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Abstract

The cancer cells obtain their invasion potential not only by genetic
mutations, but also by changing their cellular biophysical and biome-
chanical features and adapting to the surrounding microenvironments.
The extracellular matrix, as a crucial component of the tumor microen-
vironment, provides the mechanical support for the tissue, mediates
the cell-microenvironment interactions, and plays a key role in cancer
cell invasion. The biomechanics of the extracellular matrix, particularly
collagen, have been extensively studied in the biomechanics community.
Cell migration has also enjoyed much attention from both the experimental
and modeling efforts. However, the detailed mechanistic understanding of
tumor cell-ECM interactions, especially during cancer invasion, has been
unclear. This chapter reviews the recent advances in the studies of ECM
biomechanics, cell migration, and cell-ECM interactions in the context of
cancer invasion.

Keywords

Extracellular matrix • Cell-ECM interactions • Cell migration •
Mathematical models • Collagen • Mechanotransduction • Cancer
invasion

4.1 Introduction

The tumor microenvironment is created by
proliferating tumor cells and dominated by
tumor-induced interactions [112]. It has been
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well accepted that the tumor microenvironment
plays a significant role in disease progression,
but the precise function of each constituent
remains unclear. The tissue microenvironment
of a developing tumor can be broken down into
three categories: the biological, the chemical, and
the biophysical/biomechanical. The biological
environment is comprised of the cellular
constituents that surround the malignant cancer
cells. A variety of infiltrating immune cells
[112], cancer-associated fibroblasts [100], and
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angiogenic endothelial cells [110] perform
critical functions in sustaining cell proliferation,
evading growth suppressors, promoting survival,
activating invasion and metastasis, as well
as reprogramming energy metabolism. The
chemical environment refers to the abnormal
distribution of oxygen, nutrients, wastes, and
cytokines, as well as many growth factors and
inhibitors. For example, excess growth of the
tumor cells leads to a hypoxic environment [55],
elevated oxidative stress [22], and consequently,
the accumulation of lactic acid due to anaerobic
metabolism [44] and up-regulation growth factor
production (e.g., VEGF). The biophysical and
biomechanical aspect of the tumor is both the
physical and geometrical constraints from the
tissue structure, and the mechanical interactions
between the tumor and surrounding environment,
most importantly the extracellular matrix (ECM).
This category of the microenvironment has
only recently begun to receive an increased
level of attention, including studies on the
hydrostatic stress from interstitial fluid [12],
substrate topography [61, 66, 82], and the
biomechanics of the extracellular matrix [71]. In
this chapter, we focus on the emerging concepts
in the contribution of ECM heterogeneity and
remodeling to tumor growth and invasion.

It has been appreciated for some time that the
extracellular matrix (ECM) plays an important
role in all the stages of cancer development. In
breast cancer, dense breast tissue on mammogra-
phy is associated with increased collagen content.
Women with more than 75 % dense regions have
been shown to have an increased risk of breast
cancer by up to five fold in comparison to women
with less than 5 % density [13, 80]. Breast density
is common, heritable, and has been postulated to
account for up to one third of breast cancers [80].
In mouse models of breast cancer, it has been
shown that increasing either the density or the
crosslinking of collagen promotes invasiveness
and, to a lesser extent, the formation of breast
cancer [74, 87, 90], confirming the critical role
of extracellular matrix (ECM) in assisting tumor
progression.

Moving beyond correlative data and under-
standing the underlying mechanisms is difficult

using traditional experimentation alone, since
ECM affects many aspects of both host and tumor
cell behavior, such as migration, differentiation,
invasion, and proliferation. Furthermore, the
properties of ECM itself are also complex, with
diverse topographies and mechanical properties
possibly depending on density, alignment,
polymerization, and crosslinking. Because tumor
invasion and growth are emergent outcomes
of the complex interactions between cells and
ECM, computational and mathematical models
are becoming necessary tools to help dissect
this complexity. Here, we will review the recent
advances in the understanding of how cell-ECM
interactions help to regulate cancer invasion,
focusing on the biomechanical effects.

4.2 ECM in Cancer Invasion

The ECM, a fibrous macromolecular network
outside cells, plays a crucial role in tissue
environments, providing mechanical structures
[94] as well as promoting cell phenotype change
[75]. Through direct or indirect means, the ECM
regulates almost all cellular behavior and is
indispensable for developmental processes [78].
Recent experimental evidence has suggested
that cancer cells interact with ECM fibers
during invasion, condensing [106], remodeling
[106], and aligning [89] fibers. Using in vitro
mouse breast cancer models, Provenzano and
coworkers discovered three tumor-associated
collagen signatures (TACS): TACS-1 with dense
collagen near the tumor, TACS-2 with stretched
collagen fibers encasing the tumor, and TACS-3
with aligned collagen fibers normal to the tumor
boundary. Despite the fact that the mechanisms
are still unclear, it has been well accepted that
breast tumors are associated with dense breast
tissue, notably dense collagen [89]. At the early
stage of cancer, collagen fibers condense near
the tumor, interacted with growing cancer cells
(Fig. 4.1A). As cancer progresses, cancer cells
invade outward. Migrating cells supposedly
pull on the surrounding ECM fibers, producing
stretched fibers, but the mechanism for the
aligned fibers normal to the tumor boundary
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Fig. 4.1 The ECM in
cancer invasion.
Multiphoton microscopy
images of mouse breast
tumor: (a) dense collagen,
and (b) aligned collagen
fibers (From Provenzano
et al. [89] with
permission). Yellow outline
in (a) is a tumor boundary.
Single (c) and multiple (d)
U87 glioblastoma cells
modified collagen fiber
structures 10 h after gel
polymerization (From
Vader et al. [106] with
permission), cell nuclei are
green, and collagen fibers
are red. Multiphoton
intravital microscopy
images of a tip cell of
invasion into a mouse
dermis (e) and the
multicellular core (f)
(From Alexander et al. [3]
with permission)

is still unclear (Fig. 4.1B) [89]. A recent review
summarizes remodeled ECM as an anomaly that
deregulates behavior of stromal cells, facilitates
tumor angiogenesis and inflammation, and leads
to a tumorigenic microenvironment [79].

The remodeling of collagen fibers by invasive
cancer cells has also been observed in vitro,
where collagen fibers condense near single
glioblastoma cells (Fig. 4.1C) and aligned
fiber tracks appear between multiple migrating
glioblastoma cells (Fig. 4.1D) [106]. Cancer
invasion in vivo is more complicated. Using
intravital microscopy, Alexander et al. [3]
observed melanoma cells invading into the mouse
dermis. They suggested that heterogeneous
connective tissue, in particular the porous 3D
ECM network, provides a guidance or track

for invasive cancer cells (Fig. 4.1E). They also
observed that, in addition to individual migrating
cells, cancer cells often invade collectively as a
multicellular unit with cell-cell junctions retained
[37]. This suggests that the leader cell searches
for a pore space in the ECM fiber network and
squeezes itself through the space, whereas the
following cells collectively invade using the track
(Fig. 4.1F) [3].

Both in vitro and in vivo evidence shows
substantial ECM remodeling associated with pro-
liferating and invading cancer cells. However, be-
cause of the complexity of the microenvironment,
many other factors could potentially contribute
to ECM remodeling, including tumor associated
fibroblasts [100] that can produce or degrade
the ECM. In order to understand how mechan-
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Fig. 4.2 Computational models of ECM. A two-
dimensional ECM fiber model showing configurations
upon anisotropic contraction from (a) a single cell and
(b) two cells (From Abhilash et al. [1] with permission).
A three-dimensional elastic bead-spring fiber network
model for random (c), and pre-aligned structure (d) Black

lines are fibers, and red lines are crosslinkers. The residual
stress distribution for a random fiber network upon a shear
strain (e) and a local box displacement at the center of the
fiber network, mimicking a local deformation imposed by
a migrating cell (f) (From Lee et al. [71] with permission)

ical cell-ECM interactions contribute to the re-
modeling, theoretical and computational models
have been developed to further investigate the
mechanical properties of ECM fibers and their
interactions with cells. A two-dimensional (2D)
discrete fiber network model using the finite ele-
ment method simulated ECM fiber remodeling by
contractile force from a single cell and between
two cells [1]. Anisotropic contractile forces pro-
duce ECM fiber patterns (Fig. 4.2a, b) resembling
the experimental observations [1]. More recently,
a three-dimensional (3D) elastic fiber network
model using a bead-and-spring fiber representa-
tion with elastic crosslinking simulated tensile
and shear tests for random and aligned fiber
networks [71] (Fig. 4.2c, d). Their simulations
show that aligned fiber network structure is stiffer
than the random network, while both structures
showed nonlinear strain-stiffening. The stress-
strain curve of a random fiber network illustrates
how the matrix responds to external strain. Upon
small strain, the network first responds with min-
imal stress, like a fluid. As the external strain
increases, the stress increases slowly until the
strain reaches about 10 %, when the fibers start
to align. Between 10 and 30 % strain, the stress

of the fiber network increases linearly, indicating
that the network behaves like an elastic material.
At 30 % strain, the fiber alignment reaches 70 %
[93], after which the fibers will be stretched to
show a much stiffer bulk response. The residual
stress distributions, depicted as force vectors,
after a shear test and a local displacement showed
the nonaffine deformation of the network and the
accumulation of stress at the boundary of dis-
placement (Fig. 4.2e, f). Feng et al. [32] explored
the role of fiber alignment in a fiber network
using a Landau-type theory for the nonlinear
elasticity with the order parameter taking into
account the kinematic order of fibers. Comparing
the theory and simulation of a disordered lattice
model, they concluded that the nonlinear elastic
behavior of biopolymer gels arises from strain-
induced fiber alignment, suggesting that it ex-
plained contact guidance of cell motility.

4.3 Cell-ECM Interactions

Regulation of cell motility and invasiveness in
the ECM is complex. On one hand, deposition
of fibrillar collagen appears to promote tumor
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cell motility by providing one-dimensional or
two-dimensional “tracks” for cell movement [31,
38]. Further crosslinking of collagen fibrils by
enzymes such as lysyl oxidase may increase the
alignment and rigidity of those tracks, aiding cell
invasiveness [2, 74]. Increasing collagen density
may also inhibit cell migration and require prote-
olytic activity to allow tumor cell migration [113,
115]. On the other hand, cellular machinery that
recognizes not only the biochemical diversity of
the ECM, but also its physical and topographical
characteristics, such as rigidity, dimensionality
and ligand spacing is critical for the response of
cells to ECM.

It has been increasing clear that the cellular
response to environmental signaling goes far be-
yond the ability of chemically sensing specific
ECM ligands and encompass a wide range of
physical cues and the adhesive interface [47].
More attempts on understanding cell migration
during tumor invasion are focusing on the inter-
play of multiscale mechanotransduction, which
is comprised of how the cell sense and react
to internally generated and externally applied
signals [45]. Current understanding of the biome-
chanics of cell-matrix interactions is based pri-
marily on in vitro studies of the cell leading
edge of migration (focal adhesion and membrane
remodeling), and intra-cellular cytoskeletal ac-
tivities (actin protrusion, actomyosin contraction,
and cell motility signaling pathway). All these
elements need to work in concert to regulate cell
migration speed, directionality, and cell migra-
tion plasticity. We discuss these elements of cell
motility below.

4.3.1 Focal Adhesion

Focal adhesions are integrin-based structures that
mediate strong cell-substrate adhesion and trans-
mit information between the extracellular matrix
and the cytoplasm [46, 48]. During the formation
of focal adhesion, a subset of adhesion compo-
nents with actin nucleates the nascent adhesion,
which is stabilized by its association with integrin
to form stable focal adhesion assembly [70, 72,
98]. Increasing the strength and longevity of inte-

grin binding and integrin clustering is a crucial
step in this adhesion process. Active integrin
complexes promote recruitment of cytoskeletal
components, activate signaling molecules, and
enhance adhesive force [23]. In particular, inte-
grin activation regulates microtubule dynamics
and helps to stabilize microtubules at the cell
cortex [14]. Integrins connect the ECM to the cy-
toskeleton and provide cells with mechanical an-
chorages and signaling platforms. At the molecu-
lar level, force-induced strengthening of cell ad-
hesion [4, 19, 42] has been explained in terms of
recruitment of integrins and cytoskeletal proteins
[92] and/or ligand-integrin catch bonds [39]. Fur-
thermore, cyclic mechanical reinforcement [68]
is found to be a more effective regulatory mech-
anism than the catch bond, as it prolongs the
bond lifetime for fibronectin and integrin-’5“1

[28]. While the short-lived integrin-ligand bonds
may allow the cell to rapidly explore its en-
vironment, the long-lived integrin-ligand bonds
are critical to adhesion maturation and down-
stream signaling, which takes tens of seconds
to minutes [42]. The mechanically reinforced
ligand-integrin bonds enable nascent adhesion
to be stabilized by myosin-generated contractile
forces.

Live-cell microscopy studies reveal four main
stages in the “life cycle” of integrin-mediated ad-
hesions, including nascent adhesions, focal com-
plexes, focal adhesions, and fibrillar adhesions
[116]. Nascent adhesions are submicron-sized,
and are barely visible by means of ordinary flu-
orescence microscopy. The process of generating
focal complexes is on a timescale of seconds and
involves only a small number of integrin that trig-
gers actin polymerization [119]. Measurements
of mechanical tension across vinculin, a protein
that connects integrins to actin filaments, also
showed that vinculin recruitment to focal adhe-
sions and force transmission to vinculin are reg-
ulated separately [49]. The subsequent strength-
ening of adhesions through myosin pulling is
believed to lead to the recruitment of additional
adhesive proteins, which promotes the growth
of larger focal complexes. The growth processes
depend on actomyosin-based stress fibers and
also require the stress fibers to serve as physical
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Fig. 4.3 Molecular architecture of cell-ECM interactions centered around focal adhesion (From Wehrle-Haller [109]
with permission)

contractile anchors [83]. The transformation of
one form of adhesion into another is tightly regu-
lated by the cellular signaling system and is also
mediated by cues from ECM and intracellular
structures (Fig. 4.3).

Both ECM rigidity and ligand spacing have
been found to influence focal adhesion, stress
fiber assembly, cell spreading, cell migration
speed, and adhesive forces [60]. Adhesive area
is also found to strongly modulate adhesion
strength, integrin binding, and vinculin and
talin recruitment [43]. Interestingly, cells cannot
integrate signals from integrin-ligand complexes
spaced more than 58 nm from each other, as
demonstrated in experiments of cells sitting on
fibronectin nano-islands within non-adhesive
background [16]. The minimal area of integrin-
fibronectin clusters required for stable focal
adhesion assembly and force transmission is not a
predetermined value; it arises dynamically from
the interaction between pathways controlling
adhesive force, cytoskeletal tension, and the
structural linkage that transmits these forces
[23, 81].

4.3.2 Intracellular Mechanical
Structures

The intracellular mechanical structures that play
a key role in cell migration include actin micro-
filaments, intermediate filaments, lamin, nucle-
oskeleton and cytoskeleton linker, microtubules,
and cell nucleus. The latter adds an additional
layer of mechanical stability because of its sig-
nificant stiffness [25, 50] and the possibility to
physically divide the cytoplasm into forward and
rear compartments [88]. These structures can be
altered during cancer progression [9]; e.g., cell
nucleus deformation can be a function of malig-
nancy [27, 40].

Actin microfilaments provide the largest con-
tribution to cell body stiffness when probed at
adhesion sites [10, 11, 42, 58]. They are orga-
nized into different structures, including actin
bundles and stress fibers. They stabilize cell ar-
chitecture, including the formation of lamellipo-
dia and filopodia, which play important roles
in cell motility [57, 108]. Actin participates as
an internal stabilizer and a dynamic mechanical
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structure in cells for migration and mechanosens-
ing [9]. The inherent elastic features and the
myosin-mediated contractility of actin fibers [10,
42, 59] and the linkage to ECM via focal adhesion
[42, 57] together regulate cell-ECM interaction.

As the load–bearing element in the cell [59],
the microtubule network provides internal struc-
tural support while contributing to the polariza-
tion and initiation of cell migration [64, 101].
The microtubules allowing the cell to polarize
in response to ECM cues contribute to spatial
organization and participate in initiating cell mi-
gration [9]. Large scale disruption of the micro-
tubules has dramatic mechanical consequences
on cell stiffness [10]. During cell migration, the
microtubule depolymerization and the inhibition
of the microtubule-associated molecular motors
can effectively impair cell motility [63]. Focal
adhesion is found to be necessary for the micro-
tubule depolymerization and the microtubules are
also required for focal adhesion disassembly and
regulation [52, 62].

Intermediate filaments are the most diverse
family of cytoskeletal components that exist as
associated effectors of the cytoskeletal frame-
work through connections with actin and the
microtubules. The overexpression of intermediate
filament proteins during transformation process
is notably connected to carcinomas [21]. In most
epithelia cells, intermediate filaments span the
cell cortex and wind around the nucleus to form
an interconnected network that provides a contin-
uous link between focal adhesions, cell-cell ad-
hesions and the nucleus through the linker of nu-
cleoskeleton and cytoskeleton complex [26, 77].

The cell nucleus is the largest and the stiffest
organelle with the ability to affect cell migration
through nucleocytoskeletal connections [9]. The
nucleoskeleton links directly to the cytoplasmic
cytoskeleton through the linkers that connects
the lamin network in the nucleus to actin and
intermediate filaments [20]. Functionally, the nu-
cleus sustains global deformation and changes
in its sub-nuclear spatial organization when the
cell is subjected to mechanical stress, indicat-
ing that the nucleus is also a mechanosensitive
element participating in cell-ECM interactions.
The features of the nucleus regulate cell migra-

tion, but the exact mechanisms are not clear.
However, it has been found that the nucleus
physically divides the cytoplasm into forward
and rear pressure compartments when a human
fibroblast migrates through a 3D ECM [88]. This
finding suggests that the nucleus can act as a pis-
ton to increase the hydrostatic pressure between
the nucleus and the leading edge of the cell in
order to drive lamellipodia-independent 3D cell
migration.

4.3.3 Cell Membrane Remodeling
andMechanotransduction
Signaling Network

Cell membrane tension together with the pressure
generated by intra-cellular structures and the fo-
cal adhesion strength are the forces that define
the movement of cell membrane. The contact
angle between substrate and membrane has been
found to correlate with the load on actin polymer-
ization and cell protrusion rate [41]. This result
emphasizes the fundamental importance of mem-
brane configuration for cellular force balance and
the subcellular scale biophysical dynamics. In a
model trying to explain the cell morphology of
slime mold Dictyostelium during its chemotactic
migration, an analogy was drawn between the
interaction of pushing microtubules with the sur-
face tension of the plasma membrane and the
Marangoni effect that generates the tear drops of
wine-covered glass (Fig. 4.4a) [97]. The protru-
sion results from a dynamic balance between the
outward push from cytoskeletal fibers and mem-
brane surface tension, while the wine tear pattern
arises from the balance between gravity and the
surface tension gradient between alcohol and wa-
ter. Furthermore, the recent biochemical under-
standing of reaction-diffusion inside the cell has
led to the similar results of cell morphology. For
chemotactic cell migration, the local excitation
global inhibition (LEGI) model [97] (Fig. 4.4)
and its variations were proposed to explain the
signaling responses of cells exposed to gradients
of chemoattractant [86]. The response to a stim-
ulus is mediated through the balance between a
fast, local excitation and a slower, global inhibi-
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Fig. 4.4 Signaling, cytoskeletal dynamics, and cell
shape. (a) The interaction of pushing microtubules
(\textitfred arrowsg) with the surface tension (blue ar-
rows) of the plasma membrane (left) resembles the
balance of gravitational pull (red arrow) and alcohol-
dependent surface tension (blue arrows) along the edge
of a wine-covered glass (right). (b) Activator-inhibitor
system of an autocatalytically activated RTK. The high
curvature at the tip of a protrusion facilitates initial
RTK activation by effectively exposing the receptors to
more extracellular space. The faster diffusing phosphatase
limits spreading of autocatalytic activation by lateral in-
hibition. (c) (Left) The LEGI-BEN model: in the local
excitation global inhibition (LEGI) model, a stimulus
(S) turns on excitation (E) and inhibition (I) processes

that act in parallel on a response regulator RR, which
activates the biased excitable network (BEN), consisting
of autocatalytic activity (X) that activates its own in-
hibitor (Y). (Right) Activity of X at different times after
initial exposure to an extracellular chemotactic gradient
(From Schmick and Bastiaens [97] with permission).
(d) Interactions among the components of signaling path-
ways involved in the MAT/AMT transitions of cells in
a 3D environment. The inhibition of the activity of the
proteins highlighted in red was shown to trigger amoeboid
to mesenchymal transitions. Inactivation of the proteins
depicted in green induces a conversion from the mes-
enchymal to the amoeboid mode of invasiveness (From
Pankova et al. [85] with permission)
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tion process, both of which are controlled by re-
ceptor occupancy [30, 69, 73]. When stimulated
by uniform concentration of chemoattractant, the
faster local excitation rises with receptor occu-
pancy, leading to an increase in the response. As
the slower inhibition rises, the response subsides,
ensuring perfect adaptation. When in a gradient,
local excitation mirrors receptor occupancy, and
hence, chemoattractant concentration gradients.
The inhibition process integrates the global sig-
nal, leading to an inhibitory signal that is equiva-
lent to the average level of receptor occupancy in
the cell. This model has satisfactorily explained
Ras, PTEN and PI3K activation during amoeboid
Dictyostelium cell migration [118]. Thus far the
LEGI models seem most promising in providing
a plausible mechanism for chemotactic migra-
tion, possibly applicable to more generic cell
migration as well.

Many studies of the molecular mechanisms of
cell motility signaling pathways have focused on
the Rho family of small GTPases that regulate the
cytoskeleton-dependent processes. The complex-
ity of the interactions among the Rho family of
proteins, their regulators, and effectors (Fig. 4.4d)
is challenging to both experimental and mathe-
matical studies. Integrating the cell motility path-
way to mechanotransduction network alone is
difficult. Moreover, the spatiotemporal reaction-
diffusion dynamics of the signaling molecules in
the cytosol and on cell membrane are thought
to be the key determinants of cell migration
plasticity [85].

4.3.4 Cell MigrationModes

Cell migration plasticity refers to the cell’s ability
to switch between different cell migration modes.
The migration modes were originally classified
based on the cell morphology alone, but have
since been extended to describe the multi-scale
properties of cell migration, including cell shape,
cell migration speed, and organization of intracel-
lular structures. The main categories are individ-
ual (amoeboid and mesenchymal), and collective
(as cohesive multicellular units) migration [34].
The amoeboid migration refers to the movement

of round or ellipsoid cells that lack mature fo-
cal adhesions and stress fibers [38, 85] with
blebby membrane dynamics and faster migration
speed. Mesenchymal migration is characterized
by a spindle-like elongated cell shape, actin-rich
filopodia and more focalized cell–matrix inter-
actions; mesenchymal movement resembles the
migration of a fibroblast [103], whereby the cell
entangles with the ECM [38].

Individual cell migration modes differ depend-
ing on cell type, developmental stage, local envi-
ronment, and disease state [111]. Cell migration
mode can be dynamically changed by the strength
of adhesion, physical confinement (e.g., squeezed
between two surfaces), contractility, and chemi-
cal cues [76, 95]. With low adhesion and strong
confinement, slow mesenchymal cells can switch
to fast amoeboid migration, suggesting that no
specific genetic alteration is necessary for tu-
mor cells to escape the primary tumors [29]. In
vitro evidence shows that, in confined 3D ECM,
the intrinsic fluctuation in cortical contraction is
sufficient to trigger the switch from embryonic
progenitor cells to prototypic amoeboid migra-
tion mode [95]. Cancer cell migration persis-
tence and local membrane protrusion persistence
have been measured in vivo [102] (Fig. 4.5a).
However, because of the lack of local measure-
ments of ECM dynamics concurrently, cellular
and subcellular imaging has not been able to
offer comprehensive understanding of the cell-
ECM interaction. Recent advances in combina-
tion of live-cell imaging, molecular manipulation
and force measurement have revealed multiscale
cell migration details with extraordinary preci-
sion that allowed for mechanistic mathematical
modeling. An ideal 2D experimental cell migra-
tion model has been the fish epithelial kerato-
cytes for investigating cell shape determination
[6, 65]. Individual keratocytes maintain nearly
constant shape, speed, and direction over many
cell lengths of migration, with considerable het-
erogeneity within a population of keratocyte [65]
(Fig. 4.5b). Several mathematical models have
been developed to take advantage of such data
and explained the detailed intracellular signaling
and mechanical interactions leading to the spe-
cific cell shape during migration (Fig. 4.5c, d).



Fig. 4.5 Cell shape and membrane dynamics during mi-
gration. (a) Kymographs of an HT1080 cell on tissue
culture-treated dishes showing membrane protrusion dy-
namics (From Sung et al. [102] with permission). (b)
Phase contrast images of keratocytes crawling at low
(left), intermediate (center), and high (right) adhesion

strengths (From Barnhart et al. [6] with permission).
(c) Simulations of membrane dynamics for keratocyte
migration: membrane flow, velocity and tension (From
Fogelson and Mogilner [33] with permission). (d) Steady-
state maps of actin flow and substrate stress for keratocyte
migration (From Shao et al. [99] with permission)
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Collective cell migration plays a crucial role in
many biological processes, including embryonic
development, wound healing, as well as cancer
invasion and metastasis [35, 36]. During col-
lectively cell migration, the enhanced migration
is led by a subset of “leader cells” that extend
filopodia at the leading edge of the cell clus-
ter [105]. The “invasion-competent” malignant
cells induced the collective invasion of otherwise
“invasion incompetent” epithelial cells, and that
these two cell types consistently exhibited dis-
tinct leader and follower roles during invasion.
Analysis of extracellular matrix (ECM) microar-
chitecture revealed that malignant cell invasion
was accompanied by extensive ECM remodeling
including matrix alignment and proteolytic track
making [15].

Physical characteristics of ECM strongly
modulate cell migration by outside-in signaling
from microenvironment, while morphological
properties of cell and intracellular dynamics
feedback to ECM by inside-out signaling [91].
Current knowledge about the focal adhesion, cell
migration, mechano-signaling, and cytoskeletal
function is derived primarily from studies on
planar 2D tissue culture substrates. The 2D
substrate may induce artificial polarity between
the basal and apical surfaces of the normally
nonpolar cells, e.g., fibroblastic cells [24]. It also
may exclude ECM-dependent regulators of 3D
cell migration, including ECM porosity, ECM
compliance, collagen fiber size, and collagen
concentration [114]. The microarchitecture of
3D scaffolds has been found to influence cell
migration behavior via junction interactions [54].
The pore size of collagen-glycosaminoglycan
scaffolds influences the fibroblast migration:
the migration speed decreases as pore size
increases across a range from 90 to 150 �m
[84]. Importantly, ECM density, stiffness and
alignment also contributes to cell migration
speed and persistence differently; ECM
density and stiffness influences cell speed, but
ECM alignment does not change cell speed;
instead, alignment increases cell migration
persistence [93].

4.4 2D Cell MigrationModels

Computational and mathematical modeling
has benefited from the availability of new
data with combination of live-cell imaging,
molecular manipulation and force measurement.
To date, most models in cell-ECM interactions
focus on cell shape and cell motility. These
models have treated implicit or explicit focal-
adhesion, motility related diffusion-reaction of
molecules, cytoskeletal dynamics, intracellular
flows, and cell morphology related protrusion
and contraction.

A rule-based model was developed for cell
migration, in which the underlying mechano-
chemical events are incorporated implicitly us-
ing rules describing the evolution of cell shapes
and regulatory signals [96]. The main rules are
about the local/global feedbacks and determin-
istic/stochastic signaling regulations. A cell is
modeled using a collection of perimeter points
and a center. The perimeter points can move ac-
cording to the balance between protrusion signal
and retraction signal. The local protrusion signal
propagates and decays, with a stochastic positive
feedback loop that accounts for both “local stim-
ulation” and generation of random noises. Focal
adhesion is a probabilistic event with a fixed
average halftime. This simple model was capable
of generating the dynamic shapes and persistence
of amoeboid cells migration without the chemo-
attractants.

Using the keratocyte migration as a model, a
whole series of mathematical models explained
the keratocyte cell shape [5, 6, 32, 94, 99].
Actin fibers polymerize pushing on the cell
membrane from within, generating membrane
tension that rapidly equilibrates. The membrane
tension in turn exerts a constant force on the
actin network. The spatiotemporal dynamics
of adhesion-dependent actin polymerization,
retrograde flow, myosin distribution, and
traction forces together provide a more
complete understanding of distribution of cell
motility molecules and cell shape [33, 56]
(Fig. 4.5c).
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As the cell morphology adapts to the local
forces from focal adhesion, actin flow, and
myosin activities, the macromolecular distribu-
tion inside the cell presents a moving boundary
reaction-diffusion problem for modeling. Be-
cause of the computational complexity, few mod-
els have integrated or implemented this problem.
A recent model used the phase-field method to
integrate the adhesion dynamics with the dynam-
ics of the actin filaments modeled as a viscous
network, and to solve for the moving boundary
with membrane tension. The model included a
reaction-diffusion model for the actin-myosin
machinery and discrete adhesion sites that can be
in a “gripping” or “slipping” mode. This model
suggested the pattern of the actin flow inside the
cell, the cell velocity, and the cell morphology
are determined by the integration of actin
polymerization, myosin contraction, adhesion
forces, and membrane forces (Fig. 4.5d) [99].

The interaction between migrating cells and
the ECM has also become a focal point of
modeling in the past decade. In the context
of angiogenesis, Bauer et al. developed a 2D
model based on the cellular Potts model to
study the effects of ECM topography on the
collective migration morphology of endothelial
cells [7]. They varied the density and alignment
of the matrix fibers to simulate different tissue
environments and to explore the possibility of
manipulating the extracellular matrix to achieve
pro- and anti-angiogenic effects. The ECM in
this model only provided contact guidance,
without mechanical interactions with the cells.
Van Oers et al. coupled a 2D cellular Potts
model with a finite element model for the ECM
substrate, to simulate the mechanical interaction
between cells and the ECM [107]. They showed
that the resulting matrix strain could in turn
mediate the interaction between cells and
promote collective migration (Fig. 4.6a). The
effect of ECM geometry on cell migration mode
determination was studied by Tozluoglu et al.
[104], using a 2D hybrid agent-based/finite
element model of cell blebbing migration.
The model integrated actin-polymerization-
based protrusion, actomyosin contractility,
and membrane blebbing due to actin-plasma

membrane linkage, cell-ECM adhesion and
varied matrix geometries (Fig. 4.6d–f) [104].
Actomyosin cortex and cell membrane were
agents, with local levels of actin cortex density,
myosin concentration, cortex-membrane linker
proteins recorded at each agent. The model
predicted the optimal migration strategies with
different matrix geometries.

4.5 3D Cell-ECMModel

Most cells encounter a 3D matrix environment
during processes such as wound healing or cancer
metastasis. Increasing evidence from literature
suggests that 2D ECM models are inherently lim-
ited in their scope to capture the ability of cells to
form adhesions in three dimensions. Therefore, it
is important that we use 3D systems to study cell-
matrix interactions to gain more physiologically-
relevant insights. The 3D matrix structure, focal
adhesion, cell signaling, and cell morphology are
more complex. But with the advance of imaging
tools, such as multi-photon microscopy for imag-
ing the ECM, and lattice light-sheet microscopy
to image both cell and ECM with very high
spatial and temporal resolutions [17], the hope
is high for a more complete understanding of 3D
cell-ECM interactions in the near future.

A phenomenological 3D model of single cell
migration through cell-ECM interaction is devel-
oped taking into account the ECM deposition,
cell protrusion, adhesion detachment and MMP
activities [18] [53]. In this model, cells can de-
grade, deposit, or pull local fibers, depending on
the fiber density around each cell. The cells can
also move within the 3D matrix. The model pro-
duced results consistent with the current under-
standing: in low density environments, cells de-
posit more collagen to increase fibril fraction; in
higher density environments, the less invasive cell
line reduced the fibril fraction as compared to the
highly invasive phenotype. Riching et al. showed
another 3D cell-ECM interaction model (in the
supporting materials in [93]). In this model, the
cells migrate in 2D but interact with a 3D ECM
environment they are embeded in. The cells send
out protrusion vectors around their perimeters,
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Fig. 4.6 Simulated cell-ECM interaction. (a) Traction
forces (black arrow) and resulting matrix strains (blue
line segments) generated in the hybrid cellular Potts and
finite element model (From van Oers et al. [107] with
permission). Cell invasion into ECM fiber network with
pore sizes of (b) 0.5 and (c) 1.5 �m (From Kim et al.
[67] with permission). Simulations of cell moving through

different matrix geometries show different optimal migra-
tion strategies. (d) Cell crawling on a surface. (e) Actin-
protrusion-based solution within confined continuous en-
vironments. (f) Blebbing-driven solution for cells with
50 % more overall contractility (From Tozluoglu [104]
with permission)

the magnitudes of these protrusion vectors are
determined by its interaction with the local matrix
stiffness, alignment and ligand density. Mechan-
ics was only considered implicitly through the
coefficient of matrix rigidity. The simple cell-
ECM model was able to qualitatively agree with
experiments in concluding that matrix alignment
does not change cell speed but increases cell
migration persistence [93].

Borau et al. [8] developed a probabilistic,
cell voxel-based finite element for 3D cell-ECM
interactions in a microfluidic environment. A cell
is a collection of voxels, where stress, chemical
concentration and fluid flow surrounding the cell
drives cell migration by adding and removing
voxels. Cell contains cortex, cytoplasm and nu-
cleus. The nucleus is an elastic material that only
plays a passive role during cell migration. The
cortex and cytoplasm contractility depends on
the mechanosensing of ECM stiffness, which is
modeled implicitly. It provides a methodology for
testing and designing experiments in microfluidic
systems.

Kim et al. [67] reported a more biomechani-
cally realistic cell-ECM interaction model, which

accounted for intracellular mechanics of cellular
and nuclear membranes, contractile actin stress
fibers, focal adhesion dynamics, structural me-
chanics of ECM fiber networks, and reaction-
diffusion mass transfers of seven biochemical
concentrations associated with chemotaxis, pro-
teolysis, haptotaxis, and degradation in ECM.
Simulations of cell invasion into fiber networks
with various pore sizes, such as 0.5 �m pore
size (Fig. 4.6b) and 1.5 �m pore size (Fig. 4.6c),
show that filopodia invaded more deeply in the
large pore ECM fibers [67]. The results were
successfully compared with experiments of 3D
HUVEC migration for ECMs with different pore
sizes and stiffness.

4.6 Modeling Collective
Behavior of Cell Migration

Comparing to single cell modeling, less effort
has been directed towards understanding how
clusters of cells migrate collectively through
microenvironments. A few models have been
developed to explore how the cell-cell and cell-
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ECM interactions influence collective behavior of
migrating cells. Models at this scale are usually
complicated, but computationally less expensive
than single cell level, because most cell details
have been coarse-grained.

Most multi-cellular models contain three
parts: single agent with simple properties
to represent a cell, cell-cell adhesion, and
heterogeneous environment. Guven et al. [51]
developed a coarse-grained stochastic model of
Dictyostelium cells using 2D self-propelled soft
disks to study the influence of signal relay. Wynn
et al. [117] developed an agent-based cell model
that treats point-like cells with biased migration
directionality and cell-ECM interactions, and
modeled the leader-follower dynamic patterns
of collective migration in neural crest cells. In
this model the ECM is a passive substrate that
can be degraded by cells to form tracks of less
resistance. Zaritsky et al. [120] proposed a new
analytical framework to explicitly detect and
quantify cell clusters that move coordinately in a
monolayer, and reported the finding of waves
of coordinated migration in wound healing
experiments. They explained the wave by Met
activation with hepatocyte growth factor or
scatter factor. The data and model suggested that
collective migration emerges from spatial and
temporal accumulation and directionality, which
can be a basic cellular mechanism for long-term
cell guidance during collective cell migration.

4.7 Summary

Cancer cell invasion into ECM is the first step of
metastasis, the main difficulty in treating cancer.
Biomechanical experiments and simulations of
the ECM, cell, and interactions between the cell
and ECM are necessary to better understand the
invasion behavior of cancer cells. Recent tech-
nologies in microscopy, biomechanical rheology,
image processing, and 2D and 3D computational
modeling shed light on cancer invasion. We high-
lighted recent studies on tumor microenviron-
ment, especially ECM, cell, and their interaction.

The importance of the mechanics of ECM
and cell-ECM interactions in regulating and con-

tributing to cancer invasion has been increasingly
accepted. Moreover, it is necessary to combine
these understandings into a unified framework of
cancer invasion. The biophysical and biomechan-
ical aspects of the microenvironment should be
integrated with the biological and the biochemi-
cal aspects, to form a comprehensive description
of the tumor microenvironment. The integrated
understanding of the cell, ECM, and their interac-
tions is required to better predict cancer invasion
and possibly develop new tools to prevent or stop
cancer. The strong interplay between cancer cell
biology and the mechanical microenvironment
suggests new possibilities of regulation and ma-
nipulation of cell behavior to alter the outcome of
cancer.
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