fact we have already
discussed several linear functions that are naturally and efficiently represented
as compositions, such as multiplication by a low-rank matrix and sparse matrix
mappings. Here though we present a data structure and algorithm for efficiently
evaluating any composition and its adjoint, which gives us an FAO representing the
composition.

A composition of FAOs can be represented using a directed acyclic graph (DAG)
with exactly one node with no incoming edges (the start node) and exactly one node
with no outgoing edges (the end node). We call such a representation an FAO DAG.

Each node in the FAO DAG stores the following attributes:

• An FAO � D .f ; ˚f ; ˚f �/. Concretely, f is a symbol identifying the function,
and ˚f and ˚f � are executable code.

• The data needed to evaluate ˚f and ˚f � .
• A list Ein of incoming edges.
• A list Eout of outgoing edges.
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Fig. 1 The FAO DAG for
f .x/ D AxC Bx

copy

A B

sum

Each edge has an associated array. The incoming edges to a node store the arguments
to the node’s FAO. When the FAO is evaluated, it writes the result to the node’s
outgoing edges. Matrix arguments and outputs are stored in column-major order on
the edge arrays.

As an example, Fig. 1 shows the FAO DAG for the composition f .x/ D AxCBx,
where A 2 Rm�n and B 2 Rm�n are dense matrices. The copy node duplicates the
input x 2 Rn into the multi-argument output .x; x/ 2 Rn � Rn. The A and B nodes
multiply by A and B, respectively. The sum node sums two vectors together. The
copy node is the start node, and the sum node is the end node. The FAO DAG
requires O.mn/ bytes to store, since the A and B nodes store the matrices A and B
and their transposes. The edge arrays also require O.mn/ bytes of memory.

3.1 Forward Evaluation

To evaluate the composition f .x/ D AxC Bx using the FAO DAG in Fig. 1, we first
evaluate the start node on the input x 2 Rn, which copies x onto both outgoing edges.
We evaluate the A and B nodes (serially or in parallel) on their incoming edges, and
write the results (Ax and Bx) to their outgoing edges. Finally, we evaluate the end
node on its incoming edges to obtain the result AxC Bx.

The general procedure for evaluating an FAO DAG is given in Algorithm 7. The
algorithm evaluates the nodes in a topological order. The total flop count is the sum
of the flops from evaluating the algorithm ˚f on each node. If we allocate all scratch
space needed by the FAO algorithms in advance, then no memory is allocated during
the algorithm.

3.2 Adjoint Evaluation

Given an FAO DAG G representing a function f , we can easily generate an FAO
DAG G� representing the adjoint f �. We modify each node in G, replacing the
node’s FAO .f ; ˚f ; ˚f �/ with the FAO .f �; ˚f � ; ˚f / and swapping Ein and Eout.
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Algorithm 7 Evaluate an FAO DAG
Precondition: G D .V;E/ is an FAO DAG representing a function f . V is a list of nodes. E is a

list of edges. I is a list of inputs to f . O is a list of outputs from f . Each element of I and O is
represented as an array.

Create edges whose arrays are the elements of I and save them as the list of incoming edges for
the start node.
Create edges whose arrays are the elements of O and save them as the list of outgoing edges for
the end node.
Create an empty queue Q for nodes that are ready to evaluate.
Create an empty set S for nodes that have been evaluated.
Add G’s start node to Q.
while Q is not empty do

u pop the front node of Q.
Evaluate u’s algorithm ˚f on u’s incoming edges, writing the result to u’s outgoing edges.
Add u to S.
for each edge e D .u; v/ in u’s Eout do

if for all edges .p; v/ in v’s Ein, p is in S then
Add v to the end of Q.

end if
end for

end while

Postcondition: O contains the outputs of f applied to inputs I.

Fig. 2 The FAO DAG for
f �.u/ D AT uC BT u obtained
by transforming the FAO
DAG in Fig. 1

sum

AT BT

copy

We also reverse the orientation of each edge in G. We can apply Algorithm 7
to the resulting graph G� to evaluate f �. Figure 2 shows the FAO DAG in Fig. 1
transformed into an FAO DAG for the adjoint.

3.3 Parallelism

Algorithm 7 can be easily parallelized, since the nodes in the ready queue Q can
be evaluated in any order. A simple parallel implementation could use a thread pool
with t threads to evaluate up to t nodes in the ready queue at a time. The evaluation
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of individual nodes can also be parallelized by replacing a node’s algorithm ˚f with
a parallel variant. For example, the standard algorithms for dense and sparse matrix
multiplication have simple parallel variants.

The extent to which parallelism speeds up evaluation of an FAO DAG is difficult
to predict. Naive parallel evaluation may be slower than serial evaluation due to
communication costs and other overhead. Achieving a perfect parallel speed-up
would require sophisticated analysis of the DAG to determine which aspects of the
algorithm to parallelize, and may only be possible for highly structured DAGs like
one describing a block matrix [54].

3.4 Optimizing the DAG

The FAO DAG can often be transformed so that the output of Algorithm 7 is
the same but the algorithm is executed more efficiently. Such optimizations are
especially important when the FAO DAG will be evaluated on many different inputs
(as will be the case for matrix-free solvers, to be discussed later). For example,
the FAO DAG representing f .x/ D ABx C ACx where A;B;C 2 Rn�n, shown in
Fig. 3, can be transformed into the FAO DAG in Fig. 4, which requires one fewer
multiplication by A. The transformation is equivalent to rewriting f .x/ D ABxCACx
as f .x/ D A.BxCCx/. Many other useful graph transformations can be derived from
the rewriting rules used in program analysis and code generation [3].

Sometimes graph transformations will involve pre-computation. For example, if
two nodes representing the composition f .x/ D bTcx, where b; c 2 Rn, appear in
an FAO DAG, the DAG can be made more efficient by evaluating ˛ D bTc and
replacing the two nodes with a single node for scalar multiplication by ˛.

The optimal rewriting of a DAG will depend on the hardware and overall
architecture on which the multiplication algorithm is being run. For example, if the

Fig. 3 The FAO DAG for
f .x/ D ABxC ACx

copy

B C

A A

sum
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Fig. 4 The FAO DAG for
f .x/ D A.BxC Cx/

copy

B C

sum

A

algorithm is being run on a distributed computing cluster then a node representing
multiplication by a large matrix

A D
�

A11 A12
A21 A22

�

;

could be split into separate nodes for each block, with the nodes stored on
different computers. This rewriting would be necessary if the matrix A is so large
it cannot be stored on a single machine. The literature on optimizing compilers
suggests many approaches to optimizing an FAO DAG for evaluation on a particular
architecture [3].

3.5 Reducing the Memory Footprint

In a naive implementation, the total bytes needed to represent an FAO DAG G, with
node set V and edge set E, is the sum of the bytes of data on each node u 2 V and
the bytes of memory needed for the array on each edge e 2 E. A more sophisticated
approach can substantially reduce the memory needed. For example, when the same
FAO occurs more than once in V , duplicate nodes can share data.

We can also reuse memory across edge arrays. The key is determining which
arrays can never be in use at the same time during Algorithm 7. An array for an
edge .u; v/ is in use if node u has been evaluated but node v has not been evaluated.
The arrays for edges .u1; v1/ and .u2; v2/ can never be in use at the same time if
and only if there is a directed path from v1 to u2 or from v2 to u1. If the sequence
in which the nodes will be evaluated is fixed, rather than following an unknown
topological ordering, then we can say precisely which arrays will be in use at the
same time.
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After we determine which edge arrays may be in use at the same time, the next
step is to map the edge arrays onto a global array, keeping the global array as small
as possible. Let L.e/ denote the length of edge e’s array and U 	 E � E denote the
set of pairs of edges whose arrays may be in use at the same time. Formally, we
want to solve the optimization problem

minimize max
e2E
fze C L.e/g

subject to Œze; ze C L.e/ � 1	 \ Œzf ; zf C L.f / � 1	 D ;; .e; f / 2 U
ze 2 f1; 2; : : :g; e 2 E;

(6)

where the ze are the optimization variables and represent the index in the global
array where edge e’s array begins.

When all the edge arrays are the same length, problem (6) is equivalent to finding
the chromatic number of the graph with vertices E and edges U. Problem (6) is
thus NP-hard in general [72]. A reasonable heuristic for problem (6) is to first find
a graph coloring of .E;U/ using one of the many efficient algorithms for finding
graph colorings that use a small number of colors; see, e.g., [19, 65]. We then have
a mapping � from colors to sets of edges assigned to the same color. We order the
colors arbitrarily as c1; : : : ; ck and assign the ze as follows:

ze D
8

<

:

1; e 2 �.c1/
max

f2�.ci�1/
fzf C L.f /g; e 2 �.ci/; i > 1:

Additional optimizations can be made based on the unique characteristics of
different FAOs. For example, the outgoing edges from a copy node can share the
incoming edge’s array until the outgoing edges’ arrays are written to (i.e., copy-
on-write). Another example is that the outgoing edges from a split node can point
to segments of the array on the incoming edge. Similarly, the incoming edges on a
vstack node can point to segments of the array on the outgoing edge.

3.6 Software Implementations

Several software packages have been developed for constructing and evaluating
compositions of linear functions. The MATLAB toolbox SPOT allows users to
construct expressions involving both fast transforms, like convolution and the
DFT, and standard matrix multiplication [66]. TFOCS, a framework in MATLAB
for solving convex problems using a variety of first-order algorithms, provides
functionality for constructing and composing FAOs [11]. The Python package
linop provides methods for constructing FAOs and combining them into linear
expressions [107]. Halide is a domain specific language for image processing
that makes it easy to optimize compositions of fast transforms for a variety of
architectures [98].



242 S. Diamond and S. Boyd

Our approach to representing and evaluating compositions of functions is similar
to the approach taken by autodifferentiation tools. These tools represent a composite
function f W Rn ! Rm as a DAG [61], and multiply by the Jacobian J 2 Rm�n

and its adjoint efficiently through graph traversal. Forward mode autodifferentiation
computes x ! Jx efficiently by traversing the DAG in topological order. Reverse
mode autodifferentiation, or backpropagation, computes u ! JTu efficiently by
traversing the DAG once in topological order and once in reverse topological order
[8]. An enormous variety of software packages have been developed for autodiffer-
entiation; see [8] for a survey. Autodifferentiation in the form of backpropagation
plays a central role in deep learning frameworks such as TensorFlow [1], Theano
[7, 13], Caffe [71], and Torch [29].

4 Cone Programs and Solvers

In this section we describe cone programs, the standard intermediate-form represen-
tation of a convex problem, and solvers for cone programs.

4.1 Cone Programs

A cone program is a convex optimization problem of the form

minimize cTx
subject to AxC b 2 K ;

(7)

where x 2 Rn is the optimization variable, K is a convex cone, and A 2 Rm�n,
c 2 Rn, and b 2 Rm are problem data. Cone programs are a broad class that include
linear programs, second-order cone programs, and semidefinite programs as special
cases [16, 92]. We call the cone program matrix-free if A is represented implicitly
as an FAO, rather than explicitly as a dense or sparse matrix.

The convex cone K is typically a Cartesian product of simple convex cones from
the following list:

• Zero cone: K0 D f0g.
• Free cone: Kfree D R.
• Nonnegative cone: KC D fx 2 R j x � 0g.
• Second-order cone: Ksoc D f.x; t/ 2 RnC1 j x 2 Rn; t 2 R; kxk2 � tg.
• Positive semidefinite cone: Kpsd D fvec.X/ j X 2 Sn; zTXz � 0 for all z 2 Rng.
• Exponential cone ([95, Sect. 6.3.4]):

Kexp D f.x; y; z/ 2 R3 j y > 0; yex=y � zg [ f.x; y; z/ 2 R3 j x � 0; y D 0; z � 0g:
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• Power cone [68, 90, 100]:

K a
pwr D f.x; y; z/ 2 R3 j xay.1�a/ � jzj; x � 0; y � 0g;

where a 2 Œ0; 1	.
These cones are useful in expressing common problems (via canonicalization), and
can be handled by various solvers (as discussed below). Note that all the cones are
subsets of Rn, i.e., real vectors. It might be more natural to view the elements of a
cone as matrices or tuples, but viewing the elements as vectors simplifies the matrix-
free canonicalization algorithm in Sect. 5.

Cone programs that include only cones from certain subsets of the list above
have special names. For example, if the only cones are zero, free, and nonnegative
cones, the cone program is a linear program; if in addition it includes the second-
order cone, it is called a second-order cone program. A well studied special case
is so-called symmetric cone programs, which include the zero, free, nonnegative,
second-order, and positive semidefinite cones. Semidefinite programs, where the
cone constraint consists of a single positive semidefinite cone, are another common
case.

4.2 Cone Solvers

Many methods have been developed to solve cone programs, the most widely used
being interior-point methods; see, e.g., [16, 91, 93, 112, 115].

Interior-Point A large number of interior-point cone solvers have been imple-
mented. Most support symmetric cone programs. SDPT3 [105] and SeDuMi [103]
are open-source solvers implemented in MATLAB; CVXOPT [6] is an open-source
solver implemented in Python; MOSEK [89] is a commercial solver with interfaces
to many languages. ECOS is an open-source cone solver written in library-free C
that supports second-order cone programs [39]; Akle extended ECOS to support
the exponential cone [4]. DSDP5 [12] and SDPA [47] are open-source solvers for
semidefinite programs implemented in C and C++, respectively.

First-Order First-order methods are an alternative to interior-point methods that
scale more easily to large cone programs, at the cost of lower accuracy. PDOS [26]
is a first-order cone solver based on the alternating direction method of multipliers
(ADMM) [15]. PDOS supports second-order cone programs. POGS [45] is an
ADMM based solver that runs on a GPU, with a version that is similar to PDOS
and targets second-order cone programs. SCS is another ADMM-based cone solver,
which supports symmetric cone programs as well as the exponential and power
cones [94]. Many other first-order algorithms can be applied to cone programs (e.g.,
[22, 78, 96]), but none have been implemented as a robust, general purpose cone
solver.
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Matrix-Free Matrix-free cone solvers are an area of active research, and a small
number have been developed. PENNON is a matrix-free semidefinite program
(SDP) solver [75]. PENNON solves a series of unconstrained optimization problems
using Newton’s method. The Newton step is computed using a preconditioned
conjugate gradient method, rather than by factoring the Hessian directly. Many
other matrix-free algorithms for solving SDPs have been proposed (e.g., [25, 48,
104, 118]). CVXOPT can be used as a matrix-free cone solver, as it allows users to
specify linear functions as Python functions for evaluating matrix-vector products,
rather than as explicit matrices [5].

Several matrix-free solvers have been developed for quadratic programs (QPs),
which are a superset of linear programs and a subset of second-order cone programs.
Gondzio developed a matrix-free interior-point method for QPs that solves linear
systems using a preconditioned conjugate gradient method [52, 53, 67]. PDCO is
a matrix-free interior-point solver that can solve QPs [99], using LSMR to solve
linear systems [43].

5 Matrix-Free Canonicalization

Canonicalization is an algorithm that takes as input a data structure representing a
general convex optimization problem and outputs a data structure representing an
equivalent cone program. By solving the cone program, we recover the solution to
the original optimization problem. This approach is used by convex optimization
modeling systems such as YALMIP [83], CVX [57], CVXPY [36], and Convex.jl
[106]. The same technique is used in the code generators CVXGEN [87] and
QCML [27].

The downside of canonicalization’s generality is that special structure in the
original problem may be lost during the transformation into a cone program. In
particular, current methods of canonicalization convert fast linear transforms in the
original problem into multiplication by a dense or sparse matrix, which makes the
final cone program far more costly to solve than the original problem.

The canonicalization algorithm can be modified, however, so that fast linear
transforms are preserved. The key is to represent all linear functions arising during
the canonicalization process as FAO DAGs instead of as sparse matrices. The
FAO DAG representation of the final cone program can be used by a matrix-free
cone solver to solve the cone program. The modified canonicalization algorithm
never forms explicit matrix representations of linear functions. Hence we call the
algorithm matrix-free canonicalization.

The remainder of this section has the following outline: In Sect. 5.1 we give an
informal overview of the matrix-free canonicalization algorithm. In Sect. 5.2 we
define the expression DAG data structure, which is used throughout the matrix-free
canonicalization algorithm. In Sect. 5.3 we define the data structure used to represent
convex optimization problems as input to the algorithm. In Sect. 5.4 we define
the representation of a cone program output by the matrix-free canonicalization
algorithm. In Sect. 5.5 we present the matrix-free canonicalization algorithm itself.
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For clarity, we move some details of canonicalization to the appendix. In
“Equivalence of the Cone Program” we give a precise definition of the equivalence
between the cone program output by the canonicalization algorithm and the original
convex optimization problem given as input. In “Sparse Matrix Representation”
we explain how the standard canonicalization algorithm generates a sparse matrix
representation of a cone program.

5.1 Informal Overview

In this section we give an informal overview of the matrix-free canonicalization
algorithm. Later sections define the data structures used in the algorithm and make
the procedure described in this section formal and explicit.

We are given an optimization problem

minimize f0.x/
subject to fi.x/ � 0; i D 1; : : : ; p

hi.x/C di D 0; i D 1; : : : ; q;
(8)

where x 2 Rn is the optimization variable, f0 W Rn ! R; : : : ; fp W Rn ! R are
convex functions, h1 W Rn ! Rm1 ; : : : ; hq W Rn ! Rmq are linear functions, and
d1 2 Rm1 ; : : : ; dq 2 Rmq are vector constants. Our goal is to convert the problem
into an equivalent matrix-free cone program, so that we can solve it using a matrix-
free cone solver.

We assume that the problem satisfies a set of requirements known as disciplined
convex programming [55, 58]. The requirements ensure that each of the f0; : : : ; fp
can be represented as partial minimization over a cone program. Let each function
fi have the cone program representation

fi.x/ D minimize .over t.i// g.i/0 .x; t
.i//C e.i/0

subject to g.i/j .x; t
.i//C e.i/j 2 K

.i/
j ; j D 1; : : : ; r.i/;

where t.i/ 2 Rs.i/ is the optimization variable, g.i/0 ; : : : ; g
.i/
r.i/

are linear functions,

e.i/0 ; : : : ; e
.i/
r.i/

are vector constants, and K
.i/
1 ; : : : ;K

.i/
r.i/

are convex cones.
We rewrite problem (8) as the equivalent cone program

minimize g.0/0 .x; t
.0//C e.0/0

subject to �g.i/0 .x; t
.i// � e.i/0 2 KC; i D 1; : : : ; p;

g.i/j .x; t
.i//C e.i/j 2 K

.i/
j i D 1; : : : ; p; j D 1; : : : ; r.i/

hi.x/C di 2 K mi
0 ; i D 1; : : : ; q:

(9)

We convert problem (9) into the standard form for a matrix-free cone program
given in (7) by representing g.0/0 as the inner product with a vector c 2 RnCs.0/ ,
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Fig. 5 The expression DAG
for f .x/ D kAxk2 C 3

x

A

‖ · ‖2

sum

3

concatenating the di and e.i/j vectors into a single vector b, and representing the

matrix A implicitly as the linear function that stacks the outputs of all the hi and g.i/j

(excluding the objective g.0/0 ) into a single vector.

5.2 Expression DAGs

The canonicalization algorithm uses a data structure called an expression DAG to
represent functions in an optimization problem. Like the FAO DAG defined in
Sect. 3, an expression DAG encodes a composition of functions as a DAG where
a node represents a function and an edge from a node u to a node v signifies that an
output of u is an input to v. Figure 5 shows an expression DAG for the composition
f .x/ D kAxk2 C 3, where x 2 Rn and A 2 Rm�n.

Formally, an expression DAG is a connected DAG with one node with no
outgoing edges (the end node) and one or more nodes with no incoming edges (start
nodes). Each node in an expression DAG has the following attributes:

• A symbol representing a function f .
• The data needed to parameterize the function, such as the power p for the function

f .x/ D xp.
• A list Ein of incoming edges.
• A list Eout of outgoing edges.

Each start node in an expression DAG is either a constant function or a variable.
A variable is a symbol that labels a node input. If two nodes u and v both have
incoming edges from variable nodes with symbol t, then the inputs to u and v are
the same.

We say an expression DAG is affine if every non-start node represents a linear
function. If in addition every start node is a variable, we say the expression DAG is
linear. We say an expression DAG is constant if it contains no variables, i.e., every
start node is a constant.
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5.3 Optimization Problem Representation

An optimization problem representation (OPR) is a data structure that represents
a convex optimization problem. The input to the matrix-free canonicalization
algorithm is an OPR. An OPR can encode any mathematical optimization problem
of the form

minimize .over y w:r:t:K0/ f0.x; y/
subject to fi.x; y/ 2 Ki; i D 1; : : : ; `; (10)

where x 2 Rn and y 2 Rm are the optimization variables, K0 is a proper cone,
K1; : : : ;K` are convex cones, and for i D 0; : : : ; `, we have fi W Rn � Rm ! Rmi

where Ki 	 Rmi . (For background on convex optimization with respect to a cone,
see, e.g., [16, Sect. 4.7].)

Problem (10) is more complicated than the standard definition of a convex
optimization problem given in (8). The additional complexity is necessary so that
OPRs can encode partial minimization over cone programs, which can involve mini-
mization with respect to a cone and constraints other than equalities and inequalities.
These partial minimization problems play a major role in the canonicalization
algorithm. Note that we can easily represent equality and inequality constraints
using the zero and nonnegative cones.

Concretely, an OPR is a tuple .s; o;C/ where

• The element s is a tuple .V;K / representing the problem’s objective sense. The
element V is a set of symbols encoding the variables being minimized over. The
element K is a symbol encoding the proper cone the problem objective is being
minimized with respect to.

• The element o is an expression DAG representing the problem’s objective
function.

• The element C is a set representing the problem’s constraints. Each element ci 2
C is a tuple .ei;Ki/ representing a constraint of the form f .x; y/ 2 K . The
element ei is an expression DAG representing the function f and Ki is a symbol
encoding the convex cone K .

The matrix-free canonicalization algorithm can only operate on OPRs that satisfy
the two DCP requirements [55, 58]. The first requirement is that each nonlinear
function in the OPR have a known representation as partial minimization over a
cone program. See [56] for many examples of such representations.

The second requirement is that the objective o be verifiable as convex with
respect to the cone K in the objective sense s by the DCP composition rule.
Similarly, for each element .ei;Ki/ 2 C, the constraint that the function represented
by ei lie in the convex cone represented by Ki must be verifiable as convex by
the composition rule. The DCP composition rule determines the curvature of a
composition f .g1.x/; : : : ; gk.x// from the curvatures and ranges of the arguments
g1; : : : ; gk, the curvature of the function f , and the monotonicity of f on the range of
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its arguments. See [55] and [106] for a full discussion of the DCP composition rule.
Additional rules are used to determine the range of a composition from the range of
its arguments.

Note that it is not enough for the objective and constraints to be convex. They
must also be structured so that the DCP composition rule can verify their convexity.
Otherwise the cone program output by the matrix-free canonicalization algorithm is
not guaranteed to be equivalent to the original problem.

To simplify the exposition of the canonicalization algorithm, we will also require
that the objective sense s represent minimization over all the variables in the problem
with respect to the nonnegative cone, i.e., the standard definition of minimization.
The most general implementation of canonicalization would also accept OPRs that
can be transformed into an equivalent OPR with an objective sense that meets this
requirement.

5.4 Cone Program Representation

The matrix-free canonicalization algorithm outputs a tuple .carr; darr; barr;G;Klist/

where

• The element carr is a length n array representing a vector c 2 Rn.
• The element darr is a length one array representing a scalar d 2 R.
• The element barr is a length m array representing a vector b 2 Rm.
• The element G is an FAO DAG representing a linear function f .x/ D Ax, where

A 2 Rm�n.
• The element Klist is a list of symbols representing the convex cones
.K1; : : : ;K`/.

The tuple represents the matrix-free cone program

minimize cTxC d
subject to AxC b 2 K ;

(11)

where K D K1 � � � � �K`.
We can use the FAO DAG G and Algorithm 7 to represent A as an FAO, i.e.,

export methods for multiplying by A and AT . These two methods are all a matrix-
free cone solver needs to efficiently solve problem (11).

5.5 Algorithm

The matrix-free canonicalization algorithm can be broken down into subroutines.
We describe these subroutines before presenting the overall algorithm.
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Conic-Form The Conic-Form subroutine takes an OPR as input and returns
an equivalent OPR where every non-start node in the objective and constraint
expression DAGs represents a linear function. The output of the Conic-Form
subroutine represents a cone program, but the output must still be transformed into
a data structure that a cone solver can use, e.g., the cone program representation
described in Sect. 5.4.

The general idea of the Conic-Form algorithm is to replace each nonlinear
function in the OPR with an OPR representing partial minimization over a cone
program. Recall that the canonicalization algorithm requires that all nonlinear
functions in the problem be representable as partial minimization over a cone
program. The OPR for each nonlinear function is spliced into the full OPR. We refer
the reader to [56] and [106] for a full discussion of the Conic-Form algorithm.

The Conic-Form subroutine preserves fast linear transforms in the problem.
All linear functions in the original OPR are present in the OPR output by
Conic-Form. The only linear functions added are ones like sum and scalar
multiplication that are very efficient to evaluate. Thus, evaluating the FAO DAG
representing the final cone program will be as efficient as evaluating all the linear
functions in the original problem (8).

Linear and Constant The Linear and Constant subroutines take an affine
expression DAG as input and return the DAG’s linear and constant components,
respectively. Concretely, the Linear subroutine returns a copy of the input DAG
where every constant start node is replaced with a variable start node and a
node mapping the variable output to a vector (or matrix) of zeros with the same
dimensions as the constant. The Constant subroutine returns a copy of the input
DAG where every variable start node is replaced with a zero-valued constant node
of the same dimensions. Figures 7 and 8 show the results of applying the Linear
and Constant subroutines to an expression DAG representing f .x/ D x C 2, as
depicted in Fig. 6.

Evaluate The Evaluate subroutine takes a constant expression DAG as input
and returns an array. The array contains the value of the function represented by the
expression DAG. If the DAG evaluates to a matrix A 2 Rm�n, the array represents
vec.A/. Similarly, if the DAG evaluates to multiple output vectors .b1; : : : ; bk/ 2
Rn1 � � � � � Rnk , the array represents vstack.b1; : : : ; bk/. For example, the output of
the Evaluate subroutine on the expression DAG in Fig. 8 is a length one array
with first entry equal to 2.

Fig. 6 The expression DAG
for f .x/ D xC 2

x

sum

2
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Fig. 7 The Linear
subroutine applied to the
expression DAG in Fig. 6

x

sum

0

x

Fig. 8 The Constant
subroutine applied to the
expression DAG in Fig. 6

0

sum

2

Fig. 9 The expression DAG
for vstack.e1; : : : ; e`/

e1 · · · e�

vstack

Graph-Repr The Graph-Repr subroutine takes a list of linear expression
DAGs, .e1; : : : ; e`/, and an ordering over the variables in the expression DAGs,
<V , as input and outputs an FAO DAG G. We require that the end node of each
expression DAG represent a function with a single vector as output.

We construct the FAO DAG G in three steps. In the first step, we combine the
expression DAGs into a single expression DAG H.1/ by creating a vstack node and
adding an edge from the end node of each expression DAG to the new node. The
expression DAG H.1/ is shown in Fig. 9.

In the second step, we transform H.1/ into an expression DAG H.2/ with a single
start node. Let x1; : : : ; xk be the variables in .e1; : : : ; e`/ ordered by <V . Let ni be
the length of xi if the variable is a vector and of vec.xi/ if the variable is a matrix,
for i D 1; : : : ; k. We create a start node representing the function split W Rn !
Rn1 � � � � � Rnk . For each variable xi, we add an edge from output i of the start
node to a copy node and edges from that copy node to all the nodes representing
xi. If xi is a vector, we replace all the nodes representing xi with nodes representing
the identity function. If xi is a matrix, we replace all the nodes representing xi with
mat nodes. The transformation from H.1/ to H.2/ when ` D 1 and e1 represents
f .x/ D xCA.xC y/, where x; y 2 Rn and A 2 Rn�n, are depicted in Figs. 10 and 11.



Matrix-Free Convex Optimization Modeling 251

x

sum

A

sum

x y

vstack

Fig. 10 The expression DAG H.1/ when ` D 1 and e1 represents f .x; y/ D xC A.xC y/

In the third and final step, we transform H.2/ from an expression DAG into an
FAO DAG G. H.2/ is almost an FAO DAG, since each node represents a linear
function and the DAG has a single start and end node. To obtain G we simply
add the node and edge attributes needed in an FAO DAG. For each node u in H.2/

representing the function f , we add to u an FAO .f ; ˚f ; ˚f �/ and the data needed
to evaluate ˚f and ˚f � . The node already has the required lists of incoming and
outgoing edges. We also add an array to each of H.2/’s edges.

Optimize-Graph The Optimize-Graph subroutine takes an FAO DAG G
as input and outputs an equivalent FAO DAG Gopt, meaning that the output of
Algorithm 7 is the same for G and Gopt. We choose Gopt by optimizing G so that
the runtime of Algorithm 7 is as short as possible (see Sect. 3.4). We also compress
the FAO data and edge arrays to reduce the graph’s memory footprint (see Sect. 3.5).
We could optimize the graph for the adjoint, G�, as well, but asymptotically at least
the flop count and memory footprint for G� will be the same as for G, meaning
optimizing G is the same as jointly optimizing G and G�.

Matrix-Repr The Matrix-Repr subroutine takes a list of linear expression
DAGs, .e1; : : : ; e`/, and an ordering over the variables in the expression DAGs,
<V , as input and outputs a sparse matrix. Note that the input types are the same
as in the Graph-Repr subroutine. In fact, for a given input the sparse matrix
output by Matrix-Repr represents the same linear function as the FAO DAG
output by Graph-Repr. The Matrix-Repr subroutine is used by the standard
canonicalization algorithm to produce a sparse matrix representation of a cone
program. The implementation of Matrix-Repr is described in the appendix in
“Sparse Matrix Representation”.
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Fig. 11 The expression DAG H.2/ obtained by transforming H.1/ in Fig. 10

Overall Algorithm With all the subroutines in place, the matrix-free canonicaliza-
tion algorithm is straightforward. The implementation is given in Algorithm 8.

Algorithm 8 Matrix-free canonicalization
Precondition: p is an OPR that satisfies the requirements of DCP.

.s; o;C/ Conic-Form.p/.
Choose any ordering <V on the variables in .s; o;C/.
Choose any ordering <C on the constraints in C.
..e1;K1/; : : : ; .e`;K`// the constraints in C ordered according to <C.
cmat  Matrix-Repr..Linear.o//; <V /.
Convert cmat from a 1-by-n sparse matrix into a length n array carr.
darr  Evaluate.Constant.o//.
barr  vstack.Evaluate.Constant.e1//; : : : ;Evaluate.Constant.e`///.
G Graph-Repr..Linear.e1/; : : : ;Linear.e`//; <V /.
Gopt  Optimize-Graph.G/
Klist  .K1; : : : ;K`/.
return .carr; darr; barr;Gopt;Klist/.
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6 Numerical Results

We have implemented the matrix-free canonicalization algorithm as an extension of
CVXPY [36], available at

https://github.com/mfopt/mf_cvxpy.

To solve the resulting matrix-free cone programs, we implemented modified
versions of SCS [94] and POGS [45] that are truly matrix-free, available at

https://github.com/mfopt/mf_scs,
https://github.com/mfopt/mf_pogs.

(The main modification was using the matrix-free equilibration described in [37].)
Our implementations are still preliminary and can be improved in many ways. We
also emphasize that the canonicalization is independent of the particular matrix-free
cone solver used.

In this section we benchmark our implementation of matrix-free canonicalization
and of matrix-free SCS and POGS on several convex optimization problems
involving fast linear transforms. We compare the performance of our matrix-free
convex optimization modeling system with that of the current CVXPY modeling
system, which represents the matrix A in a cone program as a sparse matrix and
uses standard cone solvers. The standard cone solvers and matrix-free SCS were
run serially on a single Intel Xeon processor, while matrix-free POGS was run on a
Titan X GPU.

6.1 Nonnegative Deconvolution

We applied our matrix-free convex optimization modeling system to the nonnegative
deconvolution problem (1). The Python code below constructs and solves prob-
lem (1). The constants c and b and problem size n are defined elsewhere. The code is
only a few lines, and it could be easily modified to add regularization on x or apply a
different cost function to c� x� b. The modeling system would automatically adapt
to solve the modified problem.

# Construct the optimization problem.
x = Variable(n)
cost = norm2(conv(c, x) - b)
prob = Problem(Minimize(cost),

[x >= 0])
# Solve using matrix-free SCS.
prob.solve(solver=MF_SCS)

Problem Instances We used the following procedure to generate interesting
(nontrivial) instances of problem (1). For all instances the vector c 2 Rn was

https://github.com/mfopt/mf_cvxpy
https://github.com/mfopt/mf_scs
https://github.com/mfopt/mf_pogs
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Fig. 12 Results for a problem instance with n D 1000

a Gaussian kernel with standard deviation n=10. All entries of c less than 10�6
were set to 10�6, so that no entries were too close to zero. The vector b 2 R2n�1
was generated by picking a solution Qx with five entries randomly chosen to be
nonzero. The values of the nonzero entries were chosen uniformly at random from
the interval Œ0; n=10	. We set b D c � Qx C v, where the entries of the noise vector
v 2 R2n�1 were drawn from a normal distribution with mean zero and variance
kc � Qxk2=.400.2n � 1//. Our choice of v yielded a signal-to-noise ratio near 20.

While not relevant to solving the optimization problem, the solution of the
nonnegative deconvolution problem often, but not always, (approximately) recovers
the original vector Qx. Figure 12 shows the solution recovered by ECOS [39] for
a problem instance with n D 1000. The ECOS solution x? had a cluster of 3–5
adjacent nonzero entries around each spike in Qx. The sum of the entries was close
to the value of the spike. The recovered x in Fig. 12 shows only the largest entry in
each cluster, with value set to the sum of the cluster’s entries.

Results Figure 13 compares the performance on problem (1) of the interior-point
solver ECOS [39] and matrix-free versions of SCS and POGS as the size n of the
optimization variable increases. We limited the solvers to 104 s.

For each variable size n we generated ten different problem instances and
recorded the average solve time for each solver. ECOS and matrix-free SCS were
run with an absolute and relative tolerance of 10�3 for the duality gap, `2-norm of
the primal residual, and `2-norm of the dual residual. Matrix-free POGS was run
with an absolute tolerance of 10�4 and a relative tolerance of 10�3.

For each solver, we plot the solve times and the least-squares linear fit to those
solve times (the dotted line). The slopes of the lines show how the solvers scale. The
least-squares linear fit for the ECOS solve times has slope 3:1, which indicates that
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Fig. 13 Solve time in seconds T versus variable size n

the solve time scales like n3, as expected. The least-squares linear fit for the matrix-
free SCS solve times has slope 1:1, which indicates that the solve time scales like the
expected n log n. The least-squares linear fit for the matrix-free POGS solve times in
the range n 2 Œ105; 107	 has slope 1:1, which indicates that the solve time scales like
the expected n log n. For n < 105, the GPU is not saturated, so increasing n barely
increases the solve time.

6.2 Sylvester LP

We applied our matrix-free convex optimization modeling system to Sylvester LPs,
or convex optimization problems of the form

minimize Tr.DTX/
subject to AXB � C

X � 0;
(12)

where X 2 Rp�q is the optimization variable, and A 2 Rp�p, B 2 Rq�q, C 2
Rp�q, and D 2 Rp�q are problem data. The inequality AXB � C is a variant of the
Sylvester equation AXB D C [49].

Existing convex optimization modeling systems will convert problem (12) into
the vectorized format
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minimize vec.D/T vec.X/
subject to .BT ˝ A/ vec.X/ � vec.C/

vec.X/ � 0;
(13)

where BT ˝ A 2 Rpq�pq is the Kronecker product of BT and A. Let p D kq for some
fixed k, and let n D kq2 denote the size of the optimization variable. A standard
interior-point solver will take O.n3/ flops and O.n2/ bytes of memory to solve
problem (13). A specialized matrix-free solver that exploits the matrix product AXB,
by contrast, can solve problem (12) in O.n1:5/ flops using O.n/ bytes of memory
[110].

Problem Instances We used the following procedure to generate interesting
(nontrivial) instances of problem (12). We fixed p D 5q and generated QA and QB by
drawing entries i.i.d. from the folded standard normal distribution (i.e., the absolute
value of the standard normal distribution). We then set

A D QA=k QAk2 C I; B D QB=k QBk2 C I;

so that A and B had positive entries and bounded condition number. We generated
D by drawing entries i.i.d. from a standard normal distribution. We fixed C D 11T .
Our method of generating the problem data ensured the problem was feasible and
bounded.

Results Figure 14 compares the performance on problem (12) of the interior-point
solver ECOS [39] and matrix-free versions of SCS and POGS as the size n D 5q2 of
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Fig. 14 Solve time in seconds T versus variable size n
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the optimization variable increases. We limited the solvers to 104 s. For each variable
size n we generated ten different problem instances and recorded the average solve
time for each solver. ECOS and matrix-free SCS were run with an absolute and
relative tolerance of 10�3 for the duality gap, `2-norm of the primal residual, and
`2-norm of the dual residual. Matrix-free POGS was run with an absolute tolerance
of 10�4 and a relative tolerance of 10�3.

For each solver, we plot the solve times and the least-squares linear fit to those
solve times (the dotted line). The slopes of the lines show how the solvers scale. The
least-squares linear fit for the ECOS solve times has slope 3:0, which indicates that
the solve time scales like n3, as expected. The least-squares linear fit for the matrix-
free SCS solve times has slope 1:4, which indicates that the solve time scales like
the expected n1:5. The least-squares linear fit for the matrix-free POGS solve times
in the range n 2 Œ5� 105; 5� 106	 has slope 1:1. The solve time scales more slowly
than the expected n1:5, likely because the GPU was not fully saturated even on the
largest problem instances. For n < 5 � 105, the GPU was far from saturated, so
increasing n barely increases the solve time.
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Appendix

Equivalence of the Cone Program

In this section we explain the precise sense in which the cone program output by the matrix-free
canonicalization algorithm is equivalent to the original convex optimization problem.

Theorem 1. Let p be a convex optimization problem whose OPR is a valid input to the matrix-
free canonicalization algorithm. Let ˚.p/ be the cone program represented by the output of the
algorithm given p’s OPR as input. All the variables in p are present in ˚.p/, along with new
variables introduced during the canonicalization process [55, 106]. Let x 2 Rn represent the
variables in p stacked into a vector and t 2 Rm represent the new variables in ˚.p/ stacked into a
vector.

The problems p and ˚.p/ are equivalent in the following sense:

1. For all x feasible in p, there exists t? such that .x; t?/ is feasible in˚.p/ and p.x/ D ˚.p/.x; t?/.
2. For all .x; t/ feasible in ˚.p/, x is feasible in p and p.x/ � ˚.p/.x; t/.
For a point x feasible in p, by p.x/ we mean the value of p’s objective evaluated at x. The notation
˚.p/.x; t/ is similarly defined.

Proof. See [55].
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Theorem 1 implies that p and ˚.p/ have the same optimal value. Moreover, p is infeasible if
and only if ˚.p/ is infeasible, and p is unbounded if and only if ˚.p/ is unbounded. The theorem
also implies that any solution x? to p is part of a solution .x?; t?/ to ˚.p/ and vice versa.

A similar equivalence holds between the Lagrange duals of p and ˚.p/, but the details are
beyond the scope of this paper. See [55] for a discussion of the dual of the cone program output by
the canonicalization algorithm.

Sparse Matrix Representation

In this section we explain the Matrix-Repr subroutine used in the standard canonicalization
algorithm to obtain a sparse matrix representation of a cone program. Recall that the subroutine
takes a list of linear expression DAGs, .e1; : : : ; e`/, and an ordering over the variables in the
expression DAGs, <V , as input and outputs a sparse matrix A.

The algorithm to carry out the subroutine is not discussed anywhere in the literature, so we
present here the version used by CVXPY [36]. The algorithm first converts each expression DAG
into a map from variables to sparse matrices, representing a sum of terms. For example, if the map
� maps the variable x 2 Rn to the sparse matrix coefficient B 2 Rm�n and the variable y 2 Rn to
the sparse matrix coefficient C 2 Rm�n, then � represents the sum BxC Cy.

The conversion from expression DAG to map of variables to sparse matrices is done using
Algorithm 9. The algorithm uses the subroutine Matrix-Coeff, which takes a node representing
a linear function f and indices i and j as inputs and outputs a sparse matrix D. Let Qf be a function
defined on the range of f ’s ith input such that Qf .x/ is equal to f ’s jth output when f is evaluated
on ith input x and zero-valued matrices (of the appropriate dimensions) for all other inputs. The
output of Matrix-Coeff is the sparse matrix D such that for any value x in the domain of Qf ,

D vec.x/ D vec.Qf .x//:
The sparse matrix coefficients in the maps of variables to sparse matrices are assembled into a

single sparse matrix A, as follows: Let x1; : : : ; xk be the variables in the expression DAGs, ordered
according to <V . Let ni be the length of xi if the variable is a vector and of vec.xi/ if the variable
is a matrix, for i D 1; : : : ; k. Let mj be the length of expression DAG ej’s output, for j D 1; : : : ; `.
The coefficients for x1 are placed in the first n1 columns in A, the coefficients for x2 in the next n2
columns, etc. Similarly, the coefficients from e1 are placed in the first m1 rows of A, the coefficients
from e2 in the next m2 rows, etc.
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Algorithm 9 Convert an expression DAG into a map from variables to sparse
matrices
Precondition: e is a linear expression DAG that outputs a single vector.

Create an empty queue Q for nodes that are ready to evaluate.
Create an empty set S for nodes that have been evaluated.
Create a map M from (node, output index) tuples to maps of variables to sparse matrices.
for every start node u in e do

x the variable represented by node u.
n the length of x if the variable is a vector and of vec.x/ if the variable is a matrix.
MŒ.u; 1/	 a map with key x and value the n-by-n identity matrix.
Add u to S.

end for
Add all nodes in e to Q whose only incoming edges are from start nodes.
while Q is not empty do

u pop the front node of Q.
Add u to S.
for edge .u; p/ in u’s Eout, with index j do

Create an empty map Mj from variables to sparse matrices.
for edge .v; u/ in u’s Ein, with index i do

A.ij/ Matrix-Coeff.u; i; j/.
k the index of .v; u/ in v’s Eout.
for key x and value C in MŒ.v; k/	 do

if Mj has an entry for x then
MjŒx	 MjŒx	C A.ij/C.

else
MjŒx	 A.ij/C.

end if
end for

end for
MŒ.u; j/	 Mj.
if for all edges .q; p/ in p’s Ein, q is in S then

Add p to the end of Q.
end if

end for
end while
uend  the end node of e.
return MŒ.uend; 1/	.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker,
P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems.
(2015) http://tensorflow.org/. Cited 2 March 2016

http://tensorflow.org/


260 S. Diamond and S. Boyd

2. Ahmed, N., Natarajan, T., Rao, K.: Discrete cosine transform. IEEE Trans. Comput. C-23(1),
90–93 (1974)

3. Aho, A., Lam, M., Sethi, R., Ullman, J.: Compilers: Principles, Techniques, and Tools, 2nd
edn. Addison-Wesley Longman, Boston (2006)

4. Akle, S.: Algorithms for unsymmetric cone optimization and an implementation for problems
with the exponential cone. Ph.D. thesis, Stanford University (2015)

5. Andersen, M., Dahl, J., Liu, Z., Vandenberghe, L.: Interior-point methods for large-scale cone
programming. In: Sra, S., Nowozin, S., Wright, S. (eds.) Optimization for Machine Learning,
pp. 55–83. MIT Press, Cambridge (2012)

6. Andersen, M., Dahl, J., Vandenberghe, L.: CVXOPT: Python software for convex optimiza-
tion, version 1.1 (2015). http://cvxopt.org/. Cited 2 March 2016

7. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A., Bouchard,
N., Bengio, Y.: Theano: new features and speed improvements. In: Deep Learning and
Unsupervised Feature Learning, Neural Information Processing Systems Workshop (2012)

8. Baydin, A., Pearlmutter, B., Radul, A., Siskind, J.: Automatic differentiation in machine
learning: a survey. Preprint (2015). http://arxiv.org/abs/1502.05767. Cited 2 March 2016

9. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image
denoising and deblurring problems. IEEE Trans. Image Process. 18(11), 2419–2434 (2009)

10. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imag. Sci. 2(1), 183–202 (2009)

11. Becker, S., Candès, E., Grant, M.: Templates for convex cone problems with applications to
sparse signal recovery. Math. Program. Comput. 3(3), 165–218 (2011)

12. Benson, S., Ye, Y.: Algorithm 875: DSDP5—software for semidefinite programming. ACM
Trans. Math. Software 34(3), (2008)

13. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J.,
Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expression compiler. In:
Proceedings of the Python for Scientific Computing Conference (2010)

14. Börm, S., Grasedyck, L., Hackbusch, W.: Introduction to hierarchical matrices with applica-
tions. Eng. Anal. Bound. Elem. 27(5), 405–422 (2003)

15. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical
learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3,
1–122 (2011)

16. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge
(2004)

17. Bracewell, R.: The fast Hartley transform. In: Proceedings of the IEEE, vol. 72, pp. 1010–
1018 (1984)

18. Brandt, A., McCormick, S., Ruge, J.: Algebraic multigrid (AMG) for sparse matrix equations.
In: D. Evans (ed.) Sparsity and its Applications, pp. 257–284. Cambridge University Press,
Cambridge (1985)

19. Brélaz, D.: New methods to color the vertices of a graph. Commun. ACM 22(4), 251–256
(1979)

20. Candès, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. Multiscale
Model. Simul. 5(3), 861–899 (2006)

21. Carrier, J., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm for particle
simulations. SIAM J. Sci. Stat. Comput. 9(4), 669–686 (1988)

22. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with
applications to imaging. J. Math. Imaging Vision 40(1), 120–145 (2011)

23. Chan, T., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image
segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

24. Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM J. Sci.
Comput. 20(1), 33–61 (1998)

25. Choi, C., Ye, Y.: Solving sparse semidefinite programs using the dual scaling algorithm with
an iterative solver. Working paper, Department of Management Sciences, University of Iowa
(2000)

http://cvxopt.org/
http://arxiv.org/abs/1502.05767


Matrix-Free Convex Optimization Modeling 261

26. Chu, E., O’Donoghue, B., Parikh, N., Boyd, S.: A primal-dual operator splitting method for
conic optimization. Preprint (2013). http://stanford.edu/~boyd/papers/pdf/pdos.pdf. Cited 2
March 2016

27. Chu, E., Parikh, N., Domahidi, A., Boyd, S.: Code generation for embedded second-order
cone programming. In: Proceedings of the European Control Conference, pp. 1547–1552
(2013)

28. Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported
wavelets. Commun. Pure Appl. Math. 45(5), 485–560 (1992)

29. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: a MATLAB-like environment for
machine learning. In: BigLearn, Neural Information Processing Systems Workshop (2011)

30. Cooley, J., Lewis, P., Welch, P.: The fast Fourier transform and its applications. IEEE Trans.
Educ. 12(1), 27–34 (1969)

31. Cooley, J., Tukey, J.: An algorithm for the machine calculation of complex Fourier series.
Math. Comput. 19(90), 297–301 (1965)

32. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl.
Math. 41(7), 909–996 (1988)

33. Daubechies, I.: Ten lectures on wavelets. SIAM, Philadelphia (1992)
34. Davis, T.: Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2). SIAM,

Philadelphia (2006)
35. Diamond, S., Boyd, S.: Convex optimization with abstract linear operators. In: Proceedings

of the IEEE International Conference on Computer Vision, pp. 675–683 (2015)
36. Diamond, S., Boyd, S.: CVXPY: A Python-embedded modeling language for convex

optimization. J. Mach. Learn. Res. 17(83), 1–5 (2016)
37. Diamond, S., Boyd, S.: Stochastic matrix-free equilibration. J. Optim. Theory Appl. (2016, to

appear)
38. Do, M., Vetterli, M.: The finite ridgelet transform for image representation. IEEE Trans.

Image Process. 12(1), 16–28 (2003)
39. Domahidi, A., Chu, E., Boyd, S.: ECOS: an SOCP solver for embedded systems. In:

Proceedings of the European Control Conference, pp. 3071–3076 (2013)
40. Dudgeon, D., Mersereau, R.: Multidimensional Digital Signal Processing. Prentice-Hall,

Englewood Cliffs (1984)
41. Duff, I., Erisman, A., Reid, J.: Direct Methods for Sparse Matrices. Oxford University Press,

New York (1986)
42. Figueiredo, M., Nowak, R., Wright, S.: Gradient projection for sparse reconstruction:

application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal
Process. 1(4), 586–597 (2007)

43. Fong, D., Saunders, M.: LSMR: an iterative algorithm for sparse least-squares problems.
SIAM J. Sci. Comput. 33(5), 2950–2971 (2011)

44. Forsyth, D., Ponce, J.: Computer Vision: A Modern Approach. Prentice Hall, Upper Saddle
River (2002)

45. Fougner, C., Boyd, S.: Parameter selection and pre-conditioning for a graph form solver.
(2015, preprint). http://arxiv.org/pdf/1503.08366v1.pdf. Cited 2 March 2016

46. Fountoulakis, K., Gondzio, J., Zhlobich, P.: Matrix-free interior point method for compressed
sensing problems. Math. Program. Comput. 6(1), 1–31 (2013)

47. Fujisawa, K., Fukuda, M., Kobayashi, K., Kojima, M., Nakata, K., Nakata, M., Yamashita,
M.: SDPA (semidefinite programming algorithm) user’s manual – version 7.0.5. Tech. rep.
(2008)

48. Fukuda, M., Kojima, M., Shida, M.: Lagrangian dual interior-point methods for semidefinite
programs. SIAM J. Optim. 12(4), 1007–1031 (2002)

49. Gardiner, J., Laub, A., Amato, J., Moler, C.: Solution of the Sylvester matrix equation AXBTC
CXDT D E. ACM Trans. Math. Software 18(2), 223–231 (1992)

50. Gilbert, A., Strauss, M., Tropp, J., Vershynin, R.: One sketch for all: fast algorithms for
compressed sensing. In: Proceedings of the ACM Symposium on Theory of Computing,
pp. 237–246 (2007)

http://stanford.edu/~boyd/papers/pdf/pdos.pdf
http://arxiv.org/pdf/1503.08366v1.pdf


262 S. Diamond and S. Boyd

51. Goldstein, T., Osher, S.: The split Bregman method for `1-regularized problems. SIAM J.
Imag. Sci. 2(2), 323–343 (2009)

52. Gondzio, J.: Matrix-free interior point method. Comput. Optim. Appl. 51(2), 457–480 (2012)
53. Gondzio, J.: Convergence analysis of an inexact feasible interior point method for convex

quadratic programming. SIAM J. Optim. 23(3), 1510–1527 (2013)
54. Gondzio, J., Grothey, A.: Parallel interior-point solver for structured quadratic programs:

application to financial planning problems. Ann. Oper. Res. 152(1), 319–339 (2007)
55. Grant, M.: Disciplined convex programming. Ph.D. thesis, Stanford University (2004)
56. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel,

V., Boyd, S., Kimura, H. (eds.) Recent Advances in Learning and Control. Lecture Notes in
Control and Information Sciences, pp. 95–110. Springer, London (2008)

57. Grant, M., Boyd, S.: CVX: MATLAB software for disciplined convex programming, version
2.1 (2014). http://cvxr.com/cvx. Cited 2 March 2016

58. Grant, M., Boyd, S., Ye, Y.: Disciplined convex programming. In: Liberti, L., Maculan, N.
(eds.) Global Optimization: From Theory to Implementation, Nonconvex Optimization and
its Applications, pp. 155–210. Springer, New York (2006)

59. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2),
325–348 (1987)

60. Greengard, L., Strain, J.: The fast Gauss transform. SIAM J. Sci. Stat. Comput. 12(1), 79–94
(1991)

61. Griewank, A.: On automatic differentiation. In: Iri, M., Tanabe, K. (eds.) Mathematical
Programming: Recent Developments and Applications, pp. 83–108. Kluwer Academic, Tokyo
(1989)

62. Hackbusch, W.: Multi-Grid Methods and Applications. Springer, Heidelberg (1985)
63. Hackbusch, W.: A sparse matrix arithmetic based on H -matrices. Part I: introduction to H -

matrices. Computing 62(2), 89–108 (1999)
64. Hackbusch, W., Khoromskij, B., Sauter, S.: On H 2-matrices. In: Bungartz, H.J., Hoppe, R.,

Zenger, C. (eds.) Lectures on Applied Mathematics, pp. 9–29. Springer, Heidelberg (2000)
65. Halldórsson, M.: A still better performance guarantee for approximate graph coloring. Inf.

Process. Lett. 45(1), 19–23 (1993)
66. Hennenfent, G., Herrmann, F., Saab, R., Yilmaz, O., Pajean, C.: SPOT: a linear operator

toolbox, version 1.2 (2014). http://www.cs.ubc.ca/labs/scl/spot/index.html. Cited 2 March
2016

67. Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res.
Nat. Bur. Stand. 49(6), 409–436 (1952)

68. Hien, L.: Differential properties of Euclidean projection onto power cone. Math. Methods
Oper. Res. 82(3), 265–284 (2015)

69. Jacques, L., Duval, L., Chaux, C., Peyré, G.: A panorama on multiscale geometric representa-
tions, intertwining spatial, directional and frequency selectivity. IEEE Trans. Signal Process.
91(12), 2699–2730 (2011)

70. Jensen, A., la Cour-Harbo, A.: Ripples in Mathematics. Springer, Berlin (2001)
71. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S.,

Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. (2014, preprint).
http://arxiv.org/abs/1408.5093. Cited 2 March 2016

72. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J., Bohlinger,
J. (eds.) Complexity of Computer Computations, The IBM Research Symposia Series, pp. 85–
103. Springer, New York (1972)

73. Kelner, J., Orecchia, L., Sidford, A., Zhu, A.: A simple, combinatorial algorithm for solving
SDD systems in nearly-linear time. In: Proceedings of the ACM Symposium on Theory of
Computing, pp. 911–920 (2013)

74. Kim, S.J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for large-
scale `1-regularized least squares. IEEE J. Sel. Top. Signal Process. 1(4), 606–617 (2007)

75. Koc̆vara, M., Stingl, M.: On the solution of large-scale SDP problems by the modified barrier
method using iterative solvers. Math. Program. 120(1), 285–287 (2009)

http://cvxr.com/cvx
http://www.cs.ubc.ca/labs/scl/spot/index.html
http://arxiv.org/abs/1408.5093


Matrix-Free Convex Optimization Modeling 263

76. Kovacevic, J., Vetterli, M.: Nonseparable multidimensional perfect reconstruction filter banks
and wavelet bases for Rn. IEEE Trans. Inf. Theory 38(2), 533–555 (1992)

77. Krishnaprasad, P., Barakat, R.: A descent approach to a class of inverse problems. J. Comput.
Phys. 24(4), 339–347 (1977)

78. Lan, G., Lu, Z., Monteiro, R.: Primal-dual first-order methods with O.1=�/ iteration-
complexity for cone programming. Math. Program. 126(1), 1–29 (2011)

79. Liberty, E.: Simple and deterministic matrix sketching. In: Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 581–588 (2013)

80. Lim, J.: Two-dimensional Signal and Image Processing. Prentice-Hall, Upper Saddle River
(1990)

81. Lin, Y., Lee, D., Saul, L.: Nonnegative deconvolution for time of arrival estimation. In: Pro-
ceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing,
vol. 2, pp. 377–380 (2004)

82. Loan, C.V.: Computational Frameworks for the Fast Fourier Transform. SIAM, Philadelphia
(1992)

83. Lofberg, J.: YALMIP: A toolbox for modeling and optimization in MATLAB. In: Proceedings
of the IEEE International Symposium on Computed Aided Control Systems Design, pp. 294–
289 (2004)

84. Lu, Y., Do, M.: Multidimensional directional filter banks and surfacelets. IEEE Trans. Image
Process. 16(4), 918–931 (2007)

85. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation.
IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

86. Martucci, S.: Symmetric convolution and the discrete sine and cosine transforms. IEEE Trans.
Signal Process. 42(5), 1038–1051 (1994)

87. Mattingley, J., Boyd, S.: CVXGEN: A code generator for embedded convex optimization.
Optim. Eng. 13(1), 1–27 (2012)

88. Miller, J., Zhu, J., Quigley, P.: CVXcanon, version 0.0.22 (2015). https://github.com/cvxgrp/
CVXcanon. Cited 2 March 2016

89. MOSEK optimization software, version 7 (2015). https://mosek.com/. Cited 2 March 2016
90. Nesterov, Y.: Towards nonsymmetric conic optimization. Optim. Methods Software 27(4–5),

893–917 (2012)
91. Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Program-

ming. SIAM, Philadelphia (1994)
92. Nesterov, Y., Nemirovsky, A.: Conic formulation of a convex programming problem and

duality. Optim. Methods Softw. 1(2), 95–115 (1992)
93. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2006)
94. O’Donoghue, B., Chu, E., Parikh, N., Boyd, S.: Conic optimization via operator splitting and

homogeneous self-dual embedding. J. Optim. Theory Appl. 169(3), 1042–1068 (2016)
95. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 123–231 (2014)
96. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual algorithms in

convex optimization. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 1762–1769 (2011)

97. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the
Mumford-Shah functional. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 1133–1140 (2009)

98. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.: Halide:
A language and compiler for optimizing parallelism, locality, and recomputation in image
processing pipelines. In: Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 519–530 (2013)

99. Saunders, M., Kim, B., Maes, C., Akle, S., Zahr, M.: PDCO: Primal-dual interior method for
convex objectives (2013). http://web.stanford.edu/group/SOL/software/pdco/. Cited 2 March
2016

100. Skajaa, A., Ye, Y.: A homogeneous interior-point algorithm for nonsymmetric convex conic
optimization. Math. Program. 150(2), 391–422 (2014)

https://github.com/cvxgrp/CVXcanon
https://github.com/cvxgrp/CVXcanon
https://mosek.com/
http://web.stanford.edu/group/SOL/software/pdco/


264 S. Diamond and S. Boyd

101. Spielman, D., Teng, S.H.: Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems. In: Proceedings of the ACM Symposium on Theory
of Computing, pp. 81–90 (2004)

102. Starck, J.L., Candès, E., Donoho, D.: The curvelet transform for image denoising. IEEE
Trans. Image Process. 11(6), 670–684 (2002)

103. Sturm, J.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
Optim. Methods Softw. 11(1–4), 625–653 (1999)

104. Toh, K.C.: Solving large scale semidefinite programs via an iterative solver on the augmented
systems. SIAM J. Optim. 14(3), 670–698 (2004)

105. Toh, K.C., Todd, M., Tütüncü, R.: SDPT3 — a MATLAB software package for semidefinite
programming, version 4.0. Optim. Methods Softw. 11, 545–581 (1999)

106. Udell, M., Mohan, K., Zeng, D., Hong, J., Diamond, S., Boyd, S.: Convex optimization
in Julia. In: Proceedings of the Workshop for High Performance Technical Computing in
Dynamic Languages, pp. 18–28 (2014)

107. Vaillant, G.: linop, version 0.7 (2013). http://pythonhosted.org//linop/. Cited 2 March 2016
108. van den Berg, E., Friedlander, M.: Probing the Pareto frontier for basis pursuit solutions.

SIAM J. Sci. Comput. 31(2), 890–912 (2009)
109. Vandenberghe, L., Boyd, S.: A polynomial-time algorithm for determining quadratic Lya-

punov functions for nonlinear systems. In: Proceedings of the European Conference on Circuit
Theory and Design, pp. 1065–1068 (1993)

110. Vandenberghe, L., Boyd, S.: A primal-dual potential reduction method for problems involving
matrix inequalities. Math. Program. 69(1–3), 205–236 (1995)

111. Vishnoi, K.: Laplacian solvers and their algorithmic applications. Theor. Comput. Sci. 8(1–2),
1–141 (2012)

112. Wright, S.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1987)
113. Yang, C., Duraiswami, R., Davis, L.: Efficient kernel machines using the improved fast

Gauss transform. In: Saul, L., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information
Processing Systems 17, pp. 1561–1568. MIT Press, Cambridge (2005)

114. Yang, C., Duraiswami, R., Gumerov, N., Davis, L.: Improved fast Gauss transform and
efficient kernel density estimation. In: Proceedings of the IEEE International Conference
on Computer Vision, vol. 1, pp. 664–671 (2003)

115. Ye, Y.: Interior Point Algorithms: Theory and Analysis. Wiley-Interscience, New York (2011)
116. Ying, L., Demanet, L., Candès, E.: 3D discrete curvelet transform. In: Proceedings of SPIE:

Wavelets XI, vol. 5914, pp. 351–361 (2005)
117. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-`1 optical flow. In:

Hamprecht, F., Schnörr, C., Jähne, B. (eds.) Pattern Recognition. Lecture Notes in Computer
Science, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)

118. Zhao, X.Y., Sun, D., Toh, K.C.: A Newton-CG augmented Lagrangian method for semidefi-
nite programming. SIAM J. Optim. 20(4), 1737–1765 (2010)

http://pythonhosted.org//linop/


Invariance Conditions for Nonlinear Dynamical
Systems

Zoltán Horváth, Yunfei Song, and Tamás Terlaky

Abstract Recently, Horváth et al. (Appl Math Comput, submitted) proposed a
novel unified approach to study, i.e., invariance conditions, sufficient and necessary
conditions, under which some convex sets are invariant sets for linear dynamical
systems. In this paper, by utilizing analogous methodology, we generalize the
results for nonlinear dynamical systems. First, the Theorems of Alternatives, i.e.,
the nonlinear Farkas lemma and the S-lemma, together with Nagumo’s Theorem are
utilized to derive invariance conditions for discrete and continuous systems. Only
standard assumptions are needed to establish invariance of broadly used convex
sets, including polyhedral and ellipsoidal sets. Second, we establish an optimization
framework to computationally verify the derived invariance conditions. Finally, we
derive analogous invariance conditions without any conditions.

Keywords Invariant set • Nonlinear dynamical system • Polyhedral set • Ellip-
soid • Convex set

1 Introduction

Positively invariant set is an important concept, and it has a wide range of
applications in dynamical systems and control theory, see, e.g., [6, 7, 17, 24]. Let a
state space and a dynamical system be given. A subset S in the state space is called a
positively invariant set of the dynamical system if any forward trajectory originated
from S stays in S . For the sake of simplicity, throughout the paper we use invariant
set to refer to positively invariant set. Some classical examples of invariant sets are
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equilibria, limit cycles, etc. (see [26]). In higher dimensional spaces, examples of
invariant sets are e.g., invariant torus and chaotic attractor, see, e.g., [26]. A similar
concept in dynamical system is stability, which is one of the most commonly studied
property of invariant sets. Intuitively, an invariant set is referred to as stable if
any trajectories starting close to it remain close to it, and unstable if they do not.
Positively invariant set is an important concept and an efficient tool for the design
of controllers of constrained systems. For example, for a given closed-loop control
system, the state and control constraints hold when the initial state is chosen from a
certain positively invariant set, see, e.g., [31].

A fundamental question is to develop efficient tools to verify if a given set is an
invariant set for a given (discrete or continuous) dynamical system. Sufficient and
necessary conditions under which a set is an invariant set for a dynamical system
are important both from the theoretical and practical aspects. Such sufficient and
necessary conditions are usually referred to as invariance conditions, see, e.g., [12].
Invariance conditions can be considered as special tools to study the relationship
between the invariant set and the dynamical system. They also provide alternative
ways to design efficient algorithms to construct invariant sets. Linear discrete and
continuous dynamical systems have been extensively studied in recent decades,
since such systems have a wide range of applications in control theory, see, e.g.,
[1, 5, 16]. Invariance condition for linear systems are relatively easy to derive while
analogous conditions for nonlinear systems are more difficult to derive. Convex
sets are often chosen as candidates for invariant sets of linear dynamical systems.
These sets include polyhedron, see, e.g., [4–6], polyhedral cone, see, e.g., [10, 27],
ellipsoid, see, e.g., [7, 31], and Lorenz cone, see, e.g., [3, 23, 25]. Recently, a
novel unified method is presented in [12] to derive invariance conditions for these
classical sets for both linear discrete and linear continuous dynamical systems.
Invariant sets for nonlinear dynamical systems are more complicated to study. The
localization problem of compact invariant sets for discrete nonlinear system is
studied in [14]. A simple criteria to verify if a general convex set is a robust control
invariant set for a nonlinear uncertain system is presented in [8]. Invariant set for
discrete system is studied in [15], and an application to model predictive control is
provided. The steplength threshold for preserving invariance of a set when applying
a discretization method to continuous systems is studied in [11, 13].

In this paper, we present invariance conditions for some classical sets for
nonlinear discrete and continuous dynamical systems. This is motivated by the fact
that most problems in the real world are often described by nonlinear systems rather
than linear systems. Therefore there is a need to investigate efficient invariance
condition to verify sets to be invariant sets for a nonlinear dynamical system.
The main tools used to derive invariance conditions for discrete and continuous
dynamical systems are the so called Theorems of Alternatives, e.g., Farkas lemma
[20, 22], S-Lemma [20, 30], and Nagumo Theorem [6, 18], respectively. For each
invariance condition, we also present an equivalent optimization problem, which
provides the possibility to use current advanced optimization algorithms or software
to verify the invariance property of given sets.
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The main contribution of this paper is that we propose novel invariance condi-
tions for general discrete and continuous systems using a novel and simple approach.
Our novel approach establishes a close connection between the theory of invariant
sets and optimization theory, as well as provides the possibility of using current
advanced optimization algorithms and methodology to solve invariant set problems.

Notation and Conventions. To avoid unnecessary repetitions, the following
notations and conventions are used in this paper. The i-th row of a matrix G is
denoted by GT

i : The interior and the boundary of a set S is denoted by int(S) and
@S , respectively. The index set f1; 2; : : : ; ng is denoted by I.n/:

2 Preliminaries

In this paper, we consider the following discrete and continuous dynamical systems:

xkC1 D fd.xk/; (1)

Px.t/ D fc.x.t//; (2)

where xk; x 2 R
n are state variables, and fd; fc W R

n ! R
n are continuous

differentiable functions. When fd.x/ D Ax (or fc.x/ D Ax) with A being an n by
n matrix, then (1) (or (2)) is a linear discrete (or continuous) dynamical system.

Definition 1. A set S is an invariant set for the discrete system (1) if xk 2 S implies
xkC1 2 S for all k 2 N. A set S is an invariant set for the continuous system (2) if
x.0/ 2 S implies x.t/ 2 S for all t � 0.

A polyhedron1, denoted by P 2 R
n, is represented as P D fx 2 R

n jGx � bg;
where G 2 R

m�n and b 2 R
m. An ellipsoid, denoted by E 2 R

n, centered at the
origin is defined as E D fx 2 R

n j xTQx � 1g; where Q 2 R
n�n and Q � 0. Note

that any ellipsoid with nonzero center can be transformed to an ellipsoid centered at
the origin, see, e.g., [9]. A set S is said to be convex if ˛xC .1 � ˛/y 2 S for any
x; y 2 S and ˛ 2 Œ0; 1	: One can show that any polyhedra and ellipsoids are both
convex sets.

The following nonlinear Farkas lemma [20] and S-lemma [20, 30], which are
also refereed to as the Theorems of Alternatives, are extensively studied in the
optimization community. In this paper, we apply these two lemmas as our tools
to derive invariance conditions of sets for discrete systems.

Theorem 1 (Nonlinear Farkas lemma2 [20]). Let h.y/; g1.y/; : : : ; gm.y/ W
R

n ! R be convex functions. Assume that the Slater condition is satisfied. Then
the following two statements are equivalent:

1For the sake of simplicity, we assume that there exists an interior point in the polyhedron.
2The Slater condition means that there exists a Oy 2 R

n, such that gj.Oy/ � 0 for all j when gj.x/ is
linear, and gj.Oy/ < 0 for all j when gj.x/ is nonlinear.
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• The inequality systems h.y/ < 0; gj.y/ � 0; j D 1; 2; : : : ;m have no solution.

• There exist ˇ1; ˇ2; : : : ; ˇm � 0, such that h.y/C
mP

jD1
ˇjgj.y/ � 0 for all y 2 R

n:

Theorem 2 (S-Lemma [20, 30]). Let h.y/; g.y/ W Rn ! R be quadratic functions,
and suppose that there is a Oy 2 R

n such that g.Oy/ < 0. Then the following two
statements are equivalent:

• The inequality system h.y/ < 0; g.y/ � 0 has no solution.
• There exists a scalar ˇ � 0, such that h.y/C ˇg.y/ � 0; for all y 2 R

n:

The following Nagumo Theorem [18] is a general theoretical result which can
be considered as invariance condition of a closed and convex set for continuous
systems. This theorem is chosen as a tool to derive the invariance condition of sets
for continuous systems.

Theorem 3 (Nagumo [6, 18]). Let S 	 R
n be a closed convex set, and assume that

Px.t/ D f .x.t//, where f W Rn ! R
n is a continuous function, has a unique solution

for every x.0/ 2 S . Then S is an invariant set for this system if and only if

f .x/ 2 TS.x/; for all x 2 @S; (3)

where TS.x/ is the tangent cone3 of S at x:

The geometric interpretation of Theorem 3 is clear, i.e., a set S is an invariant set
for the continuous system if and only if the tangent line of the trajectory x.t/ cannot
point out of its tangent cone. According to [6], we have that the Nagumo Theorem
cannot be extended to discrete systems.

3 Invariance Conditions for Discrete Systems

In this section, under certain assumptions, we present invariance conditions of
polyhedral sets, ellipsoids, and convex sets for discrete systems. The introduction
of these assumptions ensures that the Theorems of Alternatives can be applied to
derive invariance conditions. First, an invariance condition of polyhedral sets for
discrete systems is presented as follows.

Theorem 4. Let a polyhedron P D fx jGx � bg, where G 2 R
m�n and b 2 R

m;

and the discrete system be given as in (1). Assume that bi � GT
i fd.x/ are convex

functions for all i 2 I.m/. Then P is an invariant set for the discrete system (1) if
and only if there exists a matrix H � 0, such that

HGx � Gfd.x/ � Hb � b; for all x 2 R
n: (4)

3The tangent cone TS.x/ is denoted as follows: TS.x/ D fy 2 R
n j lim inf

t!0C

dist.xCty;S/
t D 0g; where

dist.x;S/ D infs2S kx� sk:
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Proof. We have that P is an invariant set for the discrete system (1) if and only if
P 	 P 0 D fx jGfd.x/ � bg. The latter one means that for every i 2 I.m/; the
system GT

i fd.x/ > bi and Gx � b has no solution. Let us assume to the contrary that
there exists an x� and i�, such that GT

i� fd.x�/ > bi� and Gx� � b: Then we have
x� 2 P but x� … P 0, which contradicts to P 	 P 0: Also, since bi � GT

i fd.x/ is a
convex function, then, according to the convex Farkas Lemma 1, we have that there
exists a vector Hi � 0 and Hi 2 R

n; such that

bi � GT
i fd.x/C HT

i .Gx � b/ � 0; for all x 2 R
n:

Writing HT
i for all i 2 I.m/ together into a matrix H; we have H � 0 and

b � Gfd.x/C H.Gx � b/ � 0; for all x 2 R
n;

which is the same as (4).

One can use algebraic method to verify if condition (4) holds when fd.x/ is
given. The algebraic method may be very challenge. Here we present the following
optimization methodology to equivalently solve condition (4).

Remark 1. Consider the following m optimization problems

max
Hi�0

min
x2Rn
fHT

i Gx � GT
i fd.x/ � HT

i bC big for all i 2 I.m/: (5)

If the global optimal objective values of the m optimization problems in (5) are all
nonnegative, then we can claim that condition (4) holds.

In Theorem 4, we do not specifically assume that the system is a linear or a
nonlinear system. If the system in Theorem 4 is a linear dynamical system, then we
have the following corollary, which is an invariance condition of polyhedral sets for
linear systems. Note that Corollary 1 can also be referred to [12]. An alternative
proof for Corollary 1, using optimality conditions, is presented in Appendix.

Corollary 1 ([5, 12]). Let a polyhedron P D fx jGx � bg, where G 2 R
m�n and

b 2 R
m be given, and the discrete system given in (1) be linear, i.e., fd.x/ D Adx,

where Ad 2 R
n�n. Then P is an invariant set of the discrete system (1) if and only if

there exists a matrix H 2 R
m�m and4 H � 0, such that HG D GA and Hb � b:

Proof. Since the system is linear, bi � GT
i Ax are convex functions for all i 2 I.m/:

According to Theorem 4, there exists a matrix H � 0; such that condition (4)
holds, i.e.,

.HG � GA/x � Hb � b; for all x 2 R
n: (6)

4Here H � 0 means that all the entries of H are nonnegative.
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Note that (6) holds for all x 2 R
n. One can easily show that (6) is equivalent to

HG D GA and Hb � b. The proof is complete.

In Theorem 4, we have the condition that bi � GT
i fd.x/ are convex function for

all i. Recall that a function, which is twice differentiable, is convex if and only if its
Hessian is positive semidefinite for all x. Thus, to verify if the functions bi�GT

i fd.x/
are convex, it is sufficient to verify if GT

i r2f .x/ � 0 for all x 2 R
n: We now give an

example to illustrate Theorem 4.

Example 1. Let the discrete system be given as �kC1 D ��k C 2�k � �2k ; �kC1 D
�2�k��kC�2k ; and the polyhedron be given as P D f.�; �/ j ��� � �10; 2��� �
10; � � 2� � �20g:

We first show that P is an invariant set for the discrete system, i.e., .�kC1; �kC1/ 2
P for all .�k; �k/ 2 P : For simplicity, we only prove the first constraint, i.e., �kC1 �
�kC1 � �10. In fact, we have �kC1 � �kC1 D ��2k � �2k C �k C 3�k D ��2k �
.�k � 2:5/2 C �k � 2�k C 6:25 � �k � 2�k C 6:25 � �20 C 6:25 � �10: The
other two constraints can be proved in a similar manner. On the other hand, one
can show that the assumption in Theorem 4 is satisfied for this example. Then we
can find a suitable H � 0 such that condition (4) holds. One can easily verify that
H D Œ0; 0; 1I 0; 0; 0I 1; 0; 1	 satisfies condition (4). Then according to Theorem 4,
we have that P is an invariant set for the discrete system.

We now consider an invariance condition for ellipsoids for the discrete sys-
tem (1).

Theorem 5. Let an ellipsoid E D fx j xTQx � 1g, where Q 2 R
n�n and Q � 0,

and the discrete system be given as in (1). Assume that .fd.x//TQfd.x/ is a concave
function. Then E is an invariant set for the discrete system (1) if and only if there
exists a ˇ � 0, such that

ˇxTQx � .fd.x//TQfd.x/ � ˇ � 1; for all x 2 R
n: (7)

Proof. The ellipsoid E is an invariant set for the discrete system if and only if E 	
E 0; where E 0 D fx j .fd.x//TQfd.x/ � 1g: We also note that E 	 E 0 is equivalent to
.Rn n E 0/ \ E D ;; i.e., the inequality system 1 � .fd.x//TQfd.x/ < 0 and xTQx �
1 � 0 has no solution. Since .fd.x//TQfd.x/ is a concave function, we have that
1�.fd.x//TQfd.x/ is a convex function. Note that xTQx�1 is also a convex function,
according to Theorem 1, there exists a ˇ � 0, such that

�.fd.x//TQfd.x/C 1C ˇ.xTQx � 1/ � 0; for all x 2 R
n;

which is the same as (7).

Remark 2. If we choose x D 0 in condition (7), then we have ˇ � 1 �
.fd.0//TQfd.0/; which can be considered as an upper bound of ˇ:

Similarly, we present the following optimization problem which is equivalent to
condition (7).
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Remark 3. Consider the following optimization problem

max
ˇ�0 min

x2Rn
fˇxTQx � .fd.x//TQfd.x/ � ˇ C 1g: (8)

If the optimal objective value of optimization problem (8) is nonnegative, then
condition (7) holds.

If the system in Theorem 5 is a linear dynamical system, then we have the
following corollary, which is an invariance condition of ellipsoids for linear system.
Note that Corollary 2 can also be referred to [12].

Corollary 2 ([12]). Let an ellipsoid E D fx j xTQx � 1g, where Q 2 R
n�n and

Q � 0, and a linear discrete system be given as in (1), i.e., fd.x/ D Adx, where
Ad 2 R

n�n. Then E is an invariant set for the discrete system (1), if and only if there
exists a ˇ 2 Œ0; 1	, such that AT

d QAd � ˇQ � 0:
Proof. According to Theorem 5, we have that there exists a ˇ � 0, such that

xT.ˇQ � AT
d QAd/x � ˇ � 1; for all x 2 R

n: (9)

If we choose x D 0, then we have ˇ � 1: Assume that AT
d QAd � ˇQ 6� 0, then

there exists a negative eigenvalue � and the corresponding eigenvector x� ¤ 0 such

that .ˇQ � AT
d QAd/x� D �x�, where � < 0: Let y� D ˛x� with ˛ <

q
ˇ�1
�

1
kx�k ,

then we have .y�/T.ˇQ�AT
d QAd/y� < ˇ� 1, which contradicts (9). Thus, we have

AT
d QAd � ˇQ � 0:

Observe that parameter ˇ presented in Corollary 2 can be eliminated. In fact,
one can show that AT

d QAd � ˇQ � 0 for ˇ 2 Œ0; 1	 and Q � 0 is equivalent to
AT

d QAd � Q � 0; see [12].
In Theorem 5, we have the condition that .fd.x//TQfd.x/ is a concave function.

In fact, this is equivalent to verify if the Hessian of .fd.x//TQfd.x/ is negative
semidefinite for all x 2 R

n: We now give an example to illustrate Theorem 5.

Example 2. Let the discrete system be �kC1 D
p
�kC�k
2

; �kC1 D
p
�k�3�k
2

; and the
ellipsoid be given as E D f.�; �/ j �2 C �2 � 1g:

For any .�k; �k/ 2 E , we have �2kC1 C �2kC1 D �k��k
2
�
p
2
2

q

�2k C �2k < 1;

which shows that E is an invariant set for the discrete system. On the other hand,

let f .x/ D .f1.x/; f2.x//T D .
p
�kC�k
2

;
p
�k�3�k
2

/T and Q D Œ1; 0I 0; 1	. Then we have
that f .x/TQf .x/ is a concave function. If we choose ˇ D 1

4
, then condition (7) yields

.�k � 1/2 C .�k � 1/2 C 1 � 0 for any .�k; �k/ 2 R
2: This, according to Theorem 5,

also shows that E is an invariant set for the discrete system.
We now consider invariance conditions for more general convex sets for discrete

system (1). Let a convex set be given as:

S D fx 2 R
n j g.x/ � 0g; (10)
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where g W Rn ! R is a convex function. Then we have the following theorem,
which gives invariance condition for the convex set (10) for discrete system (1).

Theorem 6. Let the convex set S be given as in (10), and the discrete system be
given as in (1). Assume that there exists x0 2 R

n such that g.x/ < 0, and that
g.fd.x// is a concave function. Then S is an invariant set for the discrete system if
and only if there exists an ˛ � 0, such that

˛g.x/ � g.fd.x// � 0; for all x 2 R
n: (11)

Moreover, if g.x/ and g.fd.x// are quadratic functions, then the assumption that
g.fd.x// is a concave function is not required.

Proof. The major tool used in this proof is the convex Farkas Lemma, i.e.,
Theorem 1. Note that to ensure S is an invariant set for the discrete system, we
need to prove S 	 S 0 D fx j g.fd.x// � 0g; i.e., .Rn n S 0/ \ S D ;: Then the
following inequality system has no solution:

�g.fd.x// < 0; g.x/ � 0:

According to Theorem 1, there exists an ˛ � 0, such that

�g.fd.x//C ˛g.x/ � 0; for x 2 R
n;

which is the same as (11). For the case of quadratic functions, we can use a similar
argument and the S-Lemma to prove the last statement.

Remark 4. The set S given as in (10) is represented by only a single convex
function. In fact, the first statement in Theorem 6 can be easily extended to the
set which is presented by several convex functions, e.g., polyhedral sets.

The first statement in Theorem 6 requires that g.fd.x// is a concave function
given that g.x/ is a convex function. Let us consider x defined in a one dimensional
space as an example5 to illustrate this case is indeed possible. Since fd.x/ is a
convex function, we have f 00d .x/ � 0 for all x 2 R: For simplicity, we denote
h.x/ D �g.fd.x//: Then we have

h00.x/ D �g00.fd.x//.fd.x//2 � g0.fd.x//f 00d .x/: (12)

If h00.x/ > 0 for all x 2 R, then h.x/ is a convex function, i.e., g.fd.x// is a concave
function. We now find a sufficient condition such that h0.x/ > 0 for all x 2 R.
Assume that g.x/ is a decreasing convex nonlinear function and g.x/ has no lower

5The example uses the following theorem: If Qg.x/ is a nondecreasing function, and Qf .x/ is a convex
function, then Qg.Qf .x// is a convex function.
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bound, we have g0.x/ < 0 and g00.x/ > 0 for all x 2 R: Assume fd.x/ is a concave

function, we have f 00d .x/ < 0: This yields � g0.fd.x//
g00

d .f .x//
> 0 � .f 0.x//2

f 00.x/ , i.e., h00.x/ > 0:

Remark 5. Consider the following optimization problem:

max
˛�0 min

x2Rn
f˛g.x/ � g.fd.x//g: (13)

If the optimal objective value of optimization problem (13) is nonnegative, we can
claim that condition (11) holds.

Thus far we have three “max-min” optimization problems shown as in (5), (8),
and (13). It is usually not easy to solve a “max-min” problem. In fact, these
three problems can be transformed into a nonlinear optimization problem. Here we
consider (13) as an example to illustrate this idea. From here, we assume that g.x/
in (10) is continuously differentiable.

Theorem 7. Optimization problem (13) is equivalent to the nonlinear optimization
problem

max
x;˛
f˛g.x/ � g.fd.x// j˛rxg.x/ � rxg.fd.x// D 0; ˛ � 0g: (14)

Proof. Since ˛ � 0, and the functions g.x/ and�g.fd.x// are both convex functions,
we have that ˛g.x/ � g.fd.x// is also a convex function. Also, for ˛ � 0; the
optimization problem

min
x2Rn
f˛g.x/ � g.fd.x//g; (15)

is a convex optimization problem in R
n, thus problem (15) has a Wolfe dual, see,

e.g., [21, 29] given as follows:

max
x2Rn
f˛g.x/ � g.fd.x// j˛rxg.x/ � rx.g.fd.x/// D 0g: (16)

Consequently, problem (13) is equivalent to the nonlinear optimization prob-
lem (14).

Remark 6. One can use a proof similar to the one presented in Theorem 7 to derive
equivalent nonlinear optimization problems for the optimization problems presented
in (5) and (8).

We now consider an alternative way to investigate invariance conditions for
discrete systems. The following lemma is easy to prove.

Lemma 1. Let �.x/;  .x/ W Rn ! R: The following two statements are equiva-
lent:

• The inequality system �.x/ � 0;  .x/ > 0 has no solution.
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• The optimal objective value of the optimization problem

maxf� j�.x/ � 0;� .x/C � � 0g (17)

is nonpositive.

According to Lemma 1, we have the following lemma.

Lemma 2. Let the discrete system be given as in (1). Let S1 D fx 2 R
n j�.x/ � 0g

and S2 D fx 2 R
n j .x/ � 0g be two closed sets6, where �.x/;  .x/ W Rn ! R:

Then x 2 S1 implies fd.x/ 2 S2 if and only if the optimal objective value of the
following optimization problem

maxf� j�.x/ � 0;� .fd.x//C � � 0g; (18)

is nonpositive.

Proof. We have that x 2 S1 implies fd.x/ 2 S2 if and only if S1 	 QS2 D
fx j .fd.x// � 0g: This is equivalent to .Rn n QS2/ \ S1 D ;; i.e., the systems
�.x/ � 0 and  .fd.x// > 0 have no solution. Then, according to Lemma 1, the
lemma is immediate.

According to Lemma 2, we have the following theorem.

Theorem 8. Let the discrete system be given as in (1), and let NS D fx 2 R
n j�.x/ �

0g be a set, where �.x/ W Rn ! R. Then NS is an invariant set for the discrete system
if and only if the optimal objective value of the following optimization problem

maxf� j�.x/ � 0;��.fd.x//C � � 0g (19)

is nonpositive.

Proof. The set is an invariant set for the discrete system if and only if NS 	 QS D
fx j�.fd.x// � 0g: According to Lemma 2, the theorem is immediate.

4 Invariance Conditions for Continuous Systems

In this section, we consider invariance conditions for continuous systems in the form
of (2). For discrete systems, in Sect. 3, we transformed the invariance conditions
into “max-min” optimization problems, which were later proved to be equivalent
to traditional nonlinear optimization problems. For the continuous systems, we
transform the invariance conditions into nonlinear optimization problems, too.

First, we consider an invariance condition for continuous system (2) and for
polyhedral sets P D fx Gx � bg, where G 2 R

m�n and b 2 R
m. For simplicity

6It is not necessary to assume that the two sets are convex sets.
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we assume that the origin is in the interior of the polyhedral set, thus we have
P D fx 2 R

n jGx � bg D fx 2 R
n j gT

i x � bi; i 2 I.m/g, where b > 0.

Theorem 9. Let a polyhedral set be given as P D fx 2 R
n j gT

i x � bi; i 2 I.m/g,
where b > 0; and let P i D fx 2 P j gT

i x D big for i 2 I.m/: Then P is an invariant
set for the continuous system (2) if and only if for all i 2 I.m/

gT
i fc.x/ � 0 holds for all x 2 P i: (20)

Proof. Let x 2 @P . Then we have that x is in the relative interior of a face, on the
relative boundary, or a vertex of P . There exists a maximal index set Ix such that
x 2 \i2IxP i: We note that TP.x/ D fy 2 R

n j gT
i y � 0; i 2 Ixg, then, according to

Nagumo Theorem 3, the theorem is immediate.

Remark 7. Let us assume a polyhedral set P be given as in the statement of
Theorem 9. Consider the following m optimization problems:

maxfgT
i fc.x/ j gT

i x D bi and x 2 Pg; i 2 I.m/: (21)

If the optimal objective values of all the m optimization problems in (21) are
nonpositive, then we can claim that (20) holds.

Clearly, when gT
i fc.x/ is a concave function, problem (21) is a convex problem,

which can be solved efficiently by using nonlinear convex optimization solvers, like
MOSEK [2]. Otherwise, this problem is a nonconvex problem, which may need
special nonlinear algorithms to solve [19, 28].

Invariance conditions for continuous system (2) and for ellipsoids or Lorenz
cones is presented in the following theorem.

Theorem 10. Let the ellipsoid E D fx j xTQx � 1g, where Q 2 R
n�n and Q � 0,

and the continuous system be given as in (2). Then E is an invariant set for the
continuous system (2) if and only if

.fc.x//
TQx � 0; for all x 2 @E : (22)

Proof. Note that @E D fx j xTQx D 1g, thus the outer normal vector of E at x 2 @E is
fd.x/. Then we have that the tangent cone at x 2 @E is given as TE.x/ D fy j yTQx �
0g, thus this theorem follows by the Nagumo Theorem 3.

Note that Theorem 10 can be applied to a Lorenz cone CL, see, e.g., [12].

Remark 8. Let us consider an ellipsoid E and the following optimization problem:

maxf.fc.x//TQx j xTQx D 1g: (23)

If the global optimal objective value of optimization problem (23) is nonpositive,
then condition (22) holds.
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We note that problem (23) is not a convex optimization problem since the set
of feasible solutions fx j xTQx D 1g is not a convex region. Thus, nonconvex
optimization algorithms, such as the ones implemented in [28] are required to solve
this problem.

Theorem 11. Let the convex set S be given as in (10) and let function g.x/ be
continuously differentiable. Then S is an invariant set for the continuous system (2)
if and only if

.rg.x//T fc.x/ � 0; for all x 2 @S: (24)

Proof. The outer normal vector at x 2 @S is rg.x/. Since S is a convex set, we have

TS.x/ D fy j .rg.x//T y � 0g: (25)

The proof is immediate by applying Nagumo’s Theorem 3.

Remark 9. Consider the following optimization problem:

maxf˛ j˛ D .rg.x//T fc.x/; g.x/ D 0g: (26)

If the optimal objective value of optimization problem (26) is nonpositive, then we
can claim that condition (24) holds.

We note that when problem (26) is not a convex optimization problem, thus we
may need a nonconvex optimization algorithm to solve this problem.

5 General Results for Discrete Systems

In Sect. 3, invariance conditions for polyhedral sets, ellipsoids, and convex sets are
presented under certain assumptions. In this section, invariance conditions for these
sets for discrete systems are presented without any assumption. First let us consider
polyhedral sets.

Theorem 12. Let the polyhedron P D fx jGx � bg; where G 2 R
m�n and b 2 R

m;

and the discrete system be given as in (1). Then P is an invariant set for the discrete
system (1) if and only if there exists a matrix H � 0, such that

HGx � Gfd.x/ � Hb � b; for all x 2 P : (27)

Proof. Sufficiency: Condition (27) can be reformulated as b�Gfd.x/ � H.b�Gx/,
where x 2 P; i.e., b � Gx � 0. Since H � 0, we have b � Gfd.x/ � 0, i.e.,
fd.x/ 2 P for all x 2 P : Thus P is an invariant set for the discrete system. Necessity:
Assume P is an invariant set for the discrete system. Then for any xk 2 P , we have
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xkC1 D fd.xk/ 2 P; i.e., we have that b � Gx � 0 implies b � Gfd.x/ � 0. Thus, we
can choose H D 0:

Note that the difference between conditions (4) and (27) is that the same
inequality holds, for x 2 R

n in (4), and for x 2 P in (27), respectively. Similarly, we
also have the following remark.

Remark 10. Consider the following m optimization problems

max
Hi�0

min
x
fHT

i Gx � GT
i fd.x/ � HT

i bC bi jGx � bg i 2 I.m/: (28)

If the global optimal objective values of the m optimization problems in (28) are all
nonnegative, then condition (27) holds.

We now present an invariance condition for ellipsoids for discrete systems. In
this invariance condition, for ellipsoids no assumption is needed.

Theorem 13. Let the ellipsoid E D fx j xTQx � 1g, where Q 2 R
n�n and Q � 0,

and let the discrete system be given as in (1). Then E is an invariant set for the
discrete system if and only if there exists a ˇ � 0, such that

ˇxTQx � .fd.x//TQfd.x/ � ˇ � 1; for all x 2 E : (29)

Proof. Sufficiency: Condition (29) can be reformulated as 1 � .fd.x//TQfd.x/ �
ˇ.1 � xTQx/, where x 2 E . Thus we have 1 � .fd.x//TQfd.x/ � 0, i.e., fd.x/ 2 E .
Thus E is an invariant set for the discrete system. Necessity: It is immediate by
choosing ˇ D 0:
Remark 11. Consider the following optimization problem

max
ˇ�0 min

x
fˇxTQx � .fd.x//TQfd.x/ � ˇ C 1 j xTQx � 1g: (30)

If the optimal objective value of optimization problem (30) is nonnegative, then
condition (29) holds.

We now present an invariance condition for convex sets and for discrete systems.
In this invariance condition, no assumption is needed for convex sets.

Theorem 14. Let the convex set S be given as in (10) and let the discrete system be
given as in (1). Then S is an invariant set for the discrete system if and only if there
exists an ˛ � 0, such that

˛g.x/ � g.fd.x// � 0; for all x 2 S: (31)

Proof. Sufficiency: Condition (31) can be reformulated as ˛g.x/ � g.fd.x//, where
x 2 S , i.e., g.x/ � 0. According to ˛ � 0; we have g.fd.x// � 0, i.e., fd.x/ 2 S .
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Thus S is an invariant set for the discrete system. Necessity: It is immediate by
choosing ˛ D 0:
Remark 12. Consider the following optimization problem:

max
˛�0 min

x2Rn
f˛g.x/ � g.fd.x//g: (32)

If the optimal objective value of optimization problem (32) is nonnegative, then
condition (31) holds.

We note that there are no assumptions in Theorems 12, 13, and 14, which
means we cannot use the Wolfe duality theory. Thus we cannot transform the “max-
min” optimization problems in Remark 10, 11, and 12 into nonlinear maximization
problems. The absence of convexity assumptions makes the theorems more broadly
applicable, however the nonlinear feasibility problems (27), (29), and (31) are
nonconvex, thus their verification is significantly harder than solving convex fea-
sibility problems. We pointed out in the introduction that there are very few papers
studying invariance conditions for nonlinear systems. The nonlinear feasibility
problems (27), (29), and (31) provide us a novel perspective to consider invariance
conditions. They also bring the possibility of applying state-of-the-art optimization
algorithms to solve the nonlinear problems related to invariance conditions.

6 Conclusions

In this paper we derived invariance conditions for some classical sets for nonlinear
dynamical systems by utilizing a methodology analogous to the one presented in
[12]. This is motivated by the fact that most problems in the real world are modeled
by nonlinear dynamical systems, because they often show nonlinear characteristics.
The Theorems of Alternatives, i.e., the nonlinear Farkas lemma and the S-lemma,
together with Nagumo’s Theorem are our main tools to derive invariance conditions
for discrete and continuous systems. We derive the invariance conditions for these
classic sets for nonlinear systems with some, and without any, conditions. We also
propose an optimization problem for each invariance condition. Then to verify the
invariance condition is equivalent to solve the corresponding optimization problem.
These invariance conditions provide potential ways to design algorithms to establish
invariant sets for a system. The introduction of the associated optimization problem
opens new avenues to use advanced optimization algorithms and software to solve
invariant set problems.
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Appendix

Theorem 15 ([5, 12]). Let P D fx jGx � bg be a polyhedron, where G 2 R
m�n

and b 2 R
m: Let the discrete system, given as in (1), be linear, i.e., f .x/ D Ax. Then

P is an invariant set for the discrete system (1) if and only if there exists a matrix
H � 0, such that HG D GA and Hb � b:

Proof. We have that P is an invariant set for the linear system if and only if the
optimal objective values of the following m linear optimization problems are all
nonnegative:

minfbi � GT
i Ax jGx � bg i 2 I.m/: (33)

Problems (33) are equivalent to

� bi CmaxfGT
i Ax jGx � bg i 2 I.m/: (34)

The duals of these linear optimization problems presented in (34) are for all i 2
I.m/

�bi Cmin bTHi

s.t. GTHi D ATGi

Hi � 0:
(35)

Due to the Strong Duality Theorem of linear optimization, see, e.g., [22], the primal
and dual objective function values are equal at optimal solutions, thus GT

i Ax D
bTHi: As the optimal value of (33) is nonnegative for all i 2 I.m/, we have bi �
bTHi � 0. Thus b � Hb. The proof is complete.
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Modeling of Stationary Periodic Time Series by
ARMA Representations

Anders Lindquist and Giorgio Picci

Dedicated to Boris Teodorovich Polyak on the occasion of his
80th birthday

Abstract This is a survey of some recent results on the rational circulant covariance
extension problem: Given a partial sequence .c0; c1; : : : ; cn/ of covariance lags
ck D Efy.tCk/y.t/g emanating from a stationary periodic process fy.t/gwith period
2N > 2n, find all possible rational spectral functions of fy.t/g of degree at most 2n
or, equivalently, all bilateral and unilateral ARMA models of order at most n, having
this partial covariance sequence. Each representation is obtained as the solution of a
pair of dual convex optimization problems. This theory is then reformulated in terms
of circulant matrices and the connections to reciprocal processes and the covariance
selection problem is explained. Next it is shown how the theory can be extended to
the multivariate case. Finally, an application to image processing is presented.

Keywords Discrete moment problem • Periodic processes • Circulant covariance
extension • Bilateral ARMA models • Image processing

1 Introduction

The rational covariance extension problem to determine a rational spectral den-
sity given a finite number of covariance lags has been studied in great detail
[2, 5–7, 9, 10, 17, 19, 20, 24, 35], and it can be formulated as a (truncated)
trigonometric moment problem with a degree constraint. Among other things, it is
the basic problem in partial stochastic realization theory [2] and certain Toeplitz
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matrix completion problems. In particular, it provides a parameterization of the
family of (unilateral) autoregressive moving-average (ARMA) models of stationary
stochastic processes with the same finite sequence of covariance lags. We also refer
the reader to the recent monograph [31], in which this problem is discussed in the
context of stochastic realization theory.

Covariance extension for periodic stochastic processes, on the other hand, leads
to matrix completion of Toeplitz matrices with circulant structure and to partial
stochastic realizations in the form of bilateral ARMA models

nX

kD�n

qky.t � k/ D
nX

kD�n

pke.t � k/

for a stochastic processes fy.t/g, where fe.t/g is the corresponding conjugate
process. This connects up to a rich realization theory for reciprocal processes
[26–29]. As we shall see there are also (forward and backward) unilateral ARMA
representations for periodic processes.

In [12] a maximum-entropy approach to this circulant covariance extension prob-
lem was presented, providing a procedure for determining the unique bilateral AR
model matching the covariance sequence. However, more recently it was discovered
that the circulant covariance extension problem can be recast in the context of the
optimization-based theory of moment problems with rational measures developed
in [1, 3, 4, 6, 8–10, 21, 22] allowing for a complete parameterization of all bilateral
ARMA realizations. This led to a complete theory for the scalar case [30], which
was then extended to the multivariable case in [32]. Also see [38] for modifications
of this theory to skew periodic processes and [37] for fast numerical procedures.

The AR theory of [12] has been successfully applied to image processing of
textures [13, 36], and we anticipate an enhancement of such methods by allowing
for more general ARMA realizations.

The present survey paper is to a large extent based on [30, 32] and [12]. In Sect. 2
we begin by characterizing stationary periodic processes. In Sect. 3 we formulate
the rational covariance extension problem for periodic processes as a moment
problem with atomic measure and present the solution in the context of the convex
optimization approach of [1, 3, 4, 6, 8–10]. These results are then reformulated in
terms of circulant matrices in Sect. 4 and interpreted in term of bilateral ARMA
models in Sect. 5 and in terms of unilateral ARMA models in Sect. 6. In Sect. 7 we
investigate the connections to reciprocal processes of order n [12] and the covariance
selection problem of Dempster [15]. In Sect. 8 we consider the situation when
both partial covariance data and logarithmic moment (cepstral) data is available. To
simplify the exposition the theory has so far been developed in the context of scalar
processes, but in Sect. 9 we show how it can be extended to the multivariable case.
All of these results are illustrated by examples taken from [30] and [32]. Section 10
is devoted to applications in image processing.
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2 Periodic Stationary Processes

Consider a zero-mean full-rank stationary process fy.t/g, in general complex-
valued, defined on a finite interval Œ�N C 1; N	 of the integer line Z and extended
to all of Z as a periodic stationary process with period 2N so that

y.tC 2kN/ D y.t/ (1)

almost surely. By stationarity there is a representation

y.t/ D
Z �

��
eit
dOy.
/; where EfjdOyj2g D dF.
/; (2)

(see, e.g., [31, p. 74]), and therefore

ck WD Efy.tC k/y.t/g D
Z �

��
eik
dF.
/: (3)

Also, in view of (1),

Z �

��
eit


	

ei2N
 � 1
 dOy D 0;

and hence
Z �

��

ˇ
ˇei2N
 � 1ˇˇ2 dF D 0;

which shows that the support of dF must be contained in fk�=NI k D �N C
1; : : : ;Ng. Consequently the spectral density of fy.t/g consists of point masses on
the discrete unit circle T2N WD f��NC1; ��nC2; : : : ; �Ng, where

�k D eik�=N : (4)

More precisely, define the function

˚.�/ D
NX

kD�NC1
ck�
�k (5)

on T2N . This is the discrete Fourier transform (DFT) of the sequence
.c�NC1; : : : ; cN/, which can be recovered by the inverse DFT

ck D 1

2N

NX

jD�NC1
˚.�j/�

k
j D

Z �

��
eik
˚.ei
 /d�; (6)
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where � is a step function with steps 1
2N at each �k; i.e.,

d�.
/ D
NX

jD�NC1
ı.ei
 � �j/

d


2N
: (7)

Consequently, by (3), dF.
/ D ˚.ei
 /d�.
/. We note in passing that

Z �

��
eik
d�.
/ D ık0; (8)

where ık0 equals one for k D 0 and zero otherwise. To see this, note that, for k ¤ 0,

.1 � �k/

Z �

��
eik
d� D 1

2N

NX

jD�NC1

�

�
j
k � � jC1

k

�

D 1

2N

	

��NC1
k � �NC1

k


 D 0:

Since fy.t/g is stationary and full rank, the Toeplitz matrix

Tn D

2

6
6
6
6
6
4

c0 Nc1 Nc2 � � � Ncn

c1 c0 Nc1 � � � Ncn�1
c2 c1 c0 � � � Ncn�2
:::

:::
:::
: : :

:::

cn cn�1 cn�2 � � � c0

3

7
7
7
7
7
5

(9)

is positive definite for all n 2 Z. However, this condition is not sufficient for
c0; c1; : : : ; cn to be a bona-fide covariance sequence of a periodic process, as can be
seen from the following simple example. Consider a real-valued periodic stationary
process y of period four. Then

E

8

ˆ̂
<

ˆ̂
:

2

6
6
4

y.1/
y.2/
y.3/
y.4/

3

7
7
5

�

y.1/ y.2/ y.3/ y.4/
�

9

>>=

>>;

D

2

6
6
4

c0 c1 c2 c3
c1 c0 c1 c2
c2 c1 c0 c1
c3 c2 c1 c0

3

7
7
5
:
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Then looking at the covariance matrix for two periods, we obtain

E

8

ˆ̂

<̂

ˆ̂

:̂

2

6
6
6
4

y.1/
y.2/
:::

y.8/

3

7
7
7
5

�

y.1/ y.2/ � � � y.8/�
9

>>>=

>>>;

D

2

6
6
6
6
6
6
6
6
6
6
6
4

c0 c1 c2 c3 c0 c1 c2 c3
c1 c0 c1 c2 c1 c0 c1 c2
c2 c1 c0 c1 c2 c1 c0 c1
c3 c2 c1 c0 c3 c2 c1 c0
c0 c1 c2 c3 c0 c1 c2 c3
c1 c0 c1 c2 c1 c0 c1 c2
c2 c1 c0 c1 c2 c1 c0 c1
c3 c2 c1 c0 c3 c2 c1 c0

3

7
7
7
7
7
7
7
7
7
7
7
5

;

which is a Toeplitz matrix only when c3 D c1. Therefore the condition c3 D c1 is
necessary. Consequently

T8 D

2

6
6
6
6
6
6
6
6
6
6
6
4

c0 c1 c2 c1 c0 c1 c2 c1
c1 c0 c1 c2 c1 c0 c1 c2
c2 c1 c0 c1 c2 c1 c0 c1
c1 c2 c1 c0 c1 c2 c1 c0
c0 c1 c2 c1 c0 c1 c2 c1
c1 c0 c1 c2 c1 c0 c1 c2
c2 c1 c0 c1 c2 c1 c0 c1
c1 c2 c1 c0 c1 c2 c1 c0

3

7
7
7
7
7
7
7
7
7
7
7
5

is a circulant matrix, where the columns are shifted cyclically, the last component
moved to the top. Circulant matrices will play a key role in the following.

3 The Covariance Extension Problem for Periodic Processes

Suppose that we are given a partial covariance sequence c0; c1; : : : ; cn with n < N
such that the Toeplitz matrix Tn is positive definite. Consider the problem of finding
and extension cnC1; cnC2; : : : ; cN so that the corresponding sequence c0; c1; : : : ; cN

is the covariance sequence of a stationary process of period 2N.
In general this problem will have infinitely many solutions, and, for reasons that

will become clear later, we shall restrict our attention to spectral functions (5) which
are rational in the sense that

˚.�/ D P.�/

Q.�/
; (10)

where P and Q are Hermitian pseudo-polynomials of degree at most n, that is of the
form

P.�/ D
nX

kD�n

pk�
�k; p�k D Npk: (11)
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Let PC.N/ be the cone of all pseudo-polynomials (11) that are positive on
the discrete unit circle T2N , and let PC � PC.N/ be the subset of pseudo-
polynomials (11) such that P.ei
 / > 0 for all 
 2 Œ��; �	. Moreover let CC.N/
be the dual cone of all partial covariance sequences c D .c0; c1; : : : ; cn/ such that

hc;pi WD
nX

kD�n

ck Npk > 0 for all P 2 PC.N/ n f0g;

and let CC be defined in the same way as the dual cone of PC. It can be shown [25]
that c 2 CC is equivalent to the Toeplitz condition Tn > 0. Since PC � PC.N/,
we have CC.N/ � CC, so in general c 2 CC.N/ is a stricter condition than Tn > 0.

The proof of the following theorem can be found in [30].

Theorem 1. Let c 2 CC.N/. Then, for each P 2 PC.N/, there is a unique Q 2
PC.N/ such that

˚ D P

Q

satisfies the moment conditions

Z �

��
eik
˚.ei
 /d�.
/ D ck; k D 0; 1; : : : ; n: (12)

Consequently the family of solutions (10) of the covariance extension problem
stated above are parameterized by P 2 PC.N/ in a bijective fashion. From the
following theorem we see that, for any P 2 PC.N/, the corresponding unique Q 2
PC.N/ can be obtained by convex optimization. We refer the reader to [30] for the
proofs.

Theorem 2. Let c 2 CC.N/ and P 2 PC.N/. Then the problem to maximize

IP.˚/ D
Z �

��
P.ei
 / log˚.ei
 /d� (13)

subject to the moment conditions (12) has a unique solution, namely (10), where Q
is the unique optimal solution of the problem to minimize

JP.Q/ D hc;qi �
Z �

��
P.ei
 / log Q.ei
 /d� (14)

over all Q 2 PC.N/, where q WD .q0; q1; : : : ; qn/. The functional JP is strictly
convex.
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Theorems 1 and 2 are discrete versions of corresponding results in [6, 9]. The
solution corresponding to P D 1 is called the maximum-entropy solution by virtue
of (13).

Remark 3. As N ! 1 the process y looses it periodic character, and its spectral
density ˚1 becomes continuous and defined on the whole unit circle so that

Z �

��
eik
˚1.ei
 /

d


2�
D ck; k D 0; 1; : : : ; n: (15)

In fact, denoting by QN the solution of Theorem 1, it was shown in [30] that ˚1 D
P=Q1, where, for each fixed P,

Q1 D lim
N!1QN

is the unique Q such that ˚1 D P=Q satisfies the moment conditions (15).

4 Reformulation in Terms of Circulant Matrices

Circulant matrices [14] are Toeplitz matrices with a special circulant structure

Circf�0; �1; : : : ; ��g D

2

6
6
6
6
6
4

�0 �� ���1 � � � �1
�1 �0 �� � � � �2
�2 �1 �0 � � � �3
:::

:::
:::

: : :
:::

�� ���1 ���2 � � � �0

3

7
7
7
7
7
5

; (16)

where the columns (or, equivalently, rows) are shifted cyclically, and where
�0; �1; : : : ; �� here are taken to be complex numbers. In our present covariance
extension problem we consider Hermitian circulant matrices

M WD Circfm0;m1;m2; : : : ;mN ; NmN�1; : : : ; Nm2; Nm1g; (17)

which can be represented in form

M D
NX

kD�NC1
mkS�k; m�k D Nmk (18)
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where S is the nonsingular 2N � 2N cyclic shift matrix

S WD

2

6
6
6
6
6
6
6
6
4

0 1 0 0 : : : 0

0 0 1 0 : : : 0

0 0 0 1 : : : 0
:::
:::
:::
: : :

: : :
:::

0 0 0 0 0 1

1 0 0 0 0 0

3

7
7
7
7
7
7
7
7
5

: (19)

The pseudo-polynomial

M.�/ D
NX

kD�NC1
mk�
�k; m�k D Nmk (20)

is called the symbol of M. Clearly S is itself a circulant matrix (although not
Hermitian) with symbol S.�/ D �. A necessary and sufficient condition for a matrix
M to be circulant is that

SMSTDM: (21)

Hence, since S�1 D ST, the inverse of a circulant matrix is also circulant. More
generally, if A and B are circulant matrices of the same dimension with symbols
A.�/ and B.�/ respectively, then AB and A C B are circulant matrices with
symbols A.�/B.�/ and A.�/ C B.�/, respectively. In fact, the circulant matrices
of a fixed dimension form an algebra—more precisely, a commutative *-algebra
with the involution * being the conjugate transpose—and the DFT is an algebra
homomorphism of the set of circulant matrices onto the pseudo-polynomials of
degree at most N in the variable � 2 T2N . Consequently, circulant matrices
commute, and, if M is a circulant matrix with symbol M.�/, then M�1 is circulant
with symbol M.�/�1.

The proof of the following proposition is immediate.

Proposition 4. Let fy.t/I t D �N C 1; : : : ;Ng be a stationary process with period
2N and covariance lags (3), and let y be the 2N-dimensional stochastic vector y D
Œy.�N C 1/; y.�N C 2/; � � � ; y.N/	T. Then, with � denoting conjugate transpose,

˙ WD Efyy�g D Circfc0; c1; c2; : : : ; cN ; NcN�1; : : : ; Nc2; Nc1g (22)

is a 2N � 2N Hermitian circulant matrix with symbol ˚.�/ given by (5).

The covariance extension problem of Sect. 3, called the circulant rational
covariance extension problem, can now be reformulated as a matrix extension
problem. The given covariance data c D .c0; c1; : : : ; cn/ can be represented as a
circulant matrix

C D Circfc0; c1; : : : ; cn; 0; : : : ; 0; Ncn; Ncn�1; : : : ; Nc1g (23)
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with symbol

C.�/ D
nX

kD�n

ck�
�k; (24)

where the unknown covariance lags cnC1; cnC2; : : : ; cN in (22), to be determined,
here are replaced by zeros. A circulant matrix of type (23) is called banded of order
n. We recall that n < N. From now one we drop the attribute ‘Hermitian’ since we
shall only consider such circulant matrices in the sequel. A banded circulant matrix
of order n will thus be determined by nC 1 (complex) parameters.

The next lemma establishes the connection between circulant matrices and their
symbols.

Lemma 5. Let M be a circulant matrix with symbol M.�/. Then

M D F�diag
	

M.��NC1/;M.��NC2/; : : : ;M.�N/



F; (25)

where F is the unitary matrix

F D 1p
2N

2

6
6
6
6
6
6
4

�N�1�NC1 �N�2�NC1 � � � ��N�NC1
:::

::: � � � :::

�N�1
0 �N�2

0 � � � ��N
0

:::
::: � � � :::

�N�1
N �N�2

N � � � ��N
N

3

7
7
7
7
7
7
5

: (26)

Moreover, if M.�k/ > 0 for all k, then

log M D F�diag
	

log M.��NC1/; log M.��NC2/; : : : ; log M.�N/



F: (27)

Proof. The discrete Fourier transform F maps a sequence .g�NC1; g�NC2; : : : ; gN/

into the sequence of complex numbers

G.�j/ WD
NX

kD�NC1
gk�
�k
j ; j D �N C 1;�N C 2; : : : ;N: (28)

The sequence g can be recovered from G by the inverse transform

gk D
Z �

��
eik
G.ei
 /d�.
/; k D �N C 1;�N C 2; : : : ;N: (29)

This correspondence can be written

Og D Fg; (30)
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where Og WD .2N/� 12
	

G.��NC1/; : : : ;G.�N/



T, g WD .g�NC1; : : : ; gN/
T, and F is the

nonsingular 2N � 2N Vandermonde matrix (26). Clearly F is unitary. Since

Mg D
NX

kD�NC1
mkS�k

and ŒS�kg	j D gj�k, where gkC2N D gk, we have

F.Mg/ D
NX

jD�NC1
��j

NX

kD�NC1
mkgj�k

D
NX

kD�NC1
mk�
�k

NX

jD�NC1
gj�k�

�.j�k/ D M.�/Fg;

which yields

p
2N.FMg/j D M.�j/

p
2N.Fg/j; j D �N C 1;�N C 2; : : : ;N;

from which (25) follows. Finally, since, as a function of z 2 C, log M.z/ is analytic
in the neighborhood of each M.�k/ > 0, the eigenvalues of log M are just the real
numbers log M.�k/, k D �N C 1; : : : ;N, by the spectral mapping theorem [16,
p. 557], and hence (27) follows.

We are now in a position to reformulate Theorems 1 and 2 in terms of circulant
matrices. To this end first note that, in view of Lemma 5, the cone PC.N/
corresponds to the class of positive-definite banded 2N � 2N circulant matrices
P of order n. Moreover, by Plancherel’s Theorem for DFT, which is a simple
consequence of (8), we have

nX

kD�n

ck Npk D 1

2N

NX

jD�NC1
C.�j/P.�j/;

and hence, by Lemma 5,

hc;pi D 1

2N
tr.CP/; (31)

where tr denotes trace.
Consequently, c 2 CC.N/ if and only if tr.CP/ > 0 for all nonzero, positive-

semidefinite, banded 2N � 2N circulant matrices P of order n. Moreover, if Q and P
are circulant matrices with symbols P.�/ and Q.�/, respectively, then, by Lemma 5,
P.�/=Q.�/ is the symbol of Q�1P. Therefore Theorem 1 has the following matrix
version.
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Theorem 6. Let c 2 CC.N/, and let C be the corresponding circulant matrix (23).
Then, for each positive-definite banded 2N � 2N circulant matrices P of order n,
there is unique positive-definite banded 2N � 2N circulant matrices Q of order n
such that

˙ D Q�1P (32)

is a circulant extension (22) of C.

In the same way, Theorem 2 has the following matrix version, as can be seen by
applying Lemma 5.

Theorem 7. Let c 2 CC.N/, and let C be the corresponding circulant matrix (23).
Moreover, let P be a positive-definite banded 2N � 2N circulant matrix of order n.
Then the problem to maximize

IP.˙ / D tr.P log ˙ / (33)

subject to

En
T˙ En D Tn; where En D

�
In

0

�

(34)

has a unique solution, namely (32), where Q is the unique optimal solution of the
problem to minimize

JP.q/ D tr.CQ/ � tr.P log Q/ (35)

over all positive-definite banded 2N � 2N circulant matrices Q of order n, where
q WD .q0; q1; : : : ; qn/. The functional JP is strictly convex.

5 Bilateral ARMA Models

Suppose now that we have determined a circulant matrix extension (32). Then
there is a stochastic vector y formed from the a stationary periodic process with
corresponding covariance lags (3) so that

˙ WD Efyy�g D Circfc0; c1; c2; : : : ; cN ; NcN�1; : : : ; Nc2; Nc1g:

Let OEfy.t/ j y.s/; s ¤ tg be the wide sense conditional mean of y.t/ given all
fy.s/; s ¤ tg. Then the error process

d.t/ WD y.t/ � OEfy.t/ j y.s/; s ¤ tg (36)
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is orthogonal to all random variables fy.s/; s ¤ tg, i.e., Efy.t/ d.s/g D �2 ıts, t; s 2
Z2N WD f�N C 1;�N C 2; : : : ;Ng, where �2 is a positive number. Equivalently,
Efyd�g D �2I, where I is the 2N � 2N identity matrix. Setting e WD d=�2, we then
have

Efey�g D I; (37)

i.e., the corresponding process e is the conjugate process of y [33]. Interpreting (36)
in the mod 2N arithmetics of Z2N , y admits a linear representation of the form

Gy D e; (38)

where G is a 2N � 2N Hermitian circulant matrix with ones on the main diagonal.
Since GEfyy�g D Efey�g D I, G is also positive definite and the covariance matrix
˙ is given by

˙ D G�1; (39)

which is circulant, since the inverse of a circulant matrix is itself circulant. In fact,
a stationary process y is full-rank periodic in Z2N , if and only if ˙ is a Hermitian
positive definite circulant matrix [12].

Since G is a Hermitian circulant matrix, it has a symbol

G.�/ D
NX

kD�NC1
gk�
�k; g�k D Ngk;

and the linear equation can be written in the autoregressive (AR) form

NX

kD�NC1
gky.t � k/ D e.t/: (40)

However, in general G is not banded and n << N, and therefore (40) is not a
parsimonious representation. Instead using the solution (32), we have G D P�1Q,
where P and Q are banded of order n with symbols

P.�/ D
nX

kD�n

pk�
�k and Q.�/ D

nX

kD�n

qk�
�k;

and hence (38) can be written

Qy D Pe;
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or equivalently in the ARMA form

nX

kD�n

qky.t � k/ D
nX

kD�n

pke.t � k/: (41)

Consequently, by Theorem 6, there is a unique bilateral ARMA model (41) for
each banded positive-definite Hermitian circulant matrix P of order n, provided c 2
CC.N/. Of course, we could use the maximum-entropy solution with P D I leading
to an AR model

nX

kD�n

qky.t � k/ D e.t/: (42)

Next, to illustrate the accuracy of bilateral AR modeling by the methods
described so far we give some simulations from [30], provided by Chiara Masiero.
Given an AR model of order n D 8 with poles as depicted in Fig. 1, we compute a
covariance sequence c D .c0; c1; : : : ; cn/ with n D 8, which is then used to solve the
optimization problem (35) with P D I to obtain a bilateral AR approximations of
degree eight for various choices of N. In Fig. 2, the top picture depicts the spectral
density for N D 128 together with the true spectral density (dashed line), and the
bottom picture illustrates how the estimation error decreases with increasing N.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Pole−Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s

Fig. 1 Poles of true AR model
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Fig. 2 Bilateral AR approximation: (top) spectrum for N D 128 and true spectrum (dashed);
(bottom) errors for ND32, 64, 128, 256, 512 and 1024

6 Unilateral ARMA Models and Spectral Factorization

As explained in Sect. 2, a periodic process y has a discrete spectrum, and Theorem 1
provides values of

˚.z/ D P.z/

Q.z/

only in the discrete points z 2 T2N WD f��NC1; ��nC2; : : : ; �Ng. Since ˚ takes
positive values on T2N , there is a trivial discrete factorization

˚.�k/ D W.�k/W.�k/
� k D �N C 1; : : : ;N: (43)
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Defining

Wk D 1

2N

NX

jD�NC1
W.�j/�

k
j ; k D �N C 1; : : : ;N;

we can write (43) in the form

˚.�/ D W.�/W.�/�; (44)

where W.�/ is the discrete Fourier transform

W.�/ D
NX

kD�NC1
Wk�

�k:

Formally substituting the variable z 2 T in place of � in W, we obtain a spectral
factorization equation

Q̊ .z/ D W.z/W.z/�; z 2 T; (45)

defined on the whole unit circle, where the continuous spectral density Q̊ .z/,
frequency sampled with sampling interval �

N , satisfies Q̊ .�/ D ˚.�/ on T2N . This
is a spectral density of a non-periodic stationary process but should not be confused
with˚1 in Remark 3, which is the unique continuous˚ with numerator polynomial
P and the same first nC 1 covariance lags as the periodic process y, i.e.,

Z �

��
eik
˚1.ei
 /

d


2�
D ck; k D 0; 1; : : : ; n:

In fact, although

Z �

��
eik
 Q̊ .ei
 /d�.
/ D ck; k D 0; 1; : : : ; n; (46)

the non-periodic process with spectral density Q̊ has the covariance lags

Qck D
Z �

��
eik
 Q̊ .ei
 /

d


2�
; k D 0; 1; : : : ; n;

which differ from c0; c1; : : : ; cn. However, setting �
j WD 
j � 
j�1 where ei
j D �j,
we see from (4) that �
j D �=N and that the integral (46) with Q̊ fixed is the
Riemann sum

NX

jD�NC1
eik
j Q̊ .�j/

�
j

2�

converging to Qck for k D 0; 1; : : : ; n as N !1.
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By Proposition 4, ˚.�/ is the symbol of the circulant covariance matrix ˙ , and
hence (44) can be written in the matrix form

˙ DWW�; (47)

where W is the circulant matrix with symbol W.�/. The spectral density (45) has a
unique outer spectral factor W.z/; see, e.g., [31]. As explained in detail in [11], this
corresponds in the discrete setting to W.�/ taking the form

W.�/ D
NX

kD0
Wk�

�k; (48)

which in turn corresponds to W being lower-triangular circulant, i.e.,

W D CircfW0;W1; : : : ;WN ; 0; : : : ; 0g: (49)

Note that a lower-triangular circulant matrix is not lower triangular as the circulant
structure has to be preserved. Since ˙ is invertible, then so is W.

Next define the periodic stochastic process fw.t/; t D �N C 1 : : : ;Ng for which
w D Œw.�N C 1/;w.�N C 2/; : : : ;w.N/	T is given by

w DW�1y: (50)

Then, in view of (47), we obtain Efww�g D I, i.e., the process w is a white noise
process. Consequently we have the unilateral representation

y.t/ D
NX

kD0
Wkw.t � k/

in terms of white noise.
To construct an ARMA model we appeal to the following result, which is easy

to verify in terms of symbols but, as demonstrated in [11], also holds for block
circulant matrices considered in Sect. 9.

Lemma 8. There exists an integer N0 such that the following holds for N � N0. A
positive definite, Hermitian, circulant matrix M admits a factorization M D VV�,
where V is of a banded lower-diagonal circulant matrix of order n < N, if and only
if M is bilaterally banded of order n.

By Theorem 6, ˙ D Q�1P, where Q and P are banded, positive definite,
Hermitian, circulant matrices of order n. Hence, for N sufficiently large, by
Lemma 8 there are factorizations

Q D AA� and P D BB�;

where A and B are banded lower-diagonal circulant matrices of order n. Conse-
quently, ˙ D A�1B.A�1B/�, i.e.,
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W D A�1B; (51)

which together with (50) yields Ay D Bw, i.e., the unilateral ARMA model

nX

kD0
aky.t � k/ D

nX

kD0
bkw.t � k/: (52)

Since A is nonsingular, a0 ¤ 0, and hence we can normalize by setting a0 D 1. In
particular, if P D I, we obtain the AR representation

nX

kD0
aky.t � k/ D b0w.t/: (53)

Symmetrically, there is factorization

˙ D NW NW�; (54)

where NW is upper-diagonal circulant, i.e. the transpose of a lower-diagonal circulant
matrix, and a white-noise process

Nw D NW�1y: (55)

Likewise there are factorizations

Q D NA NA� and P D NB NB�;

where NA and NB are banded upper-diagonal circulant matrices of order n. This yields
a backward unilateral ARMA model

0X

kD�n

Naky.t � k/ D
0X

kD�n

Nbk Nw.t � k/: (56)

These representations should be useful in the smoothing problem for periodic
systems [29].

7 Reciprocal Processes and the Covariance
Selection Problem

Let A, B and X be subspaces in a certain common ambient Hilbert space of
zero mean second order random variables. We say that A and B are conditionally
orthogonal given X if
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˛ � OEf˛ j Xg ? ˇ � OEfˇ j Xg; 8˛ 2 A;8ˇ 2 B (57)

(see, e.g., [31]), which we denote A ? B j X, and which clearly is equivalent to

E

n OEf˛ j Xg OEfˇ j Xg
o

D Ef˛ˇg; 8˛ 2 A;8ˇ 2 B: (58)

Conditional orthogonality is the same as conditional uncorrelatedness, and hence
conditional independence in the Gaussian case.

Let yŒt�n;t/ and y.t;tCn	 be the n-dimensional random column vectors obtained by
stacking y.t � n/; y.t � n C 1/ : : : ; y.t � 1/ and y.t C 1/; y.t C 2/ : : : ; y.t C n/,
respectively, in that order. In the same way, yŒt�n;t	 is obtained by appending y.t/ to
yŒt�n;t/ as the last element, etc. Here and in the following the sums t � k and t C k
are to be understood modulo 2N. For any interval .t1; t2/ � Œ�N C 1;N	, we denote
by .t1; t2/c the complementary set in Œ1; 2N	.

Definition 9. A reciprocal process of order n on .�N;N	 is a process fy.t/I t D
�N C 1; : : : ;Ng such that

OEfy.t/ j y.s/; s ¤ tg D OEfy.t/ j yŒt�n;t/ _ y.t;tCn	g (59)

for t 2 .�N;N	.

This is a generalization introduced in [12] of the concept of reciprocal process
[23], which can be trivially extended to vector processes. In fact, a reciprocal process
in the original sense is here a reciprocal process of order one. This concept does not
require stationarity, although here it will always be assumed.

It follows from [31, Proposition 2.4.2 (iii)] that fy.t/g is reciprocal of order n if
and only if

OEfy.t/ j y.s/; s 2 Œt � n; tC n	cg D OEfy.t/ j yŒt�n;t/ _ y.t;tCn	g (60)

for t 2 Œ�N C 1;N	. In particular, the estimation error

d.t/ WD y.t/ � OEfy.t/ j y.s/; s ¤ tg
D y.t/ � OEfy.t/ j yŒt�n;t/ _ y.t;tCn	g

(61)

must clearly be orthogonal to all random variables fy.s/; s ¤ tg; i.e. Efd.t/y.s/g D
�2ıst, where �2 is the variance of d.t/. Then e.t/ WD d.t/=�2 is the (normalized)
conjugate process of y satisfying (37), i.e.,

Efe.t/y.s/g D ıts: (62)

Since e.t C k/ is a linear combination of the components of the random vector
yŒtCk�n;tCkCn	, it follows from (62) that both e.tC k/ and e.t � k/ are orthogonal to
e.t/ for k > n. Hence the process fe.t/g has correlation bandwidth n, i.e.,
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Efe.tC k/ e.t/�g D 0 for n < jkj < 2N � n; k 2 Œ�N C 1;N	; (63)

and consequently .y; e/ satisfies (38), where G is banded of order n, which
corresponds to an AR representation (42).

Consequently, the AR solutions of the rational circulant covariance extension
problem are precisely the ones corresponding to a reciprocal process fy.t/g of order
n. Next we demonstrate how this representation is connected to the covariance
selection problem of Dempster [15] by deriving a generalization of this seminal
result.

Let J WD fj1; : : : ; jpg and K WD fk1; : : : ; kqg be two subsets of f�N C 1;�N C
2; : : : ;Ng, and define yJ and yK as the subvectors of y D .y�NC1; y�NC2; � � � ; yN/

T

with indices in J and K, respectively. Moreover, let

LYJ;K WD spanfy.t/I t … J; t … Kg D LYJ \ LYK ;

where LYJ WD spanfy.t/I t … Jg. With a slight misuse of notation, we shall write

yJ ? yK j LYJ;K ; (64)

to mean that the subspaces spanned by the components of yJ and yK , respectively,
are conditionally orthogonal given LYJ;K . This condition can be characterized in

terms of the inverse of the covariance matrix ˙ WD Efyy�g D ��ij

�N

i;jD�NC1 of y.

Theorem 10. Let G WD ˙�1 D �gij

�N

i;jD1 be the concentration matrix of the random
vector y. Then the conditional orthogonality relation (64) holds if and only if gjk D 0
for all .j; k/ 2 J � K.

Proof. Let EJ be the 2N � 2N diagonal matrix with ones in the positions
.j1; j1/; : : : ; .jm; jm/ and zeros elsewhere and let EK be defined similarly in terms
of index set K. Then LYJ is spanned by the components of y � EJy and LYK by the
components of y � EKy. Let

QyK WD yK � OEfyK j LYKg;

and note that its q � q covariance matrix

Q̇ K WD EfQyK Qy�Kg

must be positive definite, for otherwise some linear combination of the components
of yK would belong to LYK . Let QyK D GKy for some q � 2N matrix GK . Since
QyK ? LYK ,

EfQyK.y � EKy/�g D 0

and therefore EfQyKy�g D GK˙ must be equal to EfQyK.EKy/�g, which, by QyK 2 LY?K ,
in turn equals
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EfQyK.EKy/�g D EfQyK OEf.EKy/� j LY?K gg:

However, since the nonzero components of OEfEKy j LY?K g are those of QyK , there is
an 2N � q matrix ˘K with the unit vectors e0ki

, i D 1; : : : ; q, as the rows such that

OEfEKy j LY?K g D ˘K QyK ;

and hence

EfQyK.EKy/�g D EfQyK Qy�Kg˘�K D Q̇ K˘
�
K :

Consequently, GK˙ D Q̇ K˘
�
K , i.e.,

GK D Q̇ K˘
�
K ˙�1:

In the same way, QyJ D GJy, where GJ is the q � 2N matrix

GJ D Q̇ J˘
�
J ˙�1;

and therefore

EfQyJ Qy�Kg D Q̇ J˘
�
J ˙�1˘K Q̇ K ;

which is zero if and only if ˘�J ˙�1˘K D 0, i.e., gjk D 0 for all .j; k/ 2 J � K.
It remains to show that EfQyJ Qy�Kg D 0 is equivalent to (64), which in view of (58),

can be written

E

n OEfyJ j LYJ;Kg OEfyK j LYJ;Kg�
o

D EfyJy�Kg:

However,

EfQyJ Qy�Kg D EfyJy�Kg � E

n OEfyJ j LYJg OEfyK j LYKg�
o

;

so the proof will complete if we show that

E

n OEfyJ j LYJg OEfyK j LYKg�
o

D E

n OEfyJ j LYJ;Kg OEfyK j LYJ;Kg�
o

(65)

the proof of which follows precisely the lines of Lemma 2.6.9 in [31, p. 56].

Taking J and K to be singletons we recover as a special case Dempster’s original
result [15].

To connect back to Definition 9 of a reciprocal process of order n, use the
equivalent condition (60) so that, with J D ftg and K D Œt � n; t C n	c, yJ D y.t/
and yK are conditionally orthogonal given LYJ;K D yŒt�n;t/ _ y.t;tCn	. Then J � K is
the set

˚

t � Œt � n; t C n	c I t 2 .�N; N	



, and hence Theorem 10 states precisely
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that the circulant matrix G is banded of order n. We stress that in general G D ˙�1
is not banded, as the underlying process fy.t/g is not reciprocal of degree n, and we
then have an ARMA representation as explained in Sect. 5.

8 Determining P with the Help of Logarithmical Moments

We have shown that the solutions of the circulant rational covariance extension
problem, as well as the corresponding bilateral ARMA models, are completely
parameterized by P 2 PC.N/, or, equivalently, by their corresponding banded
circulant matrices P. This leads to the question of how to determine the P from
given data.

To this end, suppose that we are also given the logarithmic moments

�k D
Z �

��
eik
 log˚.ei
 /d�; k D 1; 2; : : : ; n: (66)

In the setting of the classical trigonometric moment problem such moments are
known as cepstral coefficients, and in speech processing, for example, they are
estimated from observed data for purposes of design.

Following [30] and, in the context of the trigonometric moment problem, [7, 10,
18, 34], we normalize the elements in PC.N/ to define QPC.N/ WD fP 2 PC.N/ j
p0 D 1g and consider the problem to find a nonnegative integrable ˚ maximizing

I.˚/ D
Z �

��
log˚.ei
 /d� D 1

2N

NX

jD�NC1
log˚.�j/ (67)

subject to the moment constraints (6) and (66). It is shown in [30] that if there is a
maximal ˚ that is positive on the unit circle, it is given by

˚.�/ D P.�/

Q.�/
; (68)

where .P;Q/ is the unique solution of the dual problem to minimize

J.P;Q/ D hc;qi � h�;pi C
Z �

��
P.ei
 / log

�
P.ei
 /

Q.ei
 /

�

d� (69)

over all .P;Q/ 2 QPC.N/ � PC.N/, where � D .�0; �1; : : : ; �n/ and p D
.p0; p1; : : : ; pn/ with �0 D 0 and p0 D 1.

The problem is that the dual problem might have a minimizer on the boundary
so that there is no stationery point in the interior, and then the constraints will in
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general not be satisfied [30]. Therefore the problem needs to be regularized in the
style of [17]. More precisely, we consider the regularized problem to minimize

J�.P;Q/ D J.P;Q/ � �
Z �

��
log P.ei
 /d� (70)

for some suitable � > 0 over all .P;Q/ 2 QPC.N/ � PC.N/. Setting J�.P;Q/ WD
2NJ�.P;Q/, (70) can be written

J�.P;Q/ D trfCQg � trf� Pg C trfP log PQ�1g � � trflog Pg; (71)

where � is the Hermitian circulant matrix with symbol

� .�/ D
nX

kD�n

�k�
�k; ��k D N�k: (72)

Therefore, in the circulant matrix form, the regularized dual problem amounts to
minimizing (71) over all banded Hermitian circulant matrices P and Q of order n
subject to p0 D 1. It is shown in [30] that

˙ D Q�1P; (73)

or, equivalently in symbol form (68), maximizes

I.˙ / D trflog ˙ g D log det ˙ ; (74)

or, equivalently (67), subject to (6) and (66), the latter constraint modified so that
the logarithmic moment �k is exchanged for �k C "k, k D 1; 2; : : : ; n, where

"k D
Z �

��
eik
 �

OP.ei
 /
d� D �

2N
trfSk OP�1g; (75)

OP being the optimal P.
The following example from [30], provided by Chiara Masiero, illustrates the

advantages of this procedure. We start from an ARMA model with n D 8 poles
and three zeros distributed as in Fig. 3, from which we compute c D .c0; c1; : : : ; cn/

and � D .�1; : : : ; �n/ for various choices of the order n. First we determine the
maximum entropy solution from c with n D 12 and N D 1024. The resulting
spectral function ˚ is depicted in the top plot of Fig. 4 together with the true
spectrum. Next we compute ˚ by the procedure in this section using c and � with
n D 8 and N D 128. The result is depicted in the bottom plot of Fig. 4 again together
with the true spectrum. This illustrates the advantage of bilateral ARMA modeling
as compared to bilateral AR modeling, as a much lower value on N provides a better
approximation, although n is smaller.
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Fig. 3 Poles and zeros of true ARMA model

9 Extensions to the Multivariate Case

To simplify notation we have so far restricted our attention to scalar stationary
periodic processes. We shall now demonstrate that most of the results can be simply
extended to the multivariate case, provided we restrict the analysis to scalar pseudo-
polynomials P.�/. In fact, most of the equations in the previous section will remain
intact if we allow ourselves to interpret the scalar quantities as matrix-valued ones.

Let fy.t/g be a zero-mean stationary m-dimensional process defined on Z2N ; i.e.,
a stationary process defined on a finite interval Œ�NC1; N	 of the integer line Z and
extended to all of Z as a periodic stationary process with period 2N. Moreover, let
C�NC1;C�NC2; : : : ;CN be the m � m covariance lags Ck WD Efy.t C k/y.t/�g, and
define its discrete Fourier transformation

˚.�j/ WD
NX

kD�NC1
Ck�
�k
j ; j D �N C 1; : : : ;N; (76)

which is a positive, Hermitian matrix-valued function of �. Then, by the inverse
discrete Fourier transformation,

Ck D 1

2N

NX

jD�NC1
�k

j ˚.�j/ D
Z �

��
eik
˚.ei
 /d�; k D �N C 1; : : : ;N; (77)
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Fig. 4 Bilateral approximations with true spectrum (dashed): (top) bilateral AR with n D 12

and N D 1024; (bottom) bilateral ARMA with n D 8 and N D 128 using both covariance and
logarithmic moment estimates

where the Stieljes measure d� is given by (7). The m � m matrix function ˚ is the
spectral density of the vector process y. In fact, let

Oy.�k/ WD
NX

tD�NC1
y.t/��t

k ; k D �N C 1; : : : ;N; (78)

be the discrete Fourier transformation of the process y. Since

1

2N

NX

tD�NC1
.�k�

�̀/t D ık`
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by (8), the random variables (78) are uncorrelated, and

1

2N
EfOy.�k/Oy.�`/�g D ˚.�k/ık`: (79)

This yields a spectral representation of y analogous to the usual one, namely

y.t/ D 1

2N

NX

kD�NC1
� t

k Oy.�k/ D
Z �

��
eik
dOy.
/; (80)

where dOy WD Oy.ei
 /d�.
Next, we define the class P.m;n/

C .N/ of m � m Hermitian pseudo-polynomials

Q.�/ D
nX

kD�n

Qk�
�k; Q�k D Q�k (81)

of degree at most n that are positive definite on the discrete unit circle T2N , and let
P
.m;n/
C � P

.m;n/
C .N/ be the subset of all (81) such that Q.ei
 / is positive define for all


 2 Œ��; �	. Moreover let C.m;n/C .N/ be the dual cone of all C D .C0;C1; : : : ;Cn/

such that

hC;Qi WD
nX

kD�n

trfCkQ�k g > 0 for all Q 2 P
.m;n/
C .N/ n f0g;

and let C.m;n/C � C
.m;n/
C .N/ be defined as the dual cone of P.m;n/

C . Analogously to the

scalar case it can be shown that C 2 C
.m;n/
C if and only if the block-Toeplitz matrix

Tn D

2

6
6
6
6
6
4

C0 C�1 C�2 � � � C�n
C1 C0 C�1 � � � C�n�1
C2 C1 C0 � � � C�n�2
:::

:::
:::

: : :
:::

Cn Cn�1 Cn�2 � � � C0

3

7
7
7
7
7
5

(82)

is positive definite [32], a condition that is necessary, but in general not sufficient,
for C 2 C

.m;n/
C .N/ to hold.

The basic problem is the following. Given the sequence C D .C0;C1; : : : ;Cn/ 2
C
.m;n/
C .N/ of m � m covariance lags, find an extension CnC1;CnC2; : : : ;CN with

C�k D C�k such that the spectral function ˚ defined by (76) has the rational form

˚.�/ D P.�/Q.�/�1; P 2 P
.1;n/
C .N/; Q 2 P

.m;n/
C .N/: (83)
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Theorem 11. Let C 2 C
.m;n/
C .N/. Then, for each P 2 P

.1;n/
C .N/, there is a unique

Q 2 P
.m;n/
C .N/ such that

˚ D PQ�1 (84)

satisfies the moment conditions
Z �

��
eik
˚.ei
 /d� D Ck; k D 0; 1; : : : ; n: (85)

Theorem 11 is a direct consequence of the following theorem, which also
provides an algorithm for computing the solution.

Theorem 12. For each .C;P/ 2 C
.m;n/
C .N/ � P

.1;n/
C .N/, the problem to maximize

the functional

IP.˚/ D
Z �

��
P.ei
 / log det˚.ei
 /d� (86)

subject to the moment conditions (85) has a unique solution O̊ , and it has the form

O̊ .�/ D P.�/ OQ.�/�1; (87)

where OQ 2 P
.m;n/
C .N/ is the unique solution to the dual problem to minimize

JP.Q/ D hC;Qi �
Z �

��
P.ei
 / log det Q.ei
 /d� (88)

over all Q 2 P
.m;n/
C .N/.

The proofs of Theorems 11 and 12 follow the lines of [32]. It can also be shown
that the moment map sending Q 2 P

.m;n/
C .N/ to C 2 C

.m;n/
C .N/ is a diffeomorphism.

To formulate a matrix version of Theorems 11 and 12 we need to introduce
(Hermitian) block-circulant matrices

M D
NX

kD�NC1
S�k ˝Mk; M�k D M�k (89)

where ˝ is the Kronecker product and S is the nonsingular 2N � 2N cyclic shift
matrix (19). The notation S will now be reserved for the 2mN � 2mN block-shift
matrix

S D S˝ Im D

2

6
6
6
6
6
4

0 Im 0 : : : 0

0 0 Im : : : 0
:::
:::
:::
: : :

:::

0 0 0 0 Im

Im 0 0 0 0

3

7
7
7
7
7
5

: (90)
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As before S2N D S0 D I WD I2mN , SkC2N D Sk, and S2N�k D S�k D .Sk/T. Moreover

SMS� DM (91)

is both necessary and sufficient for M to be m � m block-circulant. The symbol of
M is the m � m pseudo-polynomial

M.�/ D
NX

kD�NC1
Mk�

�k; M�k D M�k : (92)

We shall continue using the notation

M WD CircfM0;M1;M2; : : : ;MN ;M
�
N�1; : : : ;M�1 g (93)

also for (Hermitain) block-circulant matrices.
The problem can now be reformulated in the following way. Given the banded

block-circulant matrix

C D
nX

kD�n

S�k ˝ Ck; C�k D C�k (94)

of order n, find an extension CnC1;CnC2; : : : ;CN such that the block-circulant
matrix

˙ D
NX

kD�NC1
S�k ˝ Ck; C�k D C�k (95)

has the symbol (83).
To proceed we need a block-circulant version of Lemma 5.

Lemma 13. Let M be a block-circulant matrix with symbol M.�/. Then

M D F�diag
	

M.��NC1/;M.��NC2/; : : : ;M.�N/



F; (96)

where F is the unitary 2mN � 2mN matrix

F D 1p
2N

2

6
6
6
6
6
6
4

�N�1�NC1Im �
N�2�NC1Im � � � ��N�NC1Im

:::
::: � � � :::

�N�1
0 Im �N�2

0 Im � � � ��N
0 Im

:::
::: � � � :::

�N�1
N Im �N�2

N Im � � � ��N
N Im

3

7
7
7
7
7
7
5

: (97)
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Moreover, if M.�k/ is positive definite for all k, then

log M D F�diag
	

log M.��NC1/; log M.��NC2/; : : : ; log M.�N/



F; (98)

where diag stands for block diagonal.

The proof of Lemma 13 will be omitted, as it follows the same lines as that of
Lemma 5 with straight-forward modification to the multivariate case. Clearly the
inverse

M�1 D F�diag
	

M.��NC1/�1;M.��NC2/�1; : : : ;M.�N/
�1
F (99)

is also block-circulant, and

S D F�diag
	

��NC1Im; ��NC2Im; : : : ; �NIm



F: (100)

However, unlike the scalar case, block-circulant matrices do not commute in
general.

Given Lemma 13, we are now in a position to reformulate Theorems 11 and 12
in matrix from.

Theorem 14. Let C 2 C
.m;n/
C .N/, and let C be the corresponding block-circulant

matrix (94) and (82) the corresponding block-Toeplitz matrix. Then, for each
positive-definite banded 2mN � 2mN block-circulant matrices

P D
nX

kD�n

S�k ˝ pkIm; p�k D Npk (101)

of order n, where P.�/ DPn
kD�n pk�

�k 2 P
.1;n/
C .N/, there is a unique sequence Q D

.Q0;Q1; : : : ;Qn/ of m�m matrices defining a positive-definite banded 2mN � 2mN
block-circulant matrix

Q D
nX

kD�n

S�k ˝ Qk; Q�k D Q�k (102)

of order n such that

˙ D Q�1P (103)

is a block-circulant extension (95) of C. The block-circulant matrix (103) is the
unique maximizer of the function

IP.˙ / D tr.P log ˙ / (104)
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subject to

En
T˙ En D Tn; where En D

�
Imn

0

�

: (105)

Moreover, Q is the unique optimal solution of the problem to minimize

JP.Q/ D tr.CQ/ � tr.P log Q/ (106)

over all positive-definite banded 2mN�2mN block-circulant matrices (102) of order
n. The functional JP is strictly convex.

For P D I we obtain the maximum-entropy solution considered in [12], where
the primal problem to maximize II subject to (105) was presented. In [12] there
was also an extra constraint (91), which, as we can see, is not needed, since it is
automatically fulfilled. For this reason the dual problem presented in [12] is more
complicated than merely minimizing JI.

Next suppose we are also given the (scalar) logarithmic moments (66) and that
C 2 C

.m;n/
C .N/. Then, if the problem to maximize trflog ˙ g subject to (105) and (66)

over all positive-definite block-circulant matrices (95) has a solution, then it has the
form

˙ D Q�1P (107)

where the .P;Q/ is a solution of the dual problem to minimize

J.P;Q/ D trfCQg � trf� Pg C trfP log PQ�1g; (108)

over all positive-definite block-circulant matrices of the type (101) and (102) with
the extra constrain p0 D 1, where � is the block-circulant matrix formed in the
style of (102) from

� .�/ D
nX

kD�n

�k�
�k; ��k D N�k: (109)

However, the minimum of (108) may end up on the boundary, in which case the
constraint (66) may fail to be satisfied. Therefore, as in the scalar case, we need to
regularize the problem by instead minimizing

J�.P;Q/ D trfCQg � trf� Pg C trfP log PQ�1g � � trflog Pg: (110)

This problem has a unique optimal solution (107) satisfying (105), but not (66).
The appropriate logarithmic moment constraint is obtained as in the scalar case by
exchanging �k for �k C "k for each k D 1; 2; : : : ; n, where "k is given by (75).
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Fig. 5 Poles and zeros of an
ARMA 2� 2 model of order
n D 6
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Again each solution leads to an ARMA model

nX

kD�n

Qky.t � k/ D
nX

kD�n

pke.t � k/; (111)

where fe.t/g is the conjugate process of fy.t/g, Q0;Q1; : : : ;Qn are m � m matrices,
whereas p0; p1; : : : ; pn are scalar with p0 D 1.

We illustrate this theory with a simple example from [32], where a covariance
sequence C WD .C0;C1; : : :Cn/ and a cepstral sequence � WD .�1; �2; : : : ; �n/ have
been computed from a two-dimensional ARMA process with a spectral density
˚ WD PQ�1, where P is a scalar pseudo-polynomial of degree three and Q is a
2 � 2 matrix-valued pseudo-polynomial of degree n D 6. Its zero and poles are
illustrated in Fig. 5.

Given C and � , we apply the procedure in this section to determine a pair .P;Q/
of order n D 6. For comparison we also compute an bilateral AR approximation
with n D 12 fixing P D I. As illustrated in Fig. 6, the bilateral ARMA model of
order n D 6 computed with N D 32 outperforms the bilateral AR model of order
n D 12 with N D 64.

The results of Sect. 5 can also be generalized to the multivariate case along the
lines described in [11].
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Fig. 6 The norm of the approximation error for a bilateral AR of order 12 for N D 64 and a
bilateral ARMA of order 6 for N D 32

Fig. 7 An image modeled as
a reciprocal vector process

M

m
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10 Application to Image Processing

In [12] the circulant maximum-entropy solution has been used to model spatially
stationary images (textures) [40] in terms of (vector-valued) stationary periodic
processes. The image could be thought of as an m � M matrix of pixels where the
columns form a m-dimensional reciprocal process fy.t/g, which can extended to a
periodic process with period M > N outside the interval Œ0;N	; see Fig. 7.

This imposes the constraint CM�k D Ck
T on the covariance lags Ck WD Efy.t C

k/y.t/Tg, leading to a circulant Toeplitz matrix. The problem considered in [12] is
to model the process fy.t/g given (estimated) C0;C1; : : : ;Cn, where n < N with an
efficient low-dimensional model. This is precisely a problem of the type considered
in Sect. 9.



312 A. Lindquist and G. Picci

Fig. 8 Three images modeled by reciprocal processes (original at bottom)

Solving the corresponding circulant maximum-entropy problem (with P D I),
n D 1, m D 125 and N D 88, Carli et al. [12] derived a bilateral model of the
images at the bottom row of Fig. 8 to compress the images in the top row, thereby
achieving a compression of 5:1.

While the compression ratio falls short of competing with current jpeg standards
(typically 10:1 for such quality), our approach suggests a new stochastic alternative
to image encoding. Indeed the results in Fig. 8 apply just the maximum entropy
solution of order n D 1. Simulations such as those in Fig. 4 suggest that much better
compression can be made using bilateral ARMA modeling.

An alternative approach to image compression using multidimensional covari-
ance extension can be found in the recent paper [39].
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A New Two-Step Proximal Algorithm of Solving
the Problem of Equilibrium Programming

Sergey I. Lyashko and Vladimir V. Semenov

Dedicated to Boris Polyak on the occasion of his 80th Birthday

Abstract We propose a new iterative two-step proximal algorithm for solving
the problem of equilibrium programming in a Hilbert space. This method is a
result of extension of L.D. Popov’s modification of Arrow-Hurwicz scheme for
approximation of saddle points of convex-concave functions. The convergence
of the algorithm is proved under the assumption that the solution exists and the
bifunction is pseudo-monotone and Lipschitz-type.

Keywords Equilibrium problem • Variational inequality • Two-step proximal
algorithm • Bifunction • Pseudomonotonicity • Lipschitz condition • Conver-
gence

1 Introduction

Throughout this chapter, we assume that H is a real Hilbert space with inner product
.�; �/ and norm k � k. The symbol * denote weak convergence.

Let C be a nonempty closed convex subset of H and F W C � C ! R be a
bifunction with F.x; x/ D 0 for all x 2 C. Consider the following equilibrium
problem in the sense of Blum and Oettli [12]:

find x 2 C such that F.x; y/ � 0 8 y 2 C: (1)

The equilibrium problem (1) (problem of equilibrium programming, Ky Fan
inequality) is very general in the sense that it includes, as special cases, many
applied mathematical models such as: variational inequalities, fixed point problems,
optimization problems, saddle point problems, Nash equilibrium point problems in
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non-cooperative games, complementarity problems, see [3, 5, 6, 10, 12, 14, 17, 25]
and the references therein. This problem is interesting because it allows to unify all
these particular problems in a convenient way. In recent years, many methods have
been proposed for solving equilibrium and related problems [2–10, 14, 16, 26, 28,
32, 35–37]. The solution approximation methods for the equilibrium problem are
often based on the resolvent of equilibrium bifunction (see, for instance [14]) where
at each iterative step a strongly monotone regularization equilibrium problem is
solved. It is also called the proximal point method [16, 18, 20, 26, 37].

The variational inequality problem is a special case of the equilibrium problem.
For solving the variational inequality in Euclidean space, Korpelevich [21] intro-
duced the extragradient method where two metric projections onto feasible sets
must be found at each iterative step. This method was setted in Hilbert spaces by
Nadezhkina and Takahashi [27]. Some extragradient-like algorithms proposed for
solving variational inequality problems can be found in [19, 33, 34, 38]. In 2011, the
authors in [13, 22] have replaced the second projection onto any closed convex set
in the extragradient method by one onto a half-space and proposed the subgradient
extragradient method for variational inequalities in Hilbert spaces, see also [15, 39].

In recent years, the extragradient method has been extended to equilibrium prob-
lems for monotone (more general, pseudomonotone) and Lipschitz-type continuous
bifunctions and studied both theoretically and algorithmically [1, 31, 40]. In this
methods we must solve two strongly convex minimization problems on a closed
convex constrained set at each iterative step. We note that similar methods have
been previously proposed and studied by Antipin [2–4].

In 1980, Russian mathematician Popov [30] introduced very interesting modi-
fication of Arrow-Hurwicz scheme for approximation of saddle points of convex-
concave functions in Euclidean space. Let X and Y are closed convex subset of
Euclidean spaces R

d and R
p, respectively, and L W X � Y ! R be a differentiable

convex-concave function. Then, the method [30] approximation of saddle points of
L on X � Y can be written as

8

<

:

x1; Nx1 2 X; y1; Ny1 2 Y; � > 0;
xnC1 D PX

	

xn � �L01.Nxn; Nyn/



; ynC1 D PY
	

yn C �L02.Nxn; Nyn/



;

NxnC1 D PX
	

xnC1 � �L01.Nxn; Nyn/



; NynC1 D PY
	

ynC1 C �L02.Nxn; Nyn/



;

where PX and PY are metric projection onto X and Y , respectively, L01 and L02 are
partial derivatives. Under some suitable assumptions, Popov proved the convergence
of this method.

In this chapter, we have been motivated and inspired by the results of the authors
in [30, 31], proposed a new two-step proximal algorithm for solving equilibrium
problems. This algorithm is the extension of Popov method [30].

The set of solutions of the equilibrium problem (1) is denoted EP.F;C/. Further,
we assume that the solution set EP.F;C/ is nonempty.

Here, for solving equilibrium problem (1), we assume that the bifunction F
satisfies the following conditions:
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(A1) F.x; x/ D 0 for all x 2 C;
(A2) for all x, y 2 C from F.x; y/ � 0 it follows that F.y; x/ � 0 (pseudo-

monotonicity);
(A3) for all x 2 C the function F.x; �/ is convex and lower semicontinuous on C;
(A4) for all y 2 C the function F.�; y/ is weakly upper semicontinuous on C;
(A5) for all x, y, z 2 C the next inequality holds

F.x; y/ � F.x; z/C F.z; y/C a kx � zk2 C b kz � yk2 ;
where a, b are positive constants (Lipschitz-type continuity);

(A6) for all bounded sequences .xn/, .yn/ from C we have

kxn � ynk ! 0 ) F.xn; yn/! 0:

It is easy to show that under the assumptions (A1)–(A4), we have

x 2 EP.F;C/ , x 2 C W F.y; x/ � 0 8 y 2 C:

In particular, the set EP.F;C/ is convex and closed (see, for instance [31]).
The hypothesis (A5) was introduced by Mastroeni [25]. It is necessary to imply

the convergence of the auxiliary principle method for equilibrium problems. For
example, the bifunction F.x; y/ D .Ax; y � x/ with k-Lipschitz operator A W C! H
satisfies (A5). Actually,

F.x; y/ � F.x; z/ � F.z; y/ D .Ax; y � x/ � .Ax; z � x/ � .Az; y � z/ D
D .Ax � Az; y � z/ � kAx � Azk ky � zk � k kx � zk ky � zk �

� k

2
kx � zk2 C k

2
ky � zk2 :

This implies that F satisfies the condition (A5) with a D b D k=2.
The condition (A6) is satisfied by bifunction F.x; y/ D .Ax; y� x/ with Lipschitz

operator A W C! H.

2 The Algorithm

Let g W H ! R [ fC1g be a convex, lower semicontinuous, and proper. The
proximity operator of a function g is the operator proxg W H ! dom g 	 H (dom g
denotes the effective domain of g) which maps every x 2 H to the unique minimizer
of the function gC k � �xk2=2, i.e.,

8x 2 H proxgx D argminy2dom g

�

g.y/C 1

2
ky � xk2

�

:
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We have

z D proxgx , g.y/ � g.z/C .z � x; y � z/ � 0 8y 2 dom g:

Proximity operators have attractive properties that make them particularly well
suited for iterative minimization algorithms. For instance, proxg is firmly nonex-
pansive and its fixed point set is precisely the set of minimizers of g. For detailed
accounts of the proximity operators theory, see [11].

Now we extend the Popov method [30] to an equilibrium problem (1). In
Algorithm 1 we are going to describe, in order to be able to obtain its convergence,
the parameter � must satisfy some condition (see convergence Theorem 1).

Algorithm 1. For x1, y1 2 C generate the sequences xn, yn 2 C with the
iterative scheme

(

xnC1 D prox�F.yn;�/xn D argminy2C

˚

�F.yn; y/C 1
2
ky � xnk2




;

ynC1 D prox�F.yn;�/xnC1 D argminy2C

˚

�F.yn; y/C 1
2
ky � xnC1k2




;

where � > 0.

Extragradient method for the equilibrium problem (1) has the form
(

yn D prox�F.xn;�/xn;

xnC1 D prox�F.yn;�/xn;

where � > 0 [31]. A distinctive and attractive feature of the Algorithm 1 consists in
the fact that in the iterative step is used only one function F.yn; �/.
Remark 1. If F.x; y/ D .Ax; y � x/, then Algorithm 1 takes the form:

8

<

:

x1 2 C; y1 2 C;
xnC1 D PC.xn � �Ayn/;

ynC1 D PC.xnC1 � �Ayn/;

where PC is the operator of metric projection onto the set C.

A particular case of the scheme from the Remark 1 was proposed by Popov
[30] for search of saddle points of convex-concave functions, which are defined on
finite-dimensional Euclidean space. In recent works Malitsky and Semenov [23, 24]
proved the convergence of this algorithm for variational inequalities with monotone
and Lipschitz operators in infinite-dimensional Hilbert space, and proposed some
modifications of this algorithm.
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For substantiation of the iterative Algorithm 1 we note first, that if for some
number n 2 N next equalities are satisfied

xnC1 D xn D yn (2)

than yn 2 EP.F;C/ and the following stationarity condition holds

yk D xk D yn 8 k � n:

Actually, the equality

xnC1 D prox�F.yn;�/xn

means that

F.yn; y/ � F.yn; xnC1/C .xnC1 � xn; y � xnC1/
�

� 0 8y 2 C:

From (2) it follows that

F.yn; y/ � 0 8y 2 C;

i.e. yn 2 EP.F;C/.
Taking this into account the practical variant of the Algorithm 1 can be written

as

Algorithm 2. Choose x1 2 C, y1 2 C, � > 0, and " > 0.

Step 1. For xn and yn compute

xnC1 D prox�F.yn;�/xn:

Step 2. If max fkxnC1 � xnk; kyn � xnkg � ", then STOP, else compute

ynC1 D prox�F.yn;�/xnC1:

Step 3. Set n WD nC 1 and go to Step 1.

Further, we assume that for all numbers n 2 N the condition (2) doesn’t hold. In
the following section the weak convergence of the sequences .xn/, .yn/ generated by
the Algorithm 1 is proved.
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3 Convergence Results

To prove the convergence we need next facts.

Lemma 1. Let non-negative sequences .an/, .bn/ such that

anC1 � an � bn:

Then exists the limit limn!1 an 2 R and
P1

nD1 bn < C1.

Lemma 2 (Opial [29]). Let the sequence .xn/ of elements from Hilbert space H
converges weakly to x 2 H. Then for all y 2 H n fxg we have

lim inf
n!1 kxn � xk < lim inf

n!1 kxn � yk:

We start the analysis of the convergence with the proof of important inequality
for sequences .xn/ and .yn/, generated by the Algorithm 1.

Lemma 3. Let sequences .xn/, .yn/ be generated by the Algorithm 1, and let z 2
EP.F;C/. Then, we have

kxnC1 � zk2 � kxn � zk2 � .1 � 2�b/ kxnC1 � ynk2 �
� .1 � 4�a/ kyn � xnk2 C 4�a kxn � yn�1k2 : (3)

Proof. We have

kxnC1 � zk2 D kxn � zk2 � kxn � xnC1k2 C 2 .xnC1 � xn; xnC1 � z/ D
D kxn � zk2 � kxn � ynk2 � kyn � xnC1k2 �

�2 .xn � yn; yn � xnC1/C 2 .xnC1 � xn; xnC1 � z/ : (4)

From the definition of points xnC1 and yn it follows that

�F.yn; z/ � �F.yn; xnC1/ � .xnC1 � xn; xnC1 � z/; (5)

�F.yn�1; xnC1/ � �F.yn�1; yn/ � �.xn � yn; yn � xnC1/: (6)

Using inequalities (5), (6) to estimate inner products in (4), we get

kxnC1 � zk2 � kxn � zk2 � kxn � ynk2 � kyn � xnC1k2 C
C2� fF.yn; z/ � F.yn; xnC1/C F.yn�1; xnC1/ � F.yn�1; yn/g : (7)

From pseudomonotonicity of the bifunction F and z 2 EP.F;C/ it follows that

F.yn; z/ � 0;
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and Lipschitz-type continuity F guaranties the satisfying of inequality

�F.yn; xnC1/C F.yn�1; xnC1/ � F.yn�1; yn/ �
� a kyn�1 � ynk2 C b kyn � xnC1k2 :

Using the above estimations (7), we get

kxnC1 � zk2 � kxn � zk2 � kxn � ynk2 � kyn � xnC1k2 C
C2�a kyn�1 � ynk2 C 2�b kyn � xnC1k2 : (8)

The term kyn�1 � ynk2 we estimate in the next way

kyn�1 � ynk2 � 2 kyn�1 � xnk2 C 2 kyn � xnk2 :

Taking this into account (8), we get the inequality

kxnC1 � zk2 � kxn � zk2 � kxn � ynk2 � kyn � xnC1k2 C
C4�a kyn�1 � xnk2 C 4�a kyn � xnk2 C 2�b kyn � xnC1k2 ;

i.e. the inequality (3). ut
Proceed directly to proof of the convergence of the algorithm. Let z 2 EP.F;C/.

Assume

an D kxn � zk2 C 4�a kyn�1 � xnk2 ;
bn D .1 � 4�a/ kyn � xnk2 C .1 � 4�a � 2�b/ kyn � xnC1k2 :

Then inequality (3) takes form

anC1 � an � bn:

The following condition are required

0 < � <
1

2.2aC b/
:

Then from Lemma 1 we can conclude that exists the limit

lim
n!1

�

kxn � zk2 C 4�a kyn�1 � xnk2
�

and

1X

nD1

�

.1 � 4�a/ kyn � xnk2 C .1 � 4�a � 2�b/ kyn � xnC1k2
�

< C1:



322 S.I. Lyashko and V.V. Semenov

Whence we obtain

lim
n!1 kyn � xnk D lim

n!1 kyn � xnC1k D lim
n!1 kxn � xnC1k D 0 (9)

and convergence of the sequence .kxn � zk/ for all z 2 EP.F;C/. In particular,
sequences .xn/, .yn/ are bounded.

Now we consider the subsequence .xnk/, which converges weakly to the point
Nz 2 C. Then from (9) it follows that ynk * Nz. Show that Nz 2 EP.F;C/. We have

F.yn; y/ � F.yn; xnC1/C .xnC1 � xn; xnC1 � y/

�
8y 2 C: (10)

Passing to the limit (10) taking into account (9) and conditions (A4), (A6), we get

F.Nz; y/ � lim sup
k!1

F.ynk ; y/ � lim
k!1 fF.ynk ; xnkC1/C

C .xnkC1 � xnk ; xnkC1 � y/

�

�

D 0 8y 2 C;

i.e. Nz 2 EP.F;C/.
Now we show that xn * Nz. Then from (9) it follows that yn * Nz. Assume the

converse. Let exists the subsequence .xmk/ such that xmk * Qz and Qz ¤ Nz. It is clear
that Qz 2 EP.F;C/. Use the Lemma 2 twice. We have

lim
n!1 kxn � Nzk D lim

k!1 kxnk � Nzk < lim
k!1 kxnk � Qzk D lim

n!1 kxn � Qzk D
D lim

k!1 kxmk � Qzk < lim
k!1 kxmk � Nzk D lim

n!1 kxn � Nzk;

it is impossible. So, sequence .xn/ converges weakly to Nz 2 EP.F;C/.
Thus, we obtain the following result.

Theorem 1. Let H be a Hilbert space, C 	 H is nonempty convex closed set, for
bifunction F W C � C ! R conditions (A1)–(A6) are satisfied and EP.F;C/ ¤
;. Assume that � 2

�

0; 1
2.2aCb/

�

. Then sequences .xn/, .yn/ generated by the

Algorithm 1 converge weakly to the solution Nz 2 EP.F;C/ of the equilibrium
problem (1), and limn!1 kxn � ynk D 0.

Remark 2. The asymptotics limn!1 kxn � ynk D 0 can be specified up to the
following:

lim inf
n!1

p
nkxn � ynk D 0: (11)

Indeed, if (11) does not hold, then kxn � ynk � �n�1=2 for some � > 0 and all
sufficiently large n. Hence, the series

P kxn � ynk2 diverges. We have obtained an
contradiction.
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4 Conclusion and Future Work

In this work we have proposed a new iterative two-step proximal algorithm for
solving the equilibrium programming problem in the Hilbert space. The method
is the extension of Popov’s modification [30] for Arrow-Hurwitz scheme for search
of saddle points of convex-concave functions. The convergence of the algorithm is
proved under the assumption that the solution exists and the bifunction is pseudo-
monotone and Lipschitz-type.

In one of a forthcoming work we’ll consider the next regularized variant of the
algorithm that converges strongly

(

xnC1 D prox�F.yn;�/ .1 � ˛n/ xn;

ynC1 D prox�F.yn;�/ .1 � ˛nC1/ xnC1;

where � > 0, .˛n/ is infinitesimal sequence of positive numbers. Also we plan to
study the variant of the method using Bregman’s distance instead of Euclidean.

The interesting question is the substantiation of using Algorithm 1 as the element
of an iterative method for equilibrium problem with a priori information, described
in the form of inclusion to the fixed points set of quasi-nonexpansive operator.

Another promising area is the development of Algorithm 1 variants for solving
stochastic equilibrium problems.
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Nonparametric Ellipsoidal Approximation
of Compact Sets of Random Points

Sergey I. Lyashko, Dmitry A. Klyushin, Vladimir V. Semenov,
Maryna V. Prysiazhna, and Maksym P. Shlykov

Abstract One of the main problems of stochastic control theory is the estimation of
attainability sets, or information sets. The most popular and natural approximations
of such sets are ellipsoids. B.T. Polyak and his disciples use two kinds of ellipsoids
covering a set of points—minimal volume ellipsoids and minimal trace ellipsoids.
We propose a way to construct an ellipsoidal approximation of an attainability
set using nonparametric estimations. These ellipsoids can be considered as an
approximation of minimal volume ellipsoids and minimal trace ellipsoids. Their
significance level depends only on the number of points and only one point from
the set lays on a bound of such ellipsoid. This unique feature allows to construct a
statistical depth function, rank multivariate samples and identify extreme points.
Such ellipsoids in combination with traditional methods of estimation allow to
increase accuracy of outer ellipsoidal approximations and estimate the probability
of attaining a target set of states.

Keywords Ellipsoidal approximation • Attainability set • Information set • Non-
parametric estimation • Extreme point • Confidence ellipse

1 Introduction

Ellipsoidal estimation of parameters and states of systems is one of the most popular
tools [1]. In many problems the volume or trace of an ellipsoid are used as an
optimality criteria [2]. However, if the initial states of a system are random it is
more natural to use some confidence ellipsoids that contain the initial states and
have required statistical properties. This problem is closely related with the problem
of detection of outliers in random sets and ordering random points.

The problem of determining the initial ellipsoid may be reduced to the ordering
of multidimensional random samples. The standard systematization of methods
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of multidimensional ordering was suggested by Barnett [3]. According to this
approach, methods of multidimensional ordering are subdivided on marginal,
reduced, partial and conditional. Marginal methods order samples by separate
components. The reduced methods calculate distance of each samples from dis-
tribution center. Partial ordering means the subdividing of samples into groups of
identical samples. In conditional methods ordering of samples with respect to the
chosen component influencing the others is made.

Now, the most popular approach to the multidimensional ordering is the approach
based on the concept of a statistical depth of samples concerning distribution center
and corresponding peeling methods. These methods were proposed by Tukey [4],
Titterington [5], Oja [6], Liu [7], Zuo and Serfling [8] and others authors. They
allow to consider geometrical properties of multidimensional distributions. We offer
a new method of ordering multidimensional data based on Petunin’s ellipses and
ellipsoids [9]. Note that unlike the method proposed in [10], this method does not
mean peeling, i.e. performance of the repeating iterations of the same procedure
applied to the decreasing set of points, and it orders all points at once.

Without loss of generality, we will consider the algorithm of construction of
Petunin’s ellipse at a plane, and then we will go to Rm, where m > 2. The initial
data for the algorithm is a set of points Mn D fx1; : : : ; xng, where xn D .xn; yn/.

2 Petunin’s Ellipses

At the first stage, we search for the most distant points .xk; yk/ and .xl; yl/ in the set

Mn D f.x1; y1/ ; : : : ; .xn; yn/g :

Then, we connect the points .xk; yk/ and .xl; yl/ by the line segment L. Next, we
search for the points .xr; yr/ and

	

xq; yq



, which are most distant from L. Further, we
connect the points .xr; yr/ and

	

xq; yq



by the segments L1 and L2, which are parallel
to L. Then, we connect the points .xk; yk/ and .xl; yl/ by the line segments L3 and L4,
which are perpendicular to the line segment L. Intersections of the line segment L1,
L2, L3, and L4 form a rectangle ˘ with the side length a and b (Fig. 1).

For definiteness, put a � b. Transport the left lower corner of the rectangle to
the origin of a new system of axes Ox0 and Oy0 using the rotation and parallel
translation. The points .x1; y1/, .x2; y2/ ; : : : ; .xn; yn/ become the points

	

x01; y01



,
	

x02; y02



; : : : ;
	

x0n; y0n



. Map the points
	

x01; y01



,
	

x02; y02



; : : : ;
	

x0n; y0n



to the points
	

˛x01; y01



,
	

˛x02; y02



; : : : ;
	

˛x0n; y0n



, where ˛ D a
b . As a result, we have the set of

points covered by the square S.
Find the center

	

x00; y00



of the square S and distances r1; r2; : : : ; rn between the
center and every points

	

˛x01; y01



,
	

˛x02; y02



; : : : ;
	

˛x0n; y0n



. The greatest number
R D max .r1; r2; : : : ; rn/ defines the circle with the center at the point

	

x00; y00



with
radius R. Finally, all the points

	

˛x01; y01



,
	

˛x02; y02



; : : : ;
	

˛x0n; y0n



are laying in
the circle with the radius R. Stretching this circle along the Ox0 with the coefficient
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Fig. 1 The Petunin’s rectangle
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Fig. 2 Construction of Petunin’s ellipse

ˇ D 1
˛

and using inverse transformations of rotation and parallel translation we
obtain a Petunin’s ellipse (Fig. 2).

As a result, only one point from the sample is located on every embedded
ellipsoid, so we arrange them (Fig. 3).
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Fig. 3 Embedded Petunin’s
ellipses

3 Classic Method of Construction of Petunin’s Ellipsoids

For clarity, let us consider the case R3. The construction of the ellipsoid containing
the set M in R3 is performed in the following way. As in the case of a plane, at
the first stage we select the pair of points Xi and Xj with maximal distance. Let
a D �Xi;Xj

�

is the diameter of the set M. Pass through the ends of the segment a two
planes ˇ and � , which are perpendicular to the segment a. Consider the orthogonal
projection of the set M at the plane ˇ and denote this set by Mˇ . Then, with the
help of the method described above we construct the rectangle ˘ˇ on the plane ˇ
containing the set Mˇ , whose side is parallel to this diameter. The rectangle ˘ˇ and
the segment a determine the parallelepiped˘ D ˘ˇ�a containing the set M. Then,
we compress the space in the direction, which is parallel to the segment a so that the
parallelepiped ˘ transforms to the cube K. At the next stage, we construct the ball
C with minimal radius and the center at the point O, which is an intersection of the
diagonals of the cube K containing the transformed compressed set M. At the final
stage, using the inverse transformation (extension) of the space we transform the
cube K into the parallelepiped ˘ and obtain from the ball C the desired ellipsoid E.

4 Statistical Properties of Petunin’s Ellipsoids

Let G D .M;F/ , M � R be the population of random variables with an unknown
distribution function F. The bulk of population G is a subset B 	 M such that
P fx 2 Bg D 1 � ˛, where x as an arbitrary element from the sample retrieved
from the population G using simple sampling, and ˛ is given significance level
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(for example, ˛ D 0; 05 ). If sample values x1; x2; : : : ; xn are exchangeable random
variables with the same absolutely continuous distribution function, that according
to Hill’s assumption [11],

P
	

xnC1 D x 2 	x.i/; x.j/


 D j � i

nC 1 ;

where xnC1 is the next sample value from G, and x.i/ and x.j/ are order statistics. The
following facts take place [10].

Theorem 1. If �1; �2; : : : ; �nC1 are exchangeable identically distributed random
variables with absolutely continuous joint distribution function, such that

P f�k D �mg D 0

for k ¤ m , then

P f�k � �1; : : : ; �k � �k�1; �k � �kC1; : : : ; �k � �nC1g D 1

nC 1 :

Proof. Let Fk .x1; x2; : : : xk/ be the joint distribution function of any k values from
�1; �2; : : : ; �nC1. For any k D 1; 2; : : : ; nC 1 we have:

P f�k � �1; : : : ; �k � �k�1; �k � �kC1; : : : ; �k � �nC1g D
D R

R1
P fx � �1; : : : ; x � �k�1; x � �kC1; : : : ; x � �nC1=�k D xg f .x/ dx;

where f .x/ D F0 .x/ is the probability density of one random value.
Note that

P fx � �1; : : : ; x � �k�1; x � �kC1; : : : ; x � �nC1=�k D xg D

lim
"!0

P fx � �1; : : : ; x � �k�1; x � �kC1; : : : ; x � �nC1; x � " < �kg
P fx � " < �kg D

D lim
"!0

FnC1 .x; x; : : : ; x; x/ � FnC1 .x; x; : : : ; x; x � "/
F .x/ � F .x � "/

D lim
"!0

.FnC1 .x; x; : : : ; x; x/ � FnC1 .x; x; : : : ; x; x � "//="
.F .x/ � F .x � "//="

D

D
@
@y FnC1

 n
‚ …„ ƒ
x; : : : ; x; y

!

f .x/
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Hence,

P f�k � �1; : : : ; �k � �k�1; �k � �kC1; : : : ; �k � �nC1g D
D R

R1

@
@y FnC1 .x; : : : x; y/dx:

Thus, the values
R

R1

@
@y FnC1 .x; : : : x; y/ are equal for k D 1; 2; : : : ; nC1. The event

f�k � �1; : : : ; �k � �k�1; �k � �kC1; : : : ; �k � �nC1g means that a random variable
attains the greatest value. These events form a complete group, i.e.

nC1X

kD1
P f�k � �1; : : : ; �k � �k�1; �k � �kC1; : : : ; �k � �nC1g D

.nC 1/
Z

R1

@

@y
FnC1 .x; : : : x; y/dx D 1:

Thus,

P f�k � �1; : : : ; �k � �k�1; �k � �kC1; : : : ; �k � �nC1g D 1

nC 1 :

Theorem 2. If �1; �2; : : : ; �nC1 are exchangeable random variables with absolutely
continuous distribution function such that P

˚

�k D �.j/

 D 0 for k ¤ m; and

�.1/�.2/ : : : �.n/ is a variational series constructed on the first n values, then

P
˚

�nC1 2
	

�.j/; �.jC1/
�
 D 1

nC 1 :

Proof. Divide the half-interval
	

�.i/; �.jC1/
�

into intervals:

P
˚

�nC1 2
	

�.j/; �.jC1/
�
 D P

˚

�nC1 > �.j/; �nC1 � �.jC1/

 D

D P
˚

�nC1 2
	

�.j/; �.jC1/


C P

˚

�nC1 D �.jC1/

 D

D
X

i1;i2;:::;in

P
˚

�nC1 > �i1 ; : : : ; �nC1 > �ij ; �nC1 < �ijC1
; : : : ; �nC1 < �in




:

The first term contains Cj
n terms, i.e. all the combinations fi1; i2; : : : ; ing of the

numbers f1; 2; : : : ; ng such that j values among �1; �2; : : : ; �n are less that �nC1 , and
other values n � j are not less than �nC1. Using inclusion-elimination principle we
have that
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P
˚

�nC1 2
	

�.j/; �.jC1/
�
 D

D P

i1;i2;:::;in

P

8

<̂

:̂

�nC1 > �i1 ; : : : ; �nC1 > �ij
„ ƒ‚ …

B

; �nC1 � �ijC1
„ ƒ‚ …

A1

; : : : ; �nC1 � �in
„ ƒ‚ …

An�j

9

>=

>;

D

D
X

i1;i2;:::;in

n�j
X

kD0
.�1/k

X

fs1;s2;:::;skg�
�fijC1;ijC2;:::;ing

P f�nC1 > �i1 ; : : : ; �nC1 > �skg :

Since the distribution function F is absolutely continuous on the interval
	

�.j/; �.jC1/



, by Theorem 1 we have

P
˚

�nC1 2
	

�.j/; �.jC1/
�
 D

D
X

i1;i2;:::;in

n�j
X

kD0
.�1/k

X

fs1;s2;:::;skg�
�fijC1;ijC2;:::;ing

1

jC kC 1 D

D Cj
n

n�j
X

kD0
.�1/k Ck

n�j

1

jC kC 1 D Cj
n

n�j
X

kD0
.�1/k Ck

n�j

1Z

0

tjCkdt D

D Cj
n

1Z

0

tj .1 � t/n�j dt D

D Cj
n

1Z

0

n�j
X

kD0
.�1/k Ck

n�jt
jCkdt:

It follows from the definition of the beta function that

P
˚

�nC1 2
	

�.j/; �.jC1/
�
 D Cj

nB .jC 1; n � jC 1/ D

D Cj
n

� .jC 1/ � .n � jC 1/
� .nC 2/ D

D Cj
n

jŠ .n � j/Š

.nC 1/Š D
nŠ

jŠ .n � j/Š

jŠ .n � j/Š

.nC 1/Š D
1

nC 1 :

Corollary 1. It follows from Theorem 2 that

P
˚

�nC1 2
	

�.i/; �.j/


 D j � i

nC 1
80i < jnC 1;where�0 D �1; �nC1 D C1:
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Proof. It is easy to see that

P
˚

�nC1 2
	

�.i/; �.j/


 D P

˚Qx 2 �x.i/; x.iC1/



: : :
�

x.j�1/; x.j/


 D

D P
˚

�nC1 2
�

�.i/; �.iC1/


C : : :C P

˚

�nC1 2
�

�.j�1/; �.j/


 D j�i

nC1 :

Lemma 1. If two random values x1 D
	

�11; �
1
2; : : : ; �

1
n




and x2 D
	

�21; �
2
2; : : : ; �

2
n




,
have the same probability density fG, then for any point X0 D

	

x01; x
0
2; : : : ; x

0
n




the

Euclidean distanced r1 D
q
	

�11 � x01

2 C 	�12 � x02


2 C : : :C 	�1n � x0n

2

and r2 D
q
	

�21 � x01

2 C 	�22 � x02


2 C : : :C 	�2n � x0n

2

are identically distributed random
variables.

Proof. Let us construct the distribution function for random variable r1 D r .x1/.
Fr1 .x/ D P fr1xg.For x < 0 the probability is zero 0 since r1 is the a nonnegative
value. Consider the case x0:

P fr1xg D P

�q
	

�11 � x01

2 C 	�12 � x02


2 C : : :C 	�1n � x0n

2

x

�

:

The domain for which

q
	

�11 � x01

2 C 	�12 � x02


2 C : : :C 	�1n � x0n

2

x

is a ball in n-dimensional space centered at X0 with radius x. Denote this domain by
B0. Then

P fr1xg D P
˚

x1 2 Ox
X0


 D
Z

B0

fG .t1; t2; : : : ; tn/ dt1dt2 : : : dtn:

So, we have shown that the distribution function of the random variable r1 has
the form:

Fr1 .x/ D
8

<

:

0; x < 0;
R

B0

fG .t1; t2; : : : ; tn/ dt1dt2 : : : dtn; x � x0

Since the random vectors x1 and x2 have the same probability density, repeating
the arguments for r2 we obtain:

Fr2 .x/ D
8

<

:

0; x < 0;
R

B0

fG .t1; t2; : : : ; tn/ dt1dt2 : : : dtn; x � x0;



Nonparametric Ellipsoidal Approximation 335

In other words,

Fr1 .x/ D Fr2 .x/ ;

This means that r1 and r2 are identically distributed random variables.

Theorem 3. If the vectors x1; x2; : : : ; xn are exchangeable and identically dis-
tributed random variables from population G, En is Petunin’s ellipsoid containing
the point x1; x2; : : : ; xn and �!x nC1 2 G , then

P .xnC1 2 En/ D n

nC 1 :

Proof. After affine transformations, distribution functions of all random vectors
change equally. Respectively, x01; x02; : : : ; x0n also are identically distributed random
variables from G0, which contains the points transformed by the same transforma-
tion, including �!x 0nC1. Therefore, the points x01; x02; : : : ; x0n remain exchangeable. By
Lemma 1, the random variables r1; r2; : : : ; rn are identically distributed. Since their
order depends only on the order of exchangeable points x01; x02; : : : ; x0n, then they
are exchangeable also. If to calculate the distance rnC1 to the center �!x nC1 of the
hypercube, then by Theorem 2

P.rnC1 < r.n// D n

nC 1 D P .xnC1 2 En/ :

Corollary 2. The significance level of Petunin’s ellipsoid no greater than 0,05, is
attained for n > 39.

Corollary 3. Since the point X0 D
	

x01; x
0
2; : : : ; x

0
n




is an arbitrary, the both the
square center and centroid of the point set can be taker as the starting point.

The described algorithm have several special features:

1. Only one point always is located on the ellipsoid boundary.
2. The ellipsoid contains n points with the probability n

nC1 independently from the
distribution function.

3. It is always possible to limit the point set by 40 samples, guaranteeing that the
significance level is no greater than 0.05.

5 Effective Method of Construction of Petunin’s Ellipsoids

In this section we describe the modification of the classical algorithm for an arbitrary
finite-dimensional space. Note, that the main goal of the classical algorithm is to
construct a linear transformation that at each step maps diameter vectors to axes.
All we have to do after that is to make scaling and to find the most distant point
from the center of a hypercube. Our goal is to describe the construction of the linear
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transformation introduced above. Assume that we do not perform rotation at each
step, but only make projections and translations. This means that we have all the
diameters of sets. By construction, these diameters form an orthogonal system. Let
us normalize it and denote by Bm D f�!a 1;

�!a 2; : : : ;
�!a mg:

Then, we must find an unitary transformation that maps this orthonormalized
system to basis. This problem becomes trivial after taking into account the fact that
the inverse transformation maps basis vectors to our system. Thus, we know the
matrix of the inverse transformation:

U�1 D .�!a 1j�!a 2j : : : j�!a m/

or, equivalently,

U D .�!a 1j�!a 2j : : : j�!a m/
�1:

Another convenient fact about unitary operators is U�1 D UT ; which means that
the only thing to make for finding the inverse transformation is transposition. Our
next goal is to simplify the process of moving to the space of lower dimension and
make only one translation. Consider the first step of the algorithm for that. Let we
found the diameter vectors of our input set (denote them by �!x k and �!x l).

As we do not make a rotation and translation, we must project our points onto the
affine subspace�!x kCL . Here L is an orthogonal complement of a line determined by�!x k��!x l. In fact it is a hyperplane which contains �!xk and is orthogonal to �!x k��!x l.

Denote the points obtained after projection by M.1/
n D fx.1/i ; i D 1; n � 1g. It is

worth to say that after projection the number of points will decrease by one, because
the projection of �!xk is �!xl by construction. Then, we show that on the next steps we
do not have to move to the spaces with lower dimension. Instead, it is enough to
perform projection onto the hyperplane that is orthogonal to the diameter of the
corresponding set. Let at some step we have M.k/

n D fx.k/i ; i D 1; n � kg—the set of
points in Rm that lie in some affine subspace yC L1, whose dimension is p.

Assume that we found the diameter of this set and it equals to x.k/l � x.k/t and

consider the hyperplane that is orthogonal to this vector and contains x.k/t . Its
equation looks as follows:

.x; x.k/l � x.k/t / D .x.k/t ; x
.k/
l � x.k/t /:

The projection operator for this hyperplane is:

Px D x � .x; x
.k/
l � x.k/t / � .x.k/t ; x

.k/
l � x.k/t /

jjx.k/l � x.k/t jj2
.x.k/l � x.k/t /:

As x.k/t lies in L1 we have yCL1 D x.k/l CL1. This implies that x D �!x .k/
t Cy; y 2

L1 and

Px D x � ˛.x.k/l � x.k/t / D �!x .k/
t C y � ˛.x.k/l � x.k/t /;
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where

˛ D .x; x.k/l � x.k/t / � .x.k/t ; x
.k/
l � x.k/t /

jjx.k/l � x.k/t jj2
:

Also we know that ˛.x.k/l � x.k/t / 2 L1 and this implies that Px 2 �!x .k/
t C L1. At

the same time, by the definition of projection Px belongs to the hyperplane .x; x.k/l �
x.k/t / D .x.k/t ; x

.k/
l � x.k/t / which is also an affine subspace. Thus, the projections of

our points will lie at the intersection of two affine subspaces one of which is our
hyperplane. Denote it by x.k/t C L2, where L2 is a .m � 1/-dimensional subspace.
The intersection of these affine subspaces is affine subspace x.k/t C L1 \ L2. At the
same the fact that x.k/l � x.k/t is orthogonal to L2 means that L1 C L2 D Rm. To find
the dimension of L1 \ L2 consider the Grassmann’s formula for our subspaces:

m D m � 1C p � dim L1 \ L2

and we have

dim L1 \ L2 D p � 1:

Knowing this, we can perform projection onto the hyperplane which is orthogo-
nal to the diameter and contains one of its points. But in fact the dimension of the
affine subspace, which contains our projected points will decrease. In the original
algorithm we move to the orthogonal complement instead of this. Finally, we have
the following algorithm:

Input data: Mn D fx1; : : : ; xng—vectors from Rm

Algorithm

1. M.0/
n  Mn;B D ;; k D 0.

2. While k < m do:

2.1. Find �!x .k/
l and �!x .k/

t —the diameter points of M.k/
n

2.2. B B[
�

x.k/l �x.k/t

jjx.k/l �x.k/t jj

�

:

2.3. M.kC1/
n  PLM.k/

n ; where L is a hyperplane .x; x.k/l � x.k/t / D .x.k/t ; x
.k/
l �

x.k/t /:

2.4. k kC 1 .

3. Build matrix U whose columns are the vectors of B.
4. M

0

n  UTMn:

5. Find minimal axis-aligned bounding box for the points of M
0

n. Denote by c the
center of this bounding box.

6. Build scaling transformation S which maps this bounding box into hypercube.
7. M

00

n  SM
0

n , c
0  Sc;
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8. R max
n

jjx � c
0 jj; x 2 M

00

n

o

.

9. E 1
R2

I, where I is a unit matrix of size m.
10. E USTESUT , c Uc.

Output data: E is the matrix of our ellipsoid, c is its center.
The only constraint for the application of our algorithm is that the ellipsoid must

exist and be non-degenerate. In other words, there must not exist a subspace of the
input space Rm that contains the input set of points. At each step of both algorithms
we are computing the diameter of a finite set of points. This procedure requires
O.mn.n � k// operations for the corresponding step k. After that we project our set
to the affine subspace. The complexity of this operation is O.m.n� k//. As we have
to make it m times the total complexity of all projections and diameters searches
will be

T1 D Tdiameter C Tprojection D O

 
mX

kD1
.mn.n � k/C m.n � k//

!

D O.m2n2 C m2n/

After that we provide linear transformations of the input sample which take

Tlinear transformation D O.m2n/

Another step we perform is the search of the most distant point from the center
of rectangle. This operation has complexity O.mn/ and we won’t include it to the
result as it will be absorbed by other summands of our estimation. But we also
have the last step of our algorithm which computes matrices product. This action’s
complexity is

Tmatrices multiplication D O.m3/

Summing all the parts of our algorithm we will obtain

Ttotal D T1 C Tlinear transformation C Tmatrices multiplication D O.m2n2 C m2nC m3/

This result may be improved for two- and three-dimensional spaces with convex
hull construction. We may build a convex hull for our set and perform search
on its vertices. Asymptotically this algorithm will require O.n lg n C z.z � 1/=2/
operations, where z is the number of vertices of the convex hull. In the worst case
the complexity of the whole algorithm will be the same, but for most samples the
number of vertices in convex hull is small in comparison with the sample size. This
means that the complexity for such samples will be O.n lg n/.

Memory complexity of our algorithm will be O.mn C m2/ as we need to keep
the input sample, projected sample (it changes at each step), the matrices for our
ellipsoid and transformations.
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Table 1 Comparison results
for two and three dimensions

Original algorithm Modified algorithm

R2 1 2;0082

R3 1;9951 2;9404

We compared original and modified algorithms in two- and three-dimensional
spaces. Both of them were implemented in R programming language. There were
generated 100 samples of 200 vectors each. All the vectors were from Gaussian
multivariate distribution with the same covariance matrix. Every sample consisted
of two groups of 100 vectors each with different mean vectors. For each algorithm
the total time of its work on all the 100 samples was computed. Taking as a unit
the time of work for original algorithm in two-dimensional space the results of our
comparison are displayed in Table 1. It is worth saying that for three-dimensional
space after the first projection in the original algorithm we obtain the case m=2. This
means that after rotation we can use the algorithm for m=2 and build the bounding
box after that. It has been taken into account while implementing the original
algorithm. This optimization decreases the number of diameters search by one and
we have to perform them m � 1 times. At the same time the modified algorithm
performs diameters search m times. All the other actions made by algorithms are
analogous. Thus the ratio between the times of work of the two algorithms on the
same data sets must be close to .m � 1/=m:

6 Conclusion

The proposed ellipsoidal approximation of an attainability set using nonparametric
estimations may be considered as an adequate approximation of minimal volume
ellipsoids and minimal trace ellipsoids. Its significance level depends only on the
number of points and only one point from the set lays at the bound of such ellipsoid.
This unique feature allows to construct a statistical depth function, order multivari-
ate vectors and identify outliers. As a result, it is possible to increase accuracy of
outer ellipsoidal approximations and estimate the probability of attaining a target
set of states.
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Extremal Results for Algebraic Linear
Interval Systems

Daniel N. Mohsenizadeh, Vilma A. Oliveira, Lee H. Keel,
and Shankar P. Bhattacharyya

Abstract This chapter explores some important characteristics of algebraic linear
systems containing interval parameters. Applying the Cramer’s rule, a parametrized
solution of a linear system can be expressed as the ratio of two determinants. We
show that these determinants can be expanded as multivariate polynomial functions
of the parameters. In many practical problems, the parameters in the system
characteristic matrix appear with rank one, resulting in a rational multilinear form
for the parametrized solutions. These rational multilinear functions are monotonic
with respect to each parameter. This monotonic characteristic plays an important
role in the analysis and design of algebraic linear interval systems in which
the parameters appear with rank one. In particular, the extremal values of the
parametrized solutions over the box of interval parameters occur at the vertices of
the box.

Keywords Algebraic linear interval systems • Parametrized solutions • Extremal
results

1 Introduction

Linear interval systems arise in many branches of science and engineering, such
as control systems, communications, economics, sociology, and genomics. The
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problem of analyzing and designing linear interval systems has theoretical and
practical importance and has been open for the last few decades. Several results
concerning the analysis of systems with real parametric interval can be found in
the early works in [1, 4, 6, 12–14, 16]. In [19], a method is proposed to calculate
the exact bounds of the solution set which is based on solving special boundary
problems of the linear interval system. The bounds of the solution set can be
obtained by applying a linear programming algorithm as explained in [15], and
followed up in [7], while a branch-and-bound scheme is presented in [20]. The
results developed in [18] can be used to obtain outer estimations of parametric
AE solution sets for linear systems with interval parameters. The sign-definite
decomposition method can be used to decide the robust positivity (or negativity)
of a polynomial over a box of interval parameters by evaluating the sign of
the decomposed polynomials at the vertices of the box [2, 5, 8]. This chapter
concentrates on the class of algebraic linear systems containing interval parameters
and takes a novel approach to determine the exact extremal values of the solution set
over a box in the parameter space. We show that this can be accomplished by finding
the general functional form of the solution set in terms of the interval parameters and
then using its properties. Furthermore, in the case of unknown linear systems, these
properties allow us to determine the unknown parameters of the function by a small
set of measurements made on the system.

A parametrized solution of a linear system containing parameters can be
expressed as the ratio of two determinants. These determinants can be expanded as
polynomial functions of the parameters, resulting in a rational polynomial form for
the parametrized solutions [3, 9, 11, 17]. If the interval parameters in the system
characteristic matrix appear with rank one, which is the case in many practical
applications, then the rational polynomial form reduces to a rational multilinear
function, being monotonic in each parameter [10]. This monotonic characteristic
leads us to extract the extremal results for linear interval systems. In particular, we
show that if the rank one condition holds, then the extremal values of the solution
set over a box in the parameter space occur at the vertices of that box. This result
enables us to evaluate the performance of a linear interval system over a box of
parameters by checking the respective performance index at the vertices.

This chapter is organized as follows. In Sect. 2 we provide some mathematical
preliminaries on the parametrized solutions of linear systems. Section 3 presents
the extremal results for linear systems with interval parameters appearing with rank
one. Section 4 provides some examples. Finally, we summarize with our concluding
remarks in Sect. 5.

2 Linear Systems with Parameters

Consider the linear system

0 D A.p/xC Bu;

y D C.p/xC Du; (1)
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where An�n.p/ is the system characteristic matrix, p D Œp1; p2; : : : ; pl	
T is the vector

of system parameters, ur�1 is the vector of input variables, xn�1 is the vector of
system state variables, ym�1 is the vector of system outputs, and Bn�r and Dm�r are
system matrices with scalar entries. Let

z WD
�

x
y

�

; (2)

then, (1) can be rewritten as

�
A.p/ 0

�C.p/ I

�

„ ƒ‚ …

QA.p/

�
x
y

�

„ƒ‚…

z

C
�

B
�D

�

„ ƒ‚ …

QB

u D
�
0

0

�

: (3)

It is clear that j QA.p/j D jA.p/j. Let us define

Tij.p/ WD
�

A.p/ bj

�ci.p/ dij

�

; i D 1; : : : ;m; j D 1; : : : ; r; (4)

with ci.p/; i D 1; : : : ;m the i-th row of C.p/, bj; j D 1; : : : ; r the j-th column of B,
and dij the corresponding .i; j/ element of D. We also define

˛.p/ WD jA.p/j;
ˇij.p/ WD jTij.p/j: (5)

In a linear interval system the parameters p and inputs u vary in intervals. Suppose
that B denotes the box of intervals and is characterized as B D P � U where

P D fp W p�k � pk � pCk ; k D 1; : : : ; lg;
U D fu W u�j � uj � uCj ; j D 1; : : : ; rg: (6)

We make the following assumption regarding the system in (3).

Assumption 1. jA.p/j 6D 0; 8p 2 P .

This assumption is true for many physical systems, because if there exists a vector
p0 2 P so that A.p0/ becomes a singular matrix, then the vector of system state
variables x will not have a unique value which is not the case for physical systems.
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Theorem 1. For the system described in (1), and under the Assumption 1, the input-
output relationship is

yi D
rX

jD1

ˇij.p/

˛.p/
uj; i D 1; : : : ;m; (7)

with ˇij.p/ and ˛.p/ as defined in (5).

Proof. Let Tij.p/ and ˇij.p/, for i D 1; : : : ;m, j D 1; : : : ; r, be as defined in (4)
and (5), respectively. Also, let A.p/ satisfy the statement of Assumption 1. Applying
the Cramer’s rule to (3) and using the fact that j QA.p/j D jA.p/j, the i-th output yi can
be expressed as

yi D
rX

jD1

jTij.p/j
jA.p/j uj; i D 1; : : : ;m; (8)

and the result follows. ut
Remark 1. Suppose that p is fixed at p�. Then, the form in (7) states the well-known
Superposition Principle.

The form of the multivariate polynomials ˛.p/ and ˇij.p/ in (7) can be deter-
mined using the following assumption and lemma.

Assumption 2. p appears affinely in A.p/ and C.p/, that is

A.p/ D A0 C p1A1 C p2A2 C � � � C plAl; (9)

C.p/ D C0 C p1C1 C p2C2 C � � � C plCl: (10)

Based on the statement of Assumption 2, Tij.p/ defined in (4) can be written as

Tij.p/ D Tij0 C p1Tij1 C � � � C plTijl: (11)

Lemma 1. If p appears affinely in A.p/, and

rk D rank.Ak/; k D 1; 2; : : : ; l; (12)

then, ˛.p/ D jA.p/j is a multivariate polynomial in p of degree at most rk in pk,
k D 1; 2; : : : ; l:

˛.p/ D
rlX

klD0
� � �

r2X

k2D0

r1X

k1D0
˛k1k2���kl p

k1
1 pk2

2 � � � pkl
l : (13)

Proof. The proof follows easily from the properties of determinants. ut
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Remark 2. The number of coefficients ˛k1k2���kl in (13) is
Ql

kD1.rk C 1/.
Remark 3. Based on the form (9) and the rank conditions (12), we say that pk

appears in A.p/ with rank rk.

Applying Lemma 1 to Tij.p/, then ˇij.p/ D jTij.p/j will be a multivariate
polynomial in p of degree at most rijk in pk where

rijk D rank.Tijk/; i D 1; : : : ;m; j D 1; : : : ; r; k D 1; : : : ; l: (14)

3 Extremal Results

In many physical systems, the parameters p appear in A.p/ with rank one. For
instance, resistors, impedances and dependent sources in an electrical circuit,
mechanical properties of links in a truss structure, pipe resistances in a linear
hydraulic network, and blocks in a control system block diagram, all appear with
rank one in the characteristic matrix A.p/ of the system. Likewise, p appears with
rank one in matrices Tij; i D 1; : : : ;m; j D 1; : : : ; r. Based on this rank condition,
we state the following lemma which is helpful in establishing the extremal results
that will be discussed shortly.

Lemma 2. For the system in (1), if Assumptions 1 and 2 hold, and

rank.Ak/ D 1; k D 1; 2; : : : ; l;
rank.Tijk/ D 1; i D 1; : : : ;m; j D 1; : : : ; r; k D 1; : : : ; l; (15)

then, @yi
@pk

and @yi
@uj

are sign-invariant functions of pk and uj, respectively, over P � U
defined in (6).

Proof. Consider yi as a function of pk with pt; t 6D k fixed at p�t , and uj; j D 1; : : : ; r
fixed at u�j . Then,

yi D
rX

jD1

ˇij0 C ˇij1pk

˛0 C ˛1pk
u�j ; (16)

where we used Lemma 1, for the case p D pk, to expand the polynomials ˇij.p/ and
˛.p/ in (7) according to the rank conditions in (15). Thus,

@yi

@pk
D

rX

jD1

ˇij1˛0 � ˇij0˛1

.˛0 C ˛1pk/2
u�j ; (17)
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which is sign-invariant over pk 2 Œp�k ; pCk 	. Now, if p is fixed at p�, then

@yi

@uj
D ˇij.p�/

˛.p�/
; (18)

which is sign-invariant over uj 2 Œu�j ; uCj 	. This argument is true for each pk; k D
1; : : : ; l and each uj; j D 1; : : : ; r. This completes the proof. ut

We state the extremal results for linear interval systems as the following theorem.

Theorem 2. Consider the system in (1) under the Assumptions 1 and 2, and the
rank conditions in (15). Suppose that p and u are varying in the box B D P � U ,
defined in (6), with v WD 2lCr vertices, labeled V1;V2; � � � ;Vv . Then, the extremal
values of yi; i D 1; : : : ;m occur at the vertices of B:

min
p;u2B yi.p; u/ D minfyi.V1/; yi.V2/; : : : ; yi.Vv/g;

max
p;u2B yi.p; u/ D maxfyi.V1/; yi.V2/; : : : ; yi.Vv/g:

Proof. Proof follows immediately from Lemma 2. ut

4 Example

4.1 A Linear Interval System

Consider the following linear system

0 D

0

B
B
B
B
B
@

p1 3 0 1 �2p1
�5 0 3 1 2

�2p1 0 1 2 4p1
0 �1 0 0 �1
1 �4 0 �3 0

1

C
C
C
C
C
A

„ ƒ‚ …

A.p1/

0

B
B
B
B
B
@

x1
x2
x3
x4
x5

1

C
C
C
C
C
A

„ƒ‚…

x

C

0

B
B
B
B
B
@

1

0

0

0

0

1

C
C
C
C
C
A

„ƒ‚…

B

u1;

y1 D
	�p1 0 0 0 2p1




„ ƒ‚ …

C.p1/

0

B
B
B
B
B
@

x1
x2
x3
x4
x5

1

C
C
C
C
C
A

„ƒ‚…

x

C 2
„ƒ‚…

D

u1: (19)

where p1 and u1 are varying in the rectangle,

B D f.p1; u1/ j 1 � p1 � 4; 2 � u1 � 3g; (20)
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with vertices:

A D .1; 2/; B D .1; 3/;
C D .4; 3/; D D .4; 2/: (21)

Suppose that the extremal values of the output y1 over the rectangle B are to be
evaluated.

For the above system, Assumptions 1 and 2 hold. The matrix A.p1/ in (19) can
be decomposed as

A.p1/ D

0

B
B
B
@

0 3 0 1 0

�5 0 3 1 2

0 0 1 2 0

0 �1 0 0 �1
1 �4 0 �3 0

1

C
C
C
A

„ ƒ‚ …

A0

C

0

B
B
B
@

1 0 0 0 �2
0 0 0 0 0

�2 0 0 0 4

0 0 0 0 0

0 0 0 0 0

1

C
C
C
A

„ ƒ‚ …

A1

p1; (22)

where rank.A1/ D 1. The matrix T11.p1/ will be

T11.p1/ D

0

B
B
B
B
B
B
B
@

p1 3 0 1 �2p1 1
�5 0 3 1 2 0

�2p1 0 1 2 4p1 0

0 �1 0 0 �1 0

1 �4 0 �3 0 0

�p1 0 0 0 2p1 2

1

C
C
C
C
C
C
C
A

; (23)

which can be written as

T11.p1/ D

0

B
B
B
B
B
@

0 3 0 1 0 1

�5 0 3 1 2 0

0 0 1 2 0 0

0 �1 0 0 �1 0
1 �4 0 �3 0 0

0 0 0 0 0 2

1

C
C
C
C
C
A

„ ƒ‚ …

T110

C

0

B
B
B
B
B
@

1 0 0 0 �2 0
0 0 0 0 0 0

�2 0 0 0 4 0

0 0 0 0 0 0

0 0 0 0 0 0

�1 0 0 0 2 0

1

C
C
C
C
C
A

„ ƒ‚ …

T111

p1; (24)

with rank.T111/ D 1. Based on these rank conditions, the statement of Theorem 2
can be applied. Thus, setting .p1; u1/ to the values corresponding to the vertices
A;B;C;D in (21) and solving (19) for y1, gives

min
p1;u12B

y1 D 5:5 at vertex A;

max
p1;u12B

y1 D 9:6 at vertex C: (25)
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10
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2
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2

p1u1
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5
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Fig. 1 Plot of y1.p1; u1/

Alternatively, using Theorem 1, the function y1.p1; u1/ can be calculated as

y1.p1; u1/ D 38C 63p1
19C 18p1

u1; (26)

which is plotted in Fig. 1 (the rectangle B, defined in (20), is also shown). It can be
easily seen that the extremal values of y1 occur at the vertices of B and are the same
as those obtained in (25).

4.2 A Linear DC Circuit

Consider the linear DC circuit shown in Fig. 2 where R1;R2; : : : ;R5 are resistors,
V is an independent voltage source, J is an independent current source, and
Vamp;1;Vamp;2 are dependent voltage sources with amplification factors K1;K2,
respectively. Applying the Kirchhoff’s laws, the governing equations can be written
as

0

B
B
B
B
B
@

1 �1 �1 0 0

0 0 1 1 0

0 1 0 �1 �1
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�

: (27)

Suppose that R2 D 1;R3 D 2;R4 D 5;R5 D 3;K1 D 1;K2 D 4, and the
resistance R1 and the sources V and J are the interval parameters varying in the box,

B D f.R1;V; J/ j 2 � R1 � 5; 1 � V � 3; 2 � J � 4g: (28)



Extremal Results for Algebraic Linear Interval Systems 349

R3

R2R1

V
Vamp,1= K1I1+

_

J R5

R4

+_

Vamp,2= K2I4

I1 I2

I3

I4
I5

Fig. 2 A linear DC circuit

Assuming that the output is y1 D �R1I1C I3C V C 2J, the set of system equations
will be
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: (29)

Suppose that it is of interest to find the extremal values of y1 over the box B in (28).
It can be easily verified that the Assumptions 1 and 2 hold. The matrices

A.R1/;T11.R1/ and T12.R1/ can be written as

A.R1/ D A0 C A1R1;

T11.R1/ D T110 C T111R1;

T12.R1/ D T120 C T121R1; (30)
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where rank.A1/ D rank.T111/ D rank.T121/ D 1. Therefore, Theorem 2 can be
applied. Setting .R1;V; J/ to the values corresponding to the vertices of box B
in (28) and solving (29) for y1, yields

min
R1;V;J2B

y1 D 4:9 at .R1;V; J/ D .2; 1; 2/;

max
R1;V;J2B

y1 D 11:7 at .R1;V; J/ D .5; 3; 4/: (31)

Based on Theorem 1 and Lemma 1, the general form of the function y1.R1;V; J/
can be expressed as

y1.R1;V; J/ D ˇ110 C ˇ111R1
˛0 C ˛1R1 V C ˇ120 C ˇ121R1

˛0 C ˛1R1 J; (32)

where the unknown constants ˇ110; ˇ111; ˇ120; ˇ121; ˛0 and ˛1 can be calculated
using the given values for R2;R3;R4;R5;K1;K2. Thus, we get

y1.R1;V; J/ D 5C 14R1
10C 7R1

V C 20C 11R1
10C 7R1

J: (33)

It can be easily verified that the extremal values of y1 occur at the vertices of B and
are the same as those obtained in (31).

Remark 4. In the case of an unknown circuit, that is the values of R2;R3;R4;R5;K1,
K2 are not known, the unknown constants ˇ110; ˇ111; ˇ120; ˇ121; ˛0 and ˛1 in (32) can
be determined through measurements, which is the generalization of the well-known
Thevenin’s Theorem [3, 11, 17].

5 Conclusions

In this chapter we described some important characteristics of the parametrized
solutions of linear interval systems. We showed that if the interval parameters in the
characteristic matrix of the system appear with rank one, which is the case in many
practical applications, then the parametrized solutions will be monotonic in each
parameter. We also showed how the Superposition Principle can be obtained from
the general functional form developed in this chapter. Furthermore, we described
that the extremal values of the parametrized solutions over a box in the parameter
space occur at the vertices of the box.

Acknowledgements Dedicated to Professor Boris Polyak in honor of his 80th birthday.
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Applying the Gradient Projection Method
to a Model of Proportional Membership
for Fuzzy Cluster Analysis

Susana Nascimento

Abstract This paper presents a fuzzy proportional membership model for cluster-
ing (FCPM). Unlike the other clustering models, FCPM requires that each entity
may express an extent of each prototype, which makes its criterion to loose the
conventional prototype-additive structure. The methods for fitting the model at
different fuzziness parameter values are presented. Because of the complexity of
the clustering criterion, minimization of the errors requires the gradient projection
method (GPM). We discuss how to find the projection of a vector on the simplex
of the fuzzy membership vectors and how the stepsize length of the GPM had been
fixed. The properties of the clusters found with the FCPM are discussed. Especially
appealing seems the property to keep the extremal cluster prototypes stable even
after addition of many entities around the grand mean.

Keywords Fuzzy proportional membership • Gradient projection method •
Extremal cluster prototype

1 Introduction

Since the introduction of fuzzy partitions by Ruspini [49], fuzzy clustering has
grown and become quite prominent in cluster analysis and modeling. The concep-
tual definition of fuzzy membership is particularly appealing to quantify a grade of
membership of entities to clusters. The most known approach to fuzzy clustering is
the method of Fuzzy c-Means (FCM) introduced by Dunn [16] and Bezdek [7, 8].
The FCM has received much attention from the scientific community and has been
extensively applied in diverse tasks of pattern recognition and image processing
[9, 10, 24], data mining and engineering systems design [1, 41, 48], bioinformatics
[2], as well as to handle distributed data without resorting to approximations [54].
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The FCM method and its extensions show how a cluster structure is derived
from the data. Yet the method provides no feedback on reconstruction of the data
from the found cluster structure, that is, on representing the data as a function
of clusters. Specifically, the fuzzy memberships, though expressing the similarity
between entities and prototypes indeed, are not involved in the reconstruction of the
observations from the clusters.

In this paper we present a fuzzy clustering framework, within the data recovery
paradigm advocated by Mirkin [33, 34], for mining for typological structures
from data. The model assumes the existence of some prototypes which serve
as “ideal” patterns to data entities. To relate the prototypes to the observations,
we assume that the observed entities share parts of the prototypes, such that
an entity may bear 70% of a prototype V1 and 30% of prototype V2, which
simultaneously expresses the entity’s membership to the respective clusters. The
underlying structure of this model can be described by a fuzzy K-partition defined
in such a way that the membership of an entity to a cluster expresses the proportion
of the cluster’s prototype present in the entity. Specifically, we assume that any
entity may independently relate to any prototype, up to the condition that the
memberships for any entity must sum to unity, which is similar to the assumption in
the FCM criterion. The model, proportional membership fuzzy clustering (FCPM)
[38–40] provides a family of clustering criteria, FCPM-m, with fuzziness parameter
m (m D 0; 1; 2), leading to cluster structures with central prototypes (FCPM-0,
FCPM-1), closely matching the FCM, as well as cluster structures with extremal
prototypes (FCPM-2), close to the concept of ideal, or archetypal, type [15, 35].

To minimize the FCPM criteria, we developed an alternating optimization (AO)
algorithm which involves two iterative steps. First, given a set of K prototypes,1

find the optimal fuzzy membership values satisfying the fuzzy constraints. Second,
given the solution from the first step, obtain the optimal set of prototypes. The latter
step considers the first-order condition of optimality. To minimize this constrained
minimization problem, we adapt the gradient projection method (GPM) by Levitin
and Polyak [28], Polyak [45, 46]. The GPM is a powerful and simple method to
solve bound-constrained optimization problems and has been successfully applied
in various machine learning and data mining algorithms. In [30] the GPM has
been applied to non-negative matrix factorization (NMF), a minimization problem
with bound constraints, with a method of alternating least-squares using projected
gradients leading to faster convergence than the popular multiplicative update
method. In [55] the authors used the GPM to determine the hyper-parameters of
radial basis kernel functions (RBF) in a multiple kernel learning algorithm by
incorporating sequential minimization with the GPM. The approach was applied
to multi-class classification problems. In [53] the GPM was applied to a convex
programming problem of automatically learning the feature weights to obtain the
feature order preferences of a clustering algorithm. In [50] the authors introduce
a more broad approach of projected Newton-type methods for solving large-scale

1In the follow up text the number of clusters is denoted by K instead of c as in the FCM.
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optimization problems present in machine learning. Yet, in [37] fuzzy decision tree
is combined with the GPM to control the growth of the parameters during the tuning
optimization process. To the best of our knowledge, no previous works on fuzzy
clustering took advantage of the GPM. We describe the adaptation of the GPM to
the FCPM model in the following aspects: (i) computation of the gradient for the
clustering criteria; (ii) choice of a constant step-size length; (iii) method for finding
the projection of a vector on the simplex of the membership vectors.

Increasing attention has been given to create synthetic data generators (DG’s)
aimed at evaluation or demonstration of clustering methods properties. The most
popular DG’s (e.g. ones integrated in the WEKA system [23]) assume that data
are typically generated from traditional multivariate normal distributions ranging
from simple to complex covariance structures [25, 32], or based on selected density
and a certain “difficulty level” for outlier detection [44]. Yet, more general data
generators have been designed, like KNIME [4] a modular platform for data
generation for general purpose study of algorithms, a data generator to create
clusters from several different distributional families with multidimensional overlap
between clusters to compare different initialization strategies of K-means [52], or
a flexible data generator producing Gaussian clusters with controlled parameters of
between- and within-cluster spread (to model cluster intermix) to study properties
of K-means clustering algorithm [14]. However, none of these approaches focus on
fuzzy clustering structures. To analyse the data recovery properties of FCPM we
constructed a DG according to the FCPM model, and conducted a simulation study
with data sets with distinct dimensionalities, exhibiting a typological structure.

Another contribution of this study is to show how an ideal type structure can
be found with the FCPM. Ideal types are extreme points that synthesize data
representing “pure individual types”, and are assigned by the most discriminating
features of data points. Recent works on archetypal analysis [11, 13, 17–19, 21,
29, 36, 47] show the importance of the concept of ‘archetypal type’ in machine
learning and data mining applications. The model of archetypal analysis postulates
that entities are convex combinations of the archetypes to be found, and that the
magnitudes of the K coefficients for each case reflect the relative proximity to each
archetype. However, in FCPM the membership values measure the proportions of
the prototypes present in the entity and the entities share proportions of the set
of prototypes. We further explore the tendency of FCPM to find prototypes with
extreme values contrasting to the central prototypes found by FCM. We take a
case study from the field of psychiatry [31] presenting extreme cluster prototypes.
When augmenting the original data with patients bearing less severe syndromes and
running the algorithms, the prototypes found by the FCM move towards the more
moderate characteristics of the data while the FCPM prototypes are almost extreme,
highlighting the suitability of the FCPM to model the concept of ideal type.

The rest of the paper is organized as follows. The first section presents the
FCPM model along with its properties. Section 2 describes a version of alternating
minimization algorithm for the model; this involves ‘major’ and ‘minor’ iterations
with the former involving application of the GPM. Section 3 describes the simu-
lation study involving the stage of data generation as well as a set of simulation
experiments to analyse the data recovery properties of the FCPM and FCM methods.
It appears the FCPM methods have some properties that allow it to choose the
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number of clusters by moving some prototypes together or out of the data area.
Section 4 describes our experiment in exhibiting the ‘extremal’ properties of the
FCPM types making the FCPM prototypes akin to archetypes.

2 The Model of Fuzzy Proportional Membership

Consider an entity-to-feature data matrix X preprocessed into Y by shifting the
origin to the gravity center of all the entities (rows) in Y and rescaling features
(columns) by their ranges with sh D max

i
.xih/�min

i
.xih/. Thus, Y D Œyih	 is a n� p

entity-to-feature data table where each entity, described by p features, is defined by
the row-vector yi D Œyih	 2 Rep (i D 1 � � � n ; h D 1 � � � p).

In the follow-up model in (1) we assume that each entity yi D Œyih	 of Y is related
to each prototype vk D Œvkh	 .k D 1; � � � ;K/, as it is in the FCM. We further assume
that the membership value uki is not just a weight, but it expresses the proportion of
vk which is present in yi. That is, we consider that approximately yih D ukivkh for
every feature h. More formally, we suppose that

yih D ukivkh C ekih; (1)

where the residual values ekih are as small as possible.

2.1 Generic FCPM Square-Error Criterion

According to model (1), we define the clustering criterion as fitting of each data
point to a share of each of the prototypes, represented by the degree of membership.
This goal is achieved by minimising all the residual values in (1) via the square-error
criterion

E0.U;V/ D
KX

kD1

nX

iD1

p
X

hD1
.yih � ukivkh/

2 (2)

over all admissible uki and vkh, that is, with regard to the fuzzy constraints

0 � ukj � 1; for all k D 1; : : : ;K, j D 1; : : : ; n (3)

KX

kD1
uki D 1; for all i D 1; : : : ; n: (4)

on the space of fuzzy K-partitions MfKn.
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Equation (1) along with the square-error criterion (2) to be minimised
by unknown membership matrix U 2 MfKn and set of prototypes V D
.v1; v2; : : : ; vK/ 2 ReK�p for Y given, is referred to as the generic fuzzy clustering
proportional membership model, FCPM-0, for short.

The following properties of the FCPM model (1) have to be considered:

• Each prototype, vk is a “model” or “ideal” point such that any entity, yi, bears
a proportion of it, uki, up to the residuals. The proportion, uki, is considered
as the value of membership of yi to the cluster k. So, both the prototypes and
memberships are reflected in the model of data generation.

• Equation (1) can be considered as a device to reconstruct the data from the model.
The clustering criterion follows the square-error framework to warrant that the
reconstruction is, on average, as exact as possible.

• The model (1) may be considered over-specified: any observed entity must share
a proportion of each of the prototypes, which ideally may occur only if all the
entities and prototypes belong to the same uni-dimensional space. Such a solution
is not realistic, especially when contradictory tendencies are present in the data.
This property of the generic model led to some over-estimation effects which
requires to extend the criterion.

• Due to the bilinear nature of model (1), a property of the clustering criterion (2)
is that it remains constant if vectors vi and ui are changed for vi=� and ui�

for some i, where � is an arbitrary real. In particular, tending � to zero, the
membership vector, ui� , tends to zero while the prototype vi=� to infinity,
without any change in corresponding differences " in criterion (2). This way, the
following phenomenon may occur in the process of adjusting solutions during
alternating minimisation of criterion (2): to decrease some of the differences
in (2) the membership values involved can be increased with simultaneously
decreasing other membership values to zero along with moving corresponding
prototypes to infinity. Tending some prototypes to infinity is a specific pattern of
non-convergence of the alternating minimisation, which may occur in the generic
FCPM model.

• The former two properties may make the model sensitive to the number of
clusters K, which is to be specified by the user. When this number is greater
than the number of prototypes fitting well in the model, some of the prototypes
in a computation may be driven out to infinity in the process of alternating
minimisation of the criterion (2).

2.2 Extension of FCPM Criterion

The requirement of FCPM generic criterion (2) that each entity be expressed as a
part of each prototype is too strong. Sometimes it is more realistic to consider that
only meaningful proportions, those expressed by high membership values, should
be taken into account in Eq. (1).
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In order to smooth the effect of high residual values eijh at small memberships
uki, let us weight the squared residuals in (2) by a power m (m D 1; 2) of
corresponding uki:

Em.U;V/ D
KX

kD1

nX

iD1

p
X

hD1
um

ki.yih � ukivkh/
2; (5)

subject to the fuzzy constraints (3) and (4).
The models corresponding to these criteria at different parameter m are referred

to as FCPM-1 (m D 1) and FCPM-2 (m D 2). Criterion (2) is also (5) at m D 0.
The power m in (5) is similar to the power m in the FCM clustering criterion [8],
controlling the extent of sharing among fuzzy clusters. One may assign any value
m � 0 to it. To an extent, their roles are similar in FCM and FCPM: the greater the
m, the greater the weight assigned to the difference between the observation and the
model value at larger membership values and, in contrast, the smaller the weight of
the difference at smaller membership values. Yet in the FCM the model value is just
the cluster center component, vkh, which does not depend on the membership value,
whereas in the FCPM it is ukivkh, which does depend on the membership value.
However, the dependence is not clear-cut; for example, at yij < vkh, the larger um

kh,
the better, and it is quite opposite if yij > vkh. In this study no other values of m are
considered, a similar approach to the common practice in FCM of accepting m D 2
(e.g. [12, 43]). Other versions of the FCPM are considered in [38].

3 The FCPM Method and Algorithm

3.1 Alternating Minimization: Major and Minor Iterations

Let us consider the FCPM criteria above in the general format of criterion E W MfKn�
ReK�p ! ReC, to be minimized:

min
U2MfKn, V2ReK�p

E.U;V/, (6)

following the generic alternating minimization scheme.
The alternating minimization algorithm applied to problem (6) involves two

iterating steps. First, givenbV 2 ReK�p, minimize E.U;bV/ with respect to U 2 MfKn.
Second, given the solution from the first step, bU 2 MfKn, minimize E.bU;V/ over
V 2 ReK�p.

Given fuzzy membership matrix U.t/, at tth iteration, minimization of E.bU;V.t//

with respect to V 2 ReK�p can be done according to the first-order condition of
optimality (i.e. rEm.bU;V.t// D 0). This condition implies that
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v
.t/
kh D

��

u.t/k

�mC1
; yh

�

��

u.t/k

�mC1
;u.t/k

� , (7)

where parameter m takes value m D 0; 1; 2 for either version of FCPM-m, and h�i
denotes the dot product.

This equation resembles the equation for calculating the FCM prototypes, which
suggests that the FCPM does capture the averaging nature of FCM. However, there
is a difference as well. In formula (7), the power m C 1 of u in the numerator
differs from the power mC 2 of u in the denominator, while these powers coincide
in the calculation of FCM prototypes. Therefore, the FCM prototypes are convex
combinations of the observed points, yet the FCPM prototypes are not.

The minimization of criterion E.U;bV/ with respect to U 2 MfKn is not that
straightforward as in FCM because the fuzziness constraints (3) and (4) are not
automatically satisfied for the FCPM solutions. That requires an iterative process of
its own. After preliminarily experimenting with several options, like the Lagrangian
multipliers [6], the gradient projection method developed by Levitin and Polyak [5]
has been picked up to solve the constrained minimization problem. This method
works especially well for criterion E0 in (2) as will be shown in the next section.

The gradient projection method is iterative. To distinguish between iterations of
the alternating minimization process and iterations within the gradient projection
method, we refer to the former ones as “major” iterations and, to the latter ones, as
“minor” iterations.

3.2 The Gradient Projection Method

The gradient projection method (GPM) belongs to the family of steepest descent
methods for constrained minimization. It is adapted here to minimize Em.U;bV/ over
U 2 MfKn.

Let f W ReK ! Re be a continuously differentiable function to be minimized
over a convex subset Q � ReK . For any z in ReK , let us denote its projection on
Q by PQ.z/, so that PQ.z/ minimizes kx � zk over all x 2 Q. Notice that PQ.z/,
denotes the unique projection of vector z 2 ReK on Q.

The GPM for solving this constraint optimization problem starts with an arbitrary
x.0/ 2 Q and iteratively transforms it according to the following rule:

x.tC1/ DPQ.x
.t/ � ˛rf .x.t///; (8)

where ˛ is a positive constant step size and rf .x/ the gradient of f at x 2 Q.
The following conditions of convergence of the gradient projection method

[6, 46] have to be pointed out.
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A vector function g W ReK ! ReK is said to satisfy the Lipschitz continuity
condition with constant L if

kg.x/ � g.y/k � L kx�yk 8x; y 2 K
Re : (9)

A function f .x/ is said to be strictly convex with constant l > 0 if

f .xC y/ � f .x/ > hrf .x/; yi C l

2
kyk2 8x, y 2 K

Re : (10)

For a twice differentiable function f , this is equivalent to its Hessian r2f ; being
bounded over ReK , that is, r2f .x/ � l � I, where I is the diagonal matrix, and A � B
means that A � B is a positive semi-definite matrix.

In order for the GPM to be effective, the constraint set Q should be such that
the projection operation PQ .:/ could be easily carried out. Polyak [46] mentioned
several cases of this type including the case(s) in which Q involves upper and/or
lower bounds on all the variables in the problem. However, when Q is a general
polyhedron, the projection (8) requires solving a quadratic programming problem.

3.3 Applying the Gradient Projection Method at FCPM Minor
Iterations

Let us denote the set of membership vectors uj satisfying conditions (3) and (4) by
Q, which is a convex set (cf. [8, Theorem 6.2.]). With V.t/ pre-specified, the function
E.U;bV/ is to be minimized over such U whose columns, uj, belong to Q.

The gradient projection method (8) applied to minimize E.U;bV/ can be stated as
follows:

u.t/i DPQ.u
.t�1/
i � ˛rE.u.t�1/i ;bV//; i D 1; � � � ; n: (11)

The possibility of translation of the problem defined over matrices in terms
of separate membership vectors in (11) is due to the fact that for each u.t/i its

components u.t/ki only depend on u.t�1/ki .
In order to apply method (11), one needs to specify the following three parts of

it: (i) Computation of rE.u.t�1/i ;bV/; (ii) Choice of a constant step-size length ˛;

(iii) Finding the projection PQ.di/ for di Du.t�1/i � ˛rE.u.t�1/i ;bV/ 2 ReK .i D
1; � � � ; n/.

For the sake of simplicity, we start from the criterion of the generic model E0
in (2), as the E.U;bV/. Then we extend the analysis to the other values of m. The
demos of the mathematical properties presented may be consulted in [38, 40].

The function E0.U;bV/ is convex and twice differentiable over its variables
uij [38]. The elements of its gradient are
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rE0
�

Œui	 ;bV
�

D 2.hvk; vki uki � hyi; vki/; k D 1; � � � ;K; (12)

and its Hessian is a Kn � Kn diagonal matrix whose ..k; i/; .k; i//th element is
2 hvk; vki.

Let us denote l D 2min
k
hvk; vki and L D 2max k hvk; vki. Naturally, L � I �

r2E0.U;bV/ � l � I. We assume all vk are nonzero which implies L � l > 0.
The gradient rE0 satisfies the Lipschitz condition over Q with constant L thus

defined. Indeed,

rE0
�

Œui	 ;bV
�

� rE0
�

Œzi	 ;bV
�

D 2 hvk; vki .uki � zki/ (13)

� L.uki � zki/; 8ui; zi 2 Q:

which implies the same inequality in terms of the vector norms, that is, the Lipschitz
condition (9).

The situation for functions Em.U;bV/ (m D 1; 2) is different: neither is convex
over Q, though each satisfies the Lipschitz condition.

The elements of the gradients rEm are expressed as

rEm

�

Œui	 ;bV
�

D .mC 2/ hvk; vki umC1
ki � 2.mC 1/ hvk; yii um

ki C (14)

m hyi; yii um�1
ki ;

for m � 0.
Note that (12) is a special case of (14) at m D 0. On the other hand, it is proven

that
ˇ
ˇ
ˇrEm

�

Œui	 ;bV
�

� rEm

�

Œzi	 ;bV
�ˇ
ˇ
ˇ � L j.uki � zki/j ; (15)

with j�j the L1 norm, and L a constant equal to

L D .mC 2/.mC 1/V C 2m.mC 1/YV C m.m � 1/Y; (16)

with V D maxk hvk; vki, YV D maxk;i jhvk; yiij and Y D maxi hyi; yii. This shows
that rEm (with m � 1) satisfies the Lipschitz condition for the L1-norm with
constant L defined above.

Although the Lipschitz continuity condition (9) is defined for the L2-norm,
it is known that the condition holds or does not hold in both L2 and L1-norms
simultaneously, though the constant L in (9) may change [46].

When a function is not convex, yet satisfies the Lipschitz condition, the gradient
projection method may converge to a local optimum only, adding this to the general
local search nature of the method of alternating optimization.
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According to the convergence properties of the GPM method [6, 46] we take the
step-size ˛ D 2

.1C"/L , so that ˛ spans the interval between 0 and 2=L when " changes
from 0 to infinity. The value " D 0:5 was chosen experimentally as giving the most
stable convergency rates.

Substituting L from (16) into the formula, one obtains

˛m D 1

1:5.c1mV C c2mYV C c3mY/
;m D 0; 1; 2; (17)

with V , YV and Y defined above, and coefficients cj
m defined by:

m 0 1 2

c1m 1 3 6

c2m 0 2 6

c3m 0 0 1

Now we can turn to the problem (iii) of projection of the difference vectors
di Du.t�1/i � ˛rEm.u

.t�1/
i ;bV/ onto the set Q of vectors satisfying conditions (3)

and (4).
For each criterion Em, vectors di D Œdki	 to be projected onto Q are defined by

equations

d.t/ki D u.t�1/ki � 2˛m

�

.mC 2/ hvk; vki
�

u.t�1/ki

�mC1 � 2.mC 1/ hvk; yii
�

u.t�1/ki

�mC

m hyi; yii
�

u.t�1/ki

�m�1�
; (18)

derived from (11) with rEm in (14) substituted for rE.
We start by presenting a generic method for projecting a vector on the simplex

of the membership vectors.

3.3.1 Projecting a Vector on the Simplex of the Membership Vectors

Let us consider the problem of finding a vector uD Œuk	 2 Q(k D 1; � � � ;K), which
is at the minimum distance from a pre-specified vector d D Œdk	. This problem can
be stated as follows:

min
u

f .u/ D ku � dk2 ; (19)

subject to constraints (3) and (4).
In order to solve this problem, we assume, without any loss of generality, that

d1 � d2 � � � � � dK . The optimal u� of problem (19) has the same order of
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components, that is, u�1 � u�2 � � � � � u�K . Let us assume that u�1 � u�2 � � � � �
u�

kC > 0 for some kC � K. If kC < K, the final K � kC components are zero. For
the non-zero components, the following equations hold at an optimal u�:

u�1 � d1 D u�2 � d2 D � � � D u�kC � dkC .

Otherwise, we could transform u� as above by redistribution of values among the
positive u�1 ; � � � ; u�kC in such a way that its distance from d decreases, which would
contradict the assumption that the distance had been minimized by u�. Thus, for the
optimal u�, u�1 D d1� akC , u�2 D d2� akC , � � � ; u�

kC D dkC � akC , where akC is the
common value of the differences; it can be determined from the result of summation
of these equations as

akC D 1

kC
XkC

kD1dk � 1

kC
; (20)

The value of kC is not known beforehand. To find it, the following iterative
process can be applied. Start with kC D K, and at each iteration compute akC

with formula (20) and take the difference u�
kC D dkC � akC . If it is less than or

equal to zero, decrease kC by 1 and repeat the process until the difference becomes
positive. Then define all the other u�k as follows: u�k D dk � akC for k D 1; : : : ; kC
and u�k D 0 for k D kC C 1; � � � ;K. The process can be accelerated if, at each
iteration, kC is decreased by the number of negative values in the set of differences
u�k D dk � akC .k D 1; : : : ; kC/. This is described in the following Algorithm A1.

Algorithm A1 ProjectionQ.d/

1 Given d=Œdk	 .k D 1; � � � ;K/
2 sort dD Œdk	 in the descending order;
3 kC WD K;
4 Repeat
5 calculate akC by (20);
6 zeros WD false; k WD 0I
7 Repeat
8 k WD kC 1I
9 uk WD dk � akC ;
10 If uk � 0 then zeros WD trueIendIf
11 until (k D kC.or.zeros/;
12 If zeros then
13 For j D k; � � � ; kC do uj WD 0; endFor
14 kC WD k � 1;
15 endIf
16 until (kC D 0 .or.notzeros );
17 return u D Œu1; : : : ; ukC ; 0; : : : ; 0	;
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3.4 The FCPM Alternating Optimization Algorithm

The FCPM algorithm is defined as an alternating minimization algorithm, in which
each “major” iteration consists of two steps as follows. First, given prototype matrix
V , the optimal membership values are found with Eq. (11) through the gradient
projection iterative process (Algorithm A1). Second, given membership matrix
U, the optimal prototypes are determined according to the first-degree optimality
conditions (7).

Thus, the FCPM algorithm involves “major” iterations to update matrices U and
V and “minor” iterations to recalculate the membership values, using the gradient
projection method within each of the “major” iterations.

The algorithm starts with a set V.0/ of K arbitrarily selected prototype points in
Rep and U.0/ in MfKn; it stops when the difference between successive prototype
matrices becomes small according to an appropriate matrix norm, j�jerr. The FCPM-
m .m D 0; 1; 2/ algorithm is defined in A2.

The FCPM algorithm converges only locally as the FCM does. Moreover, with a
“wrong” number of pre-specified clusters, FCPM-0 may not converge at all since it
may shift some prototypes to infinity. In an extensive experimental study conducted
with simulated data, the number of major iterations in FCPM-0 algorithm is rather
small when it converges, which is used as a stopping condition: when the number
of major iterations in an FCPM-0 run goes over a large number (in our calculations,
over 100), that is an indicator that the process is likely to not converge. This property
is discussed in the next section.

4 Simulation Study

To analyze the data recovery properties of the FCPM model, a simulation study has
been conducted with artificial generated data considering four main objectives:

O1 To compare results found by FCPM and FCM methods.
O2 To analyze the ability of FCPM to recover the original prototypes.
O3 To use the behavior of FCPM-0 as an indicator of the “right” number of

clusters.
O4 To analyze the behavior of FCPM algorithms at numbers of clusters greater

than those in the data.

To accomplish this, a data generator has been constructed according to the
assumptions underlying the FCPM model so that each prototype is an “ideal” point
such that any entity bears a proportion of it.
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Algorithm A2 FCPM-m Algorithm

1 Given Y D �

yi

�

2 choose K .2 � K < n/ ; .m D 0; 1; 2/, T1;T2 , " > 0 ;

3 initialise V.0/ D
n

v.0/k

oK

kD1
;U.0/ 2 MfKn, t1 WD 0 ;

4 Repeat
5 t2 WD 0I
6 U.t2/ WD U.t1/;
7 Repeat
8 t2 WD t2 C 1;
9 For i D 1; � � � n do

10 calculate d.t2/i with V.t1/;u.t2�1/i by (18);

11 u.t2/i WD ProjectionQ.d
.t2/
i / %(Algorithm A1)

12 endFor
13 until

	ˇ
ˇU.t2/ � U.t2�1/

ˇ
ˇ
err < " .or. t2 D T2


 I
14 t1 WD t1 C 1I
15 U.t1/ :D U.t2/;
16 calculate V.t1/ with U.t1/by (7);
17 until

	ˇ
ˇV.t1/ � V.t1�1/

ˇ
ˇ
err < " .or.t1 D T1


 I
18 return .V ; U/ WD 	

V.t1/;U.t1/

 I

4.1 Generation of Data and Assessment of Results

The FCPM data generator was constructed as follows:

1. The dimension of the space .p/, the number of clusters .K0/, and the number of
entities generated within each cluster as numbers n1; n2; : : : ; nK0 , are randomly
generated within pre-specified intervals: [min_DimP, max_DimP] for space
dimensionality p; [min_K, max_K] the interval for the number of clusters;
[min_PtsClt, max_PtsClt] for the total number of points (nk) to be generated
within each cluster k (k D 1; � � � ;K0). The data set cardinality is defined then as
n DPK0

kD1 nk.
2. K0 cluster directions are defined as follows: prototypes ok 2 Rep (k D 1; � � � ;K0)

are randomly generated within a pre-specified hyper-cube with side length
between �100.0 and 100.0 ; then, their gravity center o is taken as the origin
of the space. Each cluster direction is taken as the segment �!ook

3. For each k (k D 1; � � � ;K0), define two p-dimensional sampling boxes, one within
bounds Ak D Œ:9ok; 1:1ok	 and the other within Bk D Œo; ok	. Then, generate
randomly a small percentage of points, percent_PtsOrgVs (e.g. 0:2nk) in Ak and
the remaining points, .1 � percent_PtsOrgVs/ � nk (e.g. 0:8nk) in Bk.

4. The data generated (including the K0 original prototypes) are normalized by
centering to the origin and scaling by the ranges of features.
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Fig. 1 Architecture of the data generated on a 3D projection of the best three principal com-
ponents, with p-dimensional sampling boxes Ak and Bk for a data structure with six original
prototypes

All randomly generated items come from a uniform distribution in the interval
Œ0; 1	. Figure 1 illustrates the architecture of the data generator on a 3D projection
of the best three principal components, with p-dimensional sampling boxes Ak and
Bk, for a data structure with K0 D 6 original prototypes.

Due to the characteristics of this data generator, rather complex data structures
can be generated with a small number of easily interpretable parameters, something
that would be much more difficult to achieve using the traditional multivariate
normal distributions for data generation [3, 25, 32, 44].

A number of arbitrary decisions were made in the design of the algorithm
of the FCPM data generator, which refers to the chosen parameter values, that
is a common process for generating artificial data. The user can change any
of these decisions by instantiating the input parameters when generating data.
In the conducted simulation study these parameters have been chosen as fol-
lows: [min_K, max_K]=[2,8]; [min_DimP, max_DimP]=[2,200]; [min_HCube,
max_HCube]=[-100.0,100.0]; percent_DSeg= 0.1 and percent_PtsOrgVs=0.2.

To visualize the distribution of the data points, a 2D/3D space of the best principal
components is used, into which these points are projected.

About 100 data sets have been generated. For a fixed pair, p and K0, a group of
15 data sets were generated with different numbers of entities and different original
prototypes. The experiments comprised seven such groups with p ranging from 5 to
180 and K0 from 3 to 6.

Our criteria (5) are more complex than that of FCM and thus require more
calculations. In our experiments, each of the algorithms (FCM, FCPM-0, FCPM-1,
and FCPM-2) was run on the same data set and starting from the same initial pro-
totypes (i.e. with the same initial setting) for different values of K (K D 2; 3; 4 : : :).
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The instantiation of the parameters of the algorithms: (i) T1 D 100, " D 0:0001,
j�jerr D L1-norm in ReK�p (FCM & FCPM common parameters); (ii) m D 2, k�k
=L2 -norm (FCM own parameters); (iii) T2 D 100 (FCPM own parameters).

Our main interest on discussing the experimental results is given to the clustering
results rather than the performance of the algorithms.

In order to compare the prototypes found by FCPM (V 0), with “reference”
prototypes V , which were either FCM found prototypes (goal O1) or generated
prototypes (goal study O2), we introduced a dissimilarity coefficient to measure
the squared relative quadratic mean error between corresponding prototypes of sets

V 0 D
n

v0j
oK0

jD1 and V D fvkgKkD1, defined by:

D
�

V
0

;V
�

D
PK

kD1
Pp

hD1.v0kh � vkh/
2

PK
kD1
Pp

hD1v2kh C
PK

kD1
Pp

hD1v02kh

: (21)

In (21), the matching between prototypes is determined according to minimum
distances. In the case in which the number of prototypes found by FCPM-0, K0
is smaller than K, only K0 “reference” prototypes participate in (21). Coefficient

D
�

V
0

;V
�

is not negative, and it equals 0 if and only if vkh D v0kh for all k D
1; � � � ;K; h D 1; � � � p. In a typical situation, when the components of each vk and v0k
are in the same orthants, then D is not greater than 1. Notice that the dissimilarity

measure D
�

V
0

;V
�

is more or less independent of the “reference” prototypes (V’s),

their cardinality (K0), and dimension (p); thus, it can be used to compare cluster
prototypes in different settings.

In order to measure the separability of found partitions, the separability index, Bk

by Backer (as defined in [8]) was used. This index is defined as follows:

Bk .U/ D 1 � k

k � 1

 

1 �
KX

kD1

nX

iD1

u2ki

n

!

; (22)

with 2 � k < n. In Bezdek [8] it is proven that 0 � Bk .U/ � 1, with Bk .U/ D 1,
when U is hard; and Bk .U/ D 0 for an entirely fuzzy k-partition, i.e. U D Œ1=k	.

In summary, in this approach a fuzzy k-partition is induced from a hard k-
partition and an affinity index. It seems that Backer’s approach to clustering present
greater success than the k-means family when clusters are not essentially hyper-
ellipsoidal in shape.

In what follows, we refer to three types of the numbers of prototypes: (1) the
number of originally generated prototypes, K0, (2) the number of prototypes pre-
specified in a run, K, and (3) the number of prototypes found by an algorithm,
K0. The cluster solutions found with FCPM algorithms are characterized according
to: (1) the number of clusters found, K0; (2) the dissimilarity D .VFCPM;VFCM/

between the prototypes found by FCPM and those by FCM; (3) the dissimilarity
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D .VFCPM;VO/ from the generated prototypes O D fokgK0kD1 and (4) the separability
index, Bk0 . The separability index was also calculated for the FCM solutions to
compare different versions of the algorithm.

4.2 Discussion of the Simulation Results

Results of our experiments with FCM and FCPM algorithms lead us to distinguish
between three types of data dimensionality: low, intermediate, and high, because the
algorithms behave differently across these categories. With several hundred entities,
the dimension p satisfying p=K0 � 5 is considered small and p satisfying p=K0 � 25
high. Note that the numbers of prototypes K0 and K in the same computation may
differ because of either of two causes:

(C1) some of the initial prototypes converge to the same stationary point;
(C2) some of the initial prototypes have been removed by the algorithm from the

data cloud (this concerns FCPM-0).

In either case, K0 < K.
Figure 2 shows the kind of cluster structure we deal with, taking a small data

set generated with K0 D 3 original prototypes in Re2 (p D 2) with n D 49 points.
The prototypes found by running FCM and FCPM algorithms started from the same
initial setting at K D 3 are also displayed. The FCPM-0 algorithm moved one of the
prototypes (that corresponding to cluster 2) far away from cluster 2 to the left, so
that its points, in the end, share the prototype with cluster 3. Concerning the other
FCPM and the FCM algorithms, all of them found their partitions with K0 D 3

prototypes. Method FCPM-2 produced the most extremal prototypes close to the
original ones, and FCPM-1 produced prototypes close to the prototypes found by
FCM.

In the main series of experiments the number of prototypes looked for were taken
as equal to the number of original prototypes, K D K0.

The average results of running FCM and FCPM algorithms with K D K0 for
each of the three groups of data sets: namely, at small dimension (p D 5; K0 D 3),
intermediate dimension (p D 50; K0 D 4), and at high dimension (p D 180; K0 D
6), are presented in the following four tables: Table 1 shows the number K0 of
prototypes found, and when K0 < K, the cause, either C1 or C2, is shown as a
superscript. Table 2 shows the average dissimilarity coefficient either concerning
FCM prototypes (left part), and generated prototypes (right part). These average
values correspond to the average relative square error of FCPM solutions with
respect to the reference prototypes. Table 3 shows the average partition coefficient,
BK . Finally, in Table 4 the number of major iterations, t1 taken by each algorithm is
shown.

Another set of experiments were carried out with K D K0C 1. The goal of study
was to analyze the sensitivity of FCPM algorithms to larger numbers of pre-specified
prototypes than those at which the data were generated (goal study O4). Depending
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Fig. 2 Results of clustering
for the illustrative data set
(K0 D 3, p D 2, n D 49),
with data points marked with
symbol ‘C’. All FCPM and
FCM algorithms find K0 D 3

prototypes, except for
FCPM-0, that moved
prototype 2 far away to the
left of its cluster. Therefore,
its points share the prototype
with cluster 3 according to
FCPM-0
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Table 1 Number of prototypes found by FCM
and FCPM algorithms for the three groups of
data sets: at small dimension (pD5), interme-
diate (pD50), and at high dimension (pD180).
Upper indices C1 and C2 are explained in the text

Small Intermed. High

k0 .K0 D 3/ .K0 D 4/ .K0 D 6/

FCM 3 4 1C1

FCPM-0 3 4 6 or 5C2

FCPM-1 3 4 6

FCPM-2 3 4 6

on the ratio p=K, the FCM and FCPM algorithms behave differently. The numbers
of prototypes found by each algorithm are presented in Table 5.

The results of these experiments are the following:

Number of clusters Concerning the correctness of the number of clusters
retrieved from the data, the methods fall into three groups:

(i) Methods retaining the pre-specified number of clusters: FCPM-1 and
FCPM-2.

(ii) Methods which can reduce the number of clusters (especially in the high
dimensional data case) due to either of the causes C1 (FCM) or C2 (FCPM-
0) above.

For low and intermediate dimensions, FCPM-0 almost always finds the correct
number of generated clusters (Table 1). In the high dimensional spaces, FCPM-0
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Table 2 Average dissimilarity values (%) for: FCM prototypes
(D .VFCPM ;VFCM/ ) and original prototypes (D .VFCPM ;VO/ ) running
FCM and FCPM algorithms for three groups of data sets: small dimension
(pD5), intermediate (pD50), and high dimension (pD180)

Small Intermed. High Small Intermed. High

D .VFCPM ;VFCM/ D .VFCPM ;VO/%

FCM – – – 14:70 17:90 96:83

FCPM-0 0:49 1:23 143:50 12:20 14:34 11:67

FCPM-1 0:89 0:16 94:20 10:20 15:31 15:82

FCPM-2 7:10 11:44 97:18 2:30 1:16 0:45

Table 3 Average
separability index BK values
at FCM and FCPM
algorithms for three groups of
data sets: small dimension
(pD5), intermediate (pD50),
and high dimension (pD180)

Space dimension Small Intermed. High

BK

FCM 0:61 0:47 0:01

FCPM-0 0:84 0:90 0:78

FCPM-1 0:80 0:98 1:00

FCPM-2 0:43 0:36 0:30

Table 4 Average number of
major iterations, t1, for FCM
and FCPM algorithms at the
three groups of small,
intermediate and high
dimensional data sets

t1 Small Intermed. High

FCM 12 15 27

FCPM-0 10 20 78/101

FCPM-1 11 9 11

FCPM-2 11 11 27

Table 5 Number of
prototypes found by the FCM
and FCPM algorithms run
with K D K0 C 1. Upper
indices C1 and C2 are
explained in the text

Space dimension Small Intermediate High

k0+1= 4 5 7

FCM 4 4C1 1C1

FCPM-0 3 4C2 (6;5;4)C2

FCPM-1 4 4C1 6C1

FCPM-2 4 4C2 6C2

finds the correct number of clusters in 50 % of the cases and it underestimates the
number of clusters in the remaining cases removing some of the prototypes out
of the data set area (as illustrated in Fig. 2). In the high dimensional spaces FCM
typically leads to even smaller number of clusters, making the initial prototypes
to converge to the same point. Further experiments show that this feature of FCM
depends not only on the space dimension but also on the generated data structure.
Indeed, for the high dimensional data, FCM views the entire data set as just one
cluster around the origin of the space, because there are not that many points
generated “outside” of it. However, when the proportion of points generated
around the original prototypes (within the boxes Ak) is increased from 0.2 to 0.8,
FCM identifies the correct number of prototypes (see [26, 27, 51] for discussions
of the challenges of the curse of dimensionality). Figure 3 displays a data set
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Fig. 3 A high dimension
data set (n D 975, p D 180,
K0 D 6) with data points
generated around each
original prototypes in a
proportion of 0:8 instead of
0:2, as in the original data
generation. The original
prototypes as well as the
FCM and FCPM-0 found
prototypes are marked
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generated under this configuration, with the corresponding FCM and FCPM-0
prototypes marked. In such a case, FCM and FCPM-0 prototypes more or less
coincide.

Proximity to FCM or generated Prototypes The prototypes found by FCPM-
1 and FCPM-0 almost coincide with those found by FCM when the number
of prototypes is correctly determined by FCM. These prototypes differ from
those originally generated, since they tend to be central points in the clusters.
In contrast, the FCPM-2 prototypes go to the extremes of the clusters. Indeed,
FCPM-2 identifies the originally generated prototypes and, thus, yields a result
differing from that of FCM (see the corresponding D .VFCPM;VO/ values in
Table 2). This effect is especially visible when the ratio p=K increases. The
prototypes found by FCPM-0 are intermediate between those found by FCM
and FCPM-2. Figure 4 illustrates the relative locations of FCPM and FCM
prototypes, with respect to the original prototypes, for a high dimensional data
set.

Partition Separability The average values of the partition separability coeffi-
cient, BK (Table 3) showed that the FCPM partitions are more contrasting than
those by the FCM. In high dimension cases FCPM-1 led to hard clustering
solutions. This is because the proportional membership is more sensitive to the
discriminant attribute values characterizing a cluster, when compared with the
FCM membership. The FCPM-2 gave the fuzziest partitions, typically differing
from those of FCM.

Iterations On average, the number of major iterations (t1) in FCPM-1 and FCPM-
2 is smaller than in FCM, whereas in FCPM-0 this number does not differ
significantly from that in FCM (for small dimensions). However, the running
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Fig. 4 3D projection of the
prototypes found by FCM
and FCPM’s algorithms with
c D K0 prototypes at a high
dimensional data set with
n D 887, p D 180;K0 D 6
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time is greater for FCPM algorithms due to the time spent in the minor iterations
of the gradient projection method.

Higher Number of Clusters The results presented in Table 5 show the follow-
ing. For small dimensional data, FCM, FCPM-1, FCPM-2 found K0 D K0 C 1
distinct prototypes. The FCPM-0 removed the extra prototype out of the data
space.
For intermediate dimensional data, FCM and FCPM-1 just found K0 D K0
distinct prototypes; the extra prototype almost always moved to coincide with one
of the others. Both FCPM-2 and FCPM-0 found K0 D K0 prototypes by removing
an extra prototype out of the data set area (Fig. 5), rather than by merging two
different prototypes.
For the high dimensional data both FCM and FCPM-0 led to “degenerated”
solutions: either several prototypes coincide with each other (FCM) or more than
one prototype moves out of the data space preventing the algorithm to converge
(FCPM-0). Still, the other methods, FCPM-1 and FCPM-2, recovered the number
of prototypes that had been generated (Fig. 5). However, FCPM-1 led to hard
clusters in the high dimensional cases.
Behavior of the other features (D .VFCPM;VFCM/, D .VFCPM;VO/, and BK), does
not differ from that shown in Tables 2 and 3. Overall, in the high dimensional
cases, the winner is the FCPM-2 which recovers the original “extremal” proto-
types.
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Fig. 5 3D projection of the prototypes found by FCM and FCPM with K D K0 C 1 (high
dimension case at p D 180;K0 D 6). FCM and FCPM-0 lead to different degenerate solutions:
FCM makes all the prototypes coincide with each other, whereas FCPM-0 removes more than one
prototype out of the data area. FCPM-1 and FCPM-2 recover the original number of generated
prototypes

5 Retrieving Extreme Types with FCPM

Archetypes are extreme points that synthesize data representing “pure individual
types”, and are assigned by the most discriminating features of data points in such a
way that each data point is a convex combination of prototypes band, vice versa,
each prototype is a convex combination of the data points [15]. In contrast to
K-means or fuzzy K-means types, the archetypes are not central points but rather
those extremal. In this regard we note that the FCPM models have something to
do with the archetypes. Indeed, our model was introduced as an extension of the
model of “ideal” fuzzy types by Mirkin and Satarov published in 1990 [35]. In that
model, each data point is a convex combination of the prototypes, aka ideal types,
although no reverse relation is required or maintained. Yet the extremal character
of the fuzzy ideal types can be seen quite clearly. In this section, we describe an
experiment demonstrating how an archetypal type structure can be recovered from
data with the FCPM as a move towards FCM.

We use a data set from the psychiatric domain [31]. This data set consists
of 44 patients, described by seventeen psychosomatic features (h1–h17) (see [31]
for a complete description). The features are measured on a severity rating scale
taking integer values between 0 and 6. The patients are partitioned into four classes
of mental disorders: depressed (D), manic (M), simple schizophrenic (Ss) and
paranoid schizophrenic (Sp). Each class contains eleven entities that are considered
‘archetypal psychiatric patients’ of that class. The parameters of this data set are:
n D 44 (n1 D n2 D n3 D n4 D 11), p D 17 and c D 4.
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The mental disorder data set is particularly interesting to this study since, for
each diagnostic category (D, M, Ss, and Sp), there is always a pattern of features
(a subset of h1–h17) that take extreme values (either 0 or 6), and clearly distinguish
each category. Indeed, some of these features take opposite values among distinct
categories. However, some feature values are shared by categories leading to
overlaps. Thus, each category is characterized by ‘archetypal patients’ that show
a pattern of extreme psychosomatic feature values defining a syndrome of mental
conditions (i.e. an ‘underlying type’, following our terminology).

To capture the typology underlying the data, we analyze the relative contributions
of variables h to clusters k, w.hjk/, introduced in [33] and defined by

w.hjk/ D v2kh
P

h v
2
kh

(23)

where vkh denotes the gravity center of a crisp cluster k. Note that the farther vkh is
from zero (which, due to our data standardization, is the grand mean), the easier is
to separate that cluster from the other ones in terms of variable h, which is reflected
in the weight values. Therefore, w.hjk/ can be viewed as a measure of the “degree of
interestingness” of variable h in cluster k with regard to its “standard” mean value.

We consider the set of ‘most contributing features within a cluster’ as the features
which may act as frontier values. We define the ‘underlying type’ of a cluster k, �k,
as the prototype of the cluster characterized by the set Whjk of its most contributing
features.

Table 6 presents the contribution weights of clustering elements to the original
classes of mental disorders. The mean value of the contribution weights defines
a threshold, so that features contributing more than that should be considered as
those characterizing the underlying type, �i, of each of the classes/clusters. These
contributions are outlined by boxes.

In order to find the underlying types of the mental disorders, algorithms FCPM-2
and FCM (with parameter m D 2) were run starting from the same initial setting,
at K D 4. The headers of Tables 7 and 8 show the features characterizing each
underlying type, selected from the boxed values in Table 6. The row beneath each
header in these tables displays the underlying types � i, found by FCM and FCPM-2.
The values of �k are in the original data scales.

The upper rows of Table 7 display the average values of cases belonging to
the corresponding diseases, whereas in Table 8 such values correspond to extreme
values which are followed by the number of cases at which these values were
attained. This format allows us to show the distinct cluster tendencies of clusters
found by FCM and FCPM-2. It is quite clear that the underlying types found by
FCPM-2 do correspond to extreme values, in contrast to the corresponding ones
found by FCM—these are central ones. Concerning the membership values found,
both algorithms assign the highest membership value for an entity to its original
class, thus correctly grouping all entities to the their classes. The only exception
occurs for entity ‘21’ from class M, which is assigned to class Sp. This goes in
line,though, with results found for other clustering algorithms such as complete
linkage, K-means, in Mirkin [33].
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Table 6 Relative
contributions of the 17
psychosomatic variables
(h1-h17) to classes D, M, Ss

and Sp; The features values
higher than the corresponding
means are marked

D M Ss Sp

h w.hjD/ w.hjM/ w.hjSs/ w.hjSp/

h1 0:050 0:047 0:003 0:001

h2 0:028 0:020 0:049 0:028

h3 0:027 0.195 0.096 0:000

h4 0:032 0:000 0:007 0:019

h5 0.167 0:041 0:013 0:028

h6 0:015 0:045 0:058 0:018

h7 0:014 0:008 0:022 0:013

h8 0.117 0.168 0.167 0.115

h9 0.183 0.059 0:008 0:029

h10 0:041 0:017 0:056 0.107

h11 0:021 0:006 0:037 0.210

h12 0:021 0:009 0:013 0.160

h13 0.199 0.075 0:002 0.079

h14 0:016 0:006 0:040 0.069

h15 0:007 0:006 0:009 0.083

h16 0:00 0.101 0.274 0:016

h17 0.064 0.197 0.146 0:026

w 0:059 0:059 0:059 0:059

5.1 Mental Disorders Augmented Data and the Underlying
Types

In order to analyze the potential of FCPM-2 to reveal prototypes on the extreme
(such as archetypes), the original data set should be modified by adding less
expressed cases. Therefore, the data set was augmented by adding data of patients
bearing less severe syndromes. With such an update, we can explore whether the
underlying types are changed or not. To this end we added to each class data of six
mid-scale patients and three light-scale patients constructed as follows. Data for
each new patient, xg D

�

xgh
�

, was generated from the data of a randomly selected
original patient, xi D Œxih	, applying the transformation

xgh D round .sF � xih/C t for all h,

with scale-factor sF D 0:6 to obtain a mid-scale patient and sF D 0:3 to obtain a
light-scale patient. The shift parameter t takes randomly selected value of either 0
or 1.

Tables 7 and 8 present the underlying types (�) found in the original data set
followed by the corresponding ones (�0) for the augmented data set, for each of
the algorithms under study. We can observe that the feature values of the FCM
found types (in �) have moved towards less well expressed, intermediate, values
(in �

0

), showing the strong tendency of the FCM to look for the central tendencies. In
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Table 7 Underlying types of
mental disorders (�D, �M , �Ss ,
�Sp ), found by FCM for the
original data set (�FCM

h ) and
for the augmented data set
(� 0FCM

h ), which can be
compared with corresponding
mean values: (�h) in the first
rows

�D h5 h8 h9 h13 h17
�h 5:18 0:09 6:00 5:64 0:73

�FCM
h 5 0 6 5 1

� 0FCM
h 4 0 5 4 1

�M h3 h8 h9 h13 h16 h17
�h 0:18 5:82 0:82 0:09 0:00 6:00

�FCM
h 0 6 1 0 0 6

� 0FCM
h 1 5 1 1 1 5

�Ss h3 h8 h16 h17
�h 5:27 0:36 5:45 0:45

�FCM
h 5 1 5 0

� 0FCM
h 4 1 3 1

�Sp h8 h10 h11 h12 h13 h14 h15
�h 4:91 5:09 5:82 4:64 0:36 5:18 5:55

�FCM
h 5 5 5 4 1 5 5

� 0FCM
h 4 4 5 4 1 5 5

contrast, the corresponding features in FCPM-2 found types maintain their extremal
nature, stressing the ‘extreme’ nature of FCPM-2 prototypes,and consequently their
ability to identify the underlying types of clusters (and thus their stability over the
most ‘discriminating’ features), despite the presence of many new mid- and light-
scale patients. It is important to stress that the experiment has been conducted by
generating six distinct augmented data sets and that the underlying types found by
FCM and FCPM-2 are exactly the same for all of them.

This result shows that the FCPM keeps the knowledge of the syndromes in
situations at which less severe cases are present in the data set, whereas the FCM
does not. In fact, these results clearly outline the ‘extremal’ behavior of FCPM
prototypes in contrast to the central tendency of FCM prototypes.

6 Conclusion

The fuzzy proportional membership is not just a weight, as in classical fuzzy
clustering, but expresses how much the entities share the features of the prototypes.
The FCPM clustering criteria provide distinct forms of pertaining the observed
data points to the prototypes leading to two different cluster structures: central
ones (FCPM-0, FCPM-1), like in FCM, and extremal (FCPM-2), like the ones of
archetypal analysis.
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Table 8 Underlying types of mental disorders (�D, �M , �Ss , �Sp ),
found by FCPM-2 for the original data set (�FCPM

h ) and for the
augmented data set (� 0FCPM

h ); these values can be compared with
corresponding extreme values/ number of cases in the first rows
(O�h=#), followed by the cardinality of cases

�D h5 h8 h9 h13 h17
O�h=# 6/#7 0/#10 6/#11 6/#7 0/#6

�FCPM
h 6 0 6 6 0

� 0FCPM
h 6 0 6 6 0

�M h3 h8 h9 h13 h16 h17
O�h=# 0/#9 6/#9 0/#6 0/#10 0/#11 6/#11

�FCPM
h 0 6 0 0 0 6

� 0FCPM
h 0 6 0 0 0 6

�Ss h3 h8 h16 h17
O�h=# 5/#8 0/#7 6/#6 0/#8

�FCPM
h 6 0 6 0

� 0FCPM
h 5 0 6 0

�Sp h8 h10 h11 h12 h13 h14 h15
O�h=# 5/#6 5/#8 6/#9 5/#6 0/#7 5/#9 6/#7

�FCPM
h 6 6 6 6 0 6 6

� 0FCPM
h 6 6 6 6 0 6 6

The FCPM algorithm converges only locally as the FCM. The number of major
iterations in FCPM algorithm is rather small when it converges. On average, the
number of major iterations of versions of FCPM are smaller or of the same order
of those of the FCM. However, with a “wrong” number of pre-specified clusters,
FCPM-0 may not converge by shifting some prototypes to infinity.

The extremal behaviour of FCPM is explained by its sensitivity to the feature-
values that are farthest from the standard (the grand mean, due to the followed
standardization). This extremal behavior appears to be compatible with the notion
of “interestingness” in data mining [20, 22].

The ability of FCPM to recover its own cluster structure from data with a proper
designed data generator is a contribution for data-driven problem solving.

As future work, FCPM deserves to be applied to real data problems to study the
type of clustering problems the fuzzy proportional membership fits.
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Algorithmic Principle of Least Revenue
for Finding Market Equilibria

Yurii Nesterov and Vladimir Shikhman

Abstract In analogy to extremal principles in physics, we introduce the Principle
of Least Revenue for treating market equilibria. It postulates that equilibrium prices
minimize the total excessive revenue of market’s participants. As a consequence, the
necessary optimality conditions describe the clearance of markets, i.e. at equilibrium
prices supply meets demand. It is crucial for our approach that the potential function
of total excessive revenue be convex. This facilitates structural and algorithmic
analysis of market equilibria by using convex optimization techniques. In particular,
results on existence, uniqueness, and efficiency of market equilibria follow easily.
The market decentralization fits into our approach by the introduction of trades
or auctions. For that, Duality Theory of convex optimization applies. The com-
putability of market equilibria is ensured by applying quasi-monotone subgradient
methods for minimizing nonsmooth convex objective—total excessive revenue of
the market’s participants. We give an explicit implementable algorithm for finding
market equilibria which corresponds to real-life activities of market’s participants.

Keywords Principle of least revenue • Computation of market equilibrium • Price
adjustment • Convex optimization • Subgradient methods • Decentralization of
prices • Unintentional optimization

1 Introduction

We start with a celebrated quotation of Leonhard Euler (1744): “Nothing in the
world takes place without optimization, and there is no doubt that all aspects of
the world that have a rational basis can be explained by optimization methods.”
Rephrasing this in modern terms, the laws of nature can be derived by using extremal
(or variational) principles. Indeed, the laws are often first-order necessary optimality
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conditions for minimizing (or maximizing) a properly chosen potential function.
To illustrate this idea, let us consider the Newton law

mRr D F; (1)

where r.t/ is the particle’s position at time t, F the acting force, and m the particle’s
mass. The goal of classical mechanics is to solve this differential equation for
various forces: gravity, electromagnetism, friction, etc. For conservative forces
(gravity, electrostatics, but not friction), the force can be expressed as

F D �rV; (2)

where the potential energy V.r/ depends on the particle’s position. For this case, let
us define the potential function called action:

A.r/
defD
Z t2

t1

�
mPr2
2
� V.r/

�

dt: (3)

The action represents the difference between the kinetic and potential energy of a
particle. The integrand in (3) is called Lagrangian

L.r/
defD mPr2

2
� V.r/:

Now, the Principle of Least Action says:

The true path taken by the particle is an extremum of the action.

In fact, it is an easy exercise from the calculus of variations to show that an
extremum of the action satisfies the Newton law. Note that Newton law comes from
the first-order variation of the action. Second derivative of the trajectory appears just
because of the integration by parts. So, Newton law for conservative forces can be
viewed as a first-order potential system. The least action principle (or Lagrangian
method) became extremely fruitful in all of physics, not just mechanics. Many
fundamental laws of physics can be expressed in terms of a least action principle,
e.g. electromagnetism, optics, special and general relativity, particle physics etc.
(see [1]). Recently in [21], the principle of least action has been applied to supply
chains linking variation in production to variation in net-inventory.

From the optimization perspective, the introduction of extremal principles
highlights the algorithmic aspects of laws. Instead of solving the law’s systems of
equations, we may consider iterative schemes for minimizing the corresponding
potential function. Of course, regarding physical laws it sounds like a philosophical
paradox: who minimizes the action, and by using what method? However, having
in mind the application of extremal principles in social sciences, this point of
view could be valuable. Namely, optimization methods for minimizing a potential
function provide behavioral dynamics. They explain how a social system eventually
arrives at a state which is described by the corresponding law. Although, Isaac
Newton remarked in 1720: “I can calculate the motion of heavenly bodies, but not
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the madness of people,”—we pursue exactly this goal, at least in some particular
economic setting. It will turn out that the economic behavior of people is not as mad
as it may look like.

In this paper we introduce and exploit extremal principles for the economic law
of supply and demand. The latter says that at a competitive market supply meets
demand at an appropriate price, i.e.

X

k

Qyk D
X

i

Qxi; (4)

where Qyk is kth producer’s and Qxi is ith consumer’s bundle of goods, respectively. It
is also common to refer to (4) as the market clearing condition. Here, Qyk 2 Sk.p/ is
kth producer’s supply operator, and Qxi 2 Di.p/ is ith consumer’s demand operator
at a price p. Hence, the law of supply and demand can be equivalently written as an
inclusion problem

0 2
X

k

Sk.p/ �
X

i

Di.p/: (5)

Solutions of (5) are called equilibrium prices. Together with corresponding produc-
tion and consumption bundles, they form market equilibrium (e.g., [8]).

The role of prices in balancing supply and demand is well-known in economics
since Adam Smith. As Milton Friedman pointed out in [2]: “Adam Smith’s flash
of genius was his recognition that the prices . . . in a free market could coordinate
the activity of millions of people, each seeking his own interest, in such a way as
to make everyone better off.” Mathematically, this coordination may be explained
by the fact that prices act as dual or Lagrange multipliers for the market clearance.
In accordance with the latter, our main assumption states that supply and demand
operators can be expressed as convex subdifferentials:

Sk.p/ D @Ek.p/; Di.p/ D �@Ei.p/: (6)

Ek.p/ is kth producer’s excessive profit, and Ei.p/ ith consumer’s excessive wealth.
Note that the subdifferentiability assumption (6) has the same mathematical mean-
ing as the assumption of dealing with a conservative force (2). Let us define the
potential function called total excessive revenue:

E .p/
defD
X

k

Ek.p/C
X

i

Ei.p/: (7)

In our framework, the total excessive revenue represents the Lagrangian w.r.t. the
market clearance. Now, we are ready to state the Principle of Least Revenue:

Equilibrium prices minimize the total excessive revenue of market’s participants.

In fact, the first-order necessary optimality conditions for minimizing the total
excessive revenue give us the law of supply and demand (5). The latter is due to
the subdifferentiability assumption (6). Further, it is crucial for our approach that
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the potential function of total excessive revenue is convex. This opens up for struc-
tural and algorithmic analysis of market equilibria by using convex optimization
techniques. E.g., the Walrasian tâtonnement, as suggested in [19], states that prices
change proportionally to the excess demand, i.e.

Pp 2
X

i

Di.p/ �
X

k

Sk.p/:

Under assumption (6) the Walrasian tâtonnement becomes a subgradient system

Pp 2 �@E .p/:

Its discretized version is

pŒtC 1	 D pŒt	 � hŒt	rE .pŒt	/ ;

with time t, step-sizes hŒt	, and excess supplies rE .pŒt	/ 2 @E .pŒt	/. This
corresponds to the standard subgradient scheme for the convex minimization
of E . In absence of assumption (6), the Walrasian tâtonnement is fraught with
severe problems. These relate, on one side, to communication, implementation,
interpretation, organization and, on the other side, to stability and definiteness, see
e.g. [8] for details.

The paper is organized as follows. In Sect. 2 we describe the excessive revenue
model for a competitive market from [14]. We show that the least revenue principle
applies to the excessive revenue model. Based on this fact, existence, uniqueness
and efficiency results for market equilibrium follow. In order to minimize the total
excessive revenue, quasi-monotone subgradient methods for nonsmooth convex
minimization from [13] are presented in Sect. 3. They guarantee the best possible
rate of convergence for the whole sequence of test points rather than of their
averages. This fact allows us to prevent uncontrollable jumps of the function values
at some iterations. Moreover, the sequence of record values does not enter the com-
plexity bound. This is crucial for the applicability of quasi-monotone subgradient
methods in our economic setting. Indeed, the values of the total excessive revenue
are not available to market’s participants. By using quasi-monotone subgradient
methods, we explain in Sect. 4 how equilibrium prices can be successively adjusted.
For that, we concentrate on

• the regulation design: regulator settles and updates prices which are taken by
producers and consumers;

• the trade design: producers settle and update their individual prices, and con-
sumers buy at the lowest purchase price;

• the auction design: consumers settle and update their individual prices, and
producers sell at the highest offer price.
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Notation. Our notation is quite standard. We denote by R
n the space of n-

dimensional column vectors x D .x.1/; : : : ; x.n//T , and by R
nC the set of all vectors

with nonnegative components. For x and y from R
n, we introduce the standard scalar

product and the Hadamard product

hx; yi D
nX

iD1
x.i/y.i/; x ı y D 	x.i/y.i/
n

iD1 2 R
n:

Finally, aC denotes the positive part of the real value a 2 R: aC D maxfa; 0g.
For x D .x.1/; : : : ; x.n//T 2 R

n we denote xC D
�

x.1/C ; : : : ; x
.n/
C
�T

. For vectors

p1; : : : ; pK 2 R
n, denote by min

kD1;:::;K pk 2 R
n the vector with coordinates

�

min
kD1;:::;K pk

�.j/

D min
kD1;:::;K p.j/k ; j D 1; : : : ; n:

For the vectors p1; : : : ; pI 2 R
n, we denote by max

iD1;:::;I pi 2 R
n the vector with

coordinates

�

max
iD1;:::;I pi

�.j/

D max
iD1;:::;I p.j/i ; j D 1; : : : ; n:

2 Excessive Revenue Model

Let us present the excessive revenue model of competitive market from [14].

2.1 Producers and Consumers

Consider a market with K producers, which are able to produce n different goods.
Given a vector of prices p 2 R

nC, the kth producer forms the supply operator Sk.p/
of production bundles Qyk 2 R

nC. For that, the kth producer maximizes the profit with
respect to the variable cost, subsequently trying to cover the fixed cost. Namely,

• Producer k 2 f1; : : : ;Kg chooses first the tentative production bundle yk 2 R
nC

by solving the profit maximization problem:

�k.p/
defD max

yk2Yk

hp; yki � ck.yk/: (8)

Here, Yk � R
nC is the production set, assumed to be nonempty, compact and

convex. The producer’s yield is hp; yki. The variable cost of producing yk is
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denoted by ck.yk/. We assume that ck is a convex function on R
nC. Clearly, the

profit �k.p/ is convex in p as the maximum of linear functions. By Y �k .p/ we
denote the set of optimal solutions of (8), i.e. yk 2 Y �k .p/. Note that the profit
maximization problem (8) appears already in Marshallian partial equilibrium
analysis, see e.g. [8].

• Secondly, the kth producer compares the profit �k.p/ with the fixed cost of
maintaining the technological set Yk, denoted by �k � �k.Yk/ 2 RC. The
latter can include the interest paid to the bank, different charges for renting the
equipment, land use, etc. By this comparison, a participation level ˛k � ˛k.p/ 2
Œ0; 1	 of kth producer is properly adjusted:

˛k.p/
defD
�
1; if �k.p/ > �k;

0; if �k.p/ < �k:
(9)

In case �k.p/ D �k, ˛k.p/ 2 Œ0; 1	 is not unique and may vary. We call producers’
participation levels satisfying the relation (9) proper.

• Finally, the supply operator Sk W RnC � R
nC of kth producer is given by

Sk.p/
defD ˚Qyk D ˛kyk

ˇ
ˇ˛k � ˛k.p/ and yk 2 Y �k .p/




: (10)

Here, the production bundles are

Qyk
defD ˛kyk;

where ˛k � ˛k.p/ is the proper participation level of the kth producer, and yk 2
Y �k .p/ is the tentative production.

Let I consumers be active at the market. The ith consumer has to decide on the
consumption bundle Qxi 2 R

nC. These consumption bundles form the demand Di.p/,
given the price p 2 R

nC. The ith consumer minimizes the expenditure with an aim
to guarantee the desirable utility level. Then he tries to cover this expenditure by the
available wealth. Namely,

• Consumer i 2 f1; : : : ; Ig decides first on the tentative consumption bundle xi 2
R

nC by minimizing expenditure:

ei.p/
defD min

xi 2 Xi

ui.xi/ � ui

hp; xii D min
xi 2Xi

hp; xii ; (11)

where the ith consumption set is

Xi
defD ˚

xi 2 Xi j ui.xi/ � ui




:
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Here, Xi � R
nC is assumed to be nonempty, compact and convex. By ui W

Xi ! RC we denote the utility function of the ith consumer, assumed to be
concave. The utility level ui 2 RC is desirable by ith consumer. The consumer’s
expenditure ei.p/ is concave in p as the minimum of linear functions. By X �

i .p/
we denote the set of optimal solutions of (11), i.e. xi 2X �

i .p/. The minimization
of expenditure in (11) is well-known in economics as a dual problem for
utility maximization. The desirable utility level ui mainly reflects the consumer’s
standards on qualities of goods. In [18] the agent who faces the expenditure
minimization problem (11) is called the dual consumer. The dual consumer
usually acts on regular basis, thus, generating the flows of consumption. We also
refer to [5, Chap. 10] and [7] for more details on the dual theory of consumption.
The compactness assumption on Xi refers to the fact that the consumption is
bounded. Naturally, there are physical limits to what people can consume in
order to satisfy their basic needs. The unbounded desire for wealth is not an
issue here, since the wealth wi is a primitive in our model (see below and confer
the discussion on this assumption in [17]).

• Secondly, the ith consumer compares the expenditure ei.p/ with the available
wealth wi 2 RC. The latter can include the budget, salary and rent payments, etc.
By this comparison, a participation level ˇi � ˇi.p/ 2 Œ0; 1	 of ith consumer is
properly adjusted:

ˇi.p/
defD
�
1; if ei.p/ < wi;

0; if ei.p/ > wi:
(12)

In case ei.p/ D wi, ˇi.p/ 2 Œ0; 1	 is not unique and may vary. We call consumers’
participation levels satisfying the relation (12) proper.

• Finally, the demand operator Di W RnC � R
nC of ith consumer is given by

Di.p/
defD ˚Qxi D ˇixi

ˇ
ˇˇi � ˇi.p/ and xi 2X �

i .p/



: (13)

Here, the consumption bundles are

Qxi
defD ˇixi;

where ˇi � ˇi.p/ is the proper participation level of the ith consumer, and xi 2
X �

i .p/ is the tentative consumption.

For the sake of convenient navigation along the text, we list model’s data and
variables:

There are two non-standard ingredients in our model which need to be explained
and thoroughly justified. The first concerns the expenditure minimization prob-
lem (11) with the given level ui of desirable utility. The second deals with the proper
adjustment of participation levels ˛k and ˇi in (9) and (12), respectively.

(1) Expenditure minimization and responsible consumer
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Data Variables

Yk Production set p Prices

ck.�/ Variable cost function yk Tentative production bundle

�k Fixed cost ˛k Producer’s participation level

Xi Consumption set Qyk
defD ˛kyk Production bundle

ui.�/ Utility function xi Tentative consumption bundle

ui Utility level ˇi Consumer’s participation level

wi Available wealth Qxi
defD ˇixi Consumption bundle

The minimization of expenditure in (11) is well-known in economics as a dual
problem for utility maximization (e.g. [8]):

vi.p;wi/
defD max

xi 2 Xi

hp; xii � wi

ui.x/: (14)

Namely, under some technical assumptions if xi solves (14) then it also solves (11)
with ui D vi.p;wi/. Conversely, if xi solves (11) then it also solves (14) with wi D
hp; xii. In our setting the desirable utility level ui is given, thus, it is a primitive of
the model. It mainly reflects the consumer’s standards on qualities of life. Hence, it
does not explicitly depend on the wealth wi as in the classical setting. Note that we
model wealth effects by subsequent comparison of wi with expenditure ei.p/ rather
than by the usual budget constraint hp; xii � wi as in (14) (cf. also the discussion in
(2) below). The introduction of desirable utility levels ui as primitives is the main
departure from the usual consumption model (14). This is the crucial point in our
market modeling which postulates in the sense that consumer’s objectives become
monetary, hence transferable. As we shall see in Sect. 2.3 below, this fact implies
that supply and demand operators can be expressed as convex subdifferentials, i.e.
assumption (6) be valid.

Now, let us explain why in some interesting situations the desirable utility level
ui is explicitly available to consumers. For many daily goods there are physical
standards to be satisfied. They constitute the so-called minimum standards of life.
Additionally, some consumers often accept standards imposed by the society, e.g.
through advertisement, their friends or family members. E.g., it became evident
that some consumers use to shrink their usual consumption motivated by ecological
reasons. Also experienced consumers, who go shopping in a supermarket say on
a weekly basis, know the standards of their living. Overall, we may think of
a responsible consumer who does care about the own expenditure. Namely, the
consumer is not willing to spend more than necessary to satisfy the given standards.
Thus, such a consumer tries to minimize the expenditure while guaranteeing the
standards.

(2) Adjustment of participation levels and long-term behavior
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Note that there is evidence from behavioral economics that consumer’s choices
need not be consistent with the maximization of a preference relation (see [9] and
references therein). The reason for that is usually referred to as consumers’ bounded
rationality. Classic examples include status-quo biases, attraction, compromise and
framing effects, temptation and self-control, consideration sets, and choice overload.
Due to the proposed approach, the demand operator is consistent with the long-term
behavior of responsible consumers. In our model, the production and consumption
bundles, the consumer’s wealths, and producers’ costs are considered as constant
flows. This means that we get the same amount of corresponding objects in each
standard interval of time (say, 1 week). Thus, our economy can be seen as stationary.
If the income of a person or a firm during this interval is greater than the expenses,
then he/she can ensure a constant rate of growth of the own capital. In this profitable
case, we have: ˛k.p/ D ˇi.p/ D 1, i.e. producers and consumers implement
their tentative bundles. If the income is strictly less than expenses, then the
producer/consumer must leave the market sooner or later, i.e. ˛k.p/ D ˇi.p/ D 0.
This is true both for producers (bankruptcy), and for consumers (emigration from
this market). We refer to those agents as being bankrupt. If the regular income is
equal to the regular expenses, then tentative production and consumption bundles
may shrink due to participation levels ˛k.p/; ˇi.p/. In this marginal case, producers
and consumers usually have ˛k.p/; ˇi.p/ 2 .0; 1/. With probability one they neither
fully participate in economic activities nor quit the market. In what follows, we give
a behavioral explanation on how ˛k.p/; ˇi.p/ are adjusted. Note that marginal agents
reach their break-even point at current prices p, hence, they make neither a profit nor
a loss. For a marginal producer it means that the corresponding profit is equal to the
fixed costs: �k.p/ D �k. Net saving of a marginal consumer is zero, i.e. the own
wealth is equal to the minimal possible expenditure: wi D ei.p/. Hence, for Op � p
the break-even point will be mainly shifted either to profitability or bankruptcy. This
reflects the existence of poverty in the society. Marginal producers face at nearby
prices Op � p

either �k.Op/ > �k or �k.Op/ < �k;

and marginal consumers face

either wi > ei.Op/ or wi < ei.Op/:

Hence, sometimes marginal producers/consumers can implement their tentative
bundles, i.e.

˛k.Op/ D 1; ˇi.Op/ D 1;

and sometimes it is not possible, i.e.

˛k.Op/ D 0; ˇi.Op/ D 0:
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The particular 0–1 values of ˛k.Op/ and ˇi.Op/ depend on the individual history
of successes and failures for producers and consumers, respectively. To be more
concrete, let us consider some price adjustment process Op.t/! p with discrete time
t ! 1. Now, the participation levels ˛k.p/; ˇi.p/ can be viewed as frequencies of
agents’ successful and failed attempts. Indeed, by averaging and taking the limit we
obtain the participation levels:

1

t

tX

sD1
˛k.Op.s//! ˛k.p/;

1

t

tX

sD1
ˇi.Op.s//! ˇi.p/ for t!1:

This interpretation of participation levels as frequencies is based on the long-term
behavior of the agents. Our analysis of the price adjustment process from Sect. 4
confirms this interpretation. Namely, the limits above actually define ˛k.p/; ˇi.p/ as
frequencies obtained during the price adjustment.

Let us address the question why marginal agents do not quit the market although
they eventually implement only a share of their tentative production/consumption
bundles. As a consequence marginal producers do not fully exploit their available
capacities and cannot cover the fixed costs. Marginal consumers do not spend all
their available wealths and cannot reach the desirable levels of utility. Nevertheless,
these agents stay at the market since they actually do not know that they are
marginal. During the price adjustment, the only available information is their
individual history of successes and failures while attempting to produce and to
consume. With above notation, at time t they know a 0–1 sequence of ˛k.Op.s// and
ˇi.Op.s//, s D 1; : : : ; t. This particular history depends on many factors, as their luck,
current prices, particular actions of other agents, etc. From time to time, marginal
agents succeed to implement their tentative production/consumption bundles, but
occasionally they fail. This unsure market environment causes marginal agents to
temporally reduce consumption and to wait for “fair prices”. Such a behavior is
typical for poor people, and we can treat their fractional participation levels ˛k.p/
and ˇi.p/ as a measure of poverty. A hidden, but very important, consequence of
this marginal behavior is a possibility to clear the market as we shall see in Sect. 2.2.
We conclude that the marginal agents play a crucial role in our approach to market
modeling.

Overall, the participation levels ˛k.p/; ˇi.p/ are indicators of economic viability.
These items account for most important, but non-standard features of our market
model. Their inclusion is one of the chief novelties of the paper.

2.2 Equilibrium Market Flows

In accordance to the previous notations, we eventually say that the market flow

eF D 	.Qyk D ˛kyk/
K
kD1 ; .Qxi D ˇixi/

I
iD1
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is defined by the triple .p;F; �/. Here, p 2 R
nC is the vector of prices,

F D 	.yk/
K
kD1 ; .xi/

I
iD1

 2

KY

kD1
Yk �

IY

iD1
Xi

is the tentative market flow, and

� D 	.˛k/
K
kD1 ; .ˇi/

I
iD1

 2 Œ0; 1	KCI

is the proper system of participation levels (w.r.t. p and F), i.e.

˛k D
�
1; if hp; yki � ck.yk/ > �k;

0; if hp; yki � ck.yk/ < �k
; ˇi D

�
1; if hp; xii < wi;

0; if hp; xii > wi:

Now we define the partial market equilibrium in the standard way.

Definition 1 (Market Equilibrium). We say that p� 2 R
n is the equilibrium price

if there exists a market flow

eF� D
�	Qy�k D ˛�k y�k


K

kD1 ;
	Qx�i D ˇ�i x�i


I

iD1
�

2
KY

kD1
Sk.p

�/ �
IY

iD1
Di.p

�/;

satisfying the market clearing condition

p� � 0;
KX

kD1
Qy�k �

IX

iD1
Qx�i � 0;

*

p�;
KX

kD1
Qy�k �

IX

iD1
Qx�i
+

D 0: (15)

In this case,eF� is called the equilibrium market flow. Setting

�� D
�	

˛�k

K

kD1 ;
	

ˇ�i

I

iD1
�

;

we call
	

p�; ��;eF�



the market equilibrium.

The market clearing condition (15) states that the consumption never exceeds the
production, and the markets of goods with positive prices (p.j/ > 0) are perfectly
cleared:

KX

kD1
Qy�.j/k D

IX

iD1
Qx�.j/i :
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2.3 Principle of Least Revenue

Given a vector of prices p 2 R
nC, producers maximize their profits and consumers

minimize their expenditures. Afterwards, both properly adjust their participation
levels by comparing the profits with the fixed costs, in case of producers, or by
comparing the expenditures with the wealths, in case of consumers. Exactly the
same behavior can be obtained by maximizing their excessive profits and excessive
wealths, respectively.

The excessive profit of the kth producer is set as

Ek.p/
defD .�k.p/ � �k/C D max

yk 2 Yk

.hp; yki � ck.yk/ � �k/C : (16)

Using the substitution Qyk D ˛kyk, we obtain

Ek.p/ D .�k.p/ � �k/C D max
˛k2Œ0;1	

˛k .�k.p/ � �k/ D

max
˛k 2 Œ0; 1	

yk 2 Yk

˛k .hp; yki � ck.yk/ � �k/ D max
˛k 2 Œ0; 1	
Qyk 2 ˛kYk

hp; Qyki � ˛kck .Qyk=˛k/ � ˛k�k:

Note that the maximization problem

Ek.p/ D max
˛k 2 Œ0; 1	
Qyk 2 ˛kYk

hp; Qyki � ˛kck .Qyk=˛k/ � ˛k�k

is convex, and its set of optimal solutions consists of proper participation levels
˛k and production bundles Qyk. Moreover, Ek.p/ is convex in p as the maximum of
linear functions. Hence, the convex subdifferential of the excessive profit Ek gives
the supply Sk of the kth producer, i.e.

@Ek.p/ D Sk.p/: (17)

The latter follows e.g. from [22, Theorem 2.4.18] on the convex subdifferential of a
max-type function.

Analogously, we define the excessive wealth of the ith consumer as follows:

Ei.p/
defD .wi � ei.p//C D max

xi 2Xi

.wi � hp; xii/C : (18)

Using the substitution Qxi D ˇixi, we obtain

Ei.p/ D .wi � ei.p//C D max
ˇi2Œ0;1	

ˇi .wi � ei.p// D

max
ˇi 2 Œ0; 1	
xi 2Xi

ˇi .wi � hp; xii/ D max
ˇi 2 Œ0; 1	
Qxi 2 ˇiXi

ˇiwi � hp; Qxii :
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Note that Qxi 2 ˇiXi means

Qxi 2 ˇiXi and ui .Qxi=ˇi/ � ui:

In particular, the so-called perspective function ˇiui .Qxi=ˇi/ is jointly concave in
.Qxi; ˇi/, e.g. [4]. The maximization problem

Ei.p/ D max
ˇi 2 Œ0; 1	
Qxi 2 ˇiXi

ˇiwi � hp; Qxii

is convex, and its set of optimal solutions consists of proper participation levels ˇi

and consumption bundles Qxi. Moreover, Ei.p/ is convex in p as the maximum of
linear functions. Hence, the convex subdifferential of the excessive wealth Ei gives
the opposite demand Di of the ith consumer, i.e.

@Ei.p/ D �Di.p/: (19)

The latter follows also from [22, Theorem 2.4.18].
Overall, we define the total excessive revenue as the sum of excessive profits and

excessive wealths:

E .p/
defD

KX

kD1
Ek.p/C

IX

iD1
Ei.p/: (20)

Note that function E .�/ is convex since it is a sum of convex functions. Moreover,
its convex subdifferential represents the excess supply due to (17) and (19).

Remark 1 (Homogeneous Case). For the homogeneous case we can give yet
another explanation why marginal producers and consumers still stay at the market.
Let us assume the homogeneity of the kth producer’s cost function ck.�/, and the
homogeneity of the fixed cost �k.�/, i.e.

�k.˛Yk/ D ˛�k.Yk/; ˛ 2 Œ0; 1	:

Then,

Ek.p/ D max
˛k 2 Œ0; 1	; Qyk 2 ˛kYk

hp; Qyki � ck .Qyk/ � �k.˛kYk/:

For a marginal producer with Ek.p/ D 0, this means that his activity, even within
the maximal technological set Yk does not generate any profit. The situation is not
changing if the production activities (the set Yk) will be proportionally reduced by
a factor ˛k 2 Œ0; 1	. Thus, it is natural to admit that in this marginal situation the
producer can work with a reduced technological set ˛kYk by producing Qyk 2 ˛kYk.
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By doing so, he cannot cover the share .1 � ˛k/�k of the fixed cost. However, his
unused capacities amounting to .1 � ˛k/Yk can be eventually exploited at other
markets.

Now, we assume the homogeneity of the ith consumer’s utility function ui.�/, and
that Xi D R

nC. Then,

Ei.p/ D max
ˇi 2 Œ0; 1	; Qxi � 0

ui .Qxi/ � ˇiui

ˇiwi � hp; Qxii :

If the excessive wealth of a consumer is zero, then again, there is no special reason
to allocate all the wealth wi to this expensive market. The consumer can admit to
spend here only a part of it, namely ˇiwi with some ˇi 2 Œ0; 1	, which is sufficient to
guarantee the share ˇiui of his desirable utility level. Note that this does not change
the zero level of the excessive wealth. The remaining part .1 � ˇi/wi of the wealth
can be used then at other markets. ut

By application of [15, Theorem 23.8] on the subdifferential of the sum of convex
functions, we obtain:

Theorem 1 (Excess Supply and Total Excessive Revenue). For p 2 R
nC it holds:

@E .p/ D
KX

kD1
Sk.p/ �

IX

iD1
Di.p/:

Proof. We apply [15, Theorem 23.8] on the subdifferential of the sum of convex
functions in order to obtain

@E .p/ D
KX

kD1
@Ek.p/ �

IX

iD1
@Ei.p/:

Together with (17) and (19) the assertion follows. ut
Theorem 1 allows us to characterize equilibrium prices as minimizers of E .

Theorem 2 (Principle of Least Revenue). p 2 R
nC is a system of equilibrium

prices if and only if it solves the following convex minimization problem:

min
p2Rn

C

E .p/: (P)

Proof. 1. Assume that p� 2 R
n is an equilibrium prices. Then, in view of

Definition 1, there exists an equilibrium market flow

eF� D
�	Qy�k


K

kD1 ;
	Qx�i

I

iD1
�

2
KY

kD1
Sk.p

�/ �
IY

iD1
Di.p

�/;
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satisfying the market clearing condition

p� � 0;
KX

kD1
Qy�k �

IX

iD1
Qx�i � 0;

*

p�;
KX

kD1
Qy�k �

IX

iD1
Qx�i
+

D 0:

Denote �� DPK
kD1 Qyk �PI

iD1 Qxi. In view of Theorem 1, �� 2 @E .p�/. Since E
is convex in p, for all p 2 R

nC we have:

E .p/ � E .p�/ � h��; p � p�i D h��; pi � 0:

Thus, p� minimizes the total excessive revenue.
2. Assume that p� 2 R

nC is optimal for the minimization problem (P). Then there
exists �� 2 @E .p�/ such that

h��; p � p�i � 0; for all p 2 R
nC:

Considering p D 0 and p D 2p�, we conclude that h��; p�i D 0. Consequently,
�� 2 R

nC. Again due to Theorem 1, there exists a market flow

eF� D
�	Qy�k


K

kD1 ;
	Qx�i

I

iD1
�

2
KY

kD1
Sk.p

�/ �
IY

iD1
Di.p

�/;

such that

�� D
KX

kD1
Qy�k �

IX

iD1
Qx�i :

Hence, eF� satisfies the market clearing condition, meaning that it is actually an
equilibrium market flow. In view of Definition 1, p� is an equilibrium price. ut

2.4 Existence

Theorem 2 says that equilibrium prices correspond to optimal solutions for the
minimization problem:

min
p2Rn

C

E .p/: (P)

This is the key to provide existence results for equilibrium prices. We denote by P�
the set of equilibrium prices. Let us introduce productive markets, at which the set
of equilibrium prices P� turns out to be nonempty and bounded.



396 Y. Nesterov and V. Shikhman

Definition 2 (Productive Market). A market is called productive if there exist
subsets of producers K � f1; : : : ;Kg and consumers L � f1; : : : ;Lg, such that
the corresponding production and consumption flows

.fNykgk2K ; fNxigi2L / 2
Y

k2K
Yk �

Y

i2L
Xi

establish positive balances for goods:

X

k2K
Nyk >

X

i2L
Nxi: (21)

The market productivity means that there are some producers who can oversup-
ply some consumers’ needs.

Theorem 3 (Existence and Boundedness of Equilibrium Prices). At the produc-
tive markets, the set of equilibrium prices P� is nonempty and bounded.

Proof. Due to Theorem 2, equilibrium prices in P� form the set of optimal solutions
of the minimization problem (P). We show that the latter set is bounded. For that,
it is sufficient to prove that the level sets of function E .�/ are bounded. Denote
N� D P

k2K
Nyk � P

i2L
Nxi. For all p 2 R

nC we have

E .p/ D
KP

kD1
Œ�.p/ � �k	C C

LP

iD1
Œwi � ei.p/	C

� P

k2K
Œ�.p/ � �k	C C

P

i2L
Œwi � ei.p/	C

� P

k2K
�.p/ � �k C P

i2L
wi � ei.p/

� P

k2K
.hp; Nyki � ck.Nyk/ � �k/C P

i2L
.wi � hp; Nxii/

D � P

k2K
.�k C ck.Nyk//C P

i2L
wi C

˝ N�; p˛ :

Since N� > 0, the intersection of the level sets of function E with R
nC is bounded.

As a direct consequence of Theorem 2, we state the following result.

Theorem 4 (Convexity of Equilibrium Prices). The set of equilibrium prices P�
is convex.

Further, we formulate additional assumptions in order to guarantee that our
market indeed works, i.e. the equilibrium prices do not vanish. Due to Theorem 2,
we need to ensure that the optimal solution p� of the minimization problem (P) is
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not at the origin. For that, we introduce the following condition rejecting the Zero-
Cost Production (ZCP):

If ˛k�k C ˛kck .Qyk=˛k/ D 0 with Qyk 2 ˛kYk and ˛k 2 Œ0; 1	, then Qyk D 0. (22)

This condition is automatically satisfied for �k > 0. If �k D 0, then (22) implies that
for the kth producer there is no nonzero production plan with zero production cost.
Recall that

Ek.p/ D max
˛k 2 Œ0; 1	
Qyk 2 ˛kYk

hp; Qyki � ˛kck .Qyk=˛k/ � ˛k�k; (23)

Therefore, condition (22) implies that @Ek.0/ D f0g. Note that Qyk D 0 if ˛k D 0

in (23), hence, the term ˛kck .Qyk=˛k/ is set to vanish in this case.
Assume now that the wealth wi of ith consumer is positive. Since

Ei.p/ D max
ˇi 2 Œ0; 1	
Qxi 2 ˇiXi

Œˇiwi � hp; xii ;

we conclude that @Ei.0/ D �Xi. Thus, we have proved the following statement.

Lemma 1. Let all producers satisfy ZCP-condition, and the wealths of all con-
sumers be positive. Then,

@E .0/ D �
LP

iD1
Xi: (24)

Corollary 1 (Nonzero Equilibrium Prices). Existence of a consumer with
nonzero life standard is sufficient for having p� ¤ 0.

Proof. Indeed, assume that p� D 0. In view of the first-order optimality conditions
for (P), there exists �� 2 @E .0/ such that

h��; pi � 0 8p � 0:

Hence, �� D �
LP

iD1
x�i � 0 for some x�i 2 Xi. Therefore, all x�i D 0, implying zero

life standards for all consumers.

It is interesting that the last statement is formulated only in terms of consumption
standards. This confirms the primary role of demand in generating supply.
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2.5 Efficiency

Let us present the first welfare theorem for equilibrium market flow. We are going to
prove that any equilibrium market flow is efficient in the sense of Pareto optimality.
This means that no producers or consumers can improve the gain (excessive profits
and excessive wealths, respectively) without worsening the gain of some others. Let
us start from the definition of feasible market flows.

We recall that for a given vector of prices p 2 R
nC and a tentative market flow

F D
�

fykgKkD1 ; fxigLiD1
�

2
KY

kD1
Yk �

LY

iD1
Xi;

the system of participation levels � D
�

f˛kgKkD1 ; fˇigLiD1
�

2 Œ0; 1	KCL is called

proper (with respect to � and F) if it satisfies the following conditions:

˛k D
�
1; if hp; yki � ck.yk/ > �k;

0; if hp; yki � ck.yk/ < �k;

ˇi D
�
1; if hp; xii < wi;

0; if hp; xii > wi:

Such a triple .p;F; �/ defines a real market flow

eF D
�

fQyk D ˛kykgKkD1 ; fQxi D ˇixigLiD1
�

:

Definition 3 (Feasible Market Flow). The real market flow

eF D
�

fQykgKkD1 ; fQxigLiD1
�

;

defined by the triple .p;F; �/, is called feasible if it satisfies the market clearing
condition:

p � 0;
KX

kD1
Qyk �

IX

iD1
Qxi � 0;

*

p;
KX

kD1
Qyk �

IX

iD1
Qxi

+

D 0:

Note that an equilibrium market flow is in particular feasible.

Definition 4 (Pareto Optimal Market Flow). A feasible market flow eF, defined
by the triple

�

p;F D
�

fykgKkD1 ; fxigLiD1
�

; �
�

;
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is called Pareto optimal if there is no feasible market flow eF0 defined by another
triple

�

p0;F0 D
�˚

y0k

K

kD1 ;
˚

x0i

L

iD1
�

; � 0
�

such that all inequalities

.
˝

p0; y0k
˛ � ck.y0k/ � �k/C � .hp; yki � ck.yk/ � �k/C; k D 1 : : :K;

.wi �
˝

p0; x0i
˛

/C � .wi � hp; xii/C; i D 1 : : : L;
(25)

are satisfied, and at least one of them is strict.

Note that we define Pareto optimality with respect to excessive profits and
excessive wealths. In our model they play a role of objective functions of the agents.

Theorem 5 (Efficiency of Equilibrium Market Flows). Any equilibrium market
flow is Pareto optimal.

Proof. Using notation of Definition 4, leteF� be the equilibrium market flow defined
by the triple .p�;F�; ��/. Assume that the inequalities (25) are all valid for some
feasible market floweF0 defined by the triple .p0;F0; � 0/. And let at least one of these

inequalities be strict. For p 2 R
nC and F 2 ˝ defD QK

kD1 Yk �QL
iD1Xi, define the

function

'.p;F/ D
KX

kD1
.hp; yki � ck.yk/ � �k/C C

LX

iD1
.wi � hp; xii/C:

In view of our assumption, '.p0;F0/ > '.p�;F�/. Since p� is an equilibrium price,
in view of Theorem 2 and definitions (16), (18) we have:

'.p�;F�/ D min
p�0 max

F2˝ '.p;F/ D max
F2˝ min

p�0 '.p;F/ � min
p�0 '.p;F

0/:

It remains to note that the market clearance condition for the flow eF0 is exactly the
necessary and sufficient characterization of point p0 as the optimal solution to the
latter minimization problem. Therefore, '.p�;F�/ � '.p0;F0/, a contradiction.

In view of Theorem 2, equilibrium prices minimize the total excessive revenue.
Let us prove a very intuitive result that its optimal value is equal to the difference of
the real consumers’ wealths and the real producers’ costs.

Theorem 6 (Total Excessive Revenue of the Market). Let p� be an equilibrium
price, and

eF� D
�	Qy�k D ˛�k y�k


K

kD1 ;
	Qx�i D ˇ�i x�i


I

iD1
�
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be an equilibrium market flow defined by the triple .p�;F�; ��/. Then,

E .p�/ D
IX

iD1
ˇ�i wi �

KX

kD1
˛�k .ck.y

�
k /C �k/ � 0:

Proof. It holds:

E .p�/ D
KP

kD1
	˝

p�; y�k
˛ � ck.u�k / � �k




C C
IP

iD1
	

wi �
˝

p�; x�i
˛


C

D
KP

kD1
˛�k
	˝

p�; y�k
˛ � ck.u�k / � �k


C
IP

iD1
ˇ�i
	

wi �
˝

p�; x�i
˛


D
�

p�;
KP

kD1
˛�k y�k �

IP

iD1
ˇ�i x�i

�

�
KP

kD1
˛�k .ck.y�k /C �k/C

IP

iD1
ˇ�i w�i :

In view of the market clearance condition, we have

�

p�;
KP

kD1
˛�k y�k �

IP

iD1
ˇ�i x�i

�

D 0:

This gives us the desired expression for optimal value of E . It is nonnegative since
all terms in its definition (20) are nonnegative.

Note that the nonnegative value

E .p�/ D
IP

iD1
ˇ�i wi �

KP

kD1
˛�k .ck.y�k /C �k/ (26)

represents the total rate of accumulation of the capital within the market. In
general, equilibrium prices, market flows, and participation levels are not unique.

Nevertheless, all of them ensure the same value of E � defD E .p�/. We call it the total
excessive revenue of the market.

2.6 Welfare Maximization

In order to state the adjoint problem for (P), we set

˛
defD f˛kgKkD1 ; Qy defD fQykgKkD1 ; ˇ defD fˇigIiD1 ; Qx defD fQxigIiD1 ;

Y
defD

KY

kD1
Yk; ˛Y

defD
KY

kD1
˛kYk;X

defD
IY

iD1
Xi; ˇX

defD
IY

iD1
ˇiXi:
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Here, ˛, ˇ represent participation levels, and Qy, Qx represent production and
consumption bundles, respectively. Moreover, ˛Y , ˇX represent production and
consumption sets given the participation levels ˛, ˇ, respectively.

The feasible set of the adjoint problem is formed by participation levels and
corresponding production and consumption bundles, i.e.

A
defD
�

.˛; Qy; ˇ; Qx/
ˇ
ˇ
ˇ
ˇ

.˛; Qy/ 2 Œ0; 1	K � ˛Y

.ˇ; Qx/ 2 Œ0; 1	I � ˇX
�

:

Note that the set A is convex. Further, the following market feasibility constraint
needs to be satisfied:

KX

kD1
Qyk �

IX

iD1
Qxi; (27)

meaning that the aggregate consumption does not exceed the aggregate production.
The objective function of the adjoint problem is

˚ .˛; Qy; ˇ; Qx/ defD
IX

iD1
ˇiwi �

KX

kD1
˛kck .Qyk=˛k/C ˛k�k;

expressing the difference between the aggregate wealth spent for consumption and
producers’ costs. Finally, we consider the welfare maximization problem

max
.˛; Qy; ˇ; Qx/ 2 A

(

˚ .˛; Qy; ˇ; Qx/
ˇ
ˇ
ˇ
ˇ
ˇ

KX

kD1
Qyk �

IX

iD1
Qxi

)

: (A)

In (A) the central authority assigns production and consumption bundles, as well
as agents’ participation levels. Moreover, it maximizes the welfare of the society
while ensuring the market feasibility. In order to state (A), the central authority
needs to know agents’ cost and utility functions, production and consumption
sets, etc. Obviously, this information about the agents is hardly observable to the
central authority. Consequently, it cannot be justified in general that the welfare
maximization problem is tackled directly. Nevertheless, note that the prices of
goods play the role of Lagrange or dual multipliers for the market feasibility
constraint (27), cf. already [3, 16] for similar interpretations. Hence, due to the
duality theory of convex programming, the welfare maximization (A) is the adjoint
problem for (P).

Theorem 7 (Adjoint for (P)). The welfare maximization (A) is adjoint for the total
revenue minimization (P):

min
p2Rn

C

E .p/ D max
.˛; Qy; ˇ; Qx/ 2 A

(

˚ .˛; Qy; ˇ; Qx/
ˇ
ˇ
ˇ
ˇ
ˇ

KX

kD1
Qyk �

IX

iD1
Qxi

)

:
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We note that the productivity of the market from Definition 2 implies the standard
Slater condition for the adjoint problem (A).

We emphasize that the adjoint problem (A) of the welfare maximization can
hardly be solved directly. In order to construct its feasible set A and its objective
function ˚ , a central authority should acquire the knowledge on producers’ costs
and their production sets, on consumers’ utility functions and their consumption
sets. It is clear that this is implementable only within a planned economy. Even in
this case, as we know e.g. from the history of communistic countries, producers
and consumers are reluctant to report their market constants to the authority. In fact,
they feel rather antagonistic about each other and about the authority, thus, trying
to keep their information private. In turn, our approach concentrates on the total
revenue minimization problem (P). By doing so, we explain how the free market
provides a welfare maximizing solution by a decentralized price adjustment. Here,
producers and consumers report only their individual supplies and demands to each
other while trading or auctioning. There is no need in a central authority, since the
price updates are performed by producers, in case of trade, and by consumers, in
case of auction. Finally, the price adjustment balances agents’ antagonistic behavior
leading to a market equilibrium.

3 Quasi-Monotone Subgradient Method

We first present quasi-monotone subgradient methods for nonsmooth convex mini-
mization from [13]. For that, we consider the following minimization problem:

f � defD min
x2X

f .x/; (28)

where X � R
n is a closed convex set with nonempty interior int X, and f is a

convex function on R
n. Moreover, let f be representable as a maximum of concave

functions, i.e.

f .x/ D max
a2A

˚.a/C '.x; a/; (29)

where A � R
m is a compact convex set, '.�; a/ is a convex function on R

n for every
a 2 A, and ˚ , '.x; �/ are concave functions on R

m for every x 2 X. Denote by a.x/
one of the optimal solutions of the maximization problem in (29). Then,

rf .x/
defD rx'.x; a.x// (30)
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denotes a subgradient of f at x. This formula follows from the result on the
subdifferential of a max-type function, e.g. [22, Theorem 2.4.18]. Recall that for
an arbitrary subgradient rf .x/ at x 2 X of a convex function f we have:

f .y/ � f .x/C hrf .x/; y � xi; y 2 X: (31)

Using the representation (29), we also have:

f � D min
x2X

f .x/ D min
x2X

max
a2A

Œ˚.a/C '.x; a/	 D max
a2A

�

˚.a/Cmin
x2X

'.x; a/

�

:

The latter maximization problem

max
a2A

�

˚.a/Cmin
x2X

'.x; a/

�

(32)

is called adjoint for (28) with the adjoint variable a 2 A.
For the set X, we assume to be known a prox-function d.x/.

Definition 5. d W X 7! R is called a prox-function for X if the following holds:

• d.x/ � 0 for all x 2 X and d.xŒ0	/ D 0 for certain xŒ0	 2 X;
• d is strongly convex on X with convexity parameter one:

d.y/ � d.x/C hrd.x/; y � xi C 1

2
ky � xk2; x; y 2 X; (33)

where k � k is a norm on R
n.

• Auxiliary minimization problem

min
x2X
fhz; xi C �d.x/g (34)

is easily solvable for z 2 R
n; � > 0.

As a simple consequence of Definition 5, we have for x 2 X:

d.x/ � d.xŒ0	/C hrd.xŒ0	/; x � xŒ0	i C 1

2
kx � xŒ0	k2 � 1

2
kx � xŒ0	k2: (35)

For a sequence of positive parameters f�Œt	gt�0, we consider the following
iteration:
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Quasi-monotone Subgradient Method

1. Take a current subgradient rf .xŒt	/ D rx'.xŒt	; a.xŒt	//:

2. Accumulate subgradients zŒt	 D zŒt � 1	Crf .xŒt	/; zŒ�1	 D 0:

3. Compute the forecast xCŒt	 D arg min
x2X
fhzŒt	; xi C �Œt	d.x/g :

4. Update by combining xŒtC 1	 D tC 1
tC 2xŒt	C 1

tC 2xCŒt	:

(SM)

Note that from (SM) we have

zŒt	 D
tX

rD0
rf .xŒr	/; xŒtC 1	 D 1

tC 2

 

xŒ0	C
tX

rD0
xCŒr	

!

:

Next Lemma 2 is crucial for the convergence analysis of the quasi-monotone sub-
gradient method (SM). It estimates the dual gap for the minimization problem (28)
and its adjoint problem (32) evaluated at the historical averages.

For that, we define the penalty term ıt and the remainder term �t, t � 0, as
follows:

ıt.a/
defD �min

x2X

�

'.x; a/C �Œt	

tC 1d.x/

�

; a 2 A;

�t
defD 1

tC 1
tX

rD0

1

2�Œr � 1	 krf .xŒr	/k2� ; �Œ�1	 D �Œ0	:

Here, k � k� is the conjugate norm to k � k, i.e.

ksk� defD max
s2Rn
fhs; xi W kxk � 1g ; s 2 R

n: (36)

Further, we define the average adjoint state

aŒt	
defD 1

tC 1
tX

rD0
a.xŒr	/; t � 0:

Note that aŒt	 2 A, since A is convex.
Lemma 2 is motivated by the estimate sequence technique (e.g., Sect. 2.2.1 in

[10]) and is due to [13]. For the readers’ convenience its proof is postponed to
Appendix.
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Lemma 2. Let the sequence fxŒt	gt�0 be generated by (SM) with nondecreasing
parameters

�ŒtC 1	 � �Œt	; t � 0: (37)

Then, for all t � 0 it holds:

f .xŒt	/ � ˚.aŒt	/C ıt.aŒt	/ � �t: (38)

We apply the quasi-monotone subgradient method (SM) in the following
setup (S1)–(S3). Let X D R

nC be equipped with the Euclidean prox-function

d.x/
defD 1

2

nX

jD1

	

x.j/

2
; x 2 X D R

nC: (S1)

Note that the corresponding norm in Definition 5 and its conjugate according to (36)
are

kxk2 D
nX

jD1

	

x.j/

2
; ksk2� D

nX

jD1

	

s.j/

2
:

Further, we assume that ' is linear w.r.t. x:

'.x; a/ D �
nX

jD1
x.j/hj.a/; (S2)

where h D 	

hj.�/; j D 1; : : : ; n



, are convex functions on R
m. Then, the adjoint

problem (32) takes the form

f � D max
a 2 A

˚

˚.a/
ˇ
ˇ hj.a/ � 0; j D 1; : : : ; n
 : (39)

The maximization problem (39) is assumed to satisfy the Slater condition (e.g.,
[15]), i.e.

there exists Na 2 A such that hj.Na/ < 0 for all j D 1; : : : ; n: (S3)
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Under (S1)–(S3) we have in (SM):

rf .xŒt	/ D �h.a.xŒt	//;

zŒt	 D �
tX

rD0
h.a.xŒr	//;

xCŒt	 D 1

�Œt	
.�zŒt	/C D

1

�Œt	

 
tX

rD0
h.a.xŒr	//

!

C
:

Here, the forecast xCŒt	 is chosen to be proportional to the historical infeasibility.
Now we are ready to proceed with the convergence analysis of the method (SM)

under (S1)–(S3). Next Lemma 3 estimates the dual gap for the minimization
problem (28) and its adjoint problem (39) evaluated at the historical averages.

Lemma 3. Let the sequence fxŒt	gt�0 be generated by (SM) under (S1)–(S3) with
nondecreasing parameters

�ŒtC 1	 � �Œt	; t � 0:

Then, for all t � 0 it holds:

f .xŒt	/�f �CC1
�Œt	
tC1�f .xŒt	/�˚.aŒt	/C tC1

�Œt	

Pn
jD1.hj.aŒt	//

2

C
�C2

1
tC1

Pt
rD0

1
�Œr�1	 (40)

with positive constants C1;C2 > 0.

The proof of Lemma 3 is postponed to Appendix. For the precise dependence of
constants C1 and C2 on the market’s data see (75) and (76) in Appendix.

In order for (SM) to converge, the parameters f�Œt	gt�0 need to be properly
chosen. Next Lemma 4 identifies successful adjustment strategies of parameters.
Namely, the parameters monotonically increase over time, but by decreasing
increments.

Lemma 4. Let nondecreasing parameters satisfy

�Œt	 � �Œt � 1	! 0; �Œt	!1: (41)

Then,

�Œt	

tC 1 ! 0; and
1

tC 1
tX

rD0

1

�Œr � 1	 ! 0: (42)

Moreover, the best achievable order of convergence in (42) is O
�
1p

t

�

.

For the proof of Lemma 4 see Appendix.
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Remark 2. As in the proof of Lemma 4, nondecreasing parameters can be written
in the cumulative form:

�Œt	 D
tX

rD0
�Œr	C �Œ�1	

with increments �Œt	 � 0. Then, the convergence condition (41) means that
increments tend to zero and sum up to infinity, i.e.

�Œt	! 0;

1X

tD0
�Œt	 D1:

The latter coincides with the usual condition imposed on the step-sizes of the
subgradient method for nonsmooth convex minimization (e.g., [10]). However, in
our setting �Œt	 play the role of incremental step-sizes. This gives rise to suppose that
the parameters �Œt	 can be formed by incremental learning (cf. [20]). In fact, the
parameter �Œt	 increases over time, however, by decreasing increments �Œt	. ut

Now, we are ready to prove the main convergence result for (SM) under (S1)–
(S3).

Theorem 8 (Convergence of (SM)). Let the sequence fxŒt	gt�0 be generated
by (SM) under (S1)–(S3) with nondecreasing parameters satisfying

�Œt	 � �Œt � 1	! 0; �Œt	!1:
Then, fxŒt	gt�0 converges to the solution set of the minimization problem (28).
Moreover, the average adjoint states faŒt	gt�0 converge to the solution set of its

adjoint problem (39). The achievable rate of convergence is of the order O
�
1p

t

�

.

Proof. From Lemma 3 we obtain:

f .xŒt	/�f �CC1
�Œt	
tC1�f .xŒt	/�˚.aŒt	/C tC1

�Œt	

Pn
jD1.hj.aŒt	//

2

C
�C2

1
tC1

Pt
rD0

1
�Œr�1	 :

This inequality is composed by the objective function f of the primal problem (28),
computed at the current iterates xŒt	, objective function˚ of its adjoint problem (39),
computed at historical averages aŒt	, and the quadratic penalty

Pn
jD1

	

hj.aŒt	/

2

C for
violation of the constraints:

hj.aŒt	/ � 0; j D 1; : : : ; n
Due to the choice of parameters �Œt	, Lemma 4 provides:

�Œt	

tC 1 ! 0; and
1

tC 1
tX

rD0

1

�Œr � 1	 ! 0:

Hence, the assertion follows. ut
Now, we turn our attention to the case of constant and linear parameters.
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Remark 3 (Constant Parameters). Let the constant parameters be applied in (SM).
Let " > 0 denote the tolerance for convergence of xŒt	 towards a solution of the
primal problem (28), and aŒt	 towards a solution of its adjoint problem (39). Our
goal is to indicate the number of steps t."/ and the parameters �."/, in order to
guarantee the tolerance " for this primal-adjoint process. For that, we apply constant
confidence parameters �Œt	 D � to obtain

�Œt	

tC 1 D
�

tC 1 ;
1

tC 1
tX

rD0

1

�Œr � 1	 D
1

�
:

Recalling (40), the order of convergence for the primal-adjoint process is

max

�
�

tC 1 ;
1

�

�

:

Choosing

t."/ D O

�
1

"2

�

; �."/ D O

�
1

"

�

;

we have

max

�
�."/

t."/C 1 ;
1

�."/

�

D O."/:

ut
Remark 4 (Linear Growth of Parameters). Let us define the parameters in (SM) as
follows

�Œt	 D .tC 1/�;

where � > 0 can be seen as a growth rate of parameters. For the forecast we have
then:

xCŒt	 D 1

�

 

1

tC 1
tX

rD0
h.a.xŒr	//

!

C
:

Here, the forecast xCŒt	 is formed proportional to the average infeasibility. We turn
our attention to the convergence of (SM) for this case. Recalling (40), the order of
convergence for the primal-adjoint process is

max

(

�;
1

�
� 1

tC 1

 

1C
tX

rD1

1

r

!)

;
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or equivalently,

max

�

�;
1

�
� ln t

tC 1
�

:

Thus, the primal-adjoint process converges up to a residuum O .�/. ut

4 Decentralization of Prices

Theorem 2 reveals the origin of equilibrium prices at the market. Namely, in order
to reach an equilibrium price one needs to solve the minimization problem:

min
p2Rn

C

E .p/: (P)

Our goal is to explain how agents can efficiently tackle this nonsmooth convex
minimization problem by successively updating prices. This can be implemented
by introducing various price designs. In this paper, we focus on

• the regulation design: regulator settles and updates prices which are taken by
producers and consumers;

• the trade design: producers settle and update their individual prices, and con-
sumers buy at the lowest purchase price;

• the auction design: consumers settle and update their individual prices, and
producers sell at the highest offer price.

4.1 Regulation

It is crucial for our approach that the updates of prices correspond to subgradient-
type methods for solving (P). Due to Theorem 1, the subgradients rE .p/ represent
the excess supply, i.e.

rE .p/ D
KX

kD1
yk �

IX

iD1
xi; where yk 2 Sk.p/; xi 2 Di.p/: (43)

It can be seen from (43) that the subgradients of E are not known to individual
agents. Indeed, rE .p/ represents the aggregate excess supply. For getting access
to its value, one would assume the existence of a market regulator who collects
the information about agents’ production and consumption bundles, and aggregates
them over the whole market. Here, the full information about production and
consumption over the market must be available to the regulator. Besides, the prices
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need to be updated by the latter, thus, leading to the price regulation. Clearly, these
assumptions can be justified within a centrally planned economy. This allows to
suppose that the regulator uses the subgradients rE .p/ for updating prices. In what
follows, the quasi-monotone subgradient method for solving (P) from Sect. 3 is
applied to this end.

Let the regulator choose a sequence of positive confidence parameters f�Œt	gt�0.
We consider the following iteration:

Price Regulation (REG)

1. Regulator determines the aggregated excess supply rE .pŒt	/:
(a) kth producer computes an optimal tentative production bundle

yk.pŒt	/ 2 Y �k .pŒt	/;

and participation level

˛k.pŒt	/ D
�
1; if �k.pŒt	/ � �k;

0; if �k.pŒt	/ < �k;

indicating whether yk.pŒt	/ is implemented.
The production bundle is ˛k.pŒt	/yk.pŒt	/, i.e. either yk.pŒt	/ or zero.

(b) ith consumer computes an optimal tentative consumption bundle

xi.pŒt	/ 2X �
i .pŒt	/;

and participation level

ˇi.pŒt	/ D
�
1; if ei.pŒt	/ � wi;

0; if ei.pŒt	/ < wi;

indicating whether xi.pŒt	/ is implemented.
The consumption bundle is ˇi.pŒt	/xi.pŒt	/, i.e. either xi.pŒt	/ or zero.

(c) regulator observes the current excess supplies

rE .pŒt	/ D
KX

kD1
˛k.pŒt	/yk.pŒt	/ �

IX

iD1
ˇi.pŒt	/xi.pŒt	/: (44)

2. Regulator accumulates the excess supplies

zŒt	 D zŒt � 1	CrE .pŒt	/; zŒ�1	 D 0: (45)
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3. Regulator computes the price forecast w.r.t. the confidence parameter �Œt	:

pC.j/Œt	 D �.j/

�Œt	

	�z.j/Œt	



C ; j D 1; : : : ; n; (46)

where �.j/ are positive scaling coefficients.
4. Regulator updates

pŒtC 1	 D tC 1
tC 2pŒt	C 1

tC 2pCŒt	 (47)

by combining the previous price with the forecast. ut
First, we give an interpretation for the price forecast (46). Recall that z.j/Œt	

represents the aggregated excess supply for good j accumulated up to time t. If
z.j/Œt	 � 0, i.e. supply exceeds demand, then pC.j/Œt	 D 0 for good j. In case
of z.j/Œt	 < 0, the price forecast pC.j/Œt	 is proportional to the accumulated and
aggregated excess demand with positive scaling coefficients �.j/. Here, �Œt	 plays the
role of a confidence parameter. Namely, �Œt	’s express to which extent the regulator
takes into account the excess demands while forecasting prices.

Secondly, let us interpret the price update (47). Due to the latter, the next price
is a convex combination of the previous price and the price forecast. With time
advancing, the proportion of the previous price becomes nearly one, but the fraction
of the forecast vanishes. Hence, we conclude that our price update corresponds to
a behavior of an experienced regulator. Such regulator credits the experience much
more than the current forecast. Further, from (47) we have

pŒtC 1	 D 1

tC 2

 

pŒ0	C
tX

rD0
pCŒr	

!

: (48)

The latter means that the prices generated by (REG) can be viewed as historical
averages of preceding forecasts. This averaging pattern is also quite natural to
assume for regulator’s behavior while adjusting prices. Moreover, as it will be shown
later, this price adjustment based on averaging successively leads to equilibrium
prices.

Along with the prices f.p1Œt	; : : : ; pK Œt	/gt�0 generated by method (TRA), we
consider the corresponding historical averages of participation levels:

˛kŒt	
defD 1

tC 1
tX

rD0
˛k.pkŒr	/; ˇiŒt	

defD 1

tC 1
tX

rD0
ˇi.pŒr	/:

Note that ˛kŒt	 2 Œ0; 1	 is the frequency of successful production attempts by kth
producer up to time t. Analogously, ˇiŒt	 2 Œ0; 1	 is the frequency of successful
consumption attempts by ith consumer up to time t. We denote by

�Œt	 D .˛Œt	; ˇŒt	/ defD
�

f˛kŒt	gKkD1 ; fˇiŒt	gIiD1
�
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the system of average participation levels. The historical averages of production and
consumption bundles are defined as follows:

QykŒt	
defD 1

tC 1
tX

rD0
˛k.pkŒr	/yk.pkŒr	/; QxiŒt	

defD 1

tC 1
tX

rD0
ˇi.pŒr	/xi.pŒr	/:

Due to convexity, QykŒt	 2 ˛kŒt	Yk and QxiŒt	 2 ˇiŒt	Xi. We denote by

eFŒt	 D .QyŒt	; QxŒt	/ defD
�

fQykŒt	gKkD1 ; fQxiŒt	gIiD1
�

the average market flow. Overall, the sequence

.˛Œt	; QyŒt	; ˇŒt	; QxŒt	/ 2 A ; t � 0;

is feasible for the adjoint problem (A).
Now, we are ready to prove the main convergence result for (REG).

Theorem 9 (Convergence of Price Regulation). At a productive market, let the
regulator apply in (REG) nondecreasing confidence parameters satisfying

�Œt	 � �Œt � 1	! 0; �Œt	!1:

Then, the sequence of prices, average participation levels, and the average market
flow

	

pŒt	; �Œt	;eFŒt	



converges toward the set of market equilibria. The achievable rate of convergence

is of the order O
�
1p

t

�

.

Proof. The iteration scheme (REG) is a variant of the quasi-monotone subgradient
method (SM). Hence, we may obtain the convergence for (REG) by means of
Theorem 8. For that, let us discuss the applicability of conditions (S1)–(S3).

On (S1): The price forecast (57) can be derived by means of the Euclidean prox-
function for RnC:

d.p/
defD 1

2

nX

jD1

1

�.j/

	

p.j/

2
:

In fact, for zŒt	 2 R
n; �Œt	 > 0 we consider the minimization problem as from

step 3. in (SM):

min
p2Rn

C

fhzŒt	; pi C �Œt	d.p/g :
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Its unique solution is the price forecast (46) as from step 3. in (REG):

pC.j/Œt	 D �.j/

�Œt	

	�z.j/Œt	



C ; j D 1; : : : ; n:

On (S2): It follows from Theorem 7 that the total excessive revenue is repre-
sentable as a maximum of concave functions:

E .p/ D max
.˛;Qy;ˇ;Qx/2A

˚ .˛; Qy; ˇ; Qx/C ' .p; Qy; Qx/ ;

where

' .p; Qy; Qx/ D
*

p;
KX

kD1
Qyk �

IX

iD1
Qxi

+

:

Note that ' is linear w.r.t. p. In particular, due to Theorem 7, the adjoint problem
for the total revenue minimization (P) is the welfare maximization (A).
On (S3): The welfare maximization problem (A) satisfies the Slater condition in
view of the market productivity (cf. Definition 2).

Overall, we apply Theorem 8 to deduce that pŒt	 converges toward the solution

set of (P), and
	

�Œt	;eFŒt	



converges toward the solution set of (A) by order O
�
1p

t

�

.

In view of the duality from Theorem 7, the assertion follows. ut

4.2 Trade

Aiming to avoid the assumption of price regulation, we decentralize prices by
introducing the trade design:

kth producer settles and updates individual prices pk, and consumers buy at the lowest
purchase price min

kD1;:::;K
pk.

Recall that for vectors p1; : : : ; pK 2 R
n, we denote by min

kD1;:::;K pk 2 R
n the vector

with coordinates

�

min
kD1;:::;K pk

�.j/

D min
kD1;:::;K p.j/k ; j D 1; : : : ; n:

The trade design incorporates the feature of Bertrand competition, namely, that
consumers search for lowest prices, e.g. [8]. Following the framework of Bertrand
competition, we assume that consumers are able to undertake global price search
across the producers.
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For the trade design, the total excessive revenue depends on the producers’ prices
.pk/

K
kD1 as follows:

E .p1; : : : ; pK/
defD

KX

kD1
Ek .pk/C

IX

iD1
Ei

�

min
kD1;:::;K pk

�

D

KX

kD1
max
yk2Yk

.hpk; yki � ck.yk//C C
IX

iD1
max
xi2Xi

�

wi �
�

min
kD1;:::;K pk; xi

��

C
: (49)

The decentralization of prices makes the corresponding subdifferential information
about excess demands available to producers. In fact, note that the total excessive
revenue E from (49) is convex in the variables .pk/

K
kD1. Let us obtain an expression

for its convex subgradients rpkE .p1; : : : ; pK/ w.r.t. pk:

rpkE .p1; : : : ; pK/ D Qyk �
IX

iD1
�ik ı Qxi; k D 1; : : : ;K; (50)

where �ik ı Qxi D
�

�
.j/
ik Qx.j/i

�.n/

jD1. Here, Qyk 2 Sk.pk/ is the supply of kth producer w.r.t.

the individual price pk, and Qxi 2 Di

�

min
kD1;:::;K pk

�

is the demand of ith consumer w.r.t.

the lowest purchase price min
kD1;:::;K pk. Moreover,

.�ik/
K
kD1 2 M .p1; : : : ; pK/ ;

where

M .p1; : : : ; pK/
defD

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

.�k/
K
kD1 2 Œ0; 1	n�K

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

KX

kD1
�
.j/
k D 1;

�
.j/
k D 0 if p.j/k 6D min

kD1;:::;K p.j/k

j D 1; : : : ; n; k D 1; : : : ;K

9

>>>>=

>>>>;

:

Note that �.j/ik can be interpreted as the share of ith consumer’s demand from kth

producer for good j. Indeed, the shares �.j/ik for good j sum up to 1 over all producers

k D 1; : : : ;K. Moreover, the share �.j/ik vanishes if the kth producer’s price p.j/k

exceeds the lowest purchase price min
kD1;:::;K p.j/k for good j.

We claim that the subdifferential information in (50) is known to kth producer.
First, note that Qyk is kth producer’s production. Despite of the fact that the shares �ik

and the demands Qxi cannot be estimated by kth producer, their aggregated product
PI

iD1 �ik ı Qxi is perfectly available to him. Indeed,
PI

iD1 �ik ı Qxi forms the bundle of
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goods demanded by all consumers from kth producer. Altogether, the subgradients
rpkE .p1; : : : ; pK/ represent the individual excess of kth producer’s supply over all
consumers’ demands. Overall, we obtain:

Theorem 10 (Producers’ Excess Supply and Total Excessive Revenue).

@pkE .p1; : : : ; pK/ D Sk.pk/ �
IX

iD1
�ik ı Di

�

min
kD1;:::;K pk

�

; k D 1; : : : ;K;

with demand shares .�ik/
K
kD1 2 M .p1; : : : ; pK/ :

Due to Theorem 10, the subdifferential of E .p1; : : : ; pK/ is completely available
to kth producer. This fact suggests to adjust prices by solving the minimization
problem

min
p1;:::;pK2Rn

C

E .p1; : : : ; pK/: (PD)

Note that the minimization problem (PD) is stated w.r.t. the decentralized producers’
prices .pk/

K
kD1, while previously in (P) one minimizes over the common prices p.

We relate the minimization problem (PD) to (P). For that, let us call function
f .x/, x 2 R

n, nondecreasing (nonincreasing) in x if f .x/ � f .y/ .f .x/ � f .y// for
any x � y.

Lemma 5 (Decentralization I). Let function of K C 1 vector variables

F.p0; p1; : : : ; pK/; pk 2 R
n; k D 0; : : : ;K;

be (a) nonincreasing in p0, and (b) nondecreasing in all other variables pk, k D
1; : : : ;K. Then,

min
p1;:::;pK2Rn

C

F

�

min
kD1;:::;K pk; p1; : : : ; pK

�

D min
p2Rn

C

F.p; : : : ; p/:

Proof. Indeed,

min
p1;:::;pK2Rn

C

F

�

min
kD1;:::;K pk; p1; : : : ; pK

�
a/D

min
p;p1;:::;pK2Rn

C

fF .p; p1; : : : ; pK/ j pk � p; k D 1; : : : ;K g b/D
min

p2Rn
C

F.p; : : : ; p/:

ut
Next Theorem 11 states that the minimization of the total excessive revenue

remains invariant under the trade design.
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Theorem 11 (Total Revenue and Trade). Problems (P) and (PD) are equiva-
lent, i.e.

min
p1;:::;pK2Rn

C

E .p1; : : : ; pK/ D min
p2Rn

C

E .p/: (51)

Moreover,

(i) if .pk/
K
kD1 solves (PD), then min

kD1;:::;K pk solves (P),

(ii) if p solves (P), then .p; : : : ; p/ solves (PD).

Proof. We set

F.p0; p1; : : : ; pK/
defD

KX

kD1
Ek .pk/C

IX

iD1
Ei .p0/ :

Note that F is nonincreasing in p0, and nondecreasing in pk, k D 1; : : : ;K. Applying
Lemma 5 and in view of

F

�

min
kD1;:::;K pk; p1; : : : ; pK

�

D E .p1; : : : ; pK/; F.p; : : : ; p/ D E .p/;

(51) holds.
Let .pk/

K
kD1 solve (PD). Then,

min
p2Rn

C

E .p/ � E

�

min
kD1;:::;K pk

�
.49/� E .p1; : : : ; pK/:

By using (51), min
kD1;:::;K pk solves (P).

Now, let p solve (P). Then,

min
p1;:::;pK2Rn

C

E .p1; : : : ; pK/ � E .p; : : : ; p/ D E .p/;

By using (51), .p; : : : ; p/ solves (PD). ut
Further, we show that the welfare maximization problem (A) turns out to be

adjoint not only for (P), but also for (PD). The proof of this fact uses the following
Lemma 6.

Lemma 6. For yk; x 2 R
nC, k D 1; : : : ;K, the inequality

KX

kD1
yk � x (52)

is equivalent to

KX

kD1
hpk; yki �

�

min
kD1;:::;K pk; x

�

for all pk 2 R
nC; k D 1; : : : ;K: (53)
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Proof. (i) Let (52) be satisfied. For pk 2 R
nC, k D 1; : : : ;K, we have

KX

kD1
hpk; yki �

*

min
kD1;:::;K pk;

KX

kD1
yk

+

�
�

min
kD1;:::;K pk; x

�

:

The first inequality is due to yk 2 R
nC, and min

kD1;:::;K pk � pk, k D 1; : : : ;K. The

second inequality is due to (52) and min
kD1;:::;K pk 2 R

nC.

(ii) Let (53) be satisfied. Setting there pk D p 2 R
nC, we get

*

p;
KX

kD1
xk

+

� hp; yi for all p 2 R
nC:

Hence, (52) is fulfilled. ut
The welfare maximization (A) remains adjoint for the total revenue minimiza-

tion (PD) under the trade design.

Theorem 12 (Adjoint for (PD)). The welfare maximization (A) is adjoint for the
total revenue minimization (PD):

min
p1;:::;pK2Rn

C

E .p1; : : : ; pK/ D

max
.˛; Qy; ˇ; Qx/ 2 A

(

˚ .˛; Qy; ˇ; Qx/
ˇ
ˇ
ˇ
ˇ
ˇ

KX

kD1
Qyk �

IX

iD1
Qxi

)

: (54)

Proof.

min
p1;:::;pK2Rn

C

E .p1; : : : ; pK/ D

D min
p1;:::;pK2Rn

C

max
.˛; Qy; ˇ; Qx/ 2 A

˚ .˛; Qy; ˇ; Qx/C
KX

kD1
hpk; Qyki �

*

min
kD1;:::;K pk;

IX

iD1
Qxi

+

;

D max
.˛; Qy; ˇ; Qx/ 2 A

˚ .˛; Qy; ˇ; Qx/C min
p1;:::;pK2Rn

C

KX

kD1
hpk; Qyki �

*

min
kD1;:::;K pk;

IX

iD1
Qxi

+

;

D max
.˛;Qy;ˇ;Qx/2A

8

<̂

:̂

˚ .˛; Qy; ˇ; Qx/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

KX

kD1
hpk; Qyki �

*

min
kD1;:::;K pk;

IX

iD1
Qxi

+

for all pk 2 R
nC; k D 1; : : : ;K

9

>=

>;

:

Applying Lemma 6, we get the assertion (54). ut
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We describe how producers may efficiently adjust their individual prices .pk/
K
kD1

to arrive at an equilibrium price. This price adjustment corresponds to the quasi-
monotone subgradient method from Sect. 3. It is applied to the minimization of the
total excessive revenue (PD) under the trade design.

Let kth producer choose a sequence of positive confidence parameters f�kŒt	gt�0,
k D 1; : : : ;K. We consider the following iteration:

Pricing via Trade (TRA)

1. Producers determine their current excess supplies rpkE .p1Œt	; : : : ; pK Œt	/:

(a) kth producer computes an optimal tentative production bundle

yk.pkŒt	/ 2 Y �k .pkŒt	/;

and participation level

˛k.pkŒt	/ D
�
1; if �k.pkŒt	/ � �k;

0; if �k.pkŒt	/ < �k;

indicating whether yk.pkŒt	/ is implemented.
The production bundle is ˛k.pkŒt	/yk.pkŒt	/, i.e. either yk.pkŒt	/ or zero.

(b) ith consumer identifies the lowest purchase prices

pŒt	 D min
kD1;:::;K pkŒt	;

computes an optimal tentative consumption bundle

xi.pŒt	/ 2X �
i .pŒt	/;

and participation level

ˇi.pŒt	/ D
�
1; if ei.pŒt	/ � wi;

0; if ei.pŒt	/ < wi;

indicating whether xi.pŒt	/ is implemented.
The consumption bundle is ˇi.pŒt	/xi.pŒt	/, i.e. either xi.pŒt	/ or zero.

(c) ith consumer decides on demand shares

.�ikŒt	/
K
kD1 2 M .p1Œt	; : : : ; pK Œt	/ ;

and demands from kth producer the bundle

�ikŒt	 ı ˇi.pŒt	/xi.pŒt	/; k D 1; : : : ;K:
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(d) kth producer computes the current excess supply

rpkE .p1Œt	; : : : ; pK Œt	/ D ˛k.pkŒt	/yk.pkŒt	/ �
IX

iD1
�ikŒt	 ı ˇi.pŒt	/xi.pŒt	/:

(55)

2. kth producer accumulates the excess supplies

zkŒt	 D zkŒt � 1	CrpkE .p1Œt	; : : : ; pK Œt	/; zkŒ�1	 D 0: (56)

3. kth producer computes the price forecast w.r.t. the confidence parameter �kŒt	:

pC.j/k Œt	 D �
.j/
k

�kŒt	

�

�z.j/k Œt	
�

C ; j D 1; : : : ; n; (57)

where �.j/k are positive scaling coefficients.
4. kth producer updates

pkŒtC 1	 D tC 1
tC 2pkŒt	C 1

tC 2pCk Œt	 (58)

by combining the previous individual price with the forecast. ut
Along with the prices f.p1Œt	; : : : ; pK Œt	/gt�0 generated by method (TRA), we

consider the corresponding historical averages of participation levels:

˛kŒt	
defD 1

tC 1
tX

rD0
˛k.pkŒr	/; ˇiŒt	

defD 1

tC 1
tX

rD0
ˇi.pŒr	/:

Note that ˛kŒt	 2 Œ0; 1	 is the frequency of successful production attempts by kth
producer up to time t. Analogously, ˇiŒt	 2 Œ0; 1	 is the frequency of successful
consumption attempts by ith consumer up to time t. We denote by

�Œt	 D .˛Œt	; ˇŒt	/ defD
�

f˛kŒt	gKkD1 ; fˇiŒt	gIiD1
�

the system of average participation levels. The historical averages of production and
consumption bundles are defined as follows:

QykŒt	
defD 1

tC 1
tX

rD0
˛k.pkŒr	/yk.pkŒr	/; QxiŒt	

defD 1

tC 1
tX

rD0
ˇi.pŒr	/xi.pŒr	/:

Due to convexity, QykŒt	 2 ˛kŒt	Yk and QxiŒt	 2 ˇiŒt	Xi. We denote by

eFŒt	 D .QyŒt	; QxŒt	/ defD
�

fQykŒt	gKkD1 ; fQxiŒt	gIiD1
�
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the average market flow. Overall, the sequence

.˛Œt	; QyŒt	; ˇŒt	; QxŒt	/ 2 A ; t � 0;
is feasible for the adjoint problem (A).

Now, we are ready to prove the main convergence result for (TRA).

Theorem 13 (Convergence of Pricing via Trade). At a productive market, let
producers apply in (TRA) nondecreasing confidence parameters satisfying

�kŒt	 � �kŒt � 1	! 0; �kŒt	!1; k D 1; : : : ;K:
Then, the sequence of lowest purchase prices, average participation levels, and the
average market flow

�

min
kD1;:::;K pkŒt	; �Œt	;eFŒt	

�

converges toward the set of market equilibria. The achievable rate of convergence

is of the order O
�
1p

t

�

.

Proof. The iteration scheme (TRA) is a variant of the quasi-monotone subgradient
method (SM). Hence, we may obtain the convergence for (TRA) by means of
Theorem 8. For that, let us discuss the applicability of conditions (S1)–(S3).

On (S1): The price forecast (57) can be derived by means of the Euclidean prox-
functions for RnC:

dk.p/
defD 1

2

nX

jD1

1

�
.j/
k

	

p.j/

2
; k D 1; : : : ;K:

In fact, for zkŒt	 2 R
n; �kŒt	 > 0 we consider the minimization problem as from

step 3. in (SM):

min
p1;:::;pK2Rn

C

(
KX

kD1
hzkŒt	; pki C �kŒt	dk.pk/

)

:

Its unique solution is the price forecast (57) as from step 3. in (TRA):

pC.j/k Œt	 D �
.j/
k

�kŒt	

�

�z.j/k Œt	
�

C ; j D 1; : : : ; n; k D 1; : : : ;K:

On (S2): It follows from Theorem 12 that the total excessive revenue is
representable as a maximum of concave functions:

E .p1; : : : ; pK/ D max
.˛;Qy;ˇ;Qx/2A

˚ .˛; Qy; ˇ; Qx/C ' .p1; : : : ; pK ; Qy; Qx/ ;
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where

' .p1; : : : ; pK ; Qy; Qx/ D
KX

kD1
hpk; Qyki �

*

min
kD1;:::;K pk;

IX

iD1
Qxi

+

:

Although ' is not linear w.r.t. .p1; : : : ; pK/, but it is partially linear, i.e.

' .p; : : : ; p; Qy; Qx/ D
*

p;
KX

kD1
Qyk �

IX

iD1
Qxi

+

:

The partial linearity of ' suffices for the analogous convergence analysis as
in Sect. 3 (see [11] for details). In particular, due to Theorem 12, the adjoint
problem for the total revenue minimization (PD) remains unchanged under the
trade design, i.e. it is the welfare maximization (A).
On (S3): The welfare maximization problem (A) satisfies the Slater condition in
view of the market productivity (cf. Definition 2).

Overall, we apply Theorem 8 to deduce that the sequence .pkŒt	/
K
kD1 converges

toward the solution set of (PD), and
	

�Œt	;eFŒt	



converges toward the solution set

of (A) by order O
�
1p

t

�

. Due to Theorem 11, min
kD1;:::;K pkŒt	 converges toward the

solution set of (P). In view of the duality from Theorem 12, the assertion follows.
ut

4.3 Auction

Analogously, we proceed with the auction design:

ith consumer settles and updates his individual prices pi, and producers sell at the highest
offer price max

iD1;:::;I
pi.

Recall that for vectors p1; : : : ; pI 2 R
n, we denote by max

iD1;:::;I pi 2 R
n the vector with

coordinates

�

max
iD1;:::;I pi

�.j/

D max
iD1;:::;I p.j/i ; j D 1; : : : ; n:

The auction design incorporates the dominant aspect in auction theory that highest
bidders are first served [6]. Following the auction framework, we assume that
producers are able to undertake global price search across the consumers.
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Here, the total excessive revenue depends on the consumers’ prices .pi/
I
iD1 as

follows:

E .p1; : : : ; pI/
defD

KX

kD1
Ek

�

max
iD1;:::;I pi

�

C
IX

iD1
Ei .pi/ D

KX

kD1
max
yk2Yk

��

max
iD1;:::;I pi; yk

�

� ck.yk/

�

C
C

IX

iD1
max
xi2Xi

.wi � hpi; xii/C : (59)

The decentralization of prices makes the corresponding subdifferential information
about excess demands available to consumers. In fact, note that the total revenue
E from (59) is convex in the variables .pi/

I
iD1. Let us obtain an expression for its

convex subgradients rpiE .p1; : : : ; pI/ w.r.t. pi:

rpiE .p1; : : : ; pI/ D
KX

kD1
�ik ı Qyk � Qxi; k D 1; : : : ;K: (60)

where �ik ı Qyk D
�

�
.j/
ik Qy.j/k

�.n/

jD1. Here, Qxi 2 Di.pi/ is the demand of ith consumer w.r.t.

his individual price pi, and Qyk 2 Sk

�

max
iD1;:::;I pi

�

is the supply of kth producer w.r.t.

the highest offer price max
iD1;:::;I pi. Moreover,

.�ik/
I
iD1 2 L .p1; : : : ; pI/ ;

where

L .p1; : : : ; pI/
defD

8

ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

.�i/
I
iD1 2 Œ0; 1	n�I

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

IX

iD1
�
.j/
i D 1;

�
.j/
i D 0 if p.j/i 6D max

iD1;:::;I p.j/i

j D 1; : : : ; n; i D 1; : : : ; I

9

>>>>=

>>>>;

:

Note that �.j/ik can be interpreted as the share of kth producer’s supply to ith consumer

for good j. Indeed, the shares �.j/ik for good j sum up to 1 over all consumers i D
1; : : : ; I. Moreover, the share �.j/ik vanishes if the ith consumer’s price p.j/i is less than

the highest offer price max
iD1;:::;I p.j/i for good j.

We claim that the subdifferential information in (50) is known to ith consumer.
First, note that Qxi is his consumption bundle. Despite of the fact that the shares �ik

and the supplies Qyk cannot be estimated by ith consumer, their aggregated product
PK

kD1 �ik ı Qyk is perfectly available to him. Indeed,
PK

kD1 �ik ı Qyk forms the bundle
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of goods supplied by all producers to ith consumer. Altogether, the subgradients
rpiE .p1; : : : ; pI/ represent the individual excess of ith consumer’s supply over his
demands.

Theorem 14 (Consumers’ Excess Supply and Total Excessive Revenue).

@piE .p1; : : : ; pI/ D
KX

kD1
�ik ı Sk

�

max
iD1;:::;I pI

�

� Di .pi/ ; i D 1; : : : ; I;

with supply shares .�ik/
I
iD1 2 L .p1; : : : ; pI/ :

Due to Theorem 14, the subdifferential of E .p1; : : : ; pI/ is completely available
to ith consumer. This fact suggests to adjust prices by solving the minimization
problem

min
p1;:::;pI2Rn

C

E .p1; : : : ; pI/: (PA)

Note that the minimization problem (PA) is stated w.r.t. the decentralized con-
sumers’ prices .pi/

I
iD1, while previously in (P) one minimizes over the common

prices p.
We relate the minimization problem (PA) to (P). For that, let us call function

f .x/, x 2 R
n, nondecreasing (nonincreasing) in x if f .x/ � f .y/ .f .x/ � f .y// for

any x � y.

Lemma 7 (Decentralization II). Let function of I C 1 vector variables

G.p0; p1; : : : ; pI/; pi 2 R
n; i D 0; : : : ; I;

be (a) nondecreasing in p0, and (b) nonincreasing in all other variables pi, i D
1; : : : ; I. Then,

min
p1;:::;pI2Rn

C

G

�

max
iD1;:::;I pi; p1; : : : ; pI

�

D min
p2Rn

C

G.p; : : : ; p/:

Proof. Indeed,

min
p1;:::;pI2Rn

C

G

�

max
iD1;:::;I pi; p1; : : : ; pI

�
a/D

min
p;p1;:::;pI2Rn

C

fG .p; p1; : : : ; pI/ j pi � p; i D 1; : : : ; I g b/D
min

p2Rn
C

G.p; : : : ; p/:

ut
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Next Theorem 15 states that the minimization of the total excessive revenue
remains invariant under the auction design.

Theorem 15 (Total Revenue and Auction). Problems (P) and (PA) are equiva-
lent, i.e.

min
p1;:::;pI2Rn

C

E .p1; : : : ; pI/ D min
p2Rn

C

E .p/: (61)

Moreover,

(i) if .pi/
I
iD1 solves (PA), then max

iD1;:::;I pi solves (P),

(ii) if p solves (P), then .p; : : : ; p/ solves (PA).

Proof. We set

G.p0; p1; : : : ; pI/
defD

KX

kD1
Ek .p0/C

IX

iD1
Ei .pi/ :

Note that G is nondecreasing in p0, and nonincreasing in pi, i D 1; : : : ; I. Applying
Lemma 7 and in view of

G

�

max
iD1;:::;I pi; p1; : : : ; pI

�

D E .p1; : : : ; pI/; G.p; : : : ; p/ D E .p/;

(61) holds.
Let .pi/

I
iD1 solve (PA). Then,

min
p2Rn

C

E .p/ � E

�

max
iD1;:::;I pi

�
.59/� E .p1; : : : ; pI/:

By using (61), max
iD1;:::;I pk solves (P).

Now, let p solve (P). Then,

min
p1;:::;pI2Rn

C

E .p1; : : : ; pI/ � E .p; : : : ; p/ D E .p/;

By using (61), .p; : : : ; p/ solves (PA). ut
Further, we show that the welfare maximization problem (A) turns out to be

adjoint not only for (P), but also for (PA). The proof of this fact uses the following
Lemma 8.

Lemma 8. For xi; y 2 R
nC, i D 1; : : : ; I, the inequality

IX

iD1
xi � y (62)
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is equivalent to

IX

iD1
hpi; xii �

�

max
iD1;:::;I pi; y

�

for all pi 2 R
nC; i D 1; : : : ; I: (63)

Proof. (i) Let (62) be satisfied. For pi 2 R
nC, i D 1; : : : ; I, we have

IX

iD1
hpi; xii �

*

max
iD1;:::;I pi;

IX

iD1
xi

+

�
�

max
iD1;:::;I pi; y

�

:

The first inequality is due to xi 2 R
nC, and pi � max

iD1;:::;I pi, i D 1; : : : ; I. The

second inequality is due to (62) and max
iD1;:::;I 2 R

nC.

(ii) Let (63) be satisfied. Setting there pi D p 2 R
nC, we get

*

p;
IX

iD1
xi

+

� hp; yi for all p 2 R
nC:

Hence, (62) is fulfilled. ut
Theorem 16 (Adjoint for (PA)). The welfare maximization (A) is adjoint for the
total revenue minimization (PA):

min
p1;:::;pI2Rn

C

E .p1; : : : ; pI/ D max
.˛; Qy; ˇ; Qx/ 2 A

(

˚ .˛; Qy; ˇ; Qx/
ˇ
ˇ
ˇ
ˇ
ˇ

KX

kD1
Qyk �

IX

iD1
Qxi

)

:

(64)

Proof. We obtain:

min
p1;:::;pI2Rn

C

E .p1; : : : ; pI/ D

D min
p1;:::;pI2Rn

C

max
.˛; Qy; ˇ; Qx/ 2 A

˚ .˛; Qy; ˇ; Qx/C
*

max
iD1;:::;I pi;

KX

kD1
Qyk

+

�
IX

iD1
hpi; Qxii ;

D max
.˛; Qy; ˇ; Qx/ 2 A

˚ .˛; Qy; ˇ; Qx/C min
p1;:::;pI2Rn

C

*

max
iD1;:::;I pi;

KX

kD1
Qyk

+

�
IX

iD1
hpi; Qxii ;

D max
.˛;Qy;ˇ;Qx/2A

8

<̂

:̂

˚ .˛; Qy; ˇ; Qx/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

IX

iD1
hpi; Qxii �

*

max
iD1;:::;I pi;

KX

kD1
Qyk

+

for all pi 2 R
nC; i D 1; : : : ; I

9

>=

>;

:

Applying Lemma 8, we get the assertion (64). ut
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Analogously, we describe how consumers may efficiently adjust their individual
prices .pi/

I
iD1 to arrive at an equilibrium price. This price adjustment also corre-

sponds to the quasi-monotone subgradient method from Sect. 3. It is applied to the
minimization of the total excessive revenue (PA) under the auction design.

Let ith producer choose a sequence of positive confidence parameters f�iŒt	gt�0,
i D 1; : : : ; I. We consider the following iteration:

Pricing via Auction (AUC)

1. Consumers determine their current excess supplies rpiE .p1Œt	; : : : ; piŒt	/:

(a) ith consumer computes an optimal tentative consumption bundle

xi.piŒt	/ 2X �
i .piŒt	/;

and participation level

ˇi.piŒt	/ D
�
1; if ei.piŒt	/ � wi;

0; if ei.piŒt	/ < wi;

indicating whether xi.piŒt	/ is implemented.
The consumption bundle is ˇi.piŒt	/xi.piŒt	/, i.e. either xi.piŒt	/ or zero.

(b) kth producer identifies the highest offer prices

pŒt	 D max
iD1;:::;I piŒt	;

and computes an optimal tentative production bundle

yk.pŒt	/ 2 Y �k .pŒt	/;

and participation level

˛k.pŒt	/ D
�
1; if �k.pŒt	/ � �k;

0; if �k.pŒt	/ < �k;

indicating whether yk.pŒt	/ is implemented.
The production bundle is ˛k.pŒt	/yk.pŒt	/, i.e. either yk.pŒt	/ or zero.

(c) kth producer decides on supply shares

.�ikŒt	/
I
iD1 2 L .p1Œt	; : : : ; pI Œt	/ ;

and supplies to ith consumer the bundle

�ikŒt	 ı ˛k.pŒt	/yk.pŒt	/:
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(d) ith consumer computes the current excess supply

rpiE .p1Œt	; : : : ; pI Œt	/ D
KX

kD1
�ikŒt	ı˛k.pŒt	/yk.pŒt	/�ˇi.piŒt	/xi.piŒt	/: (65)

2. ith consumer accumulates the excess supplies

ziŒt	 D ziŒt � 1	CrpiE .p1Œt	; : : : ; pI Œt	/; ziŒ�1	 D 0: (66)

3. ith consumer computes the price forecast w.r.t. the confidence parameter �iŒt	:

pC.j/i Œt	 D �
.j/
i

�iŒt	

�

�z.j/i Œt	
�

C ; j D 1; : : : ; n; (67)

where �.j/i are positive scaling coefficients.
4. ith consumer updates

piŒtC 1	 D tC 1
tC 2piŒt	C 1

tC 2pCi Œt	 (68)

by combining the previous individual price with the forecast. ut
Along with the prices f.piŒt	/gt�0, i D 1; : : : ; I, generated by method (AUC), we

consider the corresponding historical averages of participation levels:

˛kŒt	
defD 1

tC 1
tX

rD0
˛k.pŒr	/; ˇiŒt	

defD 1

tC 1
tX

rD0
ˇi.piŒr	/:

Note that ˛kŒt	 2 Œ0; 1	 is the frequency of successful production attempts by kth
producer up to time t. Analogously, ˇiŒt	 2 Œ0; 1	 is the frequency of successful
consumption attempts by ith consumer up to time t. We denote by

�Œt	 D .˛Œt	; ˇŒt	/ defD
�

f˛kŒt	gKkD1 ; fˇiŒt	gIiD1
�

the system of average participation levels. The historical averages of production and
consumption bundles are defined as follows:

QykŒt	
defD 1

tC 1
tX

rD0
˛k.pŒr	/yk.pŒr	/; QxiŒt	

defD 1

tC 1
tX

rD0
ˇi.piŒr	/xi.piŒr	/:

Due to convexity, QykŒt	 2 ˛kŒt	Yk and QxiŒt	 2 ˇiŒt	Xi. We denote by

eFŒt	 D .QyŒt	; QxŒt	/ defD
�

fQykŒt	gKkD1 ; fQxiŒt	gIiD1
�
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the average market flow. Overall, the sequence

.˛Œt	; QyŒt	; ˇŒt	; QxŒt	/ 2 A ; t � 0;
is feasible for the adjoint problem (A).

Now, we are ready to prove the main convergence result for (AUC).

Theorem 17 (Convergence of Pricing via Auction). At a productive market, let
consumers apply in (AUC) nondecreasing confidence parameters satisfying

�iŒt	 � �iŒt � 1	! 0; �iŒt	!1; i D 1; : : : ; I:
Then, the sequence of highest offer prices, average participation levels, and the
average market flow

�

max
iD1;:::;I piŒt	; �Œt	;eFŒt	

�

converges toward the set of market equilibria. The achievable rate of convergence

is of the order O
�
1p

t

�

.

Proof. The iteration scheme (AUC) is a variant of the quasi-monotone subgradient
method (SM). Hence, we may obtain the convergence for (AUC) by means of
Theorem 8. For that, let us discuss the applicability of conditions (S1)–(S3).

On (S1): The price forecast (67) can be derived by means of the Euclidean prox-
functions for RnC:

di.p/
defD 1

2

nX

jD1

1

�
.j/
i

	

p.j/

2
; i D 1; : : : ; I:

In fact, for ziŒt	 2 R
n; �iŒt	 > 0 we consider the minimization problem as from

step 3. in (SM):

min
p1;:::;pI2Rn

C

(
IX

iD1
hziŒt	; pii C �iŒt	di.pi/

)

:

Its unique solution is the price forecast (67) as from step 3. in (AUC):

pC.j/i Œt	 D �
.j/
i

�iŒt	

�

�z.j/i Œt	
�

C ; j D 1; : : : ; n; i D 1; : : : ; I:

On (S2): It follows from Theorem 16 that the total excessive revenue is
representable as a maximum of concave functions:

E .p1; : : : ; pI/ D max
.˛;Qy;ˇ;Qx/2A

˚ .˛; Qy; ˇ; Qx/C ' .p1; : : : ; pI ; Qy; Qx/ ;



Algorithmic Principle of Least Revenue for Finding Market Equilibria 429

where

' .p1; : : : ; pI ; Qy; Qx/ D
*

max
iD1;:::;I pi;

KX

kD1
Qyk

+

� hpi; Qxii :

Although ' is not linear w.r.t. .p1; : : : ; pI/, but it is partially linear, i.e.

' .p; : : : ; p; Qy; Qx/ D
*

p;
KX

kD1
Qyk �

IX

iD1
Qxi

+

:

The partial linearity of ' suffices for the analogous convergence analysis as in
Sect. 3 (see [12] for details). In particular, due to Theorem 16, the adjoint problem
for the total revenue minimization (PA) remains unchanged under the auction
design, i.e. it is the welfare maximization (A).
On (S3): The welfare maximization problem (A) satisfies the Slater condition in
view of the market productivity (cf. Definition 2).

Overall, we apply Theorem 8 to deduce that the sequence .piŒt	/
I
iD1 converges

toward the solution set of (PA), and
	

�Œt	;eFŒt	



converges toward the solution set

of (A) by order O
�
1p

t

�

. Due to Theorem 15, max
iD1;:::;I piŒt	 converges toward the

solution set of (P). In view of the duality from Theorem 16, the assertion follows.
ut

5 Conclusions

We presented the excessive revenue model of a competitive market. Its crucial
advantage is that it can be written in potential form. The convex potential is the
total excessive revenue of market’s participants. Equilibrium prices, which balance
supply and demand, arise as the minimizers of the total excessive revenue. The latter
constitutes the least revenue principle in analogy to extremal principles in physics.
The least revenue principle allowed us to efficiently adjust prices by application
of Convex Analysis. For that, we used quasi-monotone methods for nonsmooth
convex minimization of the total excessive revenue. They represent implementable
behavioral schemes for the real-life activities of producers and consumers due to the
trade or auction. Thus, the main features of our price adjustment are as follows:

• Reliability refers to the fact that the price adjustment leads to equilibrium prices,
and corresponding supply equals demand on average.

• Computability of price adjustment means that we can guarantee the convergence
of the proposed price adjustment mechanisms at an explicitly stated (nonasymp-
totic) rate, which in fact is the best convergence rate achievable in large-scale
nonsmooth convex minimization.
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• Decentralization explains how market participants can successively update prices
by themselves via trade or auction rather than by relying on a central authority.

Acknowledgements The authors would like to thank the referees for their precise and constructive
remarks.

Appendix

Proof of Lemma 2:. We define the average linearization terms `t and  t for f :

`t.x/
defD

tX

rD0
f .xŒr	/C hrf .xŒr	/; x � xŒr	i ;

 t
defD min

x2X
f`t.x/C �Œt	d.x/g :

First, we show by induction that for all t � 0 it holds:

f .xŒt	/ �  t

tC 1 � �t: (69)

Let us assume that condition (69) is valid for some t � 0. Then,

 tC1 D min
x2X
f`t.x/C f .xtC1/C hrf .xŒtC 1	/; x � xŒtC 1	i C �ŒtC 1	d.x/g

.37/� min
x2X
f`t.x/C �Œt	d.x/C f .xŒtC 1	/C hrf .xŒtC 1	/; x � xŒtC 1	ig

.33/� min
x2X

�

 t C 1

2
�Œt	

�
�x � xCŒt	

�
�
2 C f .xŒtC 1	/C hrf .xŒtC 1	/; x � xŒtC 1	i

�

.69/� min
x2X

(

.tC 1/f .xŒt	/ � .tC 1/�t

C 1
2
�Œt	

�
�x � xCŒt	

�
�
2 C f .xŒtC 1	/C hrf .xŒtC 1	/; x � xŒtC 1	i

)

.31/� min
x2X

(

.tC 1/ Œf .xŒtC 1	/C hrf .xŒtC 1	/; xŒt	 � xŒtC 1	i	 � .tC 1/�t

C 1
2
�Œt	

�
�x � xCŒt	

�
�
2 C f .xŒtC 1	/C hrf .xŒtC 1	/; x � xŒtC 1	i

)

:

Since .tC 2/xŒtC 1	 D .tC 1/xŒt	C xCŒt	, we obtain

 tC1 � .tC 2/f .xŒtC 1	/ � .tC 1/�t
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Cmin
x2X

�
˝rf .xŒtC 1	/; x � xCŒt	

˛C 1

2
�Œt	

�
�x � xCŒt	

�
�
2
�

� .tC 2/f .xŒtC 1	/ � .tC 1/�t � 1

2�Œt	
krf .xŒtC 1	/k2� :

D .tC 2/f .xŒtC 1	/ � .tC 2/�tC1:

It remains to note that

 0 D min
x2X
ff .xŒ0	/C hrf .xŒ0	/; x � xŒ0	i C �Œ0	d.x/g .35/� f .xŒ0	/ � �0:

Now, we relate the term
 t

tC 1 from (69) to the adjoint problem (32). It holds due

to convexity of '.�; a/, a 2 A:

f .xŒr	/C hrf .xŒr	/; x � xŒr	i D

.29/; .30/D ˚ .a.xŒr	//C ' .xŒr	; a.xŒr	//C hrx' .xŒr	; a.xŒr	// ; x � xŒr	i

� ˚ .a.xŒr	/C ' .x; a.xŒr	// :

Hence, we obtain due to concavity of ˚ and '.x; �/, x 2 X:

`t.x/ �
tX

rD0
˚ .a.xŒr	/C ' .x; a.xŒr	// � .tC 1/ Œ˚ .aŒt	/C ' .x; aŒt	/	 :

Finally, we get

 t

tC 1 � ˚ .aŒt	/Cmin
x2X

�

' .x; aŒt	/C �Œt	

tC 1d.x/

�

D ˚ .aŒt	/ � ıt.aŒt	/: (70)

Altogether, (69) and (70) provide the formula (38). ut
The following result on the quadratic penalty for the maximization problem (39)

will be needed.

Lemma 9. Under (S1)–(S3) it holds for � > 0:

max
a 2 A

2

4˚.a/ � �
2

nX

jD1

	

hj.a/

2

C

3

5 � f � C 1

2�

nX

jD1
x�.j/;

where x� solves the minimization problem (28).
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Proof. Let a� be an optimal solution of (39). Due to the Slater condition, there exist
some Lagrange multipliers x�.j/, j D 1; : : : ; n such that

*

r˚.a�/ �
nX

jD1
x�.j/rhj.a

�/; a� � a

+

� 0; for all a 2 A; (71)

x�.j/ � 0; hj.a
�/ � 0;

nX

jD1
x�.j/hj.a

�/ D 0: (72)

Note that the vector of Lagrange multipliers x� D 	

x�.j/; j D 1; : : : ; n
 solves the
minimization problem (28). Due to the concavity of ˚ and the convexity of hj,
j D 1; : : : ; n, it holds for all a 2 A:

˚.a/ � ˚.a�/C hr˚.a�/; a � a�i ; (73)

hj.a/ � hj.a
�/C ˝rhj.a

�/; a � a�
˛

: (74)

We estimate

˚.a/
.73/� ˚.a�/C hr˚.a�/; a � a�i .71/� f � C

nX

jD1
x�.j/

˝rhj.a
�/; a � a�

˛

.74/� f � C
nX

jD1
x�.j/

	

hj.a/ � hj.a
�/

 .72/D f � C

nX

jD1
x�.j/hj.a/; a 2 A:

Hence,

max
a 2 A

2

4˚.a/ � �
2

nX

jD1

	

hj.a/

2

C

3

5 � f � C max
a 2 A

nX

jD1

h

x�.j/hj.a/ � �
2

	

hj.a/

2

C
i

� f � C
nX

jD1
max
bj 2 R

nX

jD1

h

x�.j/bj � �
2

	

bj

2

C
i

D f � C
nX

jD1

1

2�
x�.j/:

ut
Proof of Lemma 3:. First, we estimate the penalty term ıt and the remainder term
�t, t � 0 under (S1)–(S3). It holds:
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ıt.aŒt	/ D �min
x2X

�

'.x; aŒt	/C �Œt	

tC 1d.x/

�

D � min
x2Rn

C

8

<

:
�

nX

jD1
x.j/hj.aŒt	/C �Œt	

tC 1 �
1

2

nX

jD1

	

x.j/

2

9

=

;

D tC 1
�Œt	

nX

jD1

	

hj.aŒt	/

2

C ;

�t D 1

tC 1
tX

rD0

1

2�Œr � 1	 krf .xŒr	/k2�

D 1

tC 1
tX

rD0

1

2�Œr � 1	
nX

jD1

	

hj.aŒr	/

2

� C2
1

tC 1
tX

rD0

1

�Œr � 1	 :

The latter inequality follows due to the compactness of the adjoint set A and the
convexity of hj, j D 1; : : : ; n with

C2 D 1

2
max
a2A

nX

jD1

	

hj.a/

2
: (75)

Substituting into (38), we get the right-hand side of (40):

f .xŒt	/ � ˚.aŒt	/C tC 1
�Œt	

nX

jD1

	

hj.aŒt	/

2

C � C2
1

tC 1
tX

rD0

1

�Œr � 1	 :

Now, we estimate this dual gap from below by using

˚ .aŒt	/ � tC 1
�Œt	

nX

jD1

	

hj.aŒt	/

2

C � max
a 2 A

2

4˚.a/ � tC 1
�Œt	

nX

jD1

	

hj.a/

2

C

3

5

Lemma 9� f � C C1
�Œt	

tC 1 ;

where

C1 D 1

4

nX

jD1
x�.j/ (76)

and x� is a solution of the minimization problem (28).
Finally, we get the left-hand side of (40)

f .xŒt	/ � ˚.aŒt	/C tC 1
�Œt	

nX

jD1

	

hj.aŒt	/

2

C � f .xŒt	/ � f � � C1
�Œt	

tC 1 :

ut
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Proof of Lemma 4:. Since �Œt	 � �Œt � 1	 ! 0, it holds by averaging that
1

tC 1
tX

rD0
�Œr	 � �Œr � 1	! 0. Thus,

1

tC 1�Œt	 D
1

tC 1
tX

rD0
�Œr	 � �Œr � 1	C 1

tC 1�Œ�1	! 0:

From �Œt	!1we have
1

�Œt	
! 0, and also by averaging,

1

tC 1
tX

rD0

1

�Œr � 1	 ! 0:

The convergence of the order O
�
1p

t

�

can be achieved in (42) by choosing �Œt	 D
O.
p

t/. In fact, we obtain:

1

tC 1
tX

rD0

1

�Œr � 1	 D
1

tC 1
�

1

�Œ�1	 C
1

�Œ0	

�

C 1

tC 1
tX

rD1

1p
r
:

Immediately, we see that 1
tC1

�
1

�Œ�1	 C
1

�Œ0	

�

! 0 as of the order O
	
1
t




. Note

that for a convex univariate function �.r/, r 2 R, and integer bounds a; b, we have

bX

rDa

�.r/ �
bC1=2Z

a�1=2
�.s/ds: (77)

Hence, we get

1

tC 1
tX

rD1

1p
r

.77/� 1

tC 1

tC1=2Z

1�1=2

1p
s

ds

D 2

tC 1
p

s
ˇ
ˇ
ˇ

tC1=2
1=2

D 2

tC 1
�p

tC 1=2 �
p

1=2
�

! 0:

Here, the order of convergence is O
�
1p

t

�

. By assuming �Œt	 D O.
p

t/, the

convergence
�Œt	

tC 1 D
p

t

tC 1 ! 0 is also of the order O
�
1p

t

�

. ut
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The Legendre Transformation in Modern
Optimization

Roman A. Polyak

Abstract The Legendre transform (LET) is a product of a general duality principle:
any smooth curve is, on the one hand, a locus of pairs, which satisfy the given
equation and, on the other hand, an envelope of a family of its tangent lines.

An application of the LET to a strictly convex and smooth function leads to the
Legendre identity (LEID). For strictly convex and three times differentiable function
the LET leads to the Legendre invariant (LEINV).

Although the LET has been known for more then 200 years both the LEID and
the LEINV are critical in modern optimization theory and methods.

The purpose of the paper is to show the role of the LEID and the LEINV play in
both constrained and unconstrained optimization.

Keywords Legendre transform • Duality • Lagrangian • Self-Concordant func-
tion • Nonlinear rescaling • Lagrangian transform

1 Introduction

Application of the duality principle to a strictly convex f W R ! R, leads to the
Legendre transform

f �.s/ D sup
x2R
fsx � f .x/g;

which is often called the Legendre-Fenchel transform (see [21, 29, 30]).
The LET, in turn, leads to two important notions: the Legendre identity

f �0

.s/ � f
0�1.s/

and the Legendre invariant
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LEINV.f / D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

d3f

dx3

�
d2f

dx2

�� 32
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�d3f �

ds3

�
d2f �

ds2

�� 32
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

:

Our first goal is to show a number of duality results for optimization problems
with equality and inequality constraints obtained in a unified manner by using LEID.

A number of methods for constrained optimization, which have been introduced
in the past several decades and for a long time seemed to be unconnected, turned
out to be equivalent. We start with two classical methods for equality constrained
optimization.

First, the primal penalty method by Courant [16] and its dual equivalent—the
regularization method by Tichonov [60].

Second, the primal multipliers method by Hestenes [28] and Powell [52], and its
dual equivalent—the quadratic proximal point method by Moreau [39], Martinet
[35, 36] Rockafellar [56, 57] (see also [2, 7, 24, 27, 44, 45, 58] and references
therein).

Classes of primal SUMT and dual interior regularization, primal nonlinear
rescaling (NR) and dual proximal points with '-divergence distance functions,
primal Lagrangian transformation (LT) and dual interior ellipsoids methods turned
out to be equivalent.

We show that LEID is a universal tool for establishing the equivalence results,
which are critical, for both understanding the nature of the methods and establishing
their convergence properties.

Our second goal is to show how the equivalence results can be used for
convergence analysis of both primal and dual methods.

In particular, the primal NR method with modified barrier (MBF) transformation
leads to the dual proximal point method with Kullback-Leibler entropy divergence
distance (see [50]). The corresponding dual multiplicative algorithm, which is
closely related to the EM method for maximum likelihood reconstruction in position
emission tomography as well as to image space reconstruction algorithm (see
[17, 20, 62]), is the key instrument for establishing convergence of the MBF method
(see [31, 46, 50, 53]).

In the framework of LT the MBF transformation leads to the dual interior
proximal point method with Bregman distance (see [37, 49]).

The kernel '.s/ D � ln s C s � 1 of the Bregman distance is a self-concordant
(SC) function. Therefore the corresponding interior ellipsoids are Dikin’s ellipsoids.

Application LT for linear programming (LP) calculations leads to Dikin’s type
method for the dual LP (see [18]).

The SC functions have been introduced by Yuri Nesterov and Arkadi Nemirovski
in the late 1980s (See [42, 43]).

Their remarkable SC theory is the centerpiece of the interior point methods
(IPMs), which for a long time was the main stream in modern optimization. The
SC theory establishes the IPMs complexity for large classes of convex optimization
problem from a general and unique point of view.
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It turns out that a strictly convex f 2 C3 is self-concordant if LEINV.f / is
bounded. The boundedness of LEINV.f / leads to the basic differential inequality,
four sequential integrations of which produced the main SC properties.

The properties, in particular, lead to the upper and lower bounds for f at each step
of a special damped Newton method for unconstrained minimization SC functions.
The bounds allow establishing global convergence and show the efficiency of the
damped Newton method for minimization SC function.

The critical ingredients in these developments are two special SC function:
w.t/ D t � ln.tC 1/ and its LET w�.s/ D �s � ln.1 � s/.

Usually two stages of the damped Newton method is considered (see [43]). At
the first stage at each step the error bound�f .x/ D f .x/� f .x�/ is reduced by w.�/,
where 0 < � < 1 is the Newton decrement. At the second stage �f .x/ converges to
zero with quadratic rate. We consider a middle stage where�f .x/ converges to zero
with superlinear rate, which is explicitly characterized by w.�/ and w�.�/.

To show the role of LET and LEINV.f / in unconstrained optimization of SC
functions was our third goal.

The paper is organized as follows.
In the next section along with LET we consider LEID and LEINV.
In Sect. 3 penalty and multipliers methods and their dual equivalents applied for

optimization problems with equality constraints.
In Sect. 4 the classical SUMT methods and their dual equivalents—the interior

regularization methods—are applied to convex optimization problem.
In Sect. 5 we consider the Nonlinear Rescaling theory and methods, in particular,

the MBF and its dual equivalent—the prox with Kullback-Leibler entropy diver-
gence distance.

In Sect. 6 the Lagrangian transform (LT) and its dual equivalent—the interior
ellipsoids method—are considered. In particular, the LT with MBF transformation,
which leads to the dual prox with Bregman distance.

In Sect. 7 we consider LEINV, which leads to the basic differential inequality, the
main properties of the SC functions and eventually to the damped Newton method.

We conclude the paper (survey) with some remarks, which emphasize the role of
LET, LEID and LEINV in modern optimization.

2 Legendre Transformation

We consider LET for a smooth and strictly convex scalar function of a scalar
argument f W R! R.

For a given s D tan' let us consider line l D f.x; y/ 2 R
2 W y D sxg. The

corresponding tangent to the curve Lf with the same slope is defined as follows:

T.x; y/ D f.X;Y/ 2 R
2 W Y � f .x/ D f

0

.x/.X � x/ D s.X � x/g:
In other words T.x; y/ is a tangent to the curve Lf D f.x; y/ W y D f .x/g at the
point .x; y/: f

0

.x/ D s. For X D 0, we have Y D f .x/ � sx. The conjugate function
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Y

X

Lf

T(x,y)

y=f(x)

X

f*(s)=-Y

Fig. 1 Legendre transformation

f � W .a; b/ ! R, �1 < a < b < 1 at the point s is defined as f �.s/ D �Y D
�f .x/C sx. Therefore (see Fig. 1)

f �.s/C f .x/ D sx: (1)

More often f � is defined as follows

f �.s/ D max
x2R fsx � f .x/g: (2)

Keeping in mind that T.x; y/ is the supporting hyperplane to the epi f D f.y; x/ W
y � f .x/g the maximum in (2) is reached at x: f

0

.x/ D s, therefore the primal
representation of (1) is

f �.f 0

.x//C f .x/ � f
0

.x/x: (3)

For a strictly convex f we have f
00

.x/ > 0, therefore due to the Inverse Function
Theorem the equation f

0

.x/ D s can be solved for x, that is

x.s/ D f
0�1.s/: (4)

Using (4) from (3) we obtain the dual representation of (1)

f �.s/C f .x.s// � sx.s/: (5)
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Also, it follows from f
00

.x/ > 0 that x.s/ in (2) is unique, so f � is as smooth as f . The
variables x and s are not independent, they are linked through equation s D f

0

.x/.
By differentiating (5) we obtain

f �0

.s/C f
0

.x.s//x
0

.s/ � x.s/C sx
0

.s/: (6)

In view of f
0

.x.s// D s, from (4) and (6) we obtain the following identity,

f �0

.s/ � f
0�1.s/; (7)

which is called the Legendre identity (LEID).
From (4) and (7) we obtain

df �.s/
ds

D x: (8)

On the other hand, we have

df .x/

dx
D s: (9)

From (8) and (9) it follows

a/
d2f �.s/

ds2
D dx

ds
and b/

d2f .x/

dx2
D ds

dx
: (10)

From

dx

ds
� ds

dx
D 1

and (10) we get

d2f �

ds2
� d2f

dx2
D 1; (11)

so the local curvatures of f and f � are inverses to each other.
The following Theorem established the relations of the third derivatives of f and

f �, which leads to the notion of Legendre invariant.

Theorem 1. If f 2 C3 is strictly convex then

d3f �

ds3
�
�

d2f �

ds2

��3=2
C d3f

dx3
�
�

d2f

dx2

��3=2
D 0: (12)
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Proof. By differentiating (11) in x we obtain

d3f �

ds3
� ds

dx
� d2f

dx2
C d2f �

ds2
� d3f

dx3
D 0:

In view of (10b) we have

d3f �

ds3
�
�

d2f

dx2

�2

C d2f �

ds2
� d3f

dx3
D 0: (13)

By differentiating (11) in s and keeping in mind (10a) we obtain

d3f �

ds3
d2f

dx2
C
�

d2f �

ds2

�2
d3f

dx3
D 0: (14)

Using (11), from (13) and (14) we have

d3f �

ds3
� d2f

dx2
C 1
�

d2f
dx2

�2

d3f

dx3
D 0

or

d3f �

ds3

�
d2f

dx2

�3

C d3f

dx3
D 0:

Keeping in mind d2f
dx > 0 from the last equation follows

d3f �

ds3

�
d2f

dx2

� 3
2

C d3f

dx3

�
d2f

dx2

�� 32
D 0:

Using (11) again we obtain (12).

Corollary 1. From (12) we have

�d3f �

ds3

�
d2f �

ds2

��3=2
D d3f

dx3

�
d2f

dx2

��3=2
:

The Legendre Invariant is defined as follows

LEINV.f / D
ˇ
ˇ
ˇ
ˇ
ˇ
�d3f �

ds3

�
d2f �

ds2

��3=2ˇˇ
ˇ
ˇ
ˇ
D
ˇ
ˇ
ˇ
ˇ
ˇ

d3f

dx3

�
d2f

dx2

��3=2ˇˇ
ˇ
ˇ
ˇ
: (15)
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For a strictly convex f 2 C3 boundedness of LEINV.f / defines the class of self-
concordant (SC) functions introduced by Yuri Nesterov and A. Nemirovski in the
late 1980s .

3 Equality Constrained Optimization

Let f and all ci: Rn ! R, i D 1; : : : ;m be continuously differentiable. We consider
the following optimization problem with equality constrains

min f .x/

s. t. ci.x/ D 0; i D 1; : : : ;m:
(16)

We assume that (16) has a regular solution x� that is

rank rc.x�/ D m < n;

whererc.x/ is the Jacobian of the vector-function c.x/ D .c1.x/; : : : ; cm.x//T . Then
(see, for example [45]) there exists �� 2 R

m:

rxL.x�; ��/ D 0; r�L.x�; ��/ D c.x�/ D 0;

where

L.x; �/ D f .x/C
mX

iD1
�ici.x/

is the classical Lagrangian, which corresponds to (16).
It is well known that the dual function

d.�/ D inffL.x; �/jx 2 R
ng (17)

is closed and concave. Its subdifferential

@d.�/ D fg W d.u/ � d.�/ � .g; u � �/;8u 2 R
mg (18)

at each � 2 R
n is a non-empty, bounded and convex set. If for a given � 2 R

m the
minimizer

x.�/ D arg minfL.x; �/jx 2 R
ng

exists then

rxL.x.�/; �/ D 0: (19)
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If the minimizer x.�/ is unique, then the dual function

d.�/ D L.x.�/; �/

is differentiable and the dual gradient

rd.�/ D rxL.x.�/; �/r�x.�/Cr�L.x.�/; �/;

where r�x.�/ is the Jacobian of vector-function x.�/ D .x1.�/; : : : ; xn.�//
T . In

view of (19) we have

rd.�/ D r�L.x.�/; �/ D c.x.�//: (20)

In other words, the gradient of the dual function coincides with the residual vector
computed at the primal minimizer x.�/.

If x.�/ is not unique, then for any Ox D x.�/ 2 ArgminfL.x; �/jx 2 R
ng we have

c.Ox/ 2 @d.�/:

In fact, let

u W d.u/ D L.x.u/; u/ D min
x2Rn

L.x; u/; (21)

then for any � 2 R
m we have

d.u/ D minff .x/C
mX

iD1
uici.x/jx 2 R

ng � f .Ox/C
mX

iD1
uici.Ox/ D f .Ox/C

X

�ici.Ox/

C.c.Ox/; u � �/ D d.�/C .c.Ox/; u � �/
or

d.u/ � d.�/ � .c.Ox/; u � �/;8u 2 R
m;

so (18) holds for g D c.Ox/, therefore

c.Ox/ 2 @d. O�/: (22)

The dual to (16) problem is

max d.�/

s. t. � 2 R
m;

(23)
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which is a convex optimization problem independent from convexity properties of f
and ci, i D 1; : : : ;m in (16).

The following inclusion

0 2 @d.��/ (24)

is the optimality condition for the dual maximizer �� in (23).

3.1 Penalty Method and its Dual Equivalent

In this section we consider two methods for solving optimization problems with
equality constraints and their dual equivalents.

In 1943 Courant introduced the following penalty function and correspondent
method for solving (16) (see [16]).

Let �.t/ D 1
2
t2 and k > 0 be the penalty (scaling) parameter, then Courant’s

penalty function P W Rn � RCC ! R is defined by the following formula

P.x; k/ D f .x/C k�1
mX

iD1
�.kci.x// D f .x/C k

2
kc.x/k2; (25)

where k � k is Euclidean norm. At each step the penalty method finds unconstrained
minimizer

x.k/ W P.x.k/; k/ D min
x2Rn

P.x; k/: (26)

We assume that for a given k > 0 minimizer x.k/ exists and can be found from the
system rxP.x; k/ D 0. Then

rxP.x.k/; k/ D

rf .x.k//C
mX

iD1
�

0

.kci.x.k///rci.x.k// D 0: (27)

Let

�i.k/ D � 0

.kci.x.k//; i D 1; ::;m: (28)

From (27) and (28) follows

rxP.x.k/; k/ D rf .x.k//C
mX

iD1
�i.k/rci.x.k// D rxL.x.k/; �.k// D 0; (29)
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which means that x.k/ satisfies the necessary condition to be a minimizer of
L.x; �.k//. If L.x.k/; �.k// D min

x2Rn
L.x; �.k//, then d.�.k// D L.x.k/; �.k// and

c.x.k// 2 @d.�.k//: (30)

Due to �
00

.t/ D 1 the inverse function �
0�1 exists. From (28) follows

ci.x.k// D k�1� 0�1.�i.k//; i D 1; : : : ;m: (31)

From (30), (31) and the LEID �
0�1 D ��0

we obtain

0 2 @d.�.k// � k�1
mX

iD1
��0

.�i.k//ei; (32)

where ei D .0; : : : ; 1; ::; 0/.
The inclusion (32) is the optimality condition for �.k/ to be the unconstrained

maximizer of the following unconstrained maximization problem

d.�.k// � k�1
mX

iD1
��.�i.k// D maxfd.u/ � k�1

mX

iD1
��.ui/ W u 2 R

mg: (33)

Due to ��.s/ D max
t
fst � 1

2
t2g D 1

2
s2 the problem (33) one can rewrite as follows

d.�.k// � 1

2k

mX

iD1
�2i .k/ D maxfd.u/ � 1

2k
kuk2 W u 2 R

mg: (34)

Thus, Courant’s penalty method (26) is equivalent to Tikhonov’s (see [60]) regular-
ization method (34) for the dual problem (23).

The convergence analysis of (34) is simple because the dual d.u/ is concave and
D.u; k/ D d.u/ � 1

2kkuk2 is strongly concave.
Let fksg1sD0 be a positive monotone increasing sequence and lims!1 ks D 1.

We call it a regularization sequence. The correspondent sequence f�sg1sD0:

�s D arg maxfd.u/ � 1

2ks
kuk2 W u 2 R

mg (35)

is unique due to the strong concavity of D.u; k/ in u.

Theorem 2. If L� D Argmaxfd.�/j� 2 R
mg is bounded and f , ci 2 C1, i D

1; : : : ;m, then for any regularization sequence fksg1sD0 the following statements
hold

(1) k�sC1k > k�sk;
(2) d.�sC1/ > d.�s/;
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(3) lims!1 �s D �� D arg min�2L� k�k.
Proof. It follows from (35) and strong concavity of D.u; k/ in u 2 R

m that

d.�s/ � .2ks/
�1k�sk2 > d.�sC1/ � .2ks/

�1k�sC1k2

and

d.�sC1/ � .2ksC1/�1k�sC1k2 > d.�s/ � .2ksC1/�1k�sk2: (36)

By adding the inequalities we obtain

0:5.k�1s � k�1sC1/Œk�sC1k2 � k�sk2	 > 0: (37)

Keeping in mind ksC1 > ks from (37) we obtain (1).

From (36) we have

d.�sC1/ � d.�s/ > .2ksC1/�1Œk�sC1k2 � k�sk2	 > 0; (38)

therefore from (1) follows (2).
Due to concavity d from boundedness of L� follows boundedness of any level

set �.�0/ D f� 2 R
m W d.�/ � d.�0/g (see Theorem 24 [22]). From (2) follows

f�sg1sD0 � �.�0/, therefore for any converging subsequence f�sig � f�sg1sD0:
limsi!1 �si D O� we have

d.�si/ � .2ksi/
�1k�sik2 > d.��/ � .2ksi/

�1k��k2: (39)

Taking the limit in (39) when ksi ! 1 we obtain d. O�/ � d.��/, therefore O� D
�� 2 L. In view of (2) we have lims!1 d.�s/ D d.��/.

It follows from (1) that lims!1 k�sk D k��k. Also from

d.�s/ � .2ks/
�1k�sk2 > d.��/ � .2ks/

�1k��k2

follows

k��k2 � k�sk2 > 2ks.d.�
�/ � d.�s// � 0; 8�� 2 L�;

therefore lims!1 k�sk D min
�2L�
k�k.

Convergence of the regularization method (34) is due to unbounded increase
of the penalty parameter k > 0, therefore one can hardly expect solving the
problem (23) with high accuracy.
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3.2 Augmented Lagrangian and Quadratic Proximal Point
Method

In this section we consider Augmented Lagrangian method (see [28, 52]), which
allows eliminate difficulties associated with unbounded increase of the penalty
parameter.

The problem (16) is equivalent to the following problem

f .x/C k�1
mX

iD1
�.kci.x//! min (40)

s.t. ci.x/ D 0; i D 1; : : : ;m: (41)

The correspondent classical Lagrangian L W Rn�Rm�RCC ! R for the equivalent
problem (40)–(41) is given by

L .x; �; k/ D f .x/ �
mX

iD1
�ici.x/C k�1

mX

iD1
�.kci.x// D

f .x/ �
mX

iD1
�ici.x/C k

2

mX

iD1
c2i .x/:

L is called Augmented Lagrangian (AL) for the original problem (16).
We assume that for a given .�; k/ 2 R

m � R
1CC the unconstrained minimizer Ox

exists, that is

Ox D Ox.�; k/ W rxL .Ox; �; k/ D rf .Ox/ �
mX

iD1
.�i � � 0

.kci.Ox///rci.Ox/ D 0: (42)

Let

O�i D O�i.�; k/ D �i � � 0

.kci.Ox//; i D 1; : : : ;m: (43)

Then from (42) follows rxL.Ox; O�/ D 0, which means that Ox satisfies the necessary
condition for Ox to be a minimizer of L.x; O�/. If L.Ox; O�/ D min

x2Rn
L.x; O�/ then d. O�/ D

L.Ox; O�/ and

c.Ox/ 2 @d. O�/: (44)

From (43) follows

c.Ox/ D 1

k
�

0�1. O� � �/: (45)
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Using LEID and (45) we obtain

0 2 @d. O�/ � k�1
mX

iD1
��0

. O�i � �/ei;

which is the optimality condition for O� to be the maximizer in the following
unconstrained maximization problem

d. O�/ � k�1
mX

iD1
��. O�i � �i/ D maxfd.u/ � k�1

mX

iD1
��.ui � �i/ W u 2 R

ng: (46)

In view of ��.s/ D 1
2
s2 we can rewrite (46) as follows

O� D arg maxfd.u/ � 1

2k
ku � �k2 W u 2 R

ng (47)

Thus the multipliers method (42)–(43) is equivalent to the quadratic proximal
point (prox) method (47) for the dual problem (23) (see [4, 27, 35, 39, 55–58] and
references therein)

If Ox is a unique solution to the system rxL.x; O�/ D 0, then rd. O�/ D c.Ox/ and
from (45) follows

O� D �C krd. O�/;

which is an implicit Euler method for solving the following system of ordinary
differential equations

d�

dt
D krd.�/; �.0/ D �0: (48)

Let us consider the prox-function p W Rm ! R defined as follows

p.�/ D d.u.�// � 1

2k
ku.�/ � �k2 D D.u.�/; �/ D

maxfd.u/ � 1

2k
ku � �k2 W u 2 R

ng:

The function D.u; �/ is strongly concave in u 2 R
m, therefore u.�/ D

arg maxfD.u; �/ W u 2 R
ng is unique. The prox-function p is concave and

differentiable. For its gradient we have

rp.�/ D ruD.u.�/; �/ � r�u.�/Cr�D.u; �/;
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where r�u.�/ is the Jacobian of u.�/ D .u1.�/; : : : ; um.�//
T . Keeping in mind

ruD.u.�/; �/ D 0 we obtain

rp.�/ D r�D.u; �/ D 1

k
.u.�/ � �/ D 1

k
. O� � �/

or

O� D �C krp.�/: (49)

In other words, the prox-method (47) is an explicit Euler method for the following
system

d�

dt
D krp.�/; �.0/ D �0:

By reiterating (49) we obtain the dual sequence f�sg1sD0:

�sC1 D �s C krp.�s/; (50)

generated by the gradient method for maximization the prox function p. The
gradient rp satisfies Lipschitz condition with constant L D k�1. Therefore we have
the following bound �p.�s/ D p.��/ � p.�s/ � O.sk/�1 (see, for example, [45]).

We saw that the dual aspects of the penalty and the multipliers methods are
critical for understanding their convergence properties and LEID is the main
instrument for obtaining the duality results.

It is even more so for constrained optimization problems with inequality
constraints.

4 SUMT as Interior Regularization Methods for the Dual
Problem

The sequential unconstrained minimization technique (SUMT) (see [22]) goes back
to the 1950s, when R. Frisch introduced log-barrier function to replace a convex
optimization with inequality constraints by a sequence of unconstrained convex
minimization problems.

Let f and all-ci, i D 1; : : : ;m be convex and smooth. We consider the following
convex optimization problem

min f .x/

s. t. x 2 ˝; (51)

where ˝ D fx 2 R
n W ci.x/ � 0; i D 1; : : : ;mg.
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From this point on we assume

A. The solution set X� D Argminff .x/ W x 2 ˝g is not empty and bounded.
B. Slater condition holds, i.e. there exists x0 2 ˝: ci.x0/ > 0, i D 1; : : : ;m.

By adding one constraint c0.x/ D M� f .x/ � 0 with M large enough to the original
set of constraints ci.x/ � 0, i D 1; : : : ;m we obtain a new feasible set, which due
to the assumption A convexity f and concavity ci, i D 1; : : : ;m is bounded (see
Theorem 24 [22]) and the extra constraint c0.x/ � 0 for large M does not effect X�.

So we assume from now on that ˝ is bounded. It follows from KKT’s Theorem
that under Slater condition the existence of the primal solution

f .x�/ D minff .x/jx 2 ˝g
leads to the existence of �� 2 R

mC that for 8x 2 R
n and � 2 R

mC we have

L.x�; �/ � L.x�; ��/ � L.x; ��/ (52)

and �� is the solution of the dual problem

d.��/ D maxfd.�/j� 2 R
mCg: (53)

Also from B follows boundedness of the dual optimal set

L� D Argmaxfd.�/ W � 2 R
mCg:

From concavity d and boundedness L� follows boundedness of the dual level set
�. N�/ D f� 2 R

mC W d.�/ � d. N�/g for any given N� 2 R
mC: d. N�/ < d.��/.

4.1 Logarithmic Barrier

To replace the constrained optimization problem (51) by a sequence of uncon-
strained minimization problems R. Frisch in 1955 introduced (see [23]) the log-
barrier penalty function P W Rn � RCC ! R defined as follows

P.x; k/ D f .x/ � k�1
mX

iD1
�.kci.x//;

where �.t/ D ln t, (�.t/ D �1 for t � 0) and k > 0. Due to convexity f and
concavity ci i D 1; : : : ;m the function P is convex in x. Due to Slater condition,
convexity f , concavity ci and boundedness ˝ the recession cone of ˝ is empty that
is for any x 2 ˝, k > 0 and 0 ¤ d 2 R

n we have

lim
t!1P.xC td; k/ D1: (54)
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Therefore for any k > 0 there exists

x.k/ W rxP.x.k/; k/ D 0: (55)

Theorem 3. If A and B hold and f , ci 2 C1, i D 1; : : : ;m, then interior log-barrier
method (55) is equivalent to the interior regularization method

�.k/ D arg maxfd.u/C k�1
mX

iD1
ln ui W u 2 R

mCg (56)

and the following error bound holds

maxf�f .x.k// D f .x.k//� f .x�/;�d.�.k// D d.��/� d.�.k//g D mk�1: (57)

Proof. From (54) follows existence x.k/ W P.x.k/; k/ D minfP.x; k/ W x 2 R
ng for

any k > 0.
Therefore

rxP.x.k/; k/ D rf .x.k// �
mX

iD1
�

0

.ki.x.k//rci.x.k// D 0: (58)

Let

�i.k/ D � 0

.kci.x.k// D .kci.x.k///
�1; i D 1; ::;m: (59)

Then from (58) and (59) follows rxP.x.k/; k/ D rxL.x.k/; �.k// D 0, therefore
d.�.k// D L.x.k/; �.k//. From �

00

.t/ D �t2 < 0 follows existence of �
0�1 and

from (59) we have kc.x.k// D � 0�1.�i.k//. Using LEID we obtain

ci.x.k// D k�1��0

.�i.k//; (60)

where ��.s/ D inft>0fst � ln tg D 1 C ln s. The subdifferential @d.�.k// contains
�c.x.k//, that is

0 2 @d.�.k//C c.x.k//: (61)

From (60) and (61) follows

0 2 @d.�.k//C k�1
mX

iD1
��0

.�i.k//ei: (62)

The last inclusion is the optimality criteria for �.k/ to be the maximizer in (56).
The maximizer �.k/ is unique due to the strict concavity of the objective function

in (56).
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Thus, SUMT with log-barrier function P.x; k/ is equivalent to the interior
regularization method (56).

For primal interior trajectory fx.k/g1kDk0>0
and dual interior trajectory

f�.k/g1kDk0>0
we have

f .x.k// � f .x�/ D d.��/ � d.�.k// D L.x.k/; �.k// D f .x.k// � .c.x.k//; �.k//:

From (59) follows �i.k/ci.x.k// D k�1, i D 1; : : : ;m, hence for the primal–dual gap
we obtain

f .x.k// � d.�.k// D .c.x.k//; �.k// D mk�1:

Therefore for the primal and the dual error bounds we obtain (57). ut
The main idea of the interior point methods (IPMs) is to stay “close” to the

primal fx.k/g1kD0 or to the primal–dual fx.k/; �.k/g1kD0 trajectory and increase k > 0
at each step by a factor .1� p̨

n
/�1, where ˛ > 0 is independent of n. In case of LP at

each step we solve a system of linear equations, which requires O.n2:5/ operations.
Therefore accuracy " > 0 IPM are able to achieve in O.n3 ln "�1/ operations.

In case of log-barrier transformation the situation is symmetric, that is both the
primal interior penalty method (55) and the dual interior regularization method (56)
are using the same log-barrier function.

It is not the case for other constraints transformations used in SUMT.

4.2 Hyperbolic Barrier

The hyperbolic barrier

�.t/ D
(

�t�1; t > 0
�1; t � 0;

has been introduced by Carroll in the 1960s, (see [12]). It leads to the following
hyperbolic penalty function

P.x; k/ D f .x/ � k�1
mX

iD1
�.kci.x// D f .x/C k�1

mX

iD1
.kci.x//

�1;

which is convex in x 2 R
n for any k > 0. For the primal minimizer we obtain

x.k/ W rxP.x.k/; k/ D rf .x.k// �
mX

iD1
�

0

.kci.x.k///rci.x.k// D 0: (63)
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For the vector of Lagrange multipliers we have

�.k/ D .�i.k/ D � 0

.kci.x.k// D .kci.x.k///
�2; i D 1; : : : ;m/: (64)

We will show later that vectors �.k/, k � 1 are bounded. Let L D max
i;k
�i.k/.

Theorem 4. If A and B hold and f , ci 2 C1, i D 1; ::;m, then hyperbolic barrier
method (63) is equivalent to the parabolic regularization method

d.�.k//C 2k�1
mX

iD1

p

�i.k/ D maxfd.u/C 2k�1
mX

iD1

p
ui W u 2 R

mCg (65)

and the following bounds holds

maxf�f .x.k// D f .x.k// � f .x�/;

�d.�.k// D d.��/ � d.�.k//g � m
p

Lk�1: (66)

Proof. From (63) and (64) follows

rxP.x.k/; k/ D rxL.x.k/; �.k// D 0;

therefore d.�.k// D L.x.k/; �.k//:
From �

00

.t/ D �2t�3 < 0, 8t > 0 follows existence of �
0�1.

Using LEID from (64) we obtain

ci.x.k// D k�1� 0�1.�i.k// D k�1��0

.�i.k//; i D 1; : : : ;m;

where ��.s/ D inftfst � �.t/g D 2ps.
The subgradient �c.x.k// 2 @d.�.k// that is

0 2 @d.�.k//C c.x.k// D @d.�.k//C k�1
mX

iD1
��0

.�i.k//ei: (67)

The last inclusion is the optimality condition for the interior regularization
method (65) for the dual problem.

Thus, the hyperbolic barrier method (63) is equivalent to the parabolic regular-
ization method (65) and D.u; k/ D d.u/C 2k�1

Pm
iD1
p

ui is strictly concave.
Using considerations similar to those in Theorem 2 and keeping in mind strict

concavity of D.u; k/ in u from (65) we obtain

mX

iD1

p

�i.1/ > : : :

mX

iD1

p

�i.k/ >
mX

kD1

p

�i.kC 1/ > : : :
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Therefore the sequence f�.k/g1kD1 is bounded, so there exists L D max
i;k
�i.k/ > 0.

From (64) for any k � 1 and i D 1; : : : ;m we have

�i.k/c
2
i .x.k// D k�2

or

.�i.k/ci.x.k///
2 D k�2�i.k/ � k�2L:

Therefore

.�.k/; c.x.k/// � m
p

Lk�1:

For the primal interior sequence fx.k/g1kD1 and dual interior sequence f�.k/g1kD1 we
have

f .x.k// � f .x�/ D d.��/ � L.x.k/; �.k// D d.�.k//;

therefore

f .x.k// � d.�.k// D .c.x.k//; �.k/// � m
p

Lk�1;

which leads to (66). ut
In spite of similarity bounds (57) and (65) are fundamentally different because L

can be very large for problems where Slater condition is “barely” satisfied, that is
the primal feasible set is not “well defined”.

This is one of the reasons why log-barrier function is so important.

4.3 Exponential Penalty

Exponential penalty �.t/ D �e�t has been used by Motzkin in 1952 (see [40]) to
transform a systems of linear inequalities into an unconstrained convex optimization
problem in order to use unconstrained minimization technique for solving linear
inequalities.

The exponential transformation �.t/ D �e�t leads to the exponential penalty
function

P.x; k/ D f .x/ � k�1
mX

iD1
�.kci.x// D f .x/C k�1

mX

iD1
e�kci.x/;

which is for any k > 0 convex in x 2 R
n.
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For the primal minimizer we have

x.k/ W rxP.x.k/; k/ D rf .x.k// �
mX

iD1
e�kci.x.k//rci.x.k// D 0: (68)

Let us introduce the Lagrange multipliers vector

�.k/ D .�i.k/ D � 0

.ci.x.k// D e�kci.x.k//; i D 1; : : : ;m/ (69)

From (68) and (69) we have

rxP.x.k/; k/ D rxL.x.k/; �.k// D 0:

Therefore from convexity L.x; �.k// in x 2 R
n follows d.�.k// D minfL.x; �.k//

jx 2 R
ng D L.x.k/; �.k// and �c.x.k// 2 @d.�.k//, therefore

0 2 c.x.k//C @d.�.k//: (70)

From �
00

.t/ D �e�t ¤ 0 follows the existence �
0�1, therefore using LEID from (69)

we obtain

ci.x.k// D k�1� 0�1.�i.k// D k�1��0

.�i.k//; i D 1; : : : ;m:

Inclusion (70) we can rewrite as follows

@d.�.k//C k�1
X

��0

.�.k//ei D 0:

Keeping in mind ��.s/ D inftfst� �.t/g D inffstC e�tg D �s ln sC s from the
last inclusion we obtain

d.�.k// � k�1
mX

iD1
�i.k/.ln.�i.k/ � 1// D

maxfd.u/ � k�1
mX

iD1
ui.ln ui � 1/ W u 2 R

mCg: (71)

It means that the exponential penalty method (68) is equivalent to the interior
regularization method (71) with Shannon entropy regularization function r.u/ D
�Pm

iD1 ui.ln ui � 1/.
The convergence of the dual sequence f�.k/g1kD0 can be proven using arguments

similar to those used in Theorem 2.
We conclude the section by considering smoothing technique for convex opti-

mization.
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4.4 Log-Sigmoid (LS) Method

It follows from Karush-Kuhn-Tucker’s Theorem that under Slater condition for x�
to be a solution of (51) it is necessary and sufficient existence �� 2 R

m, that the pair
.x�I��/ is the saddle point of the Lagrangian, that is (52) hold.

From the right inequality of (52) and complementarity condition we obtain

f .x�/ � f .x/ �
mX

iD1
��i minfci.x/; 0g �

f .x/ � max
1�i�m

��i
mX

iD1
minfci.x/; 0g

for any x 2 R
n. Therefore for any r > max

1�i�m
��i we have

f .x�/ � f .x/ � r
mX

iD1
minfci.x/; 0g;8x 2 R

n: (72)

The function

Q.x; r/ D f .x/ � r
mX

iD1
minfci.x/; 0g

is called exact penalty function.
Due to concavity ci, i D 1; : : : ;m functions qi.x/ D minfci.x/; 0g are concave.

From convexity f and concavity qi, i D 1; : : : ;m follows convexity Q.x; r/ in
x 2 R

n. From (72) follows that solving (51) is equivalent to solving the following
unconstrained minimization problem

f .x�/ D Q.x�; r/ D minfQ.x; r/ W x 2 R
ng: (73)

The function Q.x; r/ is non-smooth at x�. The smoothing techniques replace Q by a
sequence of smooth functions, which approximate Q.x; r/. (see [3, 14, 47, 48] and
references therein)

Log-sigmoid (LS) function � W R! R is defined by

�.t/ D ln S.t; 1/ D ln.1C e�t/�1;

is one of such functions. We collect the log-sigmoid properties in the following
assertion

Assertion 1. The following statements are holds
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1. �.t/ D t � ln.1C et/ < 0, �.0/ D � ln 2
2. �

0

.t/ D .1C et/�1 > 0, �
0

.0/ D 2�1
3. �

00

.t/ D �et.1C et/�2 < 0, �
00

.0/ D �2�2.
The smooth penalty method employs the scaled LS function

k�1�.kt/ D t � k�1 ln.1C ekt/; (74)

which is a smooth approximation of q.t/ D minft; 0g.
In particular, from (74) follows

0 < q.t/ � k�1�.kt/ < k�1 ln 2: (75)

It means that by increasing k > 0 the approximation can be made as accurate as one
wants.

The smooth penalty function P W Rn � RCC ! R defined by

P.x; k/ D f .x/ � k�1
mX

iD1
�.kci.x// (76)

is the main instrument in the smoothing technique.
From Assertion 1 follows that P is as smooth as f and ci, i D 1; ::;m.
The LS method at each step finds

x.k/ W P.x.k/; k/ D minfP.x; k/ W x 2 R
ng (77)

and increases k > 0 if the accuracy obtained is not satisfactory.
Without loss of generality we assume that f is bounded from below. Such

assumption does not restrict the generality, because the original objective function f
can be replaced by an equivalent f .x/ WD ln.1C ef .x// � 0.

Boundedness of ˝ together with Slater condition, convexity f and concavity ci,
i D 1; : : : ;m make the recession cone of ˝ empty, that is (54) holds for P.x; k/
given by (76), any k > 0, d 2 R

n and any x 2 ˝.
Therefore minimizer x.k/ in (77) exists for any k > 0 that is

rxP.x.k/; k/ D rf .x.k// �
mX

iD1
�

0

.kci.x.k///rci.x.k// D

D rf .x.k// �
mX

iD1
.1C ekci.x.k///�1rci.x.k// D 0:

Let

�i.k/ D .1C ekci.x.k///�1; i D 1; : : : ;m; (78)
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then

rxP.x.k/I k/ D rf .x.k// �
mX

iD1
�i.k/rci.x.k// D 0:

From (78) follows �i.k/ � 1 for any k > 0. Therefore, generally speaking,
one can’t expect finding a good approximation for optimal Lagrange multipliers, no
matter how large the penalty parameter k > 0 is.

If the dual sequence f�.k/g1kDk0
does not converges to �� 2 L�, then in view of

the last equation one can’t expect convergence of the primal sequence fx.k/g1kDk0
to

x� 2 X�.
To guarantee convergence of the LS method we have to modify P.x; k/. Let 0 <

˛ < 0:5 and

P.x; k/ WD P˛.x; k/ D f .x/ � k�1C˛
mX

iD1
�.kci.x//: (79)

It is easy to see that the modification does not effect the existence of x.k/. Therefore
for any k > 0 there exists

x.k/ W rxP.x.k/; k/ D rf .x.k// � k˛
X

�
0

.kc.x.k///rci.x.k// D 0: (80)

Theorem 5. If A and B hold and f , ci 2 C1, i D 1; : : : ;m, then the LS method (80)
is equivalent to an interior regularization method

d.�.k//C k�1
mX

iD1
��.k�˛�i.k// D

maxfd.u/C k�1
mX

iD1
��.k�˛ui/ W 0 � ui � k˛; i D 1; : : : ;mg:

Proof. Let

�i.k/ D k˛�
0

.kci.x.k/// D k˛.1C ekci.x.k///�1; i D 1; : : : ;m: (81)

From (80) and (81) follows

rxP.x.k/; k/ Drf .x.k// �
mX

iD1
�i.k/rci.x.k// D

rxL.x.k/; �.k// D 0:
(82)
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From (81) we have

�
0

.kci.x.k// D k�˛�i.k/: (83)

Due to �
00

.t/ < 0 there exists �
0�1, therefore

ci.x.k// D k�1� 0�1.k�˛�i.k//:

Using LEID we obtain

ci.x.k// D k�1��0

.k�˛�i.k//; (84)

where

��.s/ D inf
t
fst � �.t/g D �Œ.1 � s/ ln.1 � s/C s ln s	

is Fermi-Dirac (FD) entropy function (see, for example, [54]).

From (82) follows d.�.k// D L.x.k/; �.k//, also the subdifferential @d.�.k//
contains �c.x.k//, that is

0 2 c.x.k//C @d.�.k//: (85)

Combining (84) and (85) we obtain

0 2 @d.�.k//C k�1
mX

iD1
��0

.k�˛�i.k//ei: (86)

The inclusion (86) is the optimality criteria for the following problem

d.�.k//C k�1
mX

iD1
��.k�˛�i.k// D

maxfd.u/C k�1r.u/ W 0 � ui � k˛; i D 1; ::;mg; (87)

where r.u/ DPm
iD1 ��.k�˛ui/.

In other words the LS method (80)–(81) is equivalent to the interior regularization
method (87) with FD entropy function used for dual regularization. The FD function
is strongly concave inside the cube fu 2 R

m W 0 � ui � k˛; i D 1; : : : ;mg.
It follows from (87) that for any regularization sequence fksg1sD0 the Lagrange

multipliers 0 < �i.ks/ < k˛s , i D 1; : : : ;m can be any positive number, which
underlines the importance of modification (79).
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Theorem 6. Under conditions of Theorem 5 for any regularization sequence
fksg1sD0, the primal sequence

fxsg1sD0 W rxP.xs; ks/ D rf .xs/ �
mX

iD1
�i;srci.xs/ D 0 (88)

and the dual sequence

f�sg1sD0 W d.�s/C k�1s r.�s/ D

maxfd.u/C k�1s r.u/ W 0 � ui � k˛; i D 1; : : : ;mg (89)

the following statements hold

(1) a) d.�sC1/ > d.�s/; b) r.�sC1/ < r.�s/;
(2) lims!1 d.�s/ D d.��/ and �� D arg minfr.�/ W � 2 L�g;
(3) the primal–dual sequence fxs; �sg1sD0 is bounded and any limit point is the

primal–dual solution.

Proof. (1) From (89) and strong concavity r.u/ follows

d.�sC1/C k�1sC1r.�sC1/ > d.�s/C k�1sC1r.�s/ (90)

and

d.�s/C k�1s r.�s/ > d.�sC1/C k�1s r.�sC1/: (91)

Therefore

.k�1sC1 � k�1s /.r.�sC1/ � r.�s// > 0:

From ksC1 > ks and last inequality follows r.�sC1/ < r.�s/, therefore from (90)
follows

d.�sC1/ > d.�s/C k�1sC1.r.�s/ � r.�sC1// > d.�s/: (92)

(2) The monotone increasing sequence fd.�s/g1sD0 is bounded from above by f .x�/.
Therefore there is lims!1 d.�s/ D Nd � f .x�/ D d.��/.
From (89) follows

d.�s/C k�1s r.�s/ � d.��/C k�1s r.��/: (93)

From (92) follows f�sg1sD0 � �.�0/ D f� 2 R
mC W d.�/ � d.�0/g. The set

�.�0/ is bounded due to the boundedness of L� and concavity d. Therefore
there exists f�sig1iD1 � f�sg1sD0 that limsi!0 �si D N�. By taking the limit in the
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correspondent subsequence in (93) we obtain d. N�/ � d.��/, that is d. N�/ D
d.��/.
From lims!1 d.�si/ D d.��/ and 1a) follows lims!1 d.�s/ D d.��/.
From (93) follows

d.��/ � d.�s/ � k�1s .r.��/ � r.�s//; 8�� 2 L�; (94)

therefore (94) is true for �� D arg minfr.�/j� 2 L�g.
(3) We saw already the dual sequence f�sg1sD0 is bounded. Let us show that the

primal is bounded too. For a given approximation xs let consider two sets of
indices IC.xs/ D fi W ci.xs/ � 0g and I�.xs/ D fi W ci.xs/ < 0g.
Then keeping in mind f .xs/ � 0 we obtain

P.xs; ks/ D f .xs/C k�1C˛s

X

i2I�.xs/

ln.1C e�ksci.xs//

Ck�1C˛s

X

i2IC.xs/

ln.1C e�ksci.xs//

� f .xs/ � k˛s
X

i2I�.xs/

ci.xs/C k�1C˛s

X

i2I�.xs/

ln.1C eksci.xs//

� f .xs/ � k˛s
X

i2I�.xs/

ci.xs/ � �k˛s
X

i2I�.xs/

ci.xs/:

(95)

On the other hand,

P.xs; ks/ � P.x�; ks/ D f .x�/ � k�1C˛s

mX

iD1
�.ksci.x

�//

D f .x�/C k�1C˛s

mX

iD1
ln.1C e�ksci.x�// � f .x�/C k�1C˛s m ln 2: (96)

From (95) and (96) follows

k˛s
X

i2I�.xs/

jci.xs/j � f .x�/C k�1C˛s m ln 2: (97)

Therefore for any s � 1 we have

max
i2I�.xs/

jci.xs/j � k�˛s f .x�/C k�1s m ln 2: (98)

It means that the primal sequence fxsg1sD0 is bounded due to the boundedness of
˝. In other words, the primal–dual sequence fxs; �sg1sD0 is bounded.
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Let consider a converging subsequence fxsi ; �sig1iD0: Nx D limi!1 xsi ; N� D
limi!1 �si . From (81) follows N�i D 0 for i W ci.Nx/ > 0 and N�i � 0 for i W ci.Nx/ D 0.
From (82) follows rxL.Nx; N�/ D 0, therefore .Nx; N�/ is KKT’s pair, that is Nx D x�,
N� D ��. ut

The equivalence primal SUMT and dual interior regularization methods not
only allows to prove convergence in a unified and simple manner, but also provide
important information about dual feasible solution, which can be used to improve
numerical performance. One can’t, however, expect finding solution with high
accuracy because finding the primal minimizer for large k > 0 is a difficult task
for the well known reasons.

The difficulties, to a large extend, one can overcome by using the Nonlinear
Rescaling theory and methods (see [31, 46, 47, 50, 53, 59] and references). One can
view NR as an alternative to SUMT.

5 Nonlinear Rescaling and Interior Prox with Entropy like
Distance

The NR scheme employs smooth, strictly concave and monotone increasing func-
tions  2 
 to transform the original set of constraints into an equivalent set. The
transformation is scaled by a positive scaling (penalty) parameter. The Lagrangian
for the equivalent problem is our main instrument.

At each step NR finds the primal minimizer of the Lagrangian for the equivalent
problem and uses the minimizer to update the Lagrange multipliers (LM). The pos-
itive scaling parameter can be fixed or updated from step to step. The fundamental
difference between NR and SUMT lies in the role of the LM vector.

In case of SUMT the LM vector is just a by product of the primal minimization.
It provides valuable information about the dual vector but it does not effect
the computational process. Therefore without unbound increase of the scaling
parameter, which is the only tool to control the process, one can not guarantee
convergence.

In the NR scheme on the top of the scaling parameter the LM vector is a critical
extra tool, which controls computations.

The NR methods converges under any fixed scaling parameter, just due to the
LM update (see [31, 46, 50, 53]). If one increases the scaling parameter from step to
step, as SUMT does, then instead of sublinear the superlinear convergence rate can
be achieved.

The interplay between Lagrangians for the original and the equivalent problems
allows to show the equivalence of the primal NR method and dual proximal point
method with '-divergence entropy type distance. The kernel of the distance ' D
� �, where  � is the LET of  . The equivalence is the key ingredient of the
convergence analysis.
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We consider a class 
 of smooth functions  W .a;1/! R, �1 < a < 0 with
the following properties

(1)  .0/ D 0; (2)  
0

.t/ > 0,  .0/ D 1; (3)  
00

.t/ < 0; (4) limt!1  
0

.t/ D 0;
(5) limt!aC

 
0

.t/ D1.
From (1)–(3) follows

˝ D fx 2 R
n W ci.x/ � 0; i D 1; : : : ;mg D fx 2 R

n W k�1 .kci.x// � 0; i D 1; : : : ;mg
for any k > 0.

Therefore (51) is equivalent to

min f .x/

s.t. k�1 .kci.x// � 0; i D 1; : : : ;m:
(99)

The Lagrangian L W Rn � R
mC � RCC ! R for (99) is defined as follows

L .x; �; k/ D f .x/ � k�1
mX

iD1
�i .kci.x//:

The properties of L .x; �; k/ at the KKT pair .x�; ��/ we collect in the following
Assertion.

Assertion 2. For any k > 0 and any KKT pair .x�; ��/ the following holds

1ı L .x�; ��; k/ D f .x�/
2ı rxL .x�; ��; k/ D rf .x�/ �Pm

iD1 ��i rci.x�/ D rxL.x�; ��/ D 0
3ı r2xxL .x�; ��; k/ D r2xxL.x�; ��/C krcT.x�/��rc.x�/;

where rc.x�/ D J.c.x�// is the Jacobian of c.x/ D .c1.x/; : : : ; cm.x//T and �� D
I � ��.
Remark 1. The properties 10–30 show the fundamental difference between NR and
SUMT. In particular, for log-barrier penalty

P.x; k/ D f .x/ � k�1
mX

iD1
ln ci.x/

neither P nor its gradient or Hessian exist at the solution x�. Moreover, for any given
k > 0 we have

lim
x!x�

P.x; k/ D1:

On the other hand, L .x; ��; k/ is an exact smooth approximation for the non-
smooth

F.x; x�/ D maxff .x/ � f .x�/;�ci.x/; i D 1; ::;mg;
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that is, for any given k > 0 we have

min
x2Rn

F.x; x�/ D F.x�; x�/ D min
x2Rn

.L .x; ��; k/ � f .x�// D 0:

5.1 NR and Dual Prox with '-Divergence Distance

In this section we consider the NR method and its dual equivalent—the prox method
with '-divergence distance for the dual problem.

Let  2 
 , �0 D e D .1; : : : ; 1/ 2 R
mCC and k > 0 are given. The NR step

consists of finding the primal minimizer

Ox W� Ox.�; k/ W rxL .Ox; �; k/ D 0 (100)

following by the Lagrange multipliers update

O� � O�.�; k/ D . O�1; : : : ; O�m/ W O�i D �i 
0

.kci.Ox//; i D 1; : : : ;m: (101)

Theorem 7. If condition A and B hold and f , ci 2 C1, i D 1; : : : ;m, then the NR
method (100)–(101) is:

(1) well defined;
(2) equivalent to the following prox method

d. O�/ � k�1D. O�; �/ D maxfd.u/ � k�1D.u; �/ju 2 R
mCCg; (102)

where D.u; �/ D Pm
iD1 �i'.ui=�i/ is '-divergence distance function based on

kernel ' D � �.
Proof. (1) Due to the properties (1)–(3) of  , convexity f and concavity of all ci,

the Lagrangian L is convex in x. From boundedness of˝, Slater condition and
properties (3) and (5) of  follows emptiness of the˝ recession cone. It means
that for any nontrivial direction d 2 R

n and any .�; k/ 2 R
mC1
CC we have

lim
t!1L .xC td; �; k/ D1

for any x 2 ˝. Hence for a given .�; k/ 2 R
mC1
CC there exists Ox � Ox.�; k/

defined by (100) and O� � O�.�; k/ defined by (101). Due to 2) of  we have
� 2 R

mCC) O� 2 R
mCC, therefore NR method (100)–(101) is well defined.

(2) From (100) and (101) follows

rxL .Ox; O�; k/ D rf .Ox/ �
mX

iD1
�i 

0

.kci.Ox//rci.Ox/ D rxL.Ox; O�/ D 0;
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therefore

min
x2Rn

L.x; O�/ D L.Ox; O�/ D d. O�/:

The subdifferential @d. O�/ contains �c.Ox/, that is

0 2 c.Ox/C @d. O�/: (103)

From (101) follows  
0

.kci.Ox// D O�i=�i; i D 1; : : : ;m.
Due to (3) of  there exists an inverse  

0�1. Using LEID we obtain

ci.Ox/ D k�1 0�1. O�i=�i/ D k�1 �0

. O�i=�i/ (104)

combining (103) and (104) we have

0 2 @d. O�/C k�1
mX

iD1
 �0

� O�i=�i

�

ei: (105)

The inclusion (105) is the optimality criteria for O� to be a solution of
problem (102). ut

Remark 2. It follows from 1ı and 2ı of Assertion 2, that for any k > 0 we have
x� D x.��; k/ and �� D �.��; k/, that is �� 2 R

mC is a fixed point of the mapping

�! O�.�; k/.
Along with the class 
 of transformations  we consider a class ˚ of kernels ' D
� �, with properties induced by properties of  . We collect them in the following
Assertion.

Assertion 3. The kernel ' 2 ˚ are strictly convex on RC and possess the following
properties on 	0;1Œ.

(1) '.s/ � 0, min
s�0 '.s/ D '.1/ D 0;

(2) '
0

.1/ D 0;
(3) '

00

.s/ > 0.

Assertion 3 follows from properties (1)–(3) of  and (11).
The general NR scheme and corresponding methods were introduced in the early

1980s (see [46] and references therein). Independently the prox methods with '-
divergence distance has been studied by Teboulle (see [59]). The equivalence of NR
and prox methods with '-divergence distance was established in [50].

In the following section we consider an important particular case of NR—the
MBF method.
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5.2 Convergence of the MBF Method and its Dual Equivalent

For reasons, which will be clear later, we would like to concentrate on the NR
method with transformation  .t/ D ln.t C 1/, which leads to the MBF theory
and methods developed in [46] (see also [10, 25, 26, 31, 34, 38, 41, 53] and
references therein). The correspondent Lagrangian for the equivalent problem L W
R

n � R
mC � RCC ! R is defined by formula

L .x; �; k/ D f .x/ � k�1
mX

iD1
�i ln.kci.x/C 1/:

For a given k > 0 and �0 D e D .1; : : : ; 1/ 2 R
mCC the MBF method generates the

following primal–dual sequence fxs; �sg1sD0:
xsC1 W rxL .xsC1; �s; k/ D

rf .xsC1/ �
mX

iD1
�i;s.kci.xsC1/C 1/�1rci.xsC1/ D 0 (106)

�sC1 W �i;sC1 D �i;s.kc.xsC1/C 1/�1; i D 1; : : : ;m: (107)

The Hausdorff distance between two compact sets in R
mC will be used later.

Let X and Y be two bounded and closed sets in R
n and d.x; y/ D kx � yk is the

Euclidean distance between x 2 X; y 2 Y . Then the Hausdorff distance between X
and Y is defined as follows

dH.X;Y/ WD maxfmax
x2X

min
y2Y

d.x; y/;max
y2Y

min
x2X

d.x; y/g D

maxfmax
x2X

d.x;Y/;max
y2Y

d.y;X/g:

For any pair of compact sets X and Y � R
n

dH.X;Y/ D 0, X D Y:

Let Q � R
mCC be a compact set, OQ D R

mCC nQ; S.u; �/ D fv 2 R
mC W ku� vk �

�g and

@Q D fu 2 Qj9v 2 Q W v 2 S.u; �/; 9 Ov 2 OQ W Ov 2 S.u; �/g;8� > 0

be the boundary of Q.
Let A � B � C be convex and compact sets in R

mC. The following inequality
follows from the definition of Hausdorff distance.

dH.A; @B/ < dH.A; @C/ (108)
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Along with the dual sequence f�sg1sD0 we consider the corresponding convex
and bounded level sets �s D f� 2 R

mC W d.�/ � d.�s/g and their boundaries
@�s D f� 2 �s W d.�/ D d.�s/g.
Theorem 8. Under condition of Theorem 7 for any given k > 0 and any �0 2 R

mCC
the MBF method (106)–(107) generates such primal–dual sequence fxs; �sg1sD0
that:

(1) d.�sC1/ > d.�s/, s � 0
(2) lims!1 d.�s/ D d.��/, lims!1 f .xs/ D f .x�/
(3) lims!1 dH.@�s;L�/ D 0
(4) there exists a subsequence fslg1lD1 such that for Nxl DPslC1

sDsl
.slC1 � sl/

�1xs we
have liml!1 Nxl D Nx 2 X�, i.e. the primal sequence converges to the primal
solution in the ergodic sense.

Proof. (1) It follows from Theorem 7 that method (106)–(107) is well defined and
it is equivalent to following proximal point method

d.�sC1/ � k�1
mX

iD1
�i;s'.�i;sC1=�i;s/ D

maxfd.u/ � k�1
mX

iD1
�i;s'.ui=�i;s/ W u 2 R

mCCg; (109)

where ' D � � D � inft>�1fst � ln.t C 1/g D � ln s C s � 1 is the MBF
kernel.
The '-divergence distance function

D.�; u/ D
mX

iD1
�i'.ui=�i/ D

mX

iD1
Œ��i ln ui=�i C ui � �i	;

which measures the divergence between two vectors � and u from R
mCC is, in

fact, the Kullback-Leibler (KL) distance (see [20, 50, 59]). The MBF kernel
'.s/ D � ln s C s � 1 is strictly convex on RCC and '

0

.1/ D 0, therefore
min
s>0

'.s/ D '.1/ D 0, also

a) D.�; u/ > 0, 8� ¤ u 2 R
mCC

b) D.�; u/ D 0, � D u.

From (109) for u D �s follows

d.�sC1/ � d.�s/C k�1
mX

iD1
�i;s'.�i;sC1=�i;s/: (110)
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Therefore the sequence fd.�s/g1sD0 is monotone increasing, unless
'.�i;sC1=�i;s/ D 0 for all i D 1; : : : ;m, but in such case �sC1 D �s D ��. The
monotone increasing sequence fd.�s/g1sD0 is bounded from above by f .x�/,
therefore there exists lims!1 d.�s/ D Nd � f .x�/.

(2) Our next step is to show that Nd D f .x�/.
From �c.xsC1/ 2 @d.�sC1/ and concavity of the dual function d follows

d.�/ � d.�sC1/ � .�c.xsC1/; � � �sC1/; 8� 2 R
mCC:

So for � D �s we have

d.�sC1/ � d.�s/ � .c.xsC1/; �s � �sC1/: (111)

From the update formula (107) follows

.�i;s � �i;sC1/ D kci.xsC1/�i;sC1; i D 1; : : : ;m; (112)

therefore from (111) and (112) we have

d.�sC1/ � d.�s/ � k
mX

iD1
c2i .xsC1/�i;sC1: (113)

From Slater condition follows boundedness of L�. Therefore from concavity
d follows boundedness of the dual level set

�.�0/ D f� 2 R
mC W d.�/ � d.�0/g:

It follows from the dual monotonicity (110) that the dual sequence f�sg1sD0 2
�.�0/ is bounded.
Therefore there exists L > 0 W max

i;s
�i;s D L. From (113) follows

d.�sC1/ � d.�s/ � kL�1.c.xsC1/; �sC1/2: (114)

By summing up (114) from s D 1 to s D N we obtain

d.��/ � d.�0/ � d.�NC1/ � d.�0/ > kL�1
NX

sD1
.�s; c.xs//

2;

which leads to asymptotic complementarity condition

lim
s!1.�s; c.xs// D 0: (115)



470 R.A. Polyak

On the other hand, from (110) follows

d.��/ � d.�0/ � d.�N/ � d.�0/ � k�1
NX

sD1
D.�s; �sC1/: (116)

Therefore lims!1D.�s; �sC1/ D 0, which means that divergence (entropy)
between two sequential LM vectors asymptotically disappears, that is the dual
sequence converges to the fixed point of the map � ! O�.�; k/, which due to
Remark 2, is ��.
We need few more steps to prove it. Let us show first that

D.��; �s/ > D.��; �sC1/; 8s � 0 (117)

unless �s D �sC1 D ��.
We assume x ln x D 0 for x D 0, then

D.��; �s/ � D.��; �sC1/ D
mX

iD1

�

��i ln
�i;sC1
�i;s

C �i;s � �i;sC1
�

:

Invoking the update formula (107) we obtain

D.��; �s/�D.��; �sC1/ D
mX

iD1
��i ln.kci.xsC1/C 1/�1C k

mX

iD1
�i;sC1ci.xsC1/:

Keeping in mind ln.1C t/�1 D � ln.1C t/ � �t we have

D.��; �s/ � D.��; �sC1/ � k
mX

iD1
.�i;sC1 � ��i /ci.xsC1/ D

k.�c.xsC1/; �� � �sC1/: (118)

From concavity d and �c.xsC1/ 2 @d.�sC1/ follows

0 � d.��/ � d.�sC1/ � .�c.xsC1/; �� � �sC1/: (119)

Combining (118) and (119) we obtain

D.��; �s/ � D.��; �sC1/ � k.d.��/ � d.�sC1// > 0: (120)

Assuming that d.��/ � Nd D � > 0 and summing up the last inequality from
s D 0 to s D N we obtain D.��; �0/ � kN�, which is impossible for N > 0

large enough.
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Therefore lims!1 d.�s/ D Nd D d.��/, which together with asymptotic
complementarity (115) leads to

d.��/ D lim
s!1 d.�s/ D lim

s!1 Œf .xs/ � .�s; c.xs//	 D

lim
s!1 f .xs/ D f .x�/: (121)

(3) The dual sequence f�sg1sD0 is bounded, so it has a converging subsequence
f�sig1iD0: limi!1 �si D N�. It follows from the dual convergence in value that
N� D �� 2 L�, therefore f� 2 R

mC W d.�/ D d. N�/g D L�.
From (110) follows L� � : : : � �sC1 � �s � : : : � �0, therefore from (108)
we obtain a monotone decreasing sequence fdH.@�s;L�/g1sD0, which has a
limit, that is

lim
s!1 dH.@�s;L

�/ D � � 0;

but � > 0 is impossible due to the continuity of the dual function and the
convergence of the dual sequence in value.

(4) Let us consider the indices subset IC D fi W N�i > 0g, then from (115) we have
lims!1 ci.xs/ D ci.Nx/ D 0; i 2 IC. Now we consider the indices subset
I0 D fi W N�i D 0g.
There exists a subsequence f�slg1lD1 that �i;slC1

� 0:5�i;sl , i 2 I0.
Using again the update formula (107) we obtain

�slC1

slC1Y

sDsl

.kci.xs/C 1/ D �i;sl � 2�slC1
; i 2 I0:

Invoking the arithmetic-geometric means inequality we have

1

slC1 � sl

slC1X

sDsl

.kci.xs/C 1/ �
0

@

slC1Y

sDslC1
.kci.xs/C 1/

1

A

1=.slC1�sl/

� 2.1=slC1�sl/ > 1:

Therefore

k

.slC1 � sl/

slC1X

sDsl

ci.xs/ > 0 i 2 I0:

From concavity ci we obtain

ci.NxlC1/ D ci

0

@

slC1X

sDslC1

1

slC1 � sl
xs

1

A � 1

slC1 � sl

slC1X

sDslC1
ci.xs/ > 0; i 2 I0:

(122)
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On the other hand, from convexity of f we have

f .NxlC1/ � 1

slC1 � sl

slC1X

sDslC1
f .xs/: (123)

Without loosing generality we can assume that liml!1 Nxl D Nx 2 ˝. It follows
from (121) that

f .Nx/ D lim
l!1 f .Nxl/ � lim

s!1 f .xs/ D lim
s!1 d.�s/ D d.��/ D f .x�/:

Thus f .Nx/ D f .x�/ D d.��/ D d. N�/ and Nx D x�, N� D ��. The proof of
Theorem 8 is completed. ut

We conclude the section with few remarks.

Remark 3. Each  2 
 leads to a particular NR method for solving (51) as well
as to an interior prox method for solving the dual problem (53). In this regard
NR approach is source of methods for solving (53), which arises in a number
of application such as non-negative least square, statistical learning theory, image
space reconstruction, maximum likelihood estimation in emission tomography (see
[17, 20, 62] and references therein).

Remark 4. The MBF method leads to the multiplicative method (107) for the
dual problem. If the dual function d has a gradient, then rd.�sC1/ D �c.xsC1/.
Formulas (107) can be rewritten as follows

�i;sC1 � �i;s D k�i;sC1Œrd.�sC1/	; i D 1; : : : ;m; (124)

which is, in fact, implicit Euler method for the following system of ordinary
differential equations

d�

dt
D k�rd.�/; �.0/ D �0: (125)

Therefore the dual MBF method (124) is called (see (1.7) in [20]) implicit
multiplicative algorithm.

The explicit multiplicative algorithm (see (1.8) in [20]) is given by the following
formula

�i;sC1 D �i;s.1 � kŒrd.�s/	i/
�1; i D 1; : : : ;m: (126)

It has been used by Eggermond [20] for solving non-negative least square, by
Daube-Witherspoon and Muchlehner [17] for image space reconstruction (ISRA)
and by Shepp and Vardi in their EM method for finding maximum likelihood
estimation in emission tomography [62].
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Remark 5. Under the standard second order sufficient optimality condition there
exists k0 > 0 that for k � k0 the MBF method (106)–(107) converges with linear
rate

kxsC1 � x�k � c

k
k�s � ��kI k�sC1 � ��k � c

k
k�s � ��k

and c > 0 is independent on k � k0. By increasing k from step to step one obtains
superlinear convergence rate (see [46]).

6 Lagrangian Transformation and Interior Ellipsoid
Methods

The Lagrangian transformation (LT) scheme employs a class  2 
 of smooth
strictly concave, monotone increasing functions to transform terms of the Classical
Lagrangian associated with constraints. The transformation is scaled by a positive
scaling parameter.

Finding a primal minimizer of the transformed Lagrangian following by the
Lagrange multipliers update leads to a new class of multipliers methods.

The LT methods are equivalent to proximal point methods with Bregman or Breg-
man type distance function for the dual problem. The kernel of the correspondent
distance is ' D � �.

Each dual prox, in turn, is equivalent to an interior ellipsoid methods. In case
of the MBF transformation  .t/ D ln.t C 1/ the dual prox is based on Bregman
distance B.u; v/ D Pm

iD1.� ln.ui=vi/C ui=vi � 1/ with MBF kernel ' D � � D
� ln s C s � 1, which is SC function. Therefore the interior ellipsoids are Dikin’s
ellipsoids (see [18, 37, 42, 43, 49]).

Application of LT with MBF transformation for LP leads to Dikin’s affine scaling
type method for the dual LP.

6.1 Lagrangian Transformation

We consider a class 
 of twice continuous differentiable functions  W R! R with
the following properties

(1)  .0/ D 0
(2) a)  0.t/ > 0; b)  0.0/ D 1;  0.t/ � at�1; a > 0; t > 0
(3) �m�10 �  00.t/ < 0; 8t 2	 �1;1Œ
(4)  00.t/ � �M�1; 8t 2	 �1; 0Œ; 0 < m0 < M <1:



474 R.A. Polyak

For a given  2 
 and k > 0, the LT L W Rn � R
mC � RCC ! R is defined by

the following formula

L .x; �; k/ WD f .x/ � k�1
mX

iD1
 .k�ici.x//: (127)

It follows from (2a) and (3), convexity f , concavity ci, i D 1; : : : ;m that for any
given � 2 R

mCC and any k > 0 the LT is convex in x.

6.2 Primal Transformations and Dual Kernels

The well known transformations

• exponential [7, 40, 61] O 1.t/ D 1 � e�t;
• logarithmic MBF [46] O 2.t/ D ln.tC 1/;
• hyperbolic MBF [46] O 3.t/ D t=.tC 1/;
• log-sigmoid [48] O 4.t/ D 2.ln 2C t � ln.1C et//;
• Chen-Harker-Kanzow-Smale [48] (CHKS) O 5.t/ D t�pt2 C 4�C2p�; � > 0,

unfortunately, do not belong to 
 .

The transformations O 1; O 2; O 3 do not satisfy (3) .m0 D 0/; while transformations
O 4 and O 5 do not satisfy (4) .M D 1/: A slight modification of O i; i D 1; : : : ; 5,

however, leads to  i 2 
 (see [6]).
Let �1 < � < 0; we will use later the following truncated transformations

 i W R! R are defined as follows

 i.t/ WD
( O i.t/;1 > t � �

qi.t/;�1 < t � �; (128)

where qi.t/ D ait2 C bit C ci and ai D 0:5 O 00i .�/; bi D O 0i .�/ � � O 00.�/; ci D
O 0i .�/ � � O 0i .�/C 0:5�2 O 00i .�/:

It is easy to check that for truncated transformations  i, i D 1; : : : ; 5 the
properties (1)–(4) hold, that is  i 2 
 .

In the future along with transformations  i 2 
 their conjugate

 �i .s/ WD
( O �i .s/; s � O 0i .�/

q�i .s/ D .4ai/
�1.s � bi/

2 � ci; s � O 0i .�/; i D 1; : : : ; 5;
(129)

will play an important role, where O �i.s/ D inftfst � O i.t/g is the LET of O i.
With the class of primal transformations 
 we associate the class of dual kernels

' 2 ˚ D f' D � � W  2 
g:
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Using properties (2) and (4) one can find 0 < 
i < 1 that

O 0i .�/ � O 0i .0/ D � O 00i .�
i/.��/ � ��M�1; i D 1; : : : ; 5

or

O 0i .�/ � 1 � �M�1 D 1C j� jM�1:

Therefore from (129) for any 0 < s � 1C j� jM�1 we have

'i.s/ D O'i.s/ D � O �i .s/ D inf
t
fst � O i.t/g; (130)

where kernels

• exponential O'1.s/ D s ln s � sC 1; O'1.0/ D 1;
• logarithmic MBF O'2.s/ D � ln sC s � 1;
• hyperbolic MBF O'3.s/ D �2psC sC 1; O'3.0/ D 1;
• Fermi-Dirac O'4.s/ D .2 � s/ ln.2 � s/C s ln s; O'4.0/ D 2 ln 2;
• CMKS O'5.s/ D �2p�.

p

.2 � s/s � 1/; O'5.0/ D 2p�
are infinitely differentiable on 	0; 1C j� jM�1Œ.
To simplify the notations we omit indices of  and '.
The properties of kernels ' 2 ˚ induced by (1)–(4) can be established by

using (11).
We collect them in the following Assertion

Assertion 4. The kernels ' 2 ˚ are strictly convex on R
mC, twice continuously

differentiable and possess the following properties

(1) '.s/ � 0; 8s 2	0;1Œ and min
s�0 '.s/ D '.1/ D 0;

(2) a) lim
s!0C

'0.s/ D �1; b) '0.s/ is monotone increasing and

c) '0.1/ D 0;
(3) a) '00.s/ � m0 > 0; 8s 2	0;1Œ; b) '00.s/ � M <1; 8s 2 Œ1;1Œ.

Let Q � R
m be an open convex set, OQ is the closure of Q and ' W OQ ! R be a

strictly convex closed function on OQ and continuously differentiable on Q, then the
Bregman distance B' W OQ � Q! RC induced by ' is defined as follows (see [8]),

B'.x; y/ D '.x/ � '.y/ � .r'.y/; x � y/: (131)

Let ' 2 ˚ , then B' W RmC � R
mCC ! RC, defined by

B'.u; v/ WD
mX

iD1
'.ui=vi/;
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we call Bregman type distance induced by kernel '. Due to
'.1/ D '0.1/ D 0 for any ' 2 ˚ , we have

'.t/ D '.t/ � '.1/ � '0.1/.t � 1/; (132)

which means that '.t/ W RCC ! RCC is Bregman distance between t > 0 and 1.
By taking ti D ui

vi
from (132) we obtain

B'.u; v/ D B'.u; v/ � B'.v; v/ � .ruB'.v; v/; u � v/; (133)

which justifies the definition of the Bregman type distance.
For the MBF kernel '2.s/ D � ln sC s � 1 we obtain the Bregman distance,

B2.u; v/ D
mX

iD1
'2.ui=vi/ D

mX

iD1
.� ln ui=vi C ui=vi � 1/ D

mX

iD1
Œ� ln uiC ln vi C .ui � vi/=vi	;

(134)

which is induced by the standard log-barrier function F.t/ D �Pm
iD1 ln ti.

After Bregman’s introduction his function in the 1960s (see [8]) the prox method
with Bregman distance has been widely studied (see [9, 11, 13, 15, 19, 37, 48–50]
and reference therein).

From the definition of B2.u; v/ follows

ruB2.u; v/ D rF.u/ � rF.v/:

For u 2 OQ, v 2 Q and w 2 Q the following three point identity established by Chen
and Teboulle in [15] is an important element in the analysis of prox methods with
Bregman distance

B2.u; v/ � B2.u;w/ � B2.w; v/ D .rF.v/ � rF.w/;w � u/: (135)

The properties of Bregman’s type distance functions we collect in the following
Assertion.

Assertion 5. The Bregman type distance satisfies the following properties:

(1) B'.u; v/ � 0;8u 2 R
mC; v 2 R

mCC, B'.u; v/ D 0 , u D v; 8v; u 2 R
mCCI

B'.u; v/ > 0 for any u ¤ v
(2) B'.u; v/ � 1

2
m0

Pm
iD1.

ui
vi
� 1/2;8ui 2 R

mC; vi 2 R
mCCI

(3) B'.u; v/ � 1
2
M
Pm

iD1.
ui
vi
� 1/2;8u 2 R

mC; u � v > 0;
(4) for any fixed v 2 R

mCC the gradient ruB'.u; v/ is a barrier function of u 2
R

mCC; i.e.

lim
ui!0C

@

@ui
B'.u; v/ D �1; i D 1; : : : ;m:

The properties (1)–(4) directly following from the properties of kernels ' 2 ˚
given in Assertion 4.
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6.3 Primal LT and Dual Prox Methods

Let  2 
; �0 2 R
mCC and k > 0 are given. The LT method generates a primal–dual

sequence fxs; �sg1sD1 by formulas

xsC1 W rxL .xsC1; �s; k/ D 0 (136)

�i;sC1 D �i;s 
0.k�i;sci.xsC1//; i D 1; : : : ;m: (137)

Theorem 9. If conditions A and B hold and f , ci, i D 1; : : : ;m continuously
differentiable then:

(1) the LT method (136)–(137) is well defined and it is equivalent to the following
interior proximal point method

�sC1 D arg maxfd.�/ � k�1B'.�; �s/j� 2 R
mCCg; (138)

where

B'.u; v/ WD
mX

iD1
'.ui=vi/

and ' D � �.
(2) for all i D 1; : : : ;m we have

lim
s!1.�i;sC1=�i;s/ D 1: (139)

Proof. (1) From assumptions A, convexity of f , concavity of ci; i D 1; : : : ;m and
property (4) of  2 
 for any �s 2 R

mCC and k > 0 follows boundedness
of the level set fx W L .x; �s; k/ � L .xs; �s; k/g. Therefore, the minimizer xs

exists for any s � 1: It follows from property (2a) of  2 
 and (137) that
�s 2 R

mCC ) �sC1 2 R
mCC: Therefore the LT method (136)–(137) is well

defined. From (136) follows

rxL .xsC1; �s; k/ D

rf .xsC1/ �
mX

iD1
�i;s 

0.k�i;sci.xsC1//rci.xsC1// D 0: (140)

From (136) and (137) we obtain

rxL .xsC1; �s; k/ D rf .xsC1/ �
mX

iD1
�i;sC1rci.xsC1/ D rxL.xsC1; �sC1/ D 0;
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therefore

d.�sC1/ D L.xsC1; �sC1/ D minfL.x; �sC1/jx 2 R
ng:

From (137) we get

 0.k�i;sci.xsC1// D �i;sC1=�i;s; i D 1; : : : ;m:
In view of property (3) for any  2 
 there exists an inverse  0�1, therefore

ci.xsC1/ D k�1.�i;s/
�1 0�1.�i;sC1=�i;s/; i D 1; : : : ;m: (141)

Using LEID  0�1 D  �0 we obtain

ci.xsC1/ D k�1.�i;s/
�1 �0.�i;sC1=�i;s/; i D 1; : : : ;m: (142)

Keeping in mind

�c.�sC1/ 2 @d.�sC1/

and ' D � � we have

0 2 @d.�sC1/ � k�1
mX

iD1
.�i;s/

�1'0.�i;sC1=�i;s/ei:

The last inclusion is the optimality criteria for �sC1 2 R
mCC to be the solution of

the problem (138). Thus, the LT method (136)–(137) is equivalent to the interior
proximal point method (138).

(2) From (1) of Assertion 5 and (138) follows

d.�sC1/ � k�1B'.�sC1; �s/C d.�s/ > d.�s/; 8s > 0: (143)

Summing up last inequality from s D 0 to s D N, we obtain

d.��/ � d.�0/ � d.�NC1/ � d.�0/ > k�1
NX

sD0
B'.�sC1; �s/;

therefore

lim
s!1B.�sC1; �s/ D lim

s!1

mX

iD1
'.�i;sC1=�i;s/ D 0: (144)

From (144) and 2) of Assertion 5 follows

lim
s!1�i;sC1=�i;s D 1; i D 1; : : : ;m: (145)

ut
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Remark 6. From (130) and (145) follows that for s � s0 > 0 the Bregman type
distance functions B'i used in (138) are based on kernels 'i, which correspond to
the original transformations O i.

The following Theorem establishes the equivalence of LT multipliers method and
interior ellipsoid methods (IEMs) for the dual problem.

Theorem 10. It conditions of Theorem 9 are satisfied then:

(1) for a given ' 2 ˚ there exists a diagonal matrix H' D diag.hi
'/

m
iD1 with

hi
' > 0; i D 1; : : : ;m that B'.u; v/ D 1

2
ku � vk2H' , where kwk2H' D wTH'w;

(2) The Interior Prox method (138) is equivalent to an interior quadratic prox
(IQP) in the rescaled from step to step dual space, i.e.

�sC1 D arg maxfd.�/ � 1

2k
k� � �sk2Hs

'
j� 2 R

mCg; (146)

where Hs
' D diag.hi;s

' / D diag.2'00.1 C 
 s
i .�i;sC1=�i;s � 1//.�i;s/

�2/ and
0 < 
 s

i < 1;
(3) The IQP is equivalent to an interior ellipsoid method (IEM) for the dual

problem;
(4) There exists a converging to zero sequence frs > 0g1sD0 and step s0 > 0

such that, for 8s � s0, the LT method (136)–(137) with truncated MBF
transformation  2.t/ is equivalent to the following IEM for the dual problem

�sC1 D arg maxfd.�/j� 2 E.�s; rs/g; (147)

where Hs D diag.�i;s/
m
iD1 and

E.�s; rs/ D f� W .� � �s/
TH�2s .� � �s/ � r2s g

is Dikin’s ellipsoid associated with the standard log-barrier function
F.�/ D �Pm

iD1 ln�i for the dual feasible set RmC:

Proof. (1) It follows from '.1/ D '0.1/ D 0 that

B'.u; v/ D 1

2

mX

iD1
'00.1C 
i.

ui

vi
� 1//.ui

vi
� 1/2; (148)

where 0 < 
i < 1; i D 1; : : : ;m.
Due to (3a) from Assertion 4, we have '00.1C 
i.

ui
vi
� 1// � m0 > 0, and due

to property (2a) of  2 
 , we have v 2 R
mCC; therefore

hi
' D 2'00.1C 
i.

ui

vi
� 1//v�2i > 0; i D 1; : : : ;m:
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We consider the diagonal matrix H' D diag.hi
'/

m
iD1, then from (148) we have

B'.u; v/ D 1

2
ku � vk2H' : (149)

(2) By taking u D �, v D �s and H' D Hs
' from (138) and (149) we obtain (146)

(3) Let’s consider the optimality criteria for the problem (146). Keeping in mind
�sC1 2 R

mCC we conclude that �sC1 is an unconstrained maximizer in (146).
Therefore one can find gsC1 2 @d.�sC1/ that

gsC1 � k�1Hs
'.�sC1 � �s/ D 0: (150)

Let rs D k�sC1 � �skHs
'
, we consider an ellipsoid

E'.�s; rs/ D f� W .� � �s/
THs

'.� � �s/ � r2s g

with center �s 2 R
mCC and radius rs. It follows from 4) of Assertion 5 that

E.�s; rs/ is an interior ellipsoid in R
mCC, i.e. E'.�s; rs/ � R

mCC.
Moreover �sC1 2 @E'.�s; rs/ D f� W .� � �s/

THs
'.� � �s/ D r2s g,

therefore (150) is the optimality condition for the following optimization
problem

d.�sC1/ D maxfd.�/j� 2 E'.�s; rs/g (151)

and .2k/�1 is the optimal Lagrange multiplier for the only constraint in (151).
Thus, the Interior Prox method (138) is equivalent to the IEM (151).

(4) Let us consider the LT method (136)–(137) with truncated MBF transforma-
tion.
From (139) follows that for s � s0 only Bregman distance

B2.�; �s/ D
mX

iD1
.�ln

�i

�s
i

C �i

�s
i

� 1/

is used in the LT method (136)–(137). Then

r2��B2.�; �s/j�D�s D H�2s D .I � �s/
�2:

In view of B2.�s; �s/ D 0 and r�B2.�s; �s/ D 0m, we obtain

B2.�; �s/ D 1

2
.� � �s/

TH�2s .� � �s/C o.k� � �sk2/ D

D Q.�; �s/C o.k� � �sk2/:



The Legendre Transformation in Modern Optimization 481

It follows from (139) that for a any s � s0 the term o.k�sC1 � �sk2/ can be
ignored. Then the optimality criteria (150) can be rewritten as follows

gsC1 � k�1H�2s .�sC1 � �s/ D 0:

Therefore

d.�sC1/ D maxfd.�/j� 2 E.�s; rs/g;

where r2s D Q.�sC1; �s/ and

E.�s; rs/ D f� W .� � �s/H
�2
s .� � �s/ D r2s g

is Dikin’s ellipsoid. The proof is completed ut
The results of Theorem 10 were used in [49] for proving convergence LT

method (136)–(137) and its dual equivalent (138) for Bregman type distance
function.

Now we consider the LT method with truncated MBF transformation  2.
It follows from (130) and (139) that for s � s0 only original transformation

 2.t/ D ln.t C 1/ is used in LT method (136)–(137), therefore only Bregman
distance B2.u; v/ DPm

iD1.� ln.ui=vi/Cui=vi�1/ is used in the prox method (138).
In other words, for a given k > 0 the primal–dual sequence fxs; �sg1sDs0 is

generated by the following formulas

xsC1 WrkL .xsC1; �s; k/ D

rf .xsC1/�
mX

iD1
�i;s.1C k�i;sci.xsC1//�1rci.xsC1/ D 0

(152)

�sC1 W �i;sC1 D �i;s.1C k�i;sci.xsC1//�1; i D 1; : : : ;m: (153)

The method (152)–(153) Matioti and Gonzaga called M2BF (see [37]).

Theorem 11. Under condition of Theorem 9 the M2BF method generates such
primal–dual sequence that:

(1) d.�sC1/ > d.�s/; s � s0
(2) a) lims!1 d.�s/ D d.��/; b) lims!1 f .xs/ D f .x�/ and

c/ lim
s!1 dH.@�s;L

�/ D 0

(3) there is a subsequence fslg1lD1 that for N�i;s D �i;s
	PslC1

sDsl
�i;s

�1

the sequence

fNxlC1 DPslC1
sDsl
N�i;sxsg1lD0 converges and liml!1 Nxl D Nx 2 X�.
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Proof. (1) From Theorem 10 follows that LT (152)–(153) is equivalent to the prox
method (138) with Bregman distance. From (138) with � D �s we obtain

d.�sC1/ � d.�s/C k�1
mX

iD1
.� ln.�i;sC1=�i;s/C �i;sC1=�i;s � 1/: (154)

The Bregman distance is strictly convex in u, therefore from (154) follows
d.�sC1/ > d.�s/ unless �sC1 D �s 2 R

mCC, then ci.xsC1/ D 0, i D 1; ::;m and
.xsC1; �sC1/ D .x�; ��/ is a KKT pair.

(2) The monotone increasing sequence fd.�s/g1sDs0 is bounded from above by
f .x�/, therefore there exists Nd D lims!1 d.�s/ � d.��/ D f .x�/.
The first step is to show that Nd D d.��/.
Using ruB2.v;w/ D rF.v/ � rF.w/ for v D �s and w D �sC1 we obtain

r�B2.�; �sC1/=�D�s D r'.�s/�r'.�sC1/ D
 

�
mX

iD1
��1i;s ei C

mX

iD1
��1i;sC1ei

!

:

From the three point identity (135) with u D ��, v D �s, w D �sC1 follows

B2.�
�; �s/ � B2.�

�; �sC1/ � B2.�sC1; �s/ D

.r'.�s/ � r'.�sC1/; �sC1 � ��/ D
mX

iD1
.���1i;s C ��1i;sC1/.�i;sC1 � ��i /:

(155)

From the update formula (153) follows

kci.xsC1/ D ���1i;s C ��1i;sC1; i D 1; : : : ;m:

Therefore, keeping in mind, B2.�s; �sC1/ � 0 we can rewrite (155) as follows

B2.�
�; �s/ � B2.�

�; �sC1/ � k.c.xsC1/; �sC1 � ��/:

From �c.xsC1/ 2 @d.�sC1/ we obtain

d.�/ � d.�sC1/ � .�c.xsC1/; � � �sC1/;8� 2 R
mC: (156)

For � D �� from (156) we get

.c.xsC1/; �sC1 � ��/ � d.��/ � d.�sC1/:

Hence,

B2.�
�; �s/ � B2.�

�; �sC1/ � k.d.��/ � d.�sC1//: (157)
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Assuming lims!1 d.�s/ D Nd < d.��/ we have d.��/� d.�s/ � � > 0;8s �
s0. Summing up (157) from s D s0 to s D N we obtain

B2.�
�; �s0 / � k.N � s0/� � B2.�

�; �NC1/;

which is impossible for large N. Therefore

lim
s!1 d.�s/ D d.��/: (158)

From (156) with � D �s we obtain

d.�s/ � d.�sC1/ � .�c.xsC1/; �s � �sC1/:

Using the update formula (153) from last inequality we obtain

d.�sC1/ � d.�s// � .c.xsC1/; �s � �sC1/ D

k
mX

iD1
�i;s�i;sC1ci.xsC1/ D k

mX

iD1
�i;s=�i;sC1.�i;sC1ci.xsC1//2: (159)

Summing up (159) from s D s0 to s D N we have

d.��/ � d.�s0 / > d.�NC1/ � d.�s0 / � k
NX

sDs0

mX

iD1
�i;s=�i;sC1.�i;sC1ci.xsC1//2:

Keeping in mind (139) we obtain asymptotic complementarity condition

lim
s!1.�s; c.xs// D 0: (160)

Therefore

d.��/ D lim
s!1 d.�s/ D lim

s!1Œf .xs/ � .�s; c.xs//	 D lim
s!1 f .xs/;

that is

lim
s!1 f .xs/ D d.��/ D f .x�/: (161)

From Slater condition follows boundedness of L�. Therefore from concavity
of d follows boundedness �.�0/ D f� 2 R

mC W d.�/ � d.�0/g. For any
monotone increasing sequence fd.�s/g1sDs0 follows boundedness �s D f� 2
R

mC W d.�/ � d.�s/g and �0 � : : : � �s � �sC1 � : : : � L�. Therefore
from (108) we have

dH.L
�; @�s/ > dH.L

�; @�sC1/; s � s0: (162)
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From (161) and (162) and continuity of d follows

lim
s!1 dH.L

�; @�s/ D 0:

(3) The dual sequence f�sg1sD0 � �.�0/ is bounded, therefore there is a
converging subsequence f�slg1lD1: liml!1 �sl D N�.
Consider two subsets of indices IC D fi W N�i > 0g and I0 D fi W N�i D 0g. From
the asymptotic complementarity (160) follows lims!1 ci.xs/ D 0, i 2 IC.
There exist such subsequence fslg1lD1 that for any i 2 I0 we have
liml!1 �i;sl D 0, therefore without loosing the generality we can assume
that

�i;slC1
� 0:5�i;sl ; i 2 I0:

Using the update formula (153) we obtain

�slC1

slC1Y

sDsl

.k�i;sci.xs/C 1/ D �i;sl � 2�i;slC1
; i 2 I0:

Invoking the arithmetic-geometric means inequality for i 2 I0 we obtain

1

slC1 � sl

slC1X

sDsl

.k�i;sci.xs/C 1/ �
 slC1Y

sDsl

.k�i;sci.xs/C 1/
! 1

slC1�sl

� 2 1
slC1�sl

or

slC1X

sDsl

�i;sci.xs/ > 0; i 2 I0:

Using Jensen inequality and concavity ci we obtain

ci.NxlC1/ D ci

 slC1X

sDsl

N�i;sxs

!

�
slC1X

sDsl

N�i;sci.xs/ > 0;

where N�i;s D �i;s
	PslC1

sDsl
�i;s

�1 � 0,

PslC1
sDsl
N�i;s D 1, i 2 I0. Keeping in

mind lims!1 ci.xs/ D 0, i 2 IC we conclude that the sequence fNxlC1g1lD0 is
asymptotically feasible, therefore it is bounded. Without loosing generality we
can assume that liml!1 Nxl D Nx 2 ˝:
From convexity f follows

f .NxlC1/ �
slC1X

sDsl

N�i;sf .xs/:
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Therefore from (161) follows

f .Nx/ D lim
l!1 f .NxlC1/ � lim

s!1 f .xs/ D lim
s!1 d.�s/ D d.��/ D f .x�/:

Thus, f .Nx/ D f .x�/; hence d.��/ D d. N�/ and Nx D x�, N� D ��. ut
The items (1) and (2a) of Theorem 11 were proven by Matioli and Gonzaga (see

Theorem 3.2 in [37]).

6.4 Lagrangian Transformation and Affine Scaling Method for
LP

Let a 2 R
n; b 2 R

m and A W Rn ! R
m are given. We consider the following LP

problem

x� 2 X� D Argminf.a; x/jc.x/ D Ax � b � 0g (163)

and the dual LP

�� 2 L� D Argminf.b; �/jr.�/ D AT� � a D 0; � 2 R
mCg: (164)

The LT L W Rn � R
m � RCC ! R for LP is defined as follows

L .x; �; k/ WD .a; x/ � k�1
mX

sD1
 .k�ici.x//; (165)

where ci.x/ D .Ax � b/i D .ai; x/ � bi; i D 1; : : : ;m:
We assume that X� ¤ � is bounded and so is the dual optimal set L�:
The LT method generate primal–dual sequence fxsC1; �sC1g1sD0 by the following

formulas

xsC1 W rxL .xsC1; �s; ks/ D 0 (166)

�sC1 W �i;sC1 D �i;s 
0.ks�i;sci.xsC1//; i D 1; : : : ;m: (167)

Theorem 12. If the primal optimal X� is bounded, then the LT method (166)–
(167) is well defined for any transformation  2 
 . For the dual sequence f�sg1sD0
generated by (167) the following statements hold true:

(1) the LT method (166)–(167) is equivalent to the following Interior Prox

k.b; �sC1/ � B'.�sC1; �s/ D maxfk.b; �/ � B'.�; �s/jAT� D 0g;

where B'.u; v/ DPm
iD1 '.

ui
vi
/ is the Bregman type distance;
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(2) there exists s0 > 0 that for any s � s0 the LT method with truncated MBF
transformation  2.t/ is equivalent to the affine scaling type method for the
dual LP.

Proof. (1) We use the vector form for formula (167) assuming that the multipli-
cation and division are componentwise, i.e. for vectors a; b 2 R

n, the vector
c D ab D .ci D aibi; i D 1; : : : ; n/ and the vector d D a=b= .di D ai=bi;

i D 1; : : : ; n/: From (167) follows

�sC1
�s
D  0.k�sc.xsC1//: (168)

Using again the inverse function formula we obtain

k�sc.xsC1/ D  0�1.�sC1=�s/: (169)

It follows from (166) and (167) that

rxL .xsC1; �s; k/ D a � AT 0.k�sc.xsC1//�s D a � AT�sC1
D rxL.xsC1; �sC1/ D 0;

therefore

d.�sC1/ D L.xsC1; �sC1/ D .a; xsC1/ � .�sC1;AxsC1 � b/ D
.a � AT�sC1; xsC1/C .b; �sC1/ D .b; �sC1/:

Using LEID  0�1 D  �0 and ' D � � we can rewrite (169) as follows

� kc.xsC1/ � .�s/
�1'0.�sC1=�s/ D 0: (170)

Keeping in mind AT�sC1 D a;�c.xsC1/ 2 @d.�sC1/ and �sC1 2 R
mCC we can

view (170) as the optimality criteria for the following problem

k.b; �sC1/ � B'.�sC1; �s/ D maxfkd.�/ � B'.�; �s/jAT� D ag; (171)

where B'.�; �s/ D
q
X

iD1
'.�i=�i;s/ is Bregman type distance.

(2) Let’s consider the LT method with truncated MBF transformation  2.t/. It
follows from (139) that there exists s0 that for any s � s0 only MBF kernel
'2 D � ln sC s � 1 and correspondent Bregman distance

B2.�; �s/ D
q
X

iD1
.�ln

�i

�i;s
C �i

�i;s
� 1/
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will be used in (171). Using considerations similar to those in item 4)
Theorem 10 we can rewrite (171) as follows

k.b; �sC1/ D arg maxfk.b; �/j� 2 E.�s; rs/; AT� D ag; (172)

where r2s D Q.�sC1; �s/ and E.�s; rs/ D
˚

� W .� � �s/
TH�2s .� � �s/ � rs




is
Dikin’s ellipsoid and (172) is affine scaling type method for the dual LP (see
[18]).

In the final part of the paper we will show the role of LET and LEINV in
unconstrained minimization of SC functions. For the basic SC properties and
damped Newton method see [42] and [43].

7 Legendre Invariant and Self-Concordant Functions

We consider a closed convex function F 2 C3 defined on an open convex set
dom F � R

n. For a given x 2 dom F and direction u 2 R
n n f0g we consider

the restriction

f .t/ D F.xC tu/

of F, which is defined on dom f D ft W x C tu 2 dom Fg. Along with f , let us
consider its derivatives

f 0.t/ D .rF.xC tu/; u/ ;

f 00.t/ D .r2F.xC tu/u; u/ ;

f 000.t/ D .r3F.xC tu/Œu	u; u/ ;

where rF is the gradient of F, r2F is the Hessian of F and

r3F.x/Œu	 D lim
�!C0 �

�1 �r2F.xC �u/ � r2F.x/� :

Then,

DF.x/Œu	 WD .rF.x/; u/ D f 0.0/ ;

D2F.x/Œu; u	 WD .r2F.x/u; u/ D f 00.0/ ;

D3F.x/Œu; u; u	 WD .r3F.x/Œu	u; u/ D f 000.0/ :

Function F is self-concordant if there is M > 0 such that the inequality

D3F.x/Œu; u; u	 � M.r2F.x/u; u/ 32

holds for any x 2 dom F and any u 2 R
n.
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If for a SC function F the dom F does not contain a straight line, then the Hessian
r2F.x/ is positive definite at any x 2 dom F. We assume that such condition holds,
so for any x 2 dom F and any u 2 R

n n f0g we have

.r2F.x/u; u/ D f
00

.0/ > 0; (173)

that is F is strictly convex on dom F.
A strictly convex function F is self-concordant (SC) if the Legendre invariant of

the restriction f .t/ D F.xC tu/ is bounded, i.e. for any x 2 dom F and any direction
u D y � x 2 R

n n f0g there exist M > 0 that

LEINV.f / D jf 000

.t/j.f 00

.t//�
3
2 � M; 8t W xC tu 2 dom F: (174)

Let us consider the log-barrier function F.x/ D � ln x, then for any x 2 dom F D
fx W x > 0g we have F0.x/ D �x�1, F00.x/ D x�2, F000.x/ D �2x�3 and

LEINV.F/ D ˇˇF000.x/ˇˇ 	F00.x/
�3=2 � 2: (175)

Therefore, F.x/ D � ln x is self-concordant with M D 2.
The following function

g.t/ D .r2F.xC tu/u; u/�1=2 D 	f 00.t/
�1=2 ;

is critical for the self-concordance (SC) theory.
For any t 2 dom f , we have

g0.t/ D d
�

.f 00.t//�1=2
�

dt
D �1

2
f 000.t/.f 00.t//�3=2 :

It follows from (175) that

0:5LEINV.f / D jg0.t/j � 1 ; 8 t 2 dom f : (176)

The differential inequality (176) is the key element for establishing basic bounds for
SC functions.

The other important component of the SC theory is two local scaled norms of a
vector u 2 R

n. The first local scaled norm is defined at each point x 2 dom F as
follows

kukx D
	r2F.x/u; u
1=2 :

The second scaled norm is defined by formula

kvk�x D
�	r2F.x/
�1 v; v

�1=2

:
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From (173) follows that the second scaled norm is well defined at each x 2 dom F.
The following Cauchy-Schwarz (CS) inequality for scaled norms will be often used
later.

Let matrix A 2 R
n�n be symmetric and positive definite, then A1=2 exists and

j.u; v/j D ˇ
ˇ
	

A1=2u; A�1=2v

ˇ
ˇ � ��A1=2u

�
�
�
�A�1=2v

�
�

D 	

A1=2u; A1=2u

1=2 	

A�1=2v; A�1=2v

1=2

D .Au; u/1=2
	

A�1v; v

1=2 D kukA kvkA�1 :

By taking A D r2F.x/, for any u; v 2 R
n one obtains the following CS inequality:

j.u; v/j � kukx kvk�x :
The following Proposition will be used later.

Proposition 1. A function F is self-concordant if and only if for any x 2 domF and
any u1; u2; u3 2 R

n n f0g we have

ˇ
ˇD3F.x/ Œu1; u2; u3	

ˇ
ˇ � 2

3Y

iD1
kuikx ; (177)

where D3F.x/Œu1; u2; u3	 D .r3F.x/Œu1	u2; u3/.
The following theorem establishes one of the most important facts about SC

functions: any SC function is a barrier function on dom F. The opposite statement
is, generally speaking, not true, that is not every barrier function is self-concordant.
For example, the hyperbolic barrier F.x/ D x�1 defined on dom F D fx W x > 0g is
not a SC function.

Theorem 13. Let F be a closed convex function on an open dom F. Then, for any
Nx 2 @.dom F/ and any sequence fxsg � dom F such that xs ! Nx, we have

lim
s!1F.xs/ D1 : (178)

Proof. From convexity of F follows

F.xs/ � F.x0/C .rF.x0/; xs � x0/

for any given x0 2 dom F.
So, the sequence fF.xs/g is bounded from below. If (177) is not true, then the

sequence fF.xs/g is bounded from above. Therefore, it has a limit point NF. Without
loss of generality, we can assume that zs D .xs;F.xs// ! Nz D .Nx; NF/. Since the
function F is closed, we have Nz 2 epiF, but it is impossible because Nx 62 dom F.
Therefore for any sequence

fxsg � dom F W lim
s!1 xs D Nx 2 @.dom F/

we have (177). It means that F is a barrier function on the cl.dom F/. �
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For any x 2 dom F, and any u 2 R
n n f0g from (173) follows

	r2F.x/u; u
 D kuk2x > 0 (179)

and for 8t 2 dom f we have

g.t/ D 	r2F.xC tu/u; u

�1=2 D kuk�1xCtu > 0: (180)

7.1 Basic Bounds for SC Functions

In this section the basic bounds for SC functions will be obtained by integration of
inequalities (176) and (177).

First Integration Keeping in mind f 00.t/ > 0 from (176), for any s > 0, we obtain

�
Z s

0

dt �
Z s

0

d
	

f 00.t/�1=2

 �

Z s

0

dt :

Therefore

f 00.0/�1=2 � s � f 00.s/�1=2 � f 00.0/�1=2 C s (181)

or

	

f 00.0/�1=2 C s

�2 � f 00.s/ � 	f 00.0/�1=2 � s


�2
: (182)

The left inequality in (182) holds for all s � 0, while the right inequality holds only
for 0 � s < f 00.0/�1=2.

Let x; y 2 dom F, y ¤ x, u D y � x and y.s/ D x C s.y � x/, 0 � s � 1, so
y.0/ D x and y.1/ D y. Therefore,

f 00.0/ D 	r2F.x/.y � x/; y � x

 D ky � xk2x

and

f 00.0/1=2 D ky � xkx :

Also,

f 00.1/ D 	r2F.y/.y � x/; y � x

 D ky � xk2y

and

f 00.1/1=2 D ky � xky :
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From (181), for s D 1 follows

f 00.0/�1=2 � 1 � f 00.1/�1=2 � f 00.0/�1=2 C 1;

or

1

ky � xkx

� 1 � 1

ky � xky

� 1

ky � xkx

C 1 :

From the right inequality follows

ky � xky �
ky � xkx

1C ky � xkx

: (183)

If ky � xkx < 1, then from the left inequality follows

ky � xky �
ky � xkx

1 � ky � xkx

: (184)

By integrating (176) we get

g.t/ > g.0/ � jtj ; t 2 dom f : (185)

For x C tu 2 dom F from (180) follows g.t/ > 0. From Theorem 13 follows
F.xC tu/!1 when xC tu! @.dom F/. Therefore, .r2F.xC tu/u; u/ cannot be
bounded when x C tu ! @.dom F/. Therefore from (180) follows g.t/ ! 0 when
xC tu! @.dom F/. It follows from (185) that any t W jtj < g.0/ belongs to dom f ,
i.e.

.�g.0/; g.0// D 	�kuk�1x ; kuk�1x


 � dom f :

Therefore, the set

E0.x; 1/ D
n

y D xC tu W t2 kuk2x < 1
o

is contained in dom F. In other words, the Dikin’s ellipsoid

E.x; r/ D
n

y 2 R
n W ky � xk2x � r

o

;

is contained in dom F for any x 2 dom F and any r < 1.
One can expect that, for any x 2 dom F and any y 2 E.x; r/, the Hessians r2F.x/

andr2F.y/ are “close” enough if 0 < r < 1 is small enough. The second integration
allows to establish the corresponding bounds.



492 R.A. Polyak

Second Integration Let us fix x 2 dom F, for a given y 2 dom F (y ¤ x) consider
direction u D y� x 2 R

n n f0g. Let y.t/ D xC tu D xC t.y� x/, then for t � 0 and
y.t/ 2 dom F we have

 .t/ D kuk2y.t/ D .F
00

.y.t//u; u/:

It follows from Proposition 1 that

ˇ
ˇ 0.t/

ˇ
ˇ D D3F.y.t//Œy � x; u; u	 � 2 ky � xky.t/ kuk2y.t/ D 2 ky � xky.t/  .t/ :

First of all, ky.t/ � xkx � ky � xkx for any t 2 Œ0; 1	. Keeping in mind that y � x D
t�1.y.t/ � x/ and assuming ky � xkx < 1 from (184) follows

ˇ
ˇ 0.t/

ˇ
ˇ � 2

t
ky.t/ � xky.t/  .t/ �

2

t

ky.t/ � xkx

1 � ky.t/ � xkx

 .t/

� 2 ky � xkx

1 � t ky � xkx

 .t/ :

Therefore for 0 < t < ky � xk�1x follows

j 0.t/j
 .t/

� 2 ky � xkx

1 � t ky � xkx

:

By integrating the above inequality we get

�2
Z s

0

ky � xkx

1 � t ky � xkx

dt �
Z s

0

 0.t/
 .t/

dt � 2
Z s

0

ky � xkx

1 � t ky � xkx

dt ;

for 0 < s < ky � xk�1x , hence

2 ln .1 � s ky � xkx/ � ln .s/ � ln .0/ � �2 ln .1 � s ky � xkx/ :

For s D 1, we have

 .0/ .1 � ky � xkx/
2 �  .1/ �  .0/ .1 � ky � xkx/

�2 : (186)

In view of  .0/ D .r2F.x/u; u/ and  .1/ D .r2F.y/u; u/ for any u 2 R
n n f0g

from (186) follows

.1 � ky � xkx/
2
	r2F.x/u; u
 � 	r2F.y/u; u
 � .1 � ky � xkx/

�2 	r2F.x/u; u
 :

Therefore the following matrix inequality holds

.1 � ky � xkx/
2 r2F.x/ 4 r2F.y/ 4 r2F.x/ .1 � ky � xkx/

�2 ; (187)
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where A < B means that A � B is nonnegative definite. Note that (187) takes place
for any x; y 2 dom F.

In order to find the upper and the lower bounds for the matrix

G D
Z 1

0

r2F.xC �.y � x//d� (188)

let us consider (187) for y WD xC �.y � x/.
From the left inequality (187) follows

G D
Z 1

0

r2F.xC �.y � x//d� < r2F.x/
Z 1

0

.1 � � ky � xkx/
2 d� :

Therefore, for r D ky � xkx < 1, we have

G < r2F.x/
Z 1

0

.1 � �r/2d� D r2F.x/
�

1 � rC r2

3

�

: (189)

From the right inequality (187) follows

G 4 r2F.x/
Z 1

0

.1 � �r/�2d� D r2F.x/ 1

1 � r
; (190)

i.e. for any x 2 dom F, the following inequalities hold:

�

1 � rC r2

3

�

r2F.x/ 4 G 4 1

1 � r
r2F.x/ : (191)

The first two integrations produced two very important facts.

1. For any x 2 dom F, Dikin’s ellipsoid

E.x; r/ D ˚y 2 R
n W ky � xk2x � r




is contained in dom F, for any 0 � r < 1.
2. For any x 2 dom F and any y 2 E.x; r/ from (187) follows

.1 � r/2r2F.x/ 4 r2F.y/ 4 1

.1 � r/2
r2F.x/ ; (192)

i.e. the function F is almost quadratic inside the ellipsoid E.x; r/ for small 0 �
r < 1.

The bounds for the gradient rF.x/, which is a monotone operator in R
n, we

establish by integrating (182).
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Third Integration From (182), for 0 � t < f .0/�1=2 D ky � xk�1x and 0 � s � 1
we obtain

Z s

0

	

f 00.0/�1=2 C t

�2

dt �
Z s

0

f 00.t/dt �
Z s

0

	

f 00.0/�1=2 � t

�2

dt ;

or

f 0.0/ C f 00.0/1=2
�

1 � 	1C sf 00.0/1=2

�1�

� f 0.s/ � f 0.0/ � f 00.0/1=2
�

1 � 	1 � sf 00.0/1=2

�1�

:

The obtained inequalities we can rewrite as follows

f
0

.0/C w
0

.f
00

.0/
1
2 s/ � f

0

.s/ � f
0

.0/C w�0

.f
00

.0/
1
2 s/; (193)

where !.t/ D t�ln.1Ct/ and !�.s/ D supt>�1fst�tCln.1Ct/g D �s�ln.1�s/ D
!.�s/ is the LET of !.t/.

From the right inequality (193), for s D 1 follows

f 0.1/ � f 0.0/ � �f 00.0/1=2
�

1 � 1

1 � f 00.0/1=2

�

D f 00.0/
1 � f 00.0/1=2

:

Recalling formulas for f 0.0/, f 0.1/, f 00.0/, and f 00.1/ we get

.rF.y/ � rF.x/; y � x/ � ky � xk2x
1 � ky � xkx

(194)

for any x and y 2 dom F.
From the left inequality in (193), for s D 1 follows

f 0.1/ � f 0.0/ � f 00.0/1=2
�

1 � 1

1C f 00.0/1=2

�

D f 00.0/
1C f 00.0/1=2

or

.rF.y/ � rF.x/; y � x/ � ky � xk2x
1C ky � xkx

: (195)

Fourth Integration In order to establish bounds for F.y/ � F.x/ it is enough to
integrate the inequalities (193).

Taking the integral of the right inequality (193), we obtain

f .s/ � f .0/C f 0.0/sC !� 	f 00.0/1=2s
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D f .0/C f 0.0/s � f 00.0/1=2s � ln
	

1 � f 00.0/1=2s



D U.s/ : (196)

In other words, U.s/ is an upper bound for f .s/ on the interval Œ0; f 00.0/�1=2/. Recall
that f 00.0/�1=2 D ky � xk�1x > 1. For s D 1 from (196) follows

f .1/ � f .0/ � f 0.0/C !� 	f 00.0/1=2
 D f 0.0/C !� .ky � xkx/ : (197)

Keeping in mind f .0/ D F.x/, f .1/ D F.y/, from (197), we get

F.y/ � F.x/ � .rF.x/; y � x/C !� .ky � xkx/ : (198)

Integration of the left inequality (193) leads to the lower bound L.s/ for f .s/

f .s/ � f .0/C f 0.0/sC ! 	f 00.0/1=2s


D f .0/C f 0.0/sC f 00.0/1=2s � ln
	

1C f 00.0/1=2s



D L.s/ ; 8 s � 0 : (199)

For s D 1, we have

f .1/ � f .0/ > f 0.0/C ! 	f 00.0/1=2


or

F.y/ � F.x/ � .rF.x/; y � x/C ! .ky � xkx/ : (200)

We conclude the section by considering the existence of the minimizer

x� D arg minfF.x/ W x 2 dom Fg (201)

for a self-concordant function F.
It follows from (173) that the Hessian r2F.x/ is positive definite for any x 2

dom F, but the existence of x� W rF.x�/ D 0, does not follow from strict convexity
of F.

However, it guarantees the existence of the local norm kvk�x D
�	r2F.x/
�1

v; v/1=2 > 0 at any x 2 dom F.
For v D rF.x/, one obtains the following scaled norm of the gradient rF.x/,

�.x/ D 	r2F.x/�1rF.x/; rF.x/

1=2 D krF.x/k�x > 0 ;

which plays an important role in SC theory. It is called Newton decrement of F at
the point x 2 dom F.
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Theorem 14. If �.x/ < 1 for some x 2 dom F then the minimizer x� in (201) exists.

Proof. For u D y � x ¤ 0 and v D rF.x/, where x and y 2 dom F from CS
inequality j.u; v/j � kvk�x kukx follows

j.rF.x/; y � x/j � krF.x/k�x ky � xkx : (202)

From (200) and (202) and the formula for �.x/ follows

F.y/ � F.x/ � ��.x/ ky � xkx C ! .ky � xkx/ :

Therefore, for any y 2 L .x/ D fy 2 R
n W F.y/ � F.x/g we have

! .ky � xkx/ � �.x/ ky � xkx ;

i.e.

ky � xk�1x ! .ky � xkx/ � �.x/ < 1 :

From the definition of !.t/ follows

1 � 1

ky � xkx

ln .1C ky � xkx/ � �.x/ < 1 :

The function 1 � ��1 ln.1C �/ is monotone increasing for � > 0. Therefore, for a
given 0 < �.x/ < 1, the equation

1 � �.x/ D ��1 ln.1C �/

has a unique root N� > 0. Thus, for any y 2 L .x/, we have

ky � xkx � N� ;

i.e. the level set L .x/ at x 2 dom F is bounded and closed due to the continuity of
F. Therefore, x� exists due to the Weierstrass theorem. The minimizer x� is unique
due to the strict convexity of F.x/ for x 2 dom F. �

The theorem presents an interesting result: a local condition �.x/ < 1 at some
x 2 dom F guarantees the existence of x�, which is a global property of F on the
dom F. The condition 0 < �.x/ < 1 will plays an important role later.

Let us briefly summarize the basic properties of the SC functions established so
far.

1. The SC function F is a barrier function on dom F.
2. For any x 2 dom F and any 0 < r < 1, there is a Dikin’s ellipsoid inside dom F,

i.e.

E.x; r/ D
n

y W ky � xk2x � r
o

� dom F :
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3. For any x 2 dom F and small enough 0 < r < 1, the function F is almost
quadratic inside of the Dikin’s ellipsoid E.x; r/ due to the bounds (192).

4. The gradient rF is a strictly monotone operator on dom F with upper and lower
monotonicity bounds given by (194) and (195).

5. For any x 2 dom F and any direction u D y � x, the restriction f .s/ D F.x C
s.y � x// is bounded by U.s/ and L.s/ (see (196) and (199)).

6. Condition 0 < �.x/ < 1 at any x 2 dom F guarantees the existence of a unique
minimizer x� on dom F.

It is quite remarkable that practically all important properties of SC functions
follow from a single differential inequality (176), which is, a direct consequence of
the boundedness of LEINV.f /.

We conclude the section by showing that Newton method can be very efficient
for global minimization of SC functions, in spite of the fact that F is not strongly
convex.

7.2 Damped Newton Method for Minimization of SC Function

The SC functions are strictly convex on dom F. Such a property, generally speaking,
does not guarantee global convergence of the Newton method. For example, f .t/ Dp
1C t2 is strictly convex, but Newton method for finding min

t
f .t/ diverges from

any starting point t0 …	 � 1; 1Œ.
Turns out that SC properties guarantee convergence of the special damped

Newton method from any starting point. Moreover, such method goes through three
phases. In the first phase each step reduces the error bound�f .x/ D f .x/� f .x�/ by
a constant, which is independent on x 2 dom F. In the second phase the error bound
converges to zero with at least superlinear rate. The superlinear rate is characterized
explicitly through w.�/ and its LET w�.�/, where 0 < � < 1 is the Newton
decrement. At the final phase the damped Newton method practically turns into
standard Newton method and the error bound converges to zero with quadratic rate.

The following bounds for the restriction f .s/ D F.x C su/ at x 2 dom F in the
direction u D y � x 2 R

n n f0g is our main tool

L .s/
s�0
� f .s/ � U.s/

0�s�f 00.0/�.1=2/
: (203)

Let x 2 dom F, f .0/ D F.x/ and x ¤ x�, then there exists y 2 dom F such that for
u D y � x ¤ 0 we have

a/ f 0.0/ D .rF.x/; u/ < 0 ; and

b/ f 00.0/ D 	r2F.x/u; u
 D kuk2x D d2 > 0: (204)
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We would like to estimate the reduction of F, as a result of one Newton step with
x 2 dom F as a starting point.

Let us consider the upper bound

U.s/ D f .0/C f 0.0/s � ds � ln.1 � ds/ ;

for f .s/. The function U.s/ is strongly convex in s on Œ0; d/�1. Also, U0.0/ D f 0.0/ <
0 and U0.s/!1 for s! d�1. Therefore, the equation

U0.s/ D f 0.0/ � dC d.1 � ds/�1 D 0 (205)

has a unique solution Ns 2 Œ0; d�1/, which is the unconstrained minimizer for U.s/.
From (205) we have

Ns D �f 0.0/d�2
	

1 � f 0.0/d�1

�1 D �.1C �/�1

where � D �f 0.0/d�2 and 0 < � D �f 0.0/d�1 < 1. On the other hand, the
unconstrained minimizer Ns is a result of one step of the damped Newton method for
finding min

s�0 U.s/ with step length t D .1C �/�1 from s D 0 as a starting point. It is

easy to see that

U
	

.1C �/�1�
 D f .0/ � !.�/ :

From the right inequality in (203), we obtain

f
	

.1C �/�1�
 � f .0/ � !.�/ : (206)

Keeping in mind (204) for the Newton direction u D y � x D �.r2F.x//�1rF.x/
we obtain

� D � f 0.0/
f 00.0/

D � .rF.x/; u/

.r2F.x/u; u/ D 1 :

In view of f .0/ D F.x/, we can rewrite (206) as follows:

F
	

x � .1C �/�1.r2F.x//�1rF.x/

 � F.x/ � !.�/ : (207)

In other words, finding an unconstrained minimizer of the upper bound U.s/ is
equivalent to one step of the damped Newton method

xkC1 D xk � .1C �.xk//
�1 	r2F.xk/


�1 rF.xk/ (208)

for minimization of F.x/ on dom F. Moreover, our considerations are independent
from the starting point x 2 dom F. Therefore, for any starting point x0 2 dom F and
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k � 1, we have

F .xkC1/ � F .xk/ � !.�/ : (209)

The bound (209) is universal, i.e. it is true for any xk 2 dom F.
Let us compute � D f 0.0/f 00.0/�1=2 for the Newton direction

u D �r2F.x/�1rF.x/ :

We have

� � �.x/ D �f 0.0/ f 00.0/�1=2

D � .rF.x/; u/

.r2F.x/u; u/1=2

D 	r2F.x/�1rF.x/;rF.x/

1=2

D krF.x/k�x :

We have seen already that it is critical that 0 < �.xk/ < 1, 8 k � 0.
The function !.t/ D t� ln.1C t/ is a monotone increasing, therefore for a small

ˇ > 0 and 1 > �.x/ � ˇ, from (209) we obtain reduction of F.x/ by a constant
!.ˇ/ at each damped Newton step. Therefore, the number of damped Newton steps
is bounded by

N � .!.ˇ//�1.F.x0/ � F.x�// :

The bound (209), however, can be substantially improved for

x 2 S.x�; r/ D fx 2 dom F W F.x/ � F.x�/ � rg

and 0 < r < 1.
Let us consider the lower bound

L.s/ D f .0/C f 0.0/sC ds � ln.1C ds/ � f .s/; s � 0 :

The function L.s/ is strictly convex on s � 0. If 0 < � D �f 0.0/d�1 < 1, then

L0
	

�.1 � �/�1
 D 0 :

Therefore,

NNs D �.1 � �/�1 D arg minfL.s/ j s � 0g
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f(0)

w (-λ) = w∗(λ)

w (λ)

U(s-)

U(s) f(s) L(s)

L(s=)

s-= s==s∗
1+λ
Δ

1−λ
Δ

f(s*)

Fig. 2 Lower and upper bounds of a self-concordant function

and

L.NNs/ D f .0/ � !.��/ :

Along with Ns and NNs we consider (see Fig. 2)

s� D arg minff .s/ j s � 0g :

For a small 0 < r < 1 and x 2 S.x�; r/, we have f .0/ � f .s�/ < 1, hence
f .0/� f .Ns/ < 1. The relative progress per step is more convenient to measure on the
logarithmic scale

� D ln.f .Ns/ � f .s�//
ln.f .0/ � f .s�//

:

From !.�/ < f .0/� f .s�/ < 1 follows � ln!.�/ > � ln.f .0/� f .s�// or ln.f .0/�
f .s�// > ln!.�/. From f .Ns/ � f .0/� !.�/ and f .s�/ � f .0/� !.��/ follows (see
Fig 2)

f .Ns/ � f .s�/ � !.��/ � !.�/ :

Hence,

ln.f .Ns/ � f .s�// < ln.!.��/ � !.�//
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and

�.�/ � ln.!.��/ � !.�//
ln!.�/

D ln
	�2�C ln.1C �/.1 � �/�1


ln.� � ln.1C �// :

For 0 < � � 0:5, we have

�.�/ �
ln
�
2�3

3
C 2�5

5

�

ln
�
�2

2
� �3

3
C �4

4

� :

In particular, �.0:40/ � 1:09. Thus, the sequence fxkg1kD0 generated by the damped
Newton method (208) with �.xk/ D 0:40 converges in value at least with 1.09 Q-
superlinear rate, that is for the error bound the�.xk/ D F.xk/�F.x�/ < 1, we have
�.xkC1/ � .�.xk//

1:09.
Due to limk!1 �.xk/ D limk!1 krF.xk/kx D 0 from some point on,

method (208) practically turns into the classical Newton method

xkC1 D xk � r2F.xk/
�1rF.xk/ ; (210)

which converges with quadratic rate.
Instead of waiting for this to happen, there is a way of switching, at some

point, from (208) to (210) and guarantee that from this point on, only Newton
method (210) is used. Using such a strategy it is possible to achieve quadratic
convergence earlier.

The following Theorem characterize the neighborhood at x� when quadratic
convergence accuracy.

Theorem 15. Let x 2 dom F and

�.x/ D 	r2F.x/�1rF.x/;rF.x/

1=2

< 1 ;

then,

1. the point

Ox D x � r2F.x/�1rF.x/ (211)

belongs to dom F;
2. the following bound holds

�.Ox/ �
�

�.x/

1 � �.x/
�2

: (212)
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Proof. 1. Let p D Ox � x D �r2F.x/�1rF.x/, � D �.x/, then

kpkx D
	r2F.x/p; p
1=2 D 	rF.x/; r2F.x/�1rF.x/


1=2

D krF.x/k�x D �.x/ D � < 1 I

therefore, Ox 2 dom F.
2. First of all, note that if A D AT � 0, B D BT � 0 and A < B, then

A�1 � B�1 D �A�1.A � B/B�1 4 0 :

For y D Ox from the left inequality in (187), we obtain

�.Ox/ D krF.Ox/k�Ox � .1 � kpkx/
�1 	r2F.x/�1rF.Ox/; rF.Ox/
1=2

D .1 � kpkx/
�1 krF.Ox/k�x :

We can then rewrite (211) as follows

r2F.x/ .Ox � x/CrF.x/ D 0 :

Therefore,

rF.Ox/ D rF.Ox/ � rF.x/ � r2F.x/.Ox � x/ :

Then, using (188) and formula (185) (see p. 6 [45]), we obtain

rF.Ox/ � rF.x/ D
Z 1

0

	r2F.xC �.Ox � x/



.Ox � x/d� D G.Ox � x/ :

Hence,

rF.Ox/ D 	G � r2F.x/
 .Ox � x/ D OG.Ox � x/ D OGp

and OGT D OG.

From CS inequality follows

krF.Ox/k�2x D
�

r2F.x/�1 OGp; OGp
�

D
� OGr2F.x/�1 OGp; p

�

�
�
�
� OGr2F.x/�1 OGp

�
�
�

�
x
kpkx : (213)
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Then

�
�
� OGr2F.x/�1 OGp

�
�
�

�
x
D
� OGr2F.x/�1 OGp; r2F.x/�1 OGr2F.x/�1 OGp

�1=2

D
�

H.x/2r2F.x/�1=2 OGp; r2F.x/�1=2 OGp
�1=2

� kH.x/k
�

r2F.x/�1=2 OGp;r2F.x/�1=2 OGp
�1=2

D kH.x/k
�

r2F.x/�1 OGp; OGp
�

D kH.x/k 	r2F.x/�1rF.Ox/;rF.Ox/
1=2

D kH.x/k krF.Ox/k�x ;

where H.x/ D r2F.x/�1=2 OGr2F.x/�1=2, therefore r2F.x/ 12 H.x/r2F 1
2 .x/ D OG.

From (213) and the last inequality we obtain

krF.Ox/k�x � kH.x/k kpkx D �kH.x/k :

It follows from (191)

�

��C �2

3

�

r2F.x/ 4 OG D G � r2F.x/ 4 �

1 � � r
2F.x/ :

Then,

kH.x/k � max

�
�

1 � � ;��C
�2

3

�

D �

1 � � :

Therefore,

�2.Ox/ � 1

.1 � �/2 krF.Ox/k�2x �
1

.1 � �/2 �
2kH.x/k2 � �4

.1 � �/4
or

�.Ox/ � �2

.1 � �/2 :

We saw already that � D �.x/ < 1 is the main ingredient for the damped Newton
method (208) to converge. To retain the same condition for �.Ox/, it is sufficient to
require �.Ox/ � � � �2=.1��/2. The function Œ�=.1��/	2 is positive and monotone
increasing on .0; 1/. Therefore, to find an upper bound for � it is enough to solve
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the equation �=.1 � �/2 D 1. In other words, for any � D �.x/ < N� D 3�p5
2

, we
have

�.Ox/ �
�

�

1 � �
�2

:

Thus, the damped Newton method (208) follows three major stages in terms of the
rate of convergence. First, it reduces the function value by a constant at each step.
Then, it converges with superlinear rate and, finally, in the neighborhood of the
solution it converges with quadratic rate.

The Newton area, where the Newton method converges with the quadratic rate is
defined as follows:

N.x�; ˇ/ D
(

x W �.x/ D krF.x/k�x � ˇ < N� D
3 �p5
2

)

: (214)

To speed up the damped Newton method (208) one can use the following switching
strategy. For a given 0 < ˇ < N� D .3 � p5/=2, one uses the damped Newton
method (208) if �.xk/ > ˇ and the “pure” Newton method (210) when �.xk/ � ˇ.

8 Concluding Remarks

The LEID is an universal instrument for establishing the duality results for SUMT,
NR and LT methods. The duality result, in turn, are critical for both understanding
the convergence mechanisms and the convergence analysis.

In particular, the update formula (107) and concavity of the dual function d leads
to the following bound

d.�sC1/ � d.�s/ � .kL/�1k�sC1 � �sk2;

which together with d.�sC1/�d.�s/! 0 shows that the Lagrange multipliers do not
change much from same point on. It means that if Newton method is used for primal
minimization then, from some point on, usually after very few Lagrange multipliers
update the approximation for the primal minimizer xs is in the Newton area for the
next minimizer xsC1.

Therefore it takes few and, from some point on, only one Newton step to find the
next primal approximation and update the Lagrange multipliers.

This phenomenon is called—the “hot” start (see [46]). The neighborhood of the
solution where the “hot” start occurs has been characterized in [38] and observed in
[5, 10, 25, 41].

It follows from Remark 5 that, under standard second order optimality condition,
each Lagrange multipliers update shrinks the distance between the current and the
optimal solution by a factor, which can be made as small as one wants by increasing
k > 0.
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In contrast to SUMT the NR methods requires much less computational effort
per digit of accuracy at the end of the process then at the beginning.

Therefore NR methods is used when high accuracy needed (see, for example,
[1]).

One of the most important features of NR methods is their numerical stability. It
is due to the stability of the Newton’s area, which does not shrink to a point in the
final phase. Therefore one of the most reliable NLP solver PENNON is based on
NR methods (see [32–34]).

The NR method with truncated MBF transformation has been widely used for
both testing the NLP software and solving real life problems (see [1, 5, 10, 25, 32–
34, 38, 41]). The numerical results obtained strongly support the theory, including
the “hot” start phenomenon.

The NR as well as LT are primal exterior points methods. Their dual equivalence
are interior points methods.

In particular, the LT with MBF transform  .t/ D ln.t C 1/ leads to the interior
prox with Bregman distance, which is based on the self-concordant MBF kernel
'.s/ D � �.s/ D � ln sC s � 1. Application of this LT for LP calculations leads
to Dikin’s type interior point method for the dual LP. It establishes, eventually, the
remarkable connection between exterior and interior point methods (see [37, 49]).

On the other hand, the LEINV is in the heart of the SC theory—one of the most
beautiful chapters of the modern optimization.

Although the Legendre Transformation was introduced more than 200 years
ago, we saw that LEID and LEINV are still critical in modern optimization both
constrained and unconstrained.
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