
Enabling Reasoning with LegalRuleML

Ho-Pun Lam(B), Mustafa Hashmi(B), and Brendan Scofield

Data61, CSIRO | NICTA, Spring Hill, Australia
{brian.lam,mustafa.hashmi}@data61.csiro.au

Abstract. This paper presents an approach for the specification and
implementation of translating legal norms represented using Legal-
RuleML to a variant of Modal Defeasible Logic. From its logical form,
legal norms will be transformed into a machine readable format and even-
tually implemented as executable semantics that can be reasoned about
depending upon the client’s preference.

Keywords: Legal reasoning · LegalRuleML · Business contracts ·
Defeasible logic

1 Introduction

Generally regulatory rules are written in natural language— for their automated
verification, they need to be transformed into a format that machines can under-
stand. As a result, several languages such as RuleML1, LKIF [7], SBVR [24],
PENELOPE [8], ConDec language [26], ContractLog [25], OWL-S2, have been
proposed to facilitate this process. Each of these languages offer useful function-
alities but is not free from shortcomings (see [9] for some of the shortcomings
of these languages). For example, RuleML is an XML based prominent industry
standard language for translating rules documents into a machine readable for-
mat. It provides the features that enable users to use different types of rules (such
as derivation rules, fact, query, integrity constraint, etc.) to represent different
kinds of elements according to their needs. However, it lacks support for the use
of deontic concepts, such as obligations (such as achievement and maintenance),
permission, prohibition, and is unable to handle cases with contrary-to-duty
(CTD) obligations [6] that may arise from the violations of other obligations,
which frequently appear in legal contracts [10].

Grosof [18] proposed to adopt courteous logic programming as execution
model for RuleML rule-base for translating the clauses of a contract, which

NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence
Program.

1 RuleML: The Rule Markup Initiative, http://www.ruleml.org.
2 The OWL services coalition. OWL-S 1.2 Release, http://www.daml.org/services/

owl-s/.

c© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 241–257, 2016.
DOI: 10.1007/978-3-319-42019-6 16

http://www.ruleml.org
http://www.daml.org/services/owl-s/
http://www.daml.org/services/owl-s/

242 H.-P. Lam et al.

filled the gap among the various types of rules in RuleML; however, their app-
roach does not consider normative effects. Later, Governatori [10] addressed the
shortcomings of [18], and extended Defeasible Logic(DL) with standard deontic
operators for representing normative effects as well as an operator to deal with
CTD obligations. This extended language also provides RuleML compliant data
schemas for representing deontic elements and provides constructs to resolve
some of the shortcomings that have been discussed in [9].

This paper focuses on transforming the legal norms represented using Legal-
RuleML into a variant of Modal Defeasible Logic [16]. As a consequence, our work
reported here makes it possible to use an implementation of DL as the engine
to compute the extensions on the legal norms represented using LegalRuleML
and reason on it. Due to the space limit, details of other features supported
by LegalRuleML, such as Contexts and Alternatives, will not be covered in this
paper.

The remainder of the paper is structured as follows: in Sect. 2 we tersely
discuss a short contract from [10] following which we provide some background
information on DL in Sect. 3. Section 4 discusses the mapping and procedures
to transform a legal theory represented using LegalRuleML to DL. Section 5
discusses related work, followed by some concluding remarks and pointers for
future work.

2 A Sample Contract

In this section we discuss a sample “Contract of Services” based on the analysis
and adapted from [10].

Contract of Services

The Deed of Agreement is entered into effects between ABC company (to
be known as Purchaser) and ISP plus (to be known as Supplier) WHEREAS
Purchaser desires to enter into an agreement to purchase from Supplier the appli-
cation server (to be known as Goods) in this agreement. Both the parties shall
enter into an agreement subject to the following terms and conditions:

1. Definitions and Interpretations
1.1. All prices are in Australian current unless otherwise stated.
1.2. This agreement is governed by the Australian law and both the parties

hereby agree to submit to the jurisdiction of the Courts of the Queensland
with respect to this agreement.

2. Commencement and Completion
2.1. The contract enters into effects as Jan 30, 2002.
2.2. The completion date is scheduled as Jan 30, 2003.

3. Policy on Price
3.1. A “Premium Customer” is a customer who has spent more than $10000

in goods. Premium Customers are entitled a 5 % discount on new orders.

Enabling Reasoning with LegalRuleML 243

3.2. Goods marked as “Special Order” are subject to a 5 % surcharge. Pre-
mium customers are exempt from special order surcharge.

3.3. . . .
4. Purchase Order

4.1. The Purchaser shall follow the Supplier price lists on the supplier’s website.
4.2. The Purchaser shall present Supplier with a purchase order for the provi-

sion of Goods within 7 days of the commencement date.
5. Service Delivery

5.1. . . .
5.2. The Supplier shall on receipt of a purchase order for Goods make them

available within 1 days.
5.3. If for any reason the conditions stated in 4.1 or 4.2 are not met, the

Purchaser is entitled to charge the Supplier the rate of $100 for each hour
the Goods are not delivered.

6. Payments
6.1. The payment terms shall be in full upon receipt of invoice. Interest shall

be charged at 5 % on accounts not paid within 7 days of the invoice date.
Another 1.5 % interest shall be applicable if not paid within next 15 days.
The prices shall be as stated in the sales order unless otherwise agreed in
writing by the Supplier.

6.2. Payments are to be sent electronically, and are to be performed under
standards and guidelines outlined in PayPal.

7. Disputes: Omitted due to limited space.
8. Termination: Omitted due to limited space.

The agreement covers a range of rule objectives such as roles of the involved par-
ties (e.g., Supplier, Purchaser), authority and jurisdiction (Australia, Queensland
Courts), deontic conditions associated with roles (permissions, prohibition), and
temporal properties to perform required actions. A contract can be viewed as
a legal document containing a finite set of articles (where each article contains
a set of clauses and subclauses). The above-discussed agreement includes two
main types of clauses namely: (i) definitional clauses, which define the basic
concepts contained in this agreement; and (ii) normative clauses, which regu-
late the actions of Purchaser and Supplier for the performance of contract, and
include deontic notions e.g., obligations, permission etc.

3 Modal Defeasible Logic: An Informal Introduction

The following is a modal extension of DL, based on the work of [15,16]. The
basic language is defined as follows. Given a set PROP of propositional atoms,
the set Lit = PROP∪{¬p | p ∈ PROP} denotes the set of literals. If q is a literal,
then ∼q denotes its complement; if q is a positive literal p then ∼q is ¬p, and if
q is ¬p then ∼q is p. Let MOD denotes the set of modal operators. Then the set
of modal literals is ModLit = {Xl,¬Xl | l ∈ Lit,X ∈ MOD}.

244 H.-P. Lam et al.

We define a defeasible theory D as a structure (F,R,>), where (i) F is a set
of facts or indisputable statements, (ii) R is the set of rules, and (iii) > is an
acyclic superiority relation on R.

To enhance the expressiveness of a rule to encode chains of obligations and
violations, following the ideas of [14], a sub-structural operator ⊗ is introduced
to capture an obligation and the obligations arising in response to the violation
of the obligation. Thus, given an expression like a ⊗ b, the intuitive reading is
that if a is possible, then a is the first choice and b is the second one; if ¬a holds,
i.e., a is violated, then b is the actual choice. That is, the ⊗-operator is used to
build chains of preferences, called ⊗-expression, such that: (i) each literal is a
⊗-expression; (ii) if A is an ⊗-expression and b is a (modal) literal, then A ⊗ b
is an ⊗-expression.

Hence, given Lbl a set of arbitrary labels, every rule in R is of the form
r : A(r) ↪→ C(r), where:

– r ∈ Lbl is the unique identifier of the rule;
– A(r) = φ1, . . . , φn, the antecedent of the rule, is a finite set of (modal) literals

denoting the premises of the rule;
– ↪→∈ {→,⇒,�} denotes the type of the rule;
– C(r) is the consequent (or head) of the rule, which can be either a single

(modal) literal, or an ⊗-expression otherwise.

The intuition behind different arrows is the following. DL supports three
types of rules namely: strict rules (r : A(r) → C(r)), defeasible rules (r : A(r) ⇒
C(r)) and defeaters (r : A(r) � C(r)). Strict rules are rules in the classical
sense, the conclusion follows every time the antecedents holds; a defeasible rules
is allowed to assert its conclusion in case there is no contrary evidence to it.
Finally, defeaters suggests there is a connection between its premises and its
conclusion(s) but not strong enough to warrant the conclusion on its own; they
are used to defeat rules for the opposite conclusion(s).

DL is a skeptical nonmonotonic logic meaning that it does not support con-
tradictory conclusions. Instead, it seeks to resolve conflicts. In case there is some
support for concluding A but there is also support for concluding ¬A, DL does
not conclude either of them. However, if the support for A has priority over the
support of ¬A then A is concluded. Here, the superiority relation > is used to
describe the relative strength of rules on R. When r1 > r2, then r1 is called supe-
rior to r2, and r2 inferior to r1. Intuitively, r1 > r2 expresses that r1 overrides
r2 if both rules are applicable3.

Provability is based on the concept of derivation (or proof) in D satisfying
the proof conditions. A conclusion of D is a tagged literal and can have one of
the following forms: (i) +Δq meaning that q is definitely provable in D (i.e.,
using only facts or strict rules); (ii) −Δq meaning that q is definitely rejected in
D; (iii) +∂q meaning that q is defeasibly provable in D; and (iv) −∂q meaning
that q is defeasibly rejected in D.

3 A rule is applicable if all literals in its antecedent have already been proved.

Enabling Reasoning with LegalRuleML 245

Strict derivations are obtained by forward chaining of strict rules while a
defeasible conclusion p can be derived if there is a rule whose conclusion is
p, and its (prerequisite) antecedent has either already been proved or given in
the case at hand (i.e., facts), and any stronger rules whose conclusion is ¬p
has prerequisite that it failed to be derived. In other words, a conclusion p is
defeasibly derivable when: (i) p is a fact; or (ii) there is an applicable strict or
defeasible rule for p, and either all rules for ¬p are discarded (i.e., inapplicable)
or every rule for ¬p is weaker than an applicable rule for p.

A full description of the proof theory can be found in [2]. A useful metaphor is
to imagine, the rules with conclusion p form a team that competes with opposite
team consisting of the rules with conclusion ¬p. If the former team wins p is
defeasible provable, whereas if the opposing team wins, p is non-provable or
rejected from the theory.

Throughout the paper, we use the following abbreviations on set of rules:
Rs (Rd) denotes the set of strict (defeasible) rules, R[q] denotes the set of rules
with consequent q, and for a r ∈ R, C(r, i) denotes the ith (modal) literal that
appears in C(r).

4 LegalRuleML: The Legal Rule Markup Language

LegalRuleML [23] is a rule interchange language proposed by OASIS, which
extends RuleML with features specific to legal domain [4]. It aims to bridge the gap
between natural language descriptions and semantic norms [3], and can be used to
model various laws, rules and regulations by translating the compliance require-
ments into a machine readable format [19]. Accordingly, LegalRuleML implements
defeasibility as within the law where the precedent of a rule is satisfied by the facts
of a case, then assumably the conclusion of the rule holds, but not necessarily [4].
The defeasibility of these legal rules can further identify exceptions and conflicts
as well as mechanisms to resolve these conflicts within the norms. Additionally,
LegalRuleML provides features to model various effects that follow from apply-
ing rules, such as obligations, permissions and prohibitions.

A contract written in LegalRuleML is not intended to be executed directly,
but the business logic can be transformed into a target language of a rule-based
system to execute. In this section we are going to explore the building blocks
of LegalRuleML and propose a method to transform legal norms represented
in LegalRuleML into DL theory. Since LegalRuleML is essentially an extension
of RuleML, here we only highlight the differences and identify the additions to
faithfully represent legal norms.

4.1 Premises and Conclusions

The first thing we have to consider is the representation of predicates (atoms) to
be used in premises or conclusions in LegalRuleML. LegalRuleML extends the

246 H.-P. Lam et al.

construct from RuleML and represents a predicate as an n-ary relation, and is
defined using an element <ruleml:Atom>4.

Normative effects of an atom, on the other hand, are captured by embed-
ding the atom inside a deontic element. The legal concepts such as oblig-
ation (<lrml:Obligation>), permission (<lrml:Permission>), prohibition
(<lrml:Prohibition), and right (<lrml:Right>5) are the basic deontic ele-
ments in LegalRuleML. Further refinements are possible by: (i) providing an
iri6 attribute of a deontic specification, or (ii) using an <lrml:Association>

to link a deontic specification to its meaning with the <lrml:applyModality>

element.
1 <lrml:Associations>
2 <lrml:Association key="asc1">
3 <lrml:appliesModality iri="ex:achievementObligation"/>
4 <lrml:toTarget keyref="#oblig101"/>
5 </lrml:Association>
6 </lrml:Associations>
7

8 <lrml:Obligation key="oblig101">
9 <ruleml:Atom key=":atom109">

10 <ruleml:Rel iri="pay"/>
11 <ruleml:Ind>Purchaser</ruleml:Ind>
12 <ruleml:Ind>receivedReciept</ruleml:Ind>
13 <ruleml:Ind>Supplier</ruleml:Ind>
14 </ruleml:Atom>
15 </lrml:Obligation>

Accordingly, the above listing represents a modal literal OBL pay(purchaser,
receivedReceipt, supplier) for the clause 6.1 in the contract that is true when
purchaser has the (achievement) obligation7 to pay the supplier upon receiving
the payment8.

4.2 Rules and Rulebases

Norms in LegalRuleML are represented as collections of statements, and can be
classified into four different types according to their nature, namely: norm state-
ments, factual statements, override statements and violation-reparation state-
ments. These can be further classified into subtypes, as depicted in Fig. 1.
4 Elements from LegalRuleML and elements inherited from RuleML will be prefixed

with lrml and ruleml, respectively. Information about transforming norms repre-
sented using RuleML to DL can be found in [10]. The attributes key and keyref
in LegalRuleML correspond to an unique identifier of a Node element and reference
to a Node element, respectively.

5 Note that the right here is different from the “right” in RuleML. In LegalRuleML,
it is a deontic specification that gives a permission to a party and implies there is no
obligation or prohibition on the other parties [23]; while “right” in RuleML means
the right hand side of a rule.

6 An iri attribute on a Node element in LegalRuleML corresponds to an
<owl:sameAs> relationship in the abstract syntax.

7 There are several types of obligations based on temporal validity and effects they
produce e.g., achievement, maintenance etc., see [19] for details.

8 In this paper, we are going to use the modal operator OBL for obligation, PER for
permission, FOR for prohibition (forbidden).

Enabling Reasoning with LegalRuleML 247

Statements
Norm

Statements

Constitutive
Statements

Prescriptive
Statements

Violation-Reparation
Statements

Reparation
Statements

Penalty
Statements

Factual
Statement

Override
Statement

Fig. 1. Types of statements in LegalRuleML

In this section, we are going to explore different types of statements and describe
how they can be transformed into rules in DL.

Norm Statements. Legal norms, in general, can be classified into constitutive
norms (which is used to represent institutional facts [28] and provides definitions
of terms and concepts in a jurisdiction [23]), and prescriptive norms (which spec-
ify the deontic behavior and effect of a legal system). These can be represented
as constitutive statements (<lrml:ConstitutiveStatement>) and prescriptive
statements in LegalRuleML (<lrml:PrescriptiveStatement>), respectively,
to allow new information to be derived using existing rules.

The following is an example of a prescriptive statement representing the first
statement of the clause 3.2 of the service contract where goods marked with
special order are subject to a surcharge.
1 <lrml:PrescriptievStatement key="r1">
2 <ruleml:Rule key=":ruletemplate1">
3 <lrml:hasStrength>
4 <lrml:DefeasibleStrength key="str1"
5 iri="http://example.org/legalruleml/ontology#defeasible1"/>
6 </lrml:hasStrength>
7 <ruleml:if>
8 <ruleml:And>
9 <ruleml:Atom key=":atom2">

10 <ruleml:Rel iri=":specialOrder"/>
11 <ruleml:Ind>X</ruleml:Ind>
12 </ruleml:Atom>
13 </ruleml:And>
14 </ruleml:if>
15 <ruleml:then>
16 <lrml:Obligation>
17 <ruleml:Atom key=":atom3">
18 <ruleml:Rel iri=":surcharge"/>
19 <ruleml:Ind>X</ruleml:Ind>
20 </ruleml:Atom>
21 </lrml:Obligation>
22 </ruleml:then>
23 </ruleml:Rule>
24 </lrml:PrescriptievStatement>

Similar to the derivation rules in RuleML, every constitutive/prescriptive
statement has two parts: conditions (<ruleml:if>), which specify the condi-
tions (using a conjunction of formulas and may possibly empty), and conclu-
sion (<ruleml:then>), the effects of the rule. Additionally, a separate element
(<lrml:hasStrength>) can be used to specify the strength of the rule.

248 H.-P. Lam et al.

Both rules can have deontic formulas as their preconditions (body). However,
the difference between the two statements is in the contents of the head, where
the head of a prescriptive statement is a list of deontic formulas. In contrast, the
head of a constitutive statement cannot be a deontic formula [23].

In this perspective, a constitutive/prescriptive statement can be transformed
into a rule of the form:

label : body ↪→ head.

where label is the key of the statement, ↪→∈ {→,⇒,�} is the rule type, body and
head are the set of (modal) literals inside the <ruleml:if> and <rule:then>

elements of the statement, respectively. Unless otherwise specified, due to its
nature, the rule modelled using a constitutive statement will be transformed
into a strict rule; while the rule modelled using prescriptive statement will be
transformed into a defeasible rule. Thus, the statement above will be transformed
to the defeasible rule below9:

r1 : specialOrder ⇒ OBL surcharge

Factual Statements. Factual statements in essence are the expression of facts
and can be considered as a special case of norm statements without the specifica-
tion of premises. They denote a simple piece of information that is deemed to be
true. Below is an example of a factual statement in LegalRuleML representing
the fact premiumCustomer(JohnDoe), meaning that “JohnDoe” is a premium
customer.
1 <lrml:FactualStatement key="fact1">
2 <lrml:hasTemplate>
3 <ruleml:Atom key=":atom11">
4 <ruleml:Rel iri=":premiumCustomer"/>
5 <ruleml:Ind iri=":JohnDoe"/>
6 </ruleml:Atom>
7 </lrml:hasTemplate>
8 </lrml:FactualStatement>

Override Statements. To handle defeasibility, LegalRuleML uses override
statements (<lrml:OverrideStatement>) to capture the relative strength of
rules that appear in the legal norms. The element <lrml:Override> defines the
relationship of superiority such that the conclusion of r2 overrides the conclusion
of r1 (where r1 and r2 are the keys of statements in the legal theory, as shown
below) if both statements are applicable.

9 Note that in some variants of DL, new types of rules can be created for the deontic
operator to differentiate between normative and definitional rules [13], for instance,
the rule r1 above will becomes: specialOrder ⇒OBL surcharge. However, we do
not utilize this approach here as this will limit ourselves such that only one type
of modality can appear in the head of the rule. As it is possible that different
logics/semantics can be used to reason on the rules generated using the constitu-
tive and prescriptive statements, using such approach will limit the logic that we
can use when reasoning the rules. For example, in our case, we can use ambiguity
blocking (of DL) for the rules generated using constitutive statements and ambiguity
propagation [1] for the rules generated using prescriptive statements.

Enabling Reasoning with LegalRuleML 249

Consider again clause 3.2 of the contract where a premium customer is
exempted from the surcharge for goods marked as ‘Special Orders’, which can
be modelled as the rules below.

r1 :specialOrder ⇒ OBL surcharge

r2 :specialOrder, premiumCustomer ⇒ OBL ¬surcharge

In the above example, the conclusion of r2 takes the precedence over the conclu-
sion of r1 (as showed above) if the order was made from a premium customer. The
following listing illustrates this using an <lrml:OverrideStatement> element.
1 <lrml:OverrideStatement>
2 <lrml:Override over="#r2" under="#r1"/>
3 </lrml:OverrideStatement>

In DL terms, this construct defines a superiority relation between r2 > r1 where
r1 and r2 are the rules generated using the statements r1 and r2 in the legal
norms, respectively.

Violation-Reparation Statements. A Violation-Reparation Statement is
the type of statement concerning what actions are required when an obliga-
tion is violated. LegalRuleML provides two constructs to model this, namely:
penalty statements (<lrml:PenaltyStatement>) and reparation statements
(<lrml:ReparationStatement>), as shown below.
1 <lrml:ReparationStatement key="reps1">
2 <lrml:Reparation key="rep1">
3 <lrml:appliesPenalty keyref="#pen1"/>
4 <lrml:toPrescriptiveStatement
5 keyref="#ps1"/>
6 </lrml:Reparation>
7 </lrml:ReparationStatement>

1 <lrml:PenaltyStatement key="pen1">
2 <lrml:SuborderList>
3 list of deontic formulas
4 </lrml:SuborderList>
5 </lrml:PenaltyStatement>

Penalty statements model sanctions and/or correction for a violation of a spec-
ified rule as outlined in the reparation statement; reparation statements bind
a penalty statement to the appropriate prescriptive statement and apply the
penalty when a violation occurs.

To transform these statements into DL rules, we can utilize the ⊗-expression
that we described in Sect. 3 by appending the list of modal literals that appear
in the penalty statements at the end of original rule. As an example, consider the
penalty statement (in clause 6.1 of the contract) for not paying invoice within
the deadline, and assume that the two model literals OBL payWith5%Interest
and OBL payWith6.5%Interest are transformed from the suborder list inside
the penalty statement. Then the prescriptive statement ps1 will be updated from

ps1 : goods, invoice ⇒ OBL payIn7days

to

ps1 : goods, invoice ⇒ OBL payIn7days ⊗ OBL payWith5%Interest
⊗OBL payWith6.5%Interest

250 H.-P. Lam et al.

4.3 Other Constructs

Up to this point, the transformations described have been simple. However, there
are other elements in LegalRuleML that are not particularly intuitive. We will
highlight two of them in this section.

LegalRuleML provides two elements that can be used to determine
whether an obligation or a prohibition of an object has been fulfilled
(<lrml:Compliance>) or violated (<lrml:Violation>).

Definition 1 (Compliance and Violation [23]).

– A compliance is an indication that an obligation has been fulfilled or a prohi-
bition has not been violated.

– A violation is an indication that an obligation or prohibition has been violated.

Consider the listing below which represents the rule:

ps2 : PER rel1, OBL rel2 ⇒ FOR¬rel3.

1 <lrml:PrescriptiveStatement key="ps2">
2 <ruleml:Rule key=":ruletemplate2">
3 <ruleml:if>
4 <ruleml:And key=":and1">
5 <lrml:Violation keyref="#ps3"/>
6 <lrml:Permission>
7 <ruleml:Atom key=":atom4">
8 <ruleml:Rel iri=":rel1"/>
9 <ruleml:Ind>X</ruleml:Ind>

10 </ruleml:Atom>
11 </lrml:Permission>
12 <lrml:Obligation key="oblig1">
13 <ruleml:Atom key=":atom5">
14 <ruleml:Rel iri=":rel2"/>
15 <ruleml:Ind>X</ruleml:Ind>
16 </ruleml:Atom>
17 </lrml:Obligation>
18 </ruleml:And>
19 </ruleml:if>
20 <ruleml:then>
21 <lrml:Prohibition key="prohib1">
22 <ruleml:Neg key=":neg1">
23 <ruleml:Atom key=":atom6">
24 <ruleml:Rel iri=":rel3"/>
25 <ruleml:Ind>X</ruleml:Ind>
26 </ruleml:Atom>
27 </ruleml:Neg>
28 </lrml:Prohibition>
29 </ruleml:then>
30 </ruleml:Rule>
31 </lrml:PrescriptiveStatement>

Here, we have a violation element appearing in the body as a prerequisite to
activate the rule, meaning that the referenced element (ps3 in this case) has
to be violated or the rule ps2 cannot not be utilised. Accordingly, we have two
cases: either (i) the referenced element is a modal literal, or (ii) the referenced
element is a rule.

Enabling Reasoning with LegalRuleML 251

Table 1. Requirements to determine whether a literal is compliant or violated.

q OBL q FOR q

Compliance q OBL q, q FOR q, ¬q

Violation ¬q OBL q, ¬q FOR q, q

Case 1: Referenced Element Is a Literal. The former is a simple case. If the
referenced element is a literal, essentially it acts as a precondition to activate
the rule. It is practically the same as appending the violation (respectively,
compliance) condition to the body of the rule, as shown below.

ps2 : PER rel1, OBL rel2, violate(p) ⇒ FOR¬rel3.

where p is the referenced literal, violate(p) (respectively comply(p)) is a trans-
formation, as defined in Table 1, that transforms the (modal) literal p into a set
of literals that needs to be derived in order to satisfy the condition of violation
(compliance). For instance, if ps3 is the modal literal OBL q, then the rule ps2
above will be updated as follows

ps2 : PER rel1, OBL rel2, OBL q,¬q ⇒ FOR¬rel3.

However, the case is somewhat complex when the element appears in the
head of the statement, as shown in the listing below.
1 <lrml:PrescriptiveStatement key="ps4">
2 <ruleml:Rule key=":ruletemplate3" keyref=":ruletemplate2">
3 <ruleml:then>
4 <lrml:SuborderList>
5 <lrml:Obligation key="obl1">
6 <ruleml:Atom key=":atom26">
7 <ruleml:Rel iri=":rel3"/>
8 <ruleml:Ind>X</ruleml:Ind>
9 </ruleml:Atom>

10 </lrml:Obligation>
11 <ruleml:And>
12 <lrml:Violation keyref="#ps5"/>
13 <lrml:Obligation key="obl2">
14 <ruleml:Atom key=":atom27">
15 <ruleml:Rel iri=":rel4"/>
16 <ruleml:Ind>X</ruleml:Ind>
17 </ruleml:Atom>
18 </lrml:Obligation>
19 </ruleml:And>
20 </lrml:SuborderList>
21 </ruleml:then>
22 </ruleml:Rule>
23 </lrml:PrescriptiveStatement>

Here, OBL rel4 (Lines 13–18) is derivable only when the modal literal OBL rel3
(Lines 5–10) is defeated and the reference literal ps5 (Line 12) is violated. How-
ever, such nested rule structure is not supported semantically in DL. To resolve
this issue, we have to modify the statement based on its expanded form.

Definition 2 (⊗-expansion). Let D = (F,R,>) be a defeasible theory, and let
Σ be the language of D. We define reduct(D)=(F,R′, >′) where for every rule

252 H.-P. Lam et al.

r ∈ Rd with a ⊗-expression appears in its head:

R′ = R \ Rd ∪ { r : A(r), verify(c1) ⇒ c1
r′ : A(r), violate(c1), verify(c1), verify(c2) ⇒ c2 ⊗ · · · ⊗ cn}

∀r′, s′ ∈ R′, r′ > s′ ⇔ r, s ∈ R s.t. r′ ∈ reduct(r), s′ ∈ reduct(s), r > s.

where verify(p) is defined as:
⎧
⎪⎨

⎪⎩

violate(e) if a violation element is attached to the element p,

comply(e) if a compliance element is attached to the element p,

∅ otherwise.

where e is the literal referenced by the element attributed to p.

Here, we can first exclude the elements in the rule head and generate the rule
based on ⊗-expression. Then, we can apply Definition 2 recursively to transform
the generated rule into a set of rules with single literal in its head. Consequently,
similar to the case discussed before, we can append the element to the body
of the rule(s), where appropriate. Accordingly, the statement ps4 above can be
transformed into the DL rules as shown below.

ps41 : A(ps4) ⇒ OBL rel3
ps42 : A(ps4), OBL rel3, ¬rel3, violate(ps5) ⇒ OBL rel4

Case 2: Referenced Element Is a Rule. Instead, if the referenced element
is a rule, then for the case of violation, we have to verify that the rule referenced
is either (i) inapplicable, i.e., there is a literal in its antecedent that is not
provable; or (ii) the immediate consequent of the rule is defeated or overruled
by a conflicting conclusion. While for the case of compliance, we have to verify
that the referenced rule is applicable and the immediate consequent of the rule
is provable10.

Definition 3 Let D = (F,R,>) be a defeasible theory. Rb ⊆ R (respectively,
Rh ⊆ R) denotes the set of rules that contains at least one element in their body
(head).

Definition 4 (Rule Status). Let D = (F,R,>) be a defeasible theory, and let
Σ be the language of D. For every r ∈ Rb, rc denotes the rule referenced by the
element. We define verifyBody(D) = (F,R′, >′) where:

R′ = R \ Rd ∪ { r+c : A(rc) ⇒ inf(rc),
r−
c : ⇒ ¬inf(rc),

r−
cv : ¬inf(rc) ⇒ violation(rc),

r+cc : inf(rc), comply(C(rc, 1)) ⇒ compliance(rc),
r+cv : inf(rc), violate(C(rc, 1)) ⇒ violation(rc),

>′=> ∪{r+c > r−
c }

10 In this paper, we consider only the case of weak compliance and weak violation, and
verify only the first (modal) literal that appears in the head of the rule. However,
the method proposed here can be extended easily to support the verification of the
cases of strong compliance [19] and strong violation [12].

Enabling Reasoning with LegalRuleML 253

For each rc, inf(rc), ¬inf(rc), compliance(rc) and violation(rc) are new atoms
not in the language of the defeasible theory. inf(rc) and ¬inf(rc) are used to
determine whether a rule is in force (applicable). If rc is in force, we can then ver-
ify whether the first literal that appears at the head of rc is compliant or violated
(represented using the atoms compliance(rc) and violation(rc), respectively).

Similar to the case when the referenced object is a literal, depending on
where the element is in the rule, we can append the compliance and violation
atoms to the body and head of the rule directly. However, unlike the case where
the reference element is a literal, this time we can append the atoms required
directly without any transformation.

4.4 Implementation

The above transformation can be used to transform legal norms represented
using LegalRuleML into DL that we can reason on. We have implemented the
above transformation as an extension to the DL reasoner SPINdle [22] — an
open-source, Java-based DL reasoner that supports reasoning on both standard
and modal defeasible logic. Theory reasoning starts from a set of legal norms
represented using LegalRuleML, i.e., a rule base, and conclusions are generated
based on the semantics of DL. At the moment, various tests have been performed
on some small scale LegalRuleML theories (∼10 statements per theory), and it
takes, on average, 150 ms to transform a LegalRuleML theory into a SPINdle
defeasible theory. Future versions will include optimization of the implemen-
tation of the transformation process so that it can handle large LegalRuleML
theories in a more efficient manner.

We have also implemented the transformation in reverse direction, i.e., trans-
late a DL theory back to LegalRuleML representation. However, as can be
noticed from Sect. 3, LegalRuleML supports more features than DL, so only
information about the legal norms, i.e., the rules, can appear in the translated
theory.

As a remark, the transformation above is compliant with the current version
of the LegalRuleML specification [3]. However, it should be noted that strange
results may appear if a <lrml:violation> (or <lrml:compliance>) element
appears at the head of a statement (i.e., the <ruleml:then> part of a statement).
For instance, consider the case where a <lrml:violation> element appears as
the only element at the head of a statement. Then, it will be transformed into
a rule with no head literal, which is not correct. In the light of this, we believe
that additional restriction(s) should be added to the specification in order to
avoid this situation.

5 Related Works

The research in the areas of e-contracting, business process compliance and auto-
mated negotiation systems has evolved over the last few years. Several rules

254 H.-P. Lam et al.

modelling languages have been developed (or improved existing ones) for repre-
senting the semantics of business vocabularies, facts and business rules [9], and
rules transformation techniques have emerged.

The ContractLog [25] framework for describing the formal rules based on the
contract specifications for automated execution and monitoring of the service
level agreements (SLAs). It combines rule-based representation of SLAs using
Horn rules and Meta programming techniques alternative to contracts defined
in natural language or pure programming implementations in programming lan-
guages. A rule-based technique called SweetDeal for representing business con-
tracts that enables the software agent to automatically create, negotiate, evaluate
and execute the contract provisions with high degree of modularity is discussed
in [17]. Their technique builds upon situated courteous logic programs (SCLP)
knowledge representation in RuleML, and incorporates the process knowledge
descriptions whose ontologies are represented in DAML+OIL11. DAML+OIL
representations allow handling more complex contracts with behavioural pro-
visions that might arise during the execution of contracts. The former has to
rely upon multiple formalisms to represent various types of SLA rules e.g. Horn
Logic, Event-Calculus, Description Logic—whereas the latter does not consider
normative effects (i.e., the approach is unable to differentiate various types of
obligations such as achievement, maintenance and permissions).

Semantics of Business Vocabulary and Business Rules (SBVR) [24] is an
Object Management Group (OMG) standard to represent and fomalise business
ontologies, including business rules, facts and business vocabularies. It provides
the basis for detailed formal and declarative specifications of business policies
and includes deontic operators to represent deontic concepts e.g., obligations,
permissions etc. Also, it uses the controlled natural languages to represent legal
norms [9]; however, the standard has some shortcomings as the semantics for
the deontic notions is underspecified. This is because SBVR is based on classi-
cal first-order-logic, which is not suitable to represent deontic notions and con-
flicts. Also, it cannot handle contrary-to-duty obligations as these cannot be
represented by standard deontic logic (see [6] for details). The legal knowledge
interchange format (LKIF), on the other hand, is an XML based interchange
format language [7] that aims to provide an interchangeable format to represent
legal norms in a broad range of application scenarios, especially in the context
of semantic web. LKIF uses XML schemas to represent theories and arguments
derived from theories, where a theory in LKIF is a set of axioms and defeasible
inference rules. In addition to these, there are other XML based rule interchange
format languages e.g., SWRL [20], RIF [31], WSMO [27] and OWL-S [29] (see [9]
for more details on the strengths and weaknesses of these languages).

Baget et al. [5] discuss techniques for transforming existential rules into
Datalog+12, RuleML and OWL 2 formats. For the transformation from Datalog+

into RuleML, the authors used a fragment of Deliberation RuleML 1.01, which

11 DAM+OIL Reference: http://www.w3.org/TR/daml+oil-reference/.
12 Datalog+: a sub-language of RuleML http://wiki.ruleml.org/index.php/

Rule-Based Data Access#Datalog.2B.2F-.

http://www.w3.org/TR/daml+oil-reference/
http://wiki.ruleml.org/index.php/Rule-Based_Data_Access#Datalog.2B.2F-
http://wiki.ruleml.org/index.php/Rule-Based_Data_Access#Datalog.2B.2F-

Enabling Reasoning with LegalRuleML 255

includes positive facts, universally quantified implications, equality, falsity (and
conjunctions) in the heads of implications. Whereas [30] transforms the associa-
tion rules into Drool Rule Language (DRL) format using Lisp-Miner13, and [21]
proposes a model driven architecture based model to transform SBVR compli-
ant business rules extracted from business contracts of services to compliant
executable rules in formal contract language (FCL [11]). However, the former’s
transformation is limited only to existential rules; while the latter captures only
the business rule (SBVR bears only business rules), which may or may not
have legal standings. Whilst, LegalRuleML represents legal standings, the Legal-
RuleML’s temporal notions of enforceability, efficacy and applicability cannot be
represented with SBVR. In contrast, the approach proposed in this paper enables
the translation of defeasible expressions, and various deontic concepts including
the notion of penalty and chain of reparations.

6 Conclusions

In this paper, we have proposed a transformation such that (legal) norms rep-
resented using LegalRuleML can be transformed into DL which provides us a
method for modeling business contracts and reasoning about them in a declar-
ative way. Whilst LegalRuleML aims at providing specifications to legal norms
that can be represented in a machine readable format, the major impedance now
is the lack of dedicated and reliable infrastructure that can provide support to
such capability.

As a future work, we are planning to incorporate our technique into some
smart-contract enabled systems, such as Ethereum [32]. This will extend its
language such that, instead of using programming logics, users can define their
(smart-)contracts in a declarative manner.

References

1. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: A flexible framework
for defeasible logics. In: Proceedings of the 17th National Conference on Artificial
Intelligence, pp. 405–410. AAAI Press/The MIT Press (2000)

2. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results
for defeasible logic. ACM Trans. Comput. Logic 2(2), 255–286 (2001)

3. Athan, T., Boley, H., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.:
OASIS LegalRuleML. In: International Conference on Artificial Intelligence and
Law, ICAIL 2013, Rome, Italy, pp. 3–12, 10–14 June 2013

4. Athan, T., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.: LegalRuleML:
design principles and foundations. In: Faber, W., Paschke, A. (eds.) Reasoning
Web 2015. LNCS, vol. 9203, pp. 151–188. Springer, Heidelberg (2015)

5. Baget, J., Gutierrez, A., Leclère, M., Mugnier, M., Rocher, S., Sipieter, C.:
Datalog+, RuleML and OWL 2: formats and translations for existential rules.
In: RuleML 2015 Challenge, Berlin, Germany, 2–5 August 2015

13 Lisp-Miner: http://lispminer.vse.cz.

http://lispminer.vse.cz

256 H.-P. Lam et al.

6. Carmo, J., Jones, J.: Deontic Logic and Contrary to duties. In: Handbook of Philo-
sophical Logic, 2nd edn., pp. 265–343. Kulwer, Dordrech (2002)

7. ESTRELLA Project: The Legal Knowledge Interchange Format (LKIF), Deliver-
able 4.1, European Commission (2008). http://www.estrellaproject.org/

8. Goedertier, S., Vanthienen, J.: Designing compliant business processes with oblig-
ations and permissions. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006.
LNCS, vol. 4103, pp. 5–14. Springer, Heidelberg (2006)

9. Gordon, T.F., Governatori, G., Rotolo, A.: Rules and norms: requirements for rule
interchange languages in the legal domain. In: Governatori, G., Hall, J., Paschke,
A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 282–296. Springer, Heidelberg (2009)

10. Governatori, G.: Representing business contracts in RuleML. Int. J. Coop. Inf.
Syst. 14(2–3), 181–216 (2005)

11. Governatori, G., Milosevic, Z.: Dealing with contract violations: formalism and
domain specific language. In: EDOC 2005, pp. 46–57. IEEE Computer Society
(2005)

12. Governatori, G., Olivieri, F., Scannapieco, S., Cristani, M.: Designing for compli-
ance: norms and goals. In: Palmirani, M. (ed.) RuleML - America 2011. LNCS,
vol. 7018, pp. 282–297. Springer, Heidelberg (2011)

13. Governatori, G., Rotolo, A.: Defeasible logic: agency, intention and obligation. In:
Lomuscio, A., Nute, D. (eds.) DEON 2004. LNCS (LNAI), vol. 3065, pp. 114–128.
Springer, Heidelberg (2004)

14. Governatori, G., Rotolo, A.: Logic of violations: a gentzen system for reasoning
with contrary-to-duty obligations. Australas. J. Logic 4, 193–215 (2006)

15. Governatori, G., Rotolo, A.: A computational framework for institutional agency.
Artif. Intell. Law 16(1), 25–52 (2008)

16. Governatori, G., Rotolo, A.: BIO logical agents: norms, beliefs, intentions in defea-
sible logic. Auton. Agent. Multi-Agent Syst. 17(1), 36–69 (2008)

17. Grosof, B., Poon, T.C.: SweetDeal: representing agent contracts with exceptions
using XML rules, ontologies, and process descriptions. In: The 12th International
World Wide Web Conference, pp. 340–349 (2012)

18. Grosof, B.N.: Representing e-commerce rules via situated courteous logic programs
in RuleML. Electron. Commer. Res. Appl. 3(1), 2–20 (2004)

19. Hashmi, M., Governatori, G., Wynn, M.T.: Normative requirements for regulatory
compliance: an abstract formal framework. Inf. Syst. Front. 18(3), 429–455 (2016).
doi:10.1007/s10796-015-9558-1

20. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A Semantic Web Rule Language (2004). https://www.w3.org/Submission/
SWRL/

21. Kamada, A., Governatori, G., Sadiq, S.: Transformation of SBVR compliant busi-
ness rules to executable FCL rules. In: Dean, M., Hall, J., Rotolo, A., Tabet, S.
(eds.) RuleML 2010. LNCS, vol. 6403, pp. 153–161. Springer, Heidelberg (2010)

22. Lam, H.-P., Governatori, G.: The making of SPINdle. In: Governatori, G., Hall,
J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 315–322. Springer,
Heidelberg (2009)

23. OASIS LegalRuleML Technical Committee: LegalRuleML Technical Commit-
tee Specifications (2015). https://www.oasis-open.org/committees/legalruleml/
charter.php, retrieved 12

24. Object Management Group (OMG): Semantics of Business Vocabulary And Rules
(SBVR). OMG (2008). http://www.omg.org/spec/SBVR

http://www.estrellaproject.org/
http://dx.doi.org/10.1007/s10796-015-9558-1
https://www.w3.org/Submission/SWRL/
https://www.w3.org/Submission/SWRL/
https://www.oasis-open.org/committees/legalruleml/charter.php
https://www.oasis-open.org/committees/legalruleml/charter.php
http://www.omg.org/spec/SBVR

Enabling Reasoning with LegalRuleML 257

25. Paschke, A., Bichler, M., Dietrich, J.B.: ContractLog: an approach to rule based
monitoring and execution of service level agreements. In: Adi, A., Stoutenburg, S.,
Tabet, S. (eds.) RuleML 2005. LNCS, vol. 3791, pp. 209–217. Springer, Heidelberg
(2005)

26. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business
processes management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006.
LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)

27. Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres,
A., Feier, C., Bussler, C., Fensel, D.: Web service modeling ontology. Appl. Ontol.
1(1), 77–106 (2005)

28. Searle, J.R.: The Construction of Social Reality. Free Press, New York (1997)
29. The OWL Services Coalition: OWL-S 1.2 Release (2008). http://www.daml.org/

services/owl-s/
30. Voj́ır, S., Kliegr, T., Hazucha, A., Skrabal, R., Simunek, M.: Transforming associa-

tion rules to business rules: easyminer meets drools. In: Joint Proceedings of the 7th
International Rule Challenge, the Special Track on Human Language Technology
and the 3rd RuleML Doctoral Consortium. Seattle, USA, July 2013

31. W3C RIF Working Group: RIF: Rule Interchange Format (2005). https://www.
w3.org/standards/techs/rif

32. Wood, G.: Ethereum: A Secure Decentralised Generalised Transaction Ledger
(2014). http://gavwood.com/paper.pdf, Accessed December

http://www.daml.org/services/owl-s/
http://www.daml.org/services/owl-s/
https://www.w3.org/standards/techs/rif
https://www.w3.org/standards/techs/rif
http://gavwood.com/paper.pdf

	Enabling Reasoning with LegalRuleML
	1 Introduction
	2 A Sample Contract
	3 Modal Defeasible Logic: An Informal Introduction
	4 LegalRuleML: The Legal Rule Markup Language
	4.1 Premises and Conclusions
	4.2 Rules and Rulebases
	4.3 Other Constructs
	4.4 Implementation

	5 Related Works
	6 Conclusions
	References

