
Setting Standards for Altering
and Undoing Smart Contracts

Bill Marino1(&) and Ari Juels2

1 Cornell Tech, New York, USA
wlm67@cornell.edu

2 Cornell Tech (Jacobs Institute), New York, USA
juels@cornell.edu

Abstract. Often, we wish to let parties alter or undo a contract that has been
made. Toward this end, contract law has developed a set of traditional tools for
altering and undoing contracts. Unfortunately, these tools often fail when
applied to smart contracts. It is therefore necessary to define a new set of
standards for the altering and undoing of smart contracts. These standards might
ensure that the tools we use to alter and undo smart contracts achieve their
original (contract law) goals when applied to this new technology. This paper
develops such a set of standards and, then, to prove their worth as a framework,
applies to them to an existing smart contract platform (Ethereum).

Keywords: Smart contracts � Contract law � Blockchain � Ethereum

1 Introduction

If a covenant be made wherein neither of the parties perform presently, but trust one another, in
the condition of mere nature … upon any reasonable suspicion, it is void: but if there be a
common power set over them both, with right and force sufficient to compel performance, it is
not void.

— Thomas Hobbes, Leviathan (1651)

The purpose of contracts is to solve a game-theoretic problem: it is to our mutual benefit to
cooperate in some way. But if we cooperate, then one of us can do even better by defecting.

— sirclueless [psued.], comment on What is Ethereum?, Hacker News (2015)

Tyrell Corporation, manufacturer of replicant humans in Philip K. Dick’s Do
Androids Dream of Electric Sheep?, famously touted their wares as “more human than
human”. Riffing on that motto, we might say that smart contracts are able to beat analog
contracts at their own game and are therefore “more contract than contract”.

This is because the “fundamental function of contract law (and recognized as such
at least since Hobbes’s day) is to deter people from behaving opportunistically toward
their contracting parties” [1]. And that is something a smart contract — at least, in its
paradigmatic form — does better than any analog contract ever could. In fact, a

© Springer International Publishing Switzerland 2016
J.J. Alferes et al. (Eds.): RuleML 2016, LNCS 9718, pp. 151–166, 2016.
DOI: 10.1007/978-3-319-42019-6_10



well-designed smart contract drives the probability of opportunistic breach toward zero
as such behavior becomes impossible or, at least, “expensive (if desired, sometimes
prohibitively so) for the breacher” [2].

Mind you, this feat is not possible for a contract that is merely “a set of promises,
specified in digital form” [2] — i.e., a digital contract. Breaching a contract recorded in
binary is no harder than breaching one recorded in ink. What lets smart contracts rise
above their brethren is that they additionally include “protocols within which the
parties perform on … promises” [2]. These protocols beget smart contracts’ hallmark
ability to “automatically enforce” [2] themselves, a quality that, in turn, eliminates the
need for “trusted intermediaries” [3] and, of course, court enforcement [4].

Smart contracts’ performance protocols take many forms, as there are countless
ways to embed promises in technology so as to make breach infeasible or unduly
expensive. They include the controller and motors of the “humble vending machine”
[5], embedding, as they do, the promise of the vendor to deliver a Mr. Pibb to anyone
inserting a dollar. They include the blockchain-dwelling bytecode of an evergreen loan
contract on Ethereum, embedding, as it does, a creditor’s promise to issue a new
cryptocurrency loan to the debtor who repays a prior one [6].

Observe what these examples share: security. When promises are embedded in
technology, one (perhaps the only) way to breach them is to disrupt that technology.
Most smart contracts include security measures aimed at deterring this type of breach.
To breach the vending machine’s smart contract, you must break into its lockbox. To
breach the blockchain loan contract, you must compromise the blockchain’s consensus
protocol. In this manner, security mechanisms form the archstone in the promise of
smart contracts to transcend analog contracts. The problem, however, is that securing
contracts against disruption for the purpose of breach often means securing them
against disruption of any sort. And that is not always a desirable result.

The fact is, as “performance unfolds, circumstances change, often unforeseeably”
[7]. External events like price shifts may degrade a contract’s value in the eyes of the
parties. It may come to light that there is a typo in the contract, or that one party was
defrauded during its creation. When such events arise, the parties — and sometimes
courts and or even the public — may find themselves wanting the contract to be
performed differently (or not at all). This is why contract law has a well-honed set of
tools for undoing and altering contracts, including termination and rescission (for
undoing contracts) as well as modification and reformation (for altering contracts).

Unfortunately, these traditional tools often fail when applied to smart contracts.
True, they successfully undo the legal agreement that a smart contract manifests. If
these tools are exercised, no court will enforce the agreement. The problem, of course,
is that technology still might. What is needed, then, is to define new standards for these
tools as applied to smart contracts, making sure they remain robust for this new
medium. That is the goal of this paper.

152 B. Marino and A. Juels



2 Termination and Rescission of Smart Contracts

2.1 Termination and Rescission Generally

“Rescission”, the 1912 edition of Black’s Law Dictionary tells us, “is where a contract
is canceled, annulled, or abrogated by the parties, or one of them” [8]. Importantly, this
definition turns out to be somewhat half-baked, with another corner of Henry Campbell
Black’s own oeuvre — 1916’s A Treatise On the Rescission of Contracts and Can-
cellation of Written Instruments— cautioning that “[t]o rescind a contract is not merely
to terminate it” and “release the parties from further obligation” but to “restore the
parties to the relative positions which they would have occupied if no such contract had
ever been made” [9]. After highlighting this restorative aspect of rescission, the latter
text outlines three situations in which rescission may be implemented. These, like the
definition that precedes them, have endured:

First, rescission may be implemented when “a right to take this action [is] reserved
to either or both of the parties in the contract itself [9]. If reserved, such a right “may
then be exercised without other grounds for it than the mere will of the party
rescinding” [9]. Today, this is called “termination by right” (“Termination by Right”).

Second, there may be a “rescission by the mutual agreement of the parties to the
contract” [9]. This is, “in effect the discharge of both parties from the legal obligations
admittedly existing thereunder, by a subsequent agreement made before the complete
performance of the original contract” [9]. In modern times, this is called “mutual
rescission” or “rescission by agreement” (“Rescission by Agreement”).

Third, “one of the parties may declare a rescission of the contract, without the
constant of the other … if a legally sufficient ground therefor exists, such, for instance,
as fraud, false representations, [unilateral] mistake, duress, or infancy” [9]. The
rescinding party may then ask a court to “set aside” the contract “by the equity decree”
[10]. The modern label for this is simply “rescission” (“Rescission by Court”).

Let us examine each of these three versions of rescission as applied to smart
contracts, sketching new standards for each as we proceed:

2.2 Termination by Right

At law, Termination by Right is implemented passively: it bars future breach of con-
tract actions [11]. For smart contracts, unfortunately, this approach often fails. If a
smart contract is terminated at law, and nothing more is done, the smart contract will
still automatically perform (“auto-perform”) the parties’ promises (as it is designed to
do), negating the termination. Accordingly, the first standard we will set for smart
contract Termination by Right is that, when the right is exercised, auto-performance
indeed ceases. To permit otherwise means the termination is an empty gesture.

A second standard is this: the smart contract must ensure that Termination by Right
is implemented if and only if the party holding the right exercises it. No other party
may initiate termination. To permit otherwise, again, undermines the goals of contract
law by rewarding opportunistic breach by non-right holding parties.

Setting Standards for Altering and Undoing Smart Contracts 153



A third standard is this: echoing Black’s emphasis on restoration, before imple-
menting a Termination by Right, the smart contract’s machinery must ensure that all
partial performance that has occurred is compensated. For example, partial payments
sent by either party must be returned. If this is not done, then parties will resort to
courts to enforce restitution of that partial performance, undoing one of the primary
efficiency benefits of smart contracts.

A fourth standard is this: the smart contract’s machinery must ensure that all
conditions placed on the termination right are met before termination is implemented.
For example, if payment of a termination fee is a condition of the right, the contract
must pay such a fee to the appropriate party (or otherwise ensure that it is paid) before
initiating termination. To permit otherwise undermines the aim of contract law by
rewarding opportunistic breach by the right holder. To summarize:

• Smart contract Termination by Right halts all auto-performance;
• Smart contract Termination by Right is enabled if and only if the party holding that

right exercises it;
• Smart contract Termination by Right automatically compensates partial

performance;
• Smart contract Termination by Right is enabled if and only if any termination

conditions are satisfied.

2.3 Rescission by Agreement

Rescission, like termination, is implemented passively at law: when there has been a
valid rescission, there is “no longer a cause of action for breach” [12]. Again, for smart
contracts, this passive approach fails. Accordingly, our first standard for smart contract
Rescission by Agreement is the same as our first standard for smart contract Termi-
nation by Right: automated performance must be halted.

Our second stand is unique to Rescission by Agreement: unlike with Termination
by Right, the power to rescind a smart contract by mutual agreement may not lie with
one party. An agreement to rescind, like the initial contract, takes the “form of an offer
by one and an acceptance by the other” [13]. So this brand of smart contract rescission
must be conditioned, by the smart contract, on mutual agreement: an offer to rescind by
one party and acceptance of that offer by all other parties. To allow otherwise con-
travenes the goals of contract law by encouraging opportunistic breach.

Our final standard for smart contract rescission is this: smart contract Rescission by
Agreement, like smart contract Termination by Right, should include restoration of any
partial performance. To summarize:

154 B. Marino and A. Juels



• Smart contract Rescission by Agreement halts all auto-performance;
• Smart contract Rescission by Agreement is enabled and if all parties mutually agree

to it;
• Smart contract Rescission by Agreement automatically compensates partial

performance.

2.4 Rescission by Court

Of the grounds for rescission, unilateral mistake (when one party thinks the smart
contract does one thing, while the other party knows it does another) is of particular
interest to smart contracts. Due to the introduction of code to the agreement-making
process, unilateral mistake may be a greater danger than ever before. Few feel confident
reading “legalese”; even fewer feel confident reading code.

In light of this, our first standard is a familiar one: when there is a unilateral mistake—
or when any of the other bases for Rescission by Court exist— and a court orders a smart
contract rescinded, auto-performance must cease.

Our second standard is more unique: the power to order Rescission by Court may
only lie with and be exercised by the appropriate court. Neither party may have the
power to jeopardize that right. Naturally, that would undermine the goals of contract
law (by encouraging opportunistic breach).

Our third demand is this: upon rescission by a court, restoration must occur, just as
it would in the case of Termination by Right or Rescission by Agreement. If partial
performance is not automatically compensated, parties may petition the court to enforce
restitution of that performance, erasing one of the primary efficiency benefits of smart
contracts. To summarize:

• Smart contract Rescission by Court halts all auto-performance;
• Smart contract Rescission by Court is enabled if and only if triggered by an

appropriate court;
• Smart contract Rescission by Court automatically compensates partial performance.

3 Modification and Reformation of Smart Contracts

3.1 Modification and Reformation of Smart Contracts

Sometimes, we do not wish to wholly discard an agreement, but merely wish to alter
some of its terms. Such alteration provides an “efficient mechanism for changing
agreements in response to altered circumstances … saving a deal that would otherwise
have ended in an inefficient breach” [14]. Like the undoing of a contract, the alteration
of a contracts comes in three flavors:

Setting Standards for Altering and Undoing Smart Contracts 155



The first is where “[u]nilateral-modification clauses give one party the unfettered
right to amend … the underlying contract, often with neither notice to, nor consent
from, the other party [15]. This is called “modification by right” (“Modification by
Right”). (Note that some courts will uphold this right, while others will not [16]).

Second, contracting parties have a well-established right “to modify their original
contract by mutual agreement” [17]. Such a modification is itself a contract [18] and
must be based on mutual assent and supported by its own consideration [19]. This is
referred to as “modification by agreement” (“Modification by Agreement”).

Third, a court may, in some cases, order a modification of a contract even over the
objections of one or more parties. It may do so based on three grounds: mistakes
mutual to all parties [20], fraud [21], and “unconscionable” terms — i.e., terms born
out of “an absence of meaningful choice” for one party and “unreasonably favorable to
the other” [22]. This is type of modification is called “reformation” (“Reformation”).

3.2 Modification by Right

If undoing a smart contract calls for an axe — a blanket action turning the entire
contract off all at once — modifying it calls for a scalpel. Specifically, modification
must halt auto-performance of only the terms that are intended to be modified while
simultaneously initiating auto-performance of the new versions intended to replace
them.

With that said, our first standard is this: upon Modification by Right of a smart
contract term, auto-performance of that term’s original iteration must cease, while
auto-performance of its new iteration must, concurrently, initialize.

Our second standard is a familiar one: modification of a term can be initiated if and
only if a party holding the right to modify that term wills it.

Our third standard is also a familiar one: if the modification is conditioned on the
occurrence of events, such as the payment of a modification fee, those events must
occur before modification can take place.

Our final standard is a twist on a standard previously forth for the ways of undoing
smart contracts: a smart contract must automatically compensate for any partial per-
formance that has occurred and which is tied to obligations embedded in the terms
being removed during modification. (It need not compensate for partial performance of
any terms that, though modified, remain active; those terms will be compensated
through the performance of the contract.) To summarize:

• Smart contract Modification by Right simultaneously halts auto-performance of
original, modified terms and instantiate auto-performance of new ones;

• Smart contract Modification by Right is enabled if and only if the party holding the
right exercises it;

156 B. Marino and A. Juels



• Smart contract Modification by Right automatically compensates partial perfor-
mance of deleted terms;

• Smart contract Modification by Right is enabled if and only if any modification
conditions are satisfied.

3.3 Modification by Agreement

The issues faced when implementing Modification by Agreement resemble those faced
during Modification by Right. So our standards are similar. The key difference is that a
Modification by Agreement must be approved by all parties. To summarize:

• Smart contract Modification by Agreement simultaneously halts auto-performance
of original, modified terms and instantiate auto-performance of new ones;

• Smart contract Modification by Agreement is enabled if and only if all parties
mutually agree to it;

• Smart contract Modification by Agreement automatically compensates partial per-
formance of deleted terms.

3.4 Reformation

Some grounds for reformation are of special interest to smart contracts. That includes
mutual mistake, which covers the so-called “scrivener’s error”, an “accidental deviation
from the parties’ agreement” made while recording the agreement in writing [19]. In
smart contracts, the risk of this error is high because of, again, the introduction of code
to contracting. Fraud and unconscionability are high risks for the same reason:
code-savvy parties are in a position to defraud or force unconscionable terms on
code-naive parties. For these reasons, Reformation of smart contracts is likely to occur.

Our first standard for Reformation is familiar: it must halt auto-performance of the
original versions of modified terms and instantiates auto-performance of the new
version of modified terms.

Second, the power to reform the contract, like the power for Rescission by Court,
must lie strictly with the court. And our third standard is a familiar one as well: once
triggered, the Reformation must compensate for the partial performance of any terms
that are being deleted. To summarize:

• Smart contract Reformation simultaneously halts auto-performance of original,
reformed terms and instantiate auto-performance of new ones;

• Smart contract Reformation is enabled if and only if triggered by an appropriate
court;

• Smart contract Reformation automatically compensates partial performance of
deleted terms.

Setting Standards for Altering and Undoing Smart Contracts 157



4 Testing Our New Standards on Ethereum

4.1 Ethereum Generally

Let’s put our new standards for altering and undoing smart contracts to the test on an
existing smart contract platform: Ethereum. Can smart contract alteration and undoing
on this platform meet our standards? How?

Ethereum, “arguably the most ambitious crypto-ledger project,” [25] is built on a
blockchain. Ethereum blockchain stores both transaction data (concerning its native
cryptocurrency, Ether) and the code of computer programs called, for better or for
worse [26], “contracts.” The code for these contracts is injected onto the blockchain
when a personal account sends contract code in the data field of an unaddressed
transaction. After this, the contract is added to a block and assigned an address, at
which point its code becomes immutable [27]. Importantly, what is not immutable is
the contract’s state. Specifically, the nodes in the Ethereum network, besides being able
to add transactions to the ledger, also run contract code and maintain and adjust
contract states in a virtual machine they all host, the Ethereum Virtual Machine.

Contracts on Ethereum can hold balances of Ether. Like objects in object oriented
programming, they can also have variables and functions that, if called, adjust those
variables or do other nifty things, like send Ether to other contracts or accounts on
Ethereum. Note that these functions cannot “wake” on their own and, in order to
execute, must be called (by parties to the contract, third parties, or other contracts).

One of Ethereum’s high level languages, Solidity, is a cross “between JavaScript
and C++ but with a number of syntactic additions to make it suitable for writing
contracts within Ethereum” [28] and is what we will use to prototype below.

4.2 Undoing Contracts on Ethereum

There are at least two ways to undo contracts (i.e., implement Termination by Right,
Rescission by Agreement, or Rescission by Court) on Ethereum. The first, the global
selfdestruct function, is easy to implement and effective. That said, it is also a blunt
instrument, lacking the nuance of the second way, which is to turn the entire contract
“off” at the function level using a combination of Solidity’s modifiers and enums.

Undoing Contracts on Ethereum Using Selfdestruct. As stated, Ethereum contract
code, once on the blockchain, cannot be altered. But it can be deleted. The global
selfdestruct function, if called from inside a contract, sends the contract’s Ether balance
to the address this function takes as its sole argument, then deletes the contract’s code
from the blockchain going forward. This means the contract’s functions cannot be
called. Since Ethereum contract functions cannot self-wake, this halts auto-performance
and thus satisfies the first (shared) standard we set for smart contract Termination by
Right, Rescission by Agreement, and Rescission by Court.

It is also easy, on Ethereum, to satisfy the second (shared) standard for each of these
tools by granting the power to selfdestruct a contract only to those entities that should
have it. If that is a single party (which is the case for Termination by Right and
Rescission by Court), this can be done by wrapping selfdestruct function inside a

158 B. Marino and A. Juels



conditional statement that checks if the address calling it belongs to the rightful
exerciser:

If multiple parties must approve the undoing, as in Rescission by Agreement, there
are a few ways to achieve this. One is to use Solidity’s modifiers and enums (user
defined types) to create states that log the consent of parties and then to throw
exceptions when selfdestruct is called and those states do not reflect the necessary
values:

Next is the third standard, shared by each of these tools, that demands that any
partial performance that has occurred be compensated automatically before the contract
is undone. With selfdestruct, this is easy to engineer. All that is needed is a variable that
tracks the level of performance, a function that lets one party suggest a new value for
that variable, and a second function that lets the counterparty approve the new value.
When the contract is undone, the latest value for the variable will be paid out.

Termination by Right is the only version of contract undoing with a fourth stan-
dard. It comes in many shapes, but we can address the simplest here. This is where the
right is conditioned on the payment of a termination fee. To satisfy this standard, we
can use a much more streamlined version of this approach used to satisfy the third
standard.

Here is contract code that ties together all of the above, satisfying the conditions for
our three methods of undoing contracts by creating functions for Termination by Right,
Rescission by Agreement, and Rescission by Court, giving the power over those

Setting Standards for Altering and Undoing Smart Contracts 159



functions to the right parties, and paying out termination and partial performance fees
when required. To simplify things, let us assume partial performance is only possible
for one party (e.g., it is a labor contract that the hirer has endowed with the full
payment, such that partial performance is only an issue for the laborer):

160 B. Marino and A. Juels



While this code does not cover edge cases (such as the situation where conditions
placed upon Termination by Right represent the occurrence of real world events), we
have shown that our standards can reasonably be applied — and to some extent,
satisifed — using one of the methods for undoing smart contracts (selfdestruct) on
Ethereum. Now let us repeat the process for a second (and arguably superior) method
for undoing smart contracts on the same platform:

Undoing Contracts on Ethereum Using Modifiers and Enums. The selfdestruct
function is a convenient “one-stop” solution for undoing contracts. But Solidity’s
modifiers and enums are a more nuanced tool for this — one that, as we will see later,
meshes well with existing tools for altering contracts.

We used modifiers and enums above, in conjunction with selfdestruct. We can extend
the same strategy to implement Termination by Right, Rescission by Agreement, and
Rescission by Court without selfdestruct. Specifically, we can create two states: one for

Setting Standards for Altering and Undoing Smart Contracts 161



a contract that has been undone— let’s call it ContractUndone— and one for a contract
that is not undone— let’s call it ContractNotUndone. Upon instantiation, we can set the
state as ContractNotUndone. Then, we can create a function that enables the state to be
toggled to ContractUndone (but not toggled in the other direction). Lastly, we can can
cause all other functions to throw if the ContractUndone state exists. This will halt
performance of the contract, satisfying the first standard for our three methods of
undoing contracts. Then we can also satisfy the other standards for undoing smart
contracts in the same ways we set forth above for selfdestruct.

4.3 Modifying Contracts on Ethereum

Modifying contracts (i.e., implementing Modification by Right, Modification by
Agreement, and Reformation) on Ethereum is more nuanced than undoing contracts on
Ethereum. Roughly speaking, there are three ways to achieve modification on Ether-
eum: modification of variable-captured terms, deletion of function-captured terms, and
addition or alteration of function-captured terms.

Modifying Variable-Captured Terms. Contract terms like price (or labor hours, etc.)
will often be captured as variables in smart contract code. When this is the case,
modifying these terms is simple as assigning a new value to the variable using a
set-type function. If such a function exists, this method of modification satisfies the first
(shared) standard of our three flavors of modifying contracts: it halts performance of the
old term and instantiates performance of the new one. If the set function is narrowly
tailored to this variable, then this method of modification also satisfies the second
standard of Termination by Right: that the scope must be hard-coded into the smart
contract during formation. Satisfying the remaining standards for Modification by
Right, Modification by Agreement, and Reformation can all be accomplished in much
the same way there were accomplished above, for Termination by Right, Rescission by
Agreement, and Rescission by Court.

Modifying Function-Captured Terms. Sometimes, contract terms are captured by
functions and not variables. In that case, modification means deleting, adding, or
swapping the relevant function(s). This must be handled differently than variable-level
modification because, while variables can be changed freely, the functions in an
Ethereum contract code are immutable once it is issued to the blockchain.

Deleting Function-Captured Terms. Of the types of function-level changes, the easiest
to implement is deletion: i.e., subtraction of terms. For that, we can recycle the
approach taken for Termination by Right, Rescission by Agreement, and Rescission by

162 B. Marino and A. Juels



Court: using modifiers and enums to create and toggle states, then causing functions to
throw exceptions if the states do not exist. Using this method, we can build functions
that can be turned off, on demand, if the parties agree to a deletion-style modification.
This will halt performance much as it did above, satisfying the first standard for our
three ways of undoing a contract. Beyond that, the remaining standards can be satisfied
much as they were above for variable-captured functions.

Adding or Modifying Function-Captured Terms. Adding wholly new functions and
replacing existing functions is accomplished in a similar fashion. The difference
between the two that, if a function is being replaced, the initial version of it must also
be turned off. (This can be accomplished using the methods described above for
deletion of functions.) On Ethereum, there are at least two ways to add or swap
functions in a contract. Both demand a bit of prognostication.

The first is to use modifiers and enums can be used to turn functions “off”, they can
be used to turn functions “on”. Of course, in order to be turned on, those functions must
be in the contract to begin with. Since contract code is immutable after initialization,
this means functions that the parties suspect they may later wish to turn “on” during a
modification must be included in the initial contract in an “off” state. That said, if this
can be accomplished, then the standards for all three flavors of contract modification
can be satisfied much as they would be for variable-captured functions.

A second way to add or modify function-captured terms — and, seemingly, the one
endorsed by Ethereum’s architects [6]— is to create, at the outset, satellite contracts that
capture certain function-terms. The addresses of these satellite contracts can be stored in
address variables or an arrays of address variables in the central contract. Using these
pointers, the central contract can to call out to the satellite contracts when it needs to
reference certain terms. If this is architected properly, modifying function-terms is as
simply as changing the pointers.

As an example, suppose the parties wish to build flexibility into their price term. They
can initialize a central contract with pointers to a satellite price calculation contract.
Changing the price calculation method (e.g., swapping price datafeeds or formulas) is as
simple as changing the pointers in the central contract. The code for such a contract
might look like the code below, which contains a pair of functions that let one party
suggest a new satellite contract and let the other approve the suggestion before making
the change (note that, in order to call an outside contract’s functions on Ethereum, the
code for the outside contract must appear in the code for your present contract):

Setting Standards for Altering and Undoing Smart Contracts 163



As is, this contract satisfies the first standard for all three flavors of modifying
contracts; by de-linking the original satellite contract and linking the new one, it
simultaneously halts auto-performance of the original versions of modified terms and
instantiates auto-performance of the new versions. If it contains code to ensures that the
party initiating the pointer swap is the correct one and additionally contains code that
tracks and compensates partial performance in the event of a modification, then it can
satisfy the second and third conditions of all three flavors of modification as well.
Finally, it can satisfy the fourth condition of Modification by Right by additionally
including code that prohibits modification unless certain conditions have been met.

164 B. Marino and A. Juels



5 Conclusion and Future Work

Contract law has developed a well-honed and necessary set of tools for altering and
undoing contracts. Unfortunately, these tools often fail when applied to smart contracts.
It is therefore crucial to define a new set of standards against which we can create a
similar set of tools for altering and undoing smart contracts. These standards should be
drawn from the principals of contract law but work for the new technology. We have
sketched such standards. Further, by applying these standards to the present methods
for altering and undoing smart contracts on Ethereum, we have proven that there is
value to such a framework. Let the smart contract community take note. It is essential
that the architects of this new technology, like the architects of contracts, create viable
ways to alter and undo them.

References

1. Posner, R.: Economic Analysis of Law. Little Brown and Co., Boston (1986)
2. Szabo, N.: Smart Contracts: Building Blocks for Digital Markets (1996)
3. Juels, A., Kosba, A., Shi, E.: The Ring of Gyges: Investigating the Future of Criminal Smart

Contracts (2015)
4. Szabo, N.: Smart Contracts (1994)
5. Szabo, N.: The Idea of Smart Contracts (1997)
6. Buterin, V.: Ethereum White Paper (2014)
7. Posner, R.: Let us never blame a contract breaker. Mich. Law Rev. 107, 1360 (2009)
8. Black, H.C.: Black’s Law Dictionary, p. 1025 (1910)
9. Black, H.C.: A Treatise on the Rescission of Contracts and Cancellation of Written

Instruments, vol. 1 (1916)
10. Koford, H.S.: Recessions at law and in equity. Calif. Law Rev. 36, 608 (1948)
11. Atlas Trucking v. City of Lompoc, S224878, 2015 Cal. LEXIS 2165 (Sup. Ct. Cal., 15 April

2015)
12. Great American Ins. v. General Builders, 934 p. 2d 257, 262 n. 6 (Nev. 1997)
13. Corbin, A.L.: Corbin on Contracts, vol. 5A (1964)
14. Russell, I.S.: Reinventing the deal: a sequential approach to analyzing claims for

enforcement of modified sales contracts. Fla. Law Rev. 53, 51 (2001)
15. DeMichele, M.L., Bales, R.A.: Unilateral-modification provisions in employment arbitration

agreements. Hofstra Employ. Law J. 24, 64 (2006)
16. Carey v. 24 Hour Fitness, USA, Inc., 669 F.3d 202 (5th Cir. 2012)
17. Christine, C.: Contracts as bilateral commitments: a new perspective on contract

modification. J. Legal Stud. 26, 204 (1997)
18. Hillman, R.A.: A study of uniform commercial code methodology: contract modification

under article two. N. C. Law Rev. 59, 339 (1981)
19. Williston, S., Lord, R.: Williston on Contracts (1992)
20. Moffett, Hodgkins & Clarke Co. v. Rochester, 178 U.S. 373, 385 (1900)
21. Link v. Kroenke, 909 S.W.2d 740, 745 (Mo. App. W.D. 1995)
22. Williams v. Walker-Thomas Furniture Co., 350 F.2d 445, 449 (D.C. Cir. 1965)
23. The Great Chain of Being Sure About Things. The Economist (2015)

Setting Standards for Altering and Undoing Smart Contracts 165



24. Marino, B.: https://medium.com/@ConsenSys/unpacking-the-term-smart-contract-e63238f
7db65

25. Delmolino, K., Arnett, M., Kosba, A., Miller, A., Shi, E.: Step by Step Towards Creating a
Safe Smart Contract: Lessons and Insights from a Cryptocurrency Lab (2015)

26. Wood, G.: https://github.com/ethereum/wiki/wiki/Solidity,-Docs-and-ABI

166 B. Marino and A. Juels

https://medium.com/%40ConsenSys/unpacking-the-term-smart-contract-e63238f7db65
https://medium.com/%40ConsenSys/unpacking-the-term-smart-contract-e63238f7db65
https://github.com/ethereum/wiki/wiki/Solidity%2c-Docs-and-ABI

	Setting Standards for Altering and Undoing Smart Contracts
	Abstract
	1 Introduction
	2 Termination and Rescission of Smart Contracts
	2.1 Termination and Rescission Generally
	2.2 Termination by Right
	2.3 Rescission by Agreement
	2.4 Rescission by Court

	3 Modification and Reformation of Smart Contracts
	3.1 Modification and Reformation of Smart Contracts
	3.2 Modification by Right
	3.3 Modification by Agreement
	3.4 Reformation

	4 Testing Our New Standards on Ethereum
	4.1 Ethereum Generally
	4.2 Undoing Contracts on Ethereum
	4.3 Modifying Contracts on Ethereum

	5 Conclusion and Future Work
	References


