
Controlling the Average Behavior of Business
Rules Programs

Olivier Wang1,2, Leo Liberti2(B), Claudia D’Ambrosio2,
Christian de Sainte Marie1, and Changhai Ke1

1 IBM France, 9 Rue de Verdun, 94250 Gentilly, France
2 CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France

olivier.wang@polytechnique.edu, liberti@lix.polytechnique.fr

Abstract. Business Rules are a programming paradigm for non-
programmer business users. They are designed to encode empirical
knowledge of a business unit by means of “if-then” constructs. The clas-
sic example is that of a bank deciding whether to open a line of credit to
a customer, depending on how the customer answers a list of questions.
These questions are formulated by bank managers on the basis of the
bank strategy and their own experience. Banks often have goals about
target percentages of allowed loans. A natural question then arises: can
the Business Rules be changed so as to meet that target on average? We
tackle the question using “machine learning constrained” mathematical
programs, which we solve using standard off-the-shelf solvers. We then
generalize this to arbitrary decision problems.

1 Introduction

For the purpose of this work, a Business Rule (BR) program is an ordered list
of sentences of the form:
if cond(p, x) then

x ← act(p, x)
end if

where p is a control parameter symbol vector which encodes a possible “tuning”
of the program (e.g. thresholds which can be adjusted by the user), x ∈ X ⊆ R

d

is a variable symbol vector of dimension d representing intermediate and final
stages of computation, cond is a boolean function, and act a function with values
in X. We call rule such a sentence, condition an expression cond(p, x) and action
an instruction x ← act(p, x), which indicates a modification of the value of x. If
P is the BR program, we write the final value of the variable x as xf = P (p, q),
where q is an input parameter symbol vector representing a problem instance
and equal to the initial value of x. Although in general BR programs may have
any type of output, many BR programs encode decision problems, in which case
the part of the output that matters can be represented by a single bit (one
component of x is a binary variable).

BR programs are executed in an external loop construct which is transparent
to the user. Without getting into the details of BR semantics, the loop executes
c© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 83–96, 2016.
DOI: 10.1007/978-3-319-42019-6 6

84 O. Wang et al.

a single action from a BR whose condition is True at each iteration. Which BR
is executed depends on a conflict resolution strategy with varying complexity.
De Sainte Marie et al. [22] describe typical operational semantics, including
conflict resolution strategy, for industrial BR management systems. In this paper,
the list of rules is ordered and the loop executes the first BR of the list with
a condition evaluating to True at each iteration. The loop only terminates once
it satisfies a termination condition, which we assume to be that none of the
conditions of the BRs is True at the last iteration (as is usual). We proved in [27]
that there is a universal BR program which can simulate any Turing Machine
(TM), which makes the BR language Turing-complete.

The BR language is useful as a “programming tool for non-programmers”,
since it hides the two aspects of imperative computer programming which most
non-programmers find confusing: loops and function calls. As mentioned above,
BR programs only have a single loop, which is part of the interpreter, and exter-
nal to the language itself. The BR language replaces function calls (up to a
point) by factorizing many code fragments into a single ‘rule’. The BR interpreter
instantiates each rule into as many code fragments as possible by matching all
consistent variable types at compile time.

The BR language is often used in medium-to-large sized corporations to
encode their policies and empirical knowledge – often easily representable as “if-
then” type statements. Such business processes are often embedded in a database
of BRs representing a mix of regulations, organizational policies and operational
knowledge. The latter can be collected from multiple employees over a possibly
long period of time. BR interpreters are implemented by all BR management
systems, e.g. [14].

The aim of this paper is to describe a method for changing the control para-
meters of BR programs as little as possible so that they approximately meet a
given “average behavior” goal. This issue arises in the following setting:

– the BR program P (p, q) encoding the business process has a (non-empty)
control parameter symbol vector p;

– the BR program is run using the parameter vector p0;
– the corporation owning the business process has an average goal to meet on a

function f , with values in R, of the outcomes of the BR program;
– the average of P (p0, q) where q ranges over a (possibly large but finite) set Q

of instances is different from the goal.

We discuss the concrete example of a bank using a BR program in order to
decide whether to grant a loan to a customer or not. The BR program depends on
a variable vector x and initializes its parameter vector (a component of which is
the minimum income level) to p0. The BR program is used to decide whether the
bank will reject the loan request, and therefore has a binary return value. Assume
that the bank high-level strategy requires that no more than 40 % of loans should
be rejected automatically, and that the BR program currently rejects about 60 %.
Our aim is to adjust p, e.g. modifying the income level, so that the BR program
satisfies the bank’s goal regarding automatic loan rejection. This adjustment of

Controlling the Average Behavior of Business Rules Programs 85

parameters could be required after a change of internal or external conditions,
for example.

Let g ∈ R be the desired goal. Then the problem can be formalized as:

min
p,x

‖p − p0‖
∣
∣Eq∈Q

[

f
(

P (p, q)
)] − g

∣
∣ ≤ ε,

}

(1)

where ‖ · ‖ is a given norm, p, q must satisfy the semantics of the BR program
P (p, q) when executed within the loop of a BR interpreter, E is the usual notation
for the expected value and ε is a given tolerance. This formalization is closer to
the reality of BR users than the reverse (minimizing E(P)−g while constraining
p−p0), as corporations will often consider goals more rigidly than changes to the
business process, and the value of the objective will speak to them more as a kind
of quantification of the changes to be made. The form this quantification takes,
from minimizing the variation of each parameter in p to minimizing the number
of parameters whose value is modified, depends on the definition of the norm ‖·‖.
By using a linearizable norm, such as ‖·‖1 or ‖·‖∞, we can solve Eq. (1) for linear
BR programs using MILP solvers, through a pre-processing reformulation. While
this problem looks like a supervised learning problem at first glance, standard
supervised learning algorithms cannot help here as there is no ‘correct’ answer
for each separate instance q. Rather, a global approach is necessary as, in the
general case, the correct classifier is defined as a frequency distribution over the
set of all instances Q. In this paper we consider the simplified case where the
expected value serves as the classifier, which is equivalent to having the frequency
distribution in the common case of a binary output.

Traditionally, this problem would be solved heuristically by treating P as a
black-box, or by replacing it by means of a simplified model, such as e.g. a low-
degree polynomial. Our approach is different: we model the algorithmic dynamics
of P by means of Mixed-Integer Programming (MIP) constraints, in view to
solving Eq. (1) with an off-the-shelf solver. That this is at all possible in full
generality follows because Mathematical Programming (MP) is itself Turing-
complete [16].

We make a number of simplifying assumptions in order to obtain a practi-
cally useful methodology, based on solving a Mixed-Integer Linear Programming
(MILP) reformulation of Eq. (1) using a solver such as CPLEX [13] or BonMin [3]:

1. We replace Q by a smaller “training set” S for which we know the BR out-
come. We choose S small enough that solving the MILP is (relatively) com-
putationally cheap.

2. We assume a finite BR program with a known bound (n − 1) on the number
of iterations of the loop for any input q (industrial BR programs often have
a low value of n relative to the number of rules). This in turn implies that
the values taken by x during the execution of the BR program are bounded.
We assume that M � 1 is an upper bound of all absolute values of all p, q,
and x, as well as any other values appearing in the BR program. It serves as
a “big M” for the MP described in the rest of the paper.

86 O. Wang et al.

3. We assume that the conditions and actions of the BR program give rise to
constraints for which an exact MILP reformulation is possible. In order to
have a linear model, each BR must thus be “linear”, i.e. have the form:
if L ≤ x ≤ G then

x ← Ax + B
end if

with L,G,B ∈ R
d and A ∈ R

d×d. We see in Sect. 3 that an actual MILP
actually requires A ∈ {0, 1}d×d in some cases.

We shall attempt to relax some or all of these assumptions in later works.
We also remark that this setting easily generalizes to any class of decision

problems depending on a “tuning” parameter p, for which an average behavior
is prescribed.

For the rest of the paper, we make the following simplifying assumptions
(all of which afford no loss of generality).

1. We assume that the dimension of p is one, making it a scalar. Consequently,
we choose the norm in Eq. 1 to be the absolute value for the rest of the paper.
Additional parameters correspond to additional constraints that mirror the
ones used for the first parameter.

2. We assume that the relevant function of the outcome f is the projection on
the first dimension: f(x) = x1. Any linear f can be used instead with no
difference in the constraints, but BR programs usually have a projection of
the variable x as their output.

1.1 Related Works

Business Rules (also known as Production Rules) are well studied as a knowledge
representation system [8,10,18], originating as a psychological model of human
behavior [19,20]. They have further been used to encode expert systems, such
as MYCIN [6,25], EMYCIN [6,23], OPS5 [5,11], or more recently ODM [14] or
OpenRules. On the business side of things, they have been defined broadly and
narrowly in many different ways [12,15,21]. We consider Business Rules as a
computational tool, which to the best of our knowledge has not been explored
in depth before.

Supervised Learning is also a well studied field of Machine Learning, with
many different formulations [2,17,24,26]. There exist many algorithms for this
problem, from simple linear regression to neural networks [1] and support vector
machines [9]. When the learner does not have as many known output values
as it has items in the training set, the problem is known as Semi-Supervised
Learning [7]. Similarly, there has been research into machine learning when the
matching of the known outputs values to the inputs is not certain [4]. However,
the fact that each known value corresponds to a single input item has not been
questioned before, to the best of our knowledge.

Controlling the Average Behavior of Business Rules Programs 87

2 MIP Constraints for the BR Program Dynamics

We study a BR program with a rule set {Rr | r ≤ ρ} containing rules of the
form:
if Lr ≤ x ≤ Gr then

x ← Arx + Br

end if
with rule R1 being instead:

if L1 ≤ x ≤ G1 then
x ← Ap

1x + B1

end if
where Ap

1 is a d × d matrix satisfying:
{∀k1, k2 ∈ D, k1 	= 1 ∨ k2 	= 1 ⇒ (Ap

1)k1,k2 = (A1)k1,k2

(Ap
1)1,1 = p

with D = {1, . . . , d}.
In the rest of this paper, we concatenate indices so that (Lr)k = Lr,k,

(Gr)k = Gr,k, (Ar)k1,k2 = Ar,k1,k2 and (Br)k = Br,k. We assume that rules
are meaningful, such that Lk ≤ Gk.

2.1 Modeling a BR Program

We exhibit a set of MIP constraints (Fig. 1) modeling the execution of the BR
program. The iterations of the execution loop are indexed by i ∈ I = {1, . . . , n}
where n − 1 is the upper bound on the number of iterations, the final value of
x corresponds to iteration n. The rules are indexed by r ∈ R = {1, . . . , ρ}. We
use an auxiliary binary variable yi,r with the property: yi,r = 1 iff the rule Rr

is executed at iteration i. The vectors of binary variables yg
i,r and yl

i,r are used
to enforce this property. In the rest of this section, the parameter is assumed to
take the place of A1,1,1, so we note a an additional variable initialized to a = A
except for a1,1,1 = p. Similar sets of constraints exists for when the parameter p
takes the place of a scalar in Br, Lr or Gr.

We note (C1), (C2), etc. the constraints related to the evolution of the exe-
cution and (IC1), (IC2), etc. the constraints related to the initial conditions of
the BR program:

– (C1) represents the evolution of the value of the variable x
– (C2) represents the property that at most one rule is executed per iteration
– (C3) represents the fact that a rule whose condition is False cannot be executed
– (C4) through (C6) represent the fact that only the first rule whose condition

is True can be executed
– (IC1) through (IC3) represent the initial value of a
– (IC4) represents the initial value of x

88 O. Wang et al.

Fig. 1. Set of constraints modeling the execution of a BR program with
e = (1, . . . , 1) ∈ R

d a vector of all ones

Theorem 1. The MIP constraints from Fig. 1 correctly model the execution of
the BR program with input (p, q). The value of xn after applying the constraints
is then the output of the BR program: xn = P (p, q).

Proof. We begin by proving that for a given i ∈ I, it is true that yi,r = 1 iff xi

fulfills the condition for rule Rr and does not fulfill the condition for any rule
Rr′ where r′ < r. Suppose yi,r = 1. (C3) ⇒ Lr ≤ xi ≤ Gr implies that xi fulfills
the condition for rule Rr. Let us now set r′ < r.

C2 ⇒ yi,r′ = 0 ∧
∑

r′′<r′
yi,r′′ = 0

C6 ⇒ ∃k ∈ D : yg
i,r′,k = 0 ∨ yl

i,r′,k = 0

As we also have:
yg
i,r′,k = 0 ∧ C4 ⇒ xi

k ≥ Gr′,k

yl
i,r′,k = 0 ∧ C5 ⇒ xi

k ≤ Lr′,k

We have one of xi
k ≥ Gr′,k or xi

k ≤ Lr′,k. Either of those means that xi does not
fulfill the condition for rule Rr′ .

Conversely, suppose that xi fulfills the condition for rule Rr and does not
fulfill the condition for any rule Rr′ where r′ < r. Reasoning by induction over
r′, we see that assuming

∑

r′′<r′
yi,r′′ = 0 (which is true for r′ = 1) we have:

Controlling the Average Behavior of Business Rules Programs 89

C4 ∧ C5 ∧ C6 ⇒ yi,r′ = 0

because the condition for Rr′ is not fulfilled. We thus have
∑

r′<r

yi,r′ = 0. This

and the fact that the condition for Rr is fulfilled means that yi,r = 1.
A simple inductive proof over the i ∈ I then proves that the xi are the

successive values taken by x during the execution of the BR program as long as
∑

r∈R

yi,r = 1 and that the value of xi does not change as long as
∑

r∈R

yi,r = 0,

which corresponds to the stopped execution of the BR program. This also proves
xn = P (p, q). ��

2.2 A MIP Formulation

Having modeled the dynamics of a single execution of the BR program by means
of the constraints of the previous section, we now come back to our original
purpose: we exhibit a MIP that finds a value of p satisfying Eq. 1 in Fig. 2.

We index the instances in S with j ∈ J = {1, . . . , m}, where m = |S| is the
number of instances in the training set S. The parameter p is now one of the
variables. We note e = (1, . . . , 1) ∈ R

d the vector of all ones.
As modifying the parameter means modifying the BR program, the assump-

tions made regarding the finiteness of the program might not be verified when
optimizing over p. One of those which might lead to unusable solutions is the
assumption that the computations terminate in less than n−1 iterations. In the
case where the MIP finds a value of p for which the BR program is stopped by
this limit on the loop rather than by the proper termination condition, the MIP

Fig. 2. MIP Formulation for Solving Eq. 1 with e = (1, . . . , 1) ∈ R
d a vector of

all ones

90 O. Wang et al.

would not actually solve Eq. 1. We therefore limit ourselves to solutions which
result in computations that terminate in less than n − 1 rule executions.

Any constraints numbered as before fulfills the same role. The additional
constraints are:

– (C7) represents the need for the computation to have terminated after n − 1
executions

– (C8) represents the goal from Eq. 1, that is a constraint over the average of
the final values of x.

Theorem 2. The MIP from Fig. 2 finds a value of p that satisfies Eq. 1.

The proof derives directly from Theorem 1.

3 A MILP Reformulation

The problem as written in Eq. 2 is not linear. A linear reformulation exists for
when the parameter p takes the place of a scalar in Br, Lr or Gr. Figure 3
describes such a MILP when p takes the place of B1,1. We linearize the products
of Arx

i,j+br by yi,j,r and xi,j by yi,j,r in (C1) using factorization and an auxiliary
variable w ∈ R

I×J×R. We arrange to have wi,j,r = (Arx
i,j + br − xi,j)yi,j,r,

i.e. wi,j,r = Arx
i,j + br −xi,j (the difference between the new and the old values

of xj) iff rule r is executed, and 0 otherwise.

Theorem 3. This MILP finds a value of p that satisfies Eq. 1, when p takes the
place of B1,1. A similar MILP exists for when p takes the place of another scalar
in Br,k, Lr,k and Gr,k.

The proof derives directly from Theorem2, by factoring constraint (C1) in Fig. 2
and studying the possible values of yi,j,k.

When the parameter takes the place of A1,1,1, a linear formulation is only
possible if A1,1,1 is a discrete variable. For the purpose of this article, we only use
the case where A1,k1,k2 are binary variables. The associated MILP is in Fig. 4. In
that case, we have the additional product of ax to linearize, so we use another
auxiliary variable z ∈ R

I×J×R×D2
such that zi,j,r,k1,k2 = ar,k1,k2xi,j,k2 .

Theorem 4. The MILP in Fig. 4 finds a value of p that satisfies Eq. 1, when p
takes the place of A1,1,1 and A1,k1,k2 are binary variables.

The proof derives from Theorem 3 and a study of the possible values of
A1,k1,k2 and yi,j,r. We can trivially expand the MILP to optimize over more
than one parameter, adding constraints similar to constraints (IC1), (IC2) and
(IC3) or (IC1”), (IC2”) and (IC3”) in Fig. 1 or Fig. 3 as necessary and having
an objective of

∑

p
‖p0 − p‖.

Controlling the Average Behavior of Business Rules Programs 91

Fig. 3. MILP Formulation with p Taking the Place of B1,1 with e = (1, . . . , 1) ∈
R

d a vector of all ones

Fig. 4.MILP Formulation with p Taking the Place of A1,1,1 with e = (1, . . . , 1) ∈
R

d a vector of all ones

92 O. Wang et al.

Table 1. Experimental values for the scalability of the MILP method

Value of ρ Proportion of instances Average solver times Average objective values

solvable in an hour over solvable instances over solvable instances

1 1.0 2.0877 0.9772

2 0.98 22.9848 2.1363

3 0.96 265.3536 4.0421

4 0.89 737.6687 6.9834

5 0.66 929.3174 7.771

4 Implementation and Experiments

We use a Python script to randomly generate samples of 100 BR programs and
corresponding sets of instances with d = 3, n = 10 and m = 100. We define the
space X as X ⊆ R × R × Z. The BR programs are sets of a variable number ρ
of rules of the type:
if Lr ≤ x ≤ Gr then

x ← Arx + Br

end if

where Lr, Gr, Br are vectors of scalars in [−5, 5]; Lr ≤ Gr and Ar are d × d
matrices of binary variables. The instances are vectors qj with values in [−5, 5].
All values are generated using a uniform distribution. We use a variable value
of ε. For each BR program, we try to obtain a goal g = 0 by optimizing over
φ = 5ρ randomly chosen parameters.

We use these BR programs to study the computational properties of the
MILP. The value of M used is customized according to each constraint, and is
ultimately bounded by 51 (strictly greater than five times the range of possible
values for x). We write the MILP as an AMPL model, and solve it using the
CPLEX solver on a Dell PowerEdge 860 running CentOS Linux.

4.1 Scalability

We set a fixed ε value of 1. This corresponds to a very high tolerance (20 % of
the range of possible values). We observe the average solving time and optimal
objective for different values of ρ (Table 1) among the solvable MILP instances.
An instance is considered unsolvable if it is infeasible or it has no integer solution
after 1 h (3600 s) of solver time.

While it could be argued that the increase in the number of parameters has
an obvious effect over the difficulty of the problem, the study of an increase in ρ
without the proportional increase in φ leads to a drastic and predictable increase
in infeasible instances. Even with our setup, the proportion of solvable instances
is lower as ρ increases, although that is mostly due to the solver exceeding the
time limit. As a high value of ρ is the main issue when scaling up to industrial
BR programs, it still seems worth studying.

Controlling the Average Behavior of Business Rules Programs 93

Fig. 5. Variation of computational time (in seconds) with ρ (the number of rules in
the BR program)

Unfortunately, we observe that the direct solving of the MILP described in
Sect. 3 is not practical for learning parameters in industrial-sized BR programs.
Furthermore, the increase in computational time is not linear with the number of
ρ, but rather exponential as seen on Fig. 5. The increase in the optimal objective
value is intuitive and does not seem drastic, which indicates that the experi-
mental setup is somewhat realistic. A reformulation of the MILP to improve the
solving time of the MILP is a possible follow-up area of research.

Another possibility we plan on researching is to check whether using sparse
matrices for L, G, A and B significantly improves the computational experience:
most industrial business processes do not use complex rules, but rather many
rules each applying to one or two components of the variable x. This does not
immediately imply a better performance as the value of n would realistically
need to be increased to compensate.

4.2 Accuracy

We fix the number of rules to ρ = 4 and so the number of parameters is 20.
This is much lower than the number of rules used by BR programs destined
to industrial usage. We observe the average solving time and the proportion of
solvable MILP instances among all instances for different values of ε. In this
case, it means we have only generated one hundred BR programs, on which we
test the accuracy of our method.

For each BR program, we start with ε = 1. If the instance is solvable, we
decrease ε using ε ← ε− 0.2 until we reach an unsolvable instance; otherwise we

94 O. Wang et al.

increase ε using ε ← 1.5ε until we reach a solvable instance or ε ≥ 5, whichever
happens first.

An instance is considered unsolvable if it is infeasible or it has no integer
solution after fifteen minutes (900 s) of solver time.

Fig. 6. Proportion of solvable instances for varying values of ε

Figure 6 shows the proportion of solvable instances as a function of ε. Being
careful of the nonlinear scale of the figure, ε seems to have a greater influence on
solvability when small and a reduced influence as it grows. In other words, our
method will relatively easily find the best parameter in most cases, but difficult
problems remain difficult even when allowing for a greater distance to the desired
average f .

Furthermore, with random BR problems that include both unsolvable and
already optimal situations, we solve 50 percent of problems with ε = 0.4 which
means allowing E(f) ∈ [−0.4, 0.4]. This is too low for industrial applications,
but approaching the desired average by 8 percent of the possible range in half
the cases is a promising start. Our method as it is described cannot currently be
used as a general tool as too many BR programs cannot be solved accurately.

The restriction to n = 10 for those orders of ρ accurately models real business
processes where BRs rarely loop. The sample size of m = 100 is also somewhat
realistic. The dimension d = 3 is arbitrary and much lower than can be expected
in actual business processes, where dimensionality can be over an order of mag-
nitude higher.

Controlling the Average Behavior of Business Rules Programs 95

5 Conclusion, Discussion and Future Work

We have presented a way to use mathematical programming to model learning
problems of an unusual type: learning the parameters of a BR program so that
its average output over a set of instances Q meets a target g. This can be
extended to learning the parameters of any program where the semantics of
an execution are well-defined, to reach a targeted average output. In such a
program, the semantics lead directly to mathematical constraints defining a MIP,
with the execution being modeled by indexing the variables over the steps of
the computation. Depending on the program, solving can then be easy, if the
program is linear like in our case, or lead to more complex optimization methods.
Where standard supervised learning algorithms are difficult to apply with a
target defined on average, our method can help fill the blanks.

While the computational performance indicates that directly solving the
MILP formulation described in this article is impractical, it does hold promise.
In particular, the optimal values obtained when scaling up prove that if the com-
putational cost can be reduced, the methodology has possible industrial impli-
cations. The potential avenues of research in this direction are working on the
MILP itself (e.g. through reformulations) and experimenting on BR programs
closer to the reality of business processes (e.g. through sparse matrices).

A better methodology for choosing the best possible ε might also be needed,
as the current one only yields a broad estimate. A possible avenue of research
pertaining to the accuracy of our method is evaluating the risk of over-fitting,
through the generation of additional samples q ∈ Q\S and using a parameter-less
version of the MILP in Fig. 3 to evaluate the average 1

m

∑

j∈J

xn,j
1 .

As many real-life applications use rules with a linear structure, our model has
direct applications in many industries that rely on BR programs to automate
decisions, some of which might not even need additional refinements depending
on the size of the BR programs they use.

Acknowledgments. The first author (OW) is supported by an IBM France/ANRT
CIFRE Ph.D. thesis award.

References

1. Atiya, A.: Learning algorithms for neural networks. Ph.D. thesis, California Insti-
tute of Technology, Pasadena, CA (1991)

2. Bakir, G., Hofmann, T., Schölkopf, B., Smola, A., Taskar, B., Vishwanathan,
S.: Predicting Structured Data (Neural Information Processing). The MIT Press,
Cambridge (2007)

3. Bonami, P., Lee, J.: BONMIN user’s manual. Technical report, IBM Corporation,
June, 2007

4. Brodley, C., Friedl, M.: Identifying mislabeled training data. J. Artif. Intell. Res.
11, 131–167 (1999)

96 O. Wang et al.

5. Brownston, L., Farrell, R., Kant, E., Martin, N.: Programming Expert Systems
in OPS5: An Introduction to Rule-based Programming. Addison-Wesley Longman
Publishing Co., Boston (1985)

6. Buchanan, B., Shortliffe, E. (eds.): Rule Based Expert Systems: The Mycin Experi-
ments of the Stanford Heuristic Programming Project. (The Addison-Wesley Series
in Artificial Intelligence). Addison-Wesley Longman Publishing Co., Boston (1984)

7. Chapelle, O., Schlkopf, B., Zien, A.: Semi-Supervised Learning. The MIT Press,
Cambridge (2010)

8. Clancey, W.: The epistemology of a rule-based expert system: a framework for
explanation. Artif. Intell. 20(3), 215–251 (1983)

9. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

10. Davis, R., Buchanan, B., Shortliffe, E.: Production rules as a representation for a
knowledge-based consultation program. Artif. Intell. 8(1), 15–45 (1977)

11. Forgy, C.: OPS5 User’s Manual. Department of Computer Science, Carnegie-Mellon
University, Pittsburgh (1981)

12. Knolmayer, G., Herbst, H.: Business rules. Wirtschaftsinformatik 35(4), 386–390
(1993)

13. IBM: ILOG CPLEX 12.2 User’s Manual. IBM, New York (2010)
14. IBM: Operational Decision Manager 8.8 (2015)
15. Kolber, A., et al.: Defining business rules - what are they really? Project report 3,

The Business Rules Group (2000)
16. Liberti, L., Marinelli, F.: Mathematical programming: turing completeness and

applications to software analysis. J. Comb. Optim. 28(1), 82–104 (2014)
17. Liu, T.Y.: Learning to rank for information retrieval. Found. Trends Inf. Retr.

3(3), 225–331 (2009)
18. Lucas, P., Gaag, L.V.D.: Principles of Expert Systems. Addison-Wesley Longman

Publishing Co., Boston (1991)
19. Newell, A.: Production systems: models of control structures. In: Chase, W. (ed.)

Visual Information Processing, pp. 463–526. Academic Press, New York (1973)
20. Newell, A., Simon, H.: Human Problem Solving. Prentice-Hall, Upper Saddle River

(1972)
21. Ross, R.: Principles of the Business Rule Approach. Addison-Wesley Longman

Publishing Co., Boston (2003)
22. de Sainte Marie, C., Hallmark, G., Paschke, A.: RIF Production Rule Dialect. 2nd

edn. Recommendation, W3C (2013)
23. Scott, A., Bennett, J., Peairs, M.: The EMYCIN Manual. Department of Computer

Science, Stanford University, Stanford (1981)
24. Settles, B.: Active learning literature survey. Computer Sciences Technical report

1648, University of Wisconsin-Madison (2009)
25. Shortcliffe, E.: Computer-Based Medical Consultations: MYCIN. Elsevier,

New York (1976)
26. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
27. Wang, O., Ke, C., Liberti, L., de Sainte Marie, C.: The learnability of business

rules. In: International Workshop on Machine Learning, Optimization, and Big
Data (MOD 2016) (2016)

	Controlling the Average Behavior of Business Rules Programs
	1 Introduction
	1.1 Related Works

	2 MIP Constraints for the BR Program Dynamics
	2.1 Modeling a BR Program
	2.2 A MIP Formulation

	3 A MILP Reformulation
	4 Implementation and Experiments
	4.1 Scalability
	4.2 Accuracy

	5 Conclusion, Discussion and Future Work
	References

