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Abstract

Tumor vasculature, the blood vessel network supplying a growing tumor
with nutrients such as oxygen or glucose, is in many respects different
from the hierarchically organized arterio-venous blood vessel network
in normal tissues. Angiogenesis (the formation of new blood vessels),
vessel cooption (the integration of existing blood vessels into the tumor
vasculature), and vessel regression remodel the healthy vascular network
into a tumor-specific vasculature. Integrative models, based on detailed
experimental data and physical laws, implement, in silico, the complex
interplay of molecular pathways, cell proliferation, migration, and death,
tissue microenvironment, mechanical and hydrodynamic forces, and the
fine structure of the host tissue vasculature. With the help of computer
simulations high-precision information about blood flow patterns, inter-
stitial fluid flow, drug distribution, oxygen and nutrient distribution can
be obtained and a plethora of therapeutic protocols can be tested before
clinical trials. This chapter provides an overview over the current status
of computer simulations of vascular remodeling during tumor growth
including interstitial fluid flow, drug delivery, and oxygen supply within
the tumor. The model predictions are compared with experimental and
clinical data and a number of longstanding physiological paradigms
about tumor vasculature and intratumoral solute transport are critically
scrutinized.
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3.1 Introduction

One of the hallmarks of cancer is angiogenesis,
the formation of new blood vessels via sprouting,
which fuels tumor growth with additional nutri-
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ents [62]. Angiogenesis, vessel cooption (the in-
tegration of existing blood vessels into the tumor
vasculature), dilatation, and vessel regression re-
model the healthy vascular network of the host
into a tumor specific vasculature that is different
from the arterio-venous blood vessel network of
the host tissue [75]. Consequently blood flow,
oxygen and nutrient supply, and interstitial fluid
flow have tumor specific abnormalities [161]
that have dramatic consequences for anti-cancer
treatment: (a) tumor vasculature is chaotic, lack-
ing a hierarchical organization, and spatially in-
homogeneous comprising regions with low mi-
crovascular density (like a necrotic core). As a
result, severe hypoxia (deprivation from oxygen)
[66] can impede the effectiveness of radiation
and chemo therapies [58], and promote invasive
growth (migration of tumor cells and penetration
of tissue barriers). (b) Tumor vessel walls are
leaky, i.e. have a high permeability for blood
plasma, and a functioning lymphatic drainage
is absent in most malignant tumors, leading to
bulk flow of free water in the interstitial space,
denoted as interstitial fluid flow (IFF), and a
concomitantly elevated interstitial fluid pressure
(IFP) [75]. The resulting excessive extravasation
of liquid may release most drug prematurely,
leading to a retarded delivery into the tumor cen-
ter, especially in large tumor [74, 76, 81]. Indeed
high IFP is regarded as an obstacle in cancer ther-
apy [64, 102]. Therapeutic concepts like vessel
normalization via anti-angiogenic therapy have
been developed [77] that actually decrease IFP
and improve drug penetration in tumors [157].

However, a mechanistic understanding of vas-
cular network formation and various treatment
strategies is still lacking and calls for a quanti-
tative analysis of the underlying physics. Drug
delivery as well as oxygen supply are determined
by blood and interstitial fluid flow, for which
reason such an analysis must focus on the relation
between the intra- and extra-vascular transport
characteristics and the tumor vasculature mor-
phology. Moreover, the analysis must account of
the fact that tumor blood vessel networks emerge
from, and are connected to the normal, arterio-
venous, vasculature of the host.

In this chapter we review the current state of
mathematical modeling and simulation of vas-
cularized tumor growth and discuss predictions
made by our models for vascular morphology,
drug delivery and oxygenation. It is organized as
follows: The first section provides an overview
of the physiological basics of vascularized tu-
mor growth. It follows a section on obstacles
to treatment of cancer. In the subsequent model
part we review our work and the related liter-
ature, comprising models of vascular network
formation, tumor growth, interstitial fluid flow,
drug delivery and oxygenation. Then we discuss
the various predictions made, limitations of our
models, and finally provide an outlook to fu-
ture work. For further reading on our work, see
[11, 90, 165–169]

3.1.1 Physiological Basics

Normal vasculatures are organized in capillar-
ies, small vessels by which most of the solute
exchange of nutrients and wastes with blood
takes place, and in arterial and venous trees, re-
spectively. Capillaries are organized as homoge-
neously distributed dense network, the capillary
plexus. The walls of capillaries consist mostly of
endothelial cells (ECs). This network is supplied
by arterial and drained by adjacent arioles and
venules, respectively. Arterioles and venules join
into larger arteries and veins which eventually
join at the heart. Their walls recruit additional
cells such as pericytes and smooth muscle cells
for reinforcement and control over their diameter.
This vascular organization thus minimizes the
power required to drive blood and to simultane-
ously maintain the volume of circulated blood
[105]. Normally, maintenance of the vasculature
depends on a balance of pro-and antiangiogenic
factors such as blood flow and metabolic demand,
mediated by a complex biochemical signaling
network not yet fully understood. This system
adapts the microvascular density (MVD) to the
nutrient demand of tissue and regulates develop-
ment of blood vessels into vascular trees. Compo-
nents of this system have been studied (see below,
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in the context of tumors), however the big picture
is still elusive.

A solid tumor typically starts off as an avascu-
lar multicellular spheroid. It is initially formed,
when cells undergo mutations disabling their reg-
ulatory circuits for proliferation and apoptosis
(programmed cell death) allowing them to divide
an infinite number of times. After an initial phase
of exponential growth, the radius of a spheroid
in nutrient solution continues to grow linearly
[20, 39] since proliferation of tumor cells (TCs)
is restricted to a few cell layers behind the tumor-
tissue interface. Vascularized tumors also show
a linear growth regime [38, 67]. TCs beyond
an annular outer shell enter a quiescent state
due to nutrient and space restrictions or die off
(necrosis). Thus a necrotic core develops, and an
equilibrium between proliferation and death is
established, limiting the size of the spheroid to
approximately 1 mm3. We consider only oxygen
as representative of nutrients, which is a common
simplification in mathematical models, although
tumor metabolism depends on other nutrients and
waste products as well. Notably, TCs can switch
to a glucose-based metabolism, allowing them to
survive hypoxic conditions. Not all tumors start
as avascular spheres though. Some types, e.g.
glioma brain tumors and breast tumors, incor-
porate (coopt) the blood vessel network of the
host at the beginning of growth [68, 122]. In this
process, TCs preferably proliferate around blood
vessels, apparently while displacing or destroying
cells of normal tissue [37]. The ability to metas-
tasize may develop at a later point in time.

Oxygen in tissue has a high diffusion co-
efficient of ca. 2 mm2=s, but it is also bound
and consumed which leads to an approximately
exponential decrease of the concentration around
blood vessels. The range up to which the con-
centration decreases to zero is typically 100 �m
in tumors [25]. In normal tissues it lies between
50 �m (brain) and 150 �m (breast). This diffu-
sion range is thus a major determining factor
of the mean intercapillary distance required for
adequate oxygen supply. Neither normal cells nor
TCs remain viable beyond it. Normal cells as well
as tumor cells can respond to hypoxia by releas-
ing chemical compounds known as growthfactors

(GFs) which are essential mediator molecules of
angiogenic signals. VEGF is a well-known major
player [25, 26, 94, 101] but there are many more
with various function. They diffuse through tissue
where they bind to receptors at blood vessels
and collectively they loosen the cell layers of
vascular walls, and stimulate ECs to proliferate
and to migrate away from their parent vessel.
ECs follow GF gradients to the source of GF
(chemotaxis) trailed by more ECs that form a new
sprout [49, 108, 143]. This process is known as
angiogenesis. If the tip encounters another vessel
it will fuse with it and mature into a perfused
capillary. Otherwise the sprout retracts after some
time.

Hence, a hypoxic tumor spheroid might de-
velop a phenotype that enables pro-angiogenic
signaling by GFs in an effort to improve its
oxygen supply. Like diffusion of oxygen, the an-
giogenic signal has a finite range. The area where
neovascularization is visible in glioma [67] and
melanoma [38] is restricted to a 200 �m annular
shell around the invasive edge. However, in mi-
croscopy images of mammary carcinoma in mice,
increased branching and dilation is observed up
to ca. 1 mm from the edge [10, Fig.1]. Neovascu-
lature as well as preexisting vessels are coopted
when the tumor grows past them. For unknown
reasons, tumor vascular network formation is not
properly controlled. As a result, dense chaotic
vascular excrescence develops (s. Fig. 3.1b), that
is very unlike a well ordered normal capillary bed
(s. Fig. 3.1a). The additional vessel may provide
nutrients required for growth. However, they are
often dysfunctional, in some cases even hindering
growth [130].

A few 100 �m into the tumor interior, angio-
genesis stops and endothelial cells a switch to
circumferential growth leading to vaso-dilation.
Tumor vessels of Melanoma and Glioma tend
to dilate to a maximum radius of ca. 25 �m but
no further. Moreover, many vessels undergo a
process of regression, until eventual collapse of
the lumen and pinch off of blood flow [38, 68].
GFs produced in the tumor interior are partially
responsible for the concomitant detachment of
supporting cells from the vascular tube, but they
also promote ECs survival. Another crucial fac-
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Fig. 3.1 Depth-coded microscopy images of vascular
networks: (a) A normal capillary network with some sup-
plying and draining arterioles and venules, respectively.
Capillaries appear as thin straight segments, which is typ-
ical, for instance, for muscle tissue (Scale bar D 100 �m).
(b) Blood vessel network in a mammary carcinoma bear-
ing mouse (tumor location indicated by dashed circle).
Vascular remodeling is apparent in proximity of the tumor.

Numerous dilated, tortuous vessels proceed from a few
parent vessels toward the tumor (a). The tumor rim is
densely and chaotically vascularized due to excessive
branching. The vascular density drops dramatically into
the tumor, leaving large regions void of vessels (c, b;
scale bar = 1 mm) (Reprinted from [10] with permission.
Copyright 2011 James W. Baish et al.)

tor for survival is blood flow, where Angiopoi-
etins (Ang-1/2) among others act as regulatory
molecules [21, 53]. They are expressed by ECs
in reaction to the shear stress which is exerted
by the blood flow on the vessel wall [7]. Ang-2,
a negative regulator of angiogenesis, promoting
regression, is frequently overexpressed in tumors
[68]. ECs apparently switch from angiogenesis to
circumferential growth depending on the sensed
direction of the GF concentration gradient [143],
which is by the ephB4 guidance molecule [43].

Only few dilated vessels survive this thin-
ning process, leading to a very sparse network
of isolated vessels. Viable TCs remain as cuffs
around these vessels. Beyond the diffusion range
of oxygen, TCs die of hypoxia, whereupon large
necrotic regions emerge in the tumor interior.
Thus, a normal blood vessel network is progres-
sively transformed into a tumor specific vascula-
ture by the angiogenic activity that is mostly con-
fined to an area around the tumor edge. The result
is a compartmentalization into a ca. 200 �m wide
band around the periphery where the MVD is
elevated to ca. 1:5 times the baseline normal
tissue MVD. The MVD decreases sharply into the

tumor interior to approximately half of the MVD
of normal tissue [38,67]. Images of experimental
tumors are reprinted in Figs. 3.1 and 3.2. Quanti-
tative morphological data from [38] is reprinted
in Fig. 3.3.

Normally, only a small amount of blood
plasma leaks from blood vessels through
nanometer sized gaps between ECs whereupon
it becomes part of the interstitial fluid (IF).
IF is absorbed into lymphatic channels which
eventually feed the liquid back into the blood
stream. Leakiness of tumor vessels is caused
by huge gaps present in their walls due to
missing ECs [25] leaving holes of the size of
micrometers. The permeability of the vessel
walls therefore increased by two orders of
magnitude [83]. Moreover, tumors often lack
functional lymphatic vessels, although they can
induce lymphangiogenesis similar to regular
angiogenesis and can metastasize through
lymphatics in the tumor periphery [153]. The
lack of lymphatics as well as vascular hyper-
permeability lead to the phenomenon of elevated
interstitial fluid pressure (IFP), an elevation of the
hydrostatic pressure of the IF which approaches
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Fig. 3.2 Histological sections of rat glioma brain tu-
mors: (a–c) depict the progression of a tumor (viable tu-
mor cells stained red; endothelial cells stained black; scale
bar D 1 mm). Small 1-week tumors exhibit normal appear-
ing blood vessels. After two weeks, decreased density and
vaso-dilation are visible. In 4-week tumors, vessels are
mostly isolated and have cuffs of viable tumor cells around

them. Distal regions are necrotic. The tumor rim is densely
vascularized. (d–g) depicts regression of a blood vessel
with detachment of pericytes and smooth muscle cells
(black) from the vessel wall (brown) (Scale bar D 50 �m;
Reprinted from [68] with permission. Copyright 2005
American Association for the Advancement of Science)

the level of blood pressure [152]. The IFP in
the tumor interior is relatively homogeneous
at levels between 10 and 40 mmHg. Across
the tumor boundary it drops down to the
level of normal tissue where the IFP is zero
in good approximation. The interstitial fluid
flows through tissue like water or oil flows
through a porous medium, e.g. through rock.
In tissues, cells and ECM assume the role of the
medium. Consequently, IF flows predominantly
in radial direction out of the tumor spheroid.
Peak velocities between 0:1 and 0:2 �m/s were
measured near the boundary of a 1 cm sized
tumor [73]. Elsewhere, velocities are much lower
due to shallower IFP gradients. This may drive
TCs into the surrounding lymphatics and wash
out drug from the tumor.

3.1.2 Obstacles to Cancer
Treatment

This section reviews biophysically relevant ob-
stacles to treatment most of which are founded
in the peculiarities of tumor blood vessel net-
works. Current cancer-killing drugs have poor
selectivity, i.e. they are toxic to normal cells, too.
Therefore, it is not possible to simply increase
the dose to compensate for inadequacies of the
vasculature [102].

Since tumor vasculatures are heterogeneous,
one can find areas in tumors, so called hot-spots,
where the MVD is locally increased. The MVD
at hot-spots is used as indicator for malignancy
and tumor progression with varying success [38].
Therefore a solid understanding of the interac-
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Fig. 3.3 Experimental morphological data of human
melanoma in mouse models: The vessel network de-
velopment was followed during tumor growth from an
intradermal inoculation of 104 tumor cells until the tumor
reached 4–5 mm in diameter. At day 10, tumor growth
transitions to a linear regime, consistent the confinement
of proliferative activity to an annular shell behind the
invasive edge (a). (b–d) display data for different regions:
Tumor center; the tumor periphery – a 100 �m wide band
of tumor immediately adjacent to the invasive edge; per-
itumoral tissue – a 200 �m wide band of host connective
tissue immediately adjacent to the tumor periphery. After

15 days, MVD (b) and Vessel perimeters (c) assume
plateau values. Vessels are generally abnormally dilated,
and the MVD is high near the invasive edge whereas
it stays low in the tumor center. The tumor coopts the
dense peripheral vasculature and subsequently dilutes it.
Thus the activity of vascular remodeling moves with the
invasive edge. EC labeling index (d) is essentially the
percentage of proliferating endothelial cells (ECs), i.e. the
plot indicates angiogenic activity all across the tumor and
beyond (Reprinted from [38] with permission. Copyright
2002 John Wiley & Sons, Ltd)

tions between vascular network formation and
growth dynamics of the tumor spheroid is re-
quired.

The reasons for poor drug delivery are
manifold. In addition to premature release and
washout due to excessive extravasation, the
vasculature is sparse in large areas of the tumor
and therefore the efficacy of drugs depends on
the ability to penetrate tissue well. However
penetration is often poor, instead, strong drug
concentration gradients emerge around blood
vessels, and persist over long periods of time
[121]. Vascular normalization strategies can help
[80], but other approaches should be considered,
too, such as alteration of tissue permeability.

The discovery of tumor induced angiogenesis
[45], and VEGF, sparked the development of a
new type of treatment in which the vasculature is
targeted with angiogenesis suppressing agents to
deprive the tumor of nutrients. This is a so-called
anti-angiogenic therapy, today often used con-
comitantly to other measures, such as chemother-
apy. Vascular normalization is a more recent con-
cept, where a balance between excessive pruning
and a reduction of angiogenic activity is to be
effectuated in order to reduce leakiness and thus
improve blood flow [78]. However the underlying
mechanisms are still poorly understood. What
works for one kind of tumor can have an adverse
effect in another type of tumor [102]. Relief of



3 Computer Simulations of the Tumor Vasculature 37

mechanical stress on blood vessels is now also
seen as therapeutic opportunity [79] to improve
blood flow.

Moreover, the success of ordinary chemo and
radiation therapy is tied to the oxygenation status
of the tumor. For instance, some chemothera-
peutics work poorly in oxygen deprived envi-
ronments due the chemical reactions involved.
Other drugs can only kill cycling (proliferating)
cells and are therefore unefficative against tumor
cells (TCs) which are quiescent. Hypoxic TCs are
also resistant to radiation therapy since oxygen
is required so that ionizing radiation can produce
DNA damaging compounds [85]. Hypoxia also
promotes invasive growth, i.e. the tendency and
ability of TCs to migrate increases [113]. Hence,
hypoxia is generally associated with poor prog-
nosis [19, 63].

It is possible to obtain important tumor char-
acteristic data such as perfusion, blood volume
and hypoxia status from patients using positron
emission tomography (PET) and other imaging
methods. However the interpretation of raw sen-
sor data requires theoretical models. Moreover
the resolution of current methods is limited to
a voxel size of ca. 1 mm3. On the other hand,
microscopic information are hardly accessible
experimentally. Direct measurements by invasive
probes are limited to small sample sizes and
may be afflicted with systematic errors [159].
Interstitial fluid flow velocities are measured by
invasive microscopy [76], not applicable to hu-
mans. Concentration distributions of drugs were
measured by microscopy of dissected tumorous
tissue [121], exploiting auto-fluorescence. In this
regard theoretical models and computer simula-
tion can provide insight into the tumor micro
environment in order to foster the understanding
of macroscopic phenomena and therapy failures.

3.2 Theoretical Models

This section reviews basic theory and modeling
approaches of mathematical models of tumor
growth and its microenvironment. See also the
Refs. [95, 124, 134, 158] for reviews of recent
work.

3.2.1 The Bulk of Tissue

There are two approaches to describe tissues.
In continuum mechanics conservation equations
are formulated for mass, momentum and some-
times energy, and on the other hand, in parti-
cle methods, particles represent either cells or
macroscopic sections of tissue and move accord-
ing to Newtons equations of motion. Fluids and
deformable bodies are described in this way, too.
But for living tissues, addition and removal of
mass and momentum due to growth and death
needs to be taken into account. The simplest form
of mass conservation to satisfy this is the partial
differential equation (PDE)

d�

dt
D ��r � u C ˛; (3.1)

where � D �.x; t/ is the density depending on
space and time, d�=dt is total derivative in time
which can be expanded into d�=dt D @�=@t C

ur�, r is the Nabla operator, u is the local ve-
locity, and ˛ embodies local sources and drains.
The general form of momentum equations is

d.�u/

dt
D r � � C f ; (3.2)

where � is the Cauchy stress tensor and f is
the total body force, accounting for gravity for
instance. In reality, biological tissues are highly
complex materials [162, see the review]. On short
time scales, they show elastic behavior which
is usually neglected in models of tumor growth.
On long time scales, i.e. days, residual stresses
are relaxed by rearrangement of ECM fibers and
cell adhesion molecules, leading to viscous be-
havior. Moreover, cells show active responses
to stimuli, e.g. migratory behavior. In practice,
growing tumors are therefore often modeled like
(viscous) liquids, including an isotropic (solid)
pressure, friction, and adhesion forces. Inertial
forces can be neglected since tissue growth and
cell migration happens at very low Reynolds
numbers (Re � 1). Conservation of energy is
mostly not considered, assuming a homogeneous
constant temperature. The growth of multicellular
spheroids [3, 4, 8, 32, 163] and tumors in general
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[117, 151, 178] was described using continuum
models of a single homogeneous material.

Current state of the art are multi-phase or mix-
ture models where mass, momentum and stress
are given as summations over contributions from
cells of different types, ECM and water. These
phases coexist in space, so that each phase oc-
cupies a fraction of the unit volume, given as
volume fraction �i of phase i. The motion of
the cell population is often modeled analogous
to fluid flow through a porous medium, where
the ECM takes the role of the medium. The
“flow” thus represents migratory motion in re-
sponse to solid pressure. Depending on the choice
of components and their stress tensors, mixture
models describe various growth phenomena, and
found numerous applications to study avascular
[5,22,32,96,135,171] and vascular tumor growth
[18, 29, 71, 97, 148]. Cell-cell adhesion may be
modeled by an effective surface tension forces,
following [17], allowing the study of growth in-
duced morphological instabilities of the interface
between cell populations.

In [169] we introduced a continuum model
of the tumor spheroid, closely following [117]
and the refs. therein. In principle, a common
volume fraction � and a common migration ve-
locity v� is defined for TCs and normal tissue
cells. The interface between TCs and normal
cells is defined via an auxiliary function, using
the Level Set method [139]. Thus the interface
is defined as 0-level of the auxiliary function
providing the closest distance from the inter-
face within some proximity of the interface. In
real tissues, cell-cell adhesion causes a certain
degree of smoothness of the tissue interfaces.
This has been neglected, but still our model
predicts approximately spherical growth under
the assumption of equal motilities of TCs and
normal cells. The basic mechanism of tumor
expansion of this model is based on an increased
tolerance to solid pressure of tumor cells, leading
to proliferation whereas proliferation of nearby
normal cells is inhibited, eventually leading to
apoptosis.

In particle based models, matter is described
from the frame of reference that is anchored to
a point on a material. In actual computations, a

material such as a fluid, is divided into thousands
to millions of pieces, represented by particles that
move and interact with each other. In biological
applications, the particle count is not conserved in
general. Instead particles are allowed to replicate
or vanish to reflect growth and regression of
real tissues. In microscopic systems, particles can
be conveniently identified with individual cells.
Their time dynamics can be described simply by
Newtons equation of motion for each particle as
in molecular dynamics simulations, i.e.

@mivi

@t
D Fi.x0; : : : ; xN ; : : : /;

where mi, vi, xi denote the mass, velocity and
position of the i-th particle, and Fi denotes the
force on the particle depending on the current
state of the system. These equations must be
solved numerically in a discrete time-stepping
scheme. In between time steps, an extra step can
be added to account for proliferation and death of
particles. Continuous space particle models were
used to study the growth dynamics of multicellu-
lar spheroids [39, 125] and of tissues that are in
competition with each other [12]. The dynamics
can also be described by stochastic processes
and be simulated by Monte-Carlo methods (see
below).

In cellular automata models, particles are con-
fined to sites on a lattice. Particles may be able
to hop or proliferate to neighboring sites. Due to
its simplicity this is a popular approach to study
tumor growth [2, 11, 16, 41, 42, 90, 111, 164] and
angiogenesis [6,112,115,164]. In the latter case,
particles represent pipe segments of a network.
It is however more adequate to think of the
network as a dynamically changing graph as in
mathematical graph theory. The space-time dy-
namics can be determined by deterministic rules
which are applied once per discrete time step,
or by stochastic processes, or a mix of both. A
stochastic process is formally described by the
Master Equation for the rate of change of the
probability Pk to find the system in state k D 1::n

dPk

dt
D

X

l

AklPl:
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The matrix Akl contains the transition rates ac-
cording to which the system transitions from state
l to k with probability Akldt.

Bartha and Rieger proposed a simple particle
model of individual TCs [11]. Therein, lattice
sites are identified with the potential location of
one and only one TC, assuming that TCs cannot
move but proliferate to neighboring sites. Given
a small initial tumor nucleus, proliferation is
consequently confined to the tumor rim, yield-
ing linear growth dynamics of tumor spheroids.
Moreover, TCs can be flagged as dead in case that
the oxygen concentration becomes too low. Dead
TC occupy lattice sites, prohibiting proliferation
thereto, but are otherwise inert. Thus the size
and spatial distribution of necrotic regions can be
analyzed. This model is simple but in conjunction
with a model of tumor vascular remodeling it
is sufficient to predict realistic morphologies of
tumor vasculatures [90, 165, 166]. However, the
representation of individual cells in three dimen-
sions at macroscopic system sizes is computa-
tionally costly. Therefore coarser grained models
are better suited there.

3.2.2 Solutes in the Bulk of Tissue

The simplest general partial differential equation
to describe the transport of the concentration
c.x; t/ of one species is the diffusion-advection-
reaction equation

@c

@t
C r � .cu/ D r � .Drc/ C R; (3.3)

where the substance diffuses with diffusion con-
stant D and is carried with the flow of the solute
with velocity u. The reaction term R can comprise
sources and drains, e.g. vessels are sources of
oxygen whereas binding and consumption may
be represented by a homogeneous drain distri-
bution. In multi-components system, each com-
ponent i is associated with the concentration ci

each of which is governed by an equation of
type (3.3) [117]. Then R (or rather Ri) also
comprise transition rates between compartments.
This way, drug binding to different intracellular
compartments was described in simulations of

drug concentrations in tumors [141]. The advec-
tion term in calculations of oxygen distributions
is usually neglected since oxygen transport is
dominated by diffusion due to its low molecular
weight. Moreover, it is sufficient to consider quasi
stationary distributions where @c=@t D 0 since
equilibration times are much shorter than growth
processes in tissues [11]. Thus we obtain

0 D Dr2c C R; (3.4)

assuming equal concentration c in all compart-
ments and a constant oxygen diffusion coeffi-
cient D.

Balance equations like (3.2, 3.2, 3.3) can only
be solved analytically in special cases. Often
solutions are calculated numerically with the
help of finite difference (FD) [93] or finite
element methods (FEM) or some variation
thereof. FEM have the advantage that they can
be applied straight forwardly to unstructured
meshes and therefore work well for arbitrary
domain shapes. However, FD methods are easier
to implement for regular grids, making them well
suited for problems where the expansion of a
tumor within a rectangular domain is considered.
The application of difference operators leads
to systems of linear or non-linear equations in
the solution values at grid points. The obtained
system matrices are usually sparse, for which
many specialized tools are available including
direct factorization, fast Fourier transformation,
multi-grid, and iterative preconditioned Krylov
subspace methods.

3.2.3 Normal Blood Vessel
Networks

A model for tumor vascularization must start with
the blood vessel network of the healthy tissue
surrounding the tumor, since, during growth, the
tumor coopts the existing tissue vasculature and
generates new vessels via angiogenesis. In early
models of angiogenesis, the initial network con-
sisted only of a single parent vessel [6]. These
models adequately describe angiogenesis in the
rabbit eye model [51]. Essentially, a small tumor
on the cornea of the rabbit eye stimulates vascular
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sprouting in a few large parent vessels from up
to 1 mm away. These sprouts branch excessively
and form a dense capillary mesh between the
tumor and the parent vessels. Similar configura-
tions were considered in later theoretical work
[145, 146, 172, 173]. However, in reality, the bulk
of tissue is interspersed with vessels which may
be coopted by the tumor. Therefore, recent works
consider a capillary plexus, often represented by
a network of segments which are arranged in a
regular pattern, e.g. as square or hexagonal grid,
omitting supplying arteries and draining veins
[2, 11, 16, 23, 90, 111, 164, 173, 174]. Blood flow
is computed assuming a fixed blood pressure at
boundaries of the simulation box. In [165] a
honeycomb pattern is used in place of a square
pattern [11] allowing for more realistic branching
angles. Other authors use random arrangements
of lines [50] or voronoi cells as basis for vascular
networks [128].

Only a few attempts have been made to in-
corporate physiologically relevant arterio-venous
vessel networks. First works focused on algo-
rithmic construction of arterial trees branch by
branch [132, 133]. At each step, the existing
tree is first geometrically scaled to increase in
dimension. This increases the distance between
vessels, implying that tissue oxygenation would
worsen each step. However a new segment is
added according to some optimality criterion in
order to supply the voxel in space that is most in
need of oxygen. Thus, oxygenation stays approx-
imately constant. This process is repeated until
the desired size is reached.

Later, Gödde and Kurz [52] developed a rel-
atively simple lattice based growth model com-
prising the entire vasculature including arteries,
capillaries and veins. Therefore, such an arterio-
venous vasculature construction model was im-
plemented for the study of tumor growth [166].
In the following we sketch the construction prin-
ciple (s. Fig. 3.4): first arterial and venous trees
are simultaneously grown by successive attach-
ment of bifurcations at randomly selected tree
tips. A bifurcation is simply a Y-shaped arrange-
ment of three segments as depicted in Fig. 3.4h.
Lattice sites and bonds can only be occupied
once, thus growth terminates eventually when no
further free sites are available. Thus the space

is divided into areas with only arterial and only
venous vessels, respectively (s. Fig. 3.4b). Proper
interdigitating trees are obtained by the second
stage of the algorithm where vascular trees are
remodeled, allowing well perfused branches to
expand and weakly perfused branches to regress
(s. Fig. 3.4c–e). To this end, each remodeling
sweep is preceded with determination of vascular
radii, addition of temporary connecting segments
(capillaries), and computation of blood flow rates
and shear stress f . Capillaries are removed again
before the vascular trees are altered, however,
they are added again for the final output. An
overview of our implementation is given below,
but a definition in every detail is beyond the scope
of this chapter.

As input, the locations of tree roots and their
type, i.e. arterial or venous, are given and mark
the starting sites for growth (s. Fig. 3.4a). In
previous work their selection was arbitrary, i.e.
we considered a wide range of configurations
using single pairs of nodes, two pairs [166],
or occupation of entire side faces of the cuboid
simulation domain [169]. In pseudo code, the first
stage of random growth reads as follows

nodes = rootNodes // a list
while nodes not empty:
nd = RemoveRandomItem(nodes)
// return removed item
newNodes
= TryAppendBifurcation(nd)
// return list of nodes;
may be empty
nodes += newNodes // append

TryAppendBifurcation probes orientations
along the axes of the lattice, taking already
occupied sites into account, and picks an
admissible configuration randomly if there are
any, adding it to the network. The loop terminates
when no more space is available, i.e. the list sites
is empty. Such as state is depicted in Fig. 3.4b.
The second stage is more involved due to the
dependence on blood flow. Hence, we define

function
CapillariesRadiiAndBloodflow():
ComputeRadii()
AddCapillaries()
ComputeFlow()

The function ComputeRadii traverses each
vascular tree in a simple depth first traversal and



3 Computer Simulations of the Tumor Vasculature 41

Fig. 3.4 Arterio-venous blood vessel network synthe-
sis: (a) The configuration after two steps of the first growth
stage. The initial state comprised only two nodes (*). On
each side, arterial (red) and venous (blue), three tripods,
as the one depicted in (h), were added, creating four tip
nodes, respectively. Vessel segments occupy lattice bonds
as shown in (f) as red and blue bars and a lattice in the
background. (b) Both trees were expanded by successive
addition of tripods to tip nodes. Eventually, exclusion of
occupied sites prevents further additions. This situation
is also depicted in small in (f). (c) At each iteration of
the second stage, capillary interconnections (green) are
inserted where arterial and venous side are separated by

only one lattice bond. Then radii are determined and
blood flow is computed, arriving at a configuration as
depicted in (c). Uncirculated branches (dark grey) emerge
where no connections are made. (d) The state after 40

iterations, where weakly, or uncirculated branches cleared
space for growth of other branches. (e) The result after
1000 iterations. (g) Stacking order of FCC lattices for the
extension to three dimensions. The layers A, B, and C
consist of triangular lattices as depicted in (f) which are
shifted against each other. Vessel radii in panels (a–e) are
magnified by a factor of four. In panels (c–e) vessels are
color coded by blood pressure (except capillaries)

determines the radius of each segment starting
from tree tips up to root nodes. Murray’s law is
utilized to determine the radius of a parent branch
rp when the radii of child branches rc;1,rc;2 are
known, which states that r˛

p D r˛
c;1 C r˛

c;2, with an
exponent ˛ between 2:7 and 3 depending on the
tissue. The radii of the arterial and venous tree
tips are all equal, respectively. Each of the two is
an input parameter. The function AddCapillaries
loops over all nodes of the network, and attempts
find neighbors of opposing type (arterial or
venous), to which, if admissible, a capillary
segment is added. This is carried out again under

the exclusion of overlap with other segments.
Moreover, (i) in general, at any point, at most
three segments are allowed to join at a node.
Potential additions of capillaries violating this
rule are rejected. (ii) We found it useful for
promotion of growth to allow capillaries between
vessels of a radius up to a limit of 5 to 20 �m,
rather than creating only tip-to-tip connections as
done in Ref. [52]. ComputeFlow computes blood
pressure, flow rates, and shear stress f associated
with nodes and vessels as discussed in Sect. 3.2.5
(see below). The main loop of the second stage
of the algorithm is as follows
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for iter = 0 to maxIter:
CapillariesRadiiAndBloodflow()
RemoveCapillaries()
event = dictionary()
// map nodes to events
for each Node nd in network:
event[nd]
= DetermineRemodelingEvent()
// does the work

for each Node nd in network:
// in random order
if events[nd] == REGRESSION:
Remove(nd)

else if events[nd] == GROWTH:
added
= TryAppendBifurcation(nd)
if not added: // space is
occupied
TryAppendSingleSegment(nd)

// prepare final output
CapillariesRadiiAndBloodflow()

Segments marked as capillaries have to
be removed again, which is carried out by
RemoveCapillaries. The function DetermineR-
emodelingEvent determines whether a node is
marked for REGRESSION, GROWTH, or for
another event denoted NONE, indicating no
change. Remove(nd) also removes adjacent vessel
segments. However, since only tree tips are
allowed to regress there is only one such segment.
Moreover, we found the attempt to insert a single
segment to help with grow into crowded spaces.
Hence TryAppendSingleSegment acts analogous
to TryAppendBifurcation but adds just a single
segment.

The following definition of DetermineRemod-
elingEvent is to some degree arbitrary. However
the essential mechanism is growth of perfused
branches while others regress. First, let pG, pR,
and pN be probabilities for growth, regression
and no change. We define them differently for
nodes that are perfused (q > 0 in at least one
adjacent segment) on the one hand, and nodes
that are unperfused on the other hand (q D 0 for
all adjacent segments). For unperfused nodes we
simply define

pG D pG;x (3.5)

pR D 1 � pG;x (3.6)

pN D 0; (3.7)

where pG;x determines the rate of regression and
is chosen less then 1=2 to obtain pG < pR.
Figure 3.4e was obtained with pG;x D 0:4. Thus
unperfused nodes may clear space for grow-
ing branches. To define probabilities for circu-
lated branches, let fmax be the maximal shear
stress taken over all segments, and f be the
shear stress average of segments at the consid-
ered node. Hence we define the growth “signal”
fsig D f =. f C �1fmax/, where �1 � 1 is small
number. Taking �1 D 10�2 one obtains a rapidly
increasing function in f which approaches nearly
one (0:99 for �1 D 10�2) for f D fmax (see
below). The probabilities are defined using fsig as
follows

pG D f ˇ
sig (3.8)

pR D .1 � fsig/ˇ (3.9)

pN D 1 � pG � pR; (3.10)

where ˇ is an exponent larger or equal to one.
As a result the growth probability pG never as-
sumes the value one, which is useful in two-
dimensional cases where very well perfused ves-
sels would otherwise form bottlenecks. Moreover
taking ˇ > 1 stabilizes moderately perfused
vessels, for which then pN > 0 is obtained.
One of the corresponding events is preliminarily
picked using tower sampling. However certain
conditions need to be fulfilled to be admissible.
To grow, a node has to have less than three
adjacent segment. To regress, the node has to be
a tip node, having only one attached segment. If
any of these conditions is not fulfilled, NONE is
assigned to the node.

Finally we want to add some remarks. First, by
setting appropriate values for the lattice constant
and capillary radii, the MVD and vascular volume
rBV of generated networks can be adjusted. Sec-
ondly, in two dimensions large areas may be left
void, depending on selection of root nodes. Such
cases were rejected in Ref. [166].

Moreover we found it helpful to vary pG;x �

1=2 in proportion to the local concentration of
growth factors. A corresponding distribution may
be incorporated into the model for instance adopt-
ing the simplified model in Ref. [11]. This model
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variant has the advantage that it does not require
manual tuning of pG;x. Biologically it is justified
since vascular sprouts grown by angiogenic sig-
naling via growth factors are also initially not
perfused. In the model, unperfused vessels that
remain from the first stage of the algorithm, can
guide growing branches into a proper tree-like
morphology when contact is made with perfused
branches.

The extension to FCC lattices seems over
complicated, but FCC lattices can be represented
by layers of two-dimensional triangular lattices
which are offset from each other according to
the well known-stacking order ABCABC. . . (s.
Fig. 3.4g). We actually organize sites as sites of
a three-dimensional cubic lattice that is spatially
distorted to coincide with the conceptual FCC
lattice. Neighbors of a given site must correspond
to the FCC lattice. Therefore, exploiting transla-
tional symmetry, we store precomputed neighbor
lists, for a total of six of exemplary sites. Genera-
tion of arterio-venous initial networks was carried
out again using Y-junctions as structural elements
of growth, following the original proposal [52].
Additional rotational degrees of freedom simply
add to the number of probed configurations of
which one admissible is picked for addition to the
network.

3.2.4 Tumor Vascular Remodeling

Bartha and Rieger [11] originally considered
a model of tumor vascularization including the
processes angiogenesis, cooption, vessel dilata-
tion, regression and collapse (s. Fig. 3.5a). Its
basic ingredients are as follows: Vessel segments
representing a vascular network, mathematically
described as a graph, occupy bonds on a lattice.
Junctions (nodes) coincide with sites of the lat-
tice. Various properties are associated with ves-
sels and nodes, such as blood pressure p, radius
r, blood flow rates q, and shear stress exerted by
the blood flow on vessel walls f . Furthermore,
there is a concentration distribution of VEGF
representative of all GFs, as well as a tissue
oxygen concentration distribution. The system
state at t D 0 comprises an initial network as

described above, and small tumor spheroid in the
center of the system. The growth of the spheroid
depends on the local oxygen concentration, al-
lowing cell proliferation if the concentration is
sufficiently high. If the oxygen concentration
drops to hypoxic levels then GFs are locally pro-
duced and diffuse into tissue. Diffusion through
tissue can be modeled by reaction-diffusion equa-
tions (3.4), however simplified models were used
[11].

The spatio-temporal evolution of the network
is determined by stochastic and continuous pro-
cesses, reflecting sprouting angiogenesis, vessel
dilation, collapse, and regression, respectively
(s. Fig. 3.5b–f). In practice, time is advanced in
discrete steps of length �t D 1 h, and these
processes are defined approximately as simple
local updating rules:

Angiogenesis: A new segment is added with
non-zero probability, connecting the current
site x and a distant site x0 under the fol-
lowing conditions: Both sites are occupied
by circulated vessels, the GF concentration
at x is sufficiently high, the distance of x to
other branching points is at least d.br;min/, the
distance jx�x0j is small enough, and no site on
the path is occupied by TCs. These conditions
reflect lateral inhibition of sprouting (for a
modeling approach see [15]), finite growth
length of sprouts [108], and the switch to
circumferential growth within tumors [43].

Dilation: There is a non-zero probability that
the radius r of a vessel segment is increased
by the amount corresponding to the addition
of 10 �m (diameter of an EC) to its circum-
ference, under the following conditions: the
local GF concentration is sufficiently high,
the segment is located within the tumor, and
r is smaller than the upper limit r.max/. The
latter condition accounts for observations in
real tumors [38, 67], however the mechanism
that limits dilation is unknown. It should be
emphasized that this process is particular im-
portant for blood flow characteristics within
the tumor since the blood flow varies with the
fourth power of the radius and only modest
vessel radius increase by a factor of 2 or 3 has
leads to an extreme increase in blood flow.
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Fig. 3.5 Model of tumor vascular network remodel-
ing: Following [11, 166], tumor and vascular network
interact via concentration distributions of growthfactors
(GF) and oxygen (O2), where tumor cells are sources of
GF and the vascular network is the source of O2 (a). Blood
flow is computed after alterations of the vascular network
to reflect the changes in blood pressure, flow rates and
shear stresses. Tumor cells can proliferate in response to a
sufficient O2 supply, and will die to O2 deprivation. The
dynamical processes of network remodeling are illustrated
in (b–f), showing the state of vessel segments (red bars)
before (left) and after (right) the respective transition.
Preconditions are indicated above the center arrows, and
transition probabilities are denoted below, respectively.
Panel (b) depicts the start of a new sprout (shaded). A
preexisting segment is split at the branching point. The
path length on the network to the next branching point
dbr must be larger than the lower limit d.br;min/. Moreover,
a sufficient GF concentration cg must be present and
sprouting is not allowed within the tumor mass (yellow).

The new segment is initialized with an associated life-
time of � D 1. Panel (c) depicts the further extension of
the sprout from (b). Additional segments inherit � from
the parent segment. Moreover � is incremented, globally,
for all sprouts once per time step. Panel (d) depicts
the degradation of vessel walls (black). The variable w
represents the strength of the vessel wall, depicted as
varying thickness. It decreases continuously according to
the rate �w, resulting in a value of w0 at the next time
step. In (e) an unstable vessel (*) is removed, representing
occlusion of blood flow and complete disintegration. Such
event is assumed to happen only to vessels with maximally
degenerate walls, w D 0 and low wall shear-stresses f ,
where f < f .coll/. The emerging dead ends (shaded bars)
trivially have f < f .coll/, and therefore collapse rapidly,
resulting in a long ranged effect. (f) depicts the dilation
of tumor vessels. Their radii increases at a rate that is
given by the area added to the lumen surface assum-
ing division of endothelial cells of the wall every t.prol/

EC
hours

Collapse: A vessel segment surrounded by TCs
has a non-zero probability to be removed if the
wall shear stress f is less than the threshold
fcrit. This process reflects the dependence of
vessel survival and maturation on blood flow
[68].

Regression: An uncirculated vessel seg-
ment has a non-zero probability to be

removed if the oxygen concentration is
less than a threshold, reflecting complete
disintegration of unperfused sections of the
vasculature.

One time step comprises the application of these
rules at all sites occupied by the network and
subsequent recomputation of blood flow, oxygen
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distribution, and time propagation of other model
components such as the tumor spheroid. The
probabilities are given as fractions �t=�proc of the
time step �t and process specific time constants
�proc, requiring �t < �proc.

In [11] the network was represented by se-
quences of 10 �m wide pieces, representing en-
dothelial cells that occupy lattice sites. How-
ever, it is much more computationally efficient
to associate vessel segments with a series of
lattice bonds and allow for segments longer than
a single bond. However we still use a basic lattice
constant h.tum/ of 10 �m, to allow for a suffi-
ciently high resolution of the tumor neovascular
plexus. To conserve memory we store pointers to
segments in a hash table [156] using a pair of
sites indices as key. The lattice constant h.gen/ of
the initial network synthesis model corresponds
is normally larger than h.tum/. This is well defined
since for proper choice of h.gen/, e.g. 100 �m, the
location of initial vessels coincides with bonds
and sites of the finer h.tum/ D 10 �m lattice.

In subsequent work [165] we considered a mi-
nor extension to the angiogenesis process where
sprouts grow over a period of time. Instead of
creating a “bridge” instantly, a sprout segment is
added and extended with additional segments in
subsequent time steps until a timer tsp associated
with the sprout runs out. This allows for emula-
tion of tip splitting by sprouting off of a growing
sprout and fusion of sprouting branches [165].

To make the model applicable to arterio-
venous initial networks, we incorporated a
stability variable w associated with segments
[166], reflecting the wall strength of vessels,
allowing for thick vessels to be more resistant to
collapse. The wall strength, w, is continuously
decreased at rate �w until zero, and only then a
segment is allowed to collapse (be deleted).

3.2.5 Computation of Blood Flow
and Hematocrit

Circulated vessel, i.e. vessels which are perfused
at rates q > 0, can be determined with the help
of the biconnected component graph algorithm
[69]. To robustly handle general cases, including

arterio-venous networks, we first make an ad hoc
augmentation to the network: all boundary (root)
nodes are connected temporarily to an extra node
which is added. Then the set of perfused vessel
is the biconnected component that comprises all
edges for which a loop, without repetition of
nodes or edges (simple cycle), exists which they
are part of and which also runs through the extra
node (see also [156]). For partially remodeled
square or other regular networks, the augmenta-
tion can be omitted, using any of the boundary
nodes instead.

Depending on the application, blood
flow can be considered on various scales,
from computation of the velocity field on
micrometer scale to bulk perfusion measured
in ml blood ml tissue�1min�1 as obtained for
instance by positron emission tomography (PET).
For pipe networks of tumors models, blood flow
is approximated as ideal laminar flow, where the
flow rates q define the blood volume throughput
per time through each pipe. Blood pressure, p, is
associated with nodes. Thus, q is determined by
Poiseuille’s law

q D
�r4

8	

�p

l
; (3.11)

where r is the vessel radius, 	 the viscosity, l
the length, and �p denotes the blood pressure
difference between the ends of the segment. Con-
servation of mass requires that the flow into a
node equals the flow out of the node, analogous
to Kirchoff’s laws of electricity, i.e.

X

i

qi D 0; (3.12)

where i indexes vessels adjacent to a given node
under consideration. Together with boundary
conditions, a system of equations is obtained
which is sparse and can be solved with
direct factorization or preconditioned conjugate
gradient.

Blood contains red blood cell (RBC) causing
non-Newtonian behavior, i.e. its viscosity 	.r; H/

depends on the vessel radius r and on blood
hematocrit H, where hematocrit is the blood vol-
ume fraction of RBCs. The viscosity is com-
monly expressed by the decomposition into the
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product of the blood plasma viscosity 	plasma,
which is constant, and a correction factor, the
relative viscosity 	rel.r; H/. Pries et al. [120]
derived a well-known phenomenological formula
for 	rel.r; H/ which is easy to incorporate. The
distribution of hematocrit is sensitive to blood
flow rates, i.e., at bifurcations, RBCs tend to flow
into the faster perfused vascular branch which is
the well-known phase separation effect. Pries and
Secomb [118], developed a phenomenological
formula that describes this effect in dependence
on flow rates of the vessels at the bifurcation.
This allows the computation of the hematocrit
in downstream branches. Under assumption of
given flow rates, the hematocrit distribution can
thus be propagated downstream through the net-
work. By iteration, a self-consistent solution for
the hematocrit distribution and blood flow rates
can be computed [118], which is utilized in
several works [2,16,111,115,165,167]. However,
as a first approximation, it may be sufficient to
consider a constant prescribed hematocrit as in
[11, 168, 169]. This is justified because in spite
of a wide value range of the relative viscosity
(	rel.r D 25 �m; H D 0:15/ � 1:5, 	rel.r D

5 �m; H D 0:6/ D 8), the dependence of the
flow resistance on on r4 plays a much greater
role.

3.2.6 Time Dependent Intravascular
Tracer Concentration

Rather than computing stationary concentration
distributions, we are interested in following an
injected bolus of some substances during the
transit through the vascular network. For this
purpose, Mc Dougall and Anderson [146] al-
ready adopted a method from petrol engineering,
originally developed to predict solute transport
through porous rock. It allows for computation
of time dependent concentrations of a tracer c
associated with segments of a vascular networks.
Essentially tracer flows into nodes where it accu-
mulates, amounting to mass m. From there it is
distributed downstream in proportion to the flow
rates q of downstream vessels. This procedure,
akin to the upwind-differencing scheme for ad-

vection equations, is applied repeatedly in time
steps of length �t. The amounts of substance
from upstream vessels, added into downstream
nodes, is accordingly �m D cq�t. Thus, given
a time dependent inlet concentration cin.t/, the
method yields concentrations c.t/ of each vessel.
Transvascular loss was not considered although
the method would be straight forward to extend
to take this into account.

We applied the method to networks created by
our tumor growth simulation for regular [165,
168] and arterio-venous initial networks [166].
However, in our network model, the assumption
that network edges are of constant length, and
short compared to their radius is violated, leading
to an amplified propagation velocity. Therefore
we track the position of the interface that sep-
arates clean blood from tracer “contaminated”
blood and moves with the velocity of blood flow.
Similar models were developed for the simulation
of capillary rise in network models of porous
materials [1] and are widely used there, e.g. in
[123].

3.2.7 Interstitial Fluid Pressure

Interstitial fluid flow (IFF) is modeled as liquid
flowing through a porous medium [24, 81, 83,
137,138,173,174,176], where tissue cells and the
fibers of the extracellular matrix assume the role
of the medium. Fluid and medium are described
in general within the framework of mixture the-
ory with the help of distributions of their local
volume fraction and their velocity distributions.
However, the medium is often assumed rigid.
The volume fraction of the liquid is identified
with the porosity � which describes the amount
of space available per unit volume within the
medium. This space is filled by definition with the
liquid. Assuming rigidity and (quasi) stationary
flow, the system is characterized by the spatial
velocity field of the liquid, v.x/, where x is the
space coordinate. The velocity v is determined by
the gradient of the IFP pi according to the well-
known Darcy’s Law

v D �Krpi; (3.13)
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where the permeability constant K is the prod-
uct of an intrinsic permeability constant of the
medium, the porosity and the inverse fluid vis-
cosity. Usually, K is obtained directly from exper-
imental data for a specific tissue type. Assuming
incompressibility and constant permeability, the
mass conservation equation obtained is a Poisson
equation in pi:

r � v D �Kr2pi D Q; (3.14)

where Q D Jv C Jl was added to represent
sources and drains with contributions from ves-
sels, Jv , and lymphatics, Jl. We adopted this
simple approach to determine IFP and IFF in
vascular networks of simulated tumors [169].
Some authors consider IFF within a fully coupled
mixture model, where v is the relative velocity
between the IF and a moving cell population
[171]. Other authors incorporate IFF into models
of tumor growth and allow compression of blood
vessels due to elevated IFP [174]. Penta and
Ambrosi used data of a simulated microscopic
volume [114] to predict IFF in macroscopic
systems. Zhao et al. [176] used imaging data
of real tumors as basis for simulations using a
continuum model.

3.2.8 Transvascular Fluid Exchange

The net transvascular liquid flux Jv is driven
predominantly by the difference of blood to inter-
stitial fluid pressure. This is expressed by Starling
equation

Jv D LpS Œ pv � pi C 
T.�v � �i/� ; (3.15)

where Lp is the hydraulic permeability of vessel
walls, S is the vascular surface area within a given
control volume, pv is the blood pressure, pi is
the interstitial pressure, 
T is the average osmotic
reflection coefficient and �v and �i are the os-
motic pressures of plasma and IF, respectively
[81]. The osmotic term 
T.�v � �i/ represents
forces generated by dissolved substances and can
be considered as a constant offset from pv at an
experimentally determined value. This model of

liquid exchange is straight forward to apply if the
vascular network is considered as homogeneous
phase [81].

Otherwise (3.14) may be taken as definition
of a local source strength of a spatially varying
IFP distribution. This is facilitated by letting the
vessel network occupy the same lattice used for
discretization of (3.14) as done in Refs. [24, 173,
174]. Then each node of the vessel network j
corresponds to a discretization site of (3.14), so
that the flux between them is directly proportional
to (3.15) with suitable choice of S corresponding
to the surface area of vessels adjacent to node
j. Using the standard finite difference stencil
for the Laplace operator in (3.14) one obtains
a combined system of equations, equivalent to
Kirchhoff’s laws. The same strategy can be used
to simulate drug delivery [138,141] and oxygena-
tion [33, 44, 86, 103, 142]. We add that drainage
due to lymphatics Jl is in all of the literature
known to us modeled as continuous sink density
analogous to (3.15).

More generally, vessels can be considered as
line-like sources akin to the Dirac ı distribution
[14, 70], a concept which has been formulated
mathematically rigorously for the solution of el-
liptic equations with Dirac terms by finite ele-
ment methods [34] and applied to IFF [28]. We
can thus replace (3.15) by the distribution

J.y/ D

Z

�

Lp2�r.Qpv � pi/ı.x � y/dx (3.16)

where x, y are spatial coordinates on the network
and in the bulk of tissue respectively. � is the set
of one-dimensional curves (or line segments) that
describes the vascular network, Qpv is the effective
blood pressure including the osmosis terms, and
r is the vessel radius. The permeability Lp, blood
pressure Qpv and radius r can vary depending on
the position on the network x.

The latter approach was taken by us to simu-
late IFF in simulated tumors grown within syn-
thetic arterio-venous vasculatures [169]. We took
inspiration from immersed boundary methods
[116] and replaced the Dirac ı distribution with
a smoothed kernel ı� of width � > 0 to allow for
resolution of the source distribution J on a grid
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of finite cell size. Thus the source distribution of
vessels is “smeared” over nearby grid cells, very
similar to the method used by [14].

3.2.9 Interstitial Drug Transport

Spatio-temporal distributions of macro-molecules
were studied theoretically with the help of
homogeneous compartment models in spherical
symmetry, incorporating diffusion and interstitial
fluid flow [13, 81]. In a similar way [176]
albumin concentrations were simulated in a
continuous but non-symmetrical tumorous tissue.
In a theoretical study of drug transport in
tumors, [141] the discrete nature of blood vessels
was accounted for on the basis of a tumor
grown in an square-patterned initial network
.t D 0/.

We followed [141] in the development of a
simple model of drug transport guided by data
for Doxorubicin, a common chemotherapy drug
[169]. In this model, the local drug concentration
is divided among an extracellular compartment
with concentration s1.x/ [169, Eqn. 20] and an in-
tracellular compartment with concentration s2.x/

[169, Eqn. 21] where drug is bound immobile.
The extracellular concentration s1 is subject to
diffusion and advection with the liquid velocity vl

according to (3.3). Vessels are sources and drains
of drug (s. Sects. 3.2.8, and 3.2.10) comprising
diffusive and advective transvascular flux densi-
ties [169, Eqn. 23]. Lymphatics can sink drug by
advection, assuming that the drug concentration
within lymphatics is approximately equal to the
concentration in tissue. Consequently, drug diffu-
sion into lymphatics is neglected. Both compart-
ments 1 and 2 exchange drug via rates k12 and k21

depending on assumed trans-membrane diffusion
coefficient and cell surface area. For simplicity,
degradation of drug molecules is neglected. In
future this should be straight forward to add,
provided experimental data. The initial condition
is a system clean of drug. Drug is inserted via the
vasculature where the intravascular concentration
sv.t/ is homogeneous in space and follows a
exponentially decaying pulse in time, imitating
an injection.

We applied the model to study drug transport
in tissues supplied by tumor vascular networks
embedded within synthetic initial arterio-venous
networks [169]. A cohort of tumors was con-
sidered. We first simulated tumor growth and
then considered drug transport for stationary fi-
nal (t D 800 h) configurations. Interstitial fluid
velocity distributions vl.x/ were determined prior
to computation of drug concentrations.

3.2.10 Oxygen Transport

Oxygen diffuses across the blood tissue interface
with a net flux that depends on the difference of
oxygen partial pressure (PO2) at the vessel wall
and within blood [65]. As oxygen diffuses into
tissue, its concentration in blood is reduced, lead-
ing to a gradient across the micro-vasculature of
ca. 100 mmHg at the arterial side and 40 mmHg
at the venous side. The coupling of transvascular
oxygen flux with the tissue PO2 therefore poses a
difficult problem for the computation of intravas-
cular and tissue oxygen distributions.

This problem has been solved for simple con-
figurations where single, straight artificial cap-
illaries are considered. Based on original ideas
of Krogh [87], current sophisticated theoretical
models achieve very good agreement with exper-
imental data [65, 104, 106, 107].

For many applications it may be sufficient to
simply consider a constant blood PO2. Then the
tissue PO2 distributions Pt can by computed by
solution of the reaction diffusion equation (3.4).
This is very common approach in the literature on
models of tumor growth. In other works the tissue
oxygen distribution is analyzed in detail based on
stationary configurations of disjoint collections of
lines or points (in two-dimensions) representing
sources of oxygen [33,35,44,86,88,89,103,142].
The limitation of such models is however that the
PO2 in each source must be given as input.

In tumor however, low flow rates may lead to
depletion of intravascular oxygen over short dis-
tances, making it necessary to model intravascu-
lar PO2 variations. However due to the complex-
ity of tumor blood vessel networks, intravascular
oxygen distributions are hard to predict without
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actually simulating them. Some authors attacked
this problem [46, 55–57, 70, 126, 127, 136, 160,
167] and computed self-consistent solutions of
the equations for intravascular advection of oxy-
gen and diffusion of oxygen in tissue for systems
comprising realistic blood vessel networks. For
numerical methods, see [57, 136, 167].

To cope with the computation of intravascular
PO2 distributions in complex networks compro-
mises must be made (see [54] for a review).
Most importantly, vessels are treated as one-
dimensional line segments and intravascular PO2
variations in the radial direction are neglected.
Instead, the average over the cross-sectional area
is considered, P.x/, depending only on the po-
sition on the center line x. This is justified be-
cause radial variations of intravascular oxygen
concentrations are relatively small as revealed by
theoretical calculations [104].

In the modeling of intravascular oxygenation
it is crucial to take into account that oxygen
is, for the most part, bound to hemoglobin in
red blood cells (RBCs). The steady state of the
binding and unbinding processes is described in
good approximation by the Hill-curve [54]

S. P/ D
Pn

Pn C Pn
50

; (3.17)

where P is the partial pressure of oxygen, S.P/ is
the fraction of oxygen bound relative to the maxi-
mal capacity, c0 is the concentration of oxygen in
RBCs at full saturation, n is the Hill exponent and
P50 denotes the partial pressure of oxygen where
S.P50/ D 1=2. Hence, the total concentration of
oxygen c is given by

c D ˛P C Hc0S. P/; (3.18)

where H is the hematocrit and ˛ D ˛p C H˛rbc

is the effective solubility in blood and ˛p, ˛rbc the
solubility in plasma and RBCs, respectively.

In large scale network models it is infeasible
to compute all microscopic details of spatio-
temporal intravascular PO2 distributions and out-
ward diffusion. Instead, the net transvascular flux
per blood-tissue interface surface area jtv is deter-
mined by the effective, network dependent, mass

transfer coefficient (MTC)  , similar to Lp of
Eq. (3.15)

jtv D . P � Pt/; (3.19)

where Pt is the PO2 at the inner wall of the
vessel lumen, and P is the average partial pressure
in blood. Note that  represents an effective
radial diffusion coefficient of oxygen in blood.
Lp of the Starling equation, on the other hand,
represents the permeability of the wall. In small
vessels, blood tends to form an RBC-rich core
and a RBC-free boundary layer. For larger vessels
(r > 100 �m), the discrete nature of RBCs plays
a lesser role. Therefore the MTC is function
of the vessel radius r, hematocrit H, and blood
oxygen saturation S [65]. The functional de-
pendency .r; H; S/ can be obtained from single
capillary simulations and experiments. Moreover,
since vessels are much longer than their diameter
it is reasonable to assume that the tissue PO2
is homogeneous over the vessel circumference
[136]. Thus, integration yields a transvascular
oxygen flux per length amounting to 2�rjtv , The
change of the oxygen flux along the vessel axis is
therefore simply given by the

q
dc

dx
D �2�rjtv; (3.20)

where q is the blood flow rate, and x denotes the
longitudinal space coordinate on the vessel axis.
In order to determine the oxygen distribution
across an entire network, assumptions must be
made on the distribution at vessel junctions, e.g.
instant equilibration of the partial pressure of
oxygen flowing into a junction. With the help
of mass balance equations, the concentration of
outflowing oxygen can be computed. Thus the
solution for the oxygen concentration can be
propagated downstream assuming a known tissue
PO2 distribution and a given PO2 at the inlets
(see [136, 167]).

Locally, at the blood-tissue interface, jtv is
also subject to Fick’s law jtv D �˛rP, in
addition to (3.19). This relation can be utilized
to obtain boundary conditions for a diffusion
equation that determines the tissue PO2 [57].
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However in this chapter we want to consider the
network as volumetric sources of oxygen Jtv.x/.
This is well-defined since the oxygen flux into
tissue is already known from (3.19). Therefore,
Jtv may be formulated with the help of the Dirac
ı distribution in analogy to (3.16) [136, 167].

The tissue oxygen concentration ct D ˛tPt

is determined by the diffusion equation for the
partial pressure Pt

0 D ˛tDr2Pt � M. Pt/ C Jtv; (3.21)

where D is the diffusion coefficient of oxygen
in tissue, M.P/ is the partial pressure depen-
dent consumption rate. A good approximation
of M.P/ is the well-known Michaelis-Menten
relation

M. P/ D M0

P

P C P0
50

; (3.22)

which tends to zero for small P, assumes the
value M0=2 for P D P0

50 and goes asymptotically
to the maximal consumption rate M0. For some
problems like tumor oxygenation it is usually
assumed that the oxygen concentration is rather
low, i.e. Pt < P0

50. Then it is sufficient to use a
linear approximation M.P/ � ��P for some rate
coefficient �. In physiological conditions, where
P > P0

50, M.P/ is often approximated by zero
order kinetics M.P/ � M0.

Discretization of the model equations yields
a complex system of non-linear equations.
Following [14, 136] we developed a new
numerical scheme based on finite differences
which is sufficiently efficient, allowing us to
study three-dimensional networks in a simulation
box of ca. 0:5 cm3 at reasonable accuracy [167].
Our method was applied to study the relation of
vascular morphology to clinical data of tissue
blood oxygen saturation in human breast cancers.
Hsu and Secomb [70, 136] formulated a solution
to the system of equations with the help of a
Green’s function method. Their method was
applied to study oxygenation by various small
network sections obtain from animal models
as well as synthetic human brain vasculatures
[126].

Methods developed for the study of oxygen
distributions are also applicable to distributions
of other substances like drugs which may be
simpler since oxygen adds the complication of
hemoglobin binding which leads to nonlinear
systems of equations.

3.3 Discussion of Model
Predictions

Current state of the art models of vascularized
solid tumor growth and capillary network remod-
eling predict the morphological compartmental-
ization of tumor blood vessel networks in good
agreement with experimental data of melanoma
and glioma [38, 67, 68]. From the obtained con-
figurations, of which one is shown in Figs. 3.6
and 3.7 conclusions can be drawn on the mecha-
nisms of vascularization. Further conclusions, us-
ing model extensions, can be drawn for interstitial
fluid flow and solute transport, as discussed in the
following.

3.3.1 Vascular Morphology and
Compartmentalization

Typical vascular compartmentalization is char-
acterized by dense chaotic vascular sprouting
within an annular shell of a width amounting
to ca. 200 �m around the invasive edge, and
a sharp decrease of vascular density into tu-
mor spheroid. The normal vasculature is pro-
gressively transformed while the invasive edge
moves forward, leaving predominantly isolated
vessels behind. The ingredients, to obtain such
characteristics from theoretical models comprise
an expanding tumor spheroid, an initial capillary
network, blood flow, a growthfactor concentra-
tion distribution, an oxygen concentration dis-
tribution, and processes reflecting co-option, an-
giogenesis, vaso-dilation, regression and collapse
[11,90]. The basic mechanism of this remodeling
was identified as shear stress correlated collapse.
Dilatation causes a decrease in flow rates and
shear stress since the blood volume that the tumor
vasculature conducts per time is limited by the



3 Computer Simulations of the Tumor Vasculature 51

Fig. 3.6 Simulated tumor growth and vascular re-
modeling: The image sequence shows the temporal evolu-
tion of the vascular network and of the viable tumor mass
(yellow). It is a three-dimensional system, computed for
[169], of which a 400 �m thick slice through the system
origin is shown. The tumor mass is cut in a slice only
half as thick to show the vascular network in its interior.
Blood vessel are represented by cylinders, color coded by
blood pressure (red: approximately 10 kPa, or 75 mmHg,
blue: 0 mmHg). (a) At t D 0 h the simulation is initialized
with a small tumor nucleus in the center and a pre-
generated vasculature of the host. The oxygen consump-
tion of tumor cells is elevated compared to normal tissue,
leading to a drop of the tissue oxygen concentration,
secretion of diffusing GF and stimulation of angiogenesis.

(b) As a result, at t D 200, the vascular density (MVD)
has increased near the tumor rim. Unperfused segments
(dark gray), i.e. dead ends, are visible. Some of them
are newly extending angiogenic sprouts. Others pertain
to vessel segment chains where one segment has been
removed according to the vascular regression and collapse
process, pinching off blood flow. Angiogenesis, dilation
and regression act mostly near the expanding tumor-tissue
interface, transforming the host vasculature into a typical
compartmentalized tumor network. (c) A necrotic core
emerges as a result of hypoxia and drastically decreased
vascular density. Since only viable areas are shown, the
necrotic core appears as hollow interior. (d) Isolated
vessels emerge that have cuffs of viable tumor cells (TCs)
around them (Scale bar: 1 mm)
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Fig. 3.7 Final simulated tumor and tumor blood ves-
sel network: Depicted is a visualization of the final state
of the simulation shown in Fig. 3.6 at t D 700 h, where
the simulation is stopped. The full simulation cube of
8 mm lateral length is shown, where a quadrant is cut
out, so that the tumor spheroid and its interior can be
seen. The tumor vasculature exhibits the typical compart-
mentalization found in melanoma and glioma [37, 67].

It is connected to the bulk of the surrounding vascular
network which appears solid, but actually fills only ca.
10 % of the available volume. It is spatially homoge-
neously distributed and consists of arterial and venous
trees and interconnecting capillaries. Configurations such
as this are the basis of further studies of interstitial fluid
pressure and drug transport [169] and tumor oxygenation
[167]

flow resistance of the surrounding vasculature.
This leads to removal of segments according to
the collapse rule, redirecting blood flow to other
vessels. As a result, blood flow and shear stress
is stabilized above the critical collapse threshold
in surviving vessels. Remaining dead ends are
rapidly removed by the regression process.

In synthetic capillary-only initial networks
(CNs), vessels of identical diameter are laid
out in regular square or hexagonal patterns.
However, it is hardly possible to select realistic
blood flow boundary conditions for such
networks of macroscopic size beyond a few
hundred micrometers. For instance, imposing
a homogeneous blood pressure gradient yields
tumor vascular networks where tumor vessels
survive preferably in the direction parallel to the
imposed gradient [11, 165]. The explanation is

simply that vessel segments of linear chains that
run, on average, perpendicular to the gradient, lie
on approximately equal blood pressure potentials
and therefore no significant blood flow can occur,
resulting in collapse of these vessels.

In reality, the capillary plexus is however
supplied and drained by adjacent arterioles
and venules which exhibit irregular spatial
configurations. Therefore, there is no global flow
direction, which is why arterio-venous initial
networks (AVNs) abolish this artifact in model
predictions [166]. In AVNs blood flow depends
on only a few boundary conditions at in-and
outlets for which experimental reference values
for pressure or blood flow can be used. Models
based on synthetic arterio-venous networks
predict vascular morphologies which obey
realistic compartmentalization of MVD and radii.
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However, in addition to dilated capillaries, the
tumor center also exhibits higher-caliber vessels
co-opted from the initial network. Such vessels
exhibit a radius r larger than the maximal dilation
threshold rmax and are therefore not subject to
dilation. As a result, predictions of flow rate
q are a factor of 10 larger than predicted for
CNs.

Model predictions of average quantities such
as radial distributions of MVD, blood flow,
oxygenation and tumor density are robust against
model alterations, as studied in Refs [165, 166].
This is true in particular for the rather drastic
alteration of the introduction of arterio-venous
blood vessel networks (AVNs) [166]. Other
model variations, such as calculation of blood
flow in conjunction with varying hematocrit, or
use of spatially varying collapse probabilities,
do not change predictions qualitatively [165].
The parameters vessel collapse probability p.col/,
wall degradation rate �w, critical collapse shear
stress f .col/ and contact inhibition length of
angiogenesis d.br;min/ correlate with the MVD
obtained for the tumor center. The MVD at the
invasive edge is determined by the MVD of
the original network and the contact inhibition
length d.br;min/. A certain invariance against
model details is expected and even required,
because it would be implausible if the results
were dependent on a specific abstraction
of the biological reality (within reasonable
accuracy).

Our model predicts that MVD of the tumor
interior, MVD at the tumor periphery, and tumor
expansion speed are uncorrelated if the peripheral
blood vessel network can support the metabolic
demand of tumor cells required for growth [11].
Growth within AVNs additionally leads to clus-
tering of vessels in clusters of differing size and
density depending on the initial network configu-
ration [166]. The density of such hot-spots is used
as a diagnostic tool [38]. However these results
suggest that it rather unreliable. A recent meta-
study [110] of clinical data comes to the same
conclusion. Correlations between MVD and the
outcome of the disease is likely due to metastases
which was not considered.

We add that we considered the line density LD,
the summed lengths of vessel segments within
a given region per volume of this region, as a
measure for MVD. It is however not the same as
the histological MVD because vessels in parallel
to the cutting-plane which contribute to LD cause
LD to overestimate the MVD by a factor of
approximately two.

3.3.2 Fractal Properties of Tumor
Vasculatures

Following [11], fractal dimension numbers were
computed for vascular networks. Fractal dimen-
sion df is an extension of the conventional dimen-
sion to self-similar (fractal) objects. For instance
a line has df D 1, but a fractal curve within
the two-dimensional plane can have df between
1 and 2 depending on how densely it permeates
space. df D 2 corresponds to a solid object like a
disc. For real objects of finite size several approx-
imative metrics exists, e.g. the number obtained
by box-counting [98]. Useful model systems are
percolation clusters: In conventional percolation,
sites of a lattice are randomly occupied with
probability p. At some critical probability pc, a
percolating cluster forms that spans across the
lateral size of the considered domain. The di-
mension of this cluster is exactly known dperc

f D

1:891 [149]. Similarly, a system-spanning cluster
can be created from an invasive growth process
into a heterogeneous matrix, the dimension of
which is known and amounts to dinv�perc

f D 1:81

in two dimensions [47].
Gazit [48] measured the dimension of pho-

tographs of tumor vascular networks and ob-
tained dexp

f D 1:89 ˙ 0:04, in good agree-

ment with dinv�perc
f and therefore hypothesized

that fractal properties of tumor vascular networks
emerge from angiogenic sprouting into a hetero-
geneous extracellular matrix. Bartha and Rieger
[11] obtained df D 1:85 by box-counting from
the entire vasculature that was changed by tu-
mor vascular remodeling. Since no ECM hetero-
geneities were modeled, it was hypothesized that
the mechanism leading to the fractal properties
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is a random dilution process similar to conven-
tional percolation. Later simulations predicted
df between 1:6 and 1:9, correlated with the tu-
mor MVD, where the parameters critical col-
lapse shear-stress f .col/ and collapse probability
p.col/ were varied, with similar results respec-
tively [165]. Fractal dimensions of tumor vas-
cular networks obtained from simulations based
on three-dimensional AVNs [168] yielded df D

2:51 ˙ 0:03, in good agreement with percola-
tion theory and [90] where tumors in three-
dimensional CNs are considered. However, ac-
curate measurement of fractal dimensions of real
and simulated tumor vascular networks is hardly
possible due to their limited size [11]. More-
over different methods were used: theoretical val-
ues were determined by two-or three-dimensional
box-counting, whereas Gazit [48] considered
two-dimensional projections of real vasculatures.
We conclude that fractal dimension is mostly a
function of MVD and that it is not a reliable
means to determine mechanism of vasculariza-
tion in tumors.

Morphological analysis was approached from
another angle in [166], where frequency distri-
butions of (i) local MVD, (ii) area of clusters of
necrotic tissue, and (iii) area of hot-spots of high
MVD were computed for tumors grown in two-
dimensional AVNs. Predicted distributions show
good agreement with a power law, and exhibit
all the same exponent of �1:4. Such an algebraic
decrease, in contrast to an exponential decrease,
is known for systems at a critical threshold where
systems undergo a phase transition. In the case
of percolation, the critical threshold at p D pc

marks the transition from isolated clusters to a
single connected region. Bartha and Rieger [11]
suggested that the tumor vasculature is driven
automatically into a state akin to the critical per-
colation cluster by the mechanism of shear-stress
correlated vascular collapse. As a result vessels
permeate through the entire tumor, robust against
moderate variations in f .col/ and p.col/. These pre-
dictions are experimentally testable and, if con-
firmed, would support that real vascular networks
of the interior of tumors are the result of a dilution
process rather than the result of sprouting growth
into a heterogeneous environment.

3.3.3 Interrelation of Initial and
Emergent Tumor Vasculature

High-caliber arterioles and venules (>50 �m ra-
dius) protruding into the tumor form a backbone
of stable vessels in-between which thinner ves-
sels form short and straightforward paths [166].
The flow resistance decreases in proportion to
1=r4 with radius r and is therefore, in comparison
to capillaries, extremely low in such high-caliber
vessels. Therefore, in analogy to electrical net-
works, the blood pressure (voltage) drop across
them is also low. In zero-th order approximation
the blood pressure is constant, i.e. high-caliber
vessels act like a pressure boundary condition
for adjacent capillaries. Short, directed paths,
have a survival advantage as discussed above in
the context of CNs. The distribution of tumor
vessels thus becomes dependent on initial (t D 0)
vascular networks and is generally heterogeneous
and anisotropic.

Assuming an arteriole runs near a venule then
a large spatial blood pressure gradient is present.
When a tumor grows near this area, a connection
(short cut) is formed by angiogenesis, imposing
the spatial gradient onto blood flow through this
newly formed vessel which is the more stable the
steeper the gradient. We attempted to quantify
this dependence by correlation of tumor MVD
(t > 0) versus the magnitude of blood pressure
differences in-between vessels of initial (t D 0)
AVNs. For this purpose, an auxiliary “pressure”
field p.x/ was computed as function of space x at
t D 0 that interpolates approximately the blood
pressure pv in spaces between vessels [166] and
is determined by r2pCa�.pv �p/ D 0, where a is
zero in empty space and a � 1 at sites coincident
with vessels. We plotted the magnitude of the
gradient jjrpjj as local averages taken over small
boxes versus the local MVD at t D 1200 h
Predicted correlation coefficients ranged from 0:2

to 0:5 per simulation. A correlation coefficient of
0:9 was obtained for averages over entire tumors
of a cohort of simulations [166]. This finding
may eventually be useful for model validation
by experiments, should it become possible to
scan real three-dimensional vasculatures of host
tissues prior inoculation with TCs.
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Somewhat different vascular configurations
are indeed observed in real tumors of the same
tissue, e.g. breast tumors [40]. Predictions
outlined above suggest that heterogeneity of
the initial vascular network has a strong impact
on the emerging tumor vasculature rather
than heterogeneity of the ECM through which
vascular sprouts grow as originally proposed by
Gazit [48].

3.3.4 Blood Flow and Blood Borne
Drug Transport

McDougall et al. [145, 146] first considered
conduction of a tracer substance through tumor
vascular networks using a simulation model of
a time-dependent intravascular concentration
distribution that was previously used in geo-
engineering. Following them, intravascular tracer
conduction was studied in stationary tumor
vascular networks based on CNs [165] and AVNs
[166,168]. Simply, a pulse, or a constant infusion,
is applied at inlet vessels, which is from there
propagated down-stream through the vascular
network. The unspectacular model predictions
show tracer flowing through networks within a
duration of seconds (AVNs) and ca. 1 min (CNs).

McDougall et al., on the other hand, consider a
model system based on angiogenesis experiments
on the cornea of a rabbit eye [51] (rabbit-eye
model). There, the tumor is not connected to an
extensive vascular network, but instead, a single
parent vessel spawns a few sprouts (angiogene-
sis) which travel a long distance of ca. 1 mm and
branch into a dense network permeating a tumor
spheroid and adjacent tissue. It was concluded
that the tumor vasculature conducts drug poorly
and that most drug bypasses the tumor. The cause
of this contradiction appears to be dilution of
the tracer concentration within the dense network
near the tumor and much lower flow rates leading
to transit times of the order of 10–30 min. More-
over a vascular adaptation model was considered,
leading to formation of shunts that bypass the
tumor network [145].

A good perfusion is consistent with several
clinical studies of human tumors based on PET

measurements [72, 92, 99, 170] where elevated
perfusion rBF by factors of 4:7 to 5:2 were
observed [167, Tbl. 4]. Blood flow velocities
in tumors predicted by our model are of the
order of 1 mm/s, similar to blood flow in normal
human micro vessels [100]. Our model pre-
dicts arterio-venous short-cuts within the tumor,
i.e. vaso-dilation gives rise to mostly very well
perfused vascular threads connecting arterioles
with venoules [165, Fig. 8]. Such shunts were
suggested in the experimental literature where
“flow hotspots” are frequently found in tumors
of patients [129]. However, it is well-known that
blood flow in animal models is can be severely
reduced to only 0:1 to 1 mm/s. The exact causes
for discrepancy are presumably vessel compres-
sion and excessive blood plasma extravasation
[82,175], both of which were not considered here.

3.3.5 Interstitial Fluid Flow

Interstitial fluid flow (IFF) in tumorous tissue
has been considered theoretically for some time,
for instance within the framework of continuum
models [76, 83, 176]. More recent models incor-
porate a discrete tumor vasculatures, e.g. based
on the rabbit-eye model [172,173], and remodel-
ing of capillary networks (CNs) [174].

Welter and Rieger [169] considered IFF
and extravascular drug transport in tumors
grown within synthetic arterio-venous networks.
Predicted interstitial fluid pressure (IFP)
distributions exhibit an average radial profile
that increases sharply from the tumor edge into
the tumor center (s. Fig. 3.8). There, the IFP
approaches a plateau value asymptotically, close
to the level of blood pressure, amounting to ca.
6.5 kPa (49 mmHg) [169, Fig. 4 and 5]. This is
expected due to the high vascular permeability,
implying a small pressure drop across the vessel
wall. The plateau value lies above experimentally
observed mean values taken over various human
tumors, but it is still lower than the absolute
maximal observed IFP [83, Tbl. 1]. Since the
IFP is generally assumed to rise very close to the
level of blood pressure, this is rather indicative of
overestimated blood pressure. IFF distributions,
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Fig. 3.8 Interstitial fluid flow: (a) Sketch of the trans-
port of interstitial fluid from blood vessels (BV) through
tumor tissue into lymph vessels (LV) outside the tumor.
Interstitial fluid (IF) escapes through gaps in-between
endothelial cells (b; top), which line the lumen of blood
vessels, into extracellular space. These spaces also contain

adhesion molecules and a network of fibers composed of
various proteins such as collagen. Pores and fibers pose a
resistance to the flow of the IF akin to the flow of water or
oil through a porous rock. IF is absorbed into lymphatic
channels from where it is brought back into the blood
stream. In normal tissue, a large resistance to transvascular
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i.e. the scaled negative gradient of the IFP, follow
trivially and exhibit the expected sharp rise at
the tumor rim amounting to a maximal value of
0:2 �m/s in good agreement with the literature.
As a novel prediction due to the discrete AVN
model used, the IFP and IFF distributions exhibit
heterogeneity, i.e. they vary spatially in-between
vessels of different blood pressure values. Thus
vessels are predicted to drain the interstitial fluid
in some instances [169, Fig. 4C].

It was often suggested that an elevated IFP
poses a barrier to drug delivery [64,76,102,174].
However, the reason for this cannot simply be
a decreased transvascular hydrostatic pressure
gradient that drives extravasation according to
the Starling equation (3.15). To the contrary, in
standard modeling approaches (s. Sect. 3.2.7),
interstitial fluid flow is analogous to an electrical
current flowing through a chain of resistors, of
which one resistor, namely leaky tumor vessel
walls, is particularly small (s. Fig. 3.9). Thus,
an increase in leakiness, i.e. an elevation of IFP,
would actually increase the liquid flux throughout
the tumor, as predicted by our model. However,
the analysis was restricted to good perfusion,
where only a negligible liquid fraction escapes in
spite of leakiness. Otherwise the way through
tumorous tissue into lymphatics could pre-
sumably present an alternative well conducting
pathway, draining downstream vessels of blood
plasma, resulting in reported low flow velocities
[82].

The recent theoretical work [174], using CNs
and a sophisticated model of tumor growth that
incorporates vessel compression due to IFP,
comes to similar conclusions about the role of
various permeabilities However, it was concluded

that IFP is a barrier with little supporting
numerical evidence, i.e. no simulation of actual
drug transport was performed.

3.3.6 Interstitial Drug Transport

Experimentally, penetration experiments are per-
formed for homogeneous cells layers and genetic
causes for drug resistance are examined. How-
ever direct observation of drug distribution in
tumors is difficult due to a lack of suitable mark-
ers. As a result there is only little experimental
where spatial distributions of drug were measured
[102, 121, 177] and quantitative data is scarce.

In oder to shed light on barriers to drug de-
livery, transport through tissue by advection and
diffusion after extravasation must be taken into
account. For this purpose, we analyzed a simple
model, according to which, we computed time-
dependent concentration distributions of drug in
simulated tissues containing a vascularized tu-
mor, grown in three-dimensional AVNs [169].
The considered tumors were static, and obtained
by simulations guided by melanoma and glioma.
In addition to concentration distributions, we also
computed maps of time-independent metrics of
doses delivered to the intracellular compartment:
the local maximal concentration s2 taken over
time (ICMAX) and the time integral of s2, respec-
tively (ICAUC). The computation was stopped
after a simulated time of 96 h.

Anti-cancer drugs come in a variety of kinds,
from light molecules e.g. Cisplatin or Doxoru-
bicin (�543 g/mol) to heavy nano particles and
viruses as carrier systems. We considered a base
case guided by Doxorubicin since it is experi-

J
Fig. 3.8 (continued) flow leads to a large drop of the
hydrostatic pressure across the vessel wall, so that the
interstitial fluid pressure (IFP) approximately assumes the
reference value of zero purported by the lymphatic system.
In tumors, the IFP is elevated to approximately the level
of blood pressure due to extremely large gaps in vascular
walls (b; bottom) and lack of functional lymphatics [64].
The IFP measured in human tumors ranges from 0 to
94 mmHg, depending on the type of tumor [83]. Cuts
through three dimensional simulation data sets are shown

in the following panels: (c) Fractional volume of blood
vessels per voxel volume. The interface to the distribution
of viable tumor cells (TCs) is shown as contour. (d)
Interstitial fluid pressure. (e) IF source and drain density
in units of liquid volume per tissue volume and time.
(f) X-component of the IF velocity v. Varying blood
pressures and the presence of necrotic regions, of which
we assumed a 10� increased permeability for IF, lead to
a dissymmetrical IFP distribution. The IFF distribution is
discontinuous as a result of the change in permeability
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Fig. 3.9 Radial distributions of IFF and IFP as result
of parameter variations. Left column shows the IFP
and the center column shows the IFF. The curves are
obtained from averages over annular shells and over a
cohort of 15 simulated tumors. The curve marked with
an asterisk shows the average blood pressure. Our model
of IFF is analogous to an electrical network, where the
IFP is the electrical potential. The right column shows
this in simplified schematics. In each of them vessels are
on the top (BV; red), the middle represents interstitial
space (shaded and yellow), and lymphatics (LV; green).

Outlined boxes represent various resistances, or perme-
abilities, in the system. Solid black boxes indicate the
varied parameter. The relative deviation from the original
base case parameter values is given in the figure legends,
except in (D). The considered cases are as indicated in the
sub-figure heading: (a) Variation of the upper vessel wall
permeability bound �l;T (case iv in [169]). (b) Variation
of the interstitial permeability coefficient Kl (case v in
[169]). (c) Variation of the amount of tumor lymphatics
S.L/

T =S.L/
N , where the legend shows S.L/

T =S.L/
N directly (case

vii in [169])

mentally relatively well studied and widely used
[121, 177].

Our model predicts that, in general, the dose
delivered is subject to a compartmentalization
similar to the vascular density (MVD), where
metrics ICAUC and ICMAX likewise reflect the
distribution of the MVD [169, Fig. 9]. Hence
the average dose within the center of the tumor

spheroid is significantly lower than in normal
tissue, unless stated otherwise, and doses are
highest at the tumor edge. This result provides an
additional explanation of the incompletely under-
stood success of combination therapies of anti-
angiogenic agents and chemotherapy, whereas a
single drug fails to improve survival [78]. TCs
behind the tumor edge might be killed by high
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doses of chemotherapeutics, effective against cy-
cling cells, whereas the TC population of the
tumor center is reduced by necrosis caused by
hypoxia. A monotherapy might leave the one or
the other part of the TC population unaffected.
The mechanism by which combination therapies
are known to act is suppression of the activity
caused by vascular growth factors, leading to
a decreased vascular permeability. This allows
overall better delivery of chemotherapeutics due
to improved perfusion [78]. We also considered
the case of a prolonged infusion which yielded
similar results but with higher magnitudes of
concentrations and doses.

Variation of the various permeabilities showed
that average doses delivered with the permeabil-
ity. Doses showed the highest sensitivity with re-
spect to interstitial hydraulic and diffusive perme-
abilities which were varied simultaneously. See
Fig. 3.9b, where a 10� increase in permeability
leads to a similarly drastic increase in extrava-
sation and IFF, not as obtained by other cases.
As a result, more drug is delivered into tissue as
well. However, the mechanism only works under
the assumption that blood flow is sufficently high
that it is not disturbed much by extravasation. As
suggested before [174], this could be exploited
for therapy. However an increased IFF could
aggravate tumor invasion and metastatic dissem-
ination [140]. Moreover, angiogenic normaliza-
tion therapy, i.e. a reduction of permeability and
pruning of vessels [78], might be ineffective or
even detrimental for tumors where blood flow is
negligibly impaired.

Doxorubicin and lighter molecules have the
advantage that diffusion helps to distribute a
substantial dose homogeneously around blood
vessels regardless of IFF. This was demonstrated
in recent simulations of another group [141]
where very smooth and homogeneous concen-
tration distributions of the more diffusive drug
Cisplatin (300 g/mol) arising from extravasation
from a CN were predicted.

Since the diffusion coefficient decreases with
the molar mass of the solute, transport of drugs
like nano-particles is strongly advection domi-
nated. Simulation of the flow of such particles
predicted interstitial drug concentrations that fol-

low the stream of interstitial fluid in significant
concentrations through the largest parts of the
tumor spheroid, starting from the initial insertion
through the vasculature (s. Fig. 3.10). As a result
small isolated islands were predicted to exist right
behind the invasive edge of the tumor where no
significant dose had been delivered within the
time frame of the simulation of 96 h. Presumably,
this discrepancy to earlier work [76] is caused
by the discrete nature of the blood vessel network
considered allowing for flow in-between vessel of
different blood pressure levels. Thus radial flow
component vanishes by chance at some places
as dictated by the random configuration of the
vascular network. This suggests that a mono-
therapy with agents of high molar mass would be
prone to recurring cancer.

3.3.7 Oxygen Distribution

Extremely good perfusion of tumor vessels
cannot be assumed for tumors in general. This
necessitates consideration of spatially varying
substance concentrations because a substantial
fraction may be lost during the transit through
the tumor. Maps of tissue and intravascular
oxygen partial pressure (PO2) distributions were
calculated previously for small system volumes
of the order of 0:1 mm3 [54, 136]. Our recently
developed computational method allows for
computation of PO2 distributions in macroscopic
simulation boxes of ca. 0:5 cm3 on standard
hardware (i7-2600K, 3.4 GHz, 4 GB Ram) within
hours to a fair degree of accuracy [167]. It is
still computationally expensive, however, few
simplifying assumptions need to be made for
the vascular network. Computed distributions of
PO2 and blood oxygen saturation are shown in
Fig. 3.11a, b.

Critical to performance and accuracy is the
regularization of the singular source term (3.16),
containing Dirac ı distributions, in conjunction
with an efficient numerical scheme for the so-
lution of the diffusion equation. In general the
method should yield a sparse system matrix to
enable numerical solutions in O.n log n/ time in
the number of unknowns n. In future, adaptive
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Fig. 3.10 Snapshots of the spatio-temporal distribu-
tion of a macro-molecular tracer concentration. The
tissue and network configuration was obtained from simu-
lated tumor growth and vascular remodeling of a synthetic
arterio-venous vasculature [169]. Each panel shows a
horizontal cut through the origin of the simulation box,
showing the entire extent of 8 mm width. The distribution
was calculated as solution of an advection equation for
extra-vascular tissue. Vessels were sources of tracer which
extravasates with the IF, assuming a spatially constant
intravascular concentration sv.t/. In time an exponential

decrease of sv.t/ was assumed, modeling a short injection
and the subsequent clearance period. Moreover, the tracer
was assumed inert, i.e. there were no sinks except by
back flow into vessels. Since macro-molecules are hardly
diffusing, the injected tracer is transported with the flow
of the IF. The flow varies locally in direction and magni-
tude due to the coupling of the IFP to varying levels of
blood pressure. As a result the tracer distributions is very
heterogeneous. Frequently, as in this example, areas are
predicted at the tumor rim that receive no significant dose

tesselation of the tissue domain may be used to
increase accuracy [34].

The computation of intravascular PO2
distributions [167] was applied to the case of

breast tumors for which several groups measured
hemoglobin concentrations cHb and average
blood oxygen saturations Y in large cohorts of
patients [60, 144, 154, 155]. They determined
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Fig. 3.11 Blood oxygen saturation and oxygen partial
pressure: (a) Shows simulated intra-and extravascular
distributions of partial pressure of oxygen (PO2) P, and Pt,
respectively. (b) shows the corresponding blood oxygen
saturation (SO2). (c) shows the hematocrit distribution
within the same network. (d) shows the oxygen partial
pressure obtained from a simplified model where the intra-
vascular oxygen partial pressure was held constant. Data
shown was computed for networks obtained by simulation

of tumor growth and vascular remodeling [167]. A spher-
ical region of approximately 2 mm radius was changed by
the tumor. Each panel shows a horizontal cut through the
simulation box. The entire extent of 8 mm width is shown.
The vessel network is visualized as collection of cylinders,
color coded by respective intravascular distributions. Only
a slab, truncated 100 �m above and below the central
plane, is shown (cross sectional areas: light grey). (a) and
(d) show in addition extravascular tissue PO2 distributions

average concentrations of total hemoglobin
cHb, oxyhemoglobin cHbO, deoxyhemoglobin
cHbD, and tissue blood oxygen saturations
Y D cHbO=cHb within normal and tumorous

tissue sections. Obtained tumor hemoglobin
concentrations cHb.tumor/ were always larger
than hemoglobin concentrations in normal tissue
cHb.normal/. This is already explained by an
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increase in regional blood volume rBV due
to vaso-dilation. However, the blood oxygen
saturation in tumors Y.tumor/ was sometimes
larger or smaller than the blood oxygen
saturation in normal tissue Y.normal/, divided
approximately to equal numbers among patients.
Moreover, high hemoglobin concentrations were
correlated with high saturations, but tumors with
low hemoglobin concentration exhibited a wider
range of blood oxygen saturations.

We considered tumor vascular networks
(t D 800 h) obtained from simulation of tumor
growth and vascular remodeling. A large cohort
of 90 different networks was simulated emulating
a cohort of patients. Regional blood volume
rBV , perfusion rBF, hemoglobin concentrations
cHb, oxy-hemoglobin concentrations, deoxy-
hemoglobin concentrations, oxygen saturation
Y , as well as tissue and vascular oxygen
partial pressure distributions P, and Pt were
calculated for initial networks and final tumor
networks (t D 800 h). Transient behavior such as
transient hypoxia due to temporary occlusion
of blood vessels was not considered. In our
base case (BASE), different initial (t D 0)
vascular configurations lead to a spread in tumor
oxygen saturations, but it did not predict the
clinically observed dependency of Y.tumor/
versus Y.normal/ since predicted Y.tumor/ were
always larger than Y.normal/. Therefore we
considered a phenomenological ad-hoc extension
of the model by vaso-compression. On average,
taken over the cohort of tumors, the proposed
alteration results in a reduction of the radii
of arterioles and venules that are thicker than
the maximal dilation radius r.max/, whereas the
radii of smaller vessels are not much affected on
average. This modified model predicts saturations
Y in good agreement with mammography data
(see Fig. 3.12). The reasons for this better
agreement are a reduction of blood flow, thus
draining a greater fraction of the supplied O2 in
order to meet metabolic demand. Moreover, Y is
the volume weighted average of the local blood
saturation S.P/. Therefore compression reduces
the weight of dilated arterio-venous shunts which
generally exhibit a high saturation S. Cases for
which drastically increased metabolic oxygen

consumption rates M0, decreased maximal
dilatation radii r.max/, and stochastic variations
thereof were considered, failed to predict the
clinically observed distributions. Therefore our
results suggest that a decreased tissue blood
oxygen saturation relative to baseline normal
tissue of the same patient is indicative of vessel
compression which could be exploited in therapy.
The clinical data might imply that tumor vascular
networks that exhibit higher saturations than
normal are vastly different in their vascular
architecture than networks that exhibit low
saturations. However, our simulations suggest
that these networks nevertheless share the traits
of typical tumor vascular networks as outlined in
the introduction.

For models of tumor growth, it is a very
convenient approximation to consider a model
of oxygenation where the intravascular PO2 dis-
tribution is constant. Then only the tissue PO2
distribution needs to be calculated. There are
however qualitative difference in its predictions
that one should be aware of (s. Fig. 3.11d). The
constant-PO2 approximation fails to predict local
oxygen depletion in vessels threading the tumor
center. More importantly it over-estimates the
PO2 in the neo-vascular plexus around the tumor
periphery. The depletion of oxygen predicted by
the full model is a consequence of a redirection of
most hematocrit into the tumor center due to the
phase separation effect (s. Fig. 3.11c). Therefore
the densely vascularized capillary plexus around
the invasive edge is deprived of red blood cells
and thus the oxygen capacity of blood therein
drastically reduced.

3.4 Limitations and Outlook

Although current models produce predictions that
are in many respect in good agreement with ex-
periments, there are some severe limitations. For
one, many predictions were obtained by first sim-
ulating tumor growth by a simplified model. Then
additional quantities relevant for tumor growth
were computed, e.g. interstitial fluid flow or in-
travascular oxygen distributions [167,169]. Other
works have other limitations, e.g. oversimplified
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Fig. 3.12 Tissue oxygen saturation: clinical versus
simulation data. (a) Total hemoglobin concentration cHb

versus tissue blood oxygen saturation Y of tumors (solid
circles) and healthy breast tissue (open squares) for 87
patients, obtained by optical mammography. (b) Tissue
blood oxygen saturation Y of tumors versus those of
corresponding healthy breast tissue for the same group of
patients. (Reprinted by permission of IOP Publishing from
[60] Figs. 3b, 5a. All rights reserved) (c, d) Analogous
data obtained from simulated tumor vascular remodeling,
guided by data for breast cancer, and computation of
intra and extravascular oxygen concentration distributions
[167] of which examples are shown in Fig. 3.11a, b.

Markers in (c) correspond to initial tissue (grey) and
the tumorous areas at t D 600 h (black). A cohort of
90 tumors was simulated, each using a different initial
(t D 0) vascular network. Each initial network was grown
from one of nine root node configurations denoted RC1–
RC9. Depending on the number of root nodes, which is
equivalent to the number of arterial and venous trees in
the network, varying vascular volumes rBV and blood
flow rates rBF are obtained, introducing significant data
scatter. The data shown was predicted assuming vaso-
compression of high-caliber vessels that penetrate into the
tumor (Case CMPR of Ref. [167])

vascular networks of host tissue [95, 131, 141,
174]. It may be worth to develop an integrated
model combining all aspects into time dependent
simulation of tumor growth. This may be particu-
larly important for the study of pharmacokinetics

where IFF, drug transport, oxygenation and tumor
growth are tightly coupled.

Furthermore, To obtain a more faithful cohort
of initial blood vessel networks, a systematic
analysis of initial networks could be carried out.
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Experimental data of blood volume, rBV , per-
fusion rBF, and so on, could be used to select
a cohort of networks that satisfies experimen-
tally observed statistical distributions. Current
networks are unrealistic in some aspects, e.g. they
contain no anastomosis, i.e. cross-links between
vascular trees [100].

Therefore it would be ideal to use real scanned
and digitized blood vessel networks (s. Fig. 3.13
for examples). In principle it is possible to auto-
matically reconstruct networks from voxel data.
However, current state of the art microscopy
methods can only see through a tissue slab up to
a maximal depth of ca. 250 �m [27]. Recently,
data obtained from micro computed tomography
(�-CT) was used by Stamatelos et al. [147] to
reconstruct large parts of the vascular system
of an animal-model breast tumor. However, it
is questionable if all capillaries were captured
since the resolution of the scanner was only
8 �m, and many dead ends were in the recon-
structed network. Similar results were obtained
for other cranial [61] and coronary [91] blood

vessel networks. A data base of many large scale
networks of normal tissues and corresponding
tumor networks at different growth stages could
be built. Not only would this eliminate the need to
construct artificial initial networks, but it would
also allow for a detailed comparison between
model predictions and real tumor networks.

A major limitation of our model is the re-
stricted applicability to only well perfused tu-
mors. However in animal models blood flow
velocities are generally lower amounting to 0.1–
1 mm/s [9, 109]. The prediction of good perfu-
sion is inherent to our basic model of vascular
remodeling since tumor vessels can only dilate,
not shrink, leading to well conducting arterio-
venous shunts. The prediction of high flow rates
allows for neglect of blood plasma loss due to
extravasation, which we justify by a simple worst
case estimation of lost plasma amounting to ca.
0:1 %. Therefore, extravasation of plasma cannot
be the only cause for low blood flow, but rather
it likely aggravates the situation if vessels are
constricted by solid pressure for instance.

Fig. 3.13 Reconstruction of blood vessel networks
from imaging data: (a) A coronary vascular network of
a rat based on micro-CT images. Various subnetworks
are distinguished by random colors. (Reprinted with
Permission from [91] Fig. 12e. Copyright 2007 Elsevier
Science) (b) A section of a cortical blood vessel network
after reconstruction based on micro-CT images. Vessels
are color coded according to their diameter d. (Reprinted
with permission from [61] Fig. 1c. Copyright 2010 Nature
Publishing Group) (c) Tissue slice of the human cerebral
cortex. The left hand side shows a side view on a large

vein with adjacent branches. The reconstruction is based
on depth-coded confocal microscopy images. (Reprinted
with permission from [27] Fig. 3. Copyright 2006 Taylor
& Francis LLC) At the present day, vascular networks
of host tissue, in which tumor growth is simulated, are
algorithmically synthesized which involves uncertainties
and likely model artifacts. The incorporation of such
scanned networks, possibly on larger scales than the ones
shown, would allow for more accurate model validation
and results to be obtained
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Consequently, it would be worthwhile to ex-
plore extensions to vascular dilation and regres-
sion processes rather than limiting blood flow
by ad-hoc shrinkage of arterial radii, as done
in [167]. One such possible extension already
exists in the vascular adaptation model [119].
Essentially, a shrinking-tendency is balanced by a
wall shear-stress dependent growth signal. More-
over, compression of blood vessels is insuffi-
ciently understood. Forces involved were studied
quantitatively, separately (see Refs. below). How-
ever, their interplay is not understood or studied
much. Obviously, the deformation of vessel walls
is governed by a balance of forces which are
tensile and compressive stress within the vessel
wall, blood pressure, interstitial fluid pressure,
and solid pressure. Solid pressure compresses
vessels [30, 31, 150] and there is evidence that
an elevated IFP aids in compression of vessels
[36,59]. There is, to our knowledge, no predictive
model of the response of the vessel wall that takes
these factors into account. A physical considera-
tion based on first principles e.g. with the help
of a elasto-plastic mechanical model of vascular
walls in combination with a mechanical model
of tissue could help elucidate the forces involved
and ultimately yield better predictions of blood
flow.

With an ad-hoc extension to emulate com-
pression, our model predicts regional blood flow
rBF that is about a factor of 5–10 above mea-
sured data from breast tumors [167, Tbl. 4].
This apparent deficiency might be founded in the
size of the considered tumors (4 mm in diameter,
simulated, versus centimeter sized real tumors),
since in tumor xenografts [84] blood flow rBF of
experimental tumors (2–0.3 ml/g/min) correlates
negatively with size (0.1–10 cm3 tumor volume),
consistent with predictions of our model. The
reasons for this size dependency are currently
unknown. However, it suggests that either normal
vasculatures can only provide a constant blood
flow rate per surface area of the tumor spheroid
into the tumor, or that the abnormal organization
of the tumor vasculature is only affecting blood
flow velocities in tumors much larger than theo-
retically studied.
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