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Álvaro Gómez Rubio1(B), Broderick Crawford1,4(B),
Ricardo Soto1,2,3(B), Adrián Jaramillo1(B), Sebastián Mansilla Villablanca1(B),

Juan Salas1(B), and Eduardo Olgúın4(B)
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{alvaro.gomez.r,adrian.jaramillo.s,

sebastian.mansilla.v,juan.salas.f}@mail.pucv.cl,
{broderick.crawford,ricardo.soto}@ucv.cl

2 Universidad Autónoma de Chile, Santiago de Chile, Chile
3 Universidad Cient́ıfica del Sur, Lima, Peru

4 Universidad San Sebastián, Santiago de Chile, Chile
eduardo.olguin@uss.cl

Abstract. The set covering problem (SCP) is one of the most represen-
tative combinatorial optimization problems and it has multiple applica-
tions in different situations of engineering, sciences and some other disci-
plines. It aims to find a set of solutions that meet the needs defined in the
constraints having lowest possible cost. In this paper we used an existing
binary algorithm inspired by Binary Black Holes (BBH), to solve multi-
ple instances of the problem with known benchmarks obtained from the
OR-library. The presented method emulates the behavior of these celes-
tial bodies using a rotation operator to bring good solutions. After tray
this algorithm, we implemented some improvements in certain operators,
as well as added others also inspired by black holes physical behavior, to
optimize the search and exploration to improving the results.

Keywords: Set covering problem · Binary black hole · Methaheuristics ·
Combinatorial optimization problem

1 Introduction

The SCP is one of 21 NP-Hard problems, representing a variety of optimiza-
tion strategies in various fields and realities. Since its formulation in the 1970s
has been used, for example, in minimization of loss of materials for metallur-
gical industry [1], preparing crews for urban transportation planning [2], safety
and robustness of data networks [3], focus of public policies [4], construction
structural calculations [5].

Considering a binary numbers array A, of m rows and n columns (aij), and
a C vector (cj) of n columns containing the costs assigned to each one, then we
can then define the SCP such as:
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874 Á.G. Rubio et al.

Minimize
n∑

j=1

cjxj (1)

where a:
∑n

j=1
aijxj ≥ 1 ∀ i ∈ {1, ..., n}

xj ∈ {0, 1}; j ∈ {1, ..., n}
This problem was introduced in 1972 by Karp [6] and it is used to optimize
problems of elements locations that provide spatial coverage, such as community
services, telecommunications antennas and others.

The present work applied a strategy based on a binary algorithm inspired by
black holes to solve the SCP, developing some operators that allow to implement
an analog version of some characteristics of these celestial bodies to support
the behavior of the algorithm and improve the processes of searching for the
optimum. This type of algorithm was presented for the first time by Abdolreza
Hatamlou in September 2012 [7], registering some later publications dealing with
some applications and improvements. In this paper it will be detailed method-
ology, developed operators, experimental results and execution parameters and
handed out some brief conclusions about them, the original version for both the
proposed improvements.

2 Black Holes

Black holes are the result of the collapse of a big star’s mass that after passing
through several intermediate stages is transformed in a so massively dense body
that manages to bend the surrounding space because of its immense gravity.
They are called “black holes” due to even light does not escape their attraction
and therefore is undetectable in the visible spectrum, knowing also by “singu-
larities”, since inside traditional physics loses meaning. Because of its immense
gravity, they tend to be orbited by other stars in binary or multiple systems
consuming a little mass of bodies in its orbit [8]. When a star or any other body
is approaching the black hole through what is called “event horizon”, collapses
in its interior and is completely absorbed without any possibility to escape, since
all its mass and energy become part of singularity (Fig. 1). This is because at
that point the exhaust speed is the light one [8].

On the other hand, black holes also generate a type of radiation called
“Hawking radiation”, in honor of its discoverer. This radiation have a quan-
tum origin and implies transfer of energy from the event horizon of the black
hole to its immediate surroundings, causing a slight loss of mass of the dark
body and an emission of additional energy to the nearby objects [9].

3 Algorithm

The algorithm presented in September 2012 by Hatamlou [7] faces the problem
of determination of solutions through the development of a set of stars called
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Fig. 1. Event horizon in a black hole

“universe”, using an algorithm type population similar to those used by genetic
techniques or particles swarm. It proposes the rotation of the universe around
the star that has the best fitness, i.e., which has the lowest value of a defined
function, called “objective function”. This rotation is applied by an operator of
rotation that moves all stars in each iteration of the algorithm and determines
in each cycle if there is a new black hole, that it will replace the previous one.
This operation is repeated until it find the detention criteria, being the last of
the black holes founded the proposed solution. Eventually, a star can ever exceed
the defined by the radius of the event horizon [8]. In this case, the star collapses
into the black hole and is removed from the whole universe being taken instead
by a new star. Thus, stimulates the exploration of the space of solutions. The
following is the proposed flow and the corresponding operators according to the
initial version of the method (Fig. 2).

3.1 Big Bang

It consists the creation of the initial random universe for the algorithm. The
number of stars generated will remain fixed during the iterations, notwithstand-
ing that many of the vectors (or stars) are replaced. The mechanism of creation
of vectors is as follows and shall also apply in the intermediate steps that require
the generation of new stars:

Algorithm 1. Random initial generation of stars
1: n ← Cols quantity
2: for row = 1 to Stars quantity do
3: Starrow = StarGeneration(n)
4: end for

Where StarGeneration is the creation of a binary vector of n elements that
comply with the restrictions of A matrix.
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Fig. 2. Original black hole algorithm

3.2 Fitness Evaluation

The each star xi fitness is calculated by evaluating the objective function, accord-
ing to the initial definition of the problem. In algorithmic terms described in the
following way:

Algorithm 2. Fitness evaluation
1: Fitness ← 0
2: for Xj = 1 to Cols quantity do
3: Fitness ← Fitness + xjcj
4: end for

It should be remembered that cj corresponds to the cost of that column in
the matrix of costs. In other words, the fitness of a star is the sum of the product
of the value of each column covered with a star in particular, multiplied by the
corresponding cost. The black hole will be those who have minor fitness among
all existing stars at the time of the evaluation.

3.3 Rotation Operator

The rotation operation occurs above all the universe of xd
i stars of t iteration,

with the exception of the black hole, which is fixed in its position. The operation
sets the new t+1 position follows:
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Xd
i (t + 1) = Xi(t) + random(XBH − Xi(t)), where i = 1, 2, ..., N (2)

Where random ∈ {0,1} and change in each iteration, xi(t) and xi(t+1) are
the positions of the star xi at t and t+1 iterations respectively, xBH is the black
hole location in the search space, random is a random number in the range [0,1]
and N is the number of stars that make up the universe (candidate solution). It
should be noted that the only exception in the rotation is designated as black
hole star, which retains the position.

3.4 Collapse into the Black Hole

When a star is approaching a black hole at a distance called event horizon is
captured and permanently absorbed by the black hole, being replaced by a new
randomly generated one. In other words, it is considered when the collapse of a
star exceeds the radius of Schawarzchild (R) defined as:

R =
fBH∑n
i=1 fi

(3)

where fBH is the value of the fitness of the black hole and fi is the ith star
fitness. N is the number of stars in the universe.

3.5 Algorithm Implementation

The algorithm implementation was carried out with a I-CASE tool, generating
Java programs and using a relational database as a repository of the entry infor-
mation and gathered during executions. The parameters that will be presented
are the result both of the needs of the original design of the algorithm improve-
ments made product of the tests performed. In particular, attempted to improve
the capacity of exploration of the metha heuristics. Is contrast findings with
tables of known optimal values [10,11], in order to quantitatively estimate the
degree of effectiveness of the presented metha heuristics. We found no publica-
tions that present information regarding algorithmic specifications or the original
version of the algorithm implementation, so there are various aspects to which
the authors do not point solution, but we can speculate that they are similar to
other metaheuristic algorithms that is does have information from other authors:

The process begins with the random generation of a population of binary
vectors (Star) in a step that we will call “big bang”. With a universe of m star
formed by binary vectors of n digits, you must identify that with better fitness,
i.e. one that is evaluated with the objective function release the lowest value
among all those that make up the universe generated. The next step is to rotate
the other stars around the black hole detected until some other presents a better
fitness and take its place.

The number of star generated will remain fixed during the iterations, notwith-
standing that many vectors (or star) will be replaced by one of the operators.
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3.6 Transfer Functions and Binarization

The transfer functions aims to take values from the domain of the real to the
range [0..1]. For this, many functions was tested, been the inverse exponential
function used for the definitive benchmarks.

1
1 + (e−x/3)

(4)

In addition, the binarization function is aimed at conveying the value obtained in
the previous transformation in a binary digit. Therefore be tested the following
routines, where random is a random value between 0 and 1 inclusive.

Algorithm 3. Standard binarization
1: if random ≤ value then
2: Digit = 1
3: else
4: Digit = 0
5: end if

The binarization best results have been achieved with that was the standard
to be applied in the subsequent benchmarks.

3.7 Feasibility and Repair Operators

The feasibility of a star is given by the condition if it meets each of the constraints
defined in the matrix A. In those cases which unfeasibility was detected, opted
for repair of the vector to make it comply with the constraints. We implemented
a repair function in two phases, ADD and DROP, as way to optimize the vector
in terms of coverage and costs. The first phase changes the vector in the column
that provides the coverage at the lowest cost, while the second one removes those
columns which only added cost and do not provide coverage.

3.8 Collapse into the Black Hole

One of the main problems for the implementation of this operator is that the
authors refer to vectorial distances determinations or some other method. How-
ever, in a 2015 publication, Farahmandian, and Hatamlouy [12] intend to deter-
mine the distance of a star xi to the radius R as:

|f(xBH) − f(xi)| (5)

I.e. a star xi will collapse if the absolute value of the black hole and his fitness
subtraction is less than the value of the radius R:

|f(xBH) − f(xi)| < R (6)
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Table 1. Execution parameters

Parameter Best value

Universe size in stars 50

Iterations max 20.000

Transference function 1

1+(e−x/3)

Table 2. Experimental results

Instance ZBKS Zmin Zmax Zavg RPD Instance ZBKS Zmin Zmax Zavg RPD
4.1 429 455 603 529,00 6,06 C.1 227 252 287 269,5 9,92
4.2 512 544 633 588,50 6,25 C.2 219 245 289 267 10,61
4.3 516 551 696 623,50 6,78 C.3 243 266 399 332,5 8,65
4.4 494 527 749 638,00 6,68 C.4 219 252 301 276,5 13,10
4.5 512 448 730 639,00 7,03 C.5 215 247 295 271 12,96
4.6 560 601 674 637,50 7,32 D.1 60 71 146 108,5 15,49
4.7 430 461 514 487,50 7,21 D.2 66 73 177 125 9,59
4.8 492 528 613 570,50 7,32 D.3 72 81 120 100,5 11,11
4.9 641 688 767 727,50 7,33 D.4 62 70 135 102,5 11,43
4.10 514 547 660 603,50 6,42 D.5 61 72 208 140 15,28
5.1 253 269 398 333,50 6,32 E.1 5 9 53 31 44,44
5.2 302 322 430 376,00 6,62 E.2 5 12 61 36,5 58,33
5.3 226 246 275 281,50 8,85 E.3 5 10 112 61 50,00
5.4 242 261 287 268,00 7,85 E.4 5 11 76 43,5 54,55
5.5 211 228 258 243,00 8,06 E.5 5 13 71 42 61,54
5.6 213 230 359 294,50 7,98 NRE1 29 81 169 125 64,20
5.7 293 322 372 347,00 9,90 NRE2 30 44 152 98 31,82
5.8 288 308 459 383,50 6,94 NRE3 27 435 522 478,5 93,79
5.9 279 296 449 372,50 6,09 NRE4 28 44 62 53 36,36
5.10 265 283 412 347,50 6,79 NRE5 28 213 346 279,5 86,85
6.1 138 151 201 176,00 9,42 NRF1 14 658 711 684,5 97,87
6.2 146 157 281 219,00 7,53 NRF2 15 18 163 90,5 16,67
6.3 145 153 195 175,50 7,59 NRF3 14 69 116 92,5 79,71
6.4 131 144 233 188,50 9,92 NRF4 14 45 147 96 68,89
6.5 161 177 258 217,50 9,94 NRF5 13 222 362 292 94,14
A.1 253 298 414 356,00 17,79 NRG1 176* 770 797 783,5 77,14
A.2 252 301 430 365,50 19,44 NRG2 151* 876 1006 941 82,76
A.3 232 256 390 323,00 10,34 NRG3 166* 1012 1046 1029 83,60
A.4 234 268 316 292 14,53 NRG4 168* 289 398 343,5 41,87
A.5 236 266 369 317,50 12,71 NRG5 168* 1211 1339 1275 620,83
B.1 69 82 149 115,50 18,84 NRH1 63* 2143 2242 2192,5 3301,59
B.2 76 99 184 133,50 30,26 NRH2 63* 701 810 755,5 1012,70
B.3 80 89 145 117 11,25 NRH3 59* 893 915 904 1413,56
B4 79 88 104 96 11,39 NRH4 59* 329 464 396,5 457,63
B.5 72 88 119 99,50 22,22 NRH5 55* 715 845 780 1200

* = Best results found in literature [15]
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3.9 Parameters

For the purpose of implementing all the features and operators that are detailed
in this document in multiple configurations, a table of parameters was built for
the algorithm. Below are parameters values used and which values are those that
gave the best results (Table 1).

The first parameter refers to the fixed number of stars that comprise the
full universe to be processed, while the second specifies the maximum number
of iterations to perform in total. The third and fourth parameters refer to the
functions that will be used in the transfer and binarization of the variables in
each iteration.

4 Experimental Results

The original algorithm was subjected to a test by running the benchmark 4,
5, 6, A, B, C, D, NRE, NRF, NRG and NRH from OR library [13]. Each of
these data sets ran 30 times with same parameters [14], presenting the following
results (Table 2).

Fig. 3. SPC41 results

Fig. 4. NRH1 results
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Fig. 5. Evolution of maxs and mins (Color figure online)

5 Experimental Analisis and Conclusions

Comparing the results of experiments with optimal ones reported in the liter-
ature, we can warn that the results obtained are acceptably close to the best
known optimum for benchmarks 4, 5 and 6 and very far away from them in
the case of the final ones (A, B, C, D, E and NR). In the case of the first ones
are deviations between 6,06 % and 61,54 %, while in the case of the latter ones
reach 3.301,59 % of deviation. Both cases despite the execution of the algorithm
a lot of times. The rapid initial convergence is achieved, striking finding very
significant improvements in the first iteration, finding very significant improve-
ments in early iterations, being much more gradual subsequent and requiring
the execution of those operators that stimulate exploration, such as collapse and
Hawking radiation. This suggests that the algorithm has a tendency to fall in
optimal locations, where cannot leave without the help of scanning components.
In order to illustrate these trends, some graphics performance benchmarks are
presented (Figs. 3 and 4).

While in the benchmark results which threw poor results have significant
percentages of deviation from the known optimal, in absolute terms the differ-
ences are low considering the values from which it departed iterating algorithm.
It is probably that these tests require greater amount of iterations to improve
its results, since the values clearly indicate a consistent downward trend, the
number of variables is higher and the difference between the optimum and the
start values is broader. An interesting analysis element is that the gap between
the best and the worst outcome is small and relatively constant in practically all
benchmarks, indicating the algorithm tends continuously towards an improve-
ment of results and the minimums are not just a product of suitable random
values. The following chart explains this element (Fig. 5).

On the other hand, it is also important to note that in those initial tests
in which the stochastic component was greater than that has been postulated
as the optimal, the algorithm presented lower performance, determining optimal
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much higher probably by the inability to exploit areas with better potential solu-
tions. All this is what it can be noted that the associated parameters to define the
roulette for decision-making are quite small ranges in order that the random com-
ponent be moderate. Other notorious elements are the large differences in results
obtained with different methods of transfer and binarization, some ones simply
conspired against acceptable results. Various possibilities already exposed to find
a satisfactory combination were explored. Some investigation lines that can be
interesting approach for a possible improvement of results may be designed to
develop a better way to determine the concept of distance, with better tailored
criteria to the nature of the algorithm, as well as a more sophisticated method
of mutation for those stars subjected to Hawking radiation. Additionally, some
authors treat the rotation operator by adding additional elements such as mass
and electric charge of the hole negros [16], what was not considered in this work
because the little existing documentation.
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Norero, E.: A binary coded firefly algorithm that solves the set covering problem.
Sci. Technol. 17(3), 252–264 (2014)

12. Farahmandian, M., Hatamlou, A.: Solving optimization problems using black hole
algorithm. J. Adv. Comput. Sci. Technol. 4(1), 68–74 (2015)

13. Beasley, J.: Or-library (1990). http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/
scpinfo.html

14. Beasley, J.E.: An algorithm for set covering problem. Eur. J. Oper. Res. 31(1),
85–93 (1987)

15. Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C.,
Taniar, D., Apduhan, B.O.: Computational Science and Its Applications-ICCSA
2015, vol. 9157. Springer, Cham (2015)

16. Nemati, M., Salimi, R., Bazrkar, N.: Black holes algorithm: a swarm algorithm
inspired of black holes for optimization problems. IAES Int. J. Artif. Intell. (IJ-AI)
2(3), 143–150 (2013)

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/scpinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/scpinfo.html

	An Binary Black Hole Algorithm to Solve Set Covering Problem
	1 Introduction
	2 Black Holes
	3 Algorithm
	3.1 Big Bang
	3.2 Fitness Evaluation
	3.3 Rotation Operator
	3.4 Collapse into the Black Hole
	3.5 Algorithm Implementation
	3.6 Transfer Functions and Binarization
	3.7 Feasibility and Repair Operators
	3.8 Collapse into the Black Hole
	3.9 Parameters

	4 Experimental Results
	5 Experimental Analisis and Conclusions
	References


